WorldWideScience

Sample records for aromatiques polycycliques adsorbes

  1. Biodégradation des hydrocarbures aromatiques polycycliques. Approche microbiologique et application au traitement d'un sol pollué

    OpenAIRE

    Bidaud, Christine

    1998-01-01

    278 pages; No english abstract; Les Hydrocarbures Aromatiques Polycycliques (HAP) sont des molécules qui posent un grave problème environnemental à cause de leurs propriétés toxiques, cancérigènes, voire tératogènes. Les sites d'anciennes usines à gaz sont souvent pollués par ces produits issus de la combustion incomplète de matières organiques. Notre travail a été réalisé à partir d'échantillons de sol issus d'un site d'ancienne usine à gaz. Nous avons d'abord étudié la biodégradabilité natu...

  2. Les hydrocarbures aromatiques polycycliques dans l'environnement. Deuxième partie : La dégradation par voie microbienne Polycyclic Aromatic Hydrocarbons in the Environment. Part Two: Microbial Degradation

    OpenAIRE

    Bouchez M.; Blanchet D.; Vandecasteele J. P.; Haeseler F.

    2006-01-01

    La microbiologie de la dégradation des hydrocarbures aromatiques polycycliques (HAP) est un domaine de recherche en plein développement. C'est à la fois le devenir dans l'environnement de ces composés ubiquistes et génotoxiques et l'utilisation de procédés microbiologiques de dépollution des sols industriels contaminés par ces produits qui motivent cet intérêt. On présente ici une synthèse des connaissances actuelles dans ce domaine. Les organismes dégradeurs sont essentiellement les bactérie...

  3. Les hydrocarbures aromatiques polycycliques dans l'environnement. Première partie. Propriété, origines, devenir Polycyclic Aromatic Hydrocarbons in the Environment. Part One. Properties, Origins, Fates

    Directory of Open Access Journals (Sweden)

    Bouchez M.

    2006-11-01

    Full Text Available Les hydrocarbures aromatiques polycycliques (HAP sont des contaminants produits notamment dans les processus de combustion. Leur caractère ubiquiste et leur génotoxicité sont à l'origine d'une activité de recherche importante. Après avoir présenté les structures chimiques et les propriétés physico-chimiques et biologiques principales de ces composés, on résume les connaissances actuelles concernant leur présence dans l'environnement. Les critères géochimiques de leurs différentes origines pyrolytique, diagénétique ou pétrolière, sont exposés. On examine la contribution des différentes sources d'émission, le transport et la diffusion dans l'environnement de ces composés, ainsi que les modifications qu'ils subissent et leur sort ultime. La distribution qualitative et quantitative des HAP de combustion dans les sols d'environnements variés est présentée. Polycyclic aromatic hydrocarbons (PAH are environmental contaminants produced in particular in combustion processes. As a consequence of their genotoxicity and ubiquity, they are the subject of an important research activity. After a presentation of the chemical structures and of the main physico-chemical and biological properties of these compounds, the current knowledge regarding their presence in the environment is summarized. The geochernical criteria of the different,origins, pyrolytic, diagenetic and petroleum of PAH are presented. The respective contributions of their various emission sources are discussed , as well as the transfer and diffusion in the environment, the modifications undergone and the ultimate fate of these compounds. The qualitative and quantitative distribution of combustion PAH in soils in different environmental situations is presented.

  4. Effets d'un hydrocarbure aromatique polycyclique et d'un PCB sur les activités de métabolisation des xénobiotiques de la truite arc-en-ciel (O. mykiss

    Directory of Open Access Journals (Sweden)

    CRAVEDI J. P.

    1998-07-01

    'activité EROD des truites arc-en-ciel aux hydrocarbures aromatiques polycycliques et aux PCB et souligne les possibilités et les limites d'utilisation de cette activité en tant que biomarqueur d'exposition à ces polluants.

  5. Les hydrocarbures aromatiques polycycliques dans l'environnement : la réhabilitation des anciens sites industriels The Polycyclic Aromatic Hydrocarbons in the Environment : the Former Industrial Sites Remediation

    Directory of Open Access Journals (Sweden)

    Costes J. M.

    2006-12-01

    Full Text Available Les hydrocarbures aromatiques polycycliques ou HAP peuvent être d'origine naturelle mais ils proviennent principalement des processus de pyrolyse. On peut les retrouver dans les sols de certains anciens sites industriels. Cela peut être le cas des sites d'anciennes usines à gaz. Même si aucune conséquence sur la santé humaine n'a été signalée et même si les risques paraissent virtuels, le principe de précaution rend nécessaire de s'occuper des risques liés à ces anciens sites industriels. Gaz de France, propriétaire de 467 sites d'anciennes usines à gaz assume l'héritage industriel dans le cadre d'un protocole signé avec le ministère de l'Environnement. Après une étude des sols, une évaluation des risques est réalisée. En fonction des résultats de cette évaluation des risques et de l'usage du site (actuel et prévu, des solutions de traitement peuvent être mises en Suvre. Parmi les techniques applicables aux sols pollués par des HAP, un intérêt particulier s'est porté sur les traitements biologiques, en pleine évolution, qui offrent une solution économique bien adaptée au traitement de grands volumes de sols souillés par une pollution organique moyennement concentrée. Polycyclic aromatic hydrocarbons (PAHs can be found under natural conditions but they can be produced by pyrolysis processes. They can be found in former industrial sites subsoil, especially on Manufactured Gas Plant sites (MGP sites. Gaz de France has inherited the patrimony of former French gas companies on nationalisation in 1946; consequently, Gaz De France is still the owner of 467 of manufactured gas plants. Even if no impact on human health has been detected and even if the risks seem to be virtual, Gaz de France has to prevent any environmental consequence due to the possible presence of residues in the subsoil of the sites: a protocol has been signed with the French Ministry of Environment. Following the investigations on the site, a

  6. Les hydrocarbures aromatiques polycycliques dans l'environnement. Deuxième partie : La dégradation par voie microbienne Polycyclic Aromatic Hydrocarbons in the Environment. Part Two: Microbial Degradation

    Directory of Open Access Journals (Sweden)

    Bouchez M.

    2006-11-01

    Full Text Available La microbiologie de la dégradation des hydrocarbures aromatiques polycycliques (HAP est un domaine de recherche en plein développement. C'est à la fois le devenir dans l'environnement de ces composés ubiquistes et génotoxiques et l'utilisation de procédés microbiologiques de dépollution des sols industriels contaminés par ces produits qui motivent cet intérêt. On présente ici une synthèse des connaissances actuelles dans ce domaine. Les organismes dégradeurs sont essentiellement les bactéries et les champignons. Le processus de dégradation, aérobie, est initié par des oxygénases. Les bactéries utilisent les HAP de deux à quatre cycles comme substrats de croissance, ce qui conduit à leur minéralisation. Les champignons, lignolytiques et non lignolytiques, attaquent les HAP par cométabolisme, ce que font également les bactéries. L'ensemble des micro-organismes dégradant les HAP, et les voies métaboliques impliquées, sont présentés. Le mode d'accession des micro-organismes à leurs substrats très peu solubles est un point important. Les études menées avec les bactéries ont montré l'existence de deux mécanismes, le transfert par solubilisation dans la phase aqueuse et l'accession interfaciale directe. Un autre aspect présenté est le devenir des HAP, en termes de bilans carbone, lors de la dégradation bactérienne de HAP individuels et de mélanges de HAP. Des taux de minéralisation élevés peuvent être obtenus. Dans le cas des mélanges, ces taux élevés impliquent la mise en oeuvre de microflores complexes où le cométabolisme joue un rôle important. Les progrès accomplis ces dernières années conduisent à ne plus considérer les HAP comme des composés intrinsèquement récalcitrants à la biodégradation. Dans l'environnement, un facteur important limitant la dégradation des HAP est leur accessibilité aux micro-organismes. The microbiology of the degradation of polycyclic aromatic hydrocarbons

  7. Fenton's reagent as a remediation process in water treatment: application to the degradation of polycyclic aromatic hydrocarbons in waters and sewage sludges; La reaction de fenton comme procede de rehabilitation dans le traitement des eaux: application a la degradation des hydrocarbures aromatiques polycycliques dans les eaux et les boues residuaires

    Energy Technology Data Exchange (ETDEWEB)

    Flotron, V.

    2004-05-15

    This study is related to the application of Fenton's reagent to remedy matrices contaminated by polycyclic aromatic hydrocarbons (PAHs). In aqueous solution, the choice of the reagent implementation is important, in order to generate enough radicals to oxidize pollutants. Degradation of the organic compounds is possible, but a large difference in reactivity is observed between 'alternant' and 'non-alternant' PAHs (with a five carbon atoms cycle). Besides, if a few specific precautions are omitted, the PAHs can sorb onto the flask inside surface, and therefore not undergo oxidation. The results on sewage sludges show that under certain conditions (high reagent concentrations), the pollutants can be oxidised although they are adsorbed. Moreover, it appears that the matrix itself plays an important role, as the iron oxides seem to be able to decompose hydrogen peroxide, and thus initiate Fenton reaction. Its application to contaminated soils and sediments is also possible. (author)

  8. Dissipation of polycyclic aromatic hydrocarbons in mixed polluted soils; Dissipation des hydrocarbures aromatiques polycycliques dans les sols a pollution multiple

    Energy Technology Data Exchange (ETDEWEB)

    Saison, C.

    2001-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are toxic organic compounds that are harmful for the environment and to human health. PAHs are the major pollutants in soils of former coking plants. Dissipation decreases their concentration in soils and is a preliminary condition for remediation. In this thesis, the effect of metals on the mineralization, availability and transport in water of two labeled PAHs, {sup 14}C-benzo(a)pyrene and {sup 14}C-phenanthrene, were studied under controlled conditions (microcosms and micro-lysimeter). The natural attenuation of PAHs in planted or regularly tilled soil was also examined under natural climatic conditions. Results demonstrated that the degradation and transfer of benzo(a)pyrene, in the aqueous phase, was low and, as a result, the molecule was persistent in soil. Only 8% of phenanthrene was degraded in 110 days and, after 18 months, 15% of the residues had been leached from the soils. Bio-available metals severely inhibited the mineralization of phenanthrene, but the metabolites remained in an extractable form. Soluble organic matter was found to bind PAHs in solution and ease their transport in circulating water. Metals decreased this association and lysimeter studies confirmed the low leachability of these molecules. It was concluded that PAHs have a long residence time in these soils and that tillage practices or plants have a negligible effect on the dissipation of PAHs over this time scale. Nonetheless, plants can decrease their toxicity in soils. (author)

  9. Évolution physico-chimique des hydrocarbures aromatiques polycycliques dans les régions de photodissociation

    OpenAIRE

    Montillaud, Julien

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) play a major role in the physics and chemistry of photodissociation regions (PDRs) in our galaxy. In these environments, the physical conditions and in particular the UV radiation field drive the evolution of PAHs. It was proposed that very small dust grains are also related to this evolution. We propose here an investigation of these evolution scenarios by combining chemical and physical studies with astrophysical studies of these species in PDRs. In t...

  10. Biodisponibilité des Hydrocarbures Aromatiques Polycycliques dans les écosystèmes aquatiques : Influence de la matière organique naturelle et anthropique

    OpenAIRE

    Gourlay, Catherine

    2004-01-01

    Les écosystèmes aquatiques sont un récepteur privilégié des micro-polluants. Ils contiennent aussi des matières organiques (MO) naturelle ou anthropiques. Les interactions entre les contaminants et les MO déterminent en grande partie la biodisponibilité des polluants. Par le passé, de nombreux travaux ont été consacrés à l'étude des interactions entre les contaminants et les MO humiques, très hydrophobes et non dégradables. Cependant, les MO des milieux anthropisés sont généralement plus hydr...

  11. Transfer and metabolism of polycyclic aromatic hydrocarbons in lactating ruminants; Transfert et metabolisme des hydrocarbures aromatiques polycycliques chez le ruminant laitier

    Energy Technology Data Exchange (ETDEWEB)

    Grova, N.

    2003-11-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are lipophilic, persistent and ubiquitous compounds in the environment. Exposed fodder becomes a PAHs route for lactating ruminants. A first experiment was aimed to evaluate the influence of feeding system on PAHs levels in cows' milk. The results showed that grass generates a more important PAHs exposition than maize fodder. A second experiment was focused on PAHs transfer from feed to milk in controlled conditions. Among the 16 PAHs of the US-EPA list, only light compounds with less than 5 aromatic rings were detected in milk. Their transfer levels decreased from 30 % to 1 %. A single oral ingestion of [{sup 14}C] PAHs to lactating goats was used to characterize the different excretion routes (milk, urine, faeces). Three specific types of behavior were noticed for 2,3,7,8-TCDD, for both phenanthrene and pyrene and for benzo[a]pyrene. Their chemical and physical properties and their capacity to be metabolized seemed to be key factors in these transfer mechanisms. Phenanthrene metabolism in lactating ruminant was measured using gas chromatography coupled to mass spectrometry (GC-MS). A fast and efficient multi-residue extraction-purification procedure was developed for phenanthrene and its metabolites in biological matrices. Thus metabolism directly influences the compound becoming in organism and its excretion through excretion products (milk, urine and faeces). Furthermore, the hydroxylated compounds of phenanthrene, fluorene and pyrene were identified in goats' milk after a single or a chronic administration of PAHs. The results suggested that metabolism induction of phenanthrene is positively correlated with the amount of product administrated to the ruminant. (author)

  12. Diagnosis of soils polluted by aromatic hydrocarbons; Diagnostic de sols pollues par des hydrocarbures aromatiques polycycliques (HAP) a l'aide de la spectrophotometrie UV

    Energy Technology Data Exchange (ETDEWEB)

    Crone, M.

    2000-01-28

    Polycyclic aromatic hydrocarbons (PAHs) were produced by many pyrolytic or combustion processes. They were found in soils, often in high concentrations. Remediation of industrial sites contaminated by PAHs requires an initial diagnosis of the pollution. In this perspective, an analytical procedure based on UV spectrophotometry was developed and validated with about 80 soil samples. Different exploitation methods of the samples UV spectra enable to develop simple and rapid characterisation tools. A PAH UV index is proposed for the estimation of global PAH concentration. A more accurate exploitation of the spectra gives an indication on the presence or the absence of some individual PAH like benzo[a]pyrene. A maturity index based on a two wavelength approach constitutes an indicator of the potential evolution of soil contamination in natural conditions. Laboratory methodology was adapted to field analyses and a test kit was designed for this purpose. The test duration is 20 minutes. (author)

  13. Filtration d’une huile dopée avec quatre hydrocarbures aromatiques polycycliques (HAP sur des plaques garnies en charbon actif

    Directory of Open Access Journals (Sweden)

    Sidani Marion

    2012-11-01

    Full Text Available Powdered activated carbon is used in oils and fats refining to bleach and purify vegetable oils and fish oils. Actually, this powder makes it possible to detoxify crude fish oils and to eliminate contaminants like PAH, dioxin and PCB. Nevertheless, the powdered activated carbon used is painful because it is pulverulent. Nowadays, producers advise filtration plates filled with this powder. The aim of this study is to check the efficiency of such plates in the PAH elimination and verify the respect of the new 2011 regulation (2 μg/kg for benzo(apyrene, 10 μg/kg for the sum of benzo(apyrene, benzo(bfluoranthene, benzo (aanthracene and chrysene.

  14. Recherche de lignées aromatiques d’Abies par hybridation somatique

    OpenAIRE

    Fauconnier, Marie-Laure

    2013-01-01

    Créer une lignée d’Abies aromatique qui associera les propriétés de croissance reconnues à l’espèce A. nordmanniana aux propriétés aromatiques d’A. balsamea, en utilisant des lignées embryogènes capables de régénérer des plantes entières.

  15. Origine et répartition bioécologique des plantes aromatiques de Madagascar

    OpenAIRE

    Rakotovao, L.H.; Randrianjohany, E.

    1996-01-01

    Au sein de la flore malgache comptant 12 000 espèces environ, on a recensé 110 espèces aromatiques, réparties dans 33 familles. Elles comprennent 58 espèces autochtones dont 86% sont endémiques, et 52 espèces introduites ; ces dernières sont originaires de diverses régions tropicales ; 60% provenant des terres orientales (Inde, Malaisie, Asie tropicale, Australie, etc.) ; 9% d'Afrique et 11% d'Amérique du Sud. La répartition de ces plantes aromatiques dans les deux grandes régions phytogéogra...

  16. Activité biologique des huiles essentielles extraites de trois plantes aromatiques sur la mite tineola bisselliella (Lepidoptera, tineidae)

    OpenAIRE

    BOUCHIKHI TANI, Zoheir; KHELIL, Momamed Anouar; BENDAHOU, Mourad

    2012-01-01

    Les huiles essentielles extraites par hydrodistillation de trois plantes aromatiques de l'ouest algérientrachyspermum ammi (apiacées) 3ème Congrés internationale franco-maghrebin de Zoologie et d'ichtyologie - Marrakech 2012

  17. Caractérisation d'arène dioxygénases impliquées dans la biodégradation des hydrocarbures aromatiques polycycliques chez Mycobacterium sp. 6PY1

    OpenAIRE

    Kuony, Sylvain

    2005-01-01

    Président :M. D. SCHNEIDER Rapporteurs :Mme F. FAYOLLE-GUICHARD, M. T. VOGEL Examinateur :M. S. KRIVOBOK; This thesis deals with the bacterial biodegradation of pollutants called polycyclic aromatic hydrocarbons (PAHs). The bacterium Mycobacterium sp. 6PY1 was isolated from a polluted soil for its ability to use pyrene, a 4-ring PAH, as sole source of carbon and energy. To learn about the pyrene metabolic pathway, the identification of the enzymes involved in this process has been undertaken ...

  18. Bioavailability of Polycyclic Aromatic Hydrocarbons in aquatic ecosystems : influence of natural and anthropic organic matter; Biodisponibilite des hydrocarbures aromatiques polycycliques dans les ecosystemes aquatiques: influence de la matiere organique naturelle et anthropique

    Energy Technology Data Exchange (ETDEWEB)

    Gourlay, C.

    2004-11-01

    Aquatic ecosystems receive micro-pollutants. They also contain organic matter (OM) of natural and anthropogenic origins. The contaminant bioavailability in aquatic media is determined by the interactions between contaminants and OM. This work deals with the influence of organic matter from anthropogenic media on the bioavailability of hydrophobic organic pollutants. Polycyclic Aromatic Hydrocarbons (PAHs) have been used as model contaminants, since they are widely spread in urban media. In anthropogenic media, some OM may be bio-degraded. Up to now, most researches focused on the interactions between contaminants and humic OM that are mostly non-degradable, using physico-chemical characterizations of OM. On the contrary, in this work, the biodegradability of OM was deliberately taken into account. Indeed, we assume that the contaminant affinity for OM evolves during OM biodegradation, so that pollutants may be released in a bio-available form and then may be bond again by biodegradation sub-products. In laboratory evaluation, PAH bioavailability was assessed through the measurements of the bioaccumulation in Daphnia magna. The influence of organic matter on the bioavailability of PAHs and the evolution of this influence along OM bacterial mineralization were proved, as well as the strong binding efficiency of degradation by-products. A model of observed phenomena was elaborated. These observations about urban and natural OM effect were compared to in situ PAH bioavailability measurements in the river Seine basin. In this case, the bioavailability was estimated using Semi-Permeable Membrane Device (SPMD) sampling technique. (author)

  19. Characterization of arene di-oxygenases involved in polycyclic aromatic hydrocarbons biodegradation in Mycobacterium sp. 6PY1; Caracterisation d'arene dioxygenases impliquees dans la biodegradation des hydrocarbures aromatiques polycycliques chez Mycobacterium sp. 6PY1

    Energy Technology Data Exchange (ETDEWEB)

    Kuony, S.

    2005-06-15

    This thesis deals with the bacterial biodegradation of pollutants called polycyclic aromatic hydrocarbons (PAHs). The bacterium Mycobacterium sp. 6PY1 was isolated from a polluted soil for its ability to use pyrene, a 4-ring PAH, as sole source of carbon and energy. To learn about the pyrene metabolic pathway, the identification of the enzymes involved in this process has been undertaken using a proteomic approach. This approach revealed the occurrence of two ring-hydroxylating di-oxygenases in strain 6PY1, which could catalyze the initial attack of pyrene. The goal of this study was to clone the genes encoding the di-oxygenases identified in Mycobacterium sp. 6PY1, over-express these genes in an heterologous system in order to facilitate the purification of the corresponding enzymes, and determine the biochemical and catalytic properties of these enzymes. The pdoA1B1 genes encoding the terminal component of a di-oxygenase were cloned and over-expressed in Escherichia coli. The catalytic properties of this enzyme, called Pdo1, were determined in vivo by measuring the oxidation products of 2- to 4-ring PAHs by gas chromatography coupled to mass spectrometry (GC-MS). Analysis of the selectivity of the enzyme, as determined using GC-MS, showed that Pdo1 preferentially oxidized 3- or 4-ring PAHs, including phenanthrene and pyrene, but was inactive on di-aromatic compounds such as naphthalene and biphenyl. Pdo1 was unstable and was therefore purified in inactive form. The genes encoding a second di-oxygenase component were found in a locus containing two other catabolic genes. The pdoA2B2 genes encoded an enzyme called Pdo2 showing a narrow specificity towards 2- to 3-ring PAHs, and a high preference for phenanthrene. Pdo2 is an a3{beta}3 hexamer, containing [2Fe-2S] Rieske clusters which confer it a characteristic absorbance spectrum. A third set of genes possibly encoding another di-oxygenase was discovered in the genome of Mycobacterium sp. 6PY1. This set is closely similar in sequence to that encoding Pdo1, suggesting that both isoenzymes are able two oxidize pyrene. In order to function, the ring-hydroxylating di-oxygenases require two electron-transfer proteins: a ferredoxin and a reductase. The electron carriers associated to Pdo1 and Pdo2 were not identified. However, the activity of the two di-oxygenases was stimulated in vivo by co-expressing accessory genes recruited from other bacteria. Finally, immuno-detection experiments using specific antibodies showed that the enzymes Pdo1 and Pdo2 were co-induced in the presence of PAHs, but differentially regulated according to growth conditions. (author)

  20. Geostatistical characterization of soil pollution at industrial sites Case of polycyclic aromatic hydrocarbons at former coking plants; Caracterisation geostatistique de pollutions industrielles de sols cas des hydrocarbures aromatiques polycycliques sur d'anciens sites de cokeries

    Energy Technology Data Exchange (ETDEWEB)

    Jeannee, N.

    2001-05-15

    Estimating polycyclic aromatic hydrocarbons concentrations in soil at former industrial sites poses several practical problems on account of the properties of the contaminants and the history of site: 1)collection and preparation of samples from highly heterogeneous material, 2) high short scale variability, particularly in presence of backfill, 3) highly contrasted grades making the vario-gram inference complicated. The sampling strategy generally adopted for contaminated sites is based on the historical information. Systematic sampling recommended for geostatistical estimation is often considered to be excessive and unnecessary. Two former coking plants are used as test cases for comparing several geostatistical methods for estimating (i) in situ concentrations and (ii) the probability that they are above a pollution threshold. Several practical and methodological questions are considered: 1) the properties of various estimators of the experimental vario-gram and the validity of the results; 2) the use of soft data, such as historical information, organoleptic observations and semi-quantitative methods, with a view to improve the precision of the estimates; 3) the comparison of standard sampling strategies, taking into account vertical repartition of grades and the history of the site. Multiple analyses of the same sample give an approximation of the sampling error. Short scale sampling shows the difficulty of selecting soils in the absence of a spatial structure. Sensitivity studies are carried out to assess how densely sampled soft data can improve estimates. By using mainly existing models, this work aims at giving practical recommendations for the characterization of soil pollution. (author)

  1. The aromatic polycyclic chlorinated hydrocarbons (HAPC) or ''dioxin'' 30 june 2000; Les hydrocarbures aromatiques polycycliques chlores (HAPC) ou ''dioxines'' 30 juin 2000

    Energy Technology Data Exchange (ETDEWEB)

    Coulombier, D.; Plenel, L.

    2000-06-01

    The authors propose in this paper a pocket-book on the dioxin also called HAPC. It presents the emission sources of the dioxin, the population exposed, the effects on the public health, the risk assessment, the dioxin in the food and the environment and the regulation in the domain. (A.L.B.)

  2. Etat des lieux et perspectives des débouchés des petits producteurs de plantes à parfum, aromatiques et médicinales

    OpenAIRE

    Fargeon, Hélène; Granozio, Clélia; de La Laurencie, Hortense; Logeais, Charlotte

    2016-01-01

    Etat des lieux et perspectives des débouchés des petits producteurs de plantes à parfum, aromatiques et médicinales Rapport du Groupe d'Analyse d'Action Publique (GAAP) pour le master PAPDD, année 2015-2016. Pour le compte de la filière plantes à parfum, aromatiques et médicinales de FranceAgriMer Hélène FARGEON, Clélia GRANOZIO, Hortense de LA LAURENCIE, Charlotte LOGEAIS, Mehdi SAUSSI EL ALAOUI Encadré par Florence Pinton (sociologue, AgroParisTech) et Jean-Paul Lescure (ethnobotaniste, ex-...

  3. Régulation des ravageurs en culture de plantes médicinales et aromatiques biologiques (PMA)

    OpenAIRE

    Koller, Martin

    2013-01-01

    Cette fiche technique est un résumé sur la régulation des ravageurs, des besoins actuels de mesures prophylactiques aux méthodes directes de lutte, et décrit les aspects et possibilités de lutte contre les principaux ravageurs des cultures de plantes médicinales et aromatiques biologiques (PMA). Cette publication s’adresse aux cultivateur-trice-s ainsi qu’aux transformateur-trice-s de plantes en thés et bonbons.

  4. Possibilités de valorisation économique des plantes médicinales et aromatiques en Guyane

    OpenAIRE

    Kodjoed-Bonneton, J.F.; Sauvain, Michel

    1989-01-01

    Ce rapport fait la synthèse des recherches menées depuis un an par l'ORSTOM sur le marché des plantes médicinales et aromatiques et leurs possibilités de valorisation économique en Guyane. La première partie aborde l'étude du marché avec certains pays de la CEE; on y retrouve la liste des plantes tropicales importées par ces pays, les acheteurs concernés et les fiches détaillées des plantes retenues pour un développement agricole. Dans la seconde partie, sont formulées des recommandations en ...

  5. Evaluation of soil contamination by explosives and metals at the Land Force Central Area Training Centre (LFCA TC) Meaford, Ontario (Phase I)

    Science.gov (United States)

    2009-05-01

    aromatiques polycycliques (HAP). Des échantillons d’eau de surface et ii DRDC Valcartier TR 2008-390 souterraine (35) qui ont été recueillis par... aromatiques polycycliques (HAP). Les analyses de métaux ont été effectuées par plasma inductif couplé/spectrométrie de masse (PIC/SM) et les...Metabolites) in Soil and Plant System”; Contract DE-AC06-76RLO 1830, November 1992. [23] Walsh, M.E. and Ranney, T.A., “Determination of Nitroaromatic

  6. Etude ethnobotanique des plantes médicinales et aromatiques dans le sud algérien : le Touat et le Tidikelt

    OpenAIRE

    Blama, Aicha; Fateh MAMINE

    2013-01-01

    L’Algérie reconnue par sa diversité variétale en plantes médicinales et aromatiques, ainsi que leurs diverses utilisations populaires dans l’ensemble des terroirs du pays. Cette communication présente les résultats d’une étude ethnobotanique, dans deux régions sahariennes situées au sud de l’Algérie, le Touat(Adrar) et le Tidikelt (In Salah), connues depuis l'antiquité comme les oasis des palmiers dattiers et les cultures intercalées sous ces palmiers. Elles consistent entre autres de plantes...

  7. Modeling adsorption: Investigating adsorbate and adsorbent properties

    Science.gov (United States)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  8. Remobilization of Polycyclic Aromatic Hydrocarbons (PAH) contaminated soils with a new bio-surfactant; Remobilisation d'Hydrocarbures Aromatiques Polycycliques (HAP) presents dans les sols contamines a l'aide d'un tensioactif d'origine biologique

    Energy Technology Data Exchange (ETDEWEB)

    Gabet, S.

    2004-07-01

    Polycyclic aromatic Hydrocarbons (PAH) are organic pollutants released into the environment by combustion processes; Due to their high sorption capacity, soils constitute their main environmental sink. PAH are hydrophobic and weakly biodegradable, moreover they are toxic and considered as potent human carcinogen. Various technologies are used for the remediation of PAH-contaminated soils, but they are not cost effective and may be hazardous for the environment. Some recent studies suggest that the use of bio-surfactants is a promising method that enhances the removal of PAHs from soils. This study investigates the properties and the impact of a new bio-surfactant, on the mobilization of three PAH (fluorene, fluoranthene and pyrene). The bio-surfactant seems to be weakly sorbed on the soil studied. Solubilizing effects have been studied by the Molar Solubilization Ratio (MSR). In the ternary mixture, the less hydrophobic PAH (fluorene) favors the micellar solubilization of the most hydrophobic one by decreasing interfacial tensions. The soil column studies revealed that the bio-surfactant was rapidly efficient. Results obtained in dynamic studies were consistent with those obtained in static studies. This work also investigated the effect of the contamination level on PAH remobilization. The study reveals that PAH solubilization increases with the contamination level until micelle saturation. The percentage re-mobilized depends on the contaminant studied and the content of organic matter rate. As a matter of fact, for the soil containing the higher OM rate, remobilization follows physico-chemical properties of the PAH. For the soil containing less OM, the mineral fraction seems to play a significant role on PAH adsorption. (author)

  9. Synthesis of a polycyclic aromatic hydrocarbon marked with carbon-14: (b, d e f) dibenzo-chrysene {sup 14}C-7,14; Synthese d'un hydrocarbure aromatique polycyclique marque au carbone 14: le dibenzo (b, d e f) chrysene {sup 14}C-7,14

    Energy Technology Data Exchange (ETDEWEB)

    Chatelain, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    (b, d e f) dibenzo-chrysene C-7,14 has been synthesized from radioactive carbon dioxide and the organic magnesium compound derived from 1,5 dibromo naphthalene. The product has been purified by a very precise series of fractionated chromatographs on alumina having a chromatographic activity. This has necessitated the development of a special technique. (author) [French] Le dibenzo (b, d e f) chrysene 14C-7,14 a ete synthetise au depart de gaz carbonique radioactif et de bis-organomagnesien derive du dibromo-1,5 naphtalene. Le produit a ete purifie par une serie de chromatographies fractionnees sur alumine d'activite chromatographique tres precise. Ceci a fait l'objet d'une mise au point de technique. (auteur)

  10. Apport d'informations qualitatives pour l'estimation des teneurs en milieux hétérogènes : cas d'une pollution de sols par des hydrocarbures aromatiques polycycliques (HAP)Contribution of auxiliary information for the estimation of grades in heterogeneous media: example in soil pollution

    Science.gov (United States)

    Jeannée, Nicolas; de Fouquet, Chantal

    2003-05-01

    Grade estimates are often of weak precision in the case of heterogeneous media, due to their high variability, even at small scale. Qualitative information is then useful to improve the quality of the estimates, without prohibitive additional costs. How can we sample such variables, and detect the ones that are of interest for the estimation of grades? The general methodology is presented and then illustrated for the estimation of the benzo(a)pyren (a polycyclic aromatic hydrocarbon, PAH) concentration in soils, sampled on a former coking plant. To cite this article: N. Jeannée, C. de Fouquet, C. R. Geoscience 335 (2003).To cite this article: N. Jeannée, C. de Fouquet, C. R. Geoscience 335 (2003).

  11. Influence des solvants aromatiques sur les propriétés optiques du bleu de phtalocyanine de cuivre en milieu pictural

    Directory of Open Access Journals (Sweden)

    Catherine Defeyt

    2010-11-01

    Full Text Available Actuellement, cinq formes de bleu de phtalocyanine de cuivre sont utilisées comme pigments artistiques: PB15, :1, :2, :3, :4, et :6. PB15 qui correspond à la forme la plus utilisée après PB15 :3 est sujette à la cristallisation. Ce phénomène qui s’observe plus particulièrement en présence de solvants aromatiques entraîne un glissement de teinte du bleu vers le vert et une perte du pouvoir couvrant du pigment. Or, l’usage de solvants aromatiques dans le champ de la conservation-restauration de peintures de chevalet est relativement commun. Citons par exemple, le toluène et les xylènes qui entrent dans la composition de certains mélanges de solvants, de certains types vernis (Laropal A81 et d’adhésifs (Beva 371. C'est pourquoi il est nécessaire d’effectuer une recherche de manière à déterminer si les conditions d’utilisation des solvants aromatiques en conservation-restauration provoquent la cristallisation de PB15. Dans cet article, les premiers résultats obtenus sur des échantillons de PB15, :1, :2, :3, :4 et :6 en poudre sont présentés. Les cinq formes susmentionnées ont été examinées sous microscope polarisant et analysées par spectroscopie infrarouge à transformée de Fourier et diffraction de rayons X, avant et après leur immersion dans les solvants aromatiques, de façon à pouvoir comparer les propriétés optiques et chimiques.Currently, five forms of copper phthalocyanine blue, PB15, :1, :2, :3, :4, and :6, are used as artistic pigments. PB15, the most widespread form afterwards PB15:3 is prone to crystallisation. This phenomenon changes the metastable α form into a coarsely crystalline form with an attendant loss of tinctorial strength. Crystal growth can occur in many media but is most often seen in paints containing aromatic solvents. The use of aromatic solvents as part of conservation treatments of paintings is relatively common. For example, the toluene and  the xylenes found

  12. Petrochemistry - Aromatics; Petrochimie - Aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-09-01

    The assignment of Unipetrol chemical activities to the Czech group Agrofert by the Polish PKN Orlen is suspended and would be renegotiated. Oman Oil Company (OOC) is joining in the Korean LG International and in its subsidiary company Oman Refinery Company (ORC) for the construction of its new aromatics complex on its site of Sohar (Oman). This plan represents an investment of one milliard of dollars; it will produce 800000 t/year of para-xylene and 210000 t/year of benzene. The unit would be operational at the third trimester 2008. (O.M.)

  13. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  14. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  15. Substrate-adsorbate coupling in CO-adsorbed copper

    CERN Document Server

    Lewis, S P; Lewis, Steven P.; Rappe, Andrew M.

    1996-01-01

    The vibrational properties of carbon monoxide adsorbed to the copper (100) surface are explored within density functional theory. Atoms of the substrate and adsorbate are treated on an equal footing in order to examine the effect of substrate--adsorbate coupling. This coupling is found to have a significant effect on the vibrational modes, particularly the in-plane frustrated translation, which mixes strongly with substrate phonons and broadens into a resonance. The predicted lifetime due to this harmonic decay mechanism is in excellent quantitative agreement with experiment.

  16. Adsorbed Water Illustration

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander detected small and variable amounts of water in the Martian soil. In this schematic illustration, water molecules are represented in red and white; soil minerals are represented in green and blue. The water, neither liquid, vapor, nor solid, adheres in very thin films of molecules to the surfaces of soil minerals. The left half illustrates an interpretation of less water being adsorbed onto the soil-particle surface during a period when the tilt, or obliquity, of Mars' rotation axis is small, as it is in the present. The right half illustrates a thicker film of water during a time when the obliquity is greater, as it is during cycles on time scales of hundreds of thousands of years. As the humidity of the atmosphere increases, more water accumulates on mineral surfaces. Thicker films behave increasingly like liquid water. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  18. Black Sprayable Molecular Adsorber Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This novel molecular adsorber coating would alleviate the size, weight, and complexity issues of traditional molecular adsorber puck.  A flexible tape version...

  19. A novel fiber-based adsorbent technology

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.A. [Chemica Technologies, Inc., Bend, OR (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  20. Molecularly Imprinted Filtering Adsorbents for Odor Sensing

    Directory of Open Access Journals (Sweden)

    Sho Shinohara

    2016-11-01

    Full Text Available Versatile odor sensors that can discriminate among huge numbers of environmental odorants are desired in many fields, including robotics, environmental monitoring, and food production. However, odor sensors comparable to an animal’s nose have not yet been developed. An animal’s olfactory system recognizes odor clusters with specific molecular properties and uses this combinatorial information in odor discrimination. This suggests that measurement and clustering of odor molecular properties (e.g., polarity, size using an artificial sensor is a promising approach to odor sensing. Here, adsorbents composed of composite materials with molecular recognition properties were developed for odor sensing. The selectivity of the sensor depends on the adsorbent materials, so specific polymeric materials with particular solubility parameters were chosen to adsorb odorants with various properties. The adsorption properties of the adsorbents could be modified by mixing adsorbent materials. Moreover, a novel molecularly imprinted filtering adsorbent (MIFA, composed of an adsorbent substrate covered with a molecularly imprinted polymer (MIP layer, was developed to improve the odor molecular recognition ability. The combination of the adsorbent and MIP layer provided a higher specificity toward target molecules. The MIFA thus provides a useful technique for the design and control of adsorbents with adsorption properties specific to particular odor molecules.

  1. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Chris [ORNL; Yatsandra, Oyola [ORNL; Mayes, Richard [ORNL; none,; Gill, Gary [PNNL; Li-Jung, Kuo [PNNL; Wood, Jordana [PNNL; Sadananda, Das [ORNL

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  2. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  3. Chitin Adsorbents for Toxic Metals: A Review

    Directory of Open Access Journals (Sweden)

    Ioannis Anastopoulos

    2017-01-01

    Full Text Available Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4-N-acetyl-d-glucosamine is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  4. IR investigations of surfaces and adsorbates

    CERN Document Server

    Gwyn, W

    2001-01-01

    Synchrotron infrared reflection-absorption measurements on single crystal metal surfaces with adsorbates have led to the determination of many key parameters related to the bonding vibrational modes and the dynamics of adsorbates. In particular, energy couplings between electrons and adsorbate motion have been shown to be a dominant mechanism on metal surfaces. Excellent agreement has been obtained with calculations for many of the observations, and the synergy between theory and experiment has led to a deeper understanding of the roles of electrons and phonons in determining the properties of interfaces and their roles in phenomena as diverse as friction, lubrication, catalysis and adhesion. Nonetheless, as the experiments are pushed harder, to describe such effects as co-adsorbed systems, disagreements continue to challenge the theory and our comprehension also is still evolving.

  5. Behavior of macromolecules in adsorbed layers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for describing the behavior of macromolecules in adsorbed layers is developed by introducing a concept of distribution density of layer thickness U based on stochastic process and probabilistic statistics. The molecular behavior of layers adsorbed on clay particle surfaces is discussed; the random distribution and its statistics of the layer thickness are given by incorporating experimental results with an ionic polyelectrolyte with the molecular weight of 1.08×106 and chain charged density of 0.254.

  6. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  7. ADSORBENTS USED IN THE CLEARANCE OF ENDOTOXIN

    Institute of Scientific and Technical Information of China (English)

    YU Mei; LIU Tao; Hou Guanghui; YUAN Zhi

    2003-01-01

    A series of modified poly (methyl methacrylate, PMMA) resins were prepared and compared their adsorption abilities to endotoxin. The results showed that adsorbents, which were grafted with tertiary amine and long spacing arms, had the best adsorption capacities and good blood compatibility, It is hopeful to be used as adsorbent in hemoperfusion for clinical clearance of endotoxin. The influence of original concentration of endotoxin on adsorption and the adsorption mechanism were also investigated.

  8. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  9. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    Science.gov (United States)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  10. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    of molecules such as NH3 or the internal modes of adsorbed molecules such as C4H10. Neutron scattering measurements where substrates other than graphite products are used as the adsorbents will not be reviewed here. However, the power of the technique will be demonstrated in an example of H2 physisorbed...... to activated alumina and in an example where hydrogen is chemisorbed to Raney nickel...

  11. Adsorbent Selection by Functional Group Interaction Screening for Peptide Recovery

    NARCIS (Netherlands)

    Wijntje, Renze; Bosch, Hans; Haan, de Andre B.; Bussman, Paul

    2005-01-01

    In order to selectively adsorb small peptides from complex aqueous feeds, selective adsorbents are required. The goal is to first find adsorbents with capacity for triglycine, as triglycine contains all groups common to small peptides. Selectivity studies will follow. Adsorbent selection was based o

  12. Size selective hydrophobic adsorbent for organic molecules

    Science.gov (United States)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  13. Black Molecular Adsorber Coatings for Spaceflight Applications

    Science.gov (United States)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  14. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  15. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  16. Effect of Adsorbent Diameter on the Performance of Adsorption Refrigeration

    Institute of Scientific and Technical Information of China (English)

    黄宏宇; 何兆红; 袁浩然; 小林敬幸; 赵丹丹; 窪田光宏; 郭华芳

    2014-01-01

    Adsorbents are important components in adsorption refrigeration. The diameter of an adsorbent can af-fect the heat and mass transfer of an adsorber. The effect of particle diameter on effective thermal conductivity was investigated. The heat transfer coefficient of the refrigerant and the void rate of the adsorbent layer can also affect the effective thermal conductivity of adsorbents. The performance of mass transfer in the adsorber is better when pressure drop decreases. Pressure drop decreases with increasing permeability. The permeability of the adsorbent layer can be improved with increasing adsorbent diameter. The effect of adsorbent diameter on refrigeration output power was experimentally studied. Output power initially increases and then decreases with increasing diameter under different cycle time conditions. Output power increases with decreasing cycle time under similar diameters.

  17. The biogeochemical cycle of the adsorbed template. II - Selective adsorption of mononucleotides on adsorbed polynucleotide templates

    Science.gov (United States)

    Lazard, Daniel; Lahav, Noam; Orenberg, James B.

    1988-01-01

    Experimental results are presented for the verification of the specific interaction step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The experimental system consisted of gypsum as the mineral to which an oligonucleotide template attaches (Poly-C or Poly-U) and (5-prime)-AMP, (5-prime)-GMP, (5-prime)-CMP and (5-prime)-UMP as the interacting biomonomers. When Poly-C or Poly-U were used as adsorbed templates, (5-prime)-GMP and (5-prime)-AMP, respectively, were observed to be the most strongly adsorbed species.

  18. Radon emanation from radium specific adsorbents.

    Science.gov (United States)

    Alabdula'aly, Abdulrahman I; Maghrawy, Hamed B

    2010-01-01

    Pilot studies were undertaken to quantify the total activity of radon that is eluted following no-flow periods from several Ra-226 adsorbents loaded to near exhaustion. The adsorbents studied included two types of barium sulphate impregnated alumina (ABA-8000 and F-1) and Dowex MSC-1 resin treated by either barium hydroxide or barium chloride. In parallel, radium loaded plain activated aluminas and Dowex MSC-1 resin were similarly investigated. The results revealed that radon was quantitatively eluted during the first few bed volumes of column operation after no-flow periods. Although similar radon elution profiles were obtained, the position of the radon peak was found to vary and depended on the adsorbent type. Radon levels up to 24 and 14 kBq dm(-3) were measured after a rest period of 72h from radium exhausted Dowex MSC-1 treated with barium chloride and F-1 impregnated alumina with barium sulphate, respectively. The eluted radon values measured experimentally were compared to those calculated theoretically from accumulated radium quantities for the different media. For plain adsorbents, an agreement better than 10% was obtained. For treated resin-types a consistency within 30% but for impregnated alumina-types high discrepancy between respective values were obtained.

  19. Linear Sweep Voltammetry of Adsorbed Neutral Red.

    Science.gov (United States)

    1982-05-01

    E. Creager, G. T. Marks, D. A. Aikens and H. H. Richtol Prepared for Publication in Journal of Electroanalytical Chemistry Rensselaer Polytechnic... Electroanalytical Chemistry It. KEY WORDS (Continue oun reverse side It necessary mid Ideneliy by block ntaibor) Neutral Red, cyclic voltammetry, adsorbed dye 20

  20. Adsorbate Diffusion on Transition Metal Nanoparticles

    Science.gov (United States)

    2015-01-01

    catalysis . KEYWORDS: Heterogeneous catalysis , diffusion, edge barrier, transition metal nanoparticles, DFT calculations 2 Diffusion of adsorbed...species on transition metal surfaces is an important process for thin-film and nanostructure growth and for heterogeneous catalysis , among others.1-4 In...process for heterogeneously catalyzed reactions, and as a result, an atomistic understanding of the diffusion mechanism is very important. We

  1. Heparin interaction with protein-adsorbed surfaces

    NARCIS (Netherlands)

    Winterton, Lynn C.; Andrade, Joseph D.; Feijen, Jan; Kim, Sung Wan

    1986-01-01

    Albumin and fibrinogen show no binding affinity to varied molecular weights of heparin at physiological pH. Human plasma fibronectin was shown to bind heparins in both the solution and adsorbed states. Fibronectin was shown to have six active binding sites for heparins which may be sterically blocke

  2. Nitric oxide adsorbed on zeolites: EPR studies.

    Science.gov (United States)

    Yahiro, Hidenori; Lund, Anders; Shiotani, Masaru

    2004-05-01

    CW-EPR studies of NO adsorbed on sodium ion-exchanged zeolites were focused on the geometrical structure of NO monoradical and (NO)2 biradical formed on zeolites. The EPR spectrum of NO monoradical adsorbed on zeolite can be characterized by the three different g-tensor components and the resolved y-component hyperfine coupling with the 14N nucleus. Among the g-tensor components, the value of g(zz) is very sensitive to the local environment of zeolite and becomes a measure of the electrostatic field in zeolite. The temperature dependence of the g-tensor demonstrated the presence of two states of the Na-NO adduct, in rigid and rotational states. The EPR spectra of NO adsorbed on alkaline metal ion-exchanged zeolite and their temperature dependency are essentially the same as that on sodium ion-exchanged zeolite. On the other hand, for NO adsorbed on copper ion-exchanged zeolite it is known that the magnetic interaction between NO molecule and paramagnetic copper ion are observable in the spectra recorded at low temperature. The signals assigned to (NO)2 biradical were detected for EPR spectrum of NO adsorbed on Na-LTA. CW-EPR spectra as well as their theoretical calculation suggested that the two NO molecules are aligned along their N-O bond axes. A new procedure for automatical EPR simulation is described which makes it possible to analyze EPR spectrum easily. In the last part of this paper, some instances when other nitrogen oxides were used as a probe molecule to characterize the zeolite structure, chemical properties of zeolites, and dynamics of small molecules were described on the basis of selected literature data reported recently.

  3. A theoretical study of adsorbate-adsorbate interactions on Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using density functional theory we study the effect of pre-adsorbed atoms on the dissociation of N(2) and the adsorption of N, N(2), and CO on Ru(0001). We have done calculations for pre-adsorbed Na, Cs, and S, and find that alkali atoms adsorbed close to a dissociating N(2) molecule will lower...... the barrier for dissociation, whereas S will increase it. The interaction with alkali atoms is mainly of an electrostatic nature. The poisoning by S is due to two kinds of repulsive interactions: a Pauli repulsion and a reduced covalent bond strength between the adsorbate and the surface d-electrons. In order...... to investigate these different interactions in more detail, we look at three different species (N atoms, and terminally bonded N(2) and CO) and use them as probes to study their interaction with two modifier atoms (Na and S). The two modifier atoms have very different properties, which allows us to decouple...

  4. Investigation on Adsorption State of Surface Adsorbate on Silicon Wafer

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An adsorption kinetics model for adsorbate on the specularly polished silicon wafer was suggested. The mathematical model of preferential adsorption and the mechanism controlling the adsorption state of adsorbate were discussed.

  5. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  6. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  7. Fluorescence of dyes adsorbed on highly organized nanostructured gold surfaces

    NARCIS (Netherlands)

    Levi, Stefano A.; Mourran, Ahmed; Spatz, Joachim P.; Veggel, van Frank C.J.M.; Reinhoudt, David N.; Möller, M.

    2002-01-01

    It is shown that fluorescent dyes can be adsorbed selectively on gold nanoparticles which are immobilized on a glass substrate and that the fluorescence originating from the adsorbed dyes exhibits significantly less quenching when compared to dyes adsorbed on bulk gold. Self-assembled monolayers of

  8. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  9. Behavior of macromolecules in adsorbed layers

    Institute of Scientific and Technical Information of China (English)

    牟伯中[1; 姚恒申[2; 罗平亚[3

    2000-01-01

    A model for describing the behavior ot macromoiecuies in aosoroea layers is developed by introducing a concept of distribution density of layer thickness U based on stochastic process and probabilistic statistics. The molecular behavior of layers adsorbed on clay particle surfaces is discussed; the random distribution and its statistics of the layer thickness are given by incorporating experimental results with an ionic polyelectrolyte with the molecular weight of 1.08×106and chain charged density of 0.254.

  10. MOLECULAR IMPRINTED POLYMERS--Novel Polymer Adsorbents

    Institute of Scientific and Technical Information of China (English)

    LI Haitao; XU Mancai; SHI Zuoqing; HE Binglin

    2001-01-01

    Molecular imprinted polymers (MIPs) are novel functional polymer materials and known as specific adsorbents for the template molecules. These novel functional polymers have promised potential applications in racemic resolution, sensor, chromatography, adsorptive separation and other fields. This review exhibits the approach for preparing MIPs, the features of MIPs obtained by different routes and the characteristics of adsorptive separations with MIPs. The molecular recognition mechanism and the idea of the present possibilities and limitations of molecular imprinting polymerization are discussed as well.

  11. Green Adsorbents for Wastewaters: A Critical Review

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-01-01

    Full Text Available One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i dyes; (ii heavy metals; (iii phenols; (iv pesticides and (v pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i agricultural sources and by-products (fruits, vegetables, foods; (ii agricultural residues and wastes; (iii low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources. These “green adsorbents” are expected to be inferior (regarding their adsorption capacity to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc., but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful topics such as: (i adsorption capacity; (ii kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes and (iii critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry with economic analysis and perspectives of the use of green adsorbents.

  12. Effective Thermal Conductivity of Adsorbent Packed Beds

    Science.gov (United States)

    Mori, Hideo; Hamamoto, Yoshinori; Yoshida, Suguru

    The effective thermal conductivity of adsorbent packed beds of granular zeolite 13X and granular silica gel A in the presence of stagnant steam or air was measured under different conditions of the adsorbent bed temperature, particle size and filler-gas pressure. The measured effective thermal conductivity showed to become smaller with decreasing particle size or decreasing pressure, but it was nearly independent of the bed temperature. When steam was the filler-gas, the rise in the thermal conductivity of the adsorbent particles due to steam adsorption led to the increase in the effective thermal conductivity of the bed, and this effect was not negligible at high steam pressure for the bed of large particle size. It was found that both the predictions of the effective thermal conductivity by the Hayashi et al.'s model and the Bauer-Schlünder model generally agreed well with the measurements, by considering the particle thermal conductivity rise due to steam adsorption. The thermal conductivity of a consolidated bed of granular zeolite 13X was also measured, and it was found to be much larger than that of the packed bed especially at lower pressure. The above prediction models underestimated the effective thermal conductivity of the consolidated bed.

  13. Remediation of AMD using industrial waste adsorbents

    Science.gov (United States)

    Mohammed, Nuur Hani Bte; Yaacob, Wan Zuhairi Wan

    2016-11-01

    The study investigates the characteristic of industrial waste as adsorbents and its potential as heavy metals absorbents in AMD samples. The AMD sample was collected from active mine pond and the pH was measured in situ. The metal contents were analyzed by ICP-MS. The AMD water was very acidic (pH< 3.5), and the average heavy metals content in AMD were high especially in Fe (822.029 mg/l). Fly ash was found to be the most effective absorbent material containing high percentage of CaO (57.24%) and SiO2 (13.88%), followed by ladle furnace slag containing of high amount of CaO (51.52%) and Al2O3 (21.23%), while biomass ash consists of SiO2 (43.07%) and CaO (12.97%). Tank analysis display a huge changes due to pH value change from acidity to nearly neutral phases. After 50 days, fly ash remediation successfully increase the AMD pH values from pH 2.57-7.09, while slag change from acidity to nearly alkaline phase from pH 2.60-7.3 and biomass has change to pH 2.54-6.8. Fly ash has successfully remove Fe, Mn, Cu, and Ni. Meanwhile, slag sample displays as an effective adsorbent to adsorb more Pb and Cd in acid mine drainage.

  14. Le transfert des micropolluants organiques dans la chaîne alimentaire Etat et perspectives de recherche

    Directory of Open Access Journals (Sweden)

    Feidt Cyril

    2000-09-01

    Full Text Available Les hydrocarbures aromatiques polycycliques ont récemment défrayé la chronique à plusieurs reprises. Cet article se propose de faire le point sur les propriétés de ces molécules en vue de donner un aperçu des voies pour la recherche d’outils d’évaluation et de gestion des risques liés à ces molécules. De nombreuses molécules peuvent prétendre appartenir à cette famille. Nous traiterons de celles les plus communément impliquées dans les problèmes de sécurité alimentaire, à savoir la famille des dioxines-furanes ou polychloro-dibenzo-paradioxines/furanes (PCDD/F, celle des composés polychlorés biphényles (PCB et enfin celle des hydrocarbures aromatiques polycycliques (HAP que nous réserverons dans ce texte aux composés non chlorés.

  15. The Uranium from Seawater Program at the Pacific Northwest National Laboratory: Overview of Marine Testing, Adsorbent Characterization, Adsorbent Durability, Adsorbent Toxicity, and Deployment Studies

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A.; Kuo, Li-Jung; Janke, Chris J.; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng-Bin; Wai, Chien; Khangaonkar, Tarang; Bianucci, Laura; Wood, Jordana R.; Warner, Marvin G.; Peterson, Sonja; Abrecht, David G.; Mayes, Richard T.; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas J.; Addleman, R. Shane; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Ken; Breier, Crystal; D’Alessandro, Evan

    2016-02-07

    The Pacific Northwest National Laboratory’s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 ± 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 ± 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage

  16. MOLECULAR IMPRINTED POLYMERS—Novel Polymer Adsorbents

    Institute of Scientific and Technical Information of China (English)

    LIHaitao; XUMancai; 等

    2001-01-01

    Molecular imprinted polymers(MIPs) are novel functional polymer materials and known as specific adsorbents for the template molecules,These novel functional polymers have promised potential applications in racemic resolution,sensor,chromatography,adsorptive separation and other fields.This review exhibits the approach for preparing MIPs,the features of MIPs obtained by different routes and the characteristics of adsorptive separations with MIPs.The molecular recognition mechanism and the idea of the present possibilities and limitations of molecular imprinting polymerization are discussed as well.

  17. Adsorption characteristics of water vapor on honeycomb adsorbents

    Science.gov (United States)

    Wajima, Takaaki; Munakata, Kenzo; Takeishi, Toshiharu; Hara, Keisuke; Wada, Kouhei; Katekari, Kenichi; Inoue, Keita; Shinozaki, Yohei; Mochizuki, Kazuhiro; Tanaka, Masahiro; Uda, Tatsuhiko

    2011-10-01

    Recovery of tritium released into working areas in nuclear fusion plants is a key issue of safety. A large volume of air from tritium fuel cycle or vacuum vessel should be processed by air cleanup system (ACS). In ACS, tritium gas is oxidized by catalysts, and then tritiated water vapor is collected by adsorbents. This method can remove tritium effectively, whereas high throughput of air causes high-pressure drop in catalyst and adsorbent beds. In this study, the applicability of honeycomb-type adsorbents, which offers a useful advantage in terms of their low-pressure drop, to ACS was examined, in comparison with conventional pebble-type adsorbent. Honeycomb-type adsorbent causes far less pressure drop than pebble-type adsorbent beds. Adsorption capacity of water vapor on a honeycomb-type adsorbent is slightly lower than that on a pebble-type adsorbent, while adsorption rate of water vapor on honeycomb-type adsorbent is much higher than that of pebble-type adsorbent.

  18. An NMR study of adsorbed helium films

    Science.gov (United States)

    Kent, Anthony Joseph

    The properties of sub-monolayer Helium-3 films adsorbed on two totally different but planar substrates, Mylar† film and exfoliated graphite have been studied using NMR. The nuclear magnetic relaxation times T1 and T 2 have been measured as functions of fractional monolayer completion, temperature, substrate plane orientation and Larmor frequency using a specially designed and constructed NMR spectrometer system. The results obtained with a Mylar film substrate are consistent3with the formation of patches of solid 3He at regions of preferential adsorption on the substrate. Measurements of T2 m very low coverage 3He films on exfoliated graphite also indicate that the adsorbate forms areas of relatively high density solid, in agreement with the thermodynamic analysis of Elgin and Goodstein. Finally, detailed measurements of T2 as a function of all of the above parameters at low areal densities will help us to characterise the relaxation processes for the fluid phase of 33He on exfoliated graphite. †Mylar is the tradename of poly(ethelene-terephthalate) film, marketed by Du Pont.

  19. Dye sequestration using agricultural wastes as adsorbents

    Directory of Open Access Journals (Sweden)

    Kayode Adesina Adegoke

    2015-12-01

    Full Text Available Color is a visible pollutant and the presence of even minute amounts of coloring substance makes it undesirable due to its appearance. The removal of color from dye-bearing effluents is a major problem due to the difficulty in treating such wastewaters by conventional treatment methods. The most commonly used methods for color removal are biological oxidation and chemical precipitation. However, these processes are effective and economic only in the case where the solute concentrations are relatively high. Most industries use dyes and pigments to color their products. The presence of dyes in effluents is a major concern due to its adverse effect on various forms of life. The discharge of dyes in the environment is a matter of concern for both toxicological and esthetical reasons. It is evident from a literature survey of about 283 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for dye removal and the optimal equilibrium time of various dyes with different charcoal adsorbents from agricultural residues is between 4 and 5 h. Maximum adsorptions of acidic dyes were obtained from the solutions with pH 8–10. The challenges and future prospects are discussed to provide a better framework for a safer and cleaner environment.

  20. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    Science.gov (United States)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  1. TRMM project contamination control using molecular adsorbers

    Energy Technology Data Exchange (ETDEWEB)

    Straka, S.; Chen, P.; Thomson, S. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Bettini, R.; Triolo, J.; Carosso, N. [Swales and Associates, Inc., 5050 Powder Mill Road, Beltsville, Maryland 20705 (United States)

    1996-03-01

    The Tropical Rainfall Measuring Mission (TRMM) is a spacecraft under development by the National Aeronautics and Space Administration (NASA) and the National Space Development Agency of Japan (NASDA) and is scheduled for launch in August 1997. The spacecraft design includes the use of numerous optical instruments and the thermal control surfaces. In addition to the inherent contamination sensitivities of the optical and thermal systems, TRMM has had the added challenge of designing systems to function at a relatively low altitude (350 km), with solar exposure. Under these conditions, high atomic oxygen densities and potentially high levels of backscattered contamination (self-contamination), as well as UV photopolymerization effects, all pose major threats to sensitive TRMM elements. In considering the various contamination control paths to follow, the TRMM project management has opted for pursuing a relatively new, but very promising technology for the TRMM spacecraft in order to lower the on-orbit contamination levels. TRMM will be incorporating Molecular Adsorbers as part of the basic spacecraft design. This paper will summarize the TRMM requirements, describe the Molecular Adsorbers being fabricated for the mission, and discuss the expected benefits of this method of on-orbit contamination control. {copyright} {ital 1996 American Institute of Physics.}

  2. Equilibrium molecular theory of two-dimensional adsorbate drops on surfaces of heterogeneous adsorbents

    Science.gov (United States)

    Tovbin, Yu. K.

    2016-08-01

    A molecular statistical theory for calculating the linear tension of small multicomponent droplets in two-dimensional adsorption systems is developed. The theory describes discrete distributions of molecules in space (on a scale comparable to molecular size) and continuous distributions of molecules (at short distances inside cells) in their translational and vibrational motions. Pair intermolecular interaction potentials (the Mie type potential) in several coordination spheres are considered. For simplicity, it is assumed that distinctions in the sizes of mixture components are slight and comparable to the sizes of adsorbent adsorption centers. Expressions for the pressure tensor components inside small droplets on the heterogeneous surface of an adsorbent are obtained, allowing calculations of the thermodynamic characteristics of a vapor-fluid interface, including linear tension. Problems in refining the molecular theory are discussed: describing the properties of small droplets using a coordination model of their structure, considering the effect an adsorbate has on the state of a near-surface adsorbent region, and the surface heterogeneity factor in the conditions for the formation of droplets.

  3. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  4. DESORPTION OF VOCs FROM POLYMERIC ADSORBENTS UNDER MICROWAVE FIELD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Desorption of volatile organic compounds (VOCs)from polymeric adsorbents by microwave was investigated experimentally. Two kinds of organic compounds, benzene and toluene,were separately used as adsorbates in this work. Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration, but also make the temperatures of the fixed beds much lower than that when using the heat regeneratton The weaker the polarity of a polymeric adsorbent, the easier its regeneration was.

  5. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  6. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    Science.gov (United States)

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  7. The condensation of water on adsorbed viruses.

    Science.gov (United States)

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  8. Trends in adsorbate induced core level shifts

    Science.gov (United States)

    Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grönbeck, Henrik

    2015-10-01

    Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.

  9. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced...... and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  10. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of stea

  11. Friction and diffusion dynamics of adsorbates at surfaces

    NARCIS (Netherlands)

    Fusco, C.

    2005-01-01

    A theoretical study of the motion of adsorbates (e. g. atoms, molecules or clusters) on solid surfaces is presented, with a focus on surface diffusion and atomic-scale friction. These two phenomena are inextricably linked, because when an atomic or molecular adsorbate diffuses, or is pulled, it unav

  12. Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents

    Institute of Scientific and Technical Information of China (English)

    Shubo DENG; Danmeng SHUAI; Qiang YU; Jun HUANG; Gang YU

    2009-01-01

    Perfluorooctane sulfonate (PFOS), as a potential persistent organic pollutant, has been widely detected in water environments, and has become a great concern in recent years. PFOS is very stable and difficult to decompose using conventional techniques. Sorption may be an attractive method to remove it from water. In this study, the molecularly imprinted polymer (MIP) adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate (PFOS) from water. The MIP adsorbents using perfluorooctanoic acid (PFOA) as the template had good imprinting effects and could selectively remove PFOS from aqueous solution. The sorption behaviors including sorption kinetics,isotherms, and effect of pH, salt, and competitive anions were investigated. Experimental results showed that the sorption of PFOS On the MIP adsorbents was very fast, pH-dependent, and highly selective. The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents. The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations, which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface. The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS. The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.

  13. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, Maria-Elena; Borneman, Zandrie; Wessling, Matthias

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an ethyle

  14. Adsorbent Carbon Fabrics : New Generation Armour for Toxic Chemicals

    Directory of Open Access Journals (Sweden)

    K. Gurudatt

    1997-04-01

    Full Text Available Activated carbon in the form of a regular fabric obtained using viscose rayon precursor is a new generation adsorbent material having superior sorptional properties and is finding varied defence applications. Carbonisation and activation mechanisms and properties and applications of adsorbent carbort fibres made from viscose rayon precursor are reviewed in this paper.

  15. Adsorption of Fluoride Ion by Inorganic Cerium Based Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhongzhi(焦中志); Chen Zhonglin; Yang Min; Zhang Yu; Li Guibai

    2004-01-01

    Excess of fluoride in drinking water is harmful to human health, the concentration of F- ions must be maintained in the range of 0.5 to 1.5 mg/L. An inorganic cerium based adsorbent (CTA) is developed on the basis of research of adsorption of fluoride on cerium oxide hydrate. Some adsorption of fluoride by CTA adsorbent experiments were carried out, and results showed that CTA adsorbent has a quick adsorption speed and a large adsorption capacity. Adsorption follows Freundlich isotherm, and low pH value helps fluoride removal. Some physical-chemical characteristics of CTA adsorbent were experimented, fluoride removal mechanism was explored, and results showed that hydroxyl group of CTA adsorbent played an important role in the fluoride removal.

  16. Bio-regeneration of π-complexation desulfurization adsorbents

    Institute of Scientific and Technical Information of China (English)

    LI; Wangliang; XING; Jianmin; XIONG; Xiaochao; SHAN; Guob

    2005-01-01

    The coupling of adsorption desulfurization and biodesulfurization is a new approach to produce clean fuels. Sulfur compounds are firstly adsorbed on adsorbents, and then the adsorbents are regenerated by microbial conversion. π-Complexation adsorbent, Cu(Ⅰ)-Y, was obtained by ion exchanging Y-type zeolite with Cu2+ and then by auto-reduction in helium at 450℃ for 3 h. Dibenzothiophene (DBT) was used as a model compound. The effects of cell concentration, volume of oil phase, the ratio of aqueous phase to adsorbent on DBT desorption by a bacterium were studied. The amounts of DBT desorbed and 2-HBP produced can be apparently increased with addition of n-octane. BDS activity can be improved by increasing cell concentration and the ratio of water-to-adsorbent. 89% of DBT desorbed from the adsorbents can be converted to 2-HBP within 6 h and almost 100% within 24 h, when the volume ratio of oil-to-water was 1/5 mL/mL, the cell concentration was 60 g·L-1, and the ratio of adsorbent-to-oil was 0.03 g·mL-1. The amount of 2-HBP produced was strongly dependent on the volume ratio of oil-to- water, cell concentration and amount of adsorbent. Adsorption capacity of the regenerated adsorbent is 95% that of the fresh one after being desorbed with Pseudomonas delafieldii R-8, washed with n-octane, dried at 100℃ for 24 h and auto-reduced in He.

  17. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T. [ORNL; Saito, Tomonori [ORNL; Brown, Suree [ORNL; Gill, Gary [PNNL; Kuo, Li-Jung [PNNL; Wood, Jordana [PNNL

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  18. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  19. Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents

    Science.gov (United States)

    Buczek, Bronisław

    2016-06-01

    Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined. The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

  20. Novel adhesive properties of poly(ethylene-oxide) adsorbed nanolayers

    Science.gov (United States)

    Zeng, Wenduo

    Solid-polymer interfaces play crucial roles in the multidisciplinary field of nanotechnology and are the confluence of physics, chemistry, biology, and engineering. There is now growing evidence that polymer chains irreversibly adsorb even onto weakly attractive solid surfaces, forming a nanometer-thick adsorbed polymer layer ("adsorbed polymer nanolayers"). It has also been reported that the adsorbed layers greatly impact on local structures and properties of supported polymer thin films. In this thesis, I aim to clarify adhesive and tribological properties of adsorbed poly(ethylene-oxide) (PEO) nanolayers onto silicon (Si) substrates, which remain unsolved so far. The adsorbed nanolayers were prepared by the established protocol: one has to equilibrate the melt or dense solution against a solid surface; the unadsorbed chains can be then removed by a good solvent, while the adsorbed chains are assumed to maintain the same conformation due to the irreversible freezing through many physical solid-segment contacts. I firstly characterized the formation process and the surface/film structures of the adsorbed nanolayers by using X-ray reflectivity, grazing incidence X-ray diffraction, and atomic force microscopy. Secondly, to compare the surface energy of the adsorbed layers with the bulk, static contact angle measurements with two liquids (water and glycerol) were carried out using a optical contact angle meter equipped with a video camera. Thirdly, I designed and constructed a custom-built adhesion-testing device to quantify the adhesive property. The experimental results provide new insight into the microscopic structure - macroscopic property relationship at the solid-polymer interface.

  1. The Electrochemical Properties of Thionine Adsorbed Monolayer on Gold Electrode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A gold electrode modified with adsorbed thionine monolayer was investigated with ac impedance and cyclic voltammetry method. It was found therewere some different redox properties for the adsorbed thionine depended on the different potential scanning rate. At the slower potential scanning rate (10 mV@s-1), the dimer of thionine appeared and possessed the catalytic activity for the oxidation of ascorbic acid.The underpotential deposition (UPD) and the bulk deposition of Cu2+ were also employed to investigate the monolayer of adsorbed thionine.

  2. ADSORPTION OF PHENYLACETIC ACID ON MACROPOROUS POLYMERIC ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    PANBingcai; CHENJinlong; 等

    2002-01-01

    Several macroporous polymeric adsorbents(NDA-999,XAD-8,X-5 and XAD-2)were emplyed in the study to adsorb phenylacetic acid from aqueous solution.Effect of salt and ambient temperature on adsorption was studied using NDA-999 adsorbent and the adsorption process conforms to Freundlich′s model reasonably.Adsorption dynamics were conducted in batch experiments in order to make clear the mechanism of adsorption process.It is proved that the squared driving force mass transfer model can be adopted to elucidate the process.The treatment process of industrial wastewater containing high strength of phenylacetic acid was proposed for cleaner production of phenylacetic acid.

  3. ADSORPTION OF PHENYLACETIC ACID ON MACROPOROUS POLYMERIC ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several macroporous polymeric adsorbents (NDA-999, XAD-8, X-5 and XAD-2) wereemployed in the study to adsorb phenylacetic acid from aqueous solution. Effect of salt and ambienttemperature on adsorption was studied using NDA-999 adsorbent and the adsorption processconforms to Freundlich's model reasonably. Adsorption dynamics were conducted in batchexperiments in order to make clear the mechanism of adsorption process. It is proved that thesquared driving force mass transfer model can be adopted to elucidate the process. The treatmentprocess of industrial wastewater containing high strength of phenylacetic acid was proposed forcleaner production of phenylacetic acid.

  4. Atom-Specific Identification of Adsorbed Chiral Molecules by Photoemission

    Science.gov (United States)

    Kim, J. W.; Carbone, M.; Dil, J. H.; Tallarida, M.; Flammini, R.; Casaletto, M. P.; Horn, K.; Piancastelli, M. N.

    2005-09-01

    The study of chiral adsorbed molecules is important for an analysis of enantioselectivity in heterogeneous catalysis. Here we show that such molecules can be identified through circular dichroism in core-level photoemission arising from the chiral carbon atoms in stereoisomers of 2,3-butanediol molecules adsorbed on Si(100), using circularly polarized x rays. The asymmetry in the carbon 1s intensity excited by right and left circularly polarized light is readily observed, and changes sign with the helicity of the radiation or handedness of the enantiomers; it is absent in the achiral form of the molecule. This observation demonstrates the possibility of determining molecular chirality in the adsorbed phase.

  5. [Study on LDL adsorbent modified by lauric acid].

    Science.gov (United States)

    Cong, Haixia; Du, Longbing; Fang, Bo; You, Chao

    2010-06-01

    A hydrophobic low-density lipoprotein cholesterol (LDL-C) adsorbent was synthesized with lauric acid and chitosan. The condition for adsorption was obtained by investigating the influence of adsorbent amount and adsorption time. The results of adsorption in vitro showed that the average adsorption rates for total cholesterol (TC), LDL-C, high-density lipoprotein cholesterol (HDL-C) and total protein (TP) were 47.7%, 84.7%, 18.1% and 5.9% respectively. The adsorbent possesses good selectivity in removing LDL-C.

  6. Preparation and Characterization of Impurely Irrigated Soil Adsorbent from Beaches

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective]We aimed to study the preparation methods of impurely irrigated soil adsorbent from beaches,as well as its ability to absorb phenol.[Method]Using hydrochloric acid as activator,we compared the influences of various soil adsorbents on the adsorption of phenol through the desired orthogonal tests where the usage of saw dust,concentration of hydrochloric acid,liquid-solid ratio and carbonization temperature varied.Afterwards,we characterized this soil adsorbent.[Result]The optimal conditions for pre...

  7. Dynamics of CO 2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design

    KAUST Repository

    Bollini, Praveen

    2012-11-21

    Packed bed breakthrough experiments are reported for commercial zeolite 13X and 3-aminopropyl-functionalized SBA-15 silica materials with three different amine loadings. Mass and heat transfer dynamics for all four materials are modeled successfully. Amine adsorbents with open pores are found to exhibit faster mass diffusion rates compared to zeolite 13X. When amine loading is increased by coupling aminopropyl groups, premature breakthrough combined with a long tail is observed. Contrary to conventional physisorbants, finite heat losses to the column wall do not explain the long breakthrough tail. A rate model that accounts for heterogeneity in diffusion was found to accurately capture the breakthrough shape of the high loading material. Batch uptake measurements support the hypothesis that slow diffusion through the polymer phase is what hampers adsorption kinetics in the high amine loading adsorbent. The results emphasize the importance of designing materials that are not overloaded with amine sites, as excessive amine loadings can lead to depressed adsorption kinetics and premature column breakthrough. © 2012 American Chemical Society.

  8. Low Pressure Adsorbent for Recovery & Storage Vented Hydrogen Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance fullerene-based adsorbent is proposed for recovery and storage hydrogen and separating helium via pressure-swing-adsorption (PSA) process....

  9. A NOVEL METAL CHELATE AFFINITY ADSORBENT FOR PROTEIN UPTAKE

    Institute of Scientific and Technical Information of China (English)

    WANGYongjian; BAIShu; 等

    2001-01-01

    In this article,a spherical chitosan gel crosslinked by epichlorohydrin was prepared.It was then loaded with copper ions to produce a metal chelate affinity adsorbent for protein.The uptake of bovine serum albumin(BSA)by the affinity adsorbent was investigated.and the adsorption capacity for BSA as high as 40mg/g-wet beads was observed.The adsorption equilibrium data was well correlated by the Langmuir equation.The adsorption was considerably affected by pH.In additio.The amount of BSA adsorbed onto the beads decreased with the increasing of aqueous phase ionic strength,so adsorbed BAS can be desorbed by adjusting pH orionic strength of the solution.

  10. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  11. Structure and properties of carbonaceous adsorbents obtained from furanformolites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Y.B.; Oleinik, M.S.; Proskuryakov, V.A.

    1982-12-10

    We have shown previously (1) that a new copolycondensate based on petroleum residues -- fuaranformolite -- is a valuable carbon-containing raw material by the use of which carbonaceous adsorbents have been obtained. The latter can be used as catalysts and catalyst supports and also for the fine purification and separation of gases. The present paper is devoted to the study of the porous structure and sorption characteristics of the adsorbents obtained. High-strength carbonaceous adsorbents obtained from new copolymers of asphaltite -- fuaranformolites may, depending on the degree of burn-off, be used for the adsorption of poorly sorbed gases, of vapors of organic solvents, and of substances from solution. By varying the composition of the copolymer it is possible to direct the formation of the porous structure of the adsorbents in a desired manner.

  12. Sol-Gel Synthesized Adsorbents for Metal Separation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A series of organo-ceramic adsorbents have been synthesized by a sol-gel processing technique for metal ion extraction. These adsorbents generally have significantly high metal uptake capacities, good physical-chemical stabilities, and well-designed pore geometries compared to other pre-existing metalchelating ceramic-based adsorbents. This work describes the synthesis and evaluation of pyrazole and calix[4]arene crown adsorbents for selective separation of platinum, palladium, and gold and cesium ions,respectively, from solutions. These materials exhibit mesoporous properties with high surface areas and pore volumes. The sol-gel synthesis starting with precursor silanes and titania results in gel particles of desired pore characteristics and high capacity and stability. Characterization studies, such as adsorption isotherms, breakthrough curves for fixed bed operation, and material stability, show promising results for applications to metal sepation.

  13. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  14. Oil palm biomass as an adsorbent for heavy metals.

    Science.gov (United States)

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  15. Residence time determination for adsorbent beds of different configurations

    Energy Technology Data Exchange (ETDEWEB)

    Otermat, J.E.; Wikoff, W.O.; Kovach, J.L.

    1995-02-01

    The residence time calculations of ASME AG-1 Code, Section FC, currently specify a screen surface area method, that is technically incorrect. Test data has been obtained on Type II adsorber trays of different configurations to establish residence time in the adsorber trays. These data indicate that the air volume/carbon volume ratio or the average screen area are more appropriate for the calculation of the residence time calculation than the currently used, smallest screen area basis.

  16. Distribution of adsorbed molecules in electronic nose sensors

    DEFF Research Database (Denmark)

    Swann, M.J.; Glidle, A.; Gadegaard, Nikolaj

    2000-01-01

    Neutron reflectivity measurements of thin films of electropolymerised poly(pyrrole) show that swelling of these insoluble polymers does occur following vapour adsorption. The variation in swelling found for different vapours is correlated with corresponding changes in polymer conductivity and mas...... of adsorbed vapour. This correlation suggests that hydrophobic and hydrophilic vapour species adsorb into regions of the membrane with different solvating environments (C) 2000 Elsevier Science B.V. All rights reserved....

  17. Plant waste materials from restaurants as the adsorbents for dyes

    OpenAIRE

    Pavlović Marija D.; Nikolić Ivan R.; Milutinović Milica D.; Dimitrijević-Branković Suzana I.; Šiler-Marinković Slavica S.; Antonović Dušan G.

    2015-01-01

    This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was mo...

  18. Efforts to Consolidate Chalcogels with Adsorbed Iodine

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun

    2013-08-28

    This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent

  19. Adsorbates effects in H^- - Na/Cu(111) collisions

    Science.gov (United States)

    Bahrim, Bogdana; Yu, Song

    2008-03-01

    The (111) faces of Cu, Ag and Au present a band gap that extends just below the vacuum level at the γ gpoint [1]. The effect is to forbid electrons with energies in a certain range to be transferred into the metal along the surface normal. Thus, the presence of a band gap should dramatically influence various experiments in ion-surface collisions involving electron capture or loss. In recent years, this topic received a great interest [2 -- 4]. Adsorbates deposition makes the electron dynamics at such surfaces to be even more complex. We analyze some interesting adsorbates effects: (1) projectile energy levels and widths are strongly perturbed when this approaches close to an adsorbate atom; (2) scattering by adsorbates may be used to laterally confine surface state electrons; (3) adsorbates may enhance the band gap effect; (4) adsorbates tend to couple the surface states to the bulk states. Results for the H^- projectile interacting with a Na/Cu(111) surface are reported. [1] E.V. Chulkov, V.M. Silkin and P.M. Echenique 1999 Surf. Sci. 437, 330. [2] A.G. Borisov, A.K. Kazansky and J.P. Gauyacq 1999 Phys. Rev. B. 59, 10935. [3] H.S. Chakraborty, T. Niederhausen and U. Thumm 2004 Phys. Rev. A. 70, 052903. [4] B. Bahrim, B. Makarenko and J.W. Rabalais 2005 Surface Sci. 594, 62.

  20. Cryogenic adsorber design in a helium refrigeration system

    Science.gov (United States)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  1. Activity of lactoperoxidase when adsorbed on protein layers.

    Science.gov (United States)

    Haberska, Karolina; Svensson, Olof; Shleev, Sergey; Lindh, Liselott; Arnebrant, Thomas; Ruzgas, Tautgirdas

    2008-09-15

    Lactoperoxidase (LPO) is an enzyme, which is used as an antimicrobial agent in a number of applications, e.g., food technology. In the majority of applications LPO is added to a homogeneous product phase or immobilised on product surface. In the latter case, however, the measurements of LPO activity are seldom reported. In this paper we have assessed LPO enzymatic activity on bare and protein modified gold surfaces by means of electrochemistry. It was found that LPO rapidly adsorbs to bare gold surfaces resulting in an amount of LPO adsorbed of 2.9mg/m(2). A lower amount of adsorbed LPO is obtained if the gold surface is exposed to bovine serum albumin, bovine or human mucin prior to LPO adsorption. The enzymatic activity of the adsorbed enzyme is in general preserved at the experimental conditions and varies only moderately when comparing bare gold and gold surface pretreated with the selected proteins. The measurement of LPO specific activity, however, indicate that it is about 1.5 times higher if LPO is adsorbed on gold surfaces containing a small amount of preadsorbed mucin in comparison to the LPO directly adsorbed on bare gold.

  2. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  3. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography.

    Science.gov (United States)

    Dods, Stewart R; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G

    2015-01-09

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000CV/h (2s and 0.3s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12mgBSA/mL for DEAE and from 10 to 21mglysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20mgBSA/mL and 27mglysozyme/mL, respectively. At 1MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000CV/h. For compression loads of 5MPa and 10MPa, adsorbents recorded lower DBCs than 1MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an uncompressed adsorbent, compressions of 1, 5

  4. Elution by Le Chatelier's principle for maximum recyclability of adsorbents: applied to polyacrylamidoxime adsorbents for extraction of uranium from seawater.

    Science.gov (United States)

    Oyola, Yatsandra; Vukovic, Sinisa; Dai, Sheng

    2016-05-28

    Amidoxime-based polymer adsorbents have attracted interest within the last decade due to their high adsorption capacities for uranium and other rare earth metals from seawater. The ocean contains an approximated 4-5 billion tons of uranium and even though amidoxime-based adsorbents have demonstrated the highest uranium adsorption capacities to date, they are still economically impractical because of their limited recyclability. Typically, the adsorbed metals are eluted with a dilute acid solution that not only damages the amidoxime groups (metal adsorption sites), but is also not strong enough to remove the strongly bound vanadium, which decreases the adsorption capacity with each cycle. We resolved this challenge by incorporating Le Chatelier's principle to recycle adsorbents indefinitely. We used a solution with a high concentration of amidoxime-like chelating agents, such as hydroxylamine, to desorb nearly a 100% of adsorbed metals, including vanadium, without damaging the metal adsorption sites and preserving the high adsorption capacity. The method takes advantage of knowing the binding mode between the amidoxime ligand and the metal and mimics it with chelating agents that then in a Le Chatelier's manner removes metals by shifting to a new chemical equilibrium. For this reason the method is applicable to any ligand-metal adsorbent and it will make an impact on other extraction technologies.

  5. Modification of the sulphur resistance of platinum by addition of metals for aromatics hydrogenation; Modification de la thioresistance du platine par ajouts d'elements metalliques pour l'hydrogenation d'aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E.

    1999-09-15

    The aim of this study is based on the understanding of sulphur resistance of platinum catalytic systems. In this work, bimetallic systems (Pt-Ge, Pt-Au and Pt-Pd) supported on {gamma}-alumina have been studied. Preparation methods have been chosen to give the best control of the physicochemical properties of final system. Electronic and geometrical properties of the metallic phase were characterised by various techniques (TPR, infrared spectroscopy of adsorbed CO (IR(CO)), EXAFS, LEIS). Ortho-xylene hydrogenation in presence of 100 ppm of sulphur was used as model catalytic test in order to study the sulphur resistance of the catalysts. It has been shown that germanium and palladium act as electro-acceptors toward platinum. The ranking of catalytic activity in presence of sulphur is as followed: Pt-Pd > Pt-Au {approx_equal} Pt >> Pt-Ge {approx_equal} 0. The best sulphur resistance for Pt-Pd was obtained for the composition Pt{sub 20}Pd{sub 80} (Pd/Pt=4). An eggshell PdS structure with Pt (sulfur free) core is proposed. These works show that the sulphur resistance of platinum is not only linked with its electronic properties. They allow us to propose an original concept of sulphur resistant catalyst taking into account each catalytic parameters such as chemical bonding of S and aromatic compounds on the metallic site, physico-chemical characteristics of the bimetallic aggregates (particle size, structure, surface composition) and electronic modification of surface atoms in bimetallic catalysts. (author)

  6. Extracting Uranium from Seawater: Promising AF Series Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Oyola, Y.; Mayes, Richard T.; Janke, Chris J.; Kuo, L. -J.; Gill, G.; Wood, J. R.; Dai, S.

    2016-04-20

    A new family of high-surface-area polyethylene fiber adsorbents named the AF series was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series adsorbents were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/comonomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154-354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with sodium-based synthetic aqueous solution, spiked with 8 ppm uranium. The uranium adsorption capacity in simulated seawater screening ranged from 170 to 200 g-U/kg-ads irrespective of %DOG. A monomer/comonomer molar ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through column experiments to determine uranium loading capacity with varying KOH conditioning times at 80 °C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1 and 3 h of KOH conditioning at 80 °C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 1 to 3 h at 80 °C resulted in a 22-27% decrease in uranium adsorption capacity in seawater.

  7. Lipid monolayers and adsorbed polyelectrolytes with different degrees of polymerization.

    Science.gov (United States)

    Ortmann, Thomas; Ahrens, Heiko; Lawrenz, Frank; Gröning, Andreas; Nestler, Peter; Günther, Jens-Uwe; Helm, Christiane A

    2014-06-17

    Polystyrene sulfonate (PSS) of different molecular weight M(w) is adsorbed to oppositely charged DODAB monolayers from dilute solutions (0.01 mmol/L). PSS adsorbs flatly in a lamellar manner, as is shown by X-ray reflectivity and grazing incidence diffraction (exception: PSS with M(w) below 7 kDa adsorbs flatly disordered to the liquid expanded phase). The surface coverage and the separation of the PSS chains are independent of PSS M(w). On monolayer compression, the surface charge density increases by a factor of 2, and the separation of the PSS chains decreases by the same factor. Isotherms show that on increase of PSS M(w) the transition pressure of the LE/LC (liquid expanded/liquid condensed) phase transition decreases. When the contour length exceeds the persistence length (21 nm), the transition pressure is low and constant. For low-M(w) PSS (<7 kDa) the LE/LC transition of the lipids and the disordered/ordered transition of adsorbed PSS occur simultaneously, leading to a maximum in the contour length dependence of the transition enthalpy. These findings show that lipid monolayers at the air/water interface are a suitable model substrate with adjustable surface charge density to study the equilibrium conformation of adsorbed polyelectrolytes as well as their interactions with a model membrane.

  8. Effect of zinc and cerium addition on property of copper-based adsorbents for phosphine adsorption

    Institute of Scientific and Technical Information of China (English)

    宁平; 易红宏; 余琼粉; 唐晓龙; 杨丽萍; 叶智青

    2010-01-01

    A series of copper-based activated carbon (AC) adsorbents were prepared in order to investigate the effect of Zn, Ce addition on Cu-based AC adsorbent for phosphine (PH3) adsorption removal from yellow phosphorous tail gas. N2 adsorption isotherm and X-ray diffrac-tion (XRD) results suggested that the addition of Zn could increase the adsorbent ultramicropores, decrease the adsorbent supermicropores and the adsorbent average pore diameter. Therefore it enhanced the PH3 adsorption capacity. Appropriate amoun...

  9. Studies on The Adsorption Capacity for Bilirubin of The Adsorbent Chitosan-β-Cyclodextrin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The adsorbent crosslinked chitosan-β-cyclodextrin (β-CD) was prepared by the reaction of glutaraldehyde with chitosan and β-cyclodextrin. This type of adsorbent has high adsorption capacity for unconjugated bilirubin. The adsorption capacity was related to the β-CD content of the adsorbent; phosphate buffer concentration; temperature; pH value; ionic strength and the adsorbent beads. The results indicated that the chitosan-β-CD was a good adsorbent for unconjugated bilirubin with high capacity.

  10. Electronic and electrochemical doping of graphene by surface adsorbates

    Directory of Open Access Journals (Sweden)

    Hugo Pinto

    2014-10-01

    Full Text Available Many potential applications of graphene require its precise and controllable doping with charge carriers. Being a two-dimensional material graphene is extremely sensitive to surface adsorbates, so its electronic properties can be effectively modified by deposition of different atoms and molecules. In this paper, we review two mechanisms of graphene doping by surface adsorbates, namely electronic and electrochemical doping. Although, electronic doping has been extensively studied and discussed in the literature, much less attention has been paid to electrochemical doping. This mechanism can, however, explain the doping of graphene by adsorbates for which no charge transfer is expected within the electronic doping model. In addition, electrochemical doping is in the origin of the hysteresis effects often observed in graphene-based field effect transistors when operating in the atmospheric environment.

  11. ADSORPTION OF DINITROPHENOLS ONTO POLYMERIC ADSORBENTS AND ITS MECHANISM

    Institute of Scientific and Technical Information of China (English)

    SHIZuoqing; XUMancai; 等

    2000-01-01

    The adsorption of 2,4-dinitrophenol and 2,6-dinitrophenol on non-polar and polar adsorbents was studied.The results showed that the equilibrium adsorption did not comply with the Langmuir equation and was not mono-layer adsorption .It is of interest to notice that the effect of pH on the adsorption of 2,4-or 2,6-dinitrophenol onto ADS-7 and ADS-21 was very small,The result is explained by hydrogen bonding interaction between 2,4-or 2,6-dinitrophenol and the adsorbent ADS-21.The large adsorption capacity of dinitrophenol onto ADS-21,which was about 500mg/g at an equilibrium concentration of 400mg/L,and the small dinitrophenol leakage in the effluent from ADS-21 column presented a good prospect for treatment of wastewater containing dinitrophenol with adsorbent ADS-21.

  12. Synthesis of silica adsorbent and its selective separation for flavone

    Institute of Scientific and Technical Information of China (English)

    Yuqing ZHANG; Yahui ZHANG; Zhen QIN; Zhenrong MA

    2008-01-01

    One kind of built,in silica adsorbent, which has high adsorption selectivity to rutin, was synthesized using molecular imprinting technology by the following steps:synthesis of precursor from the reaction between water soluble rutin (as template molecule) and the functional monomer chloropropyltriethoxysilane, co,hydrolysis of the precursor and tetraethoxysilane (TEOS), sol,gel aging process, and removal of template molecules. The results of adsorption experiment show that this adsorbent has a high adsorption capacity for rutin, and good adsorptionselectivity towards rutin even under the interference of a flavone with a similar structure. TEM photos suggest that nanocaves corresponding to rutin were formed inside the adsorbent while FTIR spectra indicate that new bond was generated during the recognition process.

  13. A Review of Adsorbents Used for Storm Water Runoff Cleaning

    Directory of Open Access Journals (Sweden)

    Andrius Agintas

    2011-04-01

    Full Text Available Heavy metals, petroleum products, sediments and other pollutants get in the environment with insufficiently cleaned storm water runoff. Contaminated storm water runoff is one of the most significant sources for pollution in rivers, lakes and estuaries. Storm water runoff must be treated using not only simple methods but also using adsorption processes. Adsorbents can be natural organic, natural nonorganic and synthetic. Main adsorption characteristic, way of utilization and storm water runoff inflow rate, quantity and pollution need to be investigated when trying to use adsorbents in reasonably way. It is very important to treat storm water properly during the primary mechanical treatment otherwise adsorbents will act as mechanical filters.Article in Lithuanian

  14. Grazing incidence ion erosion in the presence of adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, A; Michely, T [II. Physikalisches Institut, Universitaet zu Koeln, 50937 Koeln (Germany); Rosandi, Y; Urbassek, H M [Fachbereich Physik, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, 67663 Kaiserslautern (Germany)], E-mail: redinger@ph2.uni-koeln.de

    2009-06-15

    The effect of a background pressure of adsorbable species on sputtering and surface damage in grazing incidence ion erosion of Pt(111) is investigated by scanning tunneling microscopy and molecular dynamics simulations. The background pressure implies a partial surface coverage with adsorbates, which in turn causes an enhancement of the erosion rate by a factor of up to 40 compared to the clean case. Partial pressures of molecular oxygen and carbon monoxide were maintained during ion erosion with 5 keV Ar{sup +} for various grazing angles between 81 deg. and 87 deg. and temperatures ranging from 400 to 550 K.

  15. AQUATIC PHOTOLYSIS OF OXY-ORGANIC COMPOUNDS ADSORBED ON GOETHITE.

    Science.gov (United States)

    Goldberg, Marvin C.

    1985-01-01

    Organic materials that will not absorb light at wavelengths longer than 295 nanometers (the solar wavelength cutoff) may nevertheless, undergo electron transfer reactions initiated by light. These reactions occur when the organic materials are adsorbed as ligand complexes to the surface of iron oxy-hydroxide (goethite). The adsorbed materials can be either inner or outer coordination sphere complexes. Goethite was chosen as the iron oxyhydroxide surface because it has the highest thermodynamic stability of any of the oxyhydroxides in water and it can be synthesized easily, with high purity.

  16. Microstructure of sepiolite and its adsorbing properties to dodecanol

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; LIANG Jin-sheng; TANG Qing-guo; MENG Jun-ping; WU Zi-zhao; LI Guo-sheng

    2006-01-01

    The acid treatment process,testing methods,microstrcture of sepiolite mineral materials and their adsorbing properties to dodecanol were studied respectively. The results show that by acid treatment to raw sepiolite thinner fibre clusters and single fibres turn up,the pore volume and the number of micropore and mesopore in sepiolite all increase,and adsorbing properties of modified sepiolite to dodecanol are improved significantly. In the combined materials of dodecanol and sepiolite prepared under the best condition,the proportion of dodecanol is 67.96%,and then it is much higher than the result calculated from traditional BET method.

  17. Electrochemical Studies of Paraquat Adsorbed onto Crystalline Apatite

    Directory of Open Access Journals (Sweden)

    Moulay Abderrahim EL MHAMMEDI

    2007-09-01

    Full Text Available The carbon paste electrode (CPE has been used to analyze the electrochemical behavior of paraquat (PQ adsorbed onto synthesized hydroxyapatite phosphocalcique (HAP in K2SO4 (0.1M. The cyclic voltammetry results obtained corrobate with square wave voltammetry. The influence of variables such as the concentration of paraquat adsorbed onto apatite (PQ/HAP, and the potential scan rate was tested.X-ray diffraction analysis (XRD, Fourier transformed infrared spectroscopy (FTIR analysis and inductively coupled plasma-atomic emission spectrometry (ICP, AES were used for characterization of the apatite.

  18. Preparation of thiophilic paramagnetic adsorbent for separation of antibodies

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The micron-sized mierospheres with superparamagnetic property were synthesized with vinyl acetate and divinylbenzene by microsuspension polymerization. After the complete alcoholysis, these hydroxyl-functionalized microspheres were activated by divinylfone and modified with mercaptoethanol to prepare the thiophilic magnetic adsorbent, which was used to specifically isolate immunoglobulin G (IgG) from human serum. This thiophilic magnetic adsorbent performed an evident salt-dependent adsorption behavior for IgG. Due to their salt-promoted adsorption towards IgG under high salt concentration, the absorbed antibodies could be extracted in low salt concentration with high purity.

  19. Hydrogen molecule on lithium adsorbed graphene: A DFT study

    Science.gov (United States)

    Kaur, Gagandeep; Gupta, Shuchi; Gaganpreet, Dharamvir, Keya

    2016-05-01

    Electronic structure calculations for the adsorption of molecular hydrogen on lithium (Li) decorated and pristine graphene have been studied systematically using SIESTA code [1] within the framework of the first-principle DFT under the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation (GGA)[2], including spin polarization. The energy of adsorption of hydrogen molecule on graphene is always enhanced by the presence of co-adsorbed lithium. The most efficient adsorption configuration is when H2 is lying parallel to lithium adsorbed graphene which is in contrast to its adsorption on pristine graphene (PG) where it prefers perpendicular orientation.

  20. PREPARATION AND ADSORBABILITY OF DEXTRAN MICROSPHERES WITH UNIFORM DIAMETER

    Institute of Scientific and Technical Information of China (English)

    Ri-sheng Yao; Wen-xia Gao; Jing Sun; Ya-hua You

    2005-01-01

    The method of preparing uniform dextran microspheres with a narrow diameter distribution was introduced and the adsorbability of these microspheres was evaluated. The microspheres were prepared in W/O microemulsion using 0.5% dextran solution as the aqueous phase and n-hexane as the oil phase. Characteristics of the prepared dextran microspheres were examined with laser light blocking technique, optical microscope and ultraviolet spectrometer. The results show that the prepared dextran microspheres have uniform morphology and narrow diameter distribution, nearly 92% of them having a diameter of 56.6 μm. In vitro evaluation of adsorbability, wet dextran microspheres have good adsorption of 98.32 mg/g of model drug methylene blue in 20.86 mg/L methylene blue solution at 25℃. The adsorption of dried dextran microspheres under the same condition is 132.15 mg/g, which is even higher. And the adsorbability of dextran microspheres has significant relationship with the concentration of methylene blue and temperature. The adsorbability is better at lower temperature and higher concentration of methylene blue.

  1. High-capacity hydrogen storage in Al-adsorbed graphene

    Science.gov (United States)

    Ao, Z. M.; Peeters, F. M.

    2010-05-01

    A high-capacity hydrogen storage medium—Al-adsorbed graphene—is proposed based on density-functional theory calculations. We find that a graphene layer with Al adsorbed on both sides can store hydrogen up to 13.79wt% with average adsorption energy -0.193eV/H2 . Its hydrogen storage capacity is in excess of 6wt% , surpassing U. S. Department of Energy (DOE’s) target. Based on the binding-energy criterion and molecular-dynamics calculations, we find that hydrogen storage can be recycled at near ambient conditions. This high-capacity hydrogen storage is due to the adsorbed Al atoms that act as bridges to link the electron clouds of the H2 molecules and the graphene layer. As a consequence, a two-layer arrangement of H2 molecules is formed on each side of the Al-adsorbed graphene layer. The H2 concentration in the hydrogen storage medium can be measured by the change in the conductivity of the graphene layer.

  2. Analytical phase diagrams for colloids and non-adsorbing polymer

    NARCIS (Netherlands)

    Fleer, G.J.; Tuinier, R.

    2008-01-01

    We review the free-volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20 (1992) 5591 for the phase behavior of colloids in the presence of non-adsorbing polymer and we extend this theory in several aspects: (i) We take the solvent into account as a separate component and show that the natur

  3. HYDROGEN BONDING IN POLYMERIC ADSORBENTS BASED ADSORPTION AND SEPARATION

    Institute of Scientific and Technical Information of China (English)

    XUMancai; SHIZuoqing; 等

    2000-01-01

    After a concise introduction of hydrogen bonding effects in solute-solute and solute-solvent bonding,the design of polymeric adsorbents based on hydrogen bonding ,selectivity in adsorption through hydrogen bonding,and characterization of hydrogen bonding in adsorption and separation were reviewed with 28 references.

  4. Gelation of polymers adsorbed at a water-air interface.

    NARCIS (Netherlands)

    Cohen Stuart, M.A.; Keurentjes, J.T.F.; Bonekamp, B.C.; Fraaye, J.G.E.M.

    1986-01-01

    Rheological data on air—water interfaces with adsorbed water-soluble polymer layers are presented which prove the existence of a surface gel. The gel is found to behave thixotropically and its yield stress is determined under various conditions. The gelation seems to be related to the lack of relaxa

  5. Chiral switching by spontaneous conformational change in adsorbed organic molecules.

    Science.gov (United States)

    Weigelt, Sigrid; Busse, Carsten; Petersen, Lars; Rauls, Eva; Hammer, Bjørk; Gothelf, Kurt V; Besenbacher, Flemming; Linderoth, Trolle R

    2006-02-01

    Self-assembly of adsorbed organic molecules is a promising route towards functional surface nano-architectures, and our understanding of associated dynamic processes has been significantly advanced by several scanning tunnelling microscopy (STM) investigations. Intramolecular degrees of freedom are widely accepted to influence ordering of complex adsorbates, but although molecular conformation has been identified and even manipulated by STM, the detailed dynamics of spontaneous conformational change in adsorbed molecules has hitherto not been addressed. Molecular surface structures often show important stereochemical effects as, aside from truly chiral molecules, a large class of so-called prochiral molecules become chiral once confined on a surface with an associated loss of symmetry. Here, we investigate a model system in which adsorbed molecules surprisingly switch between enantiomeric forms as they undergo thermally induced conformational changes. The associated kinetic parameters are quantified from time-resolved STM data whereas mechanistic insight is obtained from theoretical modelling. The chiral switching is demonstrated to enable an efficient channel towards formation of extended homochiral surface domains. Our results imply that appropriate prochiral molecules may be induced (for example, by seeding) to assume only one enantiomeric form in surface assemblies, which is of relevance for chiral amplification and asymmetric heterogenous catalysis.

  6. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    Science.gov (United States)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  7. Interactions of organic contaminants with mineral-adsorbed surfactants

    Science.gov (United States)

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  8. Extracting Uranium from Seawater: Promising AI Series Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Oyola, Y.; Mayes, R. T.; Janke, C. J.; Kuo, L. -J.; Gill, G.; Wood, J. R.; Dai, S.

    2016-04-20

    A new series of adsorbents (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole to mole ratios) onto high surface area polyethylene fiber, with high degrees of grafting (DOG) varying from 110 to 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 5 wt % hydroxylamine at 80 °C for 72 h. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with prescreening brine spiked with 8 ppm uranium. Uranium adsorption capacities in prescreening ranged from 171 to 187 g-U/kg-ads irrespective of percent DOG. The performance of the adsorbents with respect to uranium adsorption in natural seawater was also investigated using flow-throughcolumn testing at the Pacific Northwest National Laboratory (PNNL). Three hours of KOH conditioning led to higher uranium uptake than 1 h of conditioning. The adsorbent AI11, containing AN and VPA at the mole ratio of 3.52, emerged as the potential candidate for the highest uranium adsorption (3.35 g-U/kg-ads.) after 56 days of exposure in seawater flow-through-columns. The rate of vanadium adsorption over uranium linearly increased throughout the 56 days of exposure. The total mass of vanadium uptake was ~5 times greater than uranium after 56 days.

  9. Organobentonites as multifunctional adsorbents of organic and inorganic water pollutants

    Directory of Open Access Journals (Sweden)

    Jović-Jovičić Natаša

    2014-01-01

    Full Text Available The aim of this study was to find a low cost, easy to synthesize and efficient adsorbent for the simultaneous adsorption of both organic and inorganic pollutants (including textile dyes, toxic metals etc.. The starting material, domestic bentonite clay from Bogovina was modified with amounts of hexadecyltrimethylammonium cations corresponding to 0.5 and 1.0 times of the value of the cation exchange capacity value. The organobentonites were tested as adsorbents in a three-dye-containing solution, a three-component solution of Pb2+, Cd2+ and Ni2+ and a hexa- component solution containing all investigated dyes and toxic metal cations. The used adsorbents showed the highest affinity toward Acid Yellow 99 and Ni2+ ions. Dye adsorption was enhanced in the presence of toxic metal cations, while the adsorption of all toxic cations from the hexa-component solution was lower than from the three-component solution containing only toxic cations. The synthesized hexadecyltrimethylammonium bentonite could be regarded as an efficient multifunctional adsorbent for the investigated type of water pollutants.

  10. Interactions between adsorbed macromolecules : measurements on emulsions and liquid films

    NARCIS (Netherlands)

    Vliet, van T.

    1977-01-01

    The aim of this study was to gain more insight into the factors, determining the inter- and intramolecular interactions between adsorbed macromolecules. To that end several experimental and theoretical approaches were followed, using well-defined systems. It was shown that these interactions could c

  11. The use of molecular adsorbers for spacecraft contamination control

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, S.; Chen, P. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Triolo, J.; Carosso, N. [Swales and Associates, Inc., 5050 Powder Mill Road, Beltsville, Maryland 20705 (United States)

    1996-03-01

    In recent years, the technologies associated with contamination control in space environments have grown increasingly more sophisticated, due to the ever expanding need for improving and enhancing optical and thermal control systems for spacecraft. The presence of contaminants in optical and thermal control systems can cause serious degradation of performance and/or impact the lifetime of a spacecraft. It has been a goal of the global contamination community to develop new and more effective means for controlling contamination for spacecraft. This paper describes an innovative method for controlling molecular contaminants in space environments, via the utilization of Molecular Adsorbers. It has been found that the incorporation of appropriate molecular adsorbing materials within spacecraft volumes will decrease the overall contamination level within the cavity, thereby decreasing the potential for contaminants to migrate to more critical areas. In addition, it has been found that the placement of a Molecular Adsorber at a vent location actually serves as a molecular {open_quote}{open_quote}trap{close_quote}{close_quote} for the contaminants that would have otherwise been vented into the external spacecraft environment. This paper summarizes the theory, basic design, planned applications and significant results already obtained during the investigation of using Molecular Adsorbers for spacecraft contamination control purposes. {copyright} {ital 1996 American Institute of Physics.}

  12. Activity of alkaline phosphatase adsorbed and grafted on "polydopamine" films.

    Science.gov (United States)

    Ball, Vincent

    2014-09-01

    The oxidation of dopamine in slightly basic solutions and in the presence of oxygen as an oxidant allows for the deposition of dopamine-eumelanin ("polydopamine") films on almost all kinds of materials allowing for an easy secondary functionalization. Molecules carrying nucleophilic groups like thiols and amines can be easily grafted on those films. Herein we show that alkaline phosphatase (ALP), as a model enzyme, adsorbs to "polydopamine" films and part of the adsorbed enzyme is rapidly desorbed in contact with Tris buffer. However a significant part of the enzyme remains irreversibly adsorbed and keeps some enzymatic activity for at least 2 weeks whereas ALP adsorbed on quartz slides is rapidly and quantitatively deactivated. In addition we estimated the Michaelis constant Km of the enzyme irreversibly bound to the "polydopamine" film. The Michaelis constant, and hence the affinity constant between paranitrophenol phosphate and ALP are almost identical between the enzyme bound on the film and the free enzyme in solution. Complementarily, it was found that "polydopamine" films display some phosphatase like catalytic activity.

  13. Laboratory retention of vapor-phase PAHs using XAD adsorbents

    Science.gov (United States)

    Lee, James J.; Huang, Kuo-Lin; Yu, Yaochien Y.; Chen, Minsung S.

    This investigation focuses on the retention of polycyclic aromatic hydrocarbons (PAHs) on XAD (-2, -4, and -16) resins, which is crucial for estimating PAH gas/particle partition coefficients. The XAD resins were found to exhibit higher specific retention volumes ( Vg, net gas-phase retention volume per unit weight (gram) of sorbent) than PUF for some 3-ring PAHs at 20 oC. The 3-ring compounds broke through the XAD adsorbents more easily than the 4-ring compounds at constant temperature. For the equation, Log Vg= m log PL+ b ( PL: subcooled liquid vapor pressure) the average m values were approximately -0.2 and -0.3 at 20 and 40 oC, respectively. Moreover, the Vg values were lower at 40 oC than at 20 oC for each PAH compound. The XAD-4 appeared to have a greater Vg value (adsorbent weight based) for each compound among the adsorbents at 40 oC. It was possible that PAH micropore adsorption dominated on XAD-4, different from the predominance of the PAH surface adsorption on the other two adsorbents.

  14. Comparison of natural adsorbents for metal removal from acidic effluent.

    Science.gov (United States)

    Blais, J F; Shen, S; Meunier, N; Tyagi, R D

    2003-02-01

    Adsorption tests were carried out in acidic synthetic solutions (pH 2.0) using 20 g l(-1) of various natural adsorbents and 0.25 mM of 11 different metals. In decreasing order, the most efficient adsorbents tested were: oyster shells, cedar bark, vermiculite, cocoa shells and peanut shells. In contrast, weak metal adsorption was demonstrated by: red cedar wood, peat moss, pine wood, corn cobs and perlite. Metal adsorption capacities in acidic synthetic solution followed the order: Pb2+> Cr3+> Cu2+> Fe2+> Al3+> Ni2+> Cd2+ > Mn2+ > Zn2+ > Ca2+, Mg2+. Alkaline treatment (0.75 M NaOH) increased the effectiveness of metal removal for the majority of adsorbents. In contrast, acid treatment (0.75 M H2SO4) either reduced or did not affect the adsorption capacity of the materials tested. Finally, oyster shells, red cedar wood, vermiculite, cocoa shells and peanut shells, were effective natural adsorbents for the selective recovery of lead and trivalent chromium from acidic effluent.

  15. Results of testing various natural gas desulfurization adsorbents

    Science.gov (United States)

    Israelson, Gordon

    2004-06-01

    This article presents the results of testing many commercially available and some experimental sulfur adsorbents. The desired result of our testing was to find an effective method to reduce the quantity of sulfur in natural gas to less than 100 ppb volume (0.1 ppm volume). An amount of 100 ppb sulfur is the maximum limit permitted for Siemens Westinghouse solid oxide fuel cells (SOFCs). The tested adsorbents include some that rely only on physical adsorption such as activated carbon, some that rely on chemisorption such as heated zinc oxide, and some that may use both processes. The testing was performed on an engineering scale with beds larger than those used for typical laboratory tests. All tests were done at about 3.45 barg (50 psig). The natural gas used for testing was from the local pipeline in Pittsburgh and averaged 6 ppm volume total sulfur. The primary sulfur species were dimethyl sulfide (DMS), isopropyl mercaptan, tertiary butyl mercaptan, and tetrahydrothiophene. Some tests required several months to achieve a sulfur breakthrough of the bed. It was found that DMS always came through a desulfurizer bed first, independent of adsorption process. Since the breakthrough of DMS always exceeds the 100 ppb SOFC sulfur limit before other sulfurs were detected, an index was created to rate the adsorbents in units of ppm DMS × absorbent bed volume. This index is useful for calculating the expected adsorbent bed lifetime before sulfur breakthrough when the inlet natural gas DMS content is known. The adsorbents that are included in these reports were obtained from suppliers in the United States, the Netherlands, Japan, and England. Three activated carbons from different suppliers were found to have identical performance in removing DMS. One of these activated carbons was operated at four different space velocities and again showed the same performance. When using activated carbon as the basis of comparison for other adsorbents, three high-performance adsorbents

  16. Natural material adsorbed onto a polymer to enhance immune function

    Directory of Open Access Journals (Sweden)

    Reinaque AP

    2012-08-01

    Full Text Available Ana Paula Barcelos Reinaque,1 Eduardo Luzía França,2 Edson Fredulin Scherer,3 Mayra Aparecida Côrtes,1 Francisco José Dutra Souto,4 Adenilda Cristina Honorio-França51Post Graduate Program in Material Science, 2Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, 3Post Graduate Program in Material Science, Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, 4Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, 5Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, MT, BrazilBackground: In this study, we produced poly(ethylene glycol (PEG microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood.Methods: The medicinal plant mixture was adsorbed onto PEG microspheres and its effects were evaluated by flow cytometry and fluorescence microscopy.Results: Adsorption of the herbal mixture onto the PEG microspheres was achieved and the particles were internalized by phagocytes. PEG microspheres bearing the adsorbed herbal mixture stimulated superoxide release, and activated scavenging and microbicidal activity in phagocytes. No differences in functional activity were observed when the phagocytes were not incubated with PEG microspheres bearing the adsorbed herbal mixture.Conclusion: This system may be useful for the delivery of a variety of medicinal plants and can confer additional protection against infection. The data reported here suggest that a polymer adsorbed with a natural product is a treatment alternative for enhancing immune function.Keywords: natural product, polymer, adsorption, immune function, phagocytes

  17. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption

    KAUST Repository

    Zhao, Yunfeng

    2015-01-01

    Selective adsorption of CO2 has important implications for many energy and environment-related processes, which require the separation of CO2 from other gases (e.g. N2 and CH4) with high uptakes and selectivity. The development of high-performance adsorbents is one of the most promising solutions to the success of these processes. The present review is focused on the state-of-the-art of carbon-based (carbonaceous) adsorbents, covering microporous inorganic carbons and microporous organic polymers, with emphasis on the correlation between their textural and compositional properties and their CO2 adsorption/separation performance. Special attention is given to the most recently developed materials that were not covered in previous reviews. We summarize various effective strategies (N-doping, surface functionalization, extra-framework ions, molecular design, and pore size engineering) for enhancing the CO2 adsorption capacity and selectivity of carbonaceous adsorbents. Our discussion focuses on CO2/N2 separation and CO2/CH4 separation, while including an introduction to the methods and criteria used for evaluating the performance of the adsorbents. Critical issues and challenges regarding the development of high-performance adsorbents as well as some overlooked facts and misconceptions are also discussed, with the aim of providing important insights into the design of novel carbonaceous porous materials for various selective adsorption based applications. This journal is © The Royal Society of Chemistry.

  18. Preparation of Urea Nitrogen Adsorbent of Complex Type and Adsorption Capacity of Urea Nitrogen onto the Adsorbent

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The urea nitroge n adsorbent of complex type, which consists of chitosan coated dialdehyde cellulose (CDAC) and immobilized urease in gelatin membrane (IE), was prepared. The cellulose, the dialdehyde cellulose (DAC) and the CDAC were characterized by scanning electronic microscope. The results indicate that the cellulose C2-C3 bond was broken under the oxidation of periodate and it was oxidated to DAC. The DAC was coated with chitosan and the CDAC was obtained. The adsorption of urea nitrogen onto the adsorbent in Na2HPO4-NaH2PO4 buffer solution was studied in batch system. The effects of the experiment parameters, including degree of oxidation of CDAC, initial urea nitrogen concentration, pH and temperature, on the adsorption capacity of urea nitrogen onto the adsorbent at CDAC/IE weight ratio 10:1 were investigated. The results indicate that these parameters affected significantly the adsorption capacity. The adsorption capacity of urea nitrogen onto the adsorbent was 36.7 mg/g at the degree of oxidation of CDAC 88%, initial urea nitrogen concentration 600 mg/L, pH 7.4 and temperature 37 ℃.

  19. Nano porous alkaline earth metal silicates as free fatty acid adsorbents from Crude Palm Oil (CPO)

    Science.gov (United States)

    Masmur, Indra; Sembiring, Seri Bima; Bangun, Nimpan; Kaban, Jamaran; Putri, Nabila Karina

    2017-01-01

    Free fatty acids(FFA) from Crude Palm Oil (CPO) have been adsorbed by alkaline earth metal silicate (M-silicate : M = Mg, Ca, Sr and Ba) adsorbents in ethanol using batch method. The adsorbents were prepared from the chloride salts of alkaline metals and Na2SiO3. The resulting white solid of the alkaline earth metal silicates were then heated at 800°C for 3 hours to enlarge their porosities. All adsorbents were characterized by SEM-EDX, XRD and BET. The EDX spectrum of SEM-EDX showed the appearance of all elements in the adsorbents, and the XRD spectrum of all adsorbents showed that they have crystobalite structure. The porosity of the adsorbents calculated by BET method showed that the porosities of the adsorbents range from 2.0884 - 2.0969 nm. All the adsorbents were used to adsorb the FFA from CPO containing 4.79%, 7.3%, 10.37% and 13.34% of FFA. The ratio of adsorbent to CPO to be used in adsorption of FFA from CPO were made 1:1, 1:2 and 1:3, with adsorption time of 1 hour. We found that the maximum adsorption of FFA from CPO was given by Ca-Silicate adsorbent which was between 69.86 - 94.78%, while the lowest adsorption was shown by Mg-silicate adsorbent which was 49.32 -74.53%.

  20. Modèles en chimie théorique, développements et applications

    OpenAIRE

    2015-01-01

    Trois thèmes de recherche sont présentés dans ce travail.Les pseudo potentiels moléculaires développés dans le cadre de ce travail sont des potentiels développé&s pour des atomes hybridés. Le cas de l'atome de carbone sp2 est développé, que ce soit pour l'atome seul ou pour l'atome en interaction avec d’autres atomes portant ou non des pseudo potentiels. Grâce à ce travail, il est possible de reproduire avec précision la spectroscopie de polyènes, d'hydrocarbures polycycliques aromatiques et ...

  1. Nanofiber adsorbents for high productivity continuous downstream processing.

    Science.gov (United States)

    Hardick, Oliver; Dods, Stewart; Stevens, Bob; Bracewell, Daniel G

    2015-11-10

    An ever increasing focus is being placed on the manufacturing costs of biotherapeutics. The drive towards continuous processing offers one opportunity to address these costs through the advantages it offers. Continuous operation presents opportunities for real-time process monitoring and automated control with potential benefits including predictable product specification, reduced labour costs, and integration with other continuous processes. Specifically to chromatographic operations continuous processing presents an opportunity to use expensive media more efficiently while reducing their size and therefore cost. Here for the first time we show how a new adsorbent material (cellulosic nanofibers) having advantageous convective mass transfer properties can be combined with a high frequency simulated moving bed (SMB) design to provide superior productivity in a simple bioseparation. Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area material that allows for rapid convective flow operations. A proof of concept study demonstrated the performance of an anion exchange nanofiber adsorbent based on criteria including flow and mass transfer properties, binding capacity, reproducibility and life-cycle performance. Binding capacities of the DEAE adsorbents were demonstrated to be 10mg/mL, this is indeed only a fraction of what is achievable from porous bead resins but in combination with a very high flowrate, the productivity of the nanofiber system is shown to be significant. Suitable packing into a flow distribution device has allowed for reproducible bind-elute operations at flowrates of 2,400 cm/h, many times greater than those used in typical beaded systems. These characteristics make them ideal candidates for operation in continuous chromatography systems. A SMB system was developed and optimised to

  2. Interstitial and adsorbed phosphates in shelf sediments off Visakhapatnam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; Raju, G.R.K.

    Spatial distribution of interstitial and adsorbed phosphates in the shelf sediments shows an increasing trend with distance from coastal to inshore region. Maximum concentration ranges of interstitial and adsorbed phosphates are 16-19 and 40-50 mu g...

  3. The characteristics of the FCHA for adsorbing BSA in different solvent

    Institute of Scientific and Technical Information of China (English)

    MU Rui-hong; FANG Yu; DING Ning; NIU Jing-lu; YANG Hai-ling

    2001-01-01

    @@ INTRODUCTION It has been done the researches on interaction of proteins with biomaterials. Hydroxyapatite[HA] has excellent characteristics for adsorbing and desorbing biopolymers without denaturation because of high bioaffinity and biocompatibility. Therebyit has been applied as an adsorbent.

  4. Characterization and adsorption behavior of a novel triolein-embedded activated carbon composite adsorbent

    Institute of Scientific and Technical Information of China (English)

    RU Jia; LIU Huijuan; QU Jiuhui; WANG Aimin; DAI Ruihua

    2005-01-01

    A novel triolein-embedded activated carbon composite adsorbent was developed. Experiments were carried out in areas such as the preparation method, the characterization of physicochemical properties, and the adsorption behavior of the composite adsorbent in removing dieldrin from aqueous solution. Results suggested that the novel composite adsorbent was composed of the supporting activated carbon and the surrounding triolein-embedded cellulose acetate membrane. The adsorbent was stable in water, for no triolein leakage was detected after soaking the adsorbent for five weeks. The adsorbent had good adsorption capability to dieldrin, which was indicated by a residual dieldrin concentration of 0.204 μg·L-1. The removal efficiency of the composite adsorbent was higher than the traditional activated carbon adsorbent.

  5. Competitive Adsorption of a Two-Component Gas on a Deformable Adsorbent

    OpenAIRE

    Usenko, A. S.

    2013-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary in adsorption due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas taking into account variations in adsorption properties of the adsorbent in adsorption is obtained. We establi...

  6. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  7. Nanoalloy electrocatalysis: simulating cyclic voltammetry from configurational thermodynamics with adsorbates.

    Science.gov (United States)

    Wang, Lin-Lin; Tan, Teck L; Johnson, Duane D

    2015-11-14

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd-Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. The method provides a more complete means to design nanoalloys for electrocatalysis.

  8. Dynamics in Adsorbed Homopolymer Layers: Entanglements and Osmotic Effects

    Science.gov (United States)

    Santore, Maria; Mubarekyan, Ervin

    2001-03-01

    This work seeks the dynamic mechanism for the exchange of homopolymer chains between a dilute solution and a layer adsorbed at the solid-liquid interface. With the model system of polyethylene oxide (PEO) adsorbed onto silica from aqueous solution, it is shown that the behavior of saturated interfaces compared to starved layers reveals an interesting trend: The characteristic self exchange time is dependent only on coverage, not molecular weight, for chains of 100K or less. Therefore, it is concluded that classical entanglements do not play a role below 100K. For all molecular weights, when the coverage of 0.2 mg/m2 is exceeded, the interfacial dynamics become slow. At lower coverages, chains lie flat in train, with no loops or tails, and no lateral interactions either. The onset of slow dynamics at higher coverages may be a result of both surface crowding and the resistance of loops and tails to new chains approaching the layer.

  9. Topological features of engineered arrays of adsorbates in honeycomb lattices

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Arraga, Luis A., E-mail: ludovici83@gmail.com [IMDEA Nanociencia, Calle de Faraday, 9, Cantoblanco, 28049 Madrid (Spain); Lado, J.L. [International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal); Guinea, Francisco [IMDEA Nanociencia, Calle de Faraday, 9, Cantoblanco, 28049 Madrid (Spain); School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-09-01

    Hydrogen adatoms are one of the most the promising proposals for the functionalization of graphene. The adatoms induce narrow resonances near the Dirac energy, which lead to the formation of magnetic moments. Furthermore, they also create local lattice distortions which enhance the spin–orbit coupling. The combination of magnetism and spin–orbit coupling allows for a rich variety of phases, some of which have non-trivial topological features. We analyze the interplay between magnetism and spin–orbit coupling in ordered arrays of adsorbates on honeycomb lattice monolayers, and classify the different phases that may arise. We extend our model to consider arrays of adsorbates in graphene-like crystals with stronger intrinsic spin–orbit couplings. We also consider a regime away from half-filling in which the Fermi level is at the bottom of the conduction band, we find a Berry curvature distribution corresponding to a Valley–Hall effect.

  10. Modeling diffusion of adsorbed polymer with explicit solvent.

    Science.gov (United States)

    Desai, Tapan G; Keblinski, Pawel; Kumar, Sanat K; Granick, Steve

    2007-05-25

    Computer simulations of a polymer chain of length N strongly adsorbed at the solid-liquid interface in the presence of explicit solvent are used to delineate the factors affecting the N dependence of the polymer lateral diffusion coefficient, D(||). We find that surface roughness has a large influence, and D(||) scales as D(||) approximately N(-x), with x approximately 3/4 and x approximately 1 for ideal smooth and corrugated surfaces, respectively. The first result is consistent with the hydrodynamics of a "particle" of radius of gyration R(G) approximately N(nu) (nu=0.75) translating parallel to a planar interface, while the second implies that the friction of the adsorbed chains dominates. These results are discussed in the context of recent measurements.

  11. Electron bombardment of water adsorbed on Zr(0001) surfaces

    CERN Document Server

    Ankrah, S; Ramsier, R D

    2003-01-01

    A study of the effects of electron bombardment on water adsorbed on Zr(0001) is reported. Zirconium surfaces are dosed with isotopic water mixtures at 160 K followed by electron bombardment (485 eV). The system is then probed by low energy electron diffraction, temperature programmed desorption (TPD) and Auger electron spectroscopy (AES). No evidence is found that would indicate preferential mixing of hydrogen from the bulk with isotopic water dissociation products during TPD. However, electron bombardment results in the sharpening of a hydrogen/deuterium desorption peak near 320 K and the production of water near 730 K at low water exposures. In addition, although water does not oxidize Zr(0001) thermally, electron bombardment of adsorbed water induces a shift of about 2 eV in the Zr AES features indicating that the surface is partially oxidized by electron bombardment.

  12. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    Science.gov (United States)

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  13. Selective excitation of adsorbate vibrations on dissipative surfaces

    OpenAIRE

    2008-01-01

    The selective infrared (IR) excitation of molecular vibrations is a powerful tool to control the photoreactivity prior to electronic excitation in the ultraviolet / visible (UV/Vis) light regime ("vibrationally mediated chemistry"). For adsorbates on surfaces it has been theoretically predicted that IR preexcitation will lead to higher UV/Vis photodesorption yields and larger cross sections for other photoreactions. In a recent experiment, IR-mediated desorption of molecular hydrogen from a S...

  14. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiangdong.

    1989-08-01

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.

  15. ADSORPTION OF PHENOL AND NITROPHENOLS ON A HYPERCROSSLINKED POLYMERIC ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The adsorption of phenol and nitrophenols on hypercrosslinked polymeric adsorbent wasstudied as a function of the solution concentration and temperature. Adsorption isotherms of phenoland nitrophenols on hypercrosslinked resin were determined. These isotherms were modeledaccording to the Freundlich adsorption isotherm. The isotherms for phenol and nitrophenols onhypercrosslinked resin were assigned as L curves. Thermodynamic parameters were calculated for allphenol and nitrophenols. The kinetics experiment results showed that the adsorption rates were of thefirst-order kinetics. The rate constants at 303K were calculated.

  16. Bonding character of lithium atoms adsorbed on a graphene layer

    OpenAIRE

    Medeiros, P.V.C.; Mota,F.B.; Mascarenhas, A.J.S.; de Castilho, C. M. C.

    2011-01-01

    Acesso restrito: Texto completo. p. 529-531. This work uses first-principles calculations to investigate the aspects of the bonding character of lithium atoms adsorbed on a graphene layer. The presented results are in contradiction to other results that have recently appeared in the specialized literature, although they confirm some previous claims. In particular, a discussion of the characteristics of the bonding between lithium and carbon atoms and whether they interact via an sp2 ...

  17. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jiyeon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jeters, Robert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonheyo, George T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  18. PREPARATION OF CHITOSAN COATED METAL AFFINITY CHROMATOGRAPHY ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    AanTianwei; XuWeijiang; 等

    1998-01-01

    A new and an inexpensive adsorbent of chitosan coated silica for immobilized metal affinity chromatography(IMAC) was studied.After a double coating,the chitosan coated on silica beads could be up to 53.4mg/g silica beads.When pH>3.8,the metal ligand Cu2+ was chelated on the coated chitosan with a bound capacity of 14.6mg/g chitosan without introducing iminodiacetic acid(IDA).

  19. Activity of lactoperoxidase when adsorbed on protein layers

    OpenAIRE

    Haberska, Karolina; Svensson, Olof; Shleev, Sergey; Lindh, Liselott; Arnebrant, Thomas; Ruzgas, Tautgirdas

    2008-01-01

    Lactoperoxidase (LPO) is an enzyme, which is used as an antimicrobial agent in a number of applications, e.g., food technology. In the majority of applications LPO is added to a homogeneous product phase or immobilised on product surface. In the latter case, however, the measurements of LPO activity are seldom reported. In this paperwe have assessed LPO enzymatic activity on bare and protein modified gold surfaces by means of electrochemistry. It was found that LPO rapidly adsorbs to bare gol...

  20. Modeling adsorbate-induced property changes of carbon nanotubes.

    Science.gov (United States)

    Groß, Lynn; Bahlke, Marc Philipp; Steenbock, Torben; Klinke, Christian; Herrmann, Carmen

    2017-05-05

    Because of their potential for chemical functionalization, carbon nanotubes (CNTs) are promising candidates for the development of devices such as nanoscale sensors or transistors with novel gating mechanisms. However, the mechanisms underlying the property changes due to functionalization of CNTs still remain subject to debate. Our goal is to reliably model one possible mechanism for such chemical gating: adsorption directly on the nanotubes. Within a Kohn-Sham density functional theory framework, such systems would ideally be described using periodic boundary conditions. Truncating the tube and saturating the edges in practice often offers a broader selection of approximate exchange-correlation functionals and analysis methods. By comparing the two approaches systematically for NH3 and NO2 adsorbates on semiconducting and metallic CNTs, we find that while structural properties are less sensitive to the details of the model, local properties of the adsorbate may be as sensitive to truncation as they are to the choice of exchange-correlation functional, and are similarly challenging to compute as adsorption energies. This suggests that these adsorbate effects are nonlocal. © 2017 Wiley Periodicals, Inc.

  1. Distribution of metal and adsorbed guest species in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  2. Development Trends in Porous Adsorbents for Carbon Capture.

    Science.gov (United States)

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-03

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments.

  3. Adsorption isotherm of non-azeotropic solution onto porous adsorbents

    Science.gov (United States)

    Bono, A.; Ramlan, N. A.; Anisuzzaman, S. M.; Chu, C. M.; Farm, Y. Y.

    2016-06-01

    Adsorption isotherm is essential component in the understanding of the adsorption process. Several methods of the measurements, analysis and interpretation of adsorption from solution have been reported in the literature. Most of the measurements of adsorption isotherm from solution were involved the measurement of excess isotherm conducted at low region of sorbates concentration. Direct interpretation of excess adsorption isotherm as adsorption isotherm is always been practice. Therefore, in this work a study on the measurement of the adsorption isotherm from solution of non-azeotropic organic solvent mixture onto porous adsorbents for whole range of liquid concentration was conducted. The study included the measurement of excess adsorption isotherm using conventional technique. Theoretical analysis and interpretation of adsorption isotherm from the excess isotherm were conducted using Pseudo Ideal Adsorption, Gibbs Dividing Plane Model and Langmuir-Fruendlich binary isotherm model. For organic solvents, acetone and propanol were chosen as the adsorbates due to the non-azeotropic properties in the mixture. Activated carbon and silicalite were chosen as adsorbents due to the different in their porosity such as macro porous and micro porous structure. The result of the study has revealed that the adsorption isotherm of non-azeotropic mixture onto activated carbon and silicalite can be interpreted as monolayer type of adsorption.

  4. Fluctuations in the number of irreversibly adsorbed particles

    Science.gov (United States)

    Adamczyk, Zbigniew; Szyk-Warszyńska, Lilianna; Siwek, B.; Weroński, P.

    2000-12-01

    Fluctuations in the number of colloid particles adsorbed irreversibly under pure diffusion transport conditions were determined as a function of surface density and ionic strength of the suspension. The experiments were carried out for monodisperse polystyrene latex particles of micrometer size range adsorbing irreversibly at mica surface. The surface density of adsorbed particles at various areas was determined using the direct microscope observation method. A new experimental cell was used enabling in situ observations of particles adsorption under conditions of negligible gravity effects. It was found that the particle density fluctuations for high ionic strength were in a good agreement with the theoretical results derived from the random sequential adsorption (RSA) model. Also, the theoretical results stemming from the equilibrium scaled particle theory reflected the experimental data satisfactorily. For lower ionic strength a deviation from the hard sphere behavior was experimentally demonstrated. This effect due to the repulsive electrostatic interactions was interpreted in terms of the effective hard particle concept. The universal dependence of variance on particle density obtained in this way was found in a good agreement with the RSA model for all ionic strength. These results proved that fluctuations in particle density of monolayer formed under diffusional conditions differ fundamentally from these obtained under ballistic transport conditions.

  5. Amine-functionalized porous silicas as adsorbents for aldehyde abatement.

    Science.gov (United States)

    Nomura, Akihiro; Jones, Christopher W

    2013-06-26

    A series of aminopropyl-functionalized silicas containing of primary, secondary, or tertiary amines is fabricated via silane-grafting on mesoporous SBA-15 silica and the utility of each material in the adsorption of volatile aldehydes from air is systematically assessed. A particular emphasis is placed on low-molecular-weight aldehydes such as formaldehyde and acetaldehyde, which are highly problematic volatile organic compound (VOC) pollutants. The adsorption tests demonstrate that the aminosilica materials with primary amines most effectively adsorbed formaldehyde with an adsorption capacity of 1.4 mmolHCHO g(-1), whereas the aminosilica containing secondary amines showed lower adsorption capacity (0.80 mmolHCHO g(-1)) and the aminosilica containing tertiary amines adsorbed a negligible amount of formaldehyde. The primary amine containing silica also successfully abated higher aldehyde VOC pollutants, including acetaldehyde, hexanal, and benzaldehyde, by effectively adsorbing them. The adsorption mechanism is investigated by (13)C CP MAS solid-state NMR and FT-Raman spectroscopy, and it is demonstrated that the aldehydes are chemically attached to the surface of aminosilica in the form of imines and hemiaminals. The high aldehyde adsorption capacities of the primary aminosilicas in this study demonstrate the utility of amine-functionalized silica materials for reduction of gaseous aldehydes.

  6. Structure of polymer layers adsorbed from concentrated solutions

    Science.gov (United States)

    Auvray, Loïc; Auroy, Philippe; Cruz, Margarida

    1992-06-01

    We study by neutron scattering the interfacial strucuture of poly(dimethylsiloxane) layers irreversibly adsorbed from concentrated solutions or melts. We first measure the thickness h of the layers swollen by a good solvent as a function of the chain polymerisation index N and of the polymer volume fraction in the initial solution Φ. The relation h ≈ N^{0.8}Φ^{0.3}, recently predicted from an analogy between irreversibly adsorbed layers and grafted polymer brushes, describes well our results. We can therefore deduce that there is at least one large loop of about N monomers per adsorbed chain. We also study the shape of the polymer concentration profile in the layers by measuring on two samples the polymer-solid partial structure factor, that is proportional to the Fourier transform of the profile. The model of pseudobrushes predicts a concentration decay varying with the distance of the wall z as z^{-2/5}. This power law profile accounts quantitatively for the angular variation of the polymer-solid cross structure factor but it is difficult to distinguish it without anbiguity from less singular profiles. It implies that the adsorption of PDMS onto silica is sufficiently strong and fast to quench completely the loop distribution in the initial layer. Nous étudions par diffusion de neutrons la structure interfaciale de couches de poly(diméthylsiloxane) irréversiblement adsorbées sur de la silice à partir de solutions semidiluées et de fondus. Nous mesurons d'abord l'épaisseur h des couches gonflées par un bon solvant en fonction du degré de polymérisation des chaînes N et de la fraction volumique dans la solution initiale Φ. La relation h≈ N^{0.8}Φ^{0.3} récemment prédite à partir de l'analogie entre couches irréversiblement adsorbées et brosses de polymères greffés décrit bien nos résultats. Nous en déduisons qu'il existe au moins une grande boucle d'environ N monomères par chaîne adsorbée. Nous étudions aussi la forme du profil de

  7. Adsorbent-adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons.

    Science.gov (United States)

    Sánchez-Polo, M; Rivera-Utrilla, J

    2002-09-01

    The present work investigated the effect of surface oxygenated groups on the adsorption of Cd(II) and Hg(II) by activated carbon. A study was undertaken to determine the adsorption isotherms and the influence of the pH on the adsorption of each metallic ion by a series of ozonized activated carbons. In the case of Cd(II), the adsorption capacity and the affinity of the adsorbent augmented with the increase in acid-oxygenated groups on the activated carbon surface. These results imply that electrostatic-type interactions predominate in this adsorption process. The adsorption observed at solution pH values below the pH(PZC) of the carbon indicates that other forces also participate in this process. Ionic exchange between -C pi-H3O+ interaction protons and Cd(II) ions would account for these findings. In the case of Hg(II), the adsorption diminished with an increase in the degree of oxidation of the activated carbon. The presence of electron-withdrawing groups on oxidized carbons decreases the electronic density of their surface, producing a reduction in the adsorbent-adsorbate dispersion interactions and in their reductive capacity, thus decreasing the adsorption of Hg(II) on the activated carbon. At pH values above 3, the pH had no influence on the adsorption of Hg(II) by the activated carbon, confirming that electrostatic interactions do not have a determinant influence on Hg(II) adsorption.

  8. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Science.gov (United States)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  9. Electric field cancellation on quartz: a Rb adsorbate induced negative electron affinity surface

    CERN Document Server

    Sedlacek, J A; Rittenhouse, S T; Weck, P F; Sadeghpour, H R; Shaffer, J P

    2015-01-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces a negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results are important for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface.

  10. Properties of competitively adsorbed BSA and fibrinogen from their mixture on mixed and hybrid surfaces

    Science.gov (United States)

    Pandey, Lalit M.; Pattanayek, Sudip K.

    2013-01-01

    We have studied the adsorption of BSA and fibrinogen from their mixture onto surfaces with mixed self-assembled monolayer (SAM) of amine and octyl (ratio 1:1) and hybrid SAM. The properties of adsorbed proteins obtained from individual protein solution differ considerably from the properties of the adsorbed proteins obtained from mixture of proteins at same total concentration. The adsorbed amount of proteins is lesser and the adsorbed protein is more elastic if it is adsorbing from mixture of proteins. It is found that with increasing total protein concentration, adsorbed amount increases and elasticity of the adsorbed proteins decreases. The apparent displacements of BSA with Fb are observed on the graphs of change in frequency with time, which are obtained from quartz crystal microbalance.

  11. Preparation and characterization of a novel adsorbent for removing lipophilic organic from water

    Institute of Scientific and Technical Information of China (English)

    LIU; Huijuan; DAI; Ruihua; QU; Jiuhui; RU; Jia

    2005-01-01

    A novel composite adsorbent containing a kind of lipid-triolein is studied. The adsorbent is prepared by embedding triolein into cellulose acetate (CA) sphere. The preparation method, the physical-chemical properties of the adsorbent and the removal efficiency of two organochlorinated pesticides are studied. The adsorbent is stable in water and no triolein leaks into water for 465 h soaking. The adsorbent has high adsorption capacity for organochlorinated pesticides such as dieldrin and aldrin. The results suggest that triolein-containing adsorbent could serve as a good adsorbent for lipophilic organic pollutants. The adsorption rate for lipophilic pollutants is very fast and has relation with the logKow of the compounds.

  12. Adsorption of Heavy Metal Ions by Adsorbent from Waste Mycelium Chitin

    Institute of Scientific and Technical Information of China (English)

    苏海佳; 王丽娟; 等

    2002-01-01

    The adsorption properties of chitin adsorbent from mycelium of fermentation industries for the removal of heavy metal ions were studied.The result shows that the chitin adsorbent has high adsorption capacity for many heavy metal ions and Ni2+ in citric acid.The influence of pH was significant:When pH is higher than 4.0,the high adsorption capacity is obtained.otherwise H+ ion inhibits the adsorption of heavy metal ions.The comparison of the chitin adsorbent with some other commercial adsorbents was made,in which that the adsorption behavior of chitin adsorbent is close to that of commercial cation exchange adsorbents,and its cost is much lower than those commercial adsorbents.

  13. Description of adsorption equilibrium of PAHs on hypercrosslinked polymeric adsorbent using Polanyi potential theory

    Institute of Scientific and Technical Information of China (English)

    LONG Chao; LI AiMin; HU DaBo; LIU FuQiang; ZHANG QuanXing

    2008-01-01

    In this research, static adsorption of three polycyclic aromatic hydrocarbons (PAHs), naphthalene, acenaphthene, and fluorene, from aqueous solutions onto hypercrosslinked polymeric adsorbent within the temperature range of 288-308 K is investigated. Several isotherm equations are correlated with the equilibrium data, and the experimental data is found to fit the Polanyi-Dubinin-Manes model best within the entire range of concentrations, providing evidence that pore-filling is the dominating sorption mechanism for PAHs. The study shows that the molecular size of adsorbates has distinct in-fluence on adsorption capacity of hypercrosslinked polymeric adsorbent for the PAHs; the larger the adsorbate molecular size, the lower the adsorption equilibrium capacity. Based on the Polanyi-Dubinin-Manes model, the molecular size of adsorbates was introduced to adjust the adsorbate molar volume. Plots of qv vs. (σε/Vs) are collapsed to a single correlation curve for different adsorbates on hypercrosslinked polymeric resin.

  14. Polyacrylate adsorbents for the selective adsorption of cholesterol-rich lipoproteins from plasma or blood

    Directory of Open Access Journals (Sweden)

    Heuck, Claus-Chr.

    2011-01-01

    Full Text Available Polyacrylate (PAA adsorbents selectively bind low density lipoproteins (LDL from human plasma and blood, whereas very low density lipoproteins (VLDL are only minimally adsorbed. The adsorption of cholesterol-rich lipoproteins to PAA adsorbents is related to the molecular weight (mw of the polyanion ligand. Ca++ and Mg++ inhibit the binding of LDL to PAA adsorbents. The chemical composition of the organic hardgels of the adsorbents does not have an influence on adsorption. The selective adsorption of LDL to PAA adsorbents can be explained to result from their low negative surface charge density and the specific colloid-chemical properties of the surface-bound PAA, which do not prevent LDL from binding to charge-like domains of the ligand. By contrast, VLDL and high density lipoproteins (HDL are repelled from the adsorbents due to their higher negative surface charge density.

  15. Polyacrylate adsorbents for the selective adsorption of cholesterol-rich lipoproteins from plasma or blood.

    Science.gov (United States)

    Heuck, Claus-Chr

    2011-01-24

    Polyacrylate (PAA) adsorbents selectively bind low density lipoproteins (LDL) from human plasma and blood, whereas very low density lipoproteins (VLDL) are only minimally adsorbed. The adsorption of cholesterol-rich lipoproteins to PAA adsorbents is related to the molecular weight (mw) of the polyanion ligand. Ca(++) and Mg(++) inhibit the binding of LDL to PAA adsorbents. The chemical composition of the organic hardgels of the adsorbents does not have an influence on adsorption. The selective adsorption of LDL to PAA adsorbents can be explained to result from their low negative surface charge density and the specific colloid-chemical properties of the surface-bound PAA, which do not prevent LDL from binding to charge-like domains of the ligand. By contrast, VLDL and high density lipoproteins (HDL) are repelled from the adsorbents due to their higher negative surface charge density.

  16. A DFT study of halogen atoms adsorbed on graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paulo V C; De Brito Mota, F; De Castilho, Caio M C [Grupo de Fisica de Superfcies e Materiais, Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao/Ondina, 40170-115 Salvador, Bahia (Brazil); Mascarenhas, Artur J S, E-mail: caio@ufba.br [Instituto Nacional de Ciencia e Tecnologia em Energia e Ambiente-INCT-E and A, Universidade Federal da Bahia, 40170-280 Salvador, Bahia (Brazil)

    2010-12-03

    In this work, ab initio density functional theory calculations were performed in order to study the structural and electronic properties of halogens (X = fluorine, chlorine, bromine or iodine) that were deposited on both sides of graphene single layers (X-graphene). The adsorption of these atoms on only one side of the layer with hydrogen atoms adsorbed on the other was also considered (H,X-graphene). The results indicate that the F-C bond in the F-graphene system causes an sp{sup 2} to sp{sup 3} transition of the carbon orbitals, and similar effects seem to occur in the H,X-graphene systems. For the other cases, two configurations are found: bonded (B) and non-bonded (NB). For the B configuration, the structural arrangement of the atoms was similar to F-graphene and H-graphene (graphane), although the electronic structures present some differences. In the NB configuration, the interaction between the adsorbed atoms and the graphene layer seems to be essentially of the van der Waals type. In these cases, the original shape of the graphene layer presents only small deviations from the pristine form and the adsorbed atoms reach equilibrium far from the sheet. The F-graphene structure has a direct bandgap of approximately 3.16 eV at the {Gamma} point, which is a value that is close to the value of 3.50 eV that was found for graphane. The Cl-graphene (B configuration), H,F-graphene and H,Cl-graphene systems have smaller bandgap values. All of the other systems present metallic behaviours. Energy calculations indicate the possible stability of these X-graphene layers, although some considerations about the possibility of spontaneous formation have to be taken into account.

  17. Graphene symmetry-breaking with molecular adsorbates: modeling and experiment

    Science.gov (United States)

    Groce, M. A.; Hawkins, M. K.; Wang, Y. L.; Cullen, W. G.; Einstein, T. L.

    2012-02-01

    Graphene's structure and electronic properties provide a framework for understanding molecule-substrate interactions and developing techniques for band gap engineering. Controlled deposition of molecular adsorbates can create superlattices which break the degeneracy of graphene's two-atom unit cell, opening a band gap. We simulate scanning tunneling microscopy and spectroscopy measurements for a variety of organic molecule/graphene systems, including pyridine, trimesic acid, and isonicotinic acid, based on density functional theory calculations using VASP. We also compare our simulations to ultra-high vacuum STM and STS results.

  18. Detection of adsorbed water and hydroxyl on the Moon.

    Science.gov (United States)

    Clark, Roger N

    2009-10-23

    Data from the Visual and Infrared Mapping Spectrometer (VIMS) on Cassini during its flyby of the Moon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the Moon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  19. Improved phenol adsorption from aqueous solution using electrically conducting adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Asghar, Hafiz Muhammad Anwaar; Hussain, Syed Nadir [The University of Manchester, Manchester (United Kingdom); Sattar, Hamed [University of Leeds, Leeds (United Kingdom); Brown, Nigel Willis [Daresbury Innovation Centre, Cheshire (United Kingdom); Roberts, Edward Pelham Lindfield [University of Calgary, Calgary (Canada)

    2014-05-15

    The electrically conducting and partially porous graphite based adsorbent (called Nyex{sup TM} 2000) was tested for its adsorption capacity and electrochemical regeneration ability for the removal of phenol from aqueous solution. Nyex{sup TM} 2000 was tested in comparison with Nyex{sup TM} 1000, which is currently being used for a number of industrial waste water treatment applications. Nyex{sup TM} 1000 exhibited small adsorption capacity of 0.1 mg g{sup -1} for phenol because of having small specific surface area of 1 m{sup 2} g{sup -1}. In contrast, Nyex{sup TM} 2000 with specific surface area of 17 m{sup 2} g{sup -1} delivered an adsorption capacity of 0.8 mg g{sup -1}, which was eight-fold higher than that of Nyex{sup TM} 1000. Nyex{sup TM} 2000 was successfully electrochemically regenerated by passing a current of 0.5 A, charge passed of 31 C g{sup -1} for a treatment time of 45 minutes. These electrochemical parameters were comparable to Nyex{sup TM} 1000 for which a current of 0.5 A, charge passed of 5 C g{sup -1} for a treatment time of 20 minutes were applied for complete oxidation of adsorbed phenol. The comparatively high charge density was found to be required for Nyex{sup TM} 2000, which is justified with its higher adsorption capacity. The FTIR results validated the mineralization of adsorbed phenol into CO{sub 2} and H{sub 2}O except the formation of few by-products, which were in traces when compared with the concentration of phenol removed from aqueous solution. The electrical energy as required for electrochemical oxidation of phenol adsorbed onto Nyex{sup TM} 1000 and 2000 was found to be 214 and 196 J mg{sup -1}, respectively. The comparatively low energy requirement for electrochemical oxidation using Nyex{sup TM} 2000 is consistent with its higher bed electrical conductivity, which is twice that of Nyex{sup TM} 1000.

  20. 3,5-Dichlorophenol Removal From Wastewater Using Alternative Adsorbents

    Science.gov (United States)

    Kobetičová, Hana; Lipovský, Marek; Wachter, Igor; Soldán, Maroš

    2015-06-01

    The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud) and a biosorbent (Lemna minor) were used for this research. Initial concentration of the contaminant was 4 mmol L-1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 %) was reached by the red mud in 48 hours.

  1. 3,5-Dichlorophenol Removal From Wastewater Using Alternative Adsorbents

    Directory of Open Access Journals (Sweden)

    Kobetičová Hana

    2015-06-01

    Full Text Available The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud and a biosorbent (Lemna minor were used for this research. Initial concentration of the contaminant was 4 mmol L−1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 % was reached by the red mud in 48 hours.

  2. Magnetically modified microbial cells: A new type of magnetic adsorbents

    Institute of Scientific and Technical Information of China (English)

    Ivo; Safarik; Mirka; Safarikova

    2007-01-01

    Microbial cells, either in free or immobilized form, can be used for the preconcentration or removal of metal ions, organic and inorganic xenobiotics or biologically active compounds. Magnetic modification of these cells enables to prepare magnetic adsorbents that can be easily manipulated in difficult-to-handle samples, such as suspensions, in the presence of external magnetic field. In this review, typical examples of magnetic modifications of microbial cells are presented, as well as their possible applications for the separation of organic xenobiotics and heavy metal ions.

  3. Structure of adsorbed monolayers. The surface chemical bond

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Bent, B.E.

    1984-06-01

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table.

  4. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-02-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  5. Behavior of adsorbed Poly-A onto sodium montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Palomino-Aquino, Nayeli [Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (Mexico); Negrón-Mendoza, Alicia, E-mail: negron@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)

    2015-07-23

    The adsorption of Poly-A (a polynucleotide consisting of adenine, ribose and a phosphate group), onto a clay mineral, was studied to investigate the extent of adsorption, the site of binding, and the capacity of the clay to protect Poly-A, while it is adsorbed onto the clay, from external sources of energy. The results showed that Poly-A presented a high percentage of adsorption at the edges of the clay and that the survival of the polynucleotide was superior to irradiating the polymer in the absence of the clay.

  6. Temperature programmed desorption of weakly bound adsorbates on Au(111)

    Science.gov (United States)

    Engelhart, Daniel P.; Wagner, Roman J. V.; Meling, Artur; Wodtke, Alec M.; Schäfer, Tim

    2016-08-01

    We have performed temperature programmed desorption (TPD) experiments to analyze the desorption kinetics of Ar, Kr, Xe, C2H2, SF6, N2, NO and CO on Au(111). We report desorption activation energies (Edes), which are an excellent proxy for the binding energies. The derived binding energies scale with the polarizability of the molecules, consistent with the conclusion that the surface-adsorbate bonds arise due to dispersion forces. The reported results serve as a benchmark for theories of dispersion force interactions of molecules at metal surfaces.

  7. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    Directory of Open Access Journals (Sweden)

    Kobetičová Hana

    2014-12-01

    Full Text Available The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is described.

  8. Sustainable catalyst supports for carbon dioxide gas adsorbent

    Science.gov (United States)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  9. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  10. FTIR spectroscopy combined with quantum chemical calculations to investigate adsorbed nitrate on aluminium oxide surfaces in the presence and absence of co-adsorbed water.

    Science.gov (United States)

    Baltrusaitis, Jonas; Schuttlefield, Jennifer; Jensen, Jan H; Grassian, Vicki H

    2007-09-28

    Surface reactions of nitrogen oxides with aluminium oxide particles result in the formation of adsorbed nitrate. Specifically, when alpha-Al(2)O(3) and gamma-Al(2)O(3) particles are exposed to gas-phase NO(2) and HNO(3) adsorbed nitrate forms on the surface. In this study, Fourier transform infrared (FTIR) spectroscopy is combined with quantum chemical calculations to further our understanding of the adsorbed nitrate product on aluminium oxide particle surfaces in the presence and absence of co-adsorbed water at 296 K. FTIR spectra of adsorbed nitrate on alpha-Al(2)O(3) and gamma-Al(2)O(3) particles are interpreted using calculated vibrational frequencies of nitrate coordinated to binuclear Al oxide cluster models. Comparison of the calculated and experimental vibrational frequencies of adsorbed nitrate establishes different modes of coordination (monodentate, bidentate and bridging) of the nitrate ion to the surface in the absence of adsorbed water. In the presence of co-adsorbed water, the nitrate ion becomes fully solvated, as shown by a comparison of the experimental nitrate infrared spectra as a function of relative humidity with the calculated nitrate vibrational frequencies for binuclear Al cluster compounds which contain both coordinated nitrate ions and water molecules. These calculations also suggest that adsorbed water can displace nitrate from direct coordination to the surface, leading to an outer-sphere nitrate adsorption complex as well as an inner-sphere complex. Furthermore, the relative humidity dependence of the spectra suggest that water does not evenly wet the surface even at high relative humidity, as there are open or bare surface sites where nitrate ions are not solvated. Besides adsorbed mondendate, bidendate, bridging and solvated nitrate, the presence of ion bound nitrate ion, partially solvated nitrate, molecular nitric acid, hydronium ion and H(3)O(+):NO(3)(-) ion pairs on the oxide surface are also discussed.

  11. The cultivation of of medicinal and aromatique plants in Romania

    Directory of Open Access Journals (Sweden)

    Leon Sorin MUNTEAN

    1985-08-01

    Full Text Available Scientific research regarding medicinal plants started first in Cluj, where the Research Station for Medicinal Plants was first organized in Europe (1904. Research in this field was continued after 1930 by the staff of the Agronomy Researh Institute of Romania (ICAR. Beginning with 1975 the national research programme regarding the medicinal plants is coordinated by the Research Station for Medicinal and Aromatic Plants -SCPMA - Fundulea. Studies are performed in the experimental fields and in the laboratories of this institute and different other research stations and universities in Romania. Beginning with 1979, a new specialized periodical - Herba Romanica - published the main results in the field. At present there are cultivated in Romania about 60 different medicinal and aromatic plant species. Recently a tendency emerged toward the concentration of the production to the most suitable regions and the specialization of different farms for the cultivation of a more restricted number of species. In the second part of the paper the species studied and/or cultivated in the experimental fields of the Agronomy Institute Cluj-Napoca are presented with a chronological list of papers published by the stuff in the period 1975-1984.

  12. Experiment on the thermal conductivity and permeability of physical and chemical compound adsorbents for sorption process

    Science.gov (United States)

    Jin, Z. Q.; Wang, L. W.; Jiang, L.; Wang, R. Z.

    2013-08-01

    For the adsorbents in the application of refrigeration, the density of the material inside the adsorber changes because the adsorption/desorption of the refrigerant inside the adsorbents. Consequently the thermal conductivity and permeability of the adsorbents also change. In order to investigate the heat and mass transfer performance of consolidated compound adsorbent under the different equilibrium state of adsorption/desorption, the thermal conductivity and permeability test system is set up using the guarded hot plate measuring method and the principle of Ergun equation. Then various mass ratios between adsorbent and matrix of consolidated physical and chemical compound adsorbents are developed and tested under different ammonia adsorption quantity. Result shows that the thermal conductivity and permeability have strong dependence with the ratios and consolidated density of the compound adsorbent. Meanwhile, the thermal conductivity and permeability of the chemical compound adsorbents vary significantly with different adsorption quantity of ammonia, and the values for the physical compound adsorbents almost maintain a constant value with different values of adsorption quantity.

  13. Solvent cleanup using base-treated silica gel solid adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO/sub 3/, dibutyl phosphate (DBP), UO/sub 2//sup 2 +/, Pu/sup 4 +/, various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO/sub 3/ waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables.

  14. Waste metal hydroxide sludge as adsorbent for a reactive dye.

    Science.gov (United States)

    Santos, Sílvia C R; Vílar, Vítor J P; Boaventura, Rui A R

    2008-05-30

    An industrial waste sludge mainly composed by metal hydroxides was used as a low-cost adsorbent for removing a reactive textile dye (Remazol Brilliant Blue) in solution. Characterization of this waste material included chemical composition, pH(ZPC) determination, particle size distribution, physical textural properties and metals mobility under different pH conditions. Dye adsorption equilibrium isotherms were determined at 25 and 35 degrees C and pH of 4, 7 and 10 revealing reasonably fits to Langmuir and Freundlich models. At 25 degrees C and pH 7, Langmuir fit indicates a maximum adsorption capacity of 91.0mg/g. An adsorptive ion-exchange mechanism was identified from desorption studies. Batch kinetic experiments were also conducted at different initial dye concentration, temperature, adsorbent dosage and pH. A pseudo-second-order model showed good agreement with experimental data. LDF approximation model was used to estimate homogeneous solid diffusion coefficients and the effective pore diffusivities. Additionally, a simulated real effluent containing the selected dye, salts and dyeing auxiliary chemicals, was also used in equilibrium and kinetic experiments and the adsorption performance was compared with aqueous dye solutions.

  15. Structure of Inert Gases Adsorbed in MCM-41

    Science.gov (United States)

    Evans, Dylan; Sokol, Paul

    One-dimensional quantum liquids of 3He or 4He have generated recent interest for investigation in the Luttinger liquid model. Unfortunately, current studies lack a clear demonstration of definitively one-dimensional behavior. We propose using the templated, porous material, MCM-41, as a host for an atomic Luttinger liquid. In general, the pores of MCM-41 are too wide to provide a strictly one-dimensional environment, so we investigate preplating these pores with inert gases to effectively reduce their diameter. We present the results of studies of the structure of inert gases in MCM-41. Nitrogen sorption isotherms were used to characterize the sample. Then, using inert gases as adsorbates, we determined the minimum effective pore diameter that can be achieved in our sample before capillary condensation takes over. X-ray powder diffraction (XRD) was performed on the ideally preplated sample to investigate the structure of the adsorbates in the nanopores. The XRD measurements are compared to simulations of core-shell cylinder model scattering, and the validity of the model is assessed. The prospects for creating a definitively one-dimensional channel for the application of studying the structure and dynamics of helium confined in one dimension are discussed. This work was supported by the National Science Foundation under Grant DGE-1069091.

  16. Removal of indoor formaldehyde over CMK-8 adsorbents.

    Science.gov (United States)

    Yu, Mi Jin; Kim, Ji Man; Park, Sung Hoon; Jeon, Jong-Ki; Park, Joonhong; Park, Young-Kwon

    2013-04-01

    CMK-8, a mesoporous carbon material, was activated using different methods for the adsorption of low-concentration airborne formaldehyde. KOH and ammonia treatments were used to activate CMK-8. A CMK-8 sample was treated with KOH first followed by an ammonia-treatment at 700 degrees C to determine the effect of a combination of the two treatment methods. The adsorbents prepared were characterized by X-ray diffraction, N2 adsorption-desorption and X-ray photoelectron spectroscopy. The KOH treatment increased the concentration of oxygen functional groups, whereas the ammonia-treatment generated a significant amount of nitrogen functional groups. The formaldehyde adsorption efficiency was highest when both KOH- and ammonia-treatments were applied to CMK-8. The ammonia-treated CMK-8 exhibited higher formaldehyde adsorption ability than the KOH-treated one, whereas non-activated CMK-8 showed the lowest formaldehyde adsorption efficiency. The number of nitrogen functional groups and the specific surface area appeared to significantly affect the formaldehyde adsorption capability of the adsorbents, whereas oxygen functional groups played a less important role.

  17. Adsorbate Electric Fields on a Cryogenic Atom Chip

    CERN Document Server

    Chan, K S; Hufnagel, C; Dumke, R

    2013-01-01

    We investigate the behaviour of electric fields originating from adsorbates deposited on a cryogenic atom chip as it is cooled from room temperature to cryogenic temperature. Using Rydberg electromagnetically induced transparency we measure the field strength versus distance from a 1 mm square of YBCO patterned onto a YSZ chip substrate. We find a localized and stable dipole field at room temperature and attribute it to a saturated layer of chemically adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we observe a change in sign of the electric field as well as a transition from a localized to a delocalized dipole density. We relate these changes to the onset of physisorption on the chip surface when the van der Waals attraction overcomes the thermal desorption mechanisms. Our findings suggest that, through careful selection of substrate materials, it may be possible to reduce the electric fields caused by atomic adsorption on chips, opening up experiments to controlled Rydberg-surface co...

  18. Heterogeneous radiolysis of HCN adsorbed on a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Colin-Garcia, M.; Ortega-Gutierrez, F. [Instituto de Geologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Ramos-Bernal, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Negron-Mendoza, A., E-mail: negron@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)

    2010-07-21

    Hydrogen cyanide is a key molecule for chemical evolution studies because, when it is exposed to different sources of energy, it forms various compounds of biological importance. To understand the role of minerals in chemical evolution, a series of experiments was performed. First, the adsorption capacity of HCN on different surface minerals was studied; the results show that HCN is readily adsorbed onto the solids proposed (zeolite, serpentine, dolomite, and sodium montmorillonite), in particular zeolite and montmorillonite. Second, the radiolysis of HCN adsorbed on olivine (as an example of a mineral surface) was also followed; it was found that the rate of HCN decomposition by gamma irradiation is enhanced in the presence of the solid. The third series of studies show that organic material was produced in high abundance from HCN at high radiation doses. The radiolytic products included gases (CO{sub 2}, NH{sub 4}, and CO) and oligomeric materials that release carboxylic acids (succinic, malonic, citric, and tricarballylic acids) and amino acids upon acid hydrolysis. These experiments suggest that minerals could have participated actively in chemical evolution processes.

  19. Mercury(II Removal with Modified Magnetic Chitosan Adsorbents

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2013-05-01

    Full Text Available Two modified chitosan derivatives were prepared in order to compare their adsorption properties for Hg(II removal from aqueous solutions. The one chitosan adsorbent (CS is only cross–linked with glutaraldehyde, while the other (CSm, which is magnetic, is cross-linked with glutaraldehyde and functionalized with magnetic nanoparticles (Fe3O4. Many possible interactions between materials and Hg(II were observed after adsorption and explained via characterization with various techniques (SEM/EDAX, FTIR, XRD, DTG, DTA, VSM, swelling tests. The adsorption evaluation was done studying various parameters as the effect of pH (optimum value 5 for adsorption and 2 for desorption, contact time (fitting to pseudo–first, –second order and Elovich equations, temperature (isotherms at 25, 45, 65 °C, in line with a brief thermodynamic analysis (ΔG0 0, ΔS0 > 0. The maximum adsorption capacity (fitting with Langmuir and Freundlich model of CS and CSm at 25 °C was 145 and 152 mg/g, respectively. The reuse ability of the adsorbents prepared was confirmed with sequential cycles of adsorption-desorption.

  20. Cellulose: A review as natural, modified and activated carbon adsorbent.

    Science.gov (United States)

    Suhas; Gupta, V K; Carrott, P J M; Singh, Randhir; Chaudhary, Monika; Kushwaha, Sarita

    2016-09-01

    Cellulose is a biodegradable, renewable, non-meltable polymer which is insoluble in most solvents due to hydrogen bonding and crystallinity. Natural cellulose shows lower adsorption capacity as compared to modified cellulose and its capacity can be enhanced by modification usually by chemicals. This review focuses on the utilization of cellulose as an adsorbent in natural/modified form or as a precursor for activated carbon (AC) for adsorbing substances from water. The literature revealed that cellulose can be a promising precursor for production of activated carbon with appreciable surface area (∼1300m(2)g(-1)) and total pore volume (∼0.6cm(3)g(-1)) and the surface area and pore volume varies with the cellulose content. Finally, the purpose of review is to report a few controversies and unresolved questions concerning the preparation/properties of ACs from cellulose and to make aware to readers that there is still considerable scope for future development, characterization and utilization of ACs from cellulose.

  1. Palladium dimers adsorbed on graphene: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gagandeep, E-mail: gaganj1981@yahoo.com [Department of Physics and Centre of Advanced Studies in Physics, Panjab University, Chandigarh-160014 (India); Chandigarh Engineering College, Landran, Mohali, Punjab (India); Gupta, Shuchi, E-mail: sgupta@pu.ac.in [University Institute of Engineering and Technology, Panjab University, Chandigarh -160014 (India); Dharamvir, Keya, E-mail: keya@pu.ac.in [Department of Physics and Centre of Advanced Studies in Physics, Panjab University, Chandigarh-160014 (India)

    2015-05-15

    The 2D structure of graphene shows a great promise for enhanced catalytic activity when adsorbed with palladium. We performed a systematic density functional theory (DFT) study of the adsorption of palladium dimer (Pd{sub 2}) on graphene using SIESTA package, in the generalized gradient approximation (GGA). The adsorption energy, geometry, and charge transfer of Pd{sub 2}-graphene system are calculated. Both horizontal and vertical orientations of Pd{sub 2} on graphene are studied. Our calculations revealed that the minimum energy configuration for Pd dimer is parallel to the graphene sheet with its two atoms occupying centre of adjacent hexagonal rings of graphene sheet. Magnetic moment is induced for Pd dimer adsorbed on graphene in vertical orientation while horizontal orientation of Pd dimer on graphene do not exhibit magnetism. Insignificant energy differences among adsorption sites means that dimer mobility on the graphene sheet is high. There is imperceptible distortion of graphene sheet perpendicular to its plane. However, some lateral displacements are seen.

  2. Dynamics of different molecules adsorbed in porous media

    Indian Academy of Sciences (India)

    S Mitra; V S Kamble; A K Tripathi; N M Gupta; R Mukhopadhyay

    2004-08-01

    We present in this paper a comparative study on the dynamics of benzene, cyclohexane, and methanol molecules, confined in the pores of MCM-41 molecular sieve and HZSM-5 zeolite. The quasi-elastic neutron scattering (QENS) measurements revealed that the physical state of these adsorbed molecules depended not only on the structural characteristics of the host matrix but also on the chemical properties, such as dipole moment, of the guest molecules. Thus, while no motion was observed in the time-scale of 10−10 –10−12 s in the case of methanol, the larger size benzene and cyclohexane molecules are found to perform six-fold and three-fold jump rotation, respectively, when adsorbed inside the cages of HZSM-5 at room temperature. At the same time, all the three molecules are found to undergo a translational motion inside the pores of MCM-41 molecular sieves, the value of diffusion constant being the lowest in case of methanol because of its higher polarity. Translationl motion of the guest molecules inside the pores of MCM-41 can be satisfactorily described by Chudley–Eliott fixed jump length diffusion and accordingly the residence time, jump length and diffusion constant are estimated.

  3. Membrane adsorbers as purification tools for monoclonal antibody purification.

    Science.gov (United States)

    Boi, Cristiana

    2007-03-15

    Downstream purification processes for monoclonal antibody production typically involve multiple steps; some of them are conventionally performed by bead-based column chromatography. Affinity chromatography with Protein A is the most selective method for protein purification and is conventionally used for the initial capturing step to facilitate rapid volume reduction as well as separation of the antibody. However, conventional affinity chromatography has some limitations that are inherent with the method, it exhibits slow intraparticle diffusion and high pressure drop within the column. Membrane-based separation processes can be used in order to overcome these mass transfer limitations. The ligand is immobilized in the membrane pores and the convective flow brings the solute molecules very close to the ligand and hence minimizes the diffusional limitations associated with the beads. Nonetheless, the adoption of this technology has been slow because membrane chromatography has been limited by a lower binding capacity than that of conventional columns, even though the high flux advantages provided by membrane adsorbers would lead to higher productivity. This review considers the use of membrane adsorbers as an alternative technology for capture and polishing steps for the purification of monoclonal antibodies. Promising industrial applications as well as new trends in research will be addressed.

  4. Fibrous adsorbent for removal of aqueous aromatic hydrocarbons.

    Science.gov (United States)

    Jung, Yong-Jun; Kiso, Yoshiaki; Oguchi, Tatsuo; Yamada, Toshiro; Takagi, Hiroo; Nishimura, Kazuyuki

    2007-01-01

    Bundles of a strongly hydrophobic fibrous material (p-phenylene-2,6-benzobisoxazole; PBO; Zylon) were employed as an adsorbent for the removal of aqueous aromatic compounds, because the PBO fibers are too rigid to be woven and did not entrap suspended solids. The removal performance for nine kinds of polyaromatic hydrocarbons (PAHs) and di-(2-ethylhexyl) phthalate (DEHP) was evaluated. PAHs and DEHP at initial concentrations of 50 microg L(-1) were removed at 72.5-99.9% and ca. 95%, respectively, although the removal efficiencies were affected by the phase ratio (fiber weight/solution volume). The logarithm of the partition coefficient (log K) for planar PAHs was linearly correlated with the logarithm of the n-octanol/water partition coefficient (log P), but nonplanar PAHs, such as cis-stilbene, p-terphenyl, and o-terphenyl, showed significantly lower adsorption performance. The adsorbed PAHs were not desorbed effectively with CH3CN, CH2Cl2, and toluene. On the other hand, DEHP was effectively desorbed with methanol.

  5. Sustainable conversion of agro-wastes into useful adsorbents

    Science.gov (United States)

    Bello, Olugbenga Solomon; Owojuyigbe, Emmanuel Seun; Babatunde, Monsurat Abiodun; Folaranmi, Folasayo Eunice

    2016-11-01

    Preparation and characterization of raw and activated carbon derived from three different selected agricultural wastes: kola nut pod raw and activated (KNPR and KNPA), bean husk raw and activated (BHR and BHA) and coconut husk raw and activated (CHR and CHA) were investigated, respectively. Influences of carbonization and acid activation on the activated carbon were investigated using SEM, FTIR, EDX, pHpzc and Boehm titration techniques, respectively. Carbonization was done at 350 °C for 2 h followed by activation with 0.3 M H3PO4 (ortho-phosphoric acid). Results obtained from SEM, FTIR, and EDX revealed that, carbonization followed by acid activation had a significant influence on morphology and elemental composition of the samples. SEM showed well-developed pores on the surface of the precursors after acid treatment, FTIR spectra revealed reduction, broadening, disappearance or appearance of new peaks after acid activation. EDX results showed highest percentage of carbon by atom respectively in the order BHA > KNPA > CHA respectively. The pHpzc was found to be 5.32, 4.57 and 3.69 for KNPA, BHA and CHA, respectively. Boehm titration result compliments that of pHpzc, indicating that the surfaces of the prepared adsorbents are predominantly acidic. This study promotes a sustainable innovative use of agro-wastes in the production of cheap and readily available activated carbons, thereby ensuring more affordable water and effluent treatment adsorbents.

  6. Application of 1H NMR spectroscopy method for determination of characteristics of thin layers of water adsorbed on the surface of dispersed and porous adsorbents.

    Science.gov (United States)

    Turov, V V; Leboda, R

    1999-02-01

    The paper presents 1H NMR spectroscopy as a perspective method of the studies of the characteristics of water boundary layers in the hydrated powders and aqueous dispergated suspensions of the adsorbents. The method involves measurements of temperature dependence proton signals intensity in the adsorbed water at temperatures lower than 273 K. Free energy of water molecules at the adsorbent/water interface is diminished due to the adsorption interactions causing the water dosed to the adsorbent surface freezes at T water can be determined from the intensity of the water signal of 1H NMR during the freezing-thawing process. Due to a disturbing action of the adsorbent surface, water occurs in the quasi-liquid state. As a result, it is observed in the 1H NMR spectra as a relatively narrow signal. The signal of ice is not registered due to great differences in the transverse relaxation times of the adsorbed water and ice. The method of measuring the free surface energy of the adsorbents from the temperature dependence of the signal intensity of non-freezing water is based on the fact that the temperature of water freezing decreases by the quantity which depends on the surface energy and the distance of the adsorbed molecules from the solid surface. The water at the interface freezes when the free energies of the adsorbed water and ice are equal. To illustrate the applicability of the method under consideration the series of adsorption systems in which the absorbents used differed in the surface chemistry and porous structure. In particular, the behaviour of water on the surface of the following adsorbents is discussed: non-porous and porous silica (aerosils, silica gels); chemically and physically modified non-porous and porous silica (silanization, carbonization, biopolymer deposition); and pyrogeneous Al2O3 and aluminasilicas. The effect of preliminary treatment of the adsorbent (thermal, high pressure, wetting with polar and non-polar solvents) on the characteristics

  7. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes

    Science.gov (United States)

    McMillan, Duncan G. G.; Marritt, Sophie J.; Kemp, Gemma L.; Gordon-Brown, Piers; Butt, Julea N.; Jeuken, Lars J. C.

    2014-01-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes. PMID:24634538

  8. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes.

    Science.gov (United States)

    McMillan, Duncan G G; Marritt, Sophie J; Kemp, Gemma L; Gordon-Brown, Piers; Butt, Julea N; Jeuken, Lars J C

    2013-11-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes.

  9. Understanding the lateral movement of particles adsorbed at a solid-liquid interface.

    Science.gov (United States)

    Savaji, Kunal; Li, Xue; Couzis, Alexander

    2015-09-01

    In this paper we study the phenomenon of lateral movement of particles that are electrostatically adsorbed at a solid-liquid interface. The experimental system involves negatively charged silica particles of two different sizes (65 nm and 90 nm) that are exposed to the positively charged solid surface (silane coated silicon wafer) in sequential steps. The particle-adsorbed wafers are analyzed under a scanning electron microscope and the images are processed to determine the pair-correlation function for the particles adsorbed in the first step. From the pair correlation data and the particle surface coverage data we show that the adsorbed particles are mobile at the solid-liquid interface. In specific, we show that the adsorbed particles are mobile at the solid-liquid interface when there is a driving force for the adsorbed particles to move. The driving force in the scheme of experiments discussed in this paper is the reduction in the free energy of the system.

  10. Development of Silver-exchanged Adsorbents for the Removal of Fission Iodine from Alkaline Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taewoon; Lee, Seung-Kon; Lee, Suseung; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Most of the iodine exists in the caustic dissolution as iodide form. KAERI is developing LEU-based fission 99 Mo production process which is connected to the new research reactor, which is being constructed in Kijang, Busan, Korea. In KAERI process, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. In KAERI process, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. Synthesis of silver-doped alumina is conducted in two ways. One is using the ascorbic acid as a reducing agent. However, this method is impossible to control.

  11. EFFECT OF WEAK INTERACTIONS ON PHENOL ADSORPTION FROM AQUEOUS SOLUTIONS BY AMINATED POLYMERIC ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    Wei-ming Zhang; Jin-long Chen; Ai-min Li; Bing-cai Pan; Qun Chen; Ming-yang He; Quan-xing Zhang

    2006-01-01

    Adsorption behaviors of phenol from aqueous solutions have been investigated in batch systems at 303 K and 318 K respectively, using hypercrosslinked polymeric adsorbent (CHA 111), aminated hypercrosslinked polymeric adsorbents (NDA101, NDA 103, NDA105) and weakly basic polymeric adsorbent (D301) with a view to studying the effect of hydrogen bonding and Van der Waals interactions between adsorbate and the adsorbent. All adsorption isotherms can be well fitted by Langmuir and Freundlich equations. Compared with D301 driven by hydrogen bonding interaction only and CHA111 driven by Van der Waals interaction only, phenol adsorption on aminated adsorbents driven by both hydrogen bonding and Van der Waals interactions were apparently different, i.e., negative effect for NDA105, positive effect for NDA101 and synergistic effect for NDA103. In this synergistic action, some weak interactions would contribute more or less to the adsorption than they work individually.

  12. Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water.

    Science.gov (United States)

    Schouten, Natasja; van der Ham, Louis G J; Euverink, Gert-Jan W; de Haan, André B

    2007-10-01

    Low-cost adsorbents were tested to remove anionic surfactants from laundry rinsing water to allow re-use of water. Adsorbents were selected corresponding to the different surfactant adsorption mechanisms. Equilibrium adsorption studies of linear alkyl benzene sulfonate (LAS) show that ionic interaction results in a high maximum adsorption capacity on positively charged adsorbents of 0.6-1.7 gLAS/g. Non-ionic interactions, such as hydrophobic interactions of LAS with non-ionic resins or activated carbons, result in a lower adsorption capacity of 0.02-0.6 gLAS/g. Negatively charged materials, such as cation exchange resins or bentonite clay, have negligible adsorption capacities for LAS. Similar results are obtained for alpha olefin sulfonate (AOS). Cost comparison of different adsorbents shows that an inorganic anion exchange material (layered double hydroxide) and activated carbons are the most cost-effective materials in terms of the amount of surfactant adsorbed per dollar worth of adsorbent.

  13. A WATER—COMPATIBLE PHENOLIC HYDROXYL ODIFIED POLYSTYRENE AS AN ADSORBENT FOR ADSORBING PHENOLIC COMPOUNDS FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    LIAimin; FeiZhenghao; 等

    2001-01-01

    A water-compatible phenolic hydroxyl modified polystyrene adsorbent (AM-1) for adsorbing and removing phenolic compounds from aqueous solutions was prepared by covalent bonding of phenolic hydroxyl groups to the surface of porous polystyrene-divinylbenzene beads,this resin can be used directly without wetting process.A comparison of the sorption properites of the new resin and Amberlite XAD-4 toward four phenolic compounds,phenol,p-cresol,p-chlorophenol,and p-nitrophenol was made.The capacities of equilibrium adsorption of AM-1 for all four phenolic compounds increased around 20% over that of Amberlite XAD-4,which may be contributed to pheonl hydroxyl group on the surface and the unusual poe distribution.At their dilute solution,the equilibrium adsorption capacities of AM-1 for phenol increased aout 62% over that of Amberlite XAD-4,while equilibrium adsorption capacities of the other three phenolic compounds increased 4-35%,suggesting an advantage of AM-1 over Amberlite XAD-4 in the collection of phenol.Freundlich isotherm equations and isosteric adsorption enthalpies for the four phenolic compunds indicate a physical adsorption process on the Amberlite XAD-4 and AM-1 resins,Column studies for phenol show that AM-1 resin has excellent adsorption and desorption performance.

  14. The Effects of Organic Adsorbates on the Underpotential Deposition of Silver on Pt(111) Electrodes

    Science.gov (United States)

    1993-01-01

    CV) The Effects of Organic Adsorbates on the Underpotential Deposition W.0 of Silver on Pt(111) Electrodes _• D. L. Taylor and H. D. Abruxla* D TIC...to determine the effects of competing organic adsorbates on the underpotential deposition of silver on Pt(111). The adsorbates studied are known to...hcis )n appive tor pubic release and sal Its distribution is unlimited. fu .. 93-12456 INTRODUCTION The process of underpotential deposition (UPD) of

  15. Experimental and Numerical Investigation of Enhancement of Heat and Mass Transfer in Adsorbent Beds

    Institute of Scientific and Technical Information of China (English)

    LiuZhenyan; FuZhumantffu

    1994-01-01

    Some interrelated parameters of heat and mass transfer in two phases of pressure rise and constant pressure are obtained by studying the desorption processes of two kinds of cylindrical adsorbent beds.with fins and without fins.Moreover,the effects of equivalent thermal conductivity of adsorbent beds,contact thermal transfer coefficient,heat transfer of fins,condensation temperature,uncondensable gas in the adsorber are analyzed.finally,enhancement of heat and mass transfer has been attained.

  16. The origin and characterization of conformational heterogeneity in adsorbed polymer layers

    Science.gov (United States)

    Douglas, Jack F.; Schneider, Hildegard M.; Frantz, Peter; Lipman, Robert; Granick, Steve

    1997-09-01

    The equilibration of polymer conformations tends to be sluggish in polymer layers adsorbed onto highly attractive substrates, so the structure of these layers must be understood in terms of the layer growth process rather than equilibrium theory. Initially adsorbed chains adopt a highly flattened configuration while the chains which arrive later must adapt their configurations to the increasingly limited space available for adsorption. Thus, the chains adsorbed in the late stage of deposition are more tenuously attached to the surface. This type of non-equilibrium growth process is studied for polymethylmethacrylate (PMMA) adsorbed on oxidized silicon where the segmental attraction is strong (0953-8984/9/37/005/img7/segment) and for polystyrene (PS) adsorbed on oxidized silicon from a carbon tetrachloride solution where the segmental attraction is relatively weak (0953-8984/9/37/005/img8/segment). Measurements were based on Fourier transform infrared spectroscopy in attenuated total reflection (FTIR - ATR). In both cases, the chains arriving first adsorbed more tightly, became flattened (as measured by the dichroic ratio), and occupied a disproportionately large fraction of the surface. This non-uniform structure persisted indefinitely for the strongly adsorbed PMMA chains, while the PS chains exhibited a gradual evolution, presumably reflecting an equilibration of the adsorbed layer occurring after long times. On the theoretical side, the initial heterogeneity of these adsorbed polymer layers is modelled using a random sequential adsorption (RSA) model where the size of the adsorbing species is allowed to adapt to the surface space available at the time of adsorption. The inhomogeneity in the size of adsorbing species (hemispheres) in this model is similar to the distribution of chain contacts in our measurements on adsorbed polymer layers. Owing to extensive variance around the mean, conformations having the mean number of chain contacts are least probable, which

  17. CONDUCTIVITY METHOD APPLIED TO THE STUDY OF INTERACTION BETWEEN ADSORBENT AND ADSORBATE I.ADSORPTION OF LOW CONCENYRATION OF FREE ACID BY REGENERABLE CHITIN

    Institute of Scientific and Technical Information of China (English)

    ChenBingren; HeGuangping; 等

    1997-01-01

    The adsorption of low concentration of free acid by regenerable chitin is followed by electric conductance determination.The effect of acid concentratioin,content of functioinal amino groups,and ionic strength on adsorption was discussed.Experimental results indicate that the active centre of regenerable chitin is the free amino groups on ist surface ,and that the rate of adsorption of free acid was found to be affected by two factors:the interaction between the adsorbent and the adsorbate in solution and that between the adsorbate molecules or ions in solution.

  18. Nicotinic acid as a new co-adsorbent in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Nguyen, Phuong Tuyet; Nguyen, Vinh Son; Van Le, Tan Nhuut;

    2017-01-01

    with that of DSCs fabricated with two well-established co-adsorbents i.e., chenodeoxycholic acid (CDA) and octadecylphosphonic acid (OPA). The findings showed that under optimized co-adsorbent concentration (1 mM NTA, 0.03 mM CDA, 0.015 mM OPA), the efficiency of the corresponding solar cells increased to the same......With the aim of introduction a new inexpensive co-adsorbent to improve solar cell performance, the influence of nicotinic acid (NTA) used as a co-adsorbent in dye-sensitized solar cells (DSCs) was investigated. The findings showed that low concentrations of NTA (

  19. SYNTHESIS OF SPHERICAL MACROPOROUS ADSORBENT BASED ON UREA—FORMALDEHYDE CONDENSED POLYMER

    Institute of Scientific and Technical Information of China (English)

    XUMingcheng; XUMancai; 等

    2000-01-01

    Spherical macroporous adsorbents with active sites capable of hydrogen bonding adsorption based on urea-formaldehyde condensed polymer were synthesized via reversed suspension polymerization.The properties of the obtained adsorbent were also investigated in detail.The results showed that the water permeability could be improved by adding hydroxyl-contatining organic compound moiety into the adsorbent.The specific surface area and average pore diameter of these adsorbents increaswed while the porosity first increased then decreased with the increase of the amount of the added hydroxyl-containing compound.

  20. Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon.

    Science.gov (United States)

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-09-15

    Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital information for developing porous materials for efficient adsorbents, especially for polar pollutants.

  1. Dynamic characteristics of helium adsorbents. Influence of the heat removal conditions

    Science.gov (United States)

    Shcherbachenko, R. I.; Grigor'ev, V. N.

    2008-06-01

    The static and dynamic characteristics of the adsorbent SKN-1K at 4.2K are investigated under conditions corresponding to the working conditions of adsorption pumps in dilution refrigerators. It is shown that gluing this adsorbent to the cooled surface leads to a substantial lowering of the pressure in the pump in the dynamic regime. On the basis of experimental data for the glued and free adsorbent an estimate is made of the hydrodynamic contribution to the pressure due to the resistance of the pores of the adsorbent. This estimate falls within the error of measurement.

  2. Electronic properties of NH4-adsorbed graphene nanoribbon as a promising candidate for a gas sensor

    Science.gov (United States)

    Harada, Naoki; Sato, Shintaro

    2016-05-01

    The electronic properties of NH4-adsorbed N = 7 armchair graphene nanoribbons (AGNRs) were theoretically investigated using self-consistent atomistic simulations to explore the feasibility of AGNRs as a gas sensing material. Whereas a pristine AGNR has a finite band gap and is an intrinsic semiconductor, an NH4-adsorbed AGNR exhibits heavily doped n-type properties similar to a graphene sheet with the molecules adsorbed. The electric characteristics of a back-gated AGNR gas sensor were also simulated and the drain current changed exponentially with increasing number of adsorbed molecules. We may conclude that an AGNR is promising as a highly sensitive gas-sensing material with large outputs.

  3. Investigations into Alternative Desorption Agents for Amidoxime-Based Polymeric Uranium Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wai, Chien [LCW Supercritical Technologies, Inc., Seattle, WA (United States); Pan, Horng-Bin [Univ. of Idaho, Moscow, ID (United States)

    2015-06-01

    Amidoxime-based polymeric braid adsorbents that can extract uranium (U) from seawater are being developed to provide a sustainable supply of fuel for nuclear reactors. A critical step in the development of the technology is to develop elution procedures to selectively remove U from the adsorbents and to do so in a manner that allows the adsorbent material to be reused. This study investigates use of high concentrations of bicarbonate along with targeted chelating agents as an alternative means to the mild acid elution procedures currently in use for selectively eluting uranium from amidoxime-based polymeric adsorbents.

  4. Adsorbed polyelectrolyte coatings decrease Fe(0) nanoparticle reactivity with TCE in water: conceptual model and mechanisms.

    Science.gov (United States)

    Phenrat, Tanapon; Liu, Yueqiang; Tilton, Robert D; Lowry, Gregory V

    2009-03-01

    The surfaces of reactive nanoscale zerovalent iron (NZVI) particles used for in situ groundwater remediation are modified with polymers or polyelectrolytes to enhance colloidal stability and mobility in the subsurface. However, surface modification decreases NZVI reactivity. Here, the TCE dechlorination rate and reaction products are measured as a function of adsorbed polyelectrolyte mass for three commercially available polyelectrolytes used for NZVI surface modification including poly(styrene sulfonate) (PSS), carboxymethyl cellulose (CMC), and polyaspartate (PAP). The adsorbed mass, extended layer thickness, and TCE-polyelectrolyte partition coefficient are measured and used to explain the effect of adsorbed polyelectrolyte on NZVI reactivity. For all modifiers, the dechlorination rate constant decreased nonlinearly with increasing surface excess, with a maximum of a 24-fold decrease in reactivity. The TCE dechlorination pathways were not affected. Consistent with Scheutjens-Fleer theory for homopolymer adsorption, the nonlinear relationship between the dechlorination rate and the surface excess of adsorbed polyelectrolyte suggests that adsorbed polyelectrolyte decreases reactivity primarily by blocking reactive surface sites at low surface excess where they adsorb relatively flat onto the NZVI surface, and by a combination of site blocking and decreasing the aqueous TCE concentration at the NZVI surface due to partitioning of TCE to adsorbed polyelectrolytes. This explanation is also consistent with the effect of adsorbed polyelectrolyte on acetylene formation. This conceptual model should apply to other medium and high molecular weight polymeric surface modifiers on nanoparticles, and potentially to adsorbed natural organic matter.

  5. Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO

    Science.gov (United States)

    Hoffmann, F. M.; Hrbek, J.; Ma, S.; Park, J. B.; Rodriguez, J. A.; Stacchiola, D. J.; Senanayake, S. D.

    2016-08-01

    Low-coordinated sites are surface defects whose presence can transform a surface of inert or noble metal such as Au into an active catalyst. Starting with a well-ordered Au(111) surface we prepared by ion sputtering gold surfaces modified by pits, used microscopy (STM) for their structural characterization and CO spectroscopy (IRAS and NEXAFS) for probing reactivity of surface defects. In contrast to the Au(111) surface CO adsorbs readily on the pitted surfaces bonding to low-coordinated sites identified as step atoms forming {111} and {100} microfacets. Pitted nanostructured surfaces can serve as interesting and easily prepared models of catalytic surfaces with defined defects that offer an attractive alternative to vicinal surfaces or nanoparticles commonly employed in catalysis science.

  6. Liquid 4He Adsorbed Films on Very Attractive Substrates

    Science.gov (United States)

    Urrutia, Ignacio; Szybisz, Leszek

    Adsorbed films of liquid 4He are analized, in the framework of Density Functional Theories (DF). In these systems, when the substrate becomes increasingly attractive, the thin films of 4He approaches the quasi-bidimensional limit. We study this strongly attractive substrate regime with two DF, the Orsay-Trento (OT) and a recent Hybrid proposal (Hyb), focusing in the energy behavior. It is showed that OT does not reproduce the correct limiting energy curve, and it implies that this functional could not provide reliable results for very strongly attractive substrates like Graphite (Gr). In other hand, with the Hyb DF, the correct energy behavior is found for the adsorption energy of 4He on Gr. These results show that OT should not be applied to quasi 2D (confinement) situations, and that Hyb DF provides a much more realistic description.

  7. Liquid 4He Adsorbed Films on Very Attractive Substrates

    Science.gov (United States)

    Urrutia, Ignacio; Szybisz, Leszek

    2006-09-01

    Adsorbed films of liquid 4He are analized, in the framework of Density Functional Theories (DF). In these systems, when the substrate becomes increasingly attractive, the thin films of 4He approaches the quasi-bidimensional limit. We study this strongly attractive substrate regime with two DF, the Orsay-Trento (OT) and a recent Hybrid proposal (Hyb), focusing in the energy behavior. It is showed that OT does not reproduce the correct limiting energy curve, and it implies that this functional could not provide reliable results for very strongly attractive substrates like Graphite (Gr). In other hand, with the Hyb DF, the correct energy behavior is found for the adsorption energy of 4He on Gr. These results show that OT should not be applied to quasi 2D (confinement) situations, and that Hyb DF provides a much more realistic description.

  8. Sunflower stalks as adsorbents for color removal from textile wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sun, G.; Xu, X. [Univ. of California, Davis, CA (United States). Div. of Textiles and Clothing

    1997-03-01

    Sunflower stalks as adsorbents for two basic dyes (Methylene Blue and Basic Red 9) and two direct dyes (Congo Red and Direct Blue 71) in aqueous solutions were studied with equilibrium isotherms and kinetic adsorptions. The maximum adsorptions of two basic dyes on sunflower stalks are very high, i.e., 205 and 317 mg/g for Methylene Blue and Basic Red 9, respectively. The two direct dyes have relatively lower adsorption on sunflower stalks. The adsorptive behaviors of sunflower stalk components are different. The pith, which is the soft and porous material in the center of stalks, has twice the adsorptive capacity of the skin. Particle sizes of sunflower stalks also affect the adsorption of dyes. The adsorption rates of two basic dyestuffs are much higher than that of the direct dyes. Within 30 min about 80% basic dyes were removed from the solutions.

  9. CALCULATION OF THE YOUNG'S MODULUS OF AN ADSORBED POLYMER LAYER

    Institute of Scientific and Technical Information of China (English)

    Rüdiger Stark; Michael Kappl; Hans-Jürgen Butt

    2007-01-01

    Polymer layers adsorbed to a surface or in a confined environment often change their mechanical properties. There is even the possibility of solidification of the confined layer. To judge the stiffness of such a layer, we used the Hertz model to calculate the Young's modulus of the polymer layer in the confinement of AFM experiments with silicon nitride tip with a radius of curvature of R ≈ 50 nm and a glass sphere attached to the cantilever R = 5 μm. Since there is no visible indentation of the layer in the AFM experiments, the layer is either penetrated very easily, or the indentation is too small to be seen in a force curve. The latter would be the case for a polymer layer with a Young's modulus above 4×108 Pa in case of an experiment with a silicon nitride tip and 4×105 Pa in case of a glass sphere.

  10. Photoluminescence Enhancement of Adsorbed Species on Si Nanoparticles.

    Science.gov (United States)

    Matsumoto, Taketoshi; Maeda, Masanori; Kobayashi, Hikaru

    2016-12-01

    We have fabricated Si nanoparticles from Si swarf using the beads milling method. The mode diameter of produced Si nanoparticles was between 4.8 and 5.2 nm. Si nanoparticles in hexane show photoluminescence (PL) spectra with peaks at 2.56, 2.73, 2.91, and 3.09 eV. The peaked PL spectra are attributed to the vibronic structure of adsorbed dimethylanthracene (DMA) impurity in hexane. The PL intensity of hexane with DMA increases by ~3000 times by adsorption on Si nanoparticles. The PL enhancement results from an increase in absorption probability of incident light by DMA caused by adsorption on the surface of Si nanoparticles.

  11. Spontaneous Symmetry Breaking in Metal Adsorbed Graphene Sheets

    CERN Document Server

    Jalbout, A F

    2012-01-01

    Graphene has received a great deal of attention and this has more recently extended to boron nitride sheets (BNS) with a similar structure. Both have hexagonal lattices and it is only the alternation of atoms in boron nitride, which changes the symmetry structure. This difference can for example be seen in the mean field equations, which for the corners of the Brillouin Zone are Dirac equations. For the case of graphene (equal atoms) we have the equation for massless particles, while for Boron Nitride has a finite gap and is more near a Dirac equation with mass near this gap.. Carbon structures in general and in particular also graphene can adsorb electron donors, such as alkaline atoms or molecules with a dipole moment. Typically these atoms and the dipoles can only attach in the sense to donate electron density. Some results for small sheet like structures are available.

  12. Carrier-dependent magnetic anisotropy of Gd-adsorbed graphene

    Science.gov (United States)

    Lu, Yuan; Zhou, Tie-ge; Shao, Bin; Zuo, Xu; Feng, Min

    2016-05-01

    Using first-principles calculation based on density functional theory, we study the magnetic anisotropy of Gd-adsorbed graphene and its dependence on carrier accumulation. We show that carrier accumulation not only impacts the magnitude of magnetic anisotropy but also switches its sign. Hole accumulation enhances the perpendicular anisotropy up to ˜16 meV per Gd atom, while electron accumulation switches the anisotropy from perpendicular to in-plane direction. Moreover, we find that the first order perturbation of spin-orbit coupling interaction induces a pseudo-gap at Γ for the perpendicular magnetization, which leads to the the anomalous magnetic anisotropy for the neutral composite. Our findings pave the way for magneto-electric materials based on rare-earth-decorated graphene for voltage-controlled spintronics.

  13. Charge transfer properties of pentacene adsorbed on silver: DFT study

    Energy Technology Data Exchange (ETDEWEB)

    N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in [PG & Research Department of Physics, Lady Doak College, Madurai 625002 (India)

    2015-06-24

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  14. Dynamics of monolayers adsorbed at the solid-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Stuart M. [BP Institute, Department of Chemistry, Univ. of Cambridge (United Kingdom); Inaba, Akira [Department of Chemistry, Osaka Univ., Osaka (Japan); Arnold, Thomas [Physical and Theoretical Chemistry Laboratory, Univ. of Oxford (United Kingdom); Thomas, Robert K.; Castro, Miguel A. [Instituto de Ciencia de Materiale de Sevilla, Avda. Americo Vespucio (Spain)

    2001-03-01

    Recently we have demonstrated, using a variety of techniques including calorimetry and neutron diffraction, the existence of translationally ordered two-dimensional phases of short chain n-alkanes (CnH2n+2) on the surface of graphite. Dodecane (n=12) is unusual in that it is found from diffraction experiments to adopt a structure with parallel molecules, similar to that seen for the odd alkanes, and exhibits a monolayer phase transition at 281 K, before the layer melts at 286 K. This additional transition is reminiscent of the rotator phase transitions seen in the longer bulk alkanes. In this work we present elastic incoherent neutron scattering (EISF) data which probe the dynamics of the monolayer and clearly demonstrate that the adsorbed layer is indeed far from static but has a high degree of rotational mobility. (author)

  15. Carrier-dependent magnetic anisotropy of Gd-adsorbed graphene

    Directory of Open Access Journals (Sweden)

    Yuan Lu

    2016-05-01

    Full Text Available Using first-principles calculation based on density functional theory, we study the magnetic anisotropy of Gd-adsorbed graphene and its dependence on carrier accumulation. We show that carrier accumulation not only impacts the magnitude of magnetic anisotropy but also switches its sign. Hole accumulation enhances the perpendicular anisotropy up to ∼16 meV per Gd atom, while electron accumulation switches the anisotropy from perpendicular to in-plane direction. Moreover, we find that the first order perturbation of spin-orbit coupling interaction induces a pseudo-gap at Γ for the perpendicular magnetization, which leads to the the anomalous magnetic anisotropy for the neutral composite. Our findings pave the way for magneto-electric materials based on rare-earth-decorated graphene for voltage-controlled spintronics.

  16. Evaluation of {sup 131}I retention in several adsorbers

    Energy Technology Data Exchange (ETDEWEB)

    Catanoso, Marcela F.; Osso Junior, Joao Alberto, E-mail: marcela.forli@gmail.co, E-mail: jaosso@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Diretoria de Radiofarmacia

    2011-07-01

    Several iodine radioisotopes are used in nuclear medicine for treatment and diagnostic purposes. The radioisotope {sup 131}I is used both in diagnosis and therapy due to its physical characteristics of decay by {beta}{sup -} and its {gamma}-ray emissions suitable for diagnosis. It is routinely produced at IPEN through the irradiation of TeO{sub 2} targets in the IEA-R1m nuclear reactor. After the irradiation, the {sup 131}I is separated by dry distillation, where the targets are put in an oven, heated at 760 deg C for 2 hours and the {sup 131}I, volatile, is carried by an O{sub 2} gas stream. The aim of this work was to evaluate the retention and elution of {sup 131}I samples produced at IPEN in several adsorbers as part of a project aiming the purification of these radioisotopes, allowing the labeling of biomolecules. Samples of {sup 131}I were used for retention and elution studies with the following adsorbers: commercial cartridges, anionic resin columns and cationic resin column. The results showed that Ag cartridges and anionic resins Dowex 1X8, Dowex 3 and IRA 400 had a great iodine retention but no elution after using specific eluents. The QMA light, acid alumina, neutral alumina and cationic resin Dowex 50WX4 showed high retention and elution and QMA plus and cationic resin Dowex 50WX8 and Dowex 50WX12 had a good retention but lower elution. Regarding to the better retention and elution, Ag cartridges and resins showed a higher percentage of iodine retention but lower elution yield and QMA light, acid and neutral alumina cartridges showed better results. (author)

  17. Controlling SO2 by Using Low Cost Adsorbents

    Directory of Open Access Journals (Sweden)

    Nenavath Gandhi

    2013-01-01

    Full Text Available Sulphur oxides are formed during high temperature combustion processes from the oxidation of sulphur in the air. The principal source of sulphur oxides is sulphur oxide (SO and sulphur dioxide (SO2, collectively known as SOx. SO and SO2 concentrations are therefore the highest in industrial area. Other important sources are power stations, heating plants, and industrial processes. Long-term exposure to sulphur dioxide may affect lung function, and that exposure to sulphur dioxide enhances the response to allergens in sensitized individuals. The feasibility of using waste materials as adsorbent for air pollutant SOx was evaluated in the present study. The experiments were carried out in laboratory on certain waste materials like Neem leaf powder, orange peel powder, custard apple leaf powder, Horse gram seed powder, Ragi seed powder, mango bark dust, mixed algae, and Neem bark dust. The experimental investigations were carried out by traditional adsorption studies, and they showed that all substances had certain capacity to adsorb SOx from aqueous solution of SOx. The order of adsorption by different low cost materials is Mango bark dust > Orange peel powder >Custard apple leaf powder> Neem leaf powder> Horse gram seed powder> Ragi seed powder> Neem bark powder, mixed algae by 98%>95%>88%>82%>80%>78%>77%>74%, respectively. At lower concentration the adsorption is more compared to higher concentration. It is found that the adsorption increases with an increase in surface area.DOI: http://dx.doi.org/10.5755/j01.erem.62.4.1947

  18. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Awual, Md. Rabiul, E-mail: awual.rabiul@jaea.go.jp [Actinide Coordination Chemistry Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency (SPring-8), Hyogo 679-5148 (Japan); Yaita, Tsuyoshi [Actinide Coordination Chemistry Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency (SPring-8), Hyogo 679-5148 (Japan); Taguchi, Tomitsugu [Nano-Structure Synthesis Research Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro [Actinide Coordination Chemistry Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency (SPring-8), Hyogo 679-5148 (Japan)

    2014-08-15

    Graphical abstract: - Highlights: • DB24C8 crown ether was functionalized for preparation of conjugate adsorbent. • Radioactive {sup 137}Cs can be selectively removed by the conjugate adsorbent. • Adsorbent can effectively capture Cs even in the presence of a high amount Na and K. • Adsorbent is reversible and able to be reused without significant deterioration. - Abstract: Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs–π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations.

  19. Investigations on the adsorbents for uremic middle molecular toxins (II) —Influences of crosslinking agent chain length on the adsorption capacities of crosslinked chitosan adsorbents

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chitosan resins, which clinically served as adsorbents in hemoperfusion therapy, were prepared with reversed-phase suspension methodology using three differently structured crosslinking agents, methanal, glyoxal and glutaraldehyde. And the glyoxal and glutaraldehyde crosslinked chitosan resins were reduced with NaBH4 afterwards. By analyzing the results from FTIR and SEM, it was found that the reduction treatment to the adsorbents efficiently improved the chemical stability of these chitosan resins, and the shifts in crosslinking agents exerted influences over the morphologies of the adsorbents obviously. After being put to use in the adsorption tests upon some model uremic middle molecular toxins and BSA in vitro, all three adsorbents demon- strated a fairly realistic adsorption capability to the model toxins but little to BSA. And the adsorp- tion process reached the equilibrium in a clinically qualified short time. But the adsorption capaci- ties of these adsorbents to the model toxins were quite different. It had been found that with the growing of fatty chain length of crosslinking agent, these adsorbents showed a gradually increased adsorption capacity to the model toxins, and the glutaraldehyde crosslinked chitosan resin be- haved best.

  20. Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq

    2017-02-01

    Full Text Available The present research work focuses on a novel ultraclean desulfurization process of model oil by the adsorption method using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent. The parameters investigated are effect of contact time, adsorbent dose, initial dibenzothiophene (DBT concentration and temperature. Experimental tests were conducted in batch process. Pseudo first and second order kinetic equations were used to examine the experimental data. It was found that pseudo second order kinetic equation described the data of the DBT adsorption onto all types of adsorbents very well. The isotherm data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir isotherm model fits the data very well for the adsorption of DBT onto all three forms of adsorbents. The adsorption of DBT was also investigated at different adsorbent doses and was found that the percentage adsorption of DBT was increased with increasing the adsorbent dose, while the adsorption in mg/g was decreased with increasing the adsorbent dose. The prepared adsorbents were analyzed by scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDX and X-ray diffraction (XRD.

  1. Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water

    NARCIS (Netherlands)

    Schouten, Natasja; Ham, Louis G.J. van der; Euverink, Gert-Jan W.; Haan, André B. de

    2007-01-01

    Low-cost adsorbents were tested to remove anionic surfactants from laundry rinsing water to allow re-use of water. Adsorbents were selected corresponding to the different surfactant adsorption mechanisms. Equilibrium adsorption studies of linear alkyl benzene sulfonate (LAS) show that ionic interact

  2. Adsorbate-metal bond effect on empirical determination of surface plasmon penetration depth.

    Science.gov (United States)

    Kegel, Laurel L; Menegazzo, Nicola; Booksh, Karl S

    2013-05-21

    The penetration depth of surface plasmons is commonly determined empirically from the observed response for adsorbate loading on gold surface plasmon resonance (SPR) substrates. However, changes in the SPR spectrum may originate from both changes in the effective refractive index near the metal surface and changes in the metal permittivity following covalent binding of the adsorbate layer. Herein, the significance of incorporating an additional adsorbate-metal bonding effect in the calculation is demonstrated in theory and in practice. The bonding effect is determined from the nonzero intercept of a SPR shift versus adsorbate thickness calibration and incorporated into the calculation of penetration depth at various excitation wavelengths. Determinations of plasmon penetration depth with and without the bonding response for alkanethiolate-gold are compared and are shown to be significantly different for a thiol monolayer adsorbate system. Additionally, plasmon penetration depth evaluated with bonding effect compensation shows greater consistency over different adsorbate thicknesses and better agreement with theory derived from Maxwell's equation, particularly for adsorbate thicknesses that are much smaller (<5%) than the plasmon penetration depth. The method is also extended to a more practically applicable polyelectrolyte multilayer adsorbate system.

  3. Dye removal from wastewater using the adsorbent developed from sewage sludge

    Institute of Scientific and Technical Information of China (English)

    CHEN Chun-yun; WANG Peng; ZHUANG Yuan-yi

    2005-01-01

    Sewage sludge was used to develop an effective carbon adsorbent. This adsorbent was employed for the removal of azo dye such as Direct Dark Brown M and Acid Mordant Brown RH. The adsorption of dyes on this adsorbent was studied as a function of contact time, concentration, pH and temperature by batch method. The equilibrium adsorption capacity of a carbonaceous adsorbent prepared from city wastewater treatment plant was 502, and 329.7 mg/g of Direct Dark Brown M and Acid Mordant Brown RH, respectively. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model. The rates of adsorption were found to conform to the Lagergren second-order kinetics with good correlation. The equilibrium adsorption capacity of the carbonaceous adsorbents was determined with the Langmuir equation as well as the Lagergren second-order rate equation. The most ideal pH for adsorption of two dyes onto adsorbents was found to be 3 and below. The results indicate that the carbonaceous adsorbents could be employed as a low cost adsorbent in the removal of dyes from wastewater.

  4. Structure and dynamics of egg white ovalbumin adsorbed at the air/water interface

    NARCIS (Netherlands)

    Kudryashova, E.V.; Meinders, M.B.J.; Visser, A.J.W.G.; Hoek, A. van; Jongh, H.H.J. de

    2003-01-01

    The molecular properties of egg white ovalbumin adsorbed at the air/water interface were studied using infrared reflection absorption spectroscopy (IRRAS) and time-resolved fluorescence anisotropy (TRFA) techniques. Ovalbumin adsorbed at the air/ water interface adopts a characteristic partially unf

  5. Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents.

    Science.gov (United States)

    Ko, Young Gun; Shin, Seung Su; Choi, Ung Su

    2011-09-15

    CO(2) emissions, from fossil-fuel-burning power plants, the breathing, etc., influence the global worming on large scale and the man's work efficiency on small scale. The reversible capture of CO(2) is a prominent feature of CO(2) organic-inorganic hybrid adsorbent to sequester CO(2). Herein, (3-aminopropyl) trimethoxysilane (APTMS), [3-(methylamino)propyl] trimethoxysilane (MAPTMS), and [3-(diethylamino) propyl] trimethoxysilane (DEAPTMS) are immobilized on highly ordered mesoporous silicas (SBA-15) to catch CO(2) as primary, secondary, and tertiary aminosilica adsorbents. X-ray photoelectron spectroscopy was used to analyze the immobilized APTMS, MAPTMS, and DEAPTMS on the SBA-15. We report an interesting discovery that the CO(2) adsorption and desorption on the adsorbent depend on the amine type of the aminosilica adsorbent. The adsorbed CO(2) was easily desorbed from the adsorbent with the low energy consumption in the order of tertiary, secondary, and primary amino-adsorbents while the adsorption amount and the bonding-affinity increased in the reverse order. The effectiveness of amino-functionalized (1(o), 2(o), and 3(o) amines) SBA-15s as a CO(2) capturing agent was investigated in terms of adsorption capacity, adsorption-desorption kinetics, and thermodynamics. This work demonstrates apt amine types to catch CO(2) and regenerate the adsorbent, which may open new avenues to designing "CO(2) basket".

  6. Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions.

    Science.gov (United States)

    Ahmadpour, A; Zabihi, M; Tahmasbi, M; Bastami, T Rohani

    2010-10-15

    In the present investigation, three different solid wastes namely almond green hull, eggplant hull, and moss were initially treated and used as adsorbents for the adsorption of strontium ion from aqueous solutions. Adsorbent types and chemical treatments are proved to have effective roles on the adsorption of Sr(II) ion. Among the three adsorbents, almond green hull demonstrated strong affinity toward strontium ion in different solutions. The effectiveness of this new adsorbent was studied in batch adsorption mode under a variety of experimental conditions such as: different chemical treatments, various amounts of adsorbent, and initial metal-ion concentration. The optimum doses of adsorbent for the maximum Sr(II) adsorption were found to be 0.2 and 0.3 g for 45 and 102 mg L(-1) solutions, respectively. High Sr(II) adsorption efficiencies were achieved only in the first 3 min of adsorbent's contact time. The kinetics of Sr(II) adsorption on almond green hull was also examined and it was observed that it follows the pseudo second-order behavior. Both Langmuir and Freundlich models well predicted the experimental adsorption isotherm data. The maximum adsorption capacity on almond green hull was found to be 116.3 mg g(-1). The present study also confirmed that these low cost agriculture byproducts could be used as efficient adsorbents for the removal of strontium from wastewater streams.

  7. Fabrication and thermal conductivity improvement of novel composite adsorbents adding with nanoparticles

    Science.gov (United States)

    Wu, Qibai; Yu, Xiaofen; Zhang, Haiyan; Chen, Yiming; Liu, Liying; Xie, Xialin; Tang, Ke; Lu, Yiji; Wang, Yaodong; Roskilly, Anthony Paul

    2016-10-01

    Thermal conductivity is one of key parameters of adsorbents, which will affect the overall system performance of adsorption chiller. To improve adsorbent's thermal conductivity is always one of research focuses in chemisorption field. A new chemical composite adsorbent is fabricated by adding carbon coated metal(Aluminum and Nickel) nanoparticles with three different addition amounts into the mixture of chloride salts and natural expanded graphite aiming to improve the thermal conductivity. The preparation processes and its thermal conductivity of this novel composite adsorbent are reported and summarized. Experimental results indicate that the nanoparticles are homogenously dispersed in the composite adsorbent by applying the reported preparation processes. The thermal conductivity of the composite adsorbent can averagely enlarge by 20% when the weight ratio of the added nanoparticles is 10 wt%. Moreover, carbon coated aluminum nanoparticles exhibit more effective enlargement in thermal conductivity than nickel nanoparticles. As for the composite adsorbent of CaCl2-NEG, there is a big reinforcement from 30% to 50% for Al@C nanoparticles, however only 10% in maximum caused by Ni@C nanoparticles. The proposed research provides a methodology to design and prepare thermal conductive chemical composite adsorbent.

  8. Potentiality of agricultural adsorbent for the sequestering of metal ions from wastewater

    Directory of Open Access Journals (Sweden)

    P.C. Emenike

    2016-12-01

    Full Text Available The expensive nature of metal ions detoxification from wastewater have restricted the use of conventional treatment technologies. Cheap, alternative measures have been adopted to eliminate metal contamination, and adsorptions using agricultural adsorbents seem to be the way forward. The use of agricultural adsorbents for cadmium (II, copper (II and lead (II ion removal has gained more interest in literature due to the level of contamination in water bodies. This review shed lights on the removal proficiency of various low–cost agricultural adsorbent for the elimination of cadmium (II, copper (II and lead (II ions, considering performance, surface modification, equilibrium adsorptive studies, kinetic characteristics, coefficient of correlation (R2 and reuse. Furthermore, these agricultural adsorbents have displayed better performance when rivaled with commercial/conventional adsorbent. Observations from different adsorptive capacities presented owe their performance to surface area improvement/modification, pH of the adsorbent, ionic potential of the solution, initial concentration and elemental component of the adsorbent. However, gaps have been identified to improve applicability, sorption performance, economic viability, optimization, and commercialization of suitable agricultural adsorbents.

  9. Poly(vinylpyridine) adsorbent for the removal of SIPA from its aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Wei Hua Tao; Ai Min Li; Chao Long; Hong Ming Qian

    2009-01-01

    Poly(vinylpyridine) WH-225 resin was prepared and characterized.Compared with the commercial hypercrosslinked adsorbent NDA-100 and macroporous adsorbent XAD-4 resins,the newly synthesized poly(vinylpyridine) WH-225 resin exhibited the highest adsorption capacity toward SIPA from aqueous solution.

  10. Electronically driven adsorbate excitation mechanism in femtosecond-pulse laser desorption

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Hedegård, Per; Heinz, T. F.

    1995-01-01

    Femtosecond-pulse laser desorption is a process in which desorption is driven by a subpicosecond temperature pulse of order 5000 K in the substrate-adsorbate electron system, whose energy is transferred into the adsorbate center-of-mass degrees of freedom by a direct coupling mechanism. We presen...

  11. Removal of arsenic from water using nano adsorbents and challenges: A review.

    Science.gov (United States)

    Lata, Sneh; Samadder, S R

    2016-01-15

    Many researchers have used nanoparticles as adsorbents to remove water pollutants including arsenic after modifying the properties of nanoparticles by improving reactivity, biocompatibility, stability, charge density, multi-functionalities, and dispersibility. For arsenic removal, nano adsorbents emerged as the potential alternatives to existing conventional technologies. The present study critically reviewed the past and current available information on the potential of nano adsorbents for arsenic removal from contaminated water and the challenges involved in that. The study discussed the separation and regeneration techniques of nano adsorbents and the performance thereof. The study evaluated the adsorption efficiency of the various nanoparticles based on size of nanoparticles, types of nano adsorbents, method of synthesis, separation and regeneration of the nano adsorbents. The study found that more studies are required on suitable holding materials for the nano adsorbents to improve the permeability and to make the technology applicable at the field condition. The study will help the readers to choose suitable nanomaterials and to take up further research required for arsenic removal using nano adsorbents.

  12. Sorption of methylene blue on treated agricultural adsorbents: equilibrium and kinetic studies

    Science.gov (United States)

    Tiwari, D. P.; Singh, S. K.; Sharma, Neetu

    2015-03-01

    Agricultural adsorbents are reported to have a remarkable performance for adsorption of dyes. In the present study, formaldehyde and sulphuric acid treated two agricultural adsorbents; potato peel and neem bark are used to adsorb methylene blue. On the whole, the acid-treated adsorbents are investigated to have high sorption efficiency compared to HCHO treated adsorbents. The percentage removal efficiency of H2SO4 treated potato peel (APP) increases considerably high from 75 to 100 % with increase in adsorbent dose, whereas the removal efficiency of H2SO4 treated neem bark (ANB) is found to be 98 % after adding the first dose only. The monolayer sorption behaviour of HCHO treated potato peel (PP) and APP is well defined by Langmuir, whereas the chemisorptions behaviour of HCHO treated neem bark (NB) and ANB is suggested by Temkin's isotherm model. The maximum adsorption capacity measured is highest in ANB followed by NB, PP and APP with the values of 1000, 90, 47.62 and 40.0 mg/g, respectively. The pseudo-second-order kinetic model fitted well with the observed data of all the four adsorbents. The results obtained reveal that NB and ANB both are good adsorbents compared to PP and APP.

  13. Nicotinic acid as a new co-adsorbent in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Nguyen, Phuong Tuyet; Nguyen, Vinh Son; Van Le, Tan Nhuut;

    2017-01-01

    With the aim of introduction a new inexpensive co-adsorbent to improve solar cell performance, the influence of nicotinic acid (NTA) used as a co-adsorbent in dye-sensitized solar cells (DSCs) was investigated. The findings showed that low concentrations of NTA (<10 mM) increased the N719 rutheni...

  14. The dynamic adsorption of Xe on a fixed bed adsorber at 77 K

    CERN Document Server

    Long, Bin; Wang, Qun- Shu; Feng, Shu- Juan; Zhou, Guo- Qing; Feng, Tian- Cheng; Tian, Yan- Jie; Ma, Huai- Cheng

    2016-01-01

    During the design of fixed bed adsorbers, it is vital to understand the dynamic adsorption properties of the system. Because temperature is one of the most important factors affecting adsorbent performance, such that the dynamic adsorption coefficients tend to increase as the temperature decreases, the dynamic adsorption characteristics of Xe on a fixed bed adsorber at 77 K were studied in the present work to minimize the volume of fixed bed adsorber, employing a variety of adsorbents under different operational conditions. The results show that the adsorption performance of carbon molecular sieve is superior to that of activated carbon. And both operational conditions and the presence of gaseous impurities were found to affect adsorption properties.

  15. Removing Cd2+ by Composite Adsorbent Nano-Fe3O4/Bacterial Cellulose

    Institute of Scientific and Technical Information of China (English)

    LU Min; GUAN Xiao-hui; WEI De-zhou

    2011-01-01

    A new composite adsorbent,nano-Fe3O4/bacterial cellulose(BC),was prepared through blending method.The process of adsorbing Cd2+ including its isotherm and kinetics measured was studied.The results show that the adsorption efficiency is improved because of huge surface area and surface coordination of nano-Fe3O4 particles.Its adsorption capacity is 27.97 mg/g and the maximum of Cd2+ removal is 74%.The adsorption kinetics can be described by pseudo-second rate model and the adsorption equilibrium by Langmuir type.The superparamagnetism of nano-Fe3O4 particles can help to solve the difficult separation of single BC adsorbent and lead to the quick separation of composite adsorbent from the liquid if a magnetic field was applied.Cd2+ can be desorbed effectively by EDTA and HCl from the composite adsorbent,which can make it be reused.

  16. Poly(ethylene oxide) Mushrooms Adsorbed at Silica-Ionic Liquid Interfaces Reduce Friction.

    Science.gov (United States)

    Sweeney, James; Webber, Grant B; Atkin, Rob

    2016-03-01

    The adsorbed layer conformation and lubricity of 35, 100, and 300 kDa PEO adsorbed to ionic liquid (IL)-silica interfaces from 0.01 wt % solutions have been investigated using colloid probe atomic force microscopy. The ILs used were propylammonium nitrate (PAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), which are protic and aprotic ILs, respectively. Normal force curves reveal steric interactions consistent with adsorbed polymer layers which are best fit using the mushroom model. Friction measurements show that the adsorbed polymer layer markedly reduces friction compared to surfaces sliding in the pure ILs and that lubricity increases with polymer length. When polymer is adsorbed to the sliding surfaces, friction is controlled by the creation and disruption of intermolecular interactions between entangled chains and the dragging of polymer chains through the interpenetration region. These experiments show that added polymer can reduce friction while maintaining the useful properties of ILs as lubricants.

  17. SYNERGISTIC INTERACTIONS ON PHENOL ADSORPTION FROM AQUEOUS SOLUTIONS BY POLYMERIC ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    Wei-ming Zhang; Jin-long Chen; Bing-cai Pan; Quan-xing Zhang; Bo Zhang; Fan Wang

    2005-01-01

    In this paper, the adsorption behaviors of phenol on polymeric adsorbents (Amberlite XAD4, NDA101, and D301)were investigated in batch system at 293, 303, and 313 K, respectively. As the results shown, the adsorption isotherms of phenol on all adsorbents can be well fitted by Langmuir and Freundlich equations, which indicate a favorable and exothermic process. The adsorption capacity on a newly developed aminated adsorbent, NDA101, on which adsorption could be achieved by both hydrogen bonding interaction and π-π interaction, are higher than that on a weak base adsorbent, D301, on which adsorption could be achieved by hydrogen bonding interaction only, and on a nonpolar adsorbent, XAD4, on which adsorption could be achieved by π-π interaction only. The results of this paper indicate that the synergistic effect of some weak interactions, which occur simultaneously would contribute more to the adsorption than that occur individually.

  18. Electric field cancellation on quartz by Rb adsorbate-induced negative electron affinity

    Science.gov (United States)

    Shaffer, James

    2016-05-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces a negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results are important for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface. This work was supported by the DARPA Quasar program by a Grant through ARO (60181-PH-DRP) and the AFOSR (FA9550-12-1-0282),.

  19. Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater.

    Science.gov (United States)

    Wang, Shaobin; Li, Lin; Zhu, Z H

    2007-01-10

    Solid-state conversion of fly ash to an amorphous aluminosilicate adsorbent (geopolymer) has been investigated under different conditions and the synthesised material has been tested for Cu2+ removal from aqueous solution. It has been found that higher reaction temperature and Na:FA ratio will make the adsorbents achieving higher removal efficiency. The adsorbent loading and Cu2+ initial concentration will also affect the removal efficiency while the adsorption capacity exhibits similarly at 30-40 degrees C. The adsorption capacity of the synthesised adsorbent shows much higher value than fly ash and natural zeolite. The capacity is 0.1, 3.5 and 92 mg/g, for fly ash, natural zeolite, and FA derived adsorbent, respectively. The kinetic studies indicate that the adsorption can be fitted by the second-order kinetic model. Langmuir and Freundlich isotherms also can fit to the adsorption isotherm.

  20. Adsorption behavior of Am with gamma irradiated Thiacalix[4]arene impregnated silica adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Takahiro [Institute of Research and Innovation (IRI), 1201 Takada, Kashiwa, Chiba 277-0861 (Japan)]. E-mail: tkikuchi@iri.or.jp; Suzuki, Kazunori [Institute of Research and Innovation (IRI), 1201 Takada, Kashiwa, Chiba 277-0861 (Japan)

    2006-02-09

    Thiacalix[4]arene impregnated silica adsorbent which is called CAPS-SO{sub 2}-adsorbent in this paper shows the excellent separative performance of trivalent actinoids, such as Am from the high-level radioactive liquid waste (HLLW) in weak-acid solution. The chemical stability of the adsorbent was investigated under strong irradiation conditions. The amount of dissolved CAPS-SO{sub 2} was only 1% by gamma-ray irradiation at a total dose of 1 MGy. The value of distribution coefficient of Am (Kd{sub Am}) at pH 4 by the adsorbent was constant even the high irradiation dose. Moreover, the separation factor of Am to lanthanoids is kept a high value. It was also found that the value of Kd{sub Am} by the irradiated CAPS-SO{sub 2}-adsorbent increases at pH 2.

  1. The Use of ATR-FTIR Spectroscopy for Quantification of Adsorbed Compounds

    Directory of Open Access Journals (Sweden)

    Giora Rytwo

    2015-01-01

    Full Text Available Quantification of adsorbed amounts requires in most cases several assumptions. Adsorption of organic compounds, for example, is usually measured indirectly, by mass balance calculations based on the evaluation of the remaining chemical in solution. Such procedure might yield overestimates when precipitation or degradation of the adsorbate occurs and underestimates when separation of the sorbent material (e.g., clay particles with the adsorbed chemical is not effective. This study presents a simple quantification procedure based on the ratio between IR absorption bands of the sorbate and the adsorbate. The advantages of the procedure are (a direct evaluation of the adsorbed amount and (b accurate measurement of chemicals that are hard to quantify, as those that do not absorb light in the UV-Visible range, or require expensive chromatography procedures.

  2. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf

    Science.gov (United States)

    Bello, Olugbenga Solomon; Adegoke, Kayode Adesina; Akinyunni, Opeyemi Omowumi

    2015-10-01

    A new and novel adsorbent was obtained by impregnation of Moringa oleifera leaf in H2SO4 and NaOH, respectively. Prepared adsorbents were characterized using elemental analysis, FT-IR, SEM, TGA and EDX analyses, respectively. The effects of operational parameters, such as pH, moisture content, ash content, porosity and iodine number on these adsorbents were investigated and compared with those of commercial activated carbon (CAC). EDX results of acid activated M. oleifera leaf have the highest percentage of carbon by weight (69.40 %) and (76.11 %) by atom, respectively. Proximate analysis showed that the fixed carbon content of acid activated M. oleifera leaf (69.14 ± 0.01) was the highest of all adsorbents studied. Conclusively, the present investigation shows that acid activated M. oleifera leaf is a good alternative adsorbent that could be used in lieu of CAC for recovery of dyes and heavy metal from aqueous solutions and other separation techniques.

  3. Estimation of the Isotherms of Phenol on Activated Carbons and Polymeric Adsorbents under Supercritical Condition

    Institute of Scientific and Technical Information of China (English)

    奚红霞; 谢兰英; 李祥斌; 李忠

    2003-01-01

    A method named as "volume-expanding and pressure-reducing adsorption" is proposed. It can be used to measure the isotherms under supercritical condition. The adsorption isotherms of phenol on activated carbons and polymeric adsorbents are estimated and compared respectively for the systems of "phenol-activated carbon-supercritical fluid CO2" and "phenol-polymeric adsorbent-supercritical fluid CO2". The results show that the amount of phenol adsorbed on the activated carbons and the polymeric adsorbents under the supercritical condition is much less than that under the general condition, which can be utilized to develop a technology regenerating the activated carbon with supercritical fluid. Moreover, the effects of ethyl alcohol, used as the third component, on the isotherms of phenol on the activated carbons and polymeric adsorbents under the supercritical condition are also investigated.

  4. Potential of single and double-combined adsorbents in removing chromium from an industrial wastewater

    Directory of Open Access Journals (Sweden)

    Mousavi S.F.

    2014-07-01

    Full Text Available Nowadays, there is much attention in using low-cost methods for removing heavy metals’ pollution from wastewaters. In this research, the ability of different adsorbents including zeolite, peat, activated carbon, cationic resin and anionic resin (in single and double-combined forms in decreasing Cr(III and Cr(VI concentration to below the legal limits from an industrial wastewater was investigated. The results showed that for single-adsorbent treatments, all adsorbents were more effective in reducing Cr(VI concentration than Cr(III. The highest removal efficiency (Er=100% was obtained by anionic resin. Presence of anionic resin in each double-adsorbent caused an improvement of chromium removal. Among the double-adsorbents treatments, combination of peat and activated carbon was the most proper treatment in removing chromium.

  5. Development of carbon dioxide adsorbent from rice husk char

    Science.gov (United States)

    Abang, S.; Janaun, J.; Anisuzzaman, S. M.; Ikhwan, F. S.

    2016-06-01

    This study was mainly concerned about the development of carbon dioxide (CO2) adsorbent from rice husk (RH). Several chemical treatments were used to produce activated rice husk char (RHAC) from RH. Initially the RH was refluxed with 3M of sodium hydroxide (NaOH) solution, activation followed by using 0.5M of zinc chloride (ZnCl2) solution and finally acidic treatment by using 0.1M of hydrochloric acid (HCl). Then, the RHAC was functionalized by using 3-chloropropylamine hydrochloride (3-CPA) and noted as RHN. RHN samples were characterized with scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), fourier transform infrared spectroscopy (FTIR). Based on the SEM, the RHN sample had a large pore diameter compared to RH sample after being treated. Based on MIP data, the average pore diameter between RH and RHAC samples were increased significantly from 0.928 microns to 1.017 microns. The RHN sample also had higher total porosity (%) compared to RHAC and RH (58.45%, 47.82% and 45.57% respectively). The total specific surface area of the sample was much increasing from RHO to RHAC (29.17 m2/g and 62.94 m2/g respectively) and slightly being decreasing from RHAC to RHN (58.88 m2/g). FTIR result showed the present of weak band at 1587 cm-1 which demonstrating of the amine group present on the sample. The CO2 capture result showed that the decreasing of operating temperature can increase the breakthrough time of CO2 capture. On the contrary decreasing of CO2 gas flow rate can increase the breakthrough time of CO2 capture. The highest total amount of CO2 adsorbed was 25338.57 mg of CO2/g of RHN sample by using 100 mL/min of gas flow rate at 30oC. Based on adsorption isotherm analysis, the Freundlich isotherm was the best isotherm to describe the CO2 adsorption on the sample.

  6. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    Science.gov (United States)

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; Yang, Li-Ming; Pushpa, Raghani

    2016-08-01

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we investigate the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. Our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.

  7. Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial.

    Science.gov (United States)

    Arriagada, Francisco; Correa, Olosmira; Günther, Germán; Nonell, Santi; Mura, Francisco; Olea-Azar, Claudio; Morales, Javier

    2016-01-01

    Morin (2´,3, 4´,5,7-pentahydroxyflavone) is a flavonoid with several beneficial health effects. However, its poor water solubility and it sensitivity to several environmental factors avoid its use in applications like pharmaceutical and cosmetic. In this work, we synthetized morin-modified mesoporous silica nanoparticles (AMSNPs-MOR) as useful material to be used as potential nanoantioxidant. To achieve this, we characterized its adsorption kinetics, isotherm and the antioxidant capacity as hydroxyl radical (HO•) scavenger and singlet oxygen (1O2) quencher. The experimental data could be well fitted with Langmuir, Freundlich and Temkin isotherm models, besides the pseudo-second order kinetics model. The total quenching rate constant obtained for singlet oxygen deactivation by AMSNPs-MOR was one order of magnitude lower than the morin rate constant reported previously in neat solvents and lipid membranes. The AMSNPs-MOR have good antioxidant properties by itself and exhibit a synergic effect with morin on the antioxidant property against hydroxyl radical. This effect, in the range of concentrations studied, was increased when the amount of morin adsorbed increased.

  8. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide

    Science.gov (United States)

    Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.

    2013-01-01

    The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.

  9. New insights into the ideal adsorbed solution theory.

    Science.gov (United States)

    Furmaniak, Sylwester; Koter, Stanisław; Terzyk, Artur P; Gauden, Piotr A; Kowalczyk, Piotr; Rychlicki, Gerhard

    2015-03-21

    The GCMC technique is used for simulation of adsorption of CO2-CH4, CO2-N2 and CH4-N2 mixtures (at 298 K) on six porous carbon models. Next we formulate a new condition of the IAS concept application, showing that our simulated data obey this condition. Calculated deviations between IAS predictions and simulation results increase with the rise in pressure as in the real experiment. For the weakly adsorbed mixture component the deviation from IAS predictions is higher, especially when its content in the gas mixture is low, and this is in agreement with the experimental data. Calculated activity coefficients have similar plots to deviations between IAS and simulations, moreover obtained from simulated data activity coefficients are similar qualitatively as well as quantitatively to experimental data. Since the physical interpretation of activity coefficients is completely lacking we show for the first time that they can be described by the formulas derived from the expression for G(ex) for the ternary mixture. Finally we also for the first time show the linear relationship between the chemical potentials of nonideal and ideal solutions and the reduced temperature of interacting mixture components, and it is proved that the deviation from ideality is larger if adsorption occurs in a more microporous system.

  10. Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces.

    Science.gov (United States)

    Gospodarek, Adrian M; Sun, Weitong; O'Connell, John P; Fernandez, Erik J

    2014-12-05

    In hydrophobic interaction chromatography (HIC), interactions between buried hydrophobic residues and HIC surfaces can cause conformational changes that interfere with separations and cause yield losses. This paper extends our previous investigations of protein unfolding in HIC chromatography by identifying protein structures on HIC surfaces under denaturing conditions and relating them to solution behavior. The thermal unfolding of three model multidomain proteins on three HIC surfaces of differing hydrophobicities was investigated with hydrogen exchange mass spectrometry (HXMS). The data were analyzed to obtain unfolding rates and Gibbs free energies for unfolding of adsorbed proteins. The melting temperatures of the proteins were lowered, but by different amounts, on the different surfaces. In addition, the structures of the proteins on the chromatographic surfaces were similar to the partially unfolded structures produced in the absence of a surface by temperature as well as by chemical denaturants. Finally, it was found that patterns of residue exposure to solvent on different surfaces at different temperatures can be largely superimposed. These findings suggest that protein unfolding on various HIC surfaces might be quantitatively related to protein unfolding in solution and that details of surface unfolding behavior might be generalized.

  11. Adsorbent Potential of Tea Waste to Control Cadmium Toxicity on

    Directory of Open Access Journals (Sweden)

    R. Perveen

    2012-03-01

    Full Text Available The disposal of industrial wastage without proper treatment is responsible for the lowering of crop productivity with the accumulation of essential and non essential trace metals in the land. The present research was designed to evaluate Cadmium toxicity on plant growth and to describe the remedial effect of tea wastage against Cd(II toxicity with reference to the growth of wheat (Triticum aestivum L.Application of Cd2+ decreased the wheat seedling growth along with alleviated concentration. It was dose-dependent, and significant at higher concentration of CdCl2. The result showed the inhibitory effect of Cd2+ ion on plant growth which includes reduction in shoot and root length, plant fresh and dry biomass and soluble carbohydrate and significant increase in total phenol contents as defense biomolecule against external stress. Adsorption is a promising alternative method to treat industrial effluents. Mainly because of its low cost and high metal binding capacity tea waste is one of the low cost and easily available adsorbent having strong adsorptivity towards heavy metals. The consumed tea leaves were found to be able to remove substantial amounts of Cd+2ions from aqueous solution. Thus it can be inferred that the addition of tea waste at appropriate rate may be useful approach to enhance the plant growth and to immobilize Cd2+ by depressing its bioavailability.

  12. Surface Modification through Chemically Adsorbed Monolayer of Thiophene Molecules

    Science.gov (United States)

    Yamamoto, Shin-ichi; Ogawa, Kazufumi

    2008-07-01

    Using a time-averaged dielectrophoretic force from an applied electric field, we have observed the assembly of a chemically adsorbed monomolecular layer (CAM) on microwires and connections and the formation of an electric path between a lithographically patterned array of two platinum (Pt) electrodes. A Pt electrode/monolayer/Pt electrode junction was fabricated by the self-assembly of a rigid monomolecular layer, namely 3-{6-[11-(trichlorosilyl)undecanoyl]hexyl} thiophene (TEN) with thiophene groups in the lateral direction between the Pt electrodes. Conductive probe AFM (CP-AFM) was used to investigate the forward bias conduction properties of a TEN film grown by a wet deposition process on a glass substrate. The self-assembly depends on the ideal rigidity of the CAM and the strong affinity of the thiophene end groups of the CAM for the Pt electrode. The current-voltage (I-V) characteristics of the conjugated thiophene junction exhibited stepwise features at room temperature. The I-V characteristics can be explained by electron transport through the junction. From the results of experiments carried out under ambient conditions, the conductivity of the laterally conjugated polythiophene groups was calculated to be 5.0 ×104 S/cm. Understanding and using these effects will allow the controlled fabrication and positioning of microwires or connections at densities much greater than those now achievable.

  13. Investigations Into the Reusability of Amidoxime-Based Polymeric Uranium Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Schlafer, Nicholas J. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Wai, Chien M. [Univ. of Idaho, Moscow, ID (United States); LCW Supercritical Technologies, Seattle, WA (United States); Pan, H. B. [Univ. of Idaho, Moscow, ID (United States)

    2016-09-28

    Significant advancements in amidoxime-based polymeric adsorbents to extract uranium from seawater are achieved in recent years. The success of uranium adsorbent development can help provide a sustainable supply of fuel for nuclear reactors. To bring down the production cost of this new technology, in addition to the development of novel adsorbents with high uranium capacity and manufacture cost, the development of adsorbent re-using technique is critical because it can further reduce the cost of the adsorbent manufacture. In our last report, the use of high concentrations of bicarbonate solution (3M KHCO3) was identified as a cost-effective, environmental friendly method to strip uranium from amidoxime-based polymeric adsorbents. This study aims to further improve the method for high recovery of uranium capacity in re-uses and to evaluate the performance of adsorbents after multiple re-use cycles. Adsorption of dissolved organic matter (DOM) on the uranium adsorbents during seawater exposure can hinder the uranium adsorption and slow down the adsorption rate. An additional NaOH rinse (0.5 M NaOH, room temperature) was applied after the 3 M KHCO3 elution to remove natural organic matter from adsorbents. The combination of 3 M KHCO3 elution and 0.5 M NaOH rinse significantly improves the recovery of uranium adsorption capacity in the re-used adsorbents. In the first re-use, most ORNL adsorbents tested achieve ~100% recovery by using 3 M KHCO3 elution + 0.5 M NaOH rinse approach, in comparison to 54% recovery when only 3 M KHCO3 elution was applied. A significant drop in capacity was observed when the adsorbents went through more than one re-use. FTIR spectra revealed that degradation of amidoxime ligands occurs during seawater exposure, and is more significant the longer the exposure time. Significantly elevated ratios of Ca/U and Mg/U in re-used adsorbents support the decrease in abundance of amidoxime ligands and increase carboxylate group from FT-IR analysis. The

  14. Description of adsorption equilibrium of PAHs on hypercrosslinked polymeric adsorbent using Polanyi potential theory

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this research,static adsorption of three polycyclic aromatic hydrocarbons(PAHs),naphthalene,acenaphthene,and fluorene,from aqueous solutions onto hypercrosslinked polymeric adsorbent within the temperature range of 288-308 K is investigated.Several isotherm equations are correlated with the equilibrium data,and the experimental data is found to fit the Polanyi-Dubinin-Manes model best within the entire range of concentrations,providing evidence that pore-filling is the dominating sorption mechanism for PAHs.The study shows that the molecular size of adsorbates has distinct in-fluence on adsorption capacity of hypercrosslinked polymeric adsorbent for the PAHs;the larger the adsorbate molecular size,the lower the adsorption equilibrium capacity.Based on the Polanyi-Dubinin-Manes model,the molecular size of adsorbates was introduced to adjust the adsorbate molar volume.Plots of qv vs.(σε /Vs) are collapsed to a single correlation curve for different adsorbates on hypercrosslinked polymeric resin.

  15. Performance of adsorbent-embedded heat exchangers using binder-coating method

    KAUST Repository

    Li, Ang

    2016-01-01

    The performance of adsorption (AD) chillers or desalination cycles is dictated by the rates of heat and mass transfer of adsorbate in adsorbent-packed beds. Conventional granular-adsorbent, packed in fin-tube heat exchangers, suffered from poor heat transfer in heating (desorption) or cooling (adsorption) processes of the batch-operated cycles, with undesirable performance parameters such as higher footprint of plants, low coefficient of performance (COP) of AD cycles and higher capital cost of the machines. The motivation of present work is to mitigate the heat and mass "bottlenecks" of fin-tube heat exchangers by using a powdered-adsorbent cum binder coated onto the fin surfaces of exchangers. Suitable adsorbent-binder pairs have been identified for the silica gel adsorbent with pore surface areas up to 680 m2/g and pore diameters less than 6 nm. The parent silica gel remains largely unaffected despite being pulverized into fine particles of 100 μm, and yet maintaining its water uptake characteristics. The paper presents an experimental study on the selection and testing processes to achieve high efficacy of adsorbent-binder coated exchangers. The test results indicate 3.4-4.6 folds improvement in heat transfer rates over the conventional granular-packed method, resulting a faster rate of water uptake by 1.5-2 times on the suitable silica gel type. © 2015 Elsevier Ltd. All rights reserved.

  16. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Farzin Nejad, N., E-mail: Farzinnejadn@ripi.ir [Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry, Tehran 14857-33111 (Iran, Islamic Republic of); Shams, E.; Amini, M.K. [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2015-09-15

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm and transmission electron microscopy. Nitrogen adsorption–desorption measurement revealed the high surface area (810 m{sup 2} g{sup −1}), maxima pore size of 3.3 nm and large pore volume (1.01 cm{sup 3} g{sup −1}) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g{sup −1} of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles. - Highlights: • Adsorptive desulfurization of model oil with magnetic ordered mesoporous carbon adsorbent, Fe-OMC, was studied. • Maximum adsorption capacity (q{sub max}) of Fe-OMC for DBT was found to be 111.1 mg g{sup −1}. • Freundlich isotherm best represents the equilibrium adsorption data. • Rate of DBT adsorption process onto Fe-OMC is controlled by at least two steps.

  17. Waste Material Adsorbents for Zinc Removal from Wastewater: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Haider M. Zwain

    2014-01-01

    Full Text Available This review examines a variety of adsorbents and discusses mechanisms, modification methods, recovery and regeneration, and commercial applications. A summary of available researches has been composed by a wide range of potentially low-cost modified adsorbents including activated carbon, natural source adsorbents (clay, bentonite, zeolite, etc., biosorbents (black gram husk, sugar-beet pectin gels, citrus peels, banana and orange peels, carrot residues, cassava waste, algae, algal, marine green macroalgae, etc., and byproduct adsorbents (sawdust, lignin, rice husk, rice husk ash, coal fly ash, etc.. From the literature survey, different adsorbents were compared in terms of Zn2+ adsorption capacity; also Zn2+ adsorption capacity was compared with other metals adsorption. Thus, some of the highest adsorption capacities reported for Zn2+ are 168 mg/g powdered waste sludge, 128.8 mg/g dried marine green macroalgae, 73.2 mg/g lignin, 55.82 mg/g cassava waste, and 52.91 mg/g bentonite. Furthermore, modification of adsorbents can improve adsorption capacity. Regeneration cost is important, but if consumption of virgin adsorbent is reduced, then multiple economic, industrial, and environmental benefits can be gained. Finally, the main drawback of the already published Zn2+ adsorption researches is that their use is still in the laboratory stage mostly without scale-up, pilot studies, or commercialization.

  18. Characterisation of adsorbents prepared by pyrolysis of sludge and sludge/disposal filter cake mix.

    Science.gov (United States)

    Velghe, I; Carleer, R; Yperman, J; Schreurs, S; D'Haen, Jan

    2012-05-15

    Copper and zinc removal from water (pH = 5.0) using adsorbents produced from slow and fast pyrolysis of industrial sludge and industrial sludge mixed with a disposal filter cake (FC), post treated with HCl, is investigated in comparison with a commercial adsorbent F400. The results show that a pseudo-second order kinetics model is followed. The Langmuir-Freundlich isotherm model is found to fit the data best. The capacity for heavy metal removal of studied adsorbents is generally better than that of commercial F400. The dominant heavy metal removal mechanism is cation exchange. Higher heavy metal removal capacity is associated with fast pyrolysis adsorbents and sludge/FC derived adsorbents, due to enhanced cation exchange. Improvement of Zn(2+) removal via 1 N HCl post-treatment is only effective when exchangeable cations of the adsorbent are substituted with H(+) ions, which boost the cation exchange capacity. Increase of temperature also enhances metal removal capacity. Fast pyrolysis sludge-based adsorbents can be reused after several adsorption-desorption cycles.

  19. An adsorbent with a high adsorption capacity obtained from the cellulose sludge of industrial residues.

    Science.gov (United States)

    Orlandi, Géssica; Cavasotto, Jéssica; Machado, Francisco R S; Colpani, Gustavo L; Magro, Jacir Dal; Dalcanton, Francieli; Mello, Josiane M M; Fiori, Márcio A

    2017-02-01

    One of the major problems in effluent treatment plants of the cellulose and paper industry is the large amount of residual sludge generated. Therefore, this industry is trying to develop new methods to treat such residues and to use them as new products, such as adsorbents. In this regard, the objective of this work was to develop an adsorbent using the raw activated sludge generated by the cellulose and paper industry. The activated cellulose sludge, after being dried, was chemically activated with 42.5% (v/v) phosphoric acid at 85 °C for 1 h and was charred at 500 °C, 600 °C and 700 °C for 2 h. The efficiency of the obtained adsorbent materials was evaluated using kinetic tests with methylene blue solutions. Using the adsorption kinetics, it was verified that the three adsorbents showed the capacity to adsorb dye, and the adsorbent obtained at a temperature of 600 °C showed the highest adsorption capacity of 107.1 mg g(-1). The kinetic model that best fit the experimental data was pseudo-second order. The Langmuir-Freudlich isotherm adequately described the experimental data. As a result, the cellulose sludge generated by the cellulose and paper industries could be used as an adsorbent.

  20. Towards Understanding KOH Conditioning of Amidoxime-based Polymer Adsorbents for Sequestering Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Horng-Bin; Kuo, Li-Jung; Wood, Jordana R.; Strivens, Jonathan E.; Gill, Gary A.; Janke, C.; Wai, Chien M.

    2015-11-16

    Conditioning of polymer fiber adsorbents grafted with amidoxime and carboxylic acid groups is necessary to make the materials hydrophilic for sequestering uranium from seawater. Spectroscopic techniques were employed to study the effectiveness of the traditional KOH conditioning method (2.5% KOH at 80 oC) on recently developed high-surface-area amidoxime-based polymer fiber adsorbents developed at Oak Ridge National Laboratory. FTIR spectra reveal that the KOH conditioning process removes the proton from the carboxylic acids and also converts the amidoxime groups to carboxylate groups in the adsorbent. With prolonged KOH treatment (>1 hr) at 80 oC, physical damage to the adsorbent material occurs which can lead to a significant reduction in the adsorbent’s uranium adsorption capability in real seawater during extended exposure times (>21 days). The physical damage to the adsorbent can be minimized by lowering KOH conditioning temperature. For the high-surface-area amidoxime-based adsorbents, 20 min of conditioning in 2.5% KOH at 80 oC or 1 hr of conditioning in 2.5% KOH at 60 oC appears sufficient to achieve de-protonation of the carboxylic acid with minimal harmful effects to the adsorbent material. The use of NaOH instead of KOH can also reduce the cost of the base treatment process required for conditioning the amidoxime-based sorbents with minimal loss of adsorption capacity (≤ 7%).

  1. Regenerable adsorbent for removing ammonia evolved from anaerobic reaction of animal urine

    Institute of Scientific and Technical Information of China (English)

    CHOU Liang-hsing; TSAI Ru-in; CHANG Jen-ray; LEE Maw-tien

    2006-01-01

    The waste gas evolved fiom biodegradation of animal mine contains ammonia causing environmental concerns. A new and effective method for removing ammonia from such waste gas using reactive adsorption is presented. In the process, activated carbon impregnated with H2SO4(H2SO4/C) is employed. Ammonia in the waste gas reacts with H2SO4 on the adsorbent instantaneously and completely to form (NH4)2SO4. The H2SO4/C adsorbent is high in NH3 adsorption capacity and regenerable. The NH3 removal capacity of this regenerable adsorbent is more than 30 times that of the adsorbents used normally in the industry. The spent H2SO4/C is regenerated by flowing low-pressure steam through the adsorbent bed to remove the (NH4)2SO4 fiom the adsorbent. The regeneration by-product is concentrated (NH4)2SO4 solution, which is a perfect liquid fertilizer for local use. Re-soaking the activated carbon with H2SO4 solution rejuvenates the activity of the adsorbent. Thus the H2SO4/C can be reused repeatedly. In the mechanism of this reactive adsorption process, trace of H2O in the waste gas is a required, which lends itself to treating ammonia gas saturated with moisture from biodegradation of animal urìne.

  2. Performance evaluation of low cost adsorbents in reduction of COD in sugar industrial effluent.

    Science.gov (United States)

    Parande, Anand K; Sivashanmugam, A; Beulah, H; Palaniswamy, N

    2009-09-15

    Studies on reduction of chemical oxygen demand (COD) in effluent from sugar industry have been carried out by employing different absorbents optimizing various parameters, such as initial concentration of adsorbate, pH, adsorbent dosage and contact time. Experimental studies were carried out in batches using metakaolin, tamarind nut carbon and dates nut carbon as adsorbents by keeping initial adsorbent dosage at 1 g l(-1), agitation time over a range of 30-240 min, adsorbent dosage at 100-800 mg l(-1) by varying the pH range from 4 to 10. Characterization of there adsorbents were done using techniques such as Fourier transforms infra red spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The experimental adsorption data fitted well to Langmuir and Freundlich adsorption isotherms. The isotherms of the adsorbents indicate appreciable adsorption capacity. Higher COD removal was observed at neutral pH conditions. Studies reveal that maximum reduction efficiency of COD takes place using metakaolin as an absorbent at a dosage of 500 mg l(-1) in a contact time of 180 min at pH 7 and it could be used as an efficient absorbent for treating sugar industrial effluent.

  3. Cellulose based cationic adsorbent fabricated via radiation grafting process for treatment of dyes waste water.

    Science.gov (United States)

    Goel, Narender Kumar; Kumar, Virendra; Misra, Nilanjal; Varshney, Lalit

    2015-11-05

    A cationized adsorbent was prepared from cellulosic cotton fabric waste via a single step-green-radiation grafting process using gamma radiation source, wherein poly[2-(methacryloyloxy) ethyl]trimethylammonium chloride (PMAETC) was covalently attached to cotton cellulose substrate. Radiation grafted (PMAETC-g-cellulose) adsorbent was investigated for removal of acid dyes from aqueous solutions using two model dyes: Acid Blue 25 (AB25) and Acid Blue 74 (AB74). The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherms, whereas kinetic data was analyzed by pseudo first order, pseudo second order, intra particle diffusion and Boyd's models. The PMAETC-g-cellulose adsorbent with 25% grafting yield exhibited equilibrium adsorption capacities of ∼ 540.0mg/g and ∼ 340.0mg/g for AB25 and AB74, respectively. Linear and nonlinear fitting of adsorption data suggested that the equilibrium adsorption process followed Langmuir adsorption isotherm model, whereas, the kinetic adsorption process followed pseudo-second order model. The multi-linearities observed in the intra-particle kinetic plots suggested that the intraparticle diffusion was not the only rate-controlling process in the adsorption of acid dyes on the adsorbent, which was further supported by Boyd's model. The adsorbent could be regenerated by eluting the adsorbed dye from the adsorbent and could be repeatedly used.

  4. Fast Removal of Polybrominated Diphenyl Ethers from Aqueous Solutions by Using Low-Cost Adsorbents

    Directory of Open Access Journals (Sweden)

    Renin Chang

    2017-01-01

    Full Text Available 4-Dibromodiphenyl ether (BDE-3 and 4,4′-dibromodiphenyl ether (BDE-15 are two of the major polybrominated diphenyl ethers used as flame-retardant additives in computer main boards and in fireproof building materials. In this study, we evaluated the potential of three low-cost adsorbents, black tea, green tea, and coconut palm leaf powders, to adsorb BDE-3 and BDE-15 from aqueous solutions. The results showed that pressure steam washing of the adsorbents increased their capacities to adsorb BDE-3 and BDE-15. The maximum adsorption capacities of pressure steam–washed black tea, green tea, and coconut palm leaf powders were 21.85 mg·L−1, 14.56 mg·L−1 and 22.47 mg·L−1, respectively. The results also showed that the adsorption equilibrium (qe was achieved at 4 min. Moreover, 97.8% of BDE-3 and 98.5% of BDE-15 could be removed by adsorbents pretreated with pressure steam washing. The kinetic data fitted well with a pseudo-second-order equation. The adsorption rate constants (k2 of all pressure steam–washed adsorbents ranged from 8.16 × 10−3 to 6.61 × 10−2 g·(mg·L−1−1·s−1, and the amount adsorbed at qe by all pressure steam–washed adsorbents ranged from 4.21 to 4.78 mg·L−1. Green alga Chlorella vulgaris was used as the test organism and the median effective concentration values of BDE-3 and BDE-15 were 7.24 and 3.88 mg·L−1, respectively. After BDE-3 and BDE-15 were removed from the solution, their biotoxicities markedly decreased. These findings indicate that these low-cost adsorbents can be used to remove BDE-3 and BDE-15 from aqueous solutions and wastewater.

  5. Chemical Modifications of Cassava Peel as Adsorbent Material for Metals Ions from Wastewater

    Directory of Open Access Journals (Sweden)

    Daniel Schwantes

    2016-01-01

    Full Text Available Residues from the processing of cassava roots (Manihot esculenta Crantz, or cassava peels, are evaluated as chemically modified adsorbents with H2O2, H2SO4, and NaOH, in the removal of metal ions Cd(II, Pb(II, and Cr(III from contaminated water. Modified adsorbents were chemically characterized for their chemical composition and pHPZC (point of zero charge, while adsorption tests determined the best conditions of pH, adsorbent mass, and contact time between adsorbent and adsorbate in the process of removal of the metal ions. Isotherms obtained from the preliminary results were linearized by Langmuir’s and Freudlich’s models. The thermodynamic parameters, such as ΔH, ΔG, and ΔS, were also evaluated. The modifying solutions proposed were effective in the modification of adsorbents and resulted in high capacity sorption materials. Equilibrium time between adsorbent and adsorbate for the solutions contaminated with metals is about 40 minutes. The Langmuir model adjusted to most results, indicating monolayers adsorption of Cd(II, Pb(II, and Cr(III. The values obtained for Langmuir Qm show a higher adsorption capacity caused by chemical modifications, with values such as 19.54 mg Cd(II per g of M. NaOH, 42.46 mg of Pb(II per g of M. NaOH, and 43.97 mg of Cr(III per g of M H2O2. Results showed that modified cassava peels are excellent adsorbent, renewable, high availability, and low-cost materials and a feasible alternative in the removal of metals in industries.

  6. Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption.

    Science.gov (United States)

    Goel, Chitrakshi; Bhunia, Haripada; Bajpai, Pramod K

    2015-06-01

    Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine-formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), elemental (CHN) analysis, Fourier transform infrared (FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO2 capture. The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent-CO2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption-desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.

  7. A WATER-COMPATIBLE PHENOLIC HYDROXYL MODIFIED POLYSTYRENE AS AN ADSORBENT FOR ADSORBING PHENOLIC COMPOUNDS FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A water-compatible phenolic hydroxyl modified polystyrene adsorbent (AM-1) foradsorbing and removing phenolic compounds from aqueous solutions was prepared by covalent bonding of phenolic hydroxyl groups to the surface of porous polystyrene-divinylbenzene beads, this resin can be used directly without wetting process. A comparison of the sorption properties of the new resin and Amberlite XAD-4 toward four phenolic compounds, phenol, p-cresol, p-chlorophenol,and p-nitrophenol was made. The capacities of equilibrium adsorption of AM-l for all four phenolic compounds increased around 20% over that of Amberlite XAD-4, which may be contributed to phenol hydroxyl group on the surface and the unusual pore distributior. At their dilute solution, the equilibrium adsorption capacities of AM-1 for phenol increased about 62% over that of Amberlite X4D-4, while equilibrium adsorption capacities of the other three phenolic compounds increased 4-35%, suggesting an advantage of AM-I over Amberlite XAD-4 in the collection of phenol.Freundlich isotherm equations and isosteric adsorption enthalpies for the four phenolic compounds indicate a physical adsorption process on the Amberlite XAD-4 and AM-I resins. Column studies for phenol show that AM-1 resin has excellent adsorption and desorption performance.

  8. Cu Secondary Adsorption by Some Variable Charge Soils After Adsorbing SO42—

    Institute of Scientific and Technical Information of China (English)

    DONGYUAN-YAN; WANGSHU-YU

    1993-01-01

    Cu secondary adsorption by three variable charge soils collected from hubei Province and Hunan Province was investigated.The amount of Cu secondary adsorption increased with that of SO42- elementary adsorption and conformed with the Langmuir,freundlich and Temkin isotherms.Desorption of secondary-adsorbed Cu indicated that the hysteresis ratio decreased as Cu secondary adsorption increased,which meant that secondry-adsorbed Cu existed not only in the exchangeable form but also in the bridge form and specifically adsorbed form.The amount of Cu secondary adsorption increased with the temperature.

  9. Nicotinic acid as a new co-adsorbent in dye-sensitized solar cells

    Science.gov (United States)

    Nguyen, Phuong Tuyet; Nguyen, Vinh Son; Phan, Thu Anh Pham; Le, Tan Nhut Van; Le, Duyen My; Le, Duy Dang; Tran, Vy Anh; Huynh, Tuan Van; Lund, Torben

    2017-01-01

    With the aim of introduction a new inexpensive co-adsorbent to improve solar cell performance, the influence of nicotinic acid (NTA) used as a co-adsorbent in dye-sensitized solar cells (DSCs) was investigated. The findings showed that low concentrations of NTA (optimized co-adsorbent concentration (1 mM NTA, 0.03 mM CDA, 0.015 mM OPA), the efficiency of the corresponding solar cells increased to the same extent. Specifically, the use of NTA at optimum concentration improved the efficiency of the resulting DSC from 3.14 to 5.02%.

  10. Experimental study of a three-adsorber sorption refrigerator for utilization of renewable sources of energy

    Science.gov (United States)

    Tsitovich, A. P.

    2013-03-01

    A three-adsorber refrigerator has been created and experimentally tested, in which use is made of a composite sorbent consisting of activated carbon fiber and alkali salts. This sorbent has a high capacity of storage of refrigeration characteristic of chemical coolers and a high sorption rate characteristic of adsorption refrigerators. The sorbent structure makes it possible to effect a convective intrapore process of cooling of the sorbent through intense two-phase heat transfer. A three-adsorber refrigerator has a higher refrigeration efficiency and smaller mass and overall dimensions than a traditional two-stage four-adsorber refrigerator.

  11. Comparative evaluation of natural adsorbent for pollutants removal from distillery spent wash

    Energy Technology Data Exchange (ETDEWEB)

    Namita Tewari; V.K. Verma; J.P.N. Rai

    2006-11-15

    Adsorption capacity of three different adsorbents (activated charcoal, fly ash and wood ash) has been tested and compared for the removal of various pollutants and heavy metals from distillery-spent wash. Adsorption was brought about at polyhouse conditions and the changes in pH, colour, COD, TS, TDS, TSS, Ca, Mg, Na, K and heavy metals (Cu, Zn, Fe) of distillery effluent using various adsorbents has been examined. Activated charcoal was found to be the best adsorbent followed by fly ash and wood ash.

  12. Determination of adsorbed protein concentration in aluminum hydroxide suspensions by near-infrared transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Jacobsen, Susanne;

    2008-01-01

    Analysis of aluminum hydroxide based vaccines is difficult after antigen adsorption. Adsorbed protein is often assessed by measuring residual unadsorbed protein for quality control. A new method for the direct determination of adsorbed protein concentration in suspension using near-infrared (NIR...... reduce the batch influence, and the NIR predicted results show good agreement with the reference values. The NIR method might be the only direct method for the determination of adsorbed protein concentration in suspension so far. It is a nondestructive method, and it has great advantage for use...

  13. Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water

    OpenAIRE

    2007-01-01

    Low-cost adsorbents were tested to remove anionic surfactants from laundry rinsing water to allow re-use of water. Adsorbents were selected corresponding to the different surfactant adsorption mechanisms. Equilibrium adsorption studies of linear alkyl benzene sulfonate (LAS) show that ionic interaction results in a high maximum adsorption capacity on positively charged adsorbents of 0.6–1.7 g LAS/g. Non-ionic interactions, such as hydrophobic interactions of LAS with non-ionic resins or activ...

  14. Doping of graphene adsorbed on the a-SiO$_2$ surface

    OpenAIRE

    Miwa, R. H.; Schmidt, T. M.; Fazzio, A.

    2011-01-01

    We have performed an {\\it ab initio} theoretical investigation of graphene sheet adsorbed on amorphous SiO$_2$ surface (G/a-SiO$_2$). We find that graphene adsorbs on the a-SiO$_2$ surface through van der Waals interactions. The inhomogeneous topology of the a-SiO$_2$ clean surface promotes a total charge density displacement on the adsorbed graphene sheet, giving rise to electron-rich as well as hole-rich regions on the graphene. Such anisotropic distribution of the charge density may contri...

  15. Direct electrochemistry of Penicillium chrysogenum catalase adsorbed on spectroscopic graphite.

    Science.gov (United States)

    Dimcheva, Nina; Horozova, Elena

    2013-04-01

    The voltammetric studies of Penicillium chrysogenum catalase (PcCAT) adsorbed on spectroscopic graphite, showed direct electron transfer (DET) between its active site and the electrode surface. Analogous tests performed with the commercially available bovine catalase revealed that mammalian enzyme is much less efficient in the DET process. Both catalases were found capable to catalyse the electrooxidation of phenol, but differed in the specifics of catalytic action. At an applied potential of 0.45V the non-linear regression showed the kinetics of the bioelectrochemical oxidation catalysed by the PcCAT obeyed the Hill equation with a binding constant K=0.034±0.002 M(2) (Hill's coefficient n=2.097±0.083, R(2)=0.997), whilst the catalytic action of the bovine catalase was described by the Michaelis-Menten kinetic model with the following parameters: V(max,app)=7.780±0.509 μA, and K(M,app)=0.068±0.070 mol L(-1). The performance of the electrode reaction was affected by the electrode potential, the pH, and temperature. Based on the effect of pH and temperature on the electrode response in presence of phenol a tentative reaction pathway of its bioelectrocatalytic oxidation has been hypothesised. The possible application of these findings in biosensing phenol up to concentration 30 mM at pHs below 7 and in absence of oxidising agents (oxygen or H(2)O(2)) was considered.

  16. A novel aminated polymeric adsorbent for removing refractory dissolved organic matter from landfill leachate treatment plant

    Institute of Scientific and Technical Information of China (English)

    ZHANG Long; LI Aimin; WANG Jinnan; LU Yufei; ZHOU Youdong

    2009-01-01

    Refractory dissolved organic matter (DOM) from landfill leachate treatment plant was with high dissolved organic carbon (DOC) content.An aminated polymeric adsorbent NDA-8 with tertiary amino groups and sufficient mesopore was synthesized, which exhibited high adsorption capacity to the DOM (raw water after coagulation).Resin NDA-8 performed better in the uptake of the DOM than resin DAX-8 and A100.Electrostatic attraction was considered as the decisive interaction between the adsorbent and adsorbate.Special attention was paid to the correlation between porous structure and adsorption capacity.The mesopore of NDA-8 played a crucial role during uptake of the DOM.In general, resin in chloride form performed a higher removal rate of DOC.According to the column adsorption test, total adsorption capacity of NDA-8 was calculated to 52.28 mg DOC/mL wet resin.0.2 mol/L sodium hydroxide solution could regenerate the adsorbent efficiently.

  17. ADSORPTION OF PHENOLIC COMPOUNDS ONTO THE SPHERICAL MACROPOROUS ADSORBENT BASED ON UREA—FORMALDEHYDE CONDENSED POLYMER

    Institute of Scientific and Technical Information of China (English)

    XuMingcheng; XUMancai; 等

    2000-01-01

    Adsorption of phenol,catechol and resorcinol,which vary in their ability to interact with the adsorbent through hydrogen bond,were used to investigate the adsorption mechanistic interaction.The adsorption enthalpies of the above mentioned compound onto the adsorbent were calculated and thermodynamic analysis was carried out.The results showed the adsorbent with the lowest adsorption enthalpies for the sorbate such as catechol with intermolecular hydrogen bond also display the lowest adsorption affinity.On the other hand,the more of the groups available for hydrogen bond interaction,the higher of the adsorption affinity.These observations support the contention that phenol adsorption is driven predominantly by specific interaction of the solute with active sites on the surface of the adsorbent.

  18. Growth of Aligned Multiwall Carbon Nanotubes and the Effect of Adsorbates on the Field Emission Properties

    Science.gov (United States)

    Milne, W. I.; Teo, K. B. K.; Lansley, S. B.; Chhowalla, M.; Amaratunga, G. A. J.; Semet, V.; Binh, Vu Thien; Pirio, G.; Legagneux, P.

    2003-10-01

    In attempt to decipher the field emission characteristics of multiwall carbon nanotubes (MWCNTs), we have developed a fabrication method based on plasma enhanced chemical vapour deposition (PECVD) to provide utmost control of the nanotube structure such as their alignment, individual position, diameter, length and morphology. We investigated the field emission properties of these nanotubes to elucidate the effect of adsorbates on the nanotubes. Our results show that although the adsorbates cause an apparent lowering of the required turn on voltage/field of the nanotubes, the adsorbates undesirably cause a saturation of the current, large temporal fluctuations in the current, and also a deviation of the emission characteristics from Fowler-Nordheim like emission. The adsorbates are easily removed by extracting an emission current of 1 uA per nanotube or using a high applied electric field (˜25V/um).

  19. A Cascaded Discharge Plasma-Adsorbent Technique for Engine Exhaust Treatment

    Science.gov (United States)

    Rajanikanth, B. S.; Srinivasan, A. D.; Arya, Nandiny B.

    2003-06-01

    A cascaded system of electrical discharges (non-thermal plasma) and adsorption process was investigated for the removal of oxides of Nitrogen (NOx) and total hydrocarbons (THC) from an actual diesel engine exhaust. The non-thermal plasma and adsorption processes were separately studied first and then the cascaded process was studied. In this study, different types of adsorbents were used. The NOx removal efficiency was higher with plasma-associated adsorption (cascaded) process compared to the individual processes and the removal efficiency was found almost invariant in time. When associated by plasma, among the adsorbents studied, activated charcoal and MS-13X were more effective for NOx and THC removal respectively. The experiments were conducted at no load and at 50% load conditions. The plasma reactor was kept at room temperature throughout the experiment, while the temperature of the adsorbent reactor was varied. A relative comparison of adsorbents was discussed at the end.

  20. Deep removal of 4,6-dimethyldibenzothiophene from model transportation diesel fuels over reactive adsorbent

    Directory of Open Access Journals (Sweden)

    Shengqiang Wang

    2012-06-01

    Full Text Available This paper presents a new reactive adsorbent used to effectively remove 4,6-dimethyldibenzothiophene (4,6-DMDBT from model transportation diesel fuels. This reactive adsorbent was composed of formaldehyde, phosphotungstic acid and mesoporous silica gel. The experiment was based on an assumed condensation reaction of 4,6-DMDBT with formaldehyde using phosphotungstic acid as catalyst in pore spaces. The effect of temperature and the amount of formaldehyde and phosphotungstic acid loaded on the substrate were investigated in a batch system. In the breakthrough experiment, three different model diesel fuels containing 1000 mg/kg 4,6-DMDBT were pumped through a fixed-bed reactor packed with reactive adsorbent at constant temperature and atmospheric pressure, respectively. The experimental results showed that sulfur-free model fuel was obtained at 80ºC despite the presence of aromatics. The sulfur capacity of regenerated reactive adsorbent was almost totally recovered.

  1. Photostability enhancement of azoic dyes adsorbed and intercalated into Mg-Al-layered double hydroxide

    Science.gov (United States)

    Liu, Pengfei; Liu, Pei; Zhao, Kongcao; Li, Lei

    2015-11-01

    Two azoic dyes 4-aminoazobenzene-4-sulfonic (AS) and ethyl orange (EO) were adsorbed on or intercalated into Mg-Al-CO3 layered double hydroxide (LDH) for photostability enhancement. Fluorescence analysis results showed that the photostability of two dyes could be greatly improved after being adsorbed on the surface of Mg-Al-CO3-LDH matrix. Furthermore, photostability of adsorbed dyes was superior to that of intercalated dyes. It was suggested that AS or EO was adsorbed on LDHs surface through a strong chemisorption interaction, resulting in the enhancement of photostability. After the UV irradiation under N2 atmosphere, the absorbed dyes not only show great increase of fluorescence intensity but also exhibited high stability against UV irradiation. This work provides a feasible approach to enhance the photostability of azoic dye confined in an inorganic two-dimensional (2D) matrix via changing the microenvironment, which may be considered to be a promising method of improving photostability of solid fluorescent materials.

  2. Magnetic susceptibility of oxygen adsorbed on the surface of spherical and fibrous activated carbon.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Kawamura

    2009-02-01

    Full Text Available The magnetic susceptibilities of oxygen adsorbed on the surface of bead-shaped activated carbon and activated carbon fibers were evaluated as a function of temperature between 4.2 K and 300 K, and found to exhibit a sharp peak at around 50 K. This implies that the adsorbed oxygen molecules form an antiferromagnetic state. The relation between the susceptibility and the adsorbed mass suggest that the thickness of the adsorbed oxygen is thin enough to consider a two-dimensional structure for bead–shaped activated carbon and carbon fibers across the fiber axis but thick enough to regard it as three-dimensional along the fiber axis. The result is discussed with reference to the study on one-dimensional oxygen array.

  3. A Cascaded Discharge Plasma-Adsorbent Technique for Engine Exhaust Treatment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A cascaded system of electrical discharges (non-thermal plasma) and adsorptionprocess was investigated for the removal of oxides of Nitrogen (NOx) and total hydrocarbons(THC) from an actual diesel engine exhaust. The non-thermal plasma and adsorption processeswere separately studied first and then the cascaded process was studied. In this study, differenttypes of adsorbents were used. The NOx removal efficiency was higher with plasma-associatedadsorption (cascaded) process compared to the individual processes and the removal efficiencywas found almost invariant in time. When associated by plasma, among the adsorbents studied,activated charcoal and MS-13X were more effective for NOx and THC removal respectively. Theexperiments were conducted at no load and at 50 % load conditions. The plasma reactor was keptat room temperature throughout the experiment, while the temperature of the adsorbent reactorwas varied. A relative comparison of adsorbents was discussed at the end.

  4. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T.; Gelperin, Alan; Staii, Cristian

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  5. Ir Spectroscopic Analysis of Thermal Behavior of Adsorbed Water on Y-Type Zeolite

    Science.gov (United States)

    Katoh, Masahiro; Koide, Ryuhei; Yamada, Kenzo; Yoshida, Takanori; Horikawa, Toshihide

    In this study, we measured the IR spectra of water adsorbed at a differential temperature under constant pressure. Our purpose is to present a simple estimation method for the recycled temperature condition of water adsorbents. For a NaY zeolite, the IR integrated intensity of the bending vibration band of adsorbed water was increased with a decrease of temperature. The IR spectra were measured from 230°C to 30°C for several ion-exchanged Y-type zeolites. On the other hand, the adsorption isotherms of water on these zeolites were measured at 30°C. The result of this work is that the best correlation between the IR integrated intensity and the amount of adsorbed water was found for some of the zeolites. We concluded that the obtained correlation equation could easily estimate the amount of water desorbed between arbitrary temperatures.

  6. Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents.

    Science.gov (United States)

    Franca, Adriana S; Oliveira, Leandro S; Nunes, Anne A; Alves, Cibele C O

    2010-02-01

    Defective coffee press cake, a residue from coffee oil biodiesel production, was evaluated as an adsorbent for removal of basic dyes (methylene blue--MB) from aqueous solutions. The adsorbent was prepared by microwave treatment, providing a significant reduction in processing time coupled to an increase in adsorption capacity in comparison to conventional carbonization in a muffle furnace. Batch adsorption tests were performed at 25 degrees C and the effects of particle size, contact time, adsorbent dosage and initial solution pH were investigated. Adsorption kinetics was better described by a second-order model. The experimental adsorption equilibrium data were fitted to Langmuir, Freundlich and Tempkin adsorption models, with Langmuir providing the best fit. The results presented in this study show that microwave activation presents great potential as an alternative method in the production of adsorbents.

  7. Diffusivity and Mobility of Adsorbed Water Layers at TiO2 Rutile and Anatase Interfaces

    Directory of Open Access Journals (Sweden)

    Niall J. English

    2015-12-01

    Full Text Available Molecular-dynamics simulations have been carried out to study diffusion of water molecules adsorbed to anatase-(101 and rutile-(110 interfaces at room temperature (300 K. The mean squared displacement (MSD of the adsorbed water layers were determined to estimate self-diffusivity therein, and the mobility of these various layers was gauged in terms of the “swopping” of water molecules between them. Diffusivity was substantially higher within the adsorbed monolayer at the anatase-(101 surface, whilst the anatase-(101 surface’s more open access facilitates easier contact of adsorbed water molecules with those beyond the first layer, increasing the level of dynamical inter-layer exchange and mobility of the various layers. It is hypothesised that enhanced ease of access of water to the anatase-(101 surface helps to rationalise experimental observations of its comparatively greater photo-activity.

  8. Chemical potential of a hard sphere fluid adsorbed in model disordered polydisperse matrices.

    Science.gov (United States)

    de Leon, Aned; Pizio, O; Sokołowski, S

    2006-06-01

    We consider a model for adsorption of a simple fluid in disordered polydisperse adsorbents. The fluid consists of hard sphere particles. On the other hand, the adsorbents of this study are modeled as a collection of hard spheres with their diameter obeying a certain distribution function. Our focus is in the evaluation of the chemical potential of the fluid immersed in such a polydisperse material. It permits us to obtain porosity and pore size distribution for the adsorbent, as well as a set of adsorption isotherms. The latter have been calculated theoretically and by grand canonical Monte Carlo simulations. We observe that the width of assumed polydispersity distribution affects all the properties of the system. Nevertheless, the effect of matrix packing is dominant in determining adsorption for this class of models. We are convinced that the matrix structures generated via more sophisticated algorithms would exhibit stronger effects of polydispersity on the entire set of properties of adsorbed simple fluids.

  9. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium.

    Science.gov (United States)

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-05-30

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  10. Dynamic model of heat and mass transfer in rectangular adsorber of a solar adsorption machine

    Science.gov (United States)

    Chekirou, W.; Boukheit, N.; Karaali, A.

    2016-10-01

    This paper presents the study of a rectangular adsorber of solar adsorption cooling machine. The modeling and the analysis of the adsorber are the key point of such studies; because of the complex coupled heat and mass transfer phenomena that occur during the working cycle. The adsorber is heated by solar energy and contains a porous medium constituted of activated carbon AC-35 reacting by adsorption with methanol. To study the solar collector type effect on system's performances, the used model takes into account the variation of ambient temperature and solar intensity along a simulated day, corresponding to a total daily insolation of 26.12 MJ/m2 with ambient temperature average of 27.7 °C, which is useful to know the daily thermal behavior of the rectangular adsorber.

  11. Detection of adsorbed explosive molecules using thermal response of suspended microfabricated bridges

    DEFF Research Database (Denmark)

    Yi, Dechang; Greve, Anders; Hales, Jan Harry;

    2008-01-01

    Here we present a thermophysical technique that is capable of differentiating vapor phase adsorbed explosives from nonexplosives and is additionally capable of differentiating individual species of common explosive vapors. This technique utilizes pairs of suspended microfabricated silicon bridges...

  12. MODIFICATION OF KELUD VOLCANIC ASH 2014 AS SELECTIVE ADSORBENT MATERIAL FOR COPPER(II METAL ION

    Directory of Open Access Journals (Sweden)

    Susila Kristianingrum

    2017-01-01

      This research aims to prepare an adsorbent from Kelud volcanic ash for better Cu(II adsorption efficiency than Kiesel gel 60G E'Merck. Adsorbent synthesis was done by dissolving 6 grams of volcanic ash activated 700oC 4 hours and washed with HCl 0.1 M into 200 ml of 3M sodium hydroxide with stirring and heating of 100 °C for 1 hour. The filtrate sodium silicate was then neutralized using sulfuric acid. The mixture was allowed to stand for 24 hours then filtered and washed with aquaDM, then dried and crushed. The procedure is repeated for nitric acid, acetic acid and formic acid with a contact time of 24 hours. The products were then characterized using FTIR and XRD, subsequently determined acidity, moisture content, and tested for its adsorption of the ion Cu (II with AAS. The results showed that the type of acid that produced highest rendemen is AK-H2SO4-3M ie 36.93%, acidity of the adsorbent silica gel synthesized similar to Kiesel gel 60G E'Merck ie adsorbent AK-CH3COOH-3M and the water content of the silica gel adsorbent synthesized similar to Kiesel gel 60G E'Merck ie adsorbent AK-H2SO4-2 M. The character of the functional groups of silica gel synthesized all have similarities with Kiesel gel 60G E'Merck as a comparison. Qualitative analysis by XRD for all modified adsorbent showed a dominant peak of SiO2 except adsorbent AK-H2SO4 amorphous and chemical bonds with FTIR indicates that it has formed a bond of Si-O-Si and Si-OH. The optimum adsorption efficiency of the metal ions Cu(II obtained from AK-H2SO4-5M adsorbent that is equal to 93.2617% and the optimum adsorption capacity of the Cu(II metal ions was obtained from the adsorbent AK-CH3COOH-3M is equal to 2.4919 mg/ g.   Keywords: adsorbents, silica gel, adsorption, kelud volcanic ash

  13. Heterogeneous Reactions of Surface-Adsorbed Catechol: A Comparison of Tropospheric Aerosol Surrogates

    Science.gov (United States)

    Hinrichs, R. Z.; Woodill, L. A.

    2009-12-01

    Surface-adsorbed organics can alter the chemistry of tropospheric solid-air interfaces, such as aerosol and ground level surfaces, thereby impacting photochemical cycles and altering aerosol properties. The nature of the surface can also influence the chemistry of the surface-adsorbed organic. We employed diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor the adsorption of gaseous catechol on several tropospheric aerosol surrogates and to investigate the subsequent reactivity of adsorbed-catechol with nitrogen dioxide and, in separate preliminary experiments, ozone. Graphite, kaolinite, and sodium halide (NaF, NaCl, NaBr) powders served as carbonaceous, mineral and sea salt aerosol surrogates, respectively. Broad OH stretching bands for adsorbed catechol shifted to lower wavenumber with peak frequencies following the trend NaBr > NaCl > NaF ≈ kaolinite, consistent with the increasing basicity of the halide anions and basic Brønsted sites on kaolinite. The dark heterogeneous reaction of NO2 with NaCl-adsorbed catechol at relative humidity (RH) 4-nitrocatechol and oxidation forming 1,2-benzoquinone and the ring cleavage product muconic acid, with product yields of 88%, 8%, and 4%, respectively. 4-Nitrocatechol was the dominant product for catechol adsorbed on NaF and kaolinite, while NaBr-adsorbed catechol produced less 4-nitrocatechol and more 1,2-benzoquinone and muconic acid. For all three sodium halides, the reactions of NO2 with adsorbed catechol were orders of magnitude faster than between NO2 and each NaX substrate. 4-Nitrocatechol rates and product yields were consistent with the relative ability of each substrate to enhance the deprotonated nature of adsorbed-catechol. Increasing the relative humidity caused the rate of each product channel to decrease and also altered the product branching ratios. Most notably, 1,2-benzoquinone formation decreased significantly even at 13% RH. The dramatic reactivity of surface-adsorbed

  14. Quantitative Analysis of Adsorbate Concentrations by Diffuse Reflectance FT-IR

    OpenAIRE

    Phanichphant, S; Meunier, Frederic; Sirita, S.

    2007-01-01

    Fully quantitative analyses of DRIFTS data are required when the surface concentrations and the specific rate constants of reaction (or desorption) of adsorbates are needed to validate microkinetic models. The relationship between the surface coverage of adsorbates and various functions derived from the signal collected by DRIFTS is discussed here. The Kubelka-Munk and pseudoabsorbance (noted here as absorbance, for the sake of brevity) transformations were considered, since those are the mos...

  15. Removal of lead from aqueous solution using waste tire rubber ash as an adsorbent

    OpenAIRE

    Mousavi,H. Z.; Hosseynifar,A.; Jahed,V.; S. A. M. Dehghani

    2010-01-01

    The purpose of this study was to investigate the possibility of the utilization of waste tire rubber ash (WTRA) as a low cost adsorbent for removal of lead (II) ion from aqueous solution. The effect of different parameters (such as contact time, sorbate concentration, adsorbent dosage, pH of the medium and temperature) were investigated. The sorption process was relatively fast and equilibrium was reached after about 90 min of contact. The experimental data were analyzed by the Freundlich iso...

  16. Application of a novel affinity adsorbent for the capture and purification of recombinant factor VIII compounds.

    Science.gov (United States)

    McCue, Justin T; Selvitelli, Keith; Walker, Joshua

    2009-11-06

    Recombinant Factor VIII (FVIII) therapies have been created to provide treatment for Hemophilia A, an inherited bleeding disorder caused by mutation in the FVIII gene. A major challenge in the purification of recombinant FVIII molecules is the development of an affinity chromatography step. Such a step must be highly specific and selective for the FVIII molecule, but also must be designed appropriately to ensure the FVIII molecule can be effectively recovered without resorting to harsh elution conditions which may be harmful to the product. Additionally, it is desirable to have affinity adsorbents designed to be reusable over a large number of column cycles while maintaining consistent purification performance. In this work, we describe the use of VIIISelect, a commercially available affinity adsorbent designed specifically for the purification of FVIII compounds. The VIIISelect adsorbent consists of a 13kDa recombinant protein ligand attached to a cross-linked agarose base matrix. The structure of the recombinant ligand is based upon Camelid-derived single domain antibody fragments. The VIIISelect adsorbent is produced using a process free of animal-derived raw materials, which is a highly desirable attribute for adsorbents used in the purification processes of recombinant protein therapeutics. The VIIISelect adsorbent was used as the initial capture column to purify a FVIII compound directly from clarified cell culture fluid prior to further downstream purification. The purification performance of the VIIISelect was evaluated, which included measurement of the static binding capacity, dynamic binding capacity, product recovery, impurity clearance, and adsorbent reuse. Following laboratory-scale process development, the VIIISelect adsorbent was scaled up and used in the large scale manufacturing of a FVIII compound.

  17. Uses of -Fe2O3 and fly ash as solid adsorbents

    Indian Academy of Sciences (India)

    J Shakhapure; H Vijayanand; S Basavaraja; V Hiremath; A Venkataraman

    2005-12-01

    Solid adsorbents have shown great promise for control of particulate and non-particulate matter and as gas sensing devices in recent times. In the present study, adsorption of environmental toxic pollutant such as lead ions on solid adsorbents viz. -Fe2O3 and fly ash, are reported. Considerable adsorption was observed on fly ash when compared to -Fe2O3 surface. These studies are characterized by employing solid state and solution studies.

  18. Development of nitrogen enriched nanostructured carbon adsorbents for CO2 capture.

    Science.gov (United States)

    Goel, Chitrakshi; Bhunia, Haripada; Bajpai, Pramod K

    2015-10-01

    Nanostructured carbon adsorbents containing high nitrogen content were developed by templating melamine-formaldehyde resin in the pores of mesoporous silica by nanocasting technique. A series of adsorbents were prepared by altering the carbonization temperature from 400 to 700 °C and characterized in terms of their textural and morphological properties. CO2 adsorption performance was investigated at various temperatures from 30 to 100 °C by using a thermogravimetric analyzer under varying CO2 concentrations. Multiple adsorption-desorption experiments were also carried out to investigate the adsorbent regenerability. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the development of nanostructured materials. Fourier transform infrared spectroscopy (FTIR) and elemental analysis indicated the development of carbon adsorbents having high nitrogen content. The surface area and pore volume of the adsorbent carbonized at 700 °C were found to be 266 m(2) g(-1) and 0.25 cm(3) g(-1) respectively. CO2 uptake profile for the developed adsorbents showed that the maximum CO2 adsorption occurred within ca. 100 s. CO2 uptake of 0.792 mmol g(-1) at 30 °C was exhibited by carbon obtained at 700 °C with complete regenerability in three adsorption-desorption cycles. Furthermore, kinetics of CO2 adsorption on the developed adsorbents was studied by fitting the experimental data of CO2 uptake to three kinetic models with best fit being obtained by fractional order kinetic model with error% within range of 5%. Adsorbent surface was found to be energetically heterogeneous as suggested by Temkin isotherm model. Also the isosteric heat of adsorption for CO2 was observed to increase from ca. 30-44 kJ mol(-1) with increase in surface coverage.

  19. Preparation and Adsorption Properties of PAM Based Adsorbents for Plasma Lipoproteins

    Institute of Scientific and Technical Information of China (English)

    Hai Tao LI; Zhi YUAN; Xin Fu CHEN; Bin LIU; Bin SHEN; Bing Lin HE

    2004-01-01

    Crosslinked macroporous polyacrylamide(PAM)was prepared with inverse phase suspension polymerization technique.After treatment with hydrazine,the polymer was functionalized with chloroacetic acid,trifluoroacetic acid diethylenetriaminepentaacetic acid (DEPAA), and maleic acid, respectively,and PAM based adsorbents bearing carboxyl functional groups for low density lipoprotein(LDL)apheresis use were obtained.The blood compatibility and the adsorption properties for plasma lipoproteins of PAM based adsorbents were investigated.

  20. Effects of adsorbents in dairy cow diet on milk quality and cheese-making properties

    OpenAIRE

    Pirlo, G.; C. Tornielli; Abeni, F.; M. P. Cattaneo; L. Migliorati

    2010-01-01

    The use of adsorbents (clinoptilolite+sepiolite) in the diet of cows was evaluated in two trials. A total of 52 Italian Friesian cows were assigned to one of two dietary treatments, control and adsorbent (CON vs. ADS). Individual and bulk milk samples were collected. On individual data, no significant difference was found between treatments in milk yield, milk fat, protein, and lactose concentrations, milk protein yield, pH, and titratable acidity, both in summer and spring. In spring only, t...

  1. Imaging the potential distribution of charged adsorbates on graphene by low-energy electron holography

    CERN Document Server

    Latychevskaia, Tatiana; Escher, Conrad; Fink, Hans-Werner

    2016-01-01

    While imaging individual atoms can routinely be achieved in high resolution transmission electron microscopy, visualizing the potential distribution of individually charged adsorbates leading to a phase shift of the probing electron wave is still a challenging task. Since low-energy electrons are sensitive to localized potential gradients, we employed this tool in the 30 eV kinetic energy range to visualize the potential distribution of localized charged adsorbates present on free-standing graphene.

  2. Evaluation of commercial chromatographic adsorbents for the direct capture of polyclonal rabbit antibodies from clarified antiserum

    DEFF Research Database (Denmark)

    Bak, Hanne; Thomas, O.R.T.

    2007-01-01

    We have carried out a rigorous evaluation of eight commercially available packed bed chromatography adsorbents for direct capture and purification of immumoglobulins from clarified rabbit antiserum. Three of these materials featured rProtein A (rProtein A Sepharose Fast Flow, Mabselect, Prosep rP...... evaluated on the basis of dynamic binding capacity, recovery, and purity) were obtained, which allowed clear recommendations concerning the choice of adsorbents best suited for antibody capture from rabbit antisera, to be made....

  3. Separation and Purification of Thrombin-like Enzymes by Affinity Adsorbents

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An affinity adsorbent, benzamidineSepharose 4B, was used to separate and purify thrombinlike enzymes. The paminobenzamidine as a specific ligand was coupled to the matrix-Sepharose 4B. The recombinant thrombinlike enzyme-defibrase was used as a model in order to evaluate the efficiency of this biospecific affinity adsorbent. The homogeneity of the enzyme preparation was comfirmed as one band on sodium dodecyl sulfatepolyacrylamide gel electrophoresis.

  4. PURIFICATION OF GINKGO LEAVES EXTRACT WITH MACROPOROUS ADSORBENT BASED ON UREA—FORMALDEHYDE CONDENSED POLYMERS

    Institute of Scientific and Technical Information of China (English)

    XUMingcheng; XUMancai; 等

    2000-01-01

    The relationship between the adsorption properties for the active components of ginkgo leaves and the structure of the adsorbents based on urea-formaldehyde condensed polymers was investigated.The results revealed that these adsorbents showed very high adsorpton selectivity for both flavonol glycosides and terpene lactones contained in ginkgo leaves.Thus,an adsorption separation procedure for purification of ginkgo leaves extracts was developed.

  5. Transmission Electron Diffraction Studies of Xenon Adsorbed on Graphite.

    Science.gov (United States)

    Faisal, A. Q. D.

    1987-09-01

    Available from UMI in association with The British Library. Adsorption studies of xenon on graphite were performed using the Hitachi HU-11B Transmission Electron Microscope (TEM). It has been used as a Transmission High Energy Electron Diffraction (THEED) camera. This has been modified to include an Ultra High Vacuum (UHV) environmental chamber. This chamber was isolated from the microscope vacuum by two 400 μm diameter differentially pumped apertures. Pressures of {~}10 ^{-6} torr and {~ }10^{-9} torr were achieved inside the microscope column and the environmental chamber respectively. The chamber was fitted with a new sample holder designed with double "O" rings. The sample was cooled with liquid helium. Previous THEED experiments by Venables et al and Schabes-Retchkiman and Venables revealed the presence of a 2D-solid incommensurate (I)-commensurate (C) phase transition as the temperature is lowered. These results were confirmed and extended in the present work. Hong et al have recently interpreted their X-ray diffraction experiments as showing an incommensurate-striped domain phase transition at {~}65rm K. No evidence was found for the existence of a striped domain structure on any part of the xenon phase diagram studied. Experiments of xenon adsorbed on the basal plane (0001) of graphite were carried out at pressures from {~}1.5 times 10^{-5} torr to {~}1.8 times 10^{-8} torr over a temperature range from 55K^.90K. A set of lattice parameter (misfit) measurements were made as a function of temperature at constant pressure with an accuracy of +/-0.1% rather than +/-0.3% previously obtained. The misfit data was fitted to a power law formula, i.e. misfit m = B_{rm o} (rm T - rm T_{rm o})^{rm A} , where A is a constant and equal to 0.8. It was found that B_{rm o} and T_{rm o} are functions of log(P). The data fell into two groups corresponding to two phase transitions. The same power law was used for both sets of data. Two transitions were found, one is I-C and

  6. Removal of adsorbent particles od copper ions by Jet flotation; Remocion de particulas adsorbentes de iones cobre por flotacion Jet

    Energy Technology Data Exchange (ETDEWEB)

    Santander, M.; Tapia, P.; Pavez, O.; Valderrama, L.; Guzman, D.

    2009-07-01

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m{sup -}3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  7. Direct observation of the photodegradation of anthracene and pyrene adsorbed onto mangrove leaves.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    Full Text Available An established synchronous fluorimetry method was used for in situ investigation of the photodegradation of pyrene (PYR and anthracene (ANT adsorbed onto fresh leaves of the seedlings of two mangrove species, Aegiceras corniculatum (L. Blanco (Ac and Kandelia obovata (Ko in multicomponent mixtures (mixture of the ANT and PYR. Experimental results indicated that photodegradation was the main transformation pathway for both ANT and PYR in multicomponent mixtures. The amount of the PAHs volatilizing from the leaf surfaces and entering the inner leaf tissues was negligible. Over a certain period of irradiation time, the photodegradation of both PYR and ANT adsorbed onto the leaves of Ac and Ko followed first-order kinetics, with faster rates being observed on Ac leaves. In addition, the photodegradation rate of PYR on the leaves of the mangrove species in multicomponent mixtures was much slower than that of adsorbed ANT. Compared with the PAHs adsorbed as single component, the photodegradation rate of ANT adsorbed in multicomponent mixtures was slower, while that of PYR was faster. Moreover, the photodegradation of PYR and ANT dissolved in water in multicomponent mixtures was investigated for comparison. The photodegradation rate on leaves was much slower than in water. Therefore, the physical-chemical properties of the substrate may strongly influence the photodegradation rate of adsorbed PAHs.

  8. Removal of Chloroform from Hydrochloride Acid Solution Using Fine Powder of Polymer as Adsorbent

    Institute of Scientific and Technical Information of China (English)

    LU,Yingzhou; QUE,Yong; LI,Chunxi; MENG,Hong; WANG,Zihao

    2009-01-01

    In order to choose a suitable adsorbent for the removal of chloroform from its hydrochloric acid solution,the adsorptive ability of some polymer adsorbents was investigated in terms of their adsorption curves in water and 20% hydrochloric acid solutions at 298.15 K,and compared with that of active carbon (AC) and solid paraffin (SP).The adsorbents studied include the fine powders of chlorinated rubber (CR),polypropylene (PP),chlorinated polypropylene (CPP) and polyvinylchloride (PVC).The results showed that the adsorption behavior followed the Langmuir equation and the adsorption ability of these adsorbents followed the order AC > PVC > CR > PP > CPP> SP.This order is basically in line with the decrease of chloro-content of the adsorbents from PVC to SP.The adsorptivity of PVC and CR was nearly equivalent to that of AC with their saturated adsorption being about 1.4 g-CHCl3 (g-absorbent) -1.For all adsorbents studied,the adsorption capacity always decreases with the increase of hydrochloric acid concentration.It is showed that the commercial polymer powder of PVC or CR can be used as an efficient absorbent for the removal of chloroform from its aqueous solution for its low cost,good adsorption ability and ease of thermal desorption for recycling.

  9. Treatment of dyehouse effluents with a carbon based adsorbent using anodic oxidation regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.W.; Roberts, E.P.L.; Garforth, A.A. [Dept. of Chemical Engineering, UMIST, Manchester (United Kingdom); Dryfe, R.A.W. [Dept. of Chemistry, UMIST, Manchester (United Kingdom)

    2003-07-01

    Adsorption is an attractive route for the removal of coloured, toxic and non-biodegradable organics from wastewater as very low discharge standards can be achieved. This paper reports on the use of a novel carbon based material, Nyex100, as an adsorbent material for the treatment of dyehouse effluent. The adsorbent has low porosity and high electrical conductivity and these factors have allowed the adsorbent to be electrochemically regenerated. This work has demonstrated that the adsorbent can be cycled through the process of adsorption and regeneration a number of times with little drop in adsorptive capacity. However regeneration appears to modify the preference for organic species adsorption. Electrochemical regeneration can be rapidly achieved (15 - 20 minutes) using low current densities (<20 mA cm{sup -2}). However, the low adsorptive capacity of the adsorbent, because of its small surface area, mean that large quantities of adsorbent would need to be cycled within the process to treat the effluent volume generated in even small dyehouses. Thus it is believed that operating the process in this mode limits the practical application of this technology. (orig.)

  10. Phosphorylated cellulose triacetate-silica composite adsorbent for recovery of heavy metal ion.

    Science.gov (United States)

    Srivastava, Niharika; Thakur, Amit K; Shahi, Vinod K

    2016-01-20

    Phosphorylated cellulose triacetate (CTA)/silica composite adsorbent was prepared by acid catalyzed sol-gel method using an inorganic precursor (3-aminopropyl triethoxysilane (APTEOS)). Reported composite adsorbent showed comparatively high adsorption capacity for Ni(II) in compare with different heavy metal ions (Cu(2+), Ni(2+), Cd(2+) and Pb(2+)). For Ni(II) adsorption, effect of time, temperature, pH, adsorbent dose and adsorbate concentration were investigated; different kinetic models were also evaluated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also estimated and equilibrium adsorption obeyed Langmuir and Freundlich isotherms. Developed adsorbent exhibited about 78.8% Ni(II) adsorption at pH: 6 and a suitable candidate for the removal of Ni(II) ions from wastewater. Further, about 65.5% recovery of adsorbed Ni(II) using EDTA solution was demonstrated, which suggested effective recycling of the functionalized beads would enable it to be used in the treatment of contaminated water in industry.

  11. POTENTIAL USE OF WOOL WASTE AS ADSORBENT FOR THE REMOVAL OF ACID DYES FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    BUCIŞCANU Ingrid

    2016-05-01

    Full Text Available At present, great amounts of raw wool are treated as waste and raise disposal problems. In the sustainable development context , wool is regarded as a biodegradable renewable resource and due to its complex chemical composition and fiber morphology, can find different useful applications. It is the aim of this paper to investigate the potential use of raw wool waste as a non-conventional adsorbent for Acid Red 337(AcR ,currently used for leather and wool dyeing. Two wool-based adsorbents were prepared, namely scoured coarse wool (Wool-S and wool activated with alcoholic solution of sodium hydroxide (Wool-A. Adsorbent dosage, dye concentration, pH and treatment time were factors taken in consideration for the assessment of the sorbate-adsorbent interaction. The removal efficiency (R % is mainly dependent on the solution pH and on the activation treatment applied to wool: at pH 3, the removal efficiency reaches the highest values of 42% on Wool-S and 99% on Wool-A. The adsorption rate is slow and needs almost 6 h to reach equilibrium. The experimental data best fitted the Langmuir equilibrium adsorption model, which proves that the adsorbent possess surface active sites to which the dye sorbate binds in monomolecular layer. Raw wool waste is a potential cheap, biodegradable and effective adsorbent for colored wastewater treatment.

  12. Sulfur removal from fuel using zeolites/polyimide mixed matrix membrane adsorbents.

    Science.gov (United States)

    Lin, Ligang; Wang, Andong; Dong, Meimei; Zhang, Yuzhong; He, Benqiao; Li, Hong

    2012-02-15

    A novel membrane adsorption process was proposed for the sulfur removal from fuels. The mixed matrix membranes (MMMs) adsorbents composed of polyimide (PI) and various Y zeolites were prepared. By the detailed characterization of FT-IR, morphology, thermal and mechanical properties of MMMs adsorbents, combining the adsorption and desorption behavior research, the process-structure-function relationship was discussed. Field-emission scanning electron microscope (FESEM) images show that the functional particles are incorporated into the three-dimensional network structure. MMMs adsorbents with 40% of zeolites content possess better physical properties, which was confirmed by mechanical strength and thermo stability analysis. Influence factors including post-treatment, content of incorporated zeolites, adsorption time, temperature, initial sulfur concentration as well as sulfur species on the adsorption performance of MMMs adsorbents have been evaluated. At 4 wt.% zeolites content, adsorption capacity for NaY/PI, AgY/PI and CeY/PI MMMs adsorbents come to 2.0, 7.5 and 7.9 mg S/g, respectively. And the regeneration results suggest that the corresponding spent membranes can recover about 98%, 90% and 70% of the desulfurization capacity, respectively. The distinct adsorption and desorption behavior of MMMs adsorbents with various functional zeolites was markedly related with their various binding force and binding mode with sulfur compounds.

  13. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    Science.gov (United States)

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function.

  14. Adsorption enhancement of elemental mercury onto sulphur-functionalized silica gel adsorbents.

    Science.gov (United States)

    Johari, Khairiraihanna; Saman, Norasikin; Mat, Hanapi

    2014-01-01

    In this study, elemental mercury (EM) adsorbents were synthesized using tetraethyl orthosilicate (TEOS) and 3-mercaptopropyl trimethoxysilane as silica precursors. The synthesized silica gel (SG)-TEOS was further functionalized through impregnation with elemental sulphur and carbon disulphide (CS2). The SG adsorbents were then characterized by using scanning electron microscope, Fourier transform infra-red spectrophotometer, nitrogen adsorption/desorption, and energy-dispersive X-ray diffractometer. The EM adsorption of the SG adsorbents was determined using fabricated fixed-bed adsorber. The EM adsorption results showed that the sulphur-functionalized SG adsorbents had a greater Hgo breakthrough adsorption capacity, confirming that the presence of sulphur in silica matrices can improve Hgo adsorption performance due to their high affinity towards mercury. The highest Hgo adsorption capacity was observed for SG-TEOS(CS2) (82.62 microg/g), which was approximately 2.9 times higher than SG-TEOS (28.47 microg/g). The rate of Hgo adsorption was observed higher for sulphur-impregnated adsorbents, and decreased with the increase in the bed temperatures.

  15. Theory and simulation of epitaxial rotation. Light particles adsorbed on graphite

    DEFF Research Database (Denmark)

    Vives, E.; Lindgård, P.-A.

    1993-01-01

    We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate. We have focused on the case of rare gases and light molecules, H-2 and D2, adsorbed on graphite. The competition between the particle-particle and particle-substrate interactions gives rise to frustra......We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate. We have focused on the case of rare gases and light molecules, H-2 and D2, adsorbed on graphite. The competition between the particle-particle and particle-substrate interactions gives rise...... to frustration phenomena. From our model predictions for the epitaxial rotation angle of the adsorbed phases are determined. Our results extend and unify previously known descriptions. We have studied as a function of temperature and coverage the phase diagrams, especially the intermediate phases appearing...... between the commensurate and incommensurate phase for the adsorbed systems. From our simulations and our theory, we are, able to understand the gamma phase of D2 as an ordered phase stabilized by disorder. It can be described as a 2q-modulated structure. In agreement with the experiments, we have also...

  16. Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study.

    Science.gov (United States)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2014-08-01

    The removal of two selected environmental pollutants such as 2,4-dichlorophenoxyacetic acid (2,4-D) and Triclosan (TC) was examined by adsorption experiments on the modified SBA-15 and MCF mesoporous silicas. Mesoporous adsorbents were modified by a grafting process with (3-aminopropyl)triethoxysilane (APTES) and 1-[3-(trimethoxysilyl)propyl]urea (TMSPU). Mesoporous materials were synthesized and characterized by N2 adsorption-desorption experiment, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis and adsorption studies. The results show that both APTES-functionalized SBA-15 and MCF nanoporous carriers are potentially good adsorbents for the removal of 2,4-D in a wide range of concentrations from 0.1 to 4 mg/cm(3). Maximum adsorption capacity of as-modified adsorbents for 2,4-D estimated from the Langmuir model was ~280 mg/g. The ionic interaction between the adsorbent and 2,4-D seems to play a key role in the adsorption process of the pollutant on APTES-modified siliceous matrices. The efficiency of TC sorption onto all prepared mesoporous adsorbents was significantly lower as compared to the entrapment of 2,4-D. Experimental data were best fitted by the Langmuir isotherm model. The results of this study suggest that mesoporous silica-based materials are promising adsorbents for the removal of selected organic pollutants.

  17. Retention of radium from thermal waters on sand filters and adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Elejalde, C. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain)]. E-mail: inpelsac@bi.ehu.es; Herranz, M. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Legarda, F. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Romero, F. [Dpto. de Ingenieria Quimica y del Medio Ambiente, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Baeza, A. [Dpto. de Fisica, Facultad de Veterinaria, Universidad de Extremadura, Avda. Universidad s/n, 10071 Caceres (Spain)

    2007-06-18

    This study was focussed on laboratory experiences of retention of radium from one thermal water on sand filters and adsorbents, trying to find an easy method for the elimination in drinkable waters polluted with this natural radio-nuclide. A thermal water from Cantabria (Spain) was selected for this work. Retention experiences were made with columns of 35 mm of diameter containing 15 cm layers of washed river sand or 4 cm layers of zeolite A3, passing known volumes of thermal water at flows between 4 and 40 ml/min with control of the retained radium by determining the amount in the water after the treatment. The statistical analysis of data suggests that retention depends on the flow and the volume passed through the columns. As additional adsorbents were used kaolin and a clay rich in illite. Jar-test experiences were made agitating known weights of adsorbents with the selected thermal water, with addition of flocculants and determination of radium in filtrated water after the treatment. Data suggest that retention is related to the weight of adsorbent used, but important quantities of radium seem remain in solution for higher amounts of adsorbents, according to the statistical treatment of data. The elution of retained radium from columns or adsorbents, previously used in experiences, should be the aim of a future research.

  18. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    Science.gov (United States)

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process.

  19. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    Science.gov (United States)

    Farzin Nejad, N.; Shams, E.; Amini, M. K.

    2015-09-01

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption-desorption isotherm and transmission electron microscopy. Nitrogen adsorption-desorption measurement revealed the high surface area (810 m2 g-1), maxima pore size of 3.3 nm and large pore volume (1.01 cm3 g-1) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g-1 of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles.

  20. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents

    NARCIS (Netherlands)

    Duval, J.-M.; Folkers, B.; Mulder, M.H.V.; Desgrandchamps, G.; Smolders, C.A.

    1993-01-01

    The effect of the introduction of specific adsorbents on the gas separation properties of polymeric membranes has been studied. For this purpose both carbon molecular sieves and zeolites are considered. The results show that zeolites such as silicate-1, 13X and KY improve to a large extent the separ

  1. Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics.

    Science.gov (United States)

    Matsui, Yoshihiko; Nakao, Soichi; Sakamoto, Asuka; Taniguchi, Takuma; Pan, Long; Matsushita, Taku; Shirasaki, Nobutaka

    2015-11-15

    The adsorption capacities of nine activated carbons for geosmin and 2-methylisoborneol (MIB) were evaluated. For some carbons, adsorption capacity substantially increased when carbon particle diameter was decreased from a few tens of micrometers to a few micrometers, whereas for other carbons, the increase of adsorption capacity was small for MIB and moderate for geosmin. An increase of adsorption capacity was observed for other hydrophobic adsorbates besides geosmin and MIB, but not for hydrophilic adsorbates. The parameter values of a shell adsorption model describing the increase of adsorption capacity were negatively correlated with the oxygen content of the carbon among other characteristics. Low oxygen content indicated low hydrophilicity. The increase of adsorption capacity was related to the hydrophobic properties of both adsorbates and activated carbons. For adsorptive removal of hydrophobic micropollutants such as geosmin, it is therefore recommended that less-hydrophilic activated carbons, such as coconut-shell-based carbons, be microground to a particle diameter of a few micrometers to enhance their equilibrium adsorption capacity. In contrast, adsorption by hydrophilic carbons or adsorption of hydrophilic adsorbates occur in the inner pores, and therefore adsorption capacity is unchanged by particle size reduction.

  2. Analytical phase diagrams for colloids and non-adsorbing polymer.

    Science.gov (United States)

    Fleer, Gerard J; Tuinier, Remco

    2008-11-04

    We review the free-volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20 (1992) 559] for the phase behavior of colloids in the presence of non-adsorbing polymer and we extend this theory in several aspects: (i) We take the solvent into account as a separate component and show that the natural thermodynamic parameter for the polymer properties is the insertion work Pi(v), where Pi is the osmotic pressure of the (external) polymer solution and v the volume of a colloid particle. (ii) Curvature effects are included along the lines of Aarts et al. [J. Phys.: Condens. Matt. 14 (2002) 7551] but we find accurate simple power laws which simplify the mathematical procedure considerably. (iii) We find analytical forms for the first, second, and third derivatives of the grand potential, needed for the calculation of the colloid chemical potential, the pressure, gas-liquid critical points and the critical endpoint (cep), where the (stable) critical line ends and then coincides with the triple point. This cep determines the boundary condition for a stable liquid. We first apply these modifications to the so-called colloid limit, where the size ratio q(R)=R/a between the radius of gyration R of the polymer and the particle radius a is small. In this limit the binodal polymer concentrations are below overlap: the depletion thickness delta is nearly equal to R, and Pi can be approximated by the ideal (van't Hoff) law Pi=Pi(0)=phi/N, where phi is the polymer volume fraction and N the number of segments per chain. The results are close to those of the original Lekkerkerker theory. However, our analysis enables very simple analytical expressions for the polymer and colloid concentrations in the critical and triple points and along the binodals as a function of q(R). Also the position of the cep is found analytically. In order to make the model applicable to higher size ratio's q(R) (including the so-called protein limit where q(R)>1) further extensions are needed. We

  3. Investigations into the Effect of Current Velocity on Amidoxime-Based Polymeric Uranium Adsorbent Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Schlafer, Nicholas J. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-12-01

    The Fuel Resources Program at the U.S. Department of Energy’s (DOE), Office of Nuclear Energy (DOE-NE) is developing adsorbent technology to extract uranium from seawater. This technology is being developed to provide a sustainable and economically viable supply of uranium fuel for nuclear reactors (DOE, 2010). Among the key environmental variables to understand for adsorbent deployment in the coastal ocean is what effect flow-rates or linear velocity has on uranium adsorption capacity. The goal is to find a flow conditions that optimize uranium adsorption capacity in the shortest exposure time. Understanding these criteria will be critical in choosing a location for deployment of a marine adsorbent farm. The objective of this study was to identify at what linear velocity the adsorption kinetics for uranium extraction starts to drop off due to limitations in mass transport of uranium to the surface of the adsorbent fibers. Two independent laboratory-based experimental approaches using flow-through columns and recirculating flumes for adsorbent exposure were used to assess the effect of flow-rate (linear velocity) on the kinetic uptake of uranium on amidoxime-based polymeric adsorbent material. Time series observations over a 56 day period were conducted with flow-through columns over a 35-fold range in linear velocity from 0.29 to 10.2 cm/s, while the flume study was conducted over a narrower 11-fold range, from 0.48 to 5.52 cm/s. These ranges were specifically chosen to focus on the lower end of oceanic currents and expand above and below the linear velocity of ~ 2.5 cm/s adopted for marine testing of adsorbent material at PNNL.

  4. Comparison of Fixed and Fluidized Beds Adsorber with Economic, Engineering, and Environmental approach

    Directory of Open Access Journals (Sweden)

    SEDIGHEH ATRKAR-ROSHAN

    2015-10-01

    Full Text Available Release  Volatile  organic  compounds  (VOCs  as  environmental  and  occupational  pollutant  cause  macro perspective affect such as climate change, humans and economic consequences. Although fixed bed absorber is widely used as a controlling method because of its economically and availability, but these absorbers are facing some issue like high pressure drop, non-uniform distribution of fluid, channeling and blocking. Fixed and fluidized beds adsorbent was compared from three economic, environmental and engineering perspectives using Multi Criteria Decision Making analysis (MCDA technique. An annular fluidized bed adsorber was designed and charged with 50-100 µm (100-140 ASTM mesh activated carbon (AC particles. Effects of factors like flow rate, particle size, inlet concentration and adsorption capacity of VOCs was investigated under steady state. In the flow rate less than 0.25(Lit.min-1, inlet gas slowly passes through the void spaces of the bed’s particles. By increasing the inlet flow from 0.3(Lit/min-1, bubbles start to form in the bed and the bed pressure drop decrease. The pressure drop of 6 (g of AC in minimum fluidization velocity was 20(KN.m-2. However, the pressure drop of 10 and 20(g of AC were 150 and 420(KN.m-2 respectively. “maximin” technique used for comparison of two beds indicated that minimum score of pack bed absorber are 0.37 while the minimum score of fluidized bed adsorber are 0.5. It indicated when the adsorbent particles are smaller, fluidized bed adsorber are more suitable to use. In addition, using MCDA technique indicated that annular fluidized bed adsorber could considered as an alternative of fixed beds adsorber.

  5. Promotion of CO oxidation on PdO(101) by adsorbed H2O

    Science.gov (United States)

    Choi, Juhee; Pan, Li; Mehar, Vikram; Zhang, Feng; Asthagiri, Aravind; Weaver, Jason F.

    2016-08-01

    We investigated the influence of adsorbed H2O on the oxidation of CO on PdO(101) using temperature programmed reaction spectroscopy (TPRS), reflection absorption infrared spectroscopy (RAIRS) and density functional theory (DFT) calculations. We find that water inhibits CO adsorption on PdO(101) by site blocking, but also provides a more facile pathway for CO oxidation compared with the bare oxide surface. In the presence of adsorbed H2O, the oxidation of CO on PdO(101) produces a CO2 TPRS peak that is centered at a temperature 50 K lower than the main CO2 TPRS peak arising from CO oxidation on clean PdO(101) ( 330 vs. 380 K). RAIRS shows that CO continues to adsorb on atop-Pd sites of PdO(101) when H2O is co-adsorbed, and provides no evidence of other reactive intermediates. DFT calculations predict that the CO oxidation mechanism follows the same steps for CO adsorbed on PdO(101) with and without co-adsorbed H2O, wherein an atop-CO species recombines with an oxygen atom from the oxide surface lattice. According to DFT, hydrogen bonding interactions with adsorbed H2O species stabilize the carboxyl-like transition structure and intermediate that result from the initial recombination of CO and O on the PdO(101) surface. This stabilization lowers the energy barrier for CO oxidation on PdO(101) by 10 kJ/mol, in good agreement with our experimental estimate.

  6. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China); Yang, Lei; Zhong, Wenhui; Cui, Jing [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Wei, Zhenggui, E-mail: weizhenggui@gmail.com [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Poorly crystalline HAP was firstly used for FA removal from aqueous solution. • The maximum adsorption capacity was determined to be 90.20 mg/g at 318 K. • Adsorption kinetics, isotherms and thermodynamic have been studied in detail. • Adsorption mechanism involved surface complexation, electrostatic interaction and hydrogen bonding. - Abstract: In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (X{sub c} = 0.23) and had better adsorption capacity for FA than those (X{sub c} = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long

  7. Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.

    Science.gov (United States)

    Verbinnen, Bram; Block, Chantal; Van Caneghem, Jo; Vandecasteele, Carlo

    2015-11-01

    Spent adsorbents for oxyanion forming elements and heavy metals are classified as hazardous materials and they are typically treated by stabilization/solidification before landfilling. The use of lime or cement for stabilization/solidification entails a high environmental impact and landfilling costs are high. This paper shows that mixing spent adsorbents in the raw material for the production of ceramic materials is a valuable alternative to stabilize oxyanion forming elements and heavy metals. The produced ceramics can be used as construction material, avoiding the high economic and environmental impact of stabilization/solidification followed by landfilling. To study the stabilization of oxyanion forming elements and heavy metals during the production process, two series of experiments were performed. In the first series of experiments, the main pollutant, Mo was adsorbed onto iron-based adsorbents, which were then mixed with industrial sludge (3 w/w%) and heated at 1100°C for 30 min. Mo was chosen, as this element is easily adsorbed onto iron-based adsorbents and it is the element that is the most difficult to stabilize (i.e. the highest temperatures need to be reached before the concentrations in the leachate are reduced). Leaching concentration from the 97/3 sludge/adsorbent mixture before heating ranged between 85 and 154 mg/kg; after the heating process they were reduced to 0.42-1.48 mg/kg. Mo was actually stabilized, as the total Mo concentration after addition was not affected by the heat treatment. In the second series of experiments, the sludge was spiked with other heavy metals and oxyanion forming elements (Cr, Ni, Cu, Zn, As, Cd and Pb) in concentrations 5 times higher than the initial concentrations; after heat treatment the leachate concentrations were below the regulatory limit values. The incorporation of spent adsorbents in ceramic materials is a valuable and sustainable alternative to the existing treatment methods, saving raw materials in the

  8. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents

    Science.gov (United States)

    Ismail, Samir Abd-elmonem A.; Ali, Rehab Farouk M.

    2015-06-01

    We have evaluated the efficiency of sugar cane bagasse ash (SCBA), date palm seed carbon (DPSC), and rice husk ash (RHA) as natural adsorbents and compared them with the synthetic adsorbent Magnesol XL for improving the quality of waste frying oil (WFO) and for the impact on the physicochemical properties of the obtained biodiesel. We measured moisture content, refractive index (RI), density, acid value (AV), iodine value (IV), peroxide value (PV), and saponification value (SV), as well as fatty acid profile. Purification treatments with various levels of adsorbents caused significant (P ≤ 0.05) decreases in free fatty acids (FFAs), PVs, and IVs. The highest yields (86.45 and 87.80%) were observed for biodiesel samples produced from WFO treated with 2% Magnesol and 3% of RHA, respectively, followed by samples treated with 2 and 3% of DPSC or RHA. Pre-treatments caused a significant decrease in the content of C 18:2 linoleic acids, consistent with a significant increase in the content of monounsaturated and saturated fatty acids (MUFA) in the treated samples. The highest oxidation value (COX) (1.30) was observed for biodiesel samples produced from WFO without purification treatments. However, the lowest values (0.44-0.73) were observed for biodiesel samples produced from WFO treated with different levels of adsorbents. Our results indicate that pre-treatments with different levels of adsorbents regenerated the quality of WFO and improved the quality of the obtained biodiesel.

  9. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Science.gov (United States)

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  10. Measurement of the Mass and Rigidity of Adsorbates on a Microcantilever Sensor

    Directory of Open Access Journals (Sweden)

    Javier Tamayo

    2007-09-01

    Full Text Available When microcantilevers are used in the dynamic mode, the resonance shift uponmaterial adsorption depends on the position of the adsorbate along the microcantilever. Wehave previously described that the adsorbate stiffness needs to be considered in addition toits mass in order to correctly interpret the resonance shift. Here we describe a method thatallows obtaining the Young’s modulus of the adsorbed bacteria derived from themeasurement of the frequency shift when adsorbates are placed close to the clampingregion. As a model system we have used E. Coli bacteria deposited on the cantileversurface by the ink-jet technique. We demonstrate that the correct information aboutadsorbed mass can be extracted by recording the cantilever profile and its resonanceresponse. Also, the position and extent of adsorbates is determined by recording themicrocantilever profile. We use a theoretical model based on the Euler – Bernouilliequation for a beam with both mass and flexural rigidity local increase due to the depositedmaterial.

  11. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    Science.gov (United States)

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration.

  12. Competitive and cooperative adsorption behaviors of phenol and aniline onto nonpolar macroreticular adsorbents

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-ming; CHEN Jin-long; PAN Bing-cai; ZHANG Quan-xing

    2005-01-01

    The adsorption behaviors of phenol and aniline on nonpolar macroreticular adsorbents( NDA100 and Amberlite XAD4) were investigated in single or binary batch system at 293K and 313K respectively in this study. The results indicated that the adsorption isotherms of phenol and aniline on both adsorbents in both systems fitted well Langmuir equation, which indicated a favourable and exothermic process. At the lower equilibrium concentrations, the individual amount adsorbed of phenol or aniline or macroreticular adsorbents in single-component systems was higher than those in binary-component systems because of the competition between phenol and aniline towards the adsorption sites. It is noteworthy, on the contrast, that at higher concentrations, the total uptake amounts of phenol and aniline in binary-component systems were obviously larger than that in single-component systems, and a large excess was noted on the adsorbent surface at saturation, which is presumably due to the cooperative effect primarily arisen from the hydrogen bonding or weak acidbase interaction between phenol and aniline.

  13. Characterization of production of free gluconic acid by Gluconobacter suboxydans adsorbed on ceramic honeycomb monolith.

    Science.gov (United States)

    Shiraishi, F; Kawakami, K; Kono, S; Tamura, A; Tsuruta, S; Kusunoki, K

    1989-05-01

    Gluconobacter suboxydans IFO 3290 was immobilized by adsorption on ceramic honeycomb monolith and continuous production of free gluconic acid from glucose was performed in an aerated reactor. The effects of reactor residence time, aeration rate, and glucose concentration were investigated on the gluconic acid yield. Observation of SEM photographs revealed that the cells were adsorbed with a high density not only on the outer surface of the support but also on the inner surface of large pores. From measurement of the number of the adsorbed cells, it was elucidated that the biofilm comprised a monolayer or bilayer of the cells. Maximum specific rate of growth was estimated for the free and adsorbed cells, and the adsorbed cells were found to grow at a fast rate compared with the free cells. In the continuous fermentation performed for one month at the glucose concentration of 100 kg/m(3), reactor residence time of 3.5 h and aeration rate of 900 cm(3)/min, the activity of the adsorbed cells was appreciably stable. The high productivity of 26.3 kg/(m(3)-reactor . h) was attained with the gluconic acid yield of 84.6% and glucose conversion of 94%.

  14. Design approaches for a cycling adsorbent/photocatalyst system for indoor air purification: formaldehyde example.

    Science.gov (United States)

    Chin, Paul; Ollis, David F

    2008-04-01

    A kinetic model for a cycling adsorbent/photocatalyst combination for formaldehyde removal in indoor air (Chin et al. J. Catalysis 2006, 237, 29-37) was previously developed in our lab, demonstrating agreement with lab-scale batch operation data of other researchers (Shiraishi et al. Chem. Engineer. Sci. 2003, 58, 929-934). Model parameters evaluated included adsorption equilibrium and rate constants for the adsorbent (activated carbon) honeycomb rotor, and catalytic rate constant for pseudo-first-order formaldehyde destruction in the titanium dioxide photoreactor. This paper explores design consequences for this novel system. In particular, the batch parameter values are used to model both adsorbent and photocatalyst behavior for continuous operation in typical residential home challenges. Design variables, including realistic make-up air fraction, adsorbent honeycomb rotation speed, and formaldehyde source emission rate, are considered to evaluate the ability of the system to achieve World Health Organization pollutant guidelines. In all circumstances, the size of the required rotating adsorbent bed and photoreactor for single-stage operation and the resultant formaldehyde concentration in the home are calculated. The ability of how well such a system might be accommodated within the typical dimensions of commercial ventilation ducts is also considered.

  15. Effect of colloidal particle size on adsorbed monodisperse and bidisperse monolayers.

    Science.gov (United States)

    Rosenberg, Rachel T; Dan, Nily

    2011-07-19

    Coating hydrogel films or microspheres by an adsorbed colloidal shell is one synthesis method for forming colloidosomes. The colloidal shell allows control of the release rate of encapsulated materials, as well as selective transport. Previous studies found that the packing density of self-assembled, adsorbed colloidal monolayers is independent of the colloidal particle size. In this paper we develop an equilibrium model that correlates the packing density of charged colloidal particles in an adsorbed shell to the particle dimensions in monodisperse and bidisperse systems. In systems where the molar concentration in solution is fixed, the increase in adsorption energy with increasing particle size leads to a monotonic increase in the monolayer packing density with particle radius. However, in systems where the mass fraction of the particles in the adsorbing solutions is fixed, increasing particle size also reduces the molar concentration of particles in solution, thereby reducing the probability of adsorption. The result is a nonmonotonic dependence of the packing density in the adsorbed layer on the particle radius. In bidisperse monolayers composed of two particle sizes, the packing density in the layer increases significantly with size asymmetry. These results may be utilized to design the properties of colloidal shells and coatings to achieve specific properties such as transport rate and selectivity.

  16. Single stage batch adsorber design for efficient Eosin yellow removal by polyaniline coated ligno-cellulose.

    Science.gov (United States)

    Debnath, Sushanta; Ballav, Niladri; Maity, Arjun; Pillay, Kriveshini

    2015-01-01

    Polyaniline-coated lignin-based adsorbent (PLC) was synthesized and used for uptake of reactive dye eosin yellow (EY) from aqueous solution. The adsorption capability of the adsorbent was found to be more effective than the unmodified adsorbent (LC). In particular, the adsorption capability of the PLC was effective over a wider pH range. This could be owing to its higher point of zero charge, which is more favorable for the uptake of the anionic dye. Adsorption isotherm models suggested a monolayer adsorption was predominant. The mean free energy of adsorption (E(DR)) was found to have values between 8 and 16 kJ mol(-1) which suggests that an electrostatic mechanism of adsorption predominated over other underlying mechanisms. The adsorption process was also found to be spontaneous, with increasing negative free energy values observed at higher temperatures. Chemisorption process was supported by the changes in enthalpy above 40 kJ mol(-1) and by the results of desorption studies. This new adsorbent was also reusable and regenerable over four successive adsorption-desorption cycles. The single stage adsorber design revealed that PLC can be applicable as an effective biosorbent for the treatment of industrial effluents containing EY dye.

  17. Enhanced removal of nitrate from water using surface modification of adsorbents--a review.

    Science.gov (United States)

    Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya

    2013-12-15

    Elevated concentration of nitrate results in eutrophication of natural water bodies affecting the aquatic environment and reduces the quality of drinking water. This in turn causes harm to people's health, especially that of infants and livestock. Adsorbents with the high capacity to selectively adsorb nitrate are required to effectively remove nitrate from water. Surface modifications of adsorbents have been reported to enhance their adsorption of nitrate. The major techniques of surface modification are: protonation, impregnation of metals and metal oxides, grafting of amine groups, organic compounds including surfactant coating of aluminosilicate minerals, and heat treatment. This paper reviews current information on these techniques, compares the enhanced nitrate adsorption capacities achieved by the modifications, and the mechanisms of adsorption, and presents advantages and drawbacks of the techniques. Most studies on this subject have been conducted in batch experiments. These studies need to include continuous mode column trials which have more relevance to real operating systems and pilot-plant trials. Reusability of adsorbents is important for economic reasons and practical treatment applications. However, only limited information is available on the regeneration of surface modified adsorbents.

  18. Adsorption/Desorption Behavior of Water Vapor in an Adsorbent Desiccant Rotor

    Science.gov (United States)

    Tsujiguchi, Takuya; Kodama, Akio

    To clarify the operating and design concept of desiccant rotor, which is a most important component of an adsorptive desiccant cooling process, adsorption / desorption behavior of water vapor in a desiccant rotor has been investigated by means of computer simulation. Mass transfer coefficient in the mathematical model could be related to cycle time by applying the penetration theory. Considering this relationship, influences of the rotation speed of the desiccant rotor, process / regeneration air velocity and their velocity ratio were investigated. It was found that the optimum rotation speed tended to disappear when the regeneration air temperature was low and its humidity was considerably small compared to the process inlet air, since the product air condition approached to regeneration air condition as the rotation speed increased. Decrease of the dehumidifying performance was observed at higher air velocity and the corresponding higher rotation speed since the adsorbent rotor was not fully regenerated due to shorter regeneration time and shorter residence time of process / regeneration air in the adsorbent rotor prevented the mass transfer between air and adsorbent. It was also found that the dehumidifying performance was not improved even though the adsorbent was fully regenerated by higher regeneration air velocity as the sensible heat transferred from the regeneration zone via adsorbent itself increased and disturbed adsorption.

  19. VALORIZATION AND BIODECOLORIZATION OF DYE ADSORBED ON LIGNOCELLULOSICS USING WHITE ROT FUNGI

    Directory of Open Access Journals (Sweden)

    Nesrin Ozmen,

    2012-02-01

    Full Text Available Biosorption of dyes by lignocelluloses may be an effective method for removing dyes from textile effluents. However, the resulting dye-adsorbed lignocellulosic materials may constitute another pollution problem. An integrated method can solve this problem. Here, various lignocelluloses were tested for their Astrazon Black and Astrazon Blue dyes removal activities. The dye adsorbed after 30 min contact time was 90% (45 mg/L, 70% (35 mg/L, and 98% (49 mg/L for wheat bran, pine cone, and cotton stalk, respectively. These dye-adsorbed lignocellulosic wastes then were used as solid substrates to produce laccase enzyme with Funalia trogii and Trametes versicolor under solid state fermentation (SSF. Among the lignocellulosic substrates, the dye-adsorbed wheat bran served as the best solid substrate for laccase production under SSF. Therefore, it was also tested as a solid source for laccase production under submerged fermentation. During solid state fermentation, these two fungi were able to highly decolorize these dyes. While F. trogii decolorized 80% of Astrazon Black dye adsorbed onto wheat bran, T. versicolor decolorized 86%. On the other hand, the decolorization values for Astrazon Blue dye were 69% and 84%, respectively.

  20. Visualization and Measurement of Adsorption/Desorption Process of Ethanol in Activated Carbon Adsorber

    Science.gov (United States)

    Asano, Hitoshi; Murata, Kenta; Takenaka, Nobuyuki; Saito, Yasushi

    Adsorption refrigerator is one of the efficient tools for waste heat recovery, because the system is driven by heat at relative low temperature. However, the coefficient of performance is low due to its batch operation and the heat capacity of the adsorber. In order to improve the performance, it is important to optimize the configuration to minimize the amount of driving heat, and to clarify adsorption/desorption phenomena in transient conditions. Neutron radiography was applied to visualize and measure the adsorption amount distribution in an adsorber. The visualization experiments had been performed at the neutron radiography facility of E-2 port of Kyoto University Research Reactor. Activated carbon and ethanol were used as the adsorbent and refrigerant. From the acquired radiographs, adsorption amount was quantitatively measured by applying the umbra method using a checkered neutron absorber with boron powder. Then, transient adsorption and desorption processes of a rectangular adsorber with 84 mm in width, 50 mm in height and 20 mm in depth were visualized. As the result, the effect of fins in the adsorbent layer on the adsorption amount distribution was clearly visualized.

  1. Microcalorimetric study of adsorption of glycomacropeptide on anion-exchange chromatography adsorbent.

    Science.gov (United States)

    Lira, Rafael A; Minim, Luis A; Bonomo, Renata C F; Minim, Valéria P R; da Silva, Luis H M; da Silva, Maria C H

    2009-05-15

    The adsorption of glycomacropeptide (GMP) from cheese whey on an anion-exchange adsorbent was investigated using isothermal titration microcalorimetry to measure thermodynamic information regarding such processes. Isotherms data were measured at temperatures of 25 and 45 degrees C, pH 8.2 and various ionic strengths (0-0.08 molL(-1) NaCl). The equilibrium data were fit using the Langmuir model and the process was observed to be reversible. Temperature was observed to positively affect the interaction of the protein and adsorbent. Microcalorimetric studies indicated endothermic adsorption enthalpy in all cases, except at 45 degrees C and 0.0 molL(-1) NaCl. The adsorption process was observed to be entropically driven at all conditions studied. It was concluded that the increase in entropy, attributed to the release of hydration waters as well as bounded ions from the adsorbent and protein surface due to interactions of the protein and adsorbent, was a major driving force for the adsorption of GMP on the anion-exchange adsorbent. These results could allow for design of more effective ion-exchange separation processes for proteins.

  2. Lead Removal from Aqueous Solutions Using Novel Gel Adsorbent Synthesized from Natural Condensed Tannin

    Institute of Scientific and Technical Information of China (English)

    占新民; 赵璇; AKANEMiyazaki; YOSHIONakano

    2003-01-01

    Lead has caused serious environmental pollution due to its toxicity, accumulation in food chains and persistence in nature. In this paper, removal of lead from aqueous solutions is investigated using a novel gel adsorbent synthesized from natural condensed tannin. The novel adsorbent performs in aqueous solutions as a weak base with valid basic groups of 1.2mmol·g-1 tannin gel particles and therefore results in the elevation of pH value of aqueous solutions. Even when initial pH is 3.6, final pH at equilibrium can climb up to 6.5 that is above the pH value for Pb(OH)2 precipitation formation and then lead can be removed from wastewater by this so-called surface precipitation. The adsorption isotherm can be expressed by the Langmuir equation and the maximum capacity for adsorption of Pb is up to 92mg·g-l(based on dry adsorbent) when initial pH value is 3.6. Hence, the adsorbent does offer favorable properties in lead removal with respect to its high adsorption capacity at low initial pH value,which is advantageous to lead removal from acidic wastewater. A model is put forward to describe the individual adsorption phenomenon of the tannin gel adsorbent.

  3. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-09-06

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  4. INFLUENCE OF ADSORBED AND DISSOLVED CARBOXYMETHYL CELLULOSE ON FIBRE SUSPENSION DISPERSING, DEWATERABILITY, AND FINES RETENTION

    Directory of Open Access Journals (Sweden)

    Henrikki Liimatainen

    2009-02-01

    Full Text Available The effect of adsorbed and soluble carboxymethyl cellulose (CMC on dispersing, dewaterability, and fines retention of pulp fibre suspensions was investigated. CMC was added to a suspension in the presence of electrolytes, causing its adsorption to the fibre surfaces, or to a suspension without electrolytes, so that it stayed in the liquid phase. Both the CMC adsorbed on fibre surfaces and that in the liquid phase were able to disperse the fibre suspension due to the ability of CMC to reduce fibre-to-fibre friction in both phases. Adsorbed CMC promoted the formation of a water-rich microfibrillar gel on the fibre surfaces through the spreading out of microfibrils, leading to a decrease in friction at the fibre-fibre contact points and to the increased dispersion of fibres. CMC in the liquid phase of the suspension was in turn thought to prevent fibre-to-fibre contacts due to the large physical size of the CMC molecules. CMC in both phases had detrimental effects on dewatering of the pulp suspension, but adsorbed CMC caused more plugging of the filter cake, and this was attributed to its ability to disperse fibre fines, in particular. Thus, adsorbed CMC also reduced fines retention considerably more than did CMC in the liquid phase of a suspension.

  5. Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution.

    Science.gov (United States)

    Ji, Liangliang; Chen, Wei; Xu, Zhaoyi; Zheng, Shourong; Zhu, Dongqiang

    2013-01-01

    Graphenes are an emerging class of carbon nanomaterials whose adsorption properties toward organic compounds have not been well understood. In the present study, graphene nanosheets were prepared by reoxidation and abrupt heating of graphite oxide, which was prepared by sequential chemical oxidation of commercial nonporous graphite powder. Adsorption properties of three aromatic compounds (naphthalene, 2-naphthol, and 1-naphthylamine) and one pharmaceutical compound (tylosin) on graphene nanosheets and graphite oxide were examined to explore the potential of these two adsorbents for the removal of organic contaminants from aqueous solutions. Compared with the literature data of adsorption on carbon nanotubes, adsorption of bulky, flexible tylosin on graphene nanosheets exhibited markedly faster adsorption kinetics, which can be attributed to their opened-up layer structure. Graphene nanosheets and graphite oxide showed similar sequences of adsorption affinity: 1-naphthylamine > 2-naphthol > tylosin > naphthalene (with much larger differences observed on graphite oxide). It was proposed that the strong adsorption of the three aromatic compounds was mainly due to π-π electron donor-acceptor interactions with the graphitic surfaces of adsorbents. Additionally, Lewis acid-base interaction was likely an important factor contributing to the strong adsorption of 1-naphthylamine and tylosin, especially for the O-functionality-abundant graphite oxide. After being normalized on the basis of adsorbent surface area, adsorption affinities of all four tested adsorbates on graphene nanosheets were very close to those on nonporous graphite powder, reflecting complete accessibility of the adsorbent surface area in adsorption.

  6. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Baiyang [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Fugetsu, Bunshi, E-mail: hu@ees.hokudai.ac.jp [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Yu, Hongwen [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Abe, Yoshiteru [Kyoei Engineering Corporation, Niigata 959-1961 (Japan)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Prussian blue was sealed in cavities of diatomite using carbon nanotubes. Black-Right-Pointing-Pointer The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. Black-Right-Pointing-Pointer Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  7. Numerical Analysis on Adsorption Characteristics of Activated Carbon/Ethanol Pair in Finned Tube Type Adsorber

    Science.gov (United States)

    Makimoto, Naoya; Kariya, Keishi; Koyama, Shigeru

    The cycle performance of adsorption cooling system depends on the thermophysical properties of the adsorbent/refrigerant pair and configuration of the adsorber/desorber heat exchanger. In this study, a twodimensional analysis is carried out in order to clarify the performance of the finned tube type adsorber/desorber heat exchanger using a highly porous activated carbon powder (ACP)/ethanol pair. The simulation results show that the average cooling capacity per unit volume of adsorber/desorber heat exchanger and coefficient of performance (COP) can be improved by optimizing fin thickness, fin height, fin pitch and tube diameter. The performance of a single stage adsorption cooling system using ACP/ethanol pair is also compared with that of activated carbon fiber (ACF)/ethanol pair. It is found that the cooling capacities of each adsorbent/refrigerant pair increase with the decrease of adsorption/desorption time and the cooling capacity of ACP/ethanol pair is approximately 2.5 times as much as that of ACF/ethanol pair. It is also shown that COP of ACP/ethanol pair is superior to that of ACF/ethanol pair.

  8. Type of adsorbent and column height in adsorption process of used cooking oil

    Science.gov (United States)

    Hasnelly, Hervelly, Taufik, Yusman; Melany, Ivo Nila

    2015-12-01

    The purpose of this research was to find out the best adsorbent and column height that can adsorb color and soluble impurities substances in used cooking oil. This research was meant for knowledge development of refined cooking oil technology. The used of this research was giving out information on the recycling process of used cooking oil. Research design used 2 × 2 factorial pattern in randomized group design with 6 repetitions. The first factor is adsorbent type (J) that consist of activated carbon (J1) and Zeolit (J2). The second factor is column height (K) with variations of 15 cm (k1) and 20 cm (k2). Chemical analysis parameter are free fatty acid, water content and saponification value. Physical parameter measurement was done on color with Hunter Lab system analysis and viscosity using viscometer method. Chemical analysis result of preliminary research on used cooking oil showed water content of 1,9%, free fatty acid 1,58%, saponification value 130,79 mg KOH/g oil, viscosity 0,6 d Pas and color with L value of -27,60, a value 1,04 and b value 1,54. Result on main research showed that adsorbent type only gave effect on water content whereas column height and its interaction was not gave significant effect on water content. Interaction between adsorbent type (J) and column height (K) gave significant effect to free fatty acid, saponification value, viscosity and color for L, a and b value of recycled cooking oil.

  9. Desorption of isopropyl alcohol from adsorbent with non-thermal plasma.

    Science.gov (United States)

    Shiau, Chen Han; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2016-11-24

    Effective desorption of isopropyl alcohol (IPA) from adsorbents with non-thermal plasma is developed. In this system, IPA is effectively adsorbed with activated carbon while dielectric barrier discharge is applied to replace the conventional thermal desorption process to achieve good desorption efficiency, making the treatment equipment smaller in size. Various adsorbents including molecular sieves and activated carbon are evaluated for IPA adsorption capacity. The results indicate that BAC has the highest IPA adsorption capacity (280.31 mg IPA/g) under the operating conditions of room temperature, IPA of 400 ppm, and residence time of 0.283 s among 5 adsorbents tested. For the plasma desorption process, the IPA selectivity of 89% is achieved with BAC as N2 is used as desorbing gas. In addition, as air or O2 is used as desorbing gas, the IPA desorption concentration is reduced, because air and O2 plasmas generate active species to oxidize IPA to form acetone, CO2, and even CO. Furthermore, the results of the durability test indicate that the amount of IPA desorbed increases with increasing desorption times and plasma desorption process has a higher energy efficiency if compared with thermal desorption. Overall, this study indicates that non-thermal plasma is a viable process for removing VOCs to regenerate adsorbent.

  10. Study on Reactive Adsorption Desulfurization of Model Gasoline on Ni/ZnO-HY Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Huang Huan; Salissou M. Nour; Yi Dezhi; Meng Xuan; Shi Li

    2013-01-01

    The reactive adsorption desulfurization of model gasoline was carried out on Ni/ZnO-HY adsorbent. The Ni/ZnO-HY adsorbent was characterized by N2 adsorption-desorption test (BET), X-ray diffractometry (XRD), and tempera-ture-programmed reduction (TPR) analysis. The test results have demonstrated that HY-zeolite is a feasible support for Ni/ZnO components used in reactive adsorption desulfurization. The results of XRD and TPR analyses showed that most of nickel element was present as Ni2+species with only a small part existing as Ni3+species, and the Ni2+species had interac-tions with HY-zeolite. Under the conditions of this study, which speciifed a 50%ratio of HY-zeolite in the adsorbent, a Zn/Ni molar ratio of 10, and a reduction temperature of 400℃, the Ni/ZnO-HY adsorbent showed the best desulfurization per-formance. The sulfur capacity of Ni/ZnO-HY adsorbent could be recovered to 92.19%of the fresh one after being subjected to regeneration at 500℃, and could be maintained at 82.17%of the fresh one after 5 regeneration cycles.

  11. Esterified coir pith as an adsorbent for the removal of Co(II) from aqueous solution.

    Science.gov (United States)

    Parab, Harshala; Joshi, Shreeram; Shenoy, Niyoti; Lali, Arvind; Sarma, U S; Sudersanan, M

    2008-04-01

    Coir pith was chemically modified for the adsorption of cobalt(II) ions from aqueous solution. Chemical modification was done by esterification using succinic anhydride followed by activation with NaHCO(3) in order to improve the adsorption of Co(II). Adsorptive removal of Co(II) from aqueous solution onto modified coir pith was evaluated in batch studies under varying conditions of agitation time and metal ion concentration to assess the kinetic and equilibrium parameters. A pseudo-second-order kinetic model fitted well for the sorption of Co(II) onto modified coir pith. Sorption kinetics showed that the loading of Co(II) by this material was quite fast under ambient conditions. The Langmuir and Freundlich equilibrium isotherm models provided excellent fits for the adsorption data, with R(2) of 0.99 and 0.98, respectively. After esterification, the maximum Co(II) sorption loading Q(0); was greatly improved. It is evident that chemically modified adsorbent exhibits better Co(II) removal capability than raw adsorbent suggesting that surface modification of the adsorbent generates more adsorption sites on its solid surface for metal adsorption. A complete recovery of the adsorbed metal ions from the spent adsorbent was achieved by using 1.0N HCl.

  12. Silica-templated melamine-formaldehyde resin derived adsorbents for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    C. Pevida; T.C. Drage; C.E. Snape [University of Nottingham, Nottingham (United Kingdom). School of Chemical and Environmental Engineering

    2008-09-15

    Adsorption on porous solids is an emerging alternative for CO{sub 2} capture that seeks to reduce the costs associated to the capture step. The enhancement of a specific adsorption capacity may be carried out by increasing the affinity of the adsorbent surface to CO{sub 2}. Nitrogen enrichment is reported to be effective in introducing basic functionalties that enhances the specific adsorbent-adsorbate interaction for CO{sub 2}. In this work a templating technique was used to produce highly porous nitrogen enriched carbons from melamine-formaldehyde resins. Nitrogen incorporated into the polymer matrix results in the greater stability of the adsorbents in terms of volatile and thermal loss of nitrogen. CO{sub 2} capture performances were evaluated between 25{sup o}C and 75{sup o}C in a thermobalance. CO{sub 2} adsorption capacities up to 2.25 mmol g{sup -1} of CO{sub 2} at 25{sup o}C were achieved. Both texture and surface chemistry influence the CO{sub 2} capture performance of the adsorbents. The carbonisation temperature used during the synthesis step controls the nitrogen functional groups present, as determined by XPS, with the loss of triazine nitrogen with increasing carbonisation temperature proposed to account for the decreased CO{sub 2} affinity.

  13. Synthesis of novel aminated cellulose microsphere adsorbent for efficient Cr(VI) removal

    Science.gov (United States)

    Yu, Tianlin; Liu, Siqi; Xu, Min; Peng, Jing; Li, Jiuqiang; Zhai, Maolin

    2016-08-01

    A novel aminated cellulose microsphere adsorbent (CVN) was successfully prepared by radiation-induced graft polymerization of vinylbenzyl chloride (VBC) onto cellulose microsphere (CMS), followed by amination. Micro-FTIR, XPS and SEM confirmed the structure of CVN. The adsorption behavior of Cr(VI) onto CVN from solution was well fitted by the pseudo-second order kinetic model. The isothermal adsorption of Cr(VI) was observed at pH 4.68 with adsorption capacity of 129 mg/g in accordance with Langmuir thermal model, and the removal of Cr(VI) from solution could be 91% at a low amount (20 mg) of adsorbent. The best pH for adsorption of Cr(VI) was nearly 3.08, and with the increasing of temperature, the adsorption capacity of Cr(VI) increased. XPS analysis confirmed the adsorption mechanism of Cr(VI) was ion-exchange mechanism, while common co-ions such as Na+, Mg2+, Cu2+, Ca2+, Zn2+, Ni2+, Cl-, NO3- has no significant effect on the adsorption capacity of Cr(VI), and the Cr(VI) removal of 80% still could be obtained compared with that of fresh CVN adsorbent. Finally, spent CVN could be regenerated under 2 mol/L NaCl. The work indicated that aminated cellulose adsorbent could be prepared successfully by radiation-induced grafting and amination and CVN is a promising bio-adsorbent in the removing Cr(VI) from waste water.

  14. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

    Science.gov (United States)

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-08-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g-1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

  15. Numerical Study on the Contribution of Convective Mass Transfer Inside High-Porosity Adsorbents in the VOC Adsorption Process

    DEFF Research Database (Denmark)

    Zhang, Ge; He, Wenna; Fang, Lei;

    2013-01-01

    The transfer mechanism of volatile organic compounds (VOCs) being trapped inside the various types of adsorbents is usually regarded as mere diffusion. This paper investigated the contribution of convective mass transfer inside the adsorbents used for VOC air-cleaning. The adsorbents are typically...... characterized by their high porosity and thickness which can be as thin as hundreds of microns. By numerical simulation, it was found that the air flow could penetrate the adsorbent matrix when the porosity was high. When the porosity is about 0.7 or even higher, the velocity profile inside the adsorbent...... and cavity would form, approximately, a consecutive parabola. The convective mass transfer inside the adsorbents would have little impact on the axial VOC transfer but could affect the average adsorption rate significantly at high porosities. The Peclet number Pe which is based on the inlet velocity...

  16. Mechanism of dialkyl phthalates removal from aqueous solution using γ-cyclodextrin and starch based polyurethane polymer adsorbents.

    Science.gov (United States)

    Okoli, Chukwunonso Peter; Adewuyi, Gregory Olufemi; Zhang, Qian; Diagboya, Paul N; Guo, Qingjun

    2014-12-19

    Phthalate esters have been known as potent endocrine disruptors and carcinogens; and their removal from water have been of considerable concern recently. In the present study, γ-cyclodextrin polyurethane polymer (GPP), γ-cyclodextrin/starch polyurethane copolymer (GSP), and starch polyurethane polymer (SPP) have been synthesized and characterized. Their adsorption efficiencies for the removal of dimethyl phthalate (DMP) and diethyl phthalate (DEP) from aqueous solutions were investigated. The characterization results showed the success of the synthesis. The isotherms were L-type, and both the Langmuir and Freundlich adsorption isotherm gave good fittings to the adsorption data. Adsorption mechanisms suggested that these adsorbents spontaneously adsorb phthalate molecules driven mainly by enthalpy change, and the adsorption process was attributed to multiple adsorbent-adsorbate interactions such as hydrogen bonding, π-π stacking, and pore filling. The results showed that starch and γ-cyclodextrin polyurethane polymer adsorbents have excellent potential as adsorbent materials for the removal of phthalates from the contaminated water.

  17. Presence of an adsorbent cake layer improves the performance of gravity-driven membrane (GDM) filtration system.

    Science.gov (United States)

    Shao, Senlin; Feng, Yijing; Yu, Huarong; Li, Jiangyun; Li, Guibai; Liang, Heng

    2017-01-01

    Gravity-driven membrane (GDM) filtration is a promising decentralized drinking water treatment process. To improve the performance of GDM system, a thin layer of adsorbent was pre-deposited on the membrane surface prior to filtration (adsorbent-laden GDM system). The tested adsorbents include powdered activated carbon (PAC) and anion exchange resin (AER), and an unmodified GDM system and a SiO2-laden GDM system were used as controls. In the adsorbent-laden GDM systems, the adsorption of the PAC and AER increased the removal efficiency of natural organic matter by 7.2-43.5% and microcystin-LR, atrazine, and bisphenol A by 7.9-81.2%. The presence of adsorbent particles increased the amount of microorganisms in the cake layer and therefore increased the removal efficiency of assimilable organic matter (AOC) by 20.1-34.4%. In the adsorbent-laden GDM systems, the physically irrecoverable fouling decreased because of the reduction in membrane foulants by the adsorbent layer. However, the presence of adsorbent particles in the cake layer counteracted this effect and increased the physically recoverable fouling. Consequently, the pre-deposited adsorbent layers had only a limited effect on the stabilized flux (2.26-2.65 L/m(2) h). A bilayer structure was found in the cake layer of the adsorbent-laden GDM systems via scanning electron microscopy (SEM), and the cake layer was looser in the presence of adsorbent particles. These results demonstrate that pre-depositing a thin layer of adsorbents on the membrane surface of the GDM system can significantly improve the quality of the permeate without decreasing the stabilized flux.

  18. Experimental study and modelling of competitive adsorption equilibria of aromatics in liquid phase on X and Y faujasites; Etude experimentale et modelisation des equilibres d'adsorption competitive d'aromatiques en phase liquide sur des faujasites X et Y

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, H.

    2000-10-13

    The separation of p-xylene from C{sub 8} aromatics is performed industrially by selective adsorption on zeolitic molecular sieves. The aim of this work is to study and model adsorption equilibria of C{sub 8} and C{sub 10} aromatics on X and Y zeolites. The experimental data are obtained by an entirely automated equipment allowing to work in a large range of temperature (50 deg. C - 250 deg. C). With this equipment, we can follow the evolution of the composition of the liquid phase and determine the composition of the adsorbed phase at equilibrium by a mass balance calculation and with an inert component. Two analytical techniques are used to determine the composition of the liquid phase: (1) a classical method using a gas chromatograph (GC) allowed to measure selectivities in the concentration range (3%-97%) in a component; (2) an original method based on the use and on the measure of {sup 13}C labelled xylenes was developed to investigate the ranges of strongly contrasting concentrations [0-3%] and [97%-100%] in a component, which are representative of high purity domains. Lastly, three thermodynamic models are used to describe the adsorption equilibria: the Langmuir-Freundlich model, the quasi-chemical model and the statistical model. The last model is the more interesting, because it is based on physical considerations. A new statistical model has been developed with taking into account some observations coming from adsorption phenomenon in zeolites. (author)

  19. Experimental and theoretical studies of L-cysteine adsorbed at Ag(1 1 1) electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E.; Avalle, L. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina); Poetting, K.; Jones, H. [University of Ulm, 89069 Ulm (Germany); Velez, P. [Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina)

    2008-10-01

    We have investigated L-cysteine adsorbed on Ag(1 1 1) electrodes under different conditions. We have employed experimental and theoretical approaches to obtain a better understanding of the adsorbed layer. An estimation of the coverage from charge measurements and the second harmonic response shows C{sub 3v} symmetry for the interface indicating a ({radical}3 x {radical}3)R 30 overlayer. The theoretical calculations show a variety of different structures with local adsorption energy minima. Particularly, under special initial conditions, zwitterionic structures adsorbed at different sites have been found. This can account for the multiplicity of redox processes observed experimentally below the potential of zero charge. The presence of an external field produces the stabilization of the zwitterion by interaction of the amino/carboxylic groups with the substrate. (author)

  20. Properties and potential environmental applications of carbon adsorbents from waste tire rubber

    Science.gov (United States)

    Lehmann, C.M.B.; Rameriz, D.; Rood, M.J.; Rostam-Abadi, M.

    2000-01-01

    The properties of tire-derived carbon adsorbents (TDCA) produced from select tire chars were compared with those derived from an Illinois coal and pistachio nut shells. Chemical analyses of the TDCA indicated that these materials contain metallic elements not present in coal-and nut shell-derived carbons. These metals, introduced during the production of tire rubber, potentially catalyze steam gasification reactions of tire char. TDCA carbons contained larger meso-and macopore volumes than their counterparts derived from coal and nut shell (on the moisture-and ash-free-basis). Adsorptive properties of the tire-derived adsorbent carbons for air separation, gas storage, and gas clean up were also evaluated and compared with those of the coal-and nut shell derived carbons as well as a commercial activated carbon. The results revealed that TDCA carbons are suitable adsorbents for removing vapor-phase mercury from combustion flue gases and hazardous organic compounds from industrial gas streams.

  1. Preparation of Ammonia Adsorbent by Carbonizing and Activating Mixture of Biomass Material and Hygroscopic Salt

    Institute of Scientific and Technical Information of China (English)

    LONG Zhen; BU Xianbiao; LU Zhenneng; LI Huashan; MA Weibin

    2015-01-01

    We put forward a new and ingenious method for the preparation of a new adsorbent by soaking, carbonizing and activating the mixture of hygroscopic salt and biomass material. The new adsorbent has high porosity, uniform distribution and high content of CaCl2, and exhibits high adsorption performance. The ammonia uptake and specific cooling power (SCP) at 5 min adsorption time can reach as high as 0.19 g•g-1 and 793.9 W•kg-1, respectively. The concept of utilizing the biomass materials and hygroscopic salts as raw materials for the preparation of adsorbents is of practical interest with respect to the potential quantity of biomass materials around the world, indicating that there would be a new market for biomass materials.

  2. Utilization of granular activated carbon adsorber for nitrates removal from groundwater of the Cluj region.

    Science.gov (United States)

    Moşneag, Silvia C; Popescu, Violeta; Dinescu, Adrian; Borodi, George

    2013-01-01

    The level of nitrates from groundwater from Cluj County and other areas from Romania have increased values, exceeding or getting close to the allowed limit values, putting in danger human and animal heath. In this study we used granular activated carbon adsorbent (GAC) for nitrate (NO(-)3) removal for the production of drinking water from groundwater of the Cluj county. The influences of the contact time, nitrate initial concentration, and adsorbent concentration have been studied. We determined the equilibrium adsorption capacity of GAC, used for NO(-)3 removal and we applied the Langmuir and Freundlich isotherm models. Ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy, X ray diffraction (XRD), Scanning Electron Microscopy (SEM) were used for process characterization. We also determined: pH, conductivity, Total Dissolved Solids and Total Hardness. The GAC adsorbents have excellent capacities of removing nitrate from groundwater from Cluj County areas.

  3. Effect of adsorbed water on the ultrasonic velocity in alumina powder compacts

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.P.; Poret, J.C.; Rosen, M. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Mater. Sci. and Eng.; Danon, A. [Nuclear Research Centre-Negev, Chemistry Division, P.O. Box 9001, Beer-Sheva (Israel)

    1998-08-31

    The presence of surface adsorbed water has been found to significantly increase the apparent elastic properties of unsintered alumina powder compacts. It is proposed that the increase in the elastic moduli results from the formation of `interparticle bridges` between adjacent particles and, thus, increased effective interparticle contact area. The effects upon the elastic moduli in the unsintered powder compacts were monitored by measurement of the changes in the ultrasonic velocity. The ultrasonic data are consistent with thermogravimetric analysis and mass spectrometry results which indicate the presence of multiple adsorbed water species. Understanding the effect of adsorbed water on the processing characteristics of ceramic powders may lead to better process control during green state consolidation and ultimately to higher quality sintered products. (orig.) 29 refs.

  4. Synthesis of Novel Chelating Adsorbents for Boron Uptake from Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    王丽那; 齐涛; 张懿

    2006-01-01

    Two kinds of novel chelating adsorbents have been synthesized to separate boron from aqueous solutions. One is the boron-specific chelating resin, synthesized by the functionalization of macroporous poly (glycidyl methacrylate-cotrimethylolpropane trimethacrylate), with N-methylglucamine. The other is the organic-inorganic hybrid mesoporous SBA-15 with polyol functional groups, prepared by a two-step post-grafting method. The resin can adsorb boron in almost all pH range, and its maximum uptake capacity reaches 1.15 mmol/g. The present study of the polyol-functionalized SBA-15 shows that the post-grafting is successful and the resulting adsorbent has the uptake capacity of 0.63 mmol/g.

  5. Nanopatterning of adsorbed 3-aminepropyltriethyoxysilane film by an atomic force microscopy tip

    Science.gov (United States)

    Wang, L.; Sun, Y.; Li, Z.

    2010-11-01

    In this work, we demonstrated a simple route to pattern nanostructures on the 3-aminopropyltriethoxysilane (APTES) film adsorbed on mica using nanolithography technology. Various nanopatterns (linear, foursquare and triangular) could be achieved by controlling and designing the scanning direction of AFM tip. Also, it was found that the adsorbed APTES film could be induced to rearrange into a bilayer structure. The parameters for the formation of nanostructures were investigated by contact mode atomic force microscopy (AFM). The results indicated that the height of the nanopatterns built on the adsorbed film increased with the decrease of the depth of a tip pushed in. The driving force for the formation of nanopatterns is the combination of the capillarity and inducement action of a tip to APTES molecules. The results presented in this work will improve our understanding to the formation process of short-chain alkoxysilane molecular bilayer and multilayer on mica in a position-selective way.

  6. Removal of Anionic Metal Ions from Wastewater by Hydroxide-type Adsorbents

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Generally speaking, anionic metal concentrations in wastewater from industries and mineral processing plants are well above the allowed limits for effluent set by the Ministry of Environment of Japan. Nowadays, the removal of anionic ions has been considered difficult and development of new process is desperately needed. In this paper, we report the development of three hydroxide-type adsorbents, illustrating their adsorption efficiency in removing As, Se, Mo and Sb ions from aqueous solutions. The main finding of this work was that the adsorption behavior was influenced very much by both the pH and the adsorbent concentration. Nevertheless, the newly developed hydroxide-type adsorbents were very effective in reducing the concentration of those anionic ions.

  7. Effect of Aluminum Source on Adsorption Performance of Lithium Orthosilicate Based Adsorbents from Kaolin Clay

    Institute of Scientific and Technical Information of China (English)

    XIE; Hongyan; DING; Tong; LI; Yulong; MA; Zhi; CHEN; Weiqiang

    2015-01-01

    A novel lithium orthosilicate based adsorbent doping with halloysite nanotubes(HNTs) was synthesized with Kaolin clay and SiO2 by an impregnation-precipitation method.The samples were characterized by X-ray diffraction and scanning electron microscopy,nitrogen adsorption-desorption isotherm analysis and thermo-gravimetry,respectively.The results indicate that the reactivity of Li4SiO4 for CO2 absorption can be enhanced by doping alumina.Different aluminum sources result in different degrees of the CO2 adsorption performance.It is also found that the CO2 capture amount of the adsorbent doping with Halloysite nanotubes is 15.25 wt.%at 560 ℃,which is better than that of the adsorbent doping with γ-Al2O3(i.e.,10.88 wt.%).

  8. Adsorption interference in mixtures of trace contaminants flowing through activated carbon adsorber beds

    Science.gov (United States)

    Madey, R.; Photinos, P. J.

    1980-01-01

    Adsorption interference in binary and ternary mixtures of trace contaminants in a helium carrier gas flowing through activated carbon adsorber beds are studied. The isothermal transmission, which is the ratio of the outlet to the inlet concentration, of each component is measured. Interference between co-adsorbing gases occurs when the components are adsorbed strongly. Displacement of one component by another is manifested by a transmission greater than unity for the displaced component over some range of eluted volume. Interference is evidenced not only by a reduction of the adsorption capacity of each component in the mixture in comparison with the value obtained in a single-component experiment, but also by a change in the slope of the transmission curve of each component experiment.

  9. Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jiyeon; Gill, Gary A.; Strivens, Jonathan E.; Kuo, Li-Jung; Jeters, Robert T.; Avila, Andrew; Wood, Jordana R.; Schlafer, Nicholas J.; Janke, Christopher J.; Miller, Erin A.; Thomas, Mathew; Addleman, Raymond S.; Bonheyo, George T.

    2016-01-27

    The Marine Science Laboratory at the Pacific Northwest National Laboratory evaluated the impact of biofouling on uranium adsorbent performance. A surface modified polyethylene adsorbent fiber provided by Oak Ridge National Laboratory, AF adsorbent, was tested either in the presence or absence of light to simulate deployment in shallow or deep marine environments. 42-day exposure tests in column and flume settings showed decreased uranium uptake by biofouling. Uranium uptake was reduced by up to 30 %, in the presence of simulated sunlight, which also increased biomass accumulation and altered the microbial community composition on the fibers. These results suggest that deployment below the photic zone would mitigate the effects of biofouling, resulting in greater yields of uranium extracted from seawater.

  10. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    Science.gov (United States)

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators.

  11. Removal of lead from aqueous solutions by condensed tannin gel adsorbent

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Lead has caused serious environmental pollution due toits toxicity, accumulation in food chains and persistence innature. In this paper, lead removal from aqueous solutions wasinvestigated using condensed tannin gel adsorbent synthesized froma natural tannin compound. It is found that the adsorption isstrongly affected by pH values of aqueous solutions. Within pHrange of 3.5-6, when initial lead concentration is 100 mg/L,removal efficiency is more than 90%. Adsorption equilibrium isreached within 150 minutes. The adsorption isotherm fits well withthe Langmuir equation, by which the saturated adsorption uptake of190 mg Pb2+/g dry tannin gel adsorbent is obtained. By means of thermodynamics analysis, it is revealed that the process isexothermic and the adsorption heat is up to 38.4 kJ/mol. Withrespect to high efficiency, moderate pH requirement and minimizedsecond pollution, the tannin gel adsorbent exhibits a promisingpotential in the removal of lead from wastewater.

  12. Quantitative analysis of Cu and Co adsorbed on fish bones via laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rezk, R. A.; Galmed, A. H.; Abdelkreem, M.; Ghany, N. A. Abdel; Harith, M. A.

    2016-09-01

    In the present work, laser-induced breakdown spectroscopy (LIBS) has been applied for qualitative and quantitative analysis of heavy metals adsorbed by fish bones. Fish bones were used as a natural and low cost heavy metal sorbent (mainly Cu and Co) from synthetic wastewater. The removal efficiency of the adsorbent was studied as a function of initial metal concentration and pH value. Optimal experimental conditions were evaluated for improving the sensitivity of LIBS technique through parametric dependence studies. Furthermore, calibration curves were constructed based on X-ray fluorescence (XRF) analysis technique, whereas, the limits of detection (LOD) for Cu and Co were calculated. The results were validated by comparing LIBS data with those obtained by XRF spectrometry. The results of the two techniques are strongly correlated which verified the feasibility of using LIBS to detect traces of heavy metals adsorbed from wastewater by fish bones. This study reflects the potential of using LIBS in environmental applications.

  13. The Use of Amberlite Adsorbents for Green Chromatography Determination of Volatile Organic Compounds in Air

    Directory of Open Access Journals (Sweden)

    Luis Juan-Peiró

    2012-01-01

    Full Text Available Passive samplers have been widely used for volatile organic compounds determination. Following the green chemistry tendency of the direct determination of adsorbed compounds in membrane-based devices through using head space direct chromatography analysis, this work has evaluated the use of Amberlite XAD-2, XAD-4, and XAD-16 adsorbents as a filling material for passive samplers. Direct analysis of the membranes by HS-GC-MS involves a solvent-free method avoiding any sample treatment. For exposed membranes, recoveries ranged from 10% to 203%, depending on the compound and adsorbent used. The limit of the detection values ranged from 1 to 140 ng per sampler. Acceptable precision and sensitivity levels were obtained for the XAD resins assayed.

  14. Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Yafen Lin; Huawei Chen; Kaelong Lin; Boryann Chen; Chyowsan Chiou

    2011-01-01

    A magnetic adsorbent can be easily recovered from treated water by magnetic force, without requiring further downstream treatment.In this research, amine-functionalized silica magnetite has been synthesized using N-[3-(trimethoxysilyl)propyl]-ethylenediamine (TPED) as a surface modification agent.The synthesized magnetic amine adsorbents were used to adsorb copper ions in an aqueous solution in a batch system, and the maximum adsorption was found to occur at pH 5.5 ± 0.1.The adsorption equilibrium data fitted the Langmuir isotherm equation reasonably well, with a maximum adsorption capacity of 10.41 mg/g.A pseudo second-order model could best describe the adsorption kinetics, and the derived activation energy was 26.92 kJ/mol.The optimum condition to desorb Cu2+ from NH2/SiO2/Fe3O4 was provided by a solution with 0.1 mol/L HNO3.

  15. Effect of Aluminum Source on Adsorption Performance of Lithium Orthosilicate Based Adsorbents from Kaolin Clay

    Institute of Scientific and Technical Information of China (English)

    XIE Hongyan; DING Tong; LI Yulong; MA Zhi; CHEN Weiqiang

    2015-01-01

    A novel lithium orthosilicate based adsorbent doping with halloysite nanotubes (HNTs) was synthesized with Kaolin clay and SiO2 by an impregnation-precipitation method. The samples were characterized by X-ray diffraction and scanning electron microscopy, nitrogen adsorption-desorption isotherm analysis and thermo-gravimetry, respectively. The results indicate that the reactivity of Li4SiO4 for CO2 absorption can be enhanced by doping alumina. Different alu-minum sources result in different degrees of the CO2 adsorption performance. It is also found that the CO2 capture amount of the adsorbent doping with Halloysite nanotubes is 15.25wt.% at 560℃, which is better than that of the ad-sorbent doping withγ-Al2O3(i.e., 10.88wt.%).

  16. Preparation of metal adsorbent from poly(methyl acrylate)-grafted-cassava starch via gamma irradiation

    Science.gov (United States)

    Suwanmala, Phiriyatorn; Hemvichian, Kasinee; Hoshina, Hiroyuki; Srinuttrakul, Wannee; Seko, Noriaki

    2012-08-01

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption.

  17. Removal of Indigo Carmine Dye from Aqueous Solution Using Magnesium Hydroxide as an Adsorbent

    Directory of Open Access Journals (Sweden)

    Thimmasandra Narayan Ramesh

    2015-01-01

    Full Text Available Magnesium hydroxide is used as an adsorbent for the removal of indigo carmine dye from aqueous solution. We have investigated the effectiveness of removal of indigo carmine dye from aqueous solutions at pH 6-7 and 12-13 using magnesium hydroxide thereby varying the dose of the adsorbent, concentration of the dye, duration, and temperature. Structural transformations of adsorbent during the adsorption process at different pH values are monitored using powder X-ray diffraction and infrared spectroscopy. Different types of adsorption isotherm models were evaluated and it was found that Langmuir isotherm fits well at both pH values (6-7 and 12-13. Adsorption of indigo carmine onto magnesium hydroxide at pH 6-7/pH 12-13 follows pseudo-second order rate kinetics.

  18. Citrus paradisi: An Effective bio-adsorbent for Arsenic (V Remediation

    Directory of Open Access Journals (Sweden)

    Mazhar I. Khaskheli

    2014-06-01

    Full Text Available In the present study As (V was removed by citrus paradisi (grape fruit peel. Kinetics of the adsorption reaction was analyzed by the Pseudo second order and Morris-weber equations. Freundlich and Langmuir isotherm models were utilized for understanding of the relationship between the arsenic ions and citrus paradisi peel adsorbent. The maximum measured uptake capacity of citrus paradisi was 37.76 mg.g-1 at pH 4. FT-IR characterization of unloaded and As (V loaded citrus paradisi peel adsorbent showed the participation of carbonyl (CO and hydroxyl (OH groups in adsorption process. The proposed citrus paradisi peel adsorbent with optimized parameters was used for the removal of arsenic from arsenic contaminated real water samples.

  19. WGS-Adsorbent Reaction Studies at Laboratory Scale; Estudios de la Reaccion WGS-Adsorbente a Escala de Laboratorio

    Energy Technology Data Exchange (ETDEWEB)

    Marano, M.; Torreiro, Y.

    2014-02-01

    This document reports the most significant results obtained during the experimental work performed under task WGS-adsorbent experimental studies within CAPHIGAS project (National Research Plan 2008-2011, ref: ENE2009-08002). The behavior of the binary adsorbent-catalyst system which will be used in the hybrid system is described in this document. Main results reported here were used during the design and development of the hybrid system adsorbent catalyst- membrane proposed in the CAPHIGAS project. The influence of main operating parameters and the optimized volume ratio adsorbent-catalyst are also presented in this report. (Author)

  20. Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell.

    Science.gov (United States)

    Sigot, Léa; Ducom, Gaëlle; Benadda, Belkacem; Labouré, Claire

    2016-01-01

    Biogas contains trace compounds detrimental for solid oxide fuel cell (SOFC) application, especially sulphur-containing compounds and volatile organic silicon compounds (VOSiCs). It is therefore necessary to remove these impurities from the biogas for fuelling an SOFC. In this paper, dynamic lab-scale adsorption tests were performed on synthetic polluted gas to evaluate the performance of a polishing treatment to remove hydrogen sulphide (H2S - sulphur compound) and octamethylcyclotetrasiloxane (D4 - VOSiC). Three kinds of adsorbents were tested: an activated carbon, a silica gel (SG) and a zeolite (Z). Z proved to be the best adsorbent for H2S removal, with an adsorbed quantity higher than [Formula: see text] at the SOFC tolerance limit. However, as concerns D4 removal, SG was the most efficient adsorbent, with an adsorbed quantity of about 184 mgD4/gSG at the SOFC tolerance limit. These results could not be explained by structural characteristics of the adsorbents, but they were partly explained by chemical interactions between the adsorbate and the adsorbent. In these experiments, internal diffusion was the controlling step, Knudsen diffusion being predominant to molecular diffusion. As Z was also a good adsorbent for D4 removal, competition phenomena were investigated with Z for the simultaneous removal of H2S and D4. It was shown that H2S retention was dramatically decreased in the presence of D4, probably due to D4 polymerization resulting in pore blocking.

  1. Adsorbents made from waste ashes and post-consumer PET and their potential utilization in wastewater treatment.

    Science.gov (United States)

    Zhang, Fu-Shen; Itoh, Hideaki

    2003-08-01

    This study was carried out to prepare low-cost adsorbents from different types of waste ashes and post-consumer PET for use in industrial wastewater treatment. PET was melted and blended with ashes. The mixture was then carbonized to form different types of adsorbents. Heavy metal leaching from the adsorbents was greatly reduced compared to leaching from the bulk ashes. The BET surface area of the adsorbents ranged from 115 to 485m(2)/g. The acidic sites on the adsorbents varied from 0.84 to 1.56meq./g, higher than that of the PET carbon. The adsorption of methylene blue (MB) or heavy metals on the adsorbents was not in accordance with their surface areas because acidic sites reaction, affinity adsorption and cation exchange all contribute to the adsorption of the adsorbents. The isotherm for MB adsorption on the adsorbents can be well described by the Langmuir or Freundlich equation but heavy metal adsorption cannot. It is believed that the adsorbents produced in this manner can be used in wastewater treatments for discoloration and heavy metal removal.

  2. Investigation of Performances and Mechanism of Fluoride Removal by Fe(Ⅲ)-Loaded Ligand Exchange Cotton Cellulose Adsorbent

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ya-ping; LI Xiu-yan; LIU Lu; CHEN Fu-hua

    2005-01-01

    Novel adsorbent, Fe( Ⅲ )-loaded ligand exchange cotton cellulose adsorbent [Fe(Ⅲ)LECCA], was used to investigate the adsorption performances and mechanism of fluoride removal from aqueous solutions. The adsorbent was found to adsorb fluoride rapidly and effectively. The fluoride removal was influenced by pH. Adsorption mode followed first-order reaction at different temperature, theapparent adsorption maximal integer coordination ratio of fluoride with Fe (Ⅲ)LECCA was 3: 1. The ligand exchange mechanism of adsorption was elucidated through chemical methods and IR spectral analysis.

  3. To-date spacecraft applications and demonstration testing results, and future product development for new molecular adsorber technologies

    Science.gov (United States)

    Thomson, Shaun; Hansen, Patricia; Straka, Sharon; Chen, Philip; Triolo, Jack; Bettini, Ron; Carosso, Paolo; Carosso, Nancy

    1997-01-01

    The use of molecular adsorbers, in order to aid in the reduction of the spacecraft contamination levels, is discussed. Molecular adsorbers are characterized by an extremely large surface area, molecularly-porous substructure, and processing charged sites capable of retaining molecular contaminant species. Molecular adsorbers were applied on two Hubble Space Telescope servicing missions, as well as on the tropical rainfall measuring mission. The use of molecular adsorbers carries the potential for low cost, easy fabrication and integration of reliable means for reducing the contamination level around spacecraft.

  4. Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Piotrowo 3, 60-965 Poznań (Poland); Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2014-08-01

    The removal of two selected environmental pollutants such as 2,4-dichlorophenoxyacetic acid (2,4-D) and Triclosan (TC) was examined by adsorption experiments on the modified SBA-15 and MCF mesoporous silicas. Mesoporous adsorbents were modified by a grafting process with (3-aminopropyl)triethoxysilane (APTES) and 1-[3-(trimethoxysilyl)propyl]urea (TMSPU). Mesoporous materials were synthesized and characterized by N{sub 2} adsorption–desorption experiment, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis and adsorption studies. The results show that both APTES-functionalized SBA-15 and MCF nanoporous carriers are potentially good adsorbents for the removal of 2,4-D in a wide range of concentrations from 0.1 to 4 mg/cm{sup 3}. Maximum adsorption capacity of as-modified adsorbents for 2,4-D estimated from the Langmuir model was ∼ 280 mg/g. The ionic interaction between the adsorbent and 2,4-D seems to play a key role in the adsorption process of the pollutant on APTES-modified siliceous matrices. The efficiency of TC sorption onto all prepared mesoporous adsorbents was significantly lower as compared to the entrapment of 2,4-D. Experimental data were best fitted by the Langmuir isotherm model. The results of this study suggest that mesoporous silica-based materials are promising adsorbents for the removal of selected organic pollutants. - Graphical abstract: Adsorption of 2,4-dichlorophenoxyacetic acid and Triclosan inside 3-amino-functionalized mesoporous channel.

  5. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity.

    Science.gov (United States)

    Hokkanen, Sanna; Bhatnagar, Amit; Sillanpää, Mika

    2016-03-15

    In recent decades, increased domestic, agricultural and industrial activities worldwide have led to the release of various pollutants, such as toxic heavy metals, inorganic anions, organics, micropollutants and nutrients into the aquatic environment. The removal of these wide varieties of pollutants for better quality of water for various activities is an emerging issue and a robust and eco-friendly treatment technology is needed for the purpose. It is well known that cellulosic materials can be obtained from various natural sources and can be employed as cheap adsorbents. Their adsorption capacities for heavy metal ions and other aquatic pollutants can be significantly affected upon chemical treatment. In general, chemically modified cellulose exhibits higher adsorption capacities for various aquatic pollutants than their unmodified forms. Numerous chemicals have been used for cellulose modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. This paper reviews the current state of research on the use of cellulose, a naturally occurring material, its modified forms and their efficacy as adsorbents for the removal of various pollutants from waste streams. In this review, an extensive list of various cellulose-based adsorbents from literature has been compiled and their adsorption capacities under various conditions for the removal of various pollutants, as available in the literature, are presented along with highlighting and discussing the key advancement on the preparation of cellulose-based adsorbents. It is evident from the literature survey presented herein that modified cellulose-based adsorbents exhibit good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of these adsorbents on a commercial scale, leading to the improvement of pollution control.

  6. In situ modification of chromatography adsorbents using cold atmospheric pressure plasmas

    Science.gov (United States)

    Olszewski, P.; Willett, T. C.; Theodosiou, E.; Thomas, O. R. T.; Walsh, J. L.

    2013-05-01

    Efficient manufacturing of increasingly sophisticated biopharmaceuticals requires the development of new breeds of chromatographic materials featuring two or more layers, with each layer affording different functions. This letter reports the in situ modification of a commercial beaded anion exchange adsorbent using atmospheric pressure plasma generated within gas bubbles. The results show that exposure to He-O2 plasma in this way yields significant reductions in the surface binding of plasmid DNA to the adsorbent exterior, with minimal loss of core protein binding capacity; thus, a bi-layered chromatography material exhibiting both size excluding and anion exchange functionalities within the same bead is produced.

  7. The biogeochemical cycle of the adsorbed template. I - formation of the template

    Science.gov (United States)

    Lazard, Daniel; Lahav, Noam; Orenberg, J. B.

    1987-01-01

    Experimental results are presented for the verification of the first adsorption step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The adsorption of Poly-C, Poly-U, Poly-A, Poly-G, and 5'-AMP, 5'-GMP, 5'-CMP and 5'-UMP onto gypsum was studied. It was found that under the conditions of the experiment, the polymers have a very high affinity for the mineral surface, while the monomers adsorb much less efficiently.

  8. Adsorption and film growth of BTA on clean and oxygen adsorbed Cu(110) surfaces

    Science.gov (United States)

    Cho, Kyehyun; Kishimoto, J.; Hashizume, T.; Pickering, H. W.; Sakurai, T.

    1995-03-01

    Benzotriazole (BTA) adsorption on clean Cu(110) and oxygen reconstructed Cu(110)-2 × 1 and c(6 × 2) surfaces has been investigated by scanning tunneling microscopy (STM). The STM images show that BTA forms the c(4 × 2) commensurate phase on the clean Cu(110)-1 × 1 surface. On the other hand, STM images of BTA adsorbed on the oxygen-induced Cu(110)-2 × 1 surface show a fully disordered structure. From a kinetic point of view, BTA molecules should adsorb preferentially on the oxygen-induced Cu(110)-2 × 1 added row compared to the clean Cu(110) surface.

  9. A reexamination of the effects of adsorbates on the Raman spectrum of gibbsite.

    Science.gov (United States)

    Cunningham, K.W.; Goldberg, M.C.

    1983-01-01

    Previous workers have attributed substantial changes in the Raman intensities of the OH stretching bands in solid, powdered gibbsite of surface area 10 m2/g to surface interactions with the adsorbates 093Ca2+,HxPO43x- and SiO2.xH2O. These changes apparently resulted from an unsatisfactory Raman measurement procedure as a re-examination using an internal intensity standard (Na2C2O4 crystals) with gibbsite of surface area 39 m2/g showed no significant changes in the low-frequency band-height ratios of gibbsite and adsorbates.-D.J.M.

  10. Theoretical analysis of coverage-dependent rotational hindrance of PF 3 adsorbed on Ru(001)

    Science.gov (United States)

    Kaji, H.; Kakitani, K.; Yagi, Y.; Yoshimori, A.

    1996-08-01

    Distribution of the azimuthal orientation of PF 3 molecules adsorbed on Ru(001) measured by ESDIAD shows interesting temperature and coverage dependences. It is interpreted in this analysis as due to the short range order in the locative distribution of the PF 3 molecules. Monte Carlo simulations are performed to obtain the temperature and coverage-dependent distribution of the adsorbed molecules. The distribution of the azimuthal orientation of the molecule is discussed on the basis of the obtained locative distribution of the molecules by using simple models for rotational hindrance to be compared with the experimental results.

  11. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaofeng [Nesna University College, 8700 Nesna (Norway); Raaen, Steinar, E-mail: sraaen@ntnu.no [Physics Department, Norwegian University of Science and Technology, 7491 Trondheim (Norway)

    2015-09-14

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K{sub 2p} core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbon cone containing material.

  12. Ameliorating Hemorheology by Direct Hemoperfusion with a Polymyxin B-immobilized Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Li Yuan; Wang Xiang; Gao Wei; Cai Shaoxi

    2004-01-01

    Direct hemoperfusion (DHP) with an adsorbent column using polymyxin B-immobilized polystyrene beads has been used to investigate the changes of hemorheology in rabbits with endotoxemia. We measured whole blood viscosity and hemotocrit before and after DHP with polymyxin B-immobilized polystyrene beads. Reduction in blood endotoxin concentration by DHP therapy positively correlated with improvement in hemorheological indexs. Our findings indicate that the amelioration in hemorheology was related directly to endotoxin removal by the adsorbent column with polymyxin B-immobilize polystyrene beads. So DHP with polymyxin B-immobilized polystyrene beads seems to be an important therapeutic strategy for endotoxemia.

  13. Electrochemical Behavior of Heteropoly Acid Anions Adsorbed in Electrodes Modified with Mesoporous Molecular Sieve Silica

    Institute of Scientific and Technical Information of China (English)

    Wenjiang LI; Zichen WANG; Changqing SUN; Muyu ZHAO; Youwei YAO; Aili CUI

    2001-01-01

    Heteropoly acid H4SiW12O48 (denoted as SiW12) was assembled with the mesoporous materials MCM-41 modified with 3-aminopropyltriethoxysilane (APTES) (denote MCM-41(m)). The electrochemical behavior of SiW12/MCM-41(m) complexes-based electrode indicated SiW12 anion was adsorbed by MCM-41(m). In MCM-41(m) electrode, large voltammetric waves, showing that the electrostatic bound ions adsorbed in MCM-41(m) were electrochemically active. The potential application as amperometric sensors for nitrite is anticipated.

  14. Surface modification of chromatography adsorbents by low temperature low pressure plasma

    DEFF Research Database (Denmark)

    Arpanaei, Ayyoob; Winther-Jensen, Bjørn; Theodosiou, E.

    2010-01-01

    changes to the elemental composition of Q HyperZ's exterior had been inflicted in all cases. The atomic percent changes in carbon, nitrogen, oxygen, yttrium and zirconium observed after being exposed to air plasma etching were entirely consistent with: the removal of pendant Q (trimethylammonium...... and zirconium provided clear evidence that thin polymer coats had been created at the exteriors of Q HyperZ adsorbent particles. No changes in adsorbent size and surface morphology, nor any evidence of plasma-induced damage could be discerned from scanning electron micrographs, light micrographs...

  15. Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules

    CERN Document Server

    Kim, Hyoungsoo; Um, Eujin; Jacobi, Ian; Button, Ernie; Stone, Howard A

    2016-01-01

    Surface coatings and patterning technologies are essential for various physicochemical applications. In this Letter, we describe key parameters to achieve uniform particle coatings in binary solutions: First, multiple sequential Marangoni flows, set by solute and surfactant simultaneously, prevent non-uniform particle distributions and continuously mix suspended materials during droplet evaporation. Second, we show the importance of particle-surface interactions that can be established by surface-adsorbed macromolecules. To achieve a uniform deposit in a binary mixture a small concentration of surfactant and surface-adsorbed polymer (0.05 wt% each) is sufficient, which offers a new physicochemical avenue for control of coatings.

  16. Structure analysis of adsorbed star-like polymers with GISAS and SFM

    CERN Document Server

    Wolkenhauer, M; Wunnicke, O; Stamm, M; Roovers, J; Krosigk, G V; Cubitt, R

    2002-01-01

    The lateral structures of dried adsorbed binary mixtures of star polymers were investigated. Blends of protonated and deuterated polybutadiene stars were prepared from cyclohexane solutions and adsorbed onto silicon substrates. The number of arms and the molecular weight of the arms was varied. With grazing incidence small angle scattering techniques (GISAS) and scanning force microscopy (SFM), different dominant in-plane length scales were determined. The morphology of these structures is dominated by blob-like structures created from single stars or agglomerates of star polymers. (orig.)

  17. Superparamagnetic adsorbents for high-gradient magnetic fishing of lectins out of legume extracts

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Dalkiær, M.; Hubbuch, Jürgen;

    2004-01-01

    This work presents the development, testing, and application in high-gradient magnetic fishing of superparamagnetic supports for adsorption of lectins. Various approaches were examined to produce affinity, mixed mode, and hydrophobic charge induction type adsorbents. In clean monocomponent systems......-linked adsorbents supplied sufficient competition to dissolved sugars to selectively bind concanavalin A in an extract of jack beans. The dextran-linked supports were employed in a high-gradient magnetic fishing experiment, in which concanavalin A was purified to near homogeneity from a crude, unclarified extract...

  18. An in-situ RBS system for measuring nuclides adsorbed at the liquid-solid interface

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Yuhara, J.; Ishigami, R. [Nagoya Univ. (Japan). School of Engineering] [and others

    1997-03-01

    An in-situ RBS system has been developed in which heavier nuclides adsorbed at the inner surface of a thin lighter window specimen of liquid container in order to determine the rate constants for their sorption and release at the interface. The testing of a thin silicon window of the sample assembly, in which Xe gas of one atmosphere was enclosed, against the bombardment of the probing ion beam has been performed. A desorption behavior of a lead layer adsorbed at the SiO{sub 2} layer of silicon window surface into deionized water has been measured as a preliminary experiment. (author)

  19. Local field distribution and configuration of CO molecules adsorbed on the nanostructure platinum surface

    Institute of Scientific and Technical Information of China (English)

    Huang Xiao-Jing; He Su-Zhen; Wu Chen-Xu

    2006-01-01

    This paper shows that the local electric field distribution near the nanostructure metallic surface is obtained by solving the Laplace equation, and furthermore, the configuration of CO molecules adsorbed on a Pt nanoparticle surface is obtained by using Monte Carlo simulation. It is found that the uneven local electric field distribution induced by the nanostructure surface can influence the configuration of carbon monoxide (CO) molecules by a force, which drags the adsorbates to the poles of the nanoparticles. This result, together with our results obtained before, may explain the experimental results that the nanostructure metallic surface can lead to abnormal phenomena such as anti-absorption infrared effects.

  20. M4FT-15OR03100415 - Update on COF-based Adsorbent Survey

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    This letter report provides an update on activities focused on generating nanoporous adsorbents involving covalent organic frameworks (COF) and zeolitic imidazolium frameworks (ZIF). The adsorbents have been generated and screened in a uranyl-spiked brine (6 ppm U) to understand uranyl-binding behavior. Porous organic polymers (POP) also qualify under this title and are similar to the COF PPN-6 that is discussed herein. Seven COF/POP and one 1 ZIF were synthesized and screened for uranyl adsorption. Seawater screening is on-going via batch testing while flow screening systems are being developed at PNNL.

  1. Substrate-mediated interactions and intermolecular forces between molecules adsorbed on surfaces.

    Science.gov (United States)

    Sykes, E Charles H; Han, Patrick; Kandel, S Alex; Kelly, Kevin F; McCarty, Gregory S; Weiss, Paul S

    2003-12-01

    Adsorbate interactions and reactions on metal surfaces have been investigated using scanning tunneling microscopy. The manners in which adsorbates perturb the surface electronic structure in their vicinity are discussed. The effects these perturbations have on other molecules are shown to be important in overlayer growth. Interactions of molecules with surface steps are addressed, and each molecule's electron affinity is shown to dictate its adsorption sites at step edges. Standing waves emanating from steps are demonstrated to effect transient molecular adsorption up to 40 A away from the step edge. Halobenzene derivatives are used to demonstrate how the surface is important in aligning reactive intermediates.

  2. Interlocking order parameter fluctuations in structural transitions between adsorbed polymer phases.

    Science.gov (United States)

    Martins, Paulo H L; Bachmann, Michael

    2016-01-21

    By means of contact-density chain-growth simulations of a simple coarse-grained lattice model for a polymer grafted at a solid homogeneous substrate, we investigate the complementary behavior of the numbers of surface-monomer and monomer-monomer contacts under various solvent and thermal conditions. This pair of contact numbers represents an appropriate set of order parameters that enables the distinct discrimination of significantly different compact phases of polymer adsorption. Depending on the transition scenario, these order parameters can interlock in perfect cooperation. The analysis helps understand the transitions from compact filmlike adsorbed polymer conformations into layered morphologies and dissolved adsorbed structures, respectively, in more detail.

  3. Critical adsorbing properties in slits predicted by tradi-tional polymer adsorption theories on Ising lattice

    Institute of Scientific and Technical Information of China (English)

    LIU Meitang; MU Bozhong

    2005-01-01

    The critical adsorbing properties in slits and three-dimension (3D) phase transitions can be predicted by either Freed theory or Flory-Huggins theory. The mean field approximation in Flory-Huggins theory may cause apparent system errors, from which one can observe two-dimension (2D) phase transitions although it is not true. Monte Carlo simulation has demonstrated that Freed theory is more suitable for predicting adsorbing properties of fluids in slits than Flory-Huggins theory. It was found that from Freed theory prediction multilevel adsorption occurs in slits and the spreading pressure curves exhibit binodal points.

  4. 扩张床吸附剂:制备及功能化%Adsorbents for Expanded Bed Adsorption: Preparation and Functionalization

    Institute of Scientific and Technical Information of China (English)

    赵珺; 姚善泾; 林东强

    2009-01-01

    Expanded bed adsorption (EBA), a promising and practical separation technique, has been widely stud-ied in the past two decades. The development of adsorbents for EBA process is a challenging course, with the spe-cial design and preparation according to the target molecules and specific expanded bed systems. Many types of supporting matrices for expanded bed adsorbents have been developed, and their preparation methods are being consummated gradually. These matrices are activated and then coupled with ligands to form functionalized adsorb-ents, including ion-exchange adsorbents, affinity adsorbents, mixed mode adsorbents, hydrophobic charge induction chromatography adsorbents and others. In this review, the preparation of the matrices for EBA process is summa-rized, and the coupling of ligands to the matrices to prepare functionalized adsorbents is discussed as well.

  5. OZONE REACTION WITH N-ALDEHYDES (N=4-10), BENZALDEHYDE, ETHANOL, ISOPROPANOL, AND N-PROPANOL ADSORBED ON A DUAL-BED GRAPHITIZED CARBON/CARBON MOLECULAR SIEVE ADSORBENT CARTRIDGE

    Science.gov (United States)

    Ozone reacts with n-aldehydes (n = 4 - 10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon/carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some samp...

  6. Exactly solvable model with stable and metalstable states for a polymer chain near an adsorbing surface

    NARCIS (Netherlands)

    Klushin, L.I.; Skvortsov, A.M.; Leermakers, F.A.M.

    2002-01-01

    We report on the conformational properties and transitions of an ideal polymer chain near a solid surface. The chain is tethered with one of its ends at distance z0 from an adsorbing surface. The surface is characterized by an adsorption parameter c. The exact expression for the partition function i

  7. Alternative Alkaline Conditioning of Amidoxime Based Adsorbent for Uranium Extraction from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Liao, W. -P.; Flicker Byers, M.; Tsouris, C.; Janke, C. J.; Mayes, R. T.; Schneider, E.; Kuo, L. -J.; Wood, J. R.; Gill, G. A.; Dai, S.

    2016-04-20

    Alkaline conditioning of the amidoxime based adsorbents is a significant step in the preparation of the adsorbent for uranium uptake from seawater. The effects of various alkaline conditioning parameters such as the type of alkaline reagent, reaction temperature, and reaction time were investigated with respect to uranium adsorption capacity from simulated seawater (spiked with 8 ppm uranium) and natural seawater (from Sequim Bay, WA). An adsorbent (AF1) was prepared at the Oak Ridge National Laboratory by radiation-induced graft polymerization (RIGP) with acrylonitrile and itaconic acid onto high-surface-area polyethylene fibers. For the AF1 adsorbent, sodium hydroxide emerged as a better reagent for alkaline conditioning over potassium hydroxide, which has typically been used in previous studies, because of higher uranium uptake capacity and lower cost over the other candidate alkaline reagents investigated in this study. Use of sodium hydroxide in place of potassium hydroxide is shown to result in a 21-30% decrease in the cost of uranium recovery.

  8. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations

    Science.gov (United States)

    Rad, Ali Shokuhi

    2016-03-01

    We have studied the electronic structure and property of pristine as well as Al-doped graphene sheets towards adsorption of some halomethane compounds (trichloromethane, dichloromethane, and difluoromethane) using density functional theory (DFhsT) calculations. The adsorption energies have been calculated for each adsorbed-adsorbent system. Based on our results, compared to pristine graphene, the Al-doped graphene causes significant adsorption energy, higher charge transferring, and smaller bond distances to halomethane compounds. Our calculated adsorption energies of trichloromethane, dichloromethane, and difluoromethane on Al-doped graphene were - 54.1, - 68.3, and - 123.2 kJ mol- 1, respectively, which are categorized in the chemisorption region while the adsorption of these molecules on pristine graphene release insignificant energies which correspond to very weak adsorption on it. Furthermore, we used charge transfer analysis to search the amount of electron allocation. Orbital analysis including the density of states (DOS) was done to find the possible orbital hybridization between adsorbates and two graphene sheets. These results imply the suitability of Al-doped graphene as a good adsorbent/sensor for halomethane compounds.

  9. Fate of Adsorbed U(VI) during Sulfidization of Lepidocrocite and Hematite.

    Science.gov (United States)

    Alexandratos, Vasso G; Behrends, Thilo; Van Cappellen, Philippe

    2017-02-21

    The impact on U(VI) adsorbed to lepidocrocite (γ-FeOOH) and hematite (α-Fe2O3) was assessed when exposed to aqueous sulfide (S(-II)aq) at pH 8.0. With both minerals, competition between S(-II) and U(VI) for surface sites caused instantaneous release of adsorbed U(VI). Compared to lepidocrocite, consumption of S(-II)aq proceeded slower with hematite, but yielded maximum dissolved U concentrations that were more than 10 times higher, representing about one-third of the initially adsorbed U. Prolonged presence of S(-II)aq in experiments with hematite in combination with a larger release of adsorbed U(VI), enhanced the reduction of U(VI): after 24 h of reaction about 60-70% of U was in the form of U(IV), much higher than the 25% detected in the lepidocrocite suspensions. X-ray absorption spectra indicated that U(IV) in both hematite and lepidocrocite suspensions was not in the form of uraninite (UO2). Upon exposure to oxygen only part of U(IV) reoxidized, suggesting that monomeric U(IV) might have become incorporated in newly formed iron precipitates. Hence, sulfidization of Fe oxides can have diverse consequences for U mobility: in short-term, desorption of U(VI) increases U mobility, while reduction to U(IV) and its possible incorporation in Fe transformation products may lead to long-term U immobilization.

  10. Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents

    Directory of Open Access Journals (Sweden)

    Jin Hur

    2015-01-01

    Full Text Available Competitive adsorption isotherms of Cu(II, Pb(II, and Cd(II were examined on a magnetic graphene oxide (GO, multiwalled carbon nanotubes (MWCNTs, and powered activated carbon (PAC. A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II > Cu(II > Cd(II, which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation.

  11. DC- and RF-GD-OES measurements of adsorbed organic monolayers on copper.

    Science.gov (United States)

    Klemm, Denis; Hoffmann, Volker; Wetzig, Klaus; Eckert, Jürgen

    2009-11-01

    Our direct current (DC)- and radiofrequency glow discharge optical emission spectroscopy (RF-GD-OES) measurements of adsorbed organic monolayers were inspired by the work of Shimizu et al., who presented the first example of depth profile analysis of an adsorbed monolayer by RF-GD-OES in 2004. The great potential of RF-GD-OES for analyses of layers with thicknesses in the subnanometer range was surprising. Shimizu et al. discussed not only the qualitative detection of atoms of the organic monolayer (C, H, N, S), but also the determination of the different orientation of the molecules relative to the surface due to a significant peak sequence. This latter assumption was questioned in the analytical community. We intend to demonstrate the potential of the GD-OES technique for surface analysis in terms of reliability and reproducibility by using an advanced vacuum instrumentation and presputtering with silicon. It will be shown that comparable measurements can be reproduced not only with RF-GD-OES but, above all, also with DC-GD-OES. The experimental steps to adsorb thiourea molecules on a copper substrate are described in detail. Further experiments with other organic molecules, e.g. benzotriazole (BTA) or benzothiazole (BTH), disprove the predicted correlation between the orientation of the molecules relative to the surface and the occurrence of peak separation. Ultimately, a quantification of compounds of the organic monolayer in the case of adsorbed thiourea is achieved.

  12. Adsorbent capability testing using desorption efficiency method on palm oil fiber

    Science.gov (United States)

    Manap, Nor Rahafza Abdul; Shamsudin, Roslinda

    2015-09-01

    The palm oil fiber had been used as filler in making thermoplastics, biocomposites and also used as adsorbent in treating waste water. In this study, palm oil fiber was used as adsorbent to treat indoor air pollutants that caused by toluene, ethylbenzene, ortho-, meta-, and para- xylene (o-, m-, p-xylene). Known amount of pollutants, ranges between 1.3 to 28 ppm was spiked into palm oil fiber and left in refrigerator for 24 hours. Then, elution of the pollutants was carried out by carbon disulphide as mobile phase or eluent. The ability of palm oil fiber as adsorbent was determine using desorption efficiency technique by gas chromatography with flame ionization detector (GC/FID). The desorption efficiency percentage given by toluene was in the range of 88.9% to 100%, 91% to 100% for ethylbenzene, 65% to 100% for pm-xylene and 92.9% to 100% for o-xylene. This percentage indicates that palm oil fiber can be used as adsorbent to treat indoor air pollutants.

  13. Fruit waste adsorbent for ammonia nitrogen removal from synthetic solution: Isotherms and kinetics

    Science.gov (United States)

    Zahrim, AY; Lija, Y.; Ricky, L. N. S.; Azreen, I.

    2016-06-01

    In this study, four types of watermelon rind (WR) adsorbents; fresh WR, modified WR with sodium hydroxide (NaOH), potassium hydroxide (KOH) and sulphuric acid (H2SO4) were used as a potential low-cost adsorbent to remove NH3-N from solution. The adsorption data were fitted with the adsorption isotherm and kinetic models to predict the mechanisms and kinetic characteristics of the adsorption process. The equilibrium data agreed well with Langmuir isotherm model with highest correlation (R2=1.00). As for kinetic modelling, the adsorption process follows pseudo-second order for all four types of adsorbents which has R2 value of 1.0 and calculated adsorption capacity, Qe of 1.2148mg/g. The calculated Qe for pseudo-second order has the smallest difference with the experimental Qe and thus suggest that this adsorption process is mainly governed by chemical process involving cations sharing or exchange between WR adsorbent and NH3-N in the solution.

  14. Citrus pectin derived porous carbons as a superior adsorbent toward removal of methylene blue

    Science.gov (United States)

    Zhang, Wenlin; Zhang, Lian Ying; Zhao, Xi Juan; Zhou, Zhiqin

    2016-11-01

    An adsorbent, citrus pectin derived porous carbons with ultra-high adsorption capacity, rapid adsorption rate and good reusability toward removal of methylene blue, was synthesized by a facile zinc chloride activation approach in this study. The materials hold a great potential for treatment of dye wastewater.

  15. X-Ray photoelectron spectroscopic investigation of phenosafranine adsorbed onto micro and mesoporous materials

    Indian Academy of Sciences (India)

    S Easwaramoorthi; K Ananthanarayanan; B Sreedhar; P Natarajan

    2009-09-01

    The phenosafranine adsorbed onto the micro and mesoporous materials prepared by ion exchange method and interaction of the dye with host materials were studied by X-ray photoelectron spectroscopy to elucidate the influence of the host matrix on the binding energy of N 1s orbital. Core level N 1s X-ray photoelectron spectroscopy reveals the interaction between the dye and the solid surface through the hydrogen bonding between the hydrogen atoms of primary amino groups in dye molecule and the oxygen atom of surface hydroxyl groups. The strength of the hydrogen bonding depends on the nature of the solid surface. In the dye adsorbed onto the micro and mesoporous materials the interaction between adsorbed phenosafranine and the surfaces of the porous materials are found to modify the optical spectra and the excited state dynamics of the confined phenosafranine molecules. The change in photophysical properties of phenosafranine adsorbed on to the host materials on dehydration at elevated temperatures is attributed to the modification of host surface during dehydration process.

  16. Low cost adsorbents for the removal of organic pollutants from wastewater.

    Science.gov (United States)

    Ali, Imran; Asim, Mohd; Khan, Tabrez A

    2012-12-30

    Water pollution due to organic contaminants is a serious issue because of acute toxicities and carcinogenic nature of the pollutants. Among various water treatment methods, adsorption is supposed as the best one due to its inexpensiveness, universal nature and ease of operation. Many waste materials used include fruit wastes, coconut shell, scrap tyres, bark and other tannin-rich materials, sawdust and other wood type materials, rice husk, petroleum wastes, fertilizer wastes, fly ash, sugar industry wastes blast furnace slag, chitosan and seafood processing wastes, seaweed and algae, peat moss, clays, red mud, zeolites, sediment and soil, ore minerals etc. These adsorbents have been found to remove various organic pollutants ranging from 80 to 99.9%. The present article describes the conversion of waste products into effective adsorbents and their application for water treatment. The possible mechanism of adsorption on these adsorbents has also been included in this article. Besides, attempts have been made to discuss the future perspectives of low cost adsorbents in water treatment.

  17. Transformation of adsorbed aflatoxin B1 on smectite at elevated temperatures

    Science.gov (United States)

    Aflatoxins cause liver damage and suppress immunity. Smectites can be used to reduce the bioavailability of aflatoxins through adsorption. To further reduce the toxicity of aflatoxins and to eliminate the treatments of aflatoxin-loaded smectites, degrading the adsorbed aflatoxin to nontoxic or less ...

  18. Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Man Sung; Ismail, Aznan Fazli [Dept. of Nuclear and Quantum Engineering (NQe), 291 Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-08-15

    To support the use of nuclear power as a sustainable electric energy generating technology, long-term supply of uranium is very important. The objective of this research is to investigate the use of new adsorbent material for cost effective uranium extraction from seawater. An activated carbon-based adsorbent material is developed and tested through an electrosorption technique in this research. Adsorption of uranium from seawater by activated carbon electrodes was investigated through electrosorption experiments up to 300 minutes by changing positive potentials from +0.2V to +0.8V (vs. Ag/AgCl). Uranium adsorption by the activated carbon electrode developed in this research reached up to 3.4 g-U/kg-adsorbent material, which is comparable with the performance of amidoxime-based adsorbent materials. Electrosorption of uranium ions from seawater was found to be most favorable at +0.4V (vs. Ag/AgCl). The cost of chemicals and materials in the present research was compared with that of the amidoxime-based approach as part of the engineering feasibility examination.

  19. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants

    DEFF Research Database (Denmark)

    Homaeigohar, Shahin; Zillohu, Ahnaf; Abdelaziz, Ramzy

    2016-01-01

    In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES) for removal of methylene blue (MB) dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption...

  20. Radiation-induced reactions of amino acids adsorbed on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esquivel Kranksith, L.; Negron-Mendoza, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, UNAM. Cd. Universitaria, A.P. 70-543, 04510 Mexico D.F. (Mexico); Mosqueira, F.G. [Direcion General de Divulgacion de la Ciencia, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, AP. 70-487 Mexico D.F. (Mexico); Ramos-Bernal, Sergio, E-mail: ramos@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, UNAM. Cd. Universitaria, A.P. 70-543, 04510 Mexico D.F. (Mexico)

    2010-07-21

    The purpose of this work is to study the adsorption of compounds such as amino acids on clays and carbon nanotubes (CNTs) as a possible phase in the chemical evolution that may have occurred on the primitive Earth or in extraterrestrial environments. We further study the behavior of amino acids adsorbed on these solid surfaces at different conditions of pH and levels of irradiation, simulating a high-radiation field at early Earth conditions. The relevance of this work is to explain the possible contribution of solids (clays and CNTs) as promoters of polymerization and as shields for the adsorbed organic compounds against external sources of energy. To this end, tryptophan, aspartic acid, and glutamic acid were adsorbed on fixed amounts of solid surfaces and were irradiated by a {sup 60}Co source for different periods of time at fixed dose rates. After irradiation, the amino acids were extracted from the solid and analyzed with UV and IR spectroscopes and high-performance liquid chromatography. The most efficient surface for adsorption of amino acids was clay, followed by CNTs. Studies of the gamma irradiation of amino acids adsorbed on clay (in the solid phase) show a low yield of recovery of the amino acid.

  1. Ionic liquids modified graphene oxide composites: a high efficient adsorbent for phthalates from aqueous solution

    Science.gov (United States)

    Zhou, Xinguang; Zhang, Yinglu; Huang, Zuteng; Lu, Dingkun; Zhu, Anwei; Shi, Guoyue

    2016-12-01

    In 2015, more than 30% of erasers were found to contain a PAE content that exceeded the 0.1% limit established by the Quality and Technology Supervision Bureau of Jiangsu Province in China. Thus, strengthening the supervision and regulation of the PAE content in foods and supplies, in particular, remains necessary. Graphene oxide (GO) and its composites have drawn great interests as promising adsorbents for polar and nonpolar compounds. However, GO-based adsorbents are typically restricted by the difficult separation after treatment because of the high pressure in filtration and low density in centrifugation. Herein, a series of novel ionic liquids modified graphene oxide composites (GO-ILs) were prepared as adsorbents for phthalates (PAEs) in eraser samples, which overcame the conventional drawbacks. These novel composites have a combination of the high surface area of graphene oxide and the tunability of the ionic liquids. It is expected that the GO-ILs composites can be used as efficient adsorbents for PAEs from aqueous solution. This work also demonstrated a new technique for GO-based materials applied in sample preparation.

  2. A new alternative adsorbent for the removal of cationic dyes from aqueous solution

    Directory of Open Access Journals (Sweden)

    T. Santhi

    2016-09-01

    Full Text Available Adsorption of Malachite green (MG and Methylene blue (MB from aqueous solutions on low cost adsorbent prepared from Annona squmosa seed (CAS is studied experimentally. Results obtained indicate that the removal efficiency of Malachite green and Methylene blue at 27 ± 2 °C exceeds 75.66% and 24.33% respectively, and that the adsorption process is highly pH-dependent. Results showed that the optimum pH for dye removal is 6.0. The amount of dye adsorbed from aqueous solution increases with the increase of the initial dye concentration. Smaller adsorbent particle adds to increase the percentage removal of Malachite green and Methylene blue. The equilibrium data fitted well to the Langmuir model (R2 > 0.97 and the adsorption kinetic followed the pseudo-second-order equation (R2 > 0.99. The maximum adsorption capacities of MG, MB on CAS are 25.91 mg g−1 and 08.52 mg g−1 respectively. These results suggest that A. squmosa seed is a potential low-cost adsorbent for the dye removal from industrial wastewater. The adsorption capacity of CAS on MG is greater than MB.

  3. Removal of heavy metal ions from aqueous solution using red loess as an adsorbent.

    Science.gov (United States)

    Xing, Shengtao; Zhao, Meiqing; Ma, Zichuan

    2011-01-01

    The adsorption behaviors of heavy metals onto novel low-cost adsorbent, red loess, were investigated. Red loess was characterized by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectra. The results indicated that red loess mainly consisted of silicate, ferric and aluminum oxides. Solution pH, adsorbent dosage, initial metal concentration, contact time and temperature significantly influenced the efficiency of heavy metals removal. The adsorption reached equilibrium at 4 hr, and the experimental equilibrium data were fitted to Langmuir monolayer adsorption model. The adsorption of Cu(II) and Zn(II) onto red loess was endothermic, while the adsorption of Pb(II) was exothermic. The maximum adsorption capacities of red loess for Pb(II), Cu(II) and Zn(II) were estimated to be 113.6, 34.2 and 17.5 mg/g, respectively at 25 degrees C and pH 6. The maximum removal efficiencies were 100% for Pb(II) at pH 7, 100% for Cu(II) at pH 8, and 80% for Zn(II) at pH 8. The used adsorbents were readily regenerated using dilute HCl solution, indicating that red loess has a high reusability. All the above results demonstrated that red loess could be used as a possible alternative low-cost adsorbent for the removal of heavy metals from aqueous solution.

  4. Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb(II) from aqueous solution.

    Science.gov (United States)

    Lu, Jiao; Jin, Ru-Na; Liu, Chao; Wang, Yan-Fei; Ouyang, Xiao-Kun

    2016-12-01

    A novel magnetic carboxylated cellulose nanocrystal composite (CCN-Fe3O4) was prepared as an adsorbent for the adsorption of Pb(II) from aqueous solution. The new adsorbent was characterized by transmission electron microscopy, vibrating sample magnetometry, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Batch experiments were carried out to investigate the effects of contact time, adsorbent dose, pH, and temperature on adsorption capacity. Pb(II) adsorption onto CCN-Fe3O4 reached equilibrium in 240min, and the maximum adsorption capacity of Pb(II) was 63.78mgg(-1) at 298.2K. The equilibrium data fitted the Langmuir isotherm model better than the Freundlich isotherm model, and they were well explained in terms of pseudo-second-order kinetics. Thermodynamics studies indicated that the adsorption of Pb(II) onto CCN-Fe3O4 was spontaneous and endothermic in nature. The adsorbent could also be regenerated with acid treatment and successfully reapplied.

  5. Theoretical and experimental investigations of an adsorption heat pump with heat transfer between two adsorbers

    OpenAIRE

    Schawe, Dirk

    2001-01-01

    Es wurden zwei thermisch angetriebene Adsorptionswaermepumpen vorgestellt und untersucht. Im Gegensatz zu Adsorptionswaermepumpen mit nur einem Adsorber, arbeiten diese Systeme mit mehrfacher Waerme- und Stoffuebertragung zur Steigerung der Leistungszahl. Die Eigenschaften der in den Adsorbern verwendeten Sorptionsmittel wurden so ausgewaehlt, dass die bei der Adsorption und der Kondensation des Arbeitsstoffes freiwerdende Waerme eines Sorptionsmittels mit grossen Bindungskraeften dazu benutz...

  6. Phosphorus leaching from a sandy soil in the presence of modified and un-modified adsorbents.

    Science.gov (United States)

    Moharami, Somayeh; Jalali, Mohsen

    2014-10-01

    Phosphorus (P) leaching from a sandy soil was investigated in the presence of modified and unmodified clay minerals and nanoparticles (NPs). Compared with control soil, amended soil with NPs had the highest percentage of P retention than amended soil with clay minerals. Among the adsorbents used, the highest percentage of P retention was produced by Al₂O₃-chitosan while the lowest percentage of P retention was by zeolite. Data measured for P leaching after using adsorbents were used to predict P leaching using transport model. PHREEQC model was able to model P leaching from control and amended soil. After leaching, P values in control and amended soil were fractionated by a sequential extraction procedure. Concentration of P in Ca-bound fraction (HCl-P) after application of modified and unmodified clay minerals and NPs (except TiO₂ and Al₂O₃) increased and decreased, respectively. Saturation indices (SIs) and P speciation were assessed using the Visual MINTEQ version 2.3 program. According to the SIs, leaching P from control and amended soil with different adsorbent was controlled by dissolution of hydroxyapatite. The results indicated that used adsorbents can reduce P leaching from the sandy soil. Thus, retention of P by amended soil reduced a risk in terms of groundwater contamination with P.

  7. Electron transfer behavior at polyoxometalate-adsorbed alkanethiol self-assembled monolayers

    Science.gov (United States)

    Chu, Yeonyi; Kim, Jandee; Choi, Suhee; Rhee, Choong Kyun; Kim, Jongwon

    2011-09-01

    The interaction between polyoxometalate (POM) anions, SiMo 12O 404-, and a self-assembled monolayer (SAM) of dodecanethiol (DT) on Au surfaces was investigated using electrochemical methods, X-ray photoelectron spectroscopy, and scanning probe microscopy. The SiMo 12O 404- ions adsorb on the SAM of DT on Au to form a composite organic-inorganic hybrid layer. The adsorbed SiMo 12O 404- ion on the SAM layer shows its characteristic redox waves with an electron transfer rate slower than that on a bare Au electrode. The electron transfer behavior at DT-SAM could be regulated by the adsorption of SiMo 12O 404- depending on the charge of the investigated electroactive species: a significant increase toward a positively charged Ru(NH 3) 63+ ion, a moderate increase toward a neutral 1,1'-ferrocenedimethanol molecule and a slight decrease toward a negatively charged Fe(CN) 63- ion. The effect of the chain length of alkanethiols on the adsorption of SiMo 12O 404- ion was also investigated: as the chain length decreases, the amount of the adsorbed POM increases and the electron transfer rate through the composite layers increases. The nature of SiMo 12O 404- ions adsorbed on the SAMs of alkanethiols on Au is discussed in detail.

  8. Controlling the Electronic Structure of Graphene Using Surface-adsorbate Interactions

    Science.gov (United States)

    2015-07-21

    utilization in novel optoelectronic devices [1–4]. These properties originate in the conical dispersion of states near theK point of the Brillouin zone...charge transfer from adsorbates (rather than intercalation) opens new possibilities in using optical ( laser ) excitations to control this coupling in

  9. Charcoal and activated carbon as adsorbate of phytotoxic compounds - a comparative study.

    NARCIS (Netherlands)

    Hille, M.G.; Ouden, den J.

    2005-01-01

    This study compares the potential of natural charcoal from Scots pine (Pinus sylvestris L.) and activated carbon to improve germination under the hypothesis that natural charcoal adsorbs phytotoxins produced by dwarf-shrubs, but due to it's chemical properties to a lesser extent than activated carbo

  10. Neutron Scattering Study of Nitrogen Adsorbed on Basal Plane Oriented Graphite

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Passell, L.; Taub, H.;

    1976-01-01

    Thermal-neutron scattering has been used to investigate the structure of nitrogen films adsorbed on Grafoil, a basal-plane-oriented graphite. Diffraction scans were made at coverages between 1/3 of a monolayer and 7/4 monolayers over a temperature range from 10 to 90 K. The observed line shapes...

  11. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    Formation of meta-stable surface-alloys can be used as a way to tune the binding strength of reaction intermediates and could therefore be used as improved catalyst materials for heterogeneous catalysis. Understanding the role of adsorbates on such alloy surfaces can provide new insights for engi...

  12. Ni2+-PAA Adsorbent for Purifying 6His-OmpTS Recombinant Protein

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Functional Ni2+-polyacrylic acid (Ni2+-PAA) adsorbent has been prepared for metal chelate affinity chromatography. DNA elements coding for adjacent histidines were fused to the Aeromonas hydrophila ompTS gene. Subsequent expression in E. coli resulted in the production of hybrid protein 6His-OmpTS that could be purified by Ni2+-PAA affinity chromatography.

  13. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. II. Dynamics

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.;

    2007-01-01

    The dynamics of monolayer films of the n-alkane tetracosane (n-C24H52) and the branched alkane squalane (C30H62) adsorbed on graphite have been studied by quasielastic and inelastic neutron scattering and molecular dynamics (MD) simulations. Both molecules have 24 carbon atoms along their carbon...

  14. A new soil test for quantitative measurement of available and adsorbed boron

    Science.gov (United States)

    Boron soil tests currently in use, do not extract all plant available B but are used by relating the extractable amount of B to plant B content. There is a need to accurately measure all plant available or adsorbed B because B can be toxic to plants at elevated concentrations and can cause marked y...

  15. Diffusion and exchange of adsorbed polymers studied by Monte Carlo simulations

    NARCIS (Netherlands)

    Klein Wolterink, J.; Barkema, G.T.; Cohen Stuart, M.A.

    2005-01-01

    Monte Carlo simulations are performed of adsorbed polymers with various polymer lengths N and adsorption energies ¿s. Exchange times and the rates of lateral diffusion (along the surface) are investigated as a function of N and ¿s. Lateral diffusion is found to be a combination of reptation (diffusi

  16. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T

    2013-12-17

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  17. Influence of Adsorbed Water on the Oxygen Evolution Reaction on Oxides

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Vojvodic, Aleksandra

    2015-01-01

    We study the interface between adsorbed water and stoichiometric, defect-free (110) rutile oxide surfaces of TiO2, RuO2, and IrO2 in order to understand how water influences the stabilities of the intermediates of the oxygen evolution reaction (OER). In our model the water is treated as explicitl...

  18. Molecular orientation of carboxylic acids adsorbed on graphite from the liquid

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Stuart M. [Department of Chemistry and BP Institute, Madingley Rise, Cambridge (United Kingdom); Inabe, Akira [Department of Chemistry and Research Center for Molecular Thermodynamics, Graduate School of Science, Osaka Univ., Osaka (Japan); Thomas, Robert K.; Fish, Joe [Physical and Theoretical Chemistry Laboratory, Oxford (United Kingdom)

    2001-03-01

    We present incoherent elastic neutron scattering and calorimetry data from simple monocarboxylic acids, C9, C14 and C16, adsorbed from their liquids to the graphite surface which indicate the formation of solid monolayers with molecules which are predominantly upright. (author)

  19. Adsorbates on cobalt and platinum single crystal surfaces studied by STM

    Energy Technology Data Exchange (ETDEWEB)

    Venvik, Hilde Johnsen

    1998-12-31

    This thesis on surface physics may contribute to the understanding of catalysts and so be of interest to companies working on oil and natural gas refining. The thesis deals with room temperature experimental investigations of adsorbates of CO and C{sub 2}H{sub 4} gases on Co and Pt single crystal surfaces. 252 refs., 51 figs., 1 table

  20. Study on development of adsorbent of acetaldehyde; Acetaldehyde yo kyuchakuzai no kaihatsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T. [Nippon Steel Corp., Tokyo (Japan); Suzuki, M. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1997-07-10

    The adsorption of acetaldehyde by porous ceramics impregnated with hydrazinium aluminum sulfate (HAS) is studied. Silicagel, activated alumina, activated clay, and activated carbon are compared, and it is found that silicagel and activated clay are suitable as a substrate for HAS impregnated adsorbent. The adsorption mechanism of acetaldehyde by the adsorbent is believed to be one in which acetaldehyde reacts with hydrazinium and yields acetaldazine. The adsorption capacity of the adsorbent at low acetaldehyde concentration of 0.1 ppm was as large as 1.36 mol/kg. This adsorption capacity at 0.1 ppm acetaldehyde concentration is remarkably larger than that of conventional activated carbon. Hydrazinium decomposes easily in the air because it is a strong reducing agent and reacts with oxygen or carbon dioxide. But hydrazinium impregnated on porous ceramics with HAS becomes more stable and maintains reactivity with acetaldehyde for longer than six months. An adsorbent made of porous ceramics impregnated with HAS is useful as a deodorant for acetaldehyde. 8 refs., 6 figs., 6 tabs.

  1. From MDF and PB wastes to adsorbents for the removal of pollutants

    Science.gov (United States)

    Gomes, J. A. F. L.; Azaruja, B. A.; Mourão, P. A. M.

    2016-09-01

    The production of activated carbons in powder and monolith forms, by physical activation with CO2, with specific surface areas between 804 and 1469 m2 g-1, porous volume between 0.33 and 0.59 cm3 g-1, with basic nature (PZC ∼ 9.6-10.6) was achieved in our lab, from medium density fibreboard (MDF) and particleboard (PB), engineered wood composites wastes. These highly porous adsorbents were applied in kinetic and equilibrium adsorption studies, in batch and dynamic modes, in powder and monolith forms, of specific adsorptives, considered pollutants, namely phenol (P), p-nitrophenol (PNP) and neutral red (NR). In batch the maximum adsorbed amount was 267, 162 and 92 mg g-1, for PNP, P and NR, respectively. The application of different kinetic models (pseudo-first order, pseudo-second order and intraparticle diffusion model) leads to a better knowledge of the adsorption mechanisms of those adsorptives. The results obtained in the kinetic and equilibrium tests show that the combination of the structural features and the surface chemistry nature of the adsorbents, with the adsorptives properties, establish the kinetic performance, the type and amount adsorbed for each system. This work confirms the potential of these types of wastes in the production of activated carbons and its application in adsorption from liquid phase.

  2. Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Dongxue; Zhang, Kai

    2016-01-01

    A novel effective adsorbent of alumina/silica oxide hydrate (ASOH) for arsenic removal was developed through simple chemical reactions using coal fly ash. The iron-modified ASOH with enhancing adsorption activity was further developed from raw fly ash based on the in situ technique. The adsorbents were characterized by X-ray diffraction, Fourier transform infrared spectrometry, scanning electron micrograph, laser particle size and Brunauer-Emmet-Teller surface area. The results show that the adsorbents are in amorphous and porous structure, the surface areas of which are 8-12 times that of the raw ash. The acidic hydrothermal treatment acts an important role in the formation of the amorphous structure of ASOH rather than zeolite crystal. A series of adsorption experiments for arsenic on them were studied. ASOH can achieve a high removal efficiency for arsenic of 96.4% from water, which is more than 2.5 times that of the raw ash. Iron-modified ASOH can enhance the removal efficiency to reach 99.8% due to the in situ loading of iron (Fe). The condition of synthesis pH = 2-4 is better for iron-modified ASOH to adsorb arsenic from water.

  3. Monolayers of CF4 Adsorbed on Graphite, Studied by Synchrotron X-Ray Diffraction

    DEFF Research Database (Denmark)

    Kjær, Kristian; Nielsen, Mourits; Bohr, Jakob;

    1982-01-01

    With synchrotron x-ray diffraction we have measured the phase diagram of CF4 monolayers adsorbed on the graphite substrate UCAR-ZYX. We have found four two-dimensional crystalline phases including the 2×2 commensurate structure. Between this and the denser incommensurate hexagonal phase we find...

  4. REMOVAL OF REACTIVE DYES FROM WASTEWATER OF TEXTILE INDUSTRIES BY USING ENVIRONMENTAL FRIENDLY ADSORBENTS

    Directory of Open Access Journals (Sweden)

    ALAM Md Shamim

    2016-05-01

    Full Text Available This paper is aimed at developing a method to treat wastewater by using inexpensive adsorbents. Textile industries produce wastewater, otherwise known as effluent, as a bi-product of their production. The effluent contains several pollutants. Among the various stages of textile production, the operations in the dyeing plant, which include pre-treatments, dyeing, printing and finishing, produce the most pollution. The textile dyeing wastes contain unused or partially used organic compounds, and high level of different pollutants. They are often of strong color and may also be of high temperature. When disposed into water bodies or onto land these effluents will result in the deterioration of ecology and damage to aquatic life. Furthermore they may cause damage to fisheries and economic loss to fishermen and farmer, there may be impacts on human health which can be removed with the help of an effluent treatment plant (ETP. The “clean” water can then be safely discharged into the environment and ultimately save our environment from pollution. In this study, rice husk and cotton dust were used as an adsorbent. In this research work waste water was characterized with this useless adsorbents. The parameters which were tested in this study are DO, BOD, COD, TS, TDS and TSS. The results showed that the selected bio adsorbents have good potential for removal of reactive dyes from textile effluent.

  5. Geopolymeric adsorbents from fly ash for dye removal from aqueous solution.

    Science.gov (United States)

    Li, Lin; Wang, Shaobin; Zhu, Zhonghua

    2006-08-01

    Adsorbents from coal fly ash treated by a solid-state fusion method using NaOH were prepared. It was found that amorphous aluminosilicate geopolymers would be formed. These fly ash-derived inorganic polymers were assessed as potential adsorbents for removal of some basic dyes, methylene blue and crystal violet, from aqueous solution. It was found that the adsorption capacity of the synthesised adsorbents depends on the preparation conditions such as NaOH:fly-ash ratio and fusion temperature with the optimal conditions being at 1.2:1 weight ratio of Na:fly-ash at 250-350 degrees C. The synthesised materials exhibit much higher adsorption capacity than fly ash itself and natural zeolite. The adsorption isotherm can be fitted by Langmuir and Freundlich models while the two-site Langmuir model producing the best results. It was also found that the fly ash derived geopolymeric adsorbents show higher adsorption capacity for crystal violet than methylene blue and the adsorption temperature influences the adsorption capacity. Kinetic studies show that the adsorption process follows the pseudo second-order kinetics.

  6. Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals

    Institute of Scientific and Technical Information of China (English)

    WANG Chunfeng; LI Jiansheng; WANG Lianjun; SUN Xiuyun

    2009-01-01

    Both pure-form zeolites (zeolites A and X) were synthesized by applying a two-stage method during hydrothermal treatment of fly ash prepared initial gel. The difference of adsorption capacity of both fly ash-synthesized zeolits was assessed under the same adsorption conditions. Copper and zinc were chosen as target heavy metal ions. It was found that adsorption capacity of zeolite A showed much higher value than that of zeolite X. Thus, attention was focused on investigating the removal performance of heavy metal ions in aqueous solution on the synthetic pure-form zeolite A from fly ash, zeolite HS (hydroxyl-solidate) prepared from the residual fly ash (after synthesis of pure-form zeolite A from fly ash) and a commercial grade zeolite A. Batch method was employed to study the influential parameters such as initial pH value, adsorbents dosage and adsorption temperature on the adsorption process. The equilibrium data were well fitted by the Langmuir model and showed the affinity: Cu2+ > Zn2+ (adsorbent FA-ZA). The removal mechanism of metal ions followed adsorption and ion exchange processes. Attempts were also made to recover heavy metal ions and regenerate adsorbents (adsorbent FA-ZA).

  7. A novel magnetic 4A zeolite adsorbent synthesised from kaolinite type pyrite cinder (KTPC)

    Science.gov (United States)

    Wang, Weiqing; Feng, Qiming; Liu, Kun; Zhang, Guofan; Liu, Jing; Huang, Yang

    2015-01-01

    As a solid waste, kaolinite type pyrite cinder (KTPC) is a special pyrite cinder, its mineral components include metakaolin and magnetite, and the chemical compositions of these minerals include SiO2, Al2O3, FeO and Fe2O3. In this study, a novel magnetic 4A zeolite adsorbent was synthesised from KTPC using the hydrothermal method, and the optimum hydrothermal synthesis conditions were investigated using X-ray diffraction (XRD) and by determining the specific surface area (SSA) and the saturated cation exchange adsorption capacity (SCEAC) to Cs+. Under the optimum hydrothermal synthesis conditions, the magnetic 4A zeolite adsorbent can be synthesised with high crystallinity, and the SSA and SCEAC to Cs+ are 24.49 m2/g and 106.63 mg/g, respectively. The further characterisations of pore size distribution, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermogravimetry-derivative thermogravimetry-differential thermal analysis (TG-DTG-DTA), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) were performed. The results revealed that magnetic particles are coated onto the zeolite surface and further form magnetic aggregates, and the existing magnetic particles in KTPC do not change their crystal structure and do not affect the synthesis of the 4A zeolite. In addition, the synthesised 4A zeolite adsorbent can be used as a magnetic adsorbent in wastewater treatment with high magnetic sensitivity and is thermally stable up to approximately 900 °C.

  8. Local electric field and configuration of CO molecules adsorbed on a nanostructured surface with nanocones

    Institute of Scientific and Technical Information of China (English)

    You Rong-Yi; Huang Xiao-Jing

    2009-01-01

    Based on the nanostructured surface model that the (platinum,Pt) nanocones grow out symmetrically from a plane substrate,the local electric field near the conical nanoparticle surface is computed and discussed. On the basis of these results,the adsorbed CO molecules are modelled as dipoles,and three kinds of interactions,I.e. Interactions between dipoles and local electric field,between dipoles and dipoles,as well as between dipoles and nanostructured substrate,are taken into account. The spatial configuration of CO molecules adsorbed on the nanocone surface is then given by Monte-Carlo simulation. Our results show that the CO molecules adsorbed on the nanocone surface cause local agglomeration under the action of an external electric field,and this agglomeration becomes more compact with decreasing conical angle,which results in a stronger interaction among molecules. These results serve as a basis for explaining abnormal phenomena such as the abnormal infrared effect (AIRE),which was found when CO molecules were adsorbed on the nancetructured transition-metal surface.

  9. Effect of nanopore size distributions on trichloroethylene adsorption and desorption on carbogenic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M.S.; Bushong, J.H.; Foley, H.C. [Univ. of Delaware, Newark, DE (United States); Brendley, W.H. Jr. [Philadelphia Coll. of Textiles, Philadelphia, PA (United States). Dept. of Chemistry

    1998-06-01

    Two carbon adsorbents, Ambersorb-600 and Ambersorb-563 (A-600 and A-563), were compared for vapor-phase trichloroethylene (TCE) adsorption from humid air streams. These adsorbents retained capacity for TCE in humid environments and were regenerable in situ. Enhanced desorption, and hence, increased working capacities, were achieved with bimodal pore size distributions and hydrophobic surface chemistry. Vapor-phase TCE isotherms confirmed that both of these adsorbents have high capacities for TCE. Only a small difference between the micropore size distributions of A-563 and A-600 was determined by room-temperature methyl chloride adsorption and the modified Horvath-Kawazoe model. Besides differences in particle size and pore volume there was a measurable, but small change, in the fraction of the pores in the ultramicropore range (5 {angstrom} or smaller) of the A-600 adsorbent versus that of A-563. In packed-bed breakthrough curve experiments, A-600 displayed a sharper mass-transfer zone than A-563, but maintained essentially the same capacity for TCE in a humid environment. Both materials were amenable to in-situ regeneration, and the A-600 provided higher overall working capacity than that of A-563.

  10. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj, E-mail: torajmohammadi@iust.ac.ir

    2015-08-15

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized with concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.

  11. A review on progress of heavy metal removal using adsorbents of microbial and plant origin.

    Science.gov (United States)

    Srivastava, Shalini; Agrawal, S B; Mondal, M K

    2015-10-01

    Heavy metals released into the water bodies and on land surfaces by industries are highly toxic and carcinogenic in nature. These heavy metals create serious threats to all the flora and fauna due to their bioaccumulatory and biomagnifying nature at various levels of food chain. Existing conventional technologies for heavy metal removal are witnessing a downfall due to high operational cost and generation of huge quantity of chemical sludge. Adsorption by various adsorbents appears to be a potential alternative of conventional technologies. Its low cost, high efficiency, and possibility of adsorbent regeneration for reuse and recovery of metal ions for various purposes have allured the scientists to work on this technique. The present review compiles the exhaustive information available on the utilization of bacteria, algae, fungi, endophytes, aquatic plants, and agrowastes as source of adsorbent in adsorption process for removal of heavy metals from aquatic medium. During the last few years, a lot of work has been conducted on development of adsorbents after modification with various chemical and physical techniques. Adsorption of heavy metal ions is a complex process affected by operating conditions. As evident from the literature, Langmuir and Freundlich are the most widely used isotherm models, while pseudo first and second order are popularly studied kinetic models. Further, more researches are required in continuous column system and its practical application in wastewater treatment.

  12. Removal of heavy metal ions from aqueous solution using red loess as an adsorbent

    Institute of Scientific and Technical Information of China (English)

    Shengtao Xing; Meiqing Zhao; Zichuan Ma

    2011-01-01

    The adsorption behaviors of heavy metals onto novel low-cost adsorbent,red loess,were investigated.Red loess was characterized by X-ray diffraction,scanning electron microscopy and Fourier transform infrared spectra.The results indicated that red loess mainly consisted of silicate,ferric and aluminum oxides.Solution pH,adsorbent dosage,initial metal concentration,contact time and temperature significantly influenced the efficiency of heavy metals removal.The adsorption reached equilibrium at 4 hr,and the experimental equilibrium data were fitted to Langmuir monolayer adsorption model.The adsorption of Cu(Ⅱ) and Zn(Ⅱ) onto red loess was endothermic,while the adsorption of Pb(Ⅱ) was exothermic.The maximum adsorption capacities of red loess for Pb(Ⅱ),Cu(Ⅱ)and Zn(Ⅱ) were estimated to be 113.6,34.2 and 17.5 mg/g,respectively at 25°C and pH 6.The maximum removal efficiencies were 100% for Pb(Ⅱ) at pH 7,100% for Cu(Ⅱ) at pH 8,and 80% for Zn(Ⅱ) at pH 8.The used adsorbents were readily regenerated using dilute HCI solution,indicating that red loess has a high reusability.All the above results demonstrated that red loess could be used as a possible alternative low-cost adsorbent for the removal of heavy metals from aqueous solution.

  13. Adsorptive Desulfurization of JP-8 Fuel Using Ag+/Silica Based Adsorbents at Room Temperature

    Science.gov (United States)

    2012-09-01

    cell-quality hydrogen is liquid phase desulfurization (figure 1). Any organic sulfur compounds in the fuel are converted into hydrogen sulfide in...the fuel processing reformer, resulting in poisoning the reformation catalysts as well as poisoning downstream operations. Therefore, it is essential...the reformation catalysts from potential poisoning (1). Figure 1. Schematic diagram of logistic fuel processing. Adsorbents with a high

  14. The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue.

    Science.gov (United States)

    Li, Leilei; Liu, Feng; Duan, Huimin; Wang, Xiaojiao; Li, Jianbo; Wang, Yanhui; Luo, Chuannan

    2016-05-01

    The hydroxy-functionalized ionic liquids (ILs) modified with magnetic chitosan/grapheneoxide (MG-ILs-OH) were synthesized. The surface morphology of MG-ILs-OH was characterized by transmission electron microscopy, X-ray diffraction, thermo gravimetric analysis and Fourier transform infrared spectroscopy techniques. It was found that the adsorption kinetics is well fitted by a pseudo-second-order model and the adsorption isotherms agree well with the Langmuir model, and the MG-ILs-OH could be repeatedly used by simple treatment. The results showed that the addition of ILs-OH can largely increase the adsorption sites (hydroxy and amino groups) and adsorption properties. The MG-ILs-OH were used as adsorbent for the removal of methylene blue (MB) and Cr(VI) from simulated wastewater with a fast solid-liquid separation in the presence of external magnetic field. The maximum obtained adsorption capacities of MB and Cr(VI) were 243.31 and 107.99 mg/g, respectively. The application of MG-ILs-OH could effectively solve the problem that the adsorbent only adsorb similar adsorbate.

  15. Nitrogen-rich porous adsorbents for CO2 capture and storage.

    Science.gov (United States)

    Li, Pei-Zhou; Zhao, Yanli

    2013-08-01

    The construction of physical or chemical adsorbents for CO2 capture and sequestration (CCS) is a vital technology in the interim period on the way towards a sustainable low-carbon future. The search for efficient materials to satisfy the increasing demand for CCS has become extremely important. Porous materials, including porous silica, porous carbons, and newly developed metal-organic frameworks and porous organic polymers, possessing regular and well-defined porous geometry and having a high surface area and pore volume, have been widely studied for separations on laboratory scale. On account of the dipole-quadrupole interactions between the polarizable CO2 molecule and the accessible nitrogen site, the investigations have indicated that the incorporation of accessible nitrogen-donor groups into the pore walls of porous materials can improve the affinity to CO2 and increase the CO2 uptake capacity and selectivity. The CO2 -adsorption process based on solid nitrogen-rich porous adsorbents does generally not require heating of a large amount of water (60-70 wt%) for regeneration, while such a heating approach cannot be avoided in the regeneration of amine-based solution absorption processes. Thus, nitrogen-rich porous adsorbents show good regeneration properties without sacrificing high separation efficiency. As such, nitrogen-rich porous materials as highly promising CO2 adsorbents have been broadly fabricated and intensively investigated. This Focus Review highlights recent significant advances in nitrogen-rich porous materials for CCS.

  16. New adsorbents prepared by phosphoric acid activation of Moroccan oil shales: Influence of the experimental conditions on the properties of the adsorbents; Nouveaux adsorbants prepares par activation chimique des schistes bitumineux marocains par l'acide phosphorique: influence des conditions experimentales sur les proprietes des adsorbants

    Energy Technology Data Exchange (ETDEWEB)

    Khouya, E.H.; Fakhi, S. [Faculte des Sciences Ben M' sik, Lab. de Radiochimie, Casablanca (Morocco); Khouya, E.H.; Ichcho, S.; Legrouri, K.; Hannache, H. [Faculte des Sciences Ben M' sik, Lab. des Materiaux ThermoStructuraux, Casablanca (Morocco); Nourredine, A. [Universite Louis Pasteur, Institut de Recherche Subatomique, UMR 7500 CNRS-IN2P3, 67 - Strasbourg (France); Pailler, R.; Naslain, R. [Bordeaux-1 Univ., Lab. des Composites Thermostructuraux, UMR 5801 CNRS-CEA-SNECMA, 33 - Pessac (France)

    2006-09-15

    New adsorbents were prepared from Moroccan oil shale of Tarfaya (layer R3) by chemical activation with phosphoric acid. The objective was to investigate different factors that control the activation process, in order to determine the optimum conditions of preparation. The examined factors were holding time in the oven, pre-processing and atmosphere (N{sub 2}/air). The impact of the different factors was investigated by determining the yield of adsorbent and the maximum capacity of adsorption for methylene blue. Due to the existence of numerous factors, a two-level factorial design was used to find the most influential factors and their mutual interactions. The results of this study yielded the following classification of the factors: atmosphere, pre-processing, activation temperature and holding time in the oven. The best properties were found for a particular combination of the chosen parameters: temperature and activation time equal to 250 C and 2 hours, respectively, in air. The adsorption capacity for methylene blue and specific surface area (SBET) of this adsorbent were 500 mg/g and 600 m{sup 2}/g, respectively. Furthermore, in these conditions the adsorbent developed important surface functions. (authors)

  17. Mechanism of melting in submonolayer films of nitrogen molecules adsorbed on the basal planes of graphite

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter; Taub, H.

    1995-01-01

    The melting mechanism in submonolayer films of N-2 molecules adsorbed on the basal planes of graphite is studied using molecular-dynamics simulations. The melting is strongly correlated with the formation of vacancies in the films. As the temperature increases, the edges of the submonolayer patch...

  18. Direct measurement of adsorbed gas redistribution in metal-organic frameworks.

    Science.gov (United States)

    Chen, Ying-Pin; Liu, Yangyang; Liu, Dahuan; Bosch, Mathieu; Zhou, Hong-Cai

    2015-03-04

    Knowledge about the interactions between gas molecules and adsorption sites is essential to customize metal-organic frameworks (MOFs) as adsorbents. The dynamic interactions occurring during adsorption/desorption working cycles with several states are especially complicated. Even so, the gas dynamics based upon experimental observations and the distribution of guest molecules under various conditions in MOFs have not been extensively studied yet. In this work, a direct time-resolved diffraction structure envelope (TRDSE) method using sequential measurements by in situ synchrotron powder X-ray diffraction has been developed to monitor several gas dynamic processes taking place in MOFs: infusion, desorption, and gas redistribution upon temperature change. The electron density maps indicate that gas molecules prefer to redistribute over heterogeneous types of sites rather than to exclusively occupy the primary binding sites. We found that the gas molecules are entropically driven from open metal sites to larger neighboring spaces during the gas infusion period, matching the localized-to-mobile mechanism. In addition, the partitioning ratio of molecules adsorbed at each site varies with different temperatures, as opposed to an invariant distribution mode. Equally important, the gas adsorption in MOFs is intensely influenced by the gas-gas interactions, which might induce more molecules to be accommodated in an orderly compact arrangement. This sequential TRDSE method is generally applicable to most crystalline adsorbents, yielding information on distribution ratios of adsorbates at each type of site.

  19. Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents.

    Science.gov (United States)

    Ding, Rui; Zhang, Pengfei; Seredych, Mykola; Bandosz, Teresa J

    2012-09-01

    Sewage sludge- and waste oil sludge-derived materials were tested as adsorbents of pharmaceuticals from diluted water solutions. Simultaneous retention of eleven antibiotics plus two anticonvulsants was examined via batch adsorption experiments. Virgin and exhausted adsorbents were examined via thermal and FTIR analyses to elucidate adsorption mechanisms. Maximum adsorption capacities for the 6 materials tested ranged from 80 to 300 mg/g, comparable to the adsorption capacities of antibiotics on various activated carbons (200-400 mg/g) reported in the literature. The performance was linked to surface reactivity, polarity and porosity. A large volume of pores similar in size to the adsorbate molecules with hydrophobic carbon-based origin of pore walls was indicated as an important factor promoting the separation process. Moreover, the polar surface of an inorganic phase in the adsorbents attracted the functional groups of target molecules. The presence of reactive alkali metals promoted reaction with acidic groups, formation of salts and their precipitation in the pore system.

  20. Regeneration and efficiency characterization of hybrid adsorbent for thermal energy storage of excess and solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Dicaire, Daniel; Tezel, F. Handan [University of Ottawa, Department of Chemical and Biological Engineering, 161 Louis Pasteur, Colonel By Hall, A402, Ottawa, ON, K1N 6N5 (Canada)

    2011-03-15

    Adsorption Thermal Energy Storage (TES) is a promising technology for long term thermal energy storage of excess and solar heat. By using the exothermic reversible adsorption process, excess heat from an incinerator or solar heat from the summer can be stored and then released for heating during the winter. The usefulness of the storage system relies heavily on the temperature and quality of the heat available for regeneration of the adsorbent as it affects the storage efficiency, the amount of water released from the adsorbent and in turn the performance or energy density of the storage system. In this study, a lab scale high throughput open loop forced air adsorption TES has been built. A series of adsorption experiments were performed to determine the effect of adsorption flow rate and cycling on the chosen best performing adsorbent, AA13X from Rio Tinto Alcan. Regeneration characterization experiments were performed to determine the effect of flow rate, temperature and feed air relative humidity on the regeneration and performance of the system. The results were compared with another adsorbent to verify the observed trend. Finally, the efficiency of the thermal storage system was calculated. (author)