Sample records for aromatic-l-amino-acid decarboxylases

  1. Production of dopamine by aromatic L-amino acid decarboxylase cells after spinal cord injury

    DEFF Research Database (Denmark)

    Ren, Liqun; Wienecke, Jacob; Hultborn, Hans;


    Aromatic L-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin from 5-hydroxytryptophan after spinal cord injury (SCI)...

  2. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency.

    NARCIS (Netherlands)

    Brun, L.; Ngu, L.H.; Keng, W.T.; Ch'ng, G.S.; Choy, Y.S.; Hwu, W.L.; Lee, W.T.; Willemsen, M.A.A.P.; Verbeek, M.M.; Wassenberg, T.; Regal, L.; Orcesi, S.; Tonduti, D.; Accorsi, P.; Testard, H.; Abdenur, J.E.; Tay, S.; Allen, G.F.; Heales, S.; Kern, I.; Kato, M.; Burlina, A.; Manegold, C.; Hoffmann, G.F.; Blau, N.


    OBJECTIVE: To describe the current treatment; clinical, biochemical, and molecular findings; and clinical follow-up of patients with aromatic l-amino acid decarboxylase (AADC) deficiency. METHOD: Clinical and biochemical data of 78 patients with AADC deficiency were tabulated in a database of pediat

  3. Induction of aromatic-L-amino acid decarboxylase by decarboxylase inhibitors in idiopathic parkinsonism. (United States)

    Boomsma, F; Meerwaldt, J D; Man in 't Veld, A J; Hovestadt, A; Schalekamp, M A


    We evaluated the effect of administration of L-dopa, alone or in combination with a peripheral decarboxylase inhibitor, on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD). After single-dose administration of L-dopa plus benserazide (Madopar) in healthy subjects and in chronically treated patients with parkinsonism, plasma ALAAD followed for 2 to 3 hours fell, but returned to predosing levels within 90 minutes. Four groups of patients with idiopathic parkinsonism were studied during chronic treatment: Group I, no L-dopa treatment (n = 31); Group II, L-dopa alone (n = 15); Group III, L-dopa plus benserazide (n = 28); and Group IV, L-dopa plus carbidopa (Sinemet, n = 30). Plasma ALAAD 2 hours after dosing was normal in Groups I and II. ALAAD was increased threefold in Groups III and IV, suggesting induction of ALAAD by the coadministration of a peripheral decarboxylase inhibitor. In a study of 3 patients in whom L-dopa/benserazide was started, plasma ALAAD rose gradually over 3 to 4 weeks. Further detailed pharmacokinetic studies of L-dopa, dopamine, and ALAAD in plasma and cerebrospinal fluid are required to determine if the apparent ALAAD induction by a peripheral decarboxylase inhibitor may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena.

  4. The role of aromatic L-amino acid decarboxylase in bacillamide C biosynthesis by Bacillus atrophaeus C89


    Lei Yuwen; Feng-Li Zhang; Qi-Hua Chen; Shuang-Jun Lin; Yi-Lei Zhao; Zhi-Yong Li


    For biosynthesis of bacillamide C by Bacillus atrophaeus C89 associated with South China sea sponge Dysidea avara, it is hypothesized that decarboxylation from L-tryptophan to tryptamine could be performed before amidation by the downstream aromatic L-amino acid decarboxylase (AADC) to the non-ribosomal peptide synthetases (NRPS) gene cluster for biosynthesizing bacillamide C. The structural analysis of decarboxylases' known substrates in KEGG database and alignment analysis of amino acid seq...

  5. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma. (United States)

    Atwal, Paldeep S; Donti, Taraka R; Cardon, Aaron L; Bacino, C A; Sun, Qin; Emrick, L; Reid Sutton, V; Elsea, Sarah H


    Aromatic L-amino acid decarboxylase (AADC) deficiency is an inborn error of metabolism affecting the biosynthesis of serotonin, dopamine, and catecholamines. We report a case of AADC deficiency that was detected using the Global MAPS platform. This is a novel platform that allows for parallel clinical testing of hundreds of metabolites in a single plasma specimen. It uses a state-of-the-art mass spectrometry platform, and the resulting spectra are compared against a library of ~2500 metabolites. Our patient is now a 4 year old boy initially seen at 11 months of age for developmental delay and hypotonia. Multiple tests had not yielded a diagnosis until exome sequencing revealed compound heterozygous variants of uncertain significance (VUS), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the DDC gene, causal for AADC deficiency. CSF neurotransmitter analysis confirmed the diagnosis with elevated 3-methoxytyrosine (3-O-methyldopa). Metabolomic profiling was performed on plasma and revealed marked elevation in 3-methoxytyrosine (Z-score +6.1) consistent with the diagnosis of AADC deficiency. These results demonstrate that the Global MAPS platform is able to diagnose AADC deficiency from plasma. In summary, we report a novel and less invasive approach to diagnose AADC deficiency using plasma metabolomic profiling.

  6. Spinal cord hemisection facilitates aromatic L-amino acid decarboxylase cells to produce serotonin in the subchronic but not the chronic phase

    DEFF Research Database (Denmark)

    Azam, Bushra; Wienecke, Jacob; Jensen, Dennis Bo


    Neuromodulators, such as serotonin (5-hydroxytryptamine, 5-HT) and noradrenalin, play an essential role in regulating the motor and sensory functions in the spinal cord. We have previously shown that in the rat spinal cord the activity of aromatic L-amino acid decarboxylase (AADC) cells to produce...

  7. Spinal cord hemisection facilitates aromatic L-amino acid decarboxylase cells to produce serotonin in the subchronic but not the chronic phase

    DEFF Research Database (Denmark)

    Azam, Bushra; Wienecke, Jacob; Jensen, Dennis Bo;


    12) were used with a postoperation interval at 5 days or 60 days. Using immunohistochemistry, first, we observed a significant reduction in the density of 5-HT-immunoreactive fibers in the spinal cord below the lesion on the injured side for both groups. Second, we found that the AADC cells were......Neuromodulators, such as serotonin (5-hydroxytryptamine, 5-HT) and noradrenalin, play an essential role in regulating the motor and sensory functions in the spinal cord. We have previously shown that in the rat spinal cord the activity of aromatic L-amino acid decarboxylase (AADC) cells to produce...... 5-HT from its precursor (5-hydroxytryptophan, 5-HTP) is dramatically increased following complete spinal cord transection. In this study, we investigated whether a partial loss of 5-HT innervation could similarly increase AADC activity. Adult rats with spinal cord hemisected at thoracic level (T11/T...

  8. Spinal Cord Hemisection Facilitates Aromatic L-Amino Acid Decarboxylase Cells to Produce Serotonin in the Subchronic but Not the Chronic Phase

    Directory of Open Access Journals (Sweden)

    Bushra Azam


    Full Text Available Neuromodulators, such as serotonin (5-hydroxytryptamine, 5-HT and noradrenalin, play an essential role in regulating the motor and sensory functions in the spinal cord. We have previously shown that in the rat spinal cord the activity of aromatic L-amino acid decarboxylase (AADC cells to produce 5-HT from its precursor (5-hydroxytryptophan, 5-HTP is dramatically increased following complete spinal cord transection. In this study, we investigated whether a partial loss of 5-HT innervation could similarly increase AADC activity. Adult rats with spinal cord hemisected at thoracic level (T11/T12 were used with a postoperation interval at 5 days or 60 days. Using immunohistochemistry, first, we observed a significant reduction in the density of 5-HT-immunoreactive fibers in the spinal cord below the lesion on the injured side for both groups. Second, we found that the AADC cells were similarly expressed on both injured and uninjured sides in both groups. Third, increased production of 5-HT in AADC cells following 5-HTP was seen in 5-day but not in 60-day postinjury group. These results suggest that plastic changes of the 5-HT system might happen primarily in the subchronic phase and for longer period its function could be compensated by plastic changes of other intrinsic and/or supraspinal modulation systems.

  9. Induction of aromatic L-amino acid decarboxylase mRNA by interleukin-1 beta and prostaglandin E2 in PC12 cells. (United States)

    Li, X M; Juorio, A V; Boulton, A A


    Aromatic 1-amino acid decarboxylase (AADC) is involved in the synthesis of the putative neurotransmitters dopamine (DA), norepinephrine (NA) and 5-hydroxytryptamine (5-HT). We report here that the gene expression of AADC can be regulated by interleukin (IL) 1-beta and prostaglandin (PG) E2 in PC12 cells. The cells were treated with different doses of IL 1-beta and PGE2 for 3 days. Slot blot hybridization was performed to detect AADC mRNA and Western immunoblot to detect AADC protein. The cDNA probe for rat AADC was generated by the PCR method. IL 1-beta and PGE2 produced a dose- and time-dependent up-regulation in AADC mRNA levels (up to 200% of the control values) which was followed by a stable increase in AADC protein. The data further support the suggestion that AADC is a regulated enzyme and that the regulation occurs at the level of gene expression. Because IL-1 is synthesized, and acts locally, within the brain to influence neuronal and glial functions, it has been proposed to be a mediator with both beneficial and detrimental responses to inflammation and injury. The regulation of AADC by IL-1 may indicate a possible involvement for AADC in neuronal injury and recovery. Since IL-1 promotes PGE2 formation, its effects may be occurring by increasing level of PGE2.

  10. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency (United States)

    ... the limbs (athetosis). They may be lacking in energy (lethargic), feed poorly, startle easily, and have sleep disturbances. People with AADC deficiency may also experience episodes called oculogyric crises that involve abnormal rotation of the eyeballs; extreme ...

  11. [Asymmetric synthesis of aromatic L-amino acids catalyzed by transaminase]. (United States)

    Xia, Wenna; Sun, Yu; Min, Cong; Han, Wei; Wu, Sheng


    Aromatic L-Amino acids are important chiral building blocks for the synthesis of many drugs, pesticides, fine chemicals and food additives. Due to the high activity and steroselectivity, enzymatic synthesis of chiral building blocks has become the main research direction in asymmetric synthesis field. Guided by the phylogenetic analysis of transaminases from different sources, two representative aromatic transaminases TyrB and Aro8 in type I subfamily, from the prokaryote Escherichia coli and eukaryote Saccharomyces cerevisia, respectively, were applied for the comparative study of asymmetric transamination reaction process and catalytic efficiency of reversely converting keto acids to the corresponding aromatic L-amino acid. Both TyrB and Aro8 could efficiently synthesize the natural aromatic amino acids phenylalanine and tyrosine as well as non-natural amino acid phenylglycine. The chiral HPLC analysis showed the produced amino acids were L-configuration and the e.e value was 100%. L-alanine was the optimal amino donor, and the transaminase TyrB and Aro8 could not use D-amino acids as amino donor. The optimal molar ratio of amino donor (L-alanine) and amino acceptor (aromatic alpha-keto acids) was 4:1. Both of the substituted group on the aromatic ring and the length of fatty acid carbon chain part in the molecular structure of aromatic substrate alpha-keto acid have the significant impact on the enzyme-catalyzed transamination efficiency. In the experiments of preparative-scale transamination synthesis of L-phenylglycine, L-phenylalanine and L-tyrosine, the specific production rate catalyzed by TryB were 0.28 g/(g x h), 0.31 g/(g x h) and 0.60 g/(g x h) and the specific production rate catalyzed by Aro8 were 0.61 g/(g x h), 0.48 g/(g x h) and 0.59 g/(g x h). The results obtained here were useful for applying the transaminases to asymmetric synthesis of L-amino acids by reversing the reaction balance in industry.

  12. Spinal cord injury enables aromatic l-amino acid decarboxylase cells to synthesize monoamines

    DEFF Research Database (Denmark)

    Wienecke, Jacob; Ren, Li-Qun; Hultborn, Hans


    a loss of inhibition by descending 5-HT neurons and to be mediated by 5-HT1B receptors expressed by AADC cells. These findings indicate that AADC cells are a potential source of 5-HT at spinal levels below an SCI. The production of 5-HT by AADC cells, together with an upregulation of 5-HT2 receptors...

  13. Aromatic Amino Acid Decarboxylase Deficiency Not Responding to Pyridoxine and Bromocriptine Therapy: Case Report and Review of Response to Treatment



    Aromatic L-amino acid decarboxylase (AADC) deficiency (MIM #608643) is an autosomal recessive inborn error of monoamines. It is caused by a mutation in the DDC gene that leads to a deficiency in the AADC enzyme. The clinical features of this condition include a combination of dopamine, noradrenaline, and serotonin deficiencies, and a patient may present with hypotonia, oculogyric crises, sweating, hypersalivation, autonomic dysfunction, and progressive encephalopathy with severe developmental...

  14. Experimental Evidence and In Silico Identification of Tryptophan Decarboxylase in Citrus Genus

    Directory of Open Access Journals (Sweden)

    Luigi De Masi


    Full Text Available Plant tryptophan decarboxylase (TDC converts tryptophan into tryptamine, precursor of indolealkylamine alkaloids. The recent finding of tryptamine metabolites in Citrus plants leads to hypothesize the existence of TDC activity in this genus. Here, we report for the first time that, in Citrus x limon seedlings, deuterium labeled tryptophan is decarboxylated into tryptamine, from which successively deuterated N,N,N-trimethyltryptamine is formed. These results give an evidence of the occurrence of the TDC activity and the successive methylation pathway of the tryptamine produced from the tryptophan decarboxylation. In addition, with the aim to identify the genetic basis for the presence of TDC, we carried out a sequence similarity search for TDC in the Citrus genomes using as a probe the TDC sequence reported for the plant Catharanthus roseus. We analyzed the genomes of both Citrus clementina and Citrus sinensis, available in public database, and identified putative protein sequences of aromatic l-amino acid decarboxylase. Similarly, 42 aromatic l-amino acid decarboxylase sequences from 23 plant species were extracted from public databases. Potential sequence signatures for functional TDC were then identified. With this research, we propose for the first time a putative protein sequence for TDC in the genus Citrus.

  15. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Ding, H; Robinson, H; Christensen, B; Li, J


    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  16. Disease: H01161 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available arma R, De Vivo DC Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment, and prognosis. Neurolog...linical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology 75:64-71 (2010) ...

  17. Treatment of idiopathic parkinsonism with L-dopa in the absence and presence of decarboxylase inhibitors: effects on plasma levels of L-dopa, dopa decarboxylase, catecholamines and 3-O-methyl-dopa. (United States)

    Boomsma, F; Meerwaldt, J D; Man in't Veld, A J; Hovestadt, A; Schalekamp, M A


    The effect of levodopa (L-dopa), alone or in combination with a peripheral decarboxylase inhibitor (PDI), on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD, = dopa decarboxylase), L-dopa, 3-O-methyl-dopa (3-OMD), dopamine (DA), noradrenaline, adrenaline and dopamine beta-hydroxylase has been studied. In healthy subjects and in patients with parkinsonism plasma ALAAD level fell after administration of L-dopa + benserazide, but returned to previous levels within 90 min. In a cross-sectional study blood was obtained, 2 h after dosing, from 104 patients with idiopathic parkinsonism, divided into four groups: no L-dopa treatment (group 1), L-dopa alone (group 2), L-dopa + benserazide (Madopar) (group 3) and L-dopa + carbidopa (Sinemet) (group 4). Plasma ALAAD, which was normal in groups 1 and 2, was increased 3-fold in groups 3 and 4, indicating that there was induction of ALAAD by the co-administration of PDI. Despite this induction of ALAAD, in groups 3 and 4, with half the daily L-dopa dose compared with group 2, plasma L-dopa and 3-OMD levels were 5 times higher, while plasma DA levels were not different. The DA/L-dopa ratio was decreased 5-fold in group 2 and 16-fold in groups 3 and 4 as compared with group 1. Neither 3-OMD levels nor 3-OMD/L-dopa ratios correlated with the occurrence of on-off fluctuations. In a longitudinal study of three patients started on Madopar treatment the induction of plasma ALAAD was found to occur gradually over 3-4 weeks. Further detailed pharmacokinetic studies in plasma and cerebrospinal fluid are required in order to elucidate whether the ALAAD induction by PDI may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena.

  18. Drug: D01653 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 53.gif Inhibitor [decarboxylase], Antiparkinsonian Peripheral aromatic L-amino acid decarboxylase inhibitors...tophan metabolism map07057 Antiparkinsonian agents Target-based classification of drugs [BR:br08310] Enzymes

  19. Drug: D03082 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available bolism hsa00360(1644) Phenylalanine metabolism hsa00380(1644) Tryptophan metabolism map07057 Antiparkinson...r [decarboxylase], Antiparkinsonian Peripheral aromatic L-amino acid decarboxylase inhibitors (DCI) DOPA dec...D03082 Drug Benserazide (USAN/INN) C10H15N3O5 257.1012 257.2432 D03082.gif Inhibito

  20. Biosynthetic arginine decarboxylase in phytopathogenic fungi. (United States)

    Khan, A J; Minocha, S C


    It has been reported that while bacteria and higher plants possess two different pathways for the biosynthesis of putrescine, via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC); the fungi, like animals, only use the former pathway. We found that contrary to the earlier reports, two of the phytopathogenic fungi (Ceratocystis minor and Verticillium dahliae) contain significant levels of ADC activity with very little ODC. The ADC in these fungi has high pH optimum (8.4) and low Km (0.237 mM for C. minor, 0.103 mM for V. dahliae), and is strongly inhibited by alpha-difluoromethylarginine (DFMA), putrescine and spermidine, further showing that this enzyme is probably involved in the biosynthesis of polyamines and not in the catabolism of arginine as in Escherichia coli. The growth of these fungi is strongly inhibited by DFMA while alpha-difluoromethylornithine (DFMO) has little effect.

  1. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    Energy Technology Data Exchange (ETDEWEB)

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong


    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  2. Characterization of arginine decarboxylase from Dianthus caryophyllus. (United States)

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun


    Arginine decarboxylase (ADC, EC is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%.

  3. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Langkjær, Rikke Breinhold; Nielsen, Jens;


    Saccharomyces kluyveri is a petite-negative yeast, which is less prone to form ethanol under aerobic conditions than is S. cerevisiae. The first reaction on the route from pyruvate to ethanol is catalysed by pyruvate decarboxylase, and the differences observed between S. kluyveri and S. cerevisiae...... was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts...... is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae...

  4. Keto-isovalerate decarboxylase enzymes and methods of use thereof (United States)

    McElvain, Jessica; O'Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian


    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  5. A porphodimethene chemical inhibitor of uroporphyrinogen decarboxylase.

    Directory of Open Access Journals (Sweden)

    Kenneth W Yip

    Full Text Available Uroporphyrinogen decarboxylase (UROD catalyzes the conversion of uroporphyrinogen to coproporphyrinogen during heme biosynthesis. This enzyme was recently identified as a potential anticancer target; its inhibition leads to an increase in reactive oxygen species, likely mediated by the Fenton reaction, thereby decreasing cancer cell viability and working in cooperation with radiation and/or cisplatin. Because there is no known chemical UROD inhibitor suitable for use in translational studies, we aimed to design, synthesize, and characterize such a compound. Initial in silico-based design and docking analyses identified a potential porphyrin analogue that was subsequently synthesized. This species, a porphodimethene (named PI-16, was found to inhibit UROD in an enzymatic assay (IC50 = 9.9 µM, but did not affect porphobilinogen deaminase (at 62.5 µM, thereby exhibiting specificity. In cellular assays, PI-16 reduced the viability of FaDu and ME-180 cancer cells with half maximal effective concentrations of 22.7 µM and 26.9 µM, respectively, and only minimally affected normal oral epithelial (NOE cells. PI-16 also combined effectively with radiation and cisplatin, with potent synergy being observed in the case of cisplatin in FaDu cells (Chou-Talalay combination index <1. This work presents the first known synthetic UROD inhibitor, and sets the foundation for the design, synthesis, and characterization of higher affinity and more effective UROD inhibitors.

  6. A standard numbering scheme for thiamine diphosphate-dependent decarboxylases

    Directory of Open Access Journals (Sweden)

    Vogel Constantin


    Full Text Available Abstract Background Standard numbering schemes for families of homologous proteins allow for the unambiguous identification of functionally and structurally relevant residues, to communicate results on mutations, and to systematically analyse sequence-function relationships in protein families. Standard numbering schemes have been successfully implemented for several protein families, including lactamases and antibodies, whereas a numbering scheme for the structural family of thiamine-diphosphate (ThDP -dependent decarboxylases, a large subfamily of the class of ThDP-dependent enzymes encompassing pyruvate-, benzoylformate-, 2-oxo acid-, indolpyruvate- and phenylpyruvate decarboxylases, benzaldehyde lyase, acetohydroxyacid synthases and 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase (MenD is still missing. Despite a high structural similarity between the members of the ThDP-dependent decarboxylases, their sequences are diverse and make a pairwise sequence comparison of protein family members difficult. Results We developed and validated a standard numbering scheme for the family of ThDP-dependent decarboxylases. A profile hidden Markov model (HMM was created using a set of representative sequences from the family of ThDP-dependent decarboxylases. The pyruvate decarboxylase from S. cerevisiae (PDB: 2VK8 was chosen as a reference because it is a well characterized enzyme. The crystal structure with the PDB identifier 2VK8 encompasses the structure of the ScPDC mutant E477Q, the cofactors ThDP and Mg2+ as well as the substrate analogue (2S-2-hydroxypropanoic acid. The absolute numbering of this reference sequence was transferred to all members of the ThDP-dependent decarboxylase protein family. Subsequently, the numbering scheme was integrated into the already established Thiamine-diphosphate dependent Enzyme Engineering Database (TEED and was used to systematically analyze functionally and structurally relevant

  7. Role of ornithine decarboxylase in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Wensheng Deng; Xian Jiang; Yu Mei; Jingzhong Sun; Rong Ma; Xianxi Liu; Hui Sun; Hui Tian; Xueying Sun


    Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis that decarboxylates ornithine to putrescine, has become a promising target for cancer research. The aim of this study is to investigate the role of ODC in breast cancer. We detected expression of ODC in breast cancer tissues and four breast cancer cell lines, and transfected breast cancer cells with an adenoviral vector carrying antisense ODC (rAd-ODC/Ex3as) and examined their growth and migration.ODC was overexpressed in breast cancer tissues and cell lines compared with non-tumor tissues and normal breast epithelial celis,and there was a positive correlation between the level of ODC mRNA and the staging of tumors.The expression of ODC correlated with cyclin D1,a cell cycle protein,in synchronized breast cancer MDA-MB-231 cells.Gene transfection of rAd-ODC/Ex3as markedly down-regulated expression Of ODC and cyclin D1,resulting in suppression of proliferation and cell cycle arrest at G0-G1 phase,and the inhibifion of colony formation,an anchorage-independent growth pattern,and the migratory ability of MDA-MB-231 cells.rAd-ODC/Ex3as also markedly reduced the concentration of putrescine,but not spermidine or spermine,in MDA-MB-231 cells.The results suggested that the ODC gene might act as aprognostic factor for breast cancer and it could be a promising therapeutic target.

  8. Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots. (United States)

    Hao, Yu-Jin; Kitashiba, Hiroyasu; Honda, Chikako; Nada, Kazuyoshi; Moriguchi, Takaya


    Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) are two important enzymes responsible for putrescine biosynthesis. In this study, a full-length ADC cDNA (MdADC) was isolated from apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. Meanwhile, a partial ODC (pMdODC) could be amplified only by a second RCR from the RT-PCR products, whereas a full-length ODC could not be obtained by either cDNA library screening or 5'- and 3'-RACEs, suggesting quite low expression. Moreover, D-arginine, an ADC inhibitor, caused a decrease in ADC activity and severely inhibited the growth of apple callus, which could be partially resumed by exogenous addition of putrescine, whereas alpha-difluoromethylornithine (DFMO), an inhibitor for ODC, caused the incomplete repression of callus growth without changing ODC activity. RNA gel blot showed that the expression level of MdADC was high in young tissues/organs with rapid cell division and was positively induced by chilling, salt, and dehydration, implying its involvement in both cell growth and these stress responses. By contrast, the transcript of ODC could not be detected by RNA gel blot analysis. Based on the present study, it is possible to conclude that (i) the ODC pathway is active in apple, although the expression level of the pMdODC gene homologous with its counterparts found in other plant species is quite low; and (ii) MdADC expression correlates with cell growth and stress responses to chilling, salt, and dehydration, suggesting that ADC is a primary biosynthetic pathway for putrescine biosynthesis in apple.

  9. Differential distribution of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 messenger RNAs in the entopeduncular nucleus of the rat. (United States)

    Yuan, P Q; Grånäs, C; Källström, L; Yu, J; Huhman, K; Larhammar, D; Albers, H E; Johnson, A E


    The entopeduncular nucleus is one of the major output nuclei of the basal ganglia, with topographically organized projections to both motor and limbic structures. Neurons of the entopeduncular nucleus use GABA as the principal transmitter, and glutamic acid decarboxylase (the GABA synthetic enzyme) is widely distributed throughout the region. Previous studies have shown that glutamate decarboxylase exists in two forms (glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67), and that the messenger RNAs for these different enzymes are widely distributed in rat brain. The purpose of the present experiment was to describe the distribution of glutamic acid decarboxylase-65 and glutamic decarboxylase-67 messenger RNAs throughout the entopeduncular nucleus using recently developed oligodeoxynucleotide probes and in situ hybridization histochemical methods. In agreement with previous studies, northern analysis of rat brain poly(A)+ messenger RNA preparations showed that the glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 probes used in the present study hybridized to messenger RNAs of approximately 5.7 and 3.7 kb, respectively. Film autoradiographic analysis revealed large region-dependent, isoform-specific differences in the levels of expression of the two messenger RNAs, with glutamic acid decarboxylase-65 messenger RNA predominating in rostral and medial regions of the entopeduncular nucleus and glutamic acid decarboxylase-67 messenger RNA most abundant in the caudal region. Cellular analysis showed that these region-dependent differences in labelling were due to differences in the relative amounts of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 messenger RNAs expressed per cell rather than the number of cells expressing each form of glutamic acid decarboxylase messenger RNA. The differences in the distribution of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 messenger RNAs are closely related to the

  10. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    DEFF Research Database (Denmark)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga


    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD...

  11. Cerebellar Ataxia and Glutamic Acid Decarboxylase Antibodies (United States)

    Ariño, Helena; Gresa-Arribas, Nuria; Blanco, Yolanda; Martínez-Hernández, Eugenia; Sabater, Lidia; Petit-Pedrol, Mar; Rouco, Idoia; Bataller, Luis; Dalmau, Josep O.; Saiz, Albert; Graus, Francesc


    IMPORTANCE Current clinical and immunologic knowledge on cerebellar ataxia (CA) with glutamic acid decarboxylase 65 antibodies (GAD65-Abs) is based on case reports and small series with short-term follow-up data. OBJECTIVE To report the symptoms, additional antibodies, prognostic factors, and long-term outcomes in a cohort of patients with CA and GAD65-Abs. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study and laboratory investigations at a center for autoimmune neurologic disorders among 34 patients with CA and GAD65-Abs, including 25 with long-term follow-up data (median, 5.4 years; interquartile range, 3.1-10.3 years). MAIN OUTCOMES AND MEASURES Analysis of clinicoimmunologic features and predictors of response to immunotherapy. Immunochemistry on rat brain, cultured neurons, and human embryonic kidney cells expressing GAD65, GAD67, α1-subunit of the glycine receptor, and a repertoire of known cell surface autoantigens were used to identify additional antibodies. Twenty-eight patients with stiff person syndrome and GAD65-Abs served as controls. RESULTS The median age of patients was 58 years (range, 33-80 years); 28 of 34 patients (82%) were women. Nine patients (26%) reported episodes of brainstem and cerebellar dysfunction or persistent vertigo several months before developing CA. The clinical presentation was subacute during a period of weeks in 13 patients (38%). Nine patients (26%) had coexisting stiff person syndrome symptoms. Systemic organ-specific autoimmunities (type 1 diabetes mellitus and others) were present in 29 patients (85%). Twenty of 25 patients with long-term follow-up data received immunotherapy (intravenous immunoglobulin in 10 and corticosteroids and intravenous immunoglobulin or other immunosuppressors in 10), and 7 of them (35%) improved. Predictors of clinical response included subacute onset of CA (odds ratio [OR], 0.50; 95% CI, 0.25-0.99; P = .047) and prompt immunotherapy (OR, 0.98; 95% CI, 0.96-0.99; P = .01). Similar

  12. Arginine decarboxylase as the source of putrescine for tobacco alkaloids (United States)

    Tiburcio, A. F.; Galston, A. W.


    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  13. Lotus hairy roots expressing inducible arginine decarboxylase activity. (United States)

    Chiesa, María A; Ruiz, Oscar A; Sánchez, Diego H


    Biotechnological uses of plant cell-tissue culture usually rely on constitutive transgene expression. However, such expression of transgenes may not always be desirable. In those cases, the use of an inducible promoter could be an alternative approach. To test this hypothesis, we developed two binary vectors harboring a stress-inducible promoter from Arabidopsis thaliana, driving the beta-glucuronidase reporter gene and the oat arginine decarboxylase. Transgenic hairy roots of Lotus corniculatus were obtained with osmotic- and cold-inducible beta-glucuronidase and arginine decarboxylase activities. The increase in the activity of the latter was accompanied by a significant rise in total free polyamines level. Through an organogenesis process, we obtained L. corniculatus transgenic plants avoiding deleterious phenotypes frequently associated with the constitutive over-expression of arginine decarboxylation and putrescine accumulation.

  14. [Inhibitory effect of essential oils, food additives, peracetic acid and detergents on bacterial histidine decarboxylase]. (United States)

    Kamii, Eri; Terada, Gaku; Akiyama, Jyunki; Isshiki, Kenji


    The aim of this study is to examine whether various essential oils, food additives, peracetic acid and detergents inhibit bacterial histidine decarboxylase. Crude extract of Morganella morganii NBRC3848 was prepared and incubated with various agents. Histidine decarboxylase activity was significantly inhibited (pperacetic acid caused slight decomposition. Histidine and histamine were stable in the presence of the other 24 agents. These results indicated that 25 of the agents examined were inhibitors of histidine decarboxylase.

  15. Resolution of brewers' yeast pyruvate decarboxylase into two isozymes. (United States)

    Kuo, D J; Dikdan, G; Jordan, F


    A novel purification method was developed for brewers' yeast pyruvate decarboxylase (EC that for the first time resolved the enzyme into two isozymes on DEAE-Sephadex chromatography. The isozymes were found to be distinct according to sodium dodecyl sulfate polyacrylamide gel electrophoresis: the first one to be eluted gave rise to one band, the second to two bands. The isozymes were virtually the same so far as specific activity, KM, inhibition kinetics and irreversible binding properties by the mechanism-based inhibitor (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid are concerned. This finding resolves a longstanding controversy concerning the quaternary structure of this enzyme.

  16. Conformational Stabilization of Rat S-Adenosylmethionine Decarboxylase by Putrescine


    和田, 牧子; 白幡, 晶


    The activity and processing of mammalian S-adenosylmethionine decarboxylase (AdoMetDC) is stimulated by putrescine. To obtain new insights into the mechanism through which putrescine stimulates AdoMetDC, we investigated conformational changes in rat prostate AdoMetDC in the presence or absence of putrescine. We examined the reactivity of purified rat prostate AdoMetDC to the SH-reagent iodoacetic acid (IAA) and its susceptibility to proteolysis in the presence or absence of putrescine using m...

  17. Cell biology, physiology and enzymology of phosphatidylserine decarboxylase. (United States)

    Di Bartolomeo, Francesca; Wagner, Ariane; Daum, Günther


    Phosphatidylethanolamine is one of the most abundant phospholipids whose major amounts are formed by phosphatidylserine decarboxylases (PSD). Here we provide a comprehensive description of different types of PSDs in the different kingdoms of life. In eukaryotes, type I PSDs are mitochondrial enzymes, whereas other PSDs are localized to other cellular compartments. We describe the role of mitochondrial Psd1 proteins, their function, enzymology, biogenesis, assembly into mitochondria and their contribution to phospholipid homeostasis in much detail. We also discuss briefly the cellular physiology and the enzymology of Psd2. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.

  18. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in streptococcus thermophilus (United States)

    The integrative vector pINTRS was used to transfer glutamate decarboxylase (GAD) activity to Streptococcus thermophilus ST128, thus allowing for the production of '-aminobutyric acid (GABA). In pINTRS, the gene encoding glutamate decarboxylase, gadB, was flanked by DNA fragments homologous to a S. ...

  19. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study. (United States)

    Verimli, Ural; Sehirli, Umit S


    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  20. Functionally diverse biotin-dependent enzymes with oxaloacetate decarboxylase activity. (United States)

    Lietzan, Adam D; St Maurice, Martin


    Biotin-dependent enzymes catalyze carboxylation, decarboxylation and transcarboxylation reactions that participate in the primary metabolism of a wide range of organisms. In all cases, the overall reaction proceeds via two half reactions that take place in physically distinct active sites. In the first half-reaction, a carboxyl group is transferred to the 1-N' of a covalently tethered biotin cofactor. The tethered carboxybiotin intermediate subsequently translocates to a second active site where the carboxyl group is either transferred to an acceptor substrate or, in some bacteria and archaea, is decarboxylated to biotin and CO2 in order to power the export of sodium ions from the cytoplasm. A homologous carboxyltransferase domain is found in three enzymes that catalyze diverse overall reactions: carbon fixation by pyruvate carboxylase, decarboxylation and sodium transport by the biotin-dependent oxaloacetate decarboxylase complex, and transcarboxylation by transcarboxylase from Propionibacterium shermanii. Over the past several years, structural data have emerged which have greatly advanced the mechanistic description of these enzymes. This review assembles a uniform description of the carboxyltransferase domain structure and catalytic mechanism from recent studies of pyruvate carboxylase, oxaloacetate decarboxylase and transcarboxylase, three enzymes that utilize an analogous carboxyltransferase domain to catalyze the biotin-dependent decarboxylation of oxaloacetate.

  1. Glutamic acid decarboxylase autoimmunity in Batten disease and other disorders. (United States)

    Pearce, David A; Atkinson, Mark; Tagle, Danilo A


    Degenerative diseases of the CNS, such as stiff-person syndrome (SPS), progressive cerebellar ataxia, and Rasmussen encephalitis, have been characterized by the presence of autoantibodies. Recent findings in individuals with Batten disease and in animal models for the disorder indicate that this condition may be associated with autoantibodies against glutamic acid decarboxylase (GAD), an enzyme that converts the excitatory neurotransmitter glutamate to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Anti-GAD autoantibodies could result in excess excitatory neurotransmitters, leading to the seizures and other symptoms observed in patients with Batten disease. The pathogenic potential of GAD autoantibodies is examined in light of what is known for other autoimmune disorders, such as multiple sclerosis, SPS, Rasmussen encephalitis, and type 1 diabetes, and may have radical implications for diagnosis and management of Batten disease.

  2. Structural Basis of the Substrate Specificity and Enzyme Catalysis of a Papaver somniferum Tyrosine Decarboxylase (United States)

    Guan, Huai; Song, Shuaibao; Robinson, Howard; Liang, Jing; Ding, Haizhen; Li, Jianyong; Han, Qian


    Tyrosine decarboxylase (TyDC), a type II pyridoxal 5′-phosphate decarboxylase, catalyzes the decarboxylation of tyrosine. Due to a generally high sequence identity to other aromatic amino acid decarboxylases (AAADs), primary sequence information is not enough to understand substrate specificities with structural information. In this study, we selected a typical TyDC from Papaver somniferum as a model to study the structural basis of AAAD substrate specificities. Analysis of the native P. somniferum TyDC crystal structure and subsequent molecular docking and dynamics simulation provide some structural bases that explain substrate specificity for tyrosine. The result confirmed the previous proposed mechanism for the enzyme selectivity of indolic and phenolic substrates. Additionally, this study yields the first crystal structure for a plant type II pyridoxal-5'-phosphate decarboxylase. PMID:28232911

  3. Post-transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes. (United States)

    Bassez, T; Paris, J; Omilli, F; Dorel, C; Osborne, H B


    The level at which ornithine decarboxylase expression is regulated in growing oocytes has been investigated. Immunoprecipitation of the in vivo labelled proteins showed that ornithine decarboxylase accumulated less rapidly in stage IV oocytes than in previtellogenic stage I + II oocytes. Quantitative Northern analysis showed that ornithine decarboxylase mRNA is abundant in oocytes (about 8 x 10(8) transcripts/cell) and this number does not significantly change during oogenesis. Polysome analysis showed that this mRNA is present in polysomes in stage I + II oocytes but has passed into puromycin-insensitive mRNP particles by stage IV of oogenesis. Therefore, during the growth phase of oogenesis, ornithine decarboxylase expression is regulated at a translational level. These results are discussed relative to the temporal expression of ornithine decarboxylase and of other proteins whose expression also decreases during oogenesis. In order to perform these experiments, the cDNA (XLODC1) corresponding to Xenopus laevis ornithine decarboxylase mRNA was cloned and sequenced.

  4. Enzymatic Synthesis of Agmatine by Immobilized Escherichia coli Cells with Arginine Decarboxylase Activity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-guo; ZHAO Gen-hai; LIU Jun-zhong; LIU Qian; JIAO Qing-cai


    A new method for the enzymatic synthesis of agmatine by immobilized Escherichia coli cells with arginine decarboxylase(ADC)activity was established and a series of optimal reaction conditions was set down.The arginine decarboxylase showed the maximum activity when the pyridoxal phosphate(PLP)concentration was 50 mmol/L,pH=7 and 45 ℃.The arginine decarboxylase exhibited the maximum production efficiency when the substrate concentration was 100 mmol/L and the reaction time was 15 h.It was also observed that the appropriate concentration of Mg2+,especially at 0.5 mmol/L promoted the arginine decarboxylase activity; Mn2+ had little effect on the arginine decarboxylase activity.The inhibition of Cu2+ and Zn2+ to the arginine decarboxylase activity was significant.The immobilized cells were continuously used 6 times and the average conversion rate during the six-time usage was 55.6%.The immobilized cells exhibited favourable operational stability.After optimization,the maximally cumulative amount of agmatine could be up to 20 g/L.In addition,this method can also catalyze D,L-arginine to agmatine,leaving the pure optically D-arginine simultaneously.The method has a very important guiding significance to the enzymatic preparation of agmatine.

  5. Characterization of the Entamoeba histolytica ornithine decarboxylase-like enzyme.

    Directory of Open Access Journals (Sweden)

    Anupam Jhingran

    Full Text Available BACKGROUND: The polyamines putrescine, spermidine, and spermine are organic cations that are required for cell growth and differentiation. Ornithine decarboxylase (ODC, the first and rate-limiting enzyme in the polyamine biosynthetic pathway, is a highly regulated enzyme. METHODOLOGY AND RESULTS: To use this enzyme as a potential drug target, the gene encoding putative ornithine decarboxylase (ODC-like sequence was cloned from Entamoeba histolytica, a protozoan parasite causing amoebiasis. DNA sequence analysis revealed an open reading frame (ORF of approximately 1,242 bp encoding a putative protein of 413 amino acids with a calculated molecular mass of 46 kDa and a predicted isoelectric point of 5.61. The E. histolytica putative ODC-like sequence has 33% sequence identity with human ODC and 36% identity with the Datura stramonium ODC. The ORF is a single-copy gene located on a 1.9-Mb chromosome. The recombinant putative ODC protein (48 kDa from E. histolytica was heterologously expressed in Escherichia coli. Antiserum against recombinant putative ODC protein detected a band of anticipated size approximately 46 kDa in E. histolytica whole-cell lysate. Difluoromethylornithine (DFMO, an enzyme-activated irreversible inhibitor of ODC, had no effect on the recombinant putative ODC from E. histolytica. Comparative modeling of the three-dimensional structure of E. histolytica putative ODC shows that the putative binding site for DFMO is disrupted by the substitution of three amino acids-aspartate-332, aspartate-361, and tyrosine-323-by histidine-296, phenylalanine-305, and asparagine-334, through which this inhibitor interacts with the protein. Amino acid changes in the pocket of the E. histolytica enzyme resulted in low substrate specificity for ornithine. It is possible that the enzyme has evolved a novel substrate specificity. CONCLUSION: To our knowledge this is the first report on the molecular characterization of putative ODC-like sequence from

  6. Ornithine decarboxylase gene is overexpressed in colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hai-Yan Hu; Bing Zhang; Xian-Xi Liu; Chun-Ying Jiang; Yi Lu; Shi-Lian Liu; Ji-Feng Bian; Xiao-Ming Wang; Zhao Geng; Yan Zhang


    AIM: To investigate the ornithine decarboxylase (ODC)gene expression in colorectal carcinoma, ODC mRNA was assayed by RT-PCR and ODC protein was detected by a monoclonal antibody against fusion of human colon ODC prepared by hybridoma technology.METHODS: Total RNA was extracted from human colorectal cancer tissues and their normal counterpart tissues. ODC mRNA levels were examined by RT-PCR.ODC genes amplified from RT-PCR were cloned into a prokaryotic vector pQE-30. The expressed proteins were purified by chromatography. Anti-ODC mAb was prepared with classical hybridoma techniques and used to determine the ODC expression in colon cancer tissues by immunohistochemical and Western blotting assay.RESULTS: A cell line, which could steadily secrete antiODC mAb, was selected through subcloning four times.Western blotting reconfirmed the mAb and ELISA showed that its subtype was IgG2a. RT-PCR showed that the ODC mRNA level increased greatly in colon cancer tissues (P<0.01). Immunohistochemical staining showed that colorectal carcinoma cells expressed a significantly higher level of ODC than normal colorectal mucosa (98.6±1.03%vs 5.26±5%, P<0.01).CONCLUSION: ODC gene overexpression is significantly related to human colorectal carcinoma. ODC gene expression may be a marker for the gene diagnosis and therapy of colorectal carcinoma.

  7. Expression of ornithine decarboxylase in precancerous and cancerous gastric lesions

    Institute of Scientific and Technical Information of China (English)

    Xin-Pu Miao; Jian-Sheng Li; Hui-Yan Li; Shi-Ping Zeng; Ye Zhao; Jiang-Zheng Zeng


    AIM:To investigate the expression of ornithine decarboxylase (ODC) in precancerous and cancerous gastric lesions.METHODS: We studied the expression of ODC in gastric mucosa from patients with chronic superficial gastritis (CSG, n = 32), chronic atrophic gastritis [CAG, n = 43;15 with and 28 without intestinal metaplasia (IM)],gastric dysplasia (DYS, n = 11) and gastric cancer (GC,n = 48) tissues using immunohistochemical staining. All 134 biopsy specimens of gastric mucosa were collected by gastroscopy.METHODS: The positive rate of ODC expression was 34.4%, 42.9%, 73.3%, 81.8% and 91.7% in cases with CSG, CAG without IM, CAG with IM, DYS and GC, respectively (P < 0.01), The positive rate of ODC expression increased in the order of CSG < CAG (without IM) < CAG (with IM) < DYS and finally, GC. In addition,ODC positive immunostaining rate was lower in welldifferentiated GC than in poorly-differentiated GC (P <0.05).CONCLUSION: The expression of ODC is positively correlated with the degree of malignity of gastric mucosa and development of gastric lesions. This finding indicates that ODC may be used as a good biomarker in the screening and diagnosis of precancerous lesions.

  8. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Kanerva, Kristiina; Maekitie, Laura T. [Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Baeck, Nils [Department of Anatomy, Institute of Biomedicine, University of Helsinki, Helsinki (Finland); Andersson, Leif C., E-mail: [Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); HUSLAB, Helsinki (Finland); Department of Oncology and Pathology, Karolinska Institutet, Stockholm (Sweden)


    Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.

  9. Characterization of a second ornithine decarboxylase isolated from Morganella morganii. (United States)

    De Las Rivas, Blanca; González, Ramón; Landete, José María; Muñoz, Rosario


    The genes involved in the putrescine formation by Morganella morganii were investigated because putrescine is an indicator of food process deterioration. We report here on the existence of a new gene for ornithine decarboxylase (ODC) in M. morganii. The sequenced 5,311-bp DNA region showed the presence of four complete and one partial open reading frame. Putative functions have been assigned to several gene products by sequence comparison with the proteins included in the databases. The third open reading frame (speC) encoded a 722-amino acid protein showing 70.9% identity to the M. morganii ODC previously characterized (SpeF). The speC gene has been expressed in Escherichia coli, resulting in ODC activity. The presence of a functional promoter (PspeC) located upstream of speC has been demonstrated. Quantitative real-time reverse transcription PCR assay was used to quantify expression of both M. morganii ODC-encoding genes, speC and speF, under different growth conditions. This assay allows us to identify SpeF as the inducible M. morganii ODC, since it was highly expressed in the presence of ornithine.

  10. An adeno-associated virus vector-mediated multiple gene transfer for dopamine synthetic enzymes

    Institute of Scientific and Technical Information of China (English)

    樊东升; 沈扬


    Objective: To explore a multiple gene transfer approach with separate adeno-associated virus vectors. Methods: The genes of dopamine synthetic enzymes, tyrosine hydroxylasc (TH), GTP cyclohydrolase I (GCH, an enzyme critical for tetrahydrobioptcrin synthesis), and aromatic L-amino acid decarboxylase (AADC), were cotransduced into 293 cells with separate AAV vectors. Expressions of TH, GCH, and AADC were detected by Western blot analysis. L-dopa and dopamine levels in the ceils were assayed by HPLC. Results: TH, GCH, and AADC proteins were effectively cocxpressed in the transduced cells with three separate AAV vectors, AAV-TH, AAV-GCH, and AAV-AADC. Furthermore, the coexpression of these three proteins resulted in an effectively spontaneous dopainc production in the cotransduced cells. Conclusion: The triple transduction of TH, GCH, and AADC genes with separate AAV vectors is effective, which might be important to gene therapy for Parkinson's disease.

  11. PET 6-[18F]fluoro-L-m-tyrosine studies of dopaminergic function in human and nonhuman primates

    Directory of Open Access Journals (Sweden)

    Jamie L Eberling


    Full Text Available Although positron emission tomography (PET and the aromatic L-amino acid decarboxylase (AADC tracer 6-[18F]fluoro-L-m-tyrosine (FMT has been used to assess the integrity of the presynaptic dopamine system in the brain, relatively little has been published in terms of brain FMT uptake values especially for normal human subjects. Twelve normal volunteer subjects were scanned using PET and FMT to determine the range of normal striatal uptake values using Patlak graphical analysis. For comparison, seven adult rhesus monkeys were studied and the data analyzed in the same way. A subset of monkeys that were treated with a unilateral intracarotid artery infusion of the dopamine neurotoxin MPTP showed an 87% decrease in striatal FMT uptake. These findings support the use of PET and FMT to image AADC distribution in both normal and diseased brains using Patlak graphical analysis and tissue input functions.

  12. 让人无助的新陈代谢罕有疾病

    Institute of Scientific and Technical Information of China (English)



    唏然今年四岁,她患有芳香族L-胺基酸类脱羧基酵素缺乏症(Aromatic L-amino acid decarboxylase deficiency),是一种异常的新陈代谢疾病.致病原因是缺乏负责左旋多巴与5-HTP代谢的L-胺基酸类脱羧基酵素,导致身体缺乏多巴胺,造成严重的发展迟缓、眼动危象及自主神经系统功能失调。

  13. Structural and degradative aspects of ornithine decarboxylase antizyme inhibitor 2

    Directory of Open Access Journals (Sweden)

    Bruno Ramos-Molina


    Full Text Available Ornithine decarboxylase (ODC is the key enzyme in the polyamine biosynthetic pathway. ODC levels are controlled by polyamines through the induction of antizymes (AZs, small proteins that inhibit ODC and target it to proteasomal degradation without ubiquitination. Antizyme inhibitors (AZIN1 and AZIN2 are proteins homologous to ODC that bind to AZs and counteract their negative effect on ODC. Whereas ODC and AZIN1 are well-characterized proteins, little is known on the structure and stability of AZIN2, the lastly discovered member of this regulatory circuit. In this work we first analyzed structural aspects of AZIN2 by combining biochemical and computational approaches. We demonstrated that AZIN2, in contrast to ODC, does not form homodimers, although the predicted tertiary structure of the AZIN2 monomer was similar to that of ODC. Furthermore, we identified conserved residues in the antizyme-binding element, whose substitution drastically affected the capacity of AZIN2 to bind AZ1. On the other hand, we also found that AZIN2 is much more labile than ODC, but it is highly stabilized by its binding to AZs. Interestingly, the administration of the proteasome inhibitor MG132 caused differential effects on the three AZ-binding proteins, having no effect on ODC, preventing the degradation of AZIN1, but unexpectedly increasing the degradation of AZIN2. Inhibitors of the lysosomal function partially prevented the effect of MG132 on AZIN2. These results suggest that the degradation of AZIN2 could be also mediated by an alternative route to that of proteasome. These findings provide new relevant information on this unique regulatory mechanism of polyamine metabolism.

  14. Catalysis of acetoin formation by brewers' yeast pyruvate decarboxylase isozymes. (United States)

    Stivers, J T; Washabaugh, M W


    Catalysis of C(alpha)-proton transfer from 2-(1-hydroxyethyl)thiamin diphosphate (HETDP) by pyruvate decarboxylase isozymes (PDC; EC from Saccharomyces carlsbergensis was investigated by determining the steady-state kinetics of the reaction of [1-L]acetaldehyde (L = H, D, or T) to form acetoin and the primary kinetic isotope effects on the reaction. The PDC isozyme mixture and alpha 4 isozyme (alpha 4-PDC) have different steady-state kinetic parameters and isotope effects for acetoin formation in the presence and absence of the nonsubstrate allosteric effector pyruvamide: pyruvamide activation occurs by stabilization of the acetaldehyde/PDC ternary complex. The magnitudes of primary L(V/K)-type (L = D or T) isotope effects on C(alpha)-proton transfer from alpha 4-PDC-bound HETDP provide no evidence for significant breakdown of the Swain-Schaad relationship that would indicate partitioning of the putative C(alpha)-carbanion/enamine intermediate between HETDP and products. The substrate concentration dependence of the deuterium primary kinetic isotope effects provides evidence for an intrinsic isotope effect of 4.1 for C(alpha)-proton transfer from alpha 4-PDC-bound HETDP. A 1.10 +/- 0.02-fold 14C isotope discrimination against [1,2-14C]acetaldehyde in acetoin formation is inconsistent with a stepwise mechanism, in which the addition step occurs after rate-limiting formation of the C(alpha)-carbanion/enamine as a discrete enzyme-bound intermediate, and provides evidence for a concerted reaction mechanism with an important component of carbon-carbon bond formation in the transition state.

  15. Conformational stabilization of rat s-adenosylmethionine decarboxylase by putrescine. (United States)

    Wada, Makiko; Shirahata, Akira


    The activity and processing of mammalian S-adenosylmethionine decarboxylase (AdoMetDC) is stimulated by putrescine. To obtain new insights into the mechanism through which putrescine stimulates AdoMetDC, we investigated conformational changes in rat prostate AdoMetDC in the presence or absence of putrescine. We examined the reactivity of purified rat prostate AdoMetDC to the SH-reagent iodoacetic acid (IAA) and its susceptibility to proteolysis in the presence or absence of putrescine using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The activity of AdoMetDC treated with IAA in the absence of putrescine was reduced, but about 80% of its activity remained after treatment with IAA in the presence of putrescine. In the presence of putrescine, IAA incorporation was 1.9 mol IAA/mol of AdoMetDC α-subunit, while there was no incorporation of IAA in the β-subunit of AdoMetDC. In the absence of putrescine, 5.0 mol of IAA/mol of α-subunit and 0.9 mol of IAA/mol of β-subunit were incorporated. Only Cys292 and Cys310 were carboxymethylated by IAA in the presence of putrescine. In contrast, in the absence of putrescine all cysteines were carboxymethylated by IAA. In addition, putrescine slowed the rate of AdoMetDC degradation by trypsin. These results demonstrate that the conformation of AdoMetDC purified from rat prostate is stabilized by putrescine.

  16. Retina maturation following administration of thyroxine in developing rats: effects on polyamine metabolism and glutamate decarboxylase. (United States)

    Macaione, S; Di Giorgio, R M; Nicotina, P A; Ientile, R


    The effects of subcutaneous daily treatment with thyroxine on cell proliferation, differentiation, polyamines, and gamma-aminobutyric acid metabolism in the rat retina were studied during the first 20 postnatal days. The retinal layers of the treated rats displayed an enhanced cell differentiation which reached its maximum 9-12 days from birth; but this effect stopped very quickly and was finished by the 20th postnatal day. Primarily there was an increase in ornithine decarboxylase activity which was accompanied by an increase in putrescine, spermidine, and spermine levels. S-Adenosylmethionine decarboxylase was induced later than ODC; corresponding with the enhanced synaptogenesis, glutamate decarboxylase increased 15-fold between the fourth and 15th days. Our data are consistent with the hypothesis that thyroxine may exert some of its effects by inducing the enzymes which regulate polyamine metabolism and synaptogenesis.

  17. Chilling Tolerance of Cucumber During Germination is Related to Expression of Lysine Decarboxylase Gene

    Institute of Scientific and Technical Information of China (English)

    LU Ming-hui; LI Xiao-ming; CHEN Jin-feng; CHEN Long-zheng; QIAN Chun-tao


    Using cDNA-AFLP technique, a specific fragment was isolated from cucumber cultivar Changchun mici possessing chilling tolerance induced at low temperature (15℃). This fragment, named cctr 132, could not be induced in the chilling sensitive cucumber cultivar Beijing jietou. After recovering the fragment, sequencing and translating, the results of blastx and blastp in GenBank of NCBI indicated that CCTR132 had 88.37% identities and 100% positives with Oryza sativa putative lysine decarboxylase-like protein respectively, and PGGXGTXXE, the putative conserved domain of lysine decarboxylase family, was detected from CCTR132, suggesting the cucumber chilling tolerance during germination is related to the expression of the lysine decarboxylase gene.

  18. Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a. (United States)

    Vanderslice, P; Copeland, W C; Robertus, J D


    Prohistidine decarboxylase from Lactobacillus 30a is a protein that autoactivates to histidine decarboxylase by cleaving its peptide chain between serines 81 and 82 and converting Ser-82 to a pyruvoyl moiety. The pyruvoyl group serves as the prosthetic group for the decarboxylation reaction. We have cloned and determined the nucleotide sequence of the gene for this enzyme from a wild type strain and from a mutant with altered autoactivation properties. The nucleotide sequence modifies the previously determined amino acid sequence of the protein. A tripeptide missed in the chemical sequence is inserted, and three other amino acids show conservative changes. The activation mutant shows a single change of Gly-58 to an Asp. Sequence analysis up- and downstream from the gene suggests that histidine decarboxylase is part of a polycistronic message, and that the transcriptional promotor region is strongly homologous to those of other Gram-positive organisms.

  19. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate.

    Directory of Open Access Journals (Sweden)

    Melissa Gamat

    Full Text Available The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their


    Directory of Open Access Journals (Sweden)

    N. V. Piven


    Full Text Available Abstract. A new method of enzyme-linked immunosorbent assay (in solid-phase ELISA format has been developed to determine concentrations of autoantibodies to glutamic acid decarboxylase, as well as an evidencebased methodology is proposed for its medical implications, as a quantitative pathogenetic predictive marker of autoimmune diagnostics in type 1 diabetes mellitus. This technique could be implied for serial production of diagnostic reagent kits, aimed for detection of autoantibodies to glutamic acid decarboxylase by means of ELISA approach. (Med. Immunol., 2011, vol. 13, N 2-3, pp 257-260

  1. Cloning and sequencing of pyruvate decarboxylase (PDC) genes from bacteria and uses therefor (United States)

    Maupin-Furlow, Julie A [Gainesville, FL; Talarico, Lee Ann [Gainesville, FL; Raj, Krishnan Chandra [Tamil Nadu, IN; Ingram, Lonnie O [Gainesville, FL


    The invention provides isolated nucleic acids molecules which encode pyruvate decarboxylase enzymes having improved decarboxylase activity, substrate affinity, thermostability, and activity at different pH. The nucleic acids of the invention also have a codon usage which allows for high expression in a variety of host cells. Accordingly, the invention provides recombinant expression vectors containing such nucleic acid molecules, recombinant host cells comprising the expression vectors, host cells further comprising other ethanologenic enzymes, and methods for producing useful substances, e.g., acetaldehyde and ethanol, using such host cells.

  2. Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity. (United States)

    Hwang, In-Wook; Makishima, Yu; Suzuki, Tomohiro; Kato, Tatsuya; Park, Sungjo; Terzic, Andre; Chung, Shin-Kyo; Park, Enoch Y


    Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC is a vital catalytic reaction of lipid metabolism. While it is established that phosphorylation of MCD modulates the enzymatic activity, the specific phosphorylation sites associated with the catalytic function have not been documented due to lack of sufficient production of MCD with proper post-translational modifications. Here, we used the silkworm-based Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system to express human MCD (hMCD) and mapped phosphorylation effects on enzymatic function. Purified MCD from silkworm displayed post-translational phosphorylation and demonstrated coherent enzymatic activity with high yield (-200 μg/silkworm). Point mutations in putative phosphorylation sites, Ser-204 or Tyr-405 of hMCD, identified by bioinformatics and proteomics analyses reduced the catalytic activity, underscoring the functional significance of phosphorylation in modulating decarboxylase-based catalysis. Identified phosphorylated residues are distinct from the decarboxylation catalytic site, implicating a phosphorylation-induced global conformational change of MCD as responsible in altering catalytic function. We conclude that phosphorylation of Ser-204 and Tyr-405 regulates the decarboxylase function of hMCD leveraging the silkworm-based BmNPV bacmid expression system that offers a fail-safe eukaryotic production platform implementing proper post-translational modification such as phosphorylation.

  3. Glucocorticoids modulate the response of ornithine decarboxylase to unilateral removal of the dorsal hippocampus

    NARCIS (Netherlands)

    De Kloet, E R; Cousin, M A; Veldhuis, H D; Voorhuis, T D; Lando, D


    The effect of unilateral removal of the dorsal hippocampus and of glucocorticoid administration was measured on the activity of ornithine decarboxylase (ODC) in the remaining contralateral hippocampus lobe. Unilateral hippocampectomy (Hx) resulted in a rapid rise of ODC activity in the contralateral

  4. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase. (United States)

    Dougherty, Charles M; Dayan, Jean


    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  5. Evidence for the existence of mammalian acetoacetate decarboxylase: with special reference to human blood serum

    NARCIS (Netherlands)

    Stekelenburg, Gerard J. van; Koorevaar, Gerrit


    In this article evidence is presented for the existence of mammalian acetoacetate decarboxylase (acetoacetate carboxy-lyase: E.G. From experiments with human blood serum the presence of a non-ultrafiltrable activator, accelerating the decomposition of acetoacetate into acetone and carbon d

  6. Structural and Mechanistic Studies on Klebsiella pneumoniae 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Ealick, Steven E. (Cornell)


    The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structural isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.

  7. The ornithine decarboxylase gene of Caenorhabditis elegans: Cloning, mapping and mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Macrae, M.; Coffino, P. [Univ. of California, San Francisco, CA (United States); Plasterk, R.H.A. [Netherlands Cancer Institute, Amsterdam (Netherlands)


    The gene (odc-1) encoding ornithine decarboxylase, a key enzyme in polyamine biosynthesis, was cloned and characterized. Two introns interrupt the coding sequence of the gene. The deduced protein contains 442 amino acids and is homologous to ornithine decarboxylases of other eukaryotic species. In vitro translation of a transcript of the cDNA yielded an enzymatically active product. The mRNA is 1.5 kb in size and is formed by trans-splicing to SL1, a common 5{prime} RNA segment. odc-1 maps to the middle of LG V, between dpy-11 and unc-42 and near a breakpoint of the nDf32 deficiency strain. Enzymatic activity is low in starved 1 (L1) larva and, after feeding, rises progressively as the worms develop. Targeted gene disruption was used to create a null allele. Homozygous mutants are normally viable and show no apparent defects, with the exception of a somewhat reduced brood size. In vitro assays for ornithine decarboxylase activity, however, show no detectable enzymatic activity, suggesting that ornithine decarboxylase is dispensible for nematode growth in the laboratory. 37 refs., 6 figs., 1 tab.

  8. Detection and transfer of the glutamate decarboxylase gene in Streptococcus thermophilus (United States)

    GABA (gamma-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermen...

  9. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110 (United States)

    GABA ('-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermented da...

  10. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Directory of Open Access Journals (Sweden)

    Julie P M Viala

    Full Text Available During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i to survive an extreme acid shock, (ii to grow at mild acidic pH and (iii to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  11. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Directory of Open Access Journals (Sweden)

    Mario U Manto


    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  12. Increase of histidine decarboxylase activity in mice hypothalamus after intracerebroventricular administration of lipopolysaccharide. (United States)

    Niimi, M; Mochizuki, T; Cacabelos, R; Yamatodani, A


    The effect of intracerebroventricular (icv) administration of lipopolysaccharide on histidine decarboxylase activity and histamine content in the hypothalamus were investigated in male mice of ddY strain in vivo. Two-fold increase in histidine decarboxylase activity (HDC) was observed 4 h after administration of 50 mcg lipopolysaccharide, and HDC activity returned to the basal level within 12 h after injection. Furthermore, histamine contents showed a slight decrease at 1 and 2 h and a mild increase at 12 h after administration. However, changes in histamine content were not statistically significant. These results suggest that the increase of HDC activity in the hypothalamus by lipopolysaccharide may be involved in the central neuroimmune responses.

  13. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin. (United States)

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki


    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics.

  14. Cell density-correlated induction of pyruvate decarboxylase under aerobic conditions in the yeast Pichia stipitis. (United States)

    Mergler, M; Klinner, U


    During the aerobic batch cultivation of P. stipitis CBS 5776 with glucose, pyruvate decarboxylase was activated in a cell number-correlated manner. Activation started when a cell number between 7 x 10(7) and x 10(8) cells ml(-1) was reached and the enzyme activity increased during further cultivation. This induction might have been triggered either by an unknown quorum sensing system or by a shortage of cytoplasmic acetyl-CoA.

  15. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J. [IUPUI; (Purdue)


    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  16. Characterization of a Novel Putative S-Adenosylmethionine Decarboxylase-Like Protein from Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Saurabh Pratap Singh

    Full Text Available In addition to the S-adenosylmethionine decarboxylase (AD present in all organisms, trypanosomatids including Leishmania spp. possess an additional copy, annotated as the putative S-adenosylmethionine decarboxylase-like proenzyme (ADL. Phylogenetic analysis confirms that ADL is unique to trypanosomatids and has several unique features such as lack of autocatalytic cleavage and a distinct evolutionary lineage, even from trypanosomatid ADs. In Trypanosoma ADL was found to be enzymaticaly dead but plays an essential regulatory role by forming a heterodimer complex with AD. However, no structural or functional information is available about ADL from Leishmania spp. Here, in this study, we report the cloning, expression, purification, structural and functional characterization of Leishmania donovani (L. donovani ADL using biophysical, biochemical and computational techniques. Biophysical studies show that, L. donovani ADL binds S-adenosylmethionine (SAM and putrescine which are natural substrates of AD. Computational modeling and docking studies showed that in comparison to the ADs of other organisms including human, residues involved in putrescine binding are partially conserved while the SAM binding residues are significantly different. In silico protein-protein interaction study reveals that L. donovani ADL can interact with AD. These results indicate that L. donovani ADL posses a novel substrate binding property and may play an essential role in polyamine biosynthesis with a different mode of function from known proteins of the S-adenosylmethionine decarboxylase super family.

  17. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. (United States)

    Michael, A J; Furze, J M; Rhodes, M J; Burtin, D


    A cDNA for a plant ornithine decarboxylase (ODC), a key enzyme in putrescine and polyamine biosynthesis, has been isolated from root cultures of the solanaceous plant Datura stramonium. Reverse transcription-PCR employing degenerate oligonucleotide primers representing conserved motifs from other eukaryotic ODCs was used to isolate the cDNA. The longest open reading frame potentially encodes a peptide of 431 amino acids and exhibits similarity to other eukaryotic ODCs, prokaryotic and eukaryotic arginine decarboxylases (ADCs), prokaryotic meso-diaminopimelate decarboxylases and the product of the tabA gene of Pseudomonas syringae cv. tabaci. Residues involved at the active site of the mouse ODC are conserved in the plant enzyme. The plant ODC does not possess the C-terminal extension found in the mammalian enzyme, implicated in rapid turnover of the protein, suggesting that the plant ODC may have a longer half-life. Expression of the plant ODC in Escherichia coli and demonstration of ODC activity confirmed that the cDNA encodes an active ODC enzyme. This is the first description of the primary structure of a eukaryotic ODC isolated from an organism where the alternative ADC routine to putrescine is present.

  18. The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. (United States)

    Bouché, Nicolas; Fait, Aaron; Zik, Moriyah; Fromm, Hillel


    In plants, as in most eukaryotes, glutamate decarboxylase catalyses the synthesis of GABA. The Arabidopsis genome contains five glutamate decarboxylase genes and one of these genes (glutamate decarboxylase1; i.e. GAD1 ) is expressed specifically in roots. By isolating and analyzing three gad1 T-DNA insertion alleles, derived from two ecotypes, we investigated the potential role of GAD1 in GABA production. We also analyzed a promoter region of the GAD1 gene and show that it confers root-specific expression when fused to reporter genes. Phenotypic analysis of the gad1 insertion mutants revealed that GABA levels in roots were drastically reduced compared with those in the wild type. The roots of the wild type contained about sevenfold more GABA than roots of the mutants. Disruption of the GAD1 gene also prevented the accumulation of GABA in roots in response to heat stress. Our results show that the root-specific calcium/calmodulin-regulated GAD1 plays a major role in GABA synthesis in plants under normal growth conditions and in response to stress.

  19. Sequencing, characterization, and gene expression analysis of the histidine decarboxylase gene cluster of Morganella morganii. (United States)

    Ferrario, Chiara; Borgo, Francesca; de Las Rivas, Blanca; Muñoz, Rosario; Ricci, Giovanni; Fortina, Maria Grazia


    The histidine decarboxylase gene cluster of Morganella morganii DSM30146(T) was sequenced, and four open reading frames, named hdcT1, hdc, hdcT2, and hisRS were identified. Two putative histidine/histamine antiporters (hdcT1 and hdcT2) were located upstream and downstream the hdc gene, codifying a pyridoxal-P dependent histidine decarboxylase, and followed by hisRS gene encoding a histidyl-tRNA synthetase. This organization was comparable with the gene cluster of other known Gram negative bacteria, particularly with that of Klebsiella oxytoca. Recombinant Escherichia coli strains harboring plasmids carrying the M. morganii hdc gene were shown to overproduce histidine decarboxylase, after IPTG induction at 37 °C for 4 h. Quantitative RT-PCR experiments revealed the hdc and hisRS genes were highly induced under acidic and histidine-rich conditions. This work represents the first description and identification of the hdc-related genes in M. morganii. Results support the hypothesis that the histidine decarboxylation reaction in this prolific histamine producing species may play a role in acid survival. The knowledge of the role and the regulation of genes involved in histidine decarboxylation should improve the design of rational strategies to avoid toxic histamine production in foods.

  20. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario [Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Mancheño, José M., E-mail: [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)


    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His{sub 6}-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belonged to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å{sup 3} Da{sup −1}, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.

  1. Tissue and regional distribution of cysteic acid decarboxylase. A new assay method. (United States)

    Wu, J Y; Moss, L G; Chen, M S


    A sensitive and rapid assay method method for cysteic acid decarboxylase was develped which combined the selectivity of ion exchange resin (a complete retention of the substrate, cysteic acid, and exclusion of the product, taurine) with the speed of a vacuum filtration. The synthesis and purification of 35S-labeled cysteic acid were described. The validity of the assay was established by the identification of the reaction product as taurine. With this new method, the decarboxylase activity was measured in discrete regions of bovine brain. Putamen had the highest activity, 172 pmol taurine formed/min/mg protein (100%), followed by caudate nucleus, 90%; cerebral cortex, 82%; hypothalamus, 81%; cerebellar cortex, 79%; cerebellar peduncle, 59%; thalamus, 42%; brain stem, 25%; pons, 10%; and corpus callosum, 3%. The decarboxylase activity in various mouse tissues was also determined as follows: liver, 403; brain, 145; kidney, 143; spinal cord, 59; lung, 21; and spleen, 10 pmol taurine formed/min/mg. No activity could be detected in skeleton muscle and heart, suggesting a different biosynthetic pathway for taurine synthesis in these tissues. The advantages and disadvantages of the new assay method are also discussed.

  2. The ornithine decarboxylase, NO-synthase activities and phospho-c-Jun content under experimental gastric mucosa malignancy

    Directory of Open Access Journals (Sweden)

    Mariia Tymoshenko


    Full Text Available Ornithine decarboxylase is the first and key regulatory enzyme in synthesis of polyamines, which are essential for cell proliferation and differentiation, so its aberrant regulation is reported to play a role in neoplastic transformation and tumours growth. That's why, there were analysed some major links of metabolic pathways that are closely related to tumorigenesis: ornithine decarboxylase, and the NADPH-dependent enzyme nitric oxide synthase, the nuclear phosphoprotein c-Jun, that could play an important role in the development of gastric cancer malignancy.The gastric carcinogenesis was initiated in rats by 10-week replacement of drinking water by 0.01% N-methyl-N-nitro-N-nitrosoguanidine solution, at the same time they were redefined on the diet containing 5% NaCl. After this period expiry the animals were fed with standard diet till the end of the 24th week. The gastric mucosa cells were extracted at the end of the 4th, 6th, 8th, 10th, 12th, 18th and 24th week and underwent biochemical examinations. It was established the elevated phospho-c-Jun content, ornithine decarboxylase and inducible nitric oxide synthase activities from 6th to 24th week of gastric cancer development compared to the control references. The increasing of ornithine decarboxylase activity could probably be caused by the growth of phospho-c-Jun, it is also belonging to an ornithine decarboxylase transactivation effects. Thus, it was shown that the increase of ornithine decarboxylase and inducible nitric oxide synthase activities, phospho-c-Jun and nitrite-ions accumulation in gastric mucosa epithelial cells were associated with the gastric malignant progression. The complex relationships between the examined enzymes and transcription activator that pointed to an aggravation of pathological disturbances due to reciprocal action between ornithine decarboxylase and c-Jun and nitric oxide synthase participation. [Biomed Res Ther 2016; 3(4.000: 596-604

  3. Cellular target recognition of perfluoroalkyl acids: In vitro evaluation of inhibitory effects on lysine decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sufang; Lv, Qiyan; Yang, Yu, E-mail:; Guo, Liang-Hong, E-mail:; Wan, Bin; Zhao, Lixia


    Perfluoroalkyl acids (PFAAs) have been shown to bind with hepatic peroxisome proliferator receptor α, estrogen receptors and human serum albumin and subsequently cause some toxic effects. Lysine decarboxylase (LDC) plays an important role in cell growth and developmental processes. In this study, the inhibitory effect of 16 PFAAs, including 13 perfluorinated carboxylic acids (PFCAs) and 3 perfluorinated sulfonic acids (PFSAs), on lysine decarboxylase (LDC) activity was investigated. The inhibition constants obtained in fluorescence enzyme assays fall in the range of 2.960 μM to 290.8 μM for targeted PFCAs, and 41.22 μM to 67.44 μM for targeted PFSAs. The inhibitory effect of PFCAs increased significantly with carbon chain (7–18 carbons), whereas the short chain PFCAs (less than 7 carbons) did not show any effect. Circular dichroism results showed that PFAA binding induced significant protein secondary structural changes. Molecular docking revealed that the inhibitory effect could be rationalized well by the cleft binding mode as well as the size, substituent group and hydrophobic characteristics of the PFAAs. At non-cytotoxic concentrations, three selected PFAAs inhibited LDC activity in HepG2 cells, and subsequently resulted in the decreased cadaverine level in the exposed cells, suggesting that LDC may be a possible target of PFAAs for their in vivo toxic effects. - Highlights: • Inhibitory effects of PFAAs on lysine decarboxylase activity were evaluated. • Four different methods were employed to investigate the mechanisms. • The long chain PFAAs showed inhibitory effect compare with 4–6 carbon chain. • The long chain PFAAs bound with LDC differently from the short ones. • The results in cells correlate with those obtained from fluorescence assay.

  4. Apraxia in anti-glutamic acid decarboxylase-associated stiff person syndrome: link to corticobasal degeneration? (United States)

    Bowen, Lauren N; Subramony, S H; Heilman, Kenneth M


    Corticobasal syndrome (CBS) is associated with asymmetrical rigidity as well as asymmetrical limb-kinetic and ideomotor apraxia. Stiff person syndrome (SPS) is characterized by muscle stiffness and gait difficulties. Whereas patients with CBS have several forms of pathology, many patients with SPS have glutamic acid decarboxylase antibodies (GAD-ab), but these 2 disorders have not been reported to coexist. We report 2 patients with GAD-ab-positive SPS who also had signs suggestive of CBS, including asymmetrical limb rigidity associated with both asymmetrical limb-kinetic and ideomotor apraxia. Future studies should evaluate patients with CBS for GAD-ab and people with SPS for signs of CBS.

  5. Acquisition of a heat stable enzyme; S-adenosylmethionine decarboxylase from selenomonas ruminantium

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyong Cheol; Park, Sang Hyun [Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kamio, Yoshiyuku [Division of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University (Japan)


    In Selenomoans ruminantium, a strictly anaerobic and gram negative bacterium, cadaverine and putrescine are the essential constituents of its peptidoglycan. S. ruminantium does not contain both free and bound types of lipoprotein, but it contains cadaverine as a component of its peptidoglycan. S-adenosylmethionine decarboxylase (SAMDC) is a key enzyme for a synthesis of spermidine and spermine in S. ruminantium. The crude extract of S. ruminantium was preincubated at 100 degrees Celcius and its SAMDC activity was measured by using a {sup 14}C labeled substrate. We report here on a heat stable SAMDC which is able to withstand a temperature up to 100 degrees Celcius.

  6. Alterations in cerebellar glutamic acid decarboxylase (GAD) activity in a genetic model of torsion dystonia (rat). (United States)

    Oltmans, G A; Beales, M; Lorden, J F; Gordon, J H


    Glutamic acid decarboxylase (GAD) activity was studied in specific brain regions of a newly identified genetic (rat) model of human torsion dystonia. GAD activity was found to be significantly increased in the deep cerebellar nuclei of dystonic rats at 16, 20, and 24 days of age. GAD activity in the other regions examined (vermis, cerebellar hemispheres, caudate nucleus, and globus pallidus) did not differ from that of age-matched normal littermate controls. Diazepam treatment significantly reduced the frequency of dystonic movements in the mutant.

  7. Glutamic acid decarboxylase antibody-positive paraneoplastic stiff limb syndrome associated with carcinoma of the breast

    Directory of Open Access Journals (Sweden)

    Agarwal Pankaj


    Full Text Available Stiff limb syndrome (SLS is a rare "focal" variant of stiff person syndrome which presents with rigidity and painful spasms of a distal limb, and abnormal fixed foot or hand postures. Anti-glutamic acid decarboxylase antibodies (GAD-Ab are variably present in most cases. Most reported cases of SLS are unassociated with cancer. We describe a patient with SLS as a paraneoplastic manifestation of breast carcinoma, in whom GAD-Ab was present. The patient responded very well to oral diazepam, baclofen and steroids.This is the third reported case of SLS as a paraneoplastic accompaniment to cancer.

  8. Fluorimetric assay for ornithine decarboxylase by high-performance liquid chromatography. (United States)

    Haraguchi, K; Kai, M; Kohashi, K; Ohkura, Y


    A highly sensitive method for the assay of ornithine decarboxylase in sample solutions prepared from rat tissue homogenate is described which employs high-performance liquid chromatography with fluorescence detection. Putrescine formed from ornithine under the optimal conditions for the enzyme reaction is treated by Cellex P column chromatography for clean-up and converted into the fluorescamine derivative in the presence of cupric ion which inhibits the reaction of interfering amines with fluorescamine. The derivative is separated by reversed-phase chromatography on LiChrosorb RP-18 with linear gradient elution. The lower limit of detection for putrescine formed enzymatically is 5 pmol.

  9. Glutamic acid decarboxylase antibody-positive paraneoplastic stiff limb syndrome associated with carcinoma of the breast



    Stiff limb syndrome (SLS) is a rare "focal" variant of stiff person syndrome which presents with rigidity and painful spasms of a distal limb, and abnormal fixed foot or hand postures. Anti-glutamic acid decarboxylase antibodies (GAD-Ab) are variably present in most cases. Most reported cases of SLS are unassociated with cancer. We describe a patient with SLS as a paraneoplastic manifestation of breast carcinoma, in whom GAD-Ab was present. The patient responded very well to oral diazepam, ba...

  10. Glutamic acid decarboxylase antibody-positive paraneoplastic stiff limb syndrome associated with carcinoma of the breast. (United States)

    Agarwal, Pankaj A; Ichaporia, Nasli R


    Stiff limb syndrome (SLS) is a rare "focal" variant of stiff person syndrome which presents with rigidity and painful spasms of a distal limb, and abnormal fixed foot or hand postures. Anti-glutamic acid decarboxylase antibodies (GAD-Ab) are variably present in most cases. Most reported cases of SLS are unassociated with cancer. We describe a patient with SLS as a paraneoplastic manifestation of breast carcinoma, in whom GAD-Ab was present. The patient responded very well to oral diazepam, baclofen and steroids.This is the third reported case of SLS as a paraneoplastic accompaniment to cancer.

  11. Endogenous Inactivators of Arginase, l-Arginine Decarboxylase, and Agmatine Amidinohydrolase in Evernia prunastri Thallus 1 (United States)

    Legaz, María Estrella; Vicente, Carlos


    Arginase (EC, l-arginine decarboxylase (EC, and agmatine amidinohydrolase (EC activities spontaneously decay in Evernia prunastri thalli incubated on 40 millimolar l-arginine used as inducer of the three enzymes if dithiothreitol is not added to the media. Lichen thalli accumulate both chloroatranorin and evernic acid in parallel to the loss of activity. These substances behave as inactivators of the enzymes at a range of concentrations between 2 and 20 micromolar, whereas several concentrations of dithiothreitol reverse, to some extent, the in vitro inactivation. PMID:16662821

  12. Endogenous Inactivators of Arginase, l-Arginine Decarboxylase, and Agmatine Amidinohydrolase in Evernia prunastri Thallus. (United States)

    Legaz, M E; Vicente, C


    Arginase (EC, l-arginine decarboxylase (EC, and agmatine amidinohydrolase (EC activities spontaneously decay in Evernia prunastri thalli incubated on 40 millimolar l-arginine used as inducer of the three enzymes if dithiothreitol is not added to the media. Lichen thalli accumulate both chloroatranorin and evernic acid in parallel to the loss of activity. These substances behave as inactivators of the enzymes at a range of concentrations between 2 and 20 micromolar, whereas several concentrations of dithiothreitol reverse, to some extent, the in vitro inactivation.

  13. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli. (United States)

    Le Vo, Tam Dinh; Kim, Tae Wan; Hong, Soon Ho


    Gamma-aminobutyric acid (GABA) is a non-essential amino acid and a precursor of pyrrolidone, a monomer of nylon 4. GABA can be biosynthesized through the decarboxylation of L: -glutamate by glutamate decarboxylase. In this study, the effects of glutamate decarboxylase (gadA, gadB), glutamate/GABA antiporter (gadC) and GABA aminotransferase (gabT) on GABA production were investigated in Escherichia coli. Glutamate decarboxylase was overexpressed alone or with the glutamate/GABA antiporter to enhance GABA synthesis. GABA aminotransferase, which redirects GABA into the TCA cycle, was knock-out mutated. When gadB and gadC were co-overexpressed in the gabT mutant strain, a final GABA concentration of 5.46 g/l was obtained from 10 g/l of monosodium glutamate (MSG), which corresponded to a GABA yield of 89.5%.

  14. Decarboxylase gene expression and cadaverine and putrescine production by Serratia proteamaculans in vitro and in beef. (United States)

    De Filippis, Francesca; Pennacchia, Carmela; Di Pasqua, Rosangela; Fiore, Alberto; Fogliano, Vincenzo; Villani, Francesco; Ercolini, Danilo


    Studies of the molecular basis of microbial metabolic activities that are important for the changes in food quality are valuable in order to help in understanding the behavior of spoiling bacteria in food. The growth of a psychrotrophic Serratia proteamaculans strain was monitored in vitro and in artificially inoculated raw beef. Two growth temperatures (25°C and 4°C) were tested in vitro, while growth at 15°C and 4°C was monitored in beef. During growth, the expression of inducible lysine and ornithine-decarboxylase genes was evaluated by quantitative reverse transcription-PCR (qRT-PCR), while the presence of cadaverine and putrescine was quantified by LC-ESI-MS/MS. The expression of the decarboxylase genes, and the consequent production of cadaverine and putrescine were shown to be influenced by the temperature, as well as by the complexity of the growth medium. Generally, the maximum gene expression and amine production took place during the exponential and early stationary phase, respectively. In addition, lower temperatures caused slower growth and gene downregulation. Higher amounts of cadaverine compared to putrescine were found during growth in beef with the highest concentrations corresponding to microbial loads of ca. 9CFU/g. The differences found in gene expression evaluated in vitro and in beef suggested that such activities are more reliably investigated in situ in specific food matrices.

  15. Rational design of ornithine decarboxylase with high catalytic activity for the production of putrescine. (United States)

    Choi, Hyang; Kyeong, Hyun-Ho; Choi, Jung Min; Kim, Hak-Sung


    Putrescine finds wide industrial applications in the synthesis of polymers, pharmaceuticals, agrochemicals, and surfactants. Owing to economic and environmental concerns, the microbial production of putrescine has attracted a great deal of attention, and ornithine decarboxylase (ODC) is known to be a key enzyme in the biosynthetic pathway. Herein, we present the design of ODC from Escherichia coli with high catalytic efficiency using a structure-based rational approach. Through a substrate docking into the model structure of the enzyme, we first selected residues that might lead to an increase in catalytic activity. Of the selected residues that are located in the α-helix and the loops constituting the substrate entry site, a mutational analysis of the single mutants identified two key residues, I163 and E165. A combination of two single mutations resulted in a 62.5-fold increase in the catalytic efficiency when compared with the wild-type enzyme. Molecular dynamics simulations of the best mutant revealed that the substrate entry site becomes more flexible through mutations, while stabilizing the formation of the dimeric interface of the enzyme. Our approach can be applied to the design of other decarboxylases with high catalytic efficiency for the production of various chemicals through bio-based processes.

  16. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats (United States)

    Hoffman, Gloria E.; Koban, Michael


    A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness. PMID:27997552

  17. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues. (United States)

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P


    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed.

  18. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae. (United States)

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki


    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved.

  19. Evolutionary trails of plant group II Pyridoxal phosphate-dependent decarboxylase genes

    Directory of Open Access Journals (Sweden)

    Rahul Kumar


    Full Text Available Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase (HDC genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  20. Isotope effect studies of the pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii

    Energy Technology Data Exchange (ETDEWEB)

    Abell, L.M.; O' Leary, M.H.


    The pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii shows a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9770 +/- 0.0021, a carbon isotope effect k/sup 12//k/sup 13/ = 1.0308 +/- 0.0006, and a carbon isotope effect for L-(..cap alpha..-/sup 2/H)histidine of 1.0333 +/- 0.0001 at pH 6.3, 37/sup 0/C. These results indicate that the overall decarboxylation rate is limited jointly by the rate of Schiff base interchange and by the rate of decarboxylation. Although the observed isotope effects are quite different from those for the analogous glutamate decarboxylase from Escherichia coli, the intrinsic isotope effects for the two enzymes are essentially the same. The difference in observed isotope effects occurs because of a roughly twofold difference in the partitioning of the pyridoxal 5'-phosphate-substrate Schiff base between decarboxylation and Schiff base interchange. The observed nitrogen isotope effect requires that the imine nitrogen in this Schiff base is protonated. Comparison of carbon isotope effects for deuteriated and undeuteriated substrates reveals that the deuterium isotope effect on the decarboxylation step is about 1.20; thus, in the transition state for the decarboxylation step, the carbon-carbon bond is about two-thirds broken.

  1. Enhancing the Activity of Glutamate Decarboxylase from Lactobacillus brevis by Directed Evolution☆

    Institute of Scientific and Technical Information of China (English)

    Ling Lin; Sheng Hu; Kai Yu; Jun Huang; Shanjing Yao; Yinlin Lei; Guixiang Hu; Lehe Mei


    Glutamate decarboxylase (GAD, EC4.1.1.15) can catalyze the decarboxylation of L-glutamate to form γ-aminobutyrate (GABA), which is in great demand in some foods and pharmaceuticals. In our previous study, gad, the gene coding glutamate decarboxylase from Lactobacil us brevis CGMCC 1306, was cloned and its soluble expression was realized. In this study, error-prone PCR was conducted to improve its activity, followed by a screening. Mutant Q51H with high activity [55.4 mmol·L−1·min−1·(mg protein)−1, 120%higher than that of the wild type at pH 4.8] was screened out from the mutant library. In order to investigate the potential role of this site in the regulation of enzymatic activity, site-directed saturation mutagenesis at site 51 was carried out, and three specific mutants, N-terminal truncated GAD, Q51P, and Q51L, were identified. The kinetic parameters of the three mutants and Q51H were characterized. The results reveal that aspartic acid at site 88 and N-terminal domain are essential to the activity as well as correct folding of GAD. This study not only improves the activity of GAD, but also sheds new light on the structure–function relationship of GAD.

  2. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. (United States)

    Lee, Won-Heong; Seo, Seung-Oh; Bae, Yi-Hyun; Nan, Hong; Jin, Yong-Su; Seo, Jin-Ho


    Engineering of Saccharomyces cerevisiae to produce advanced biofuels such as isobutanol has received much attention because this yeast has a natural capacity to produce higher alcohols. In this study, construction of isobutanol production systems was attempted by overexpression of effective 2-keto acid decarboxylase (KDC) and combinatorial overexpression of valine biosynthetic enzymes in S. cerevisiae D452-2. Among the six putative KDC enzymes from various microorganisms, 2-ketoisovalerate decarboxylase (Kivd) from L. lactis subsp. lactis KACC 13877 was identified as the most suitable KDC for isobutanol production in the yeast. Isobutanol production by the engineered S. cerevisiae was assessed in micro-aerobic batch fermentations using glucose as a sole carbon source. 93 mg/L isobutanol was produced in the Kivd overexpressing strain, which corresponds to a fourfold improvement as compared with the control strain. Isobutanol production was further enhanced to 151 mg/L by additional overexpression of acetolactate synthase (Ilv2p), acetohydroxyacid reductoisomerase (Ilv5p), and dihydroxyacid dehydratase (Ilv3p) in the cytosol.

  3. Crystallization and preliminary X-ray diffraction experiments of arylmalonate decarboxylase from Alcaligenes bronchisepticus

    Energy Technology Data Exchange (ETDEWEB)

    Nakasako, Masayoshi, E-mail: [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522 (Japan); The RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Obata, Rika; Okubo, Ryosuke; Nakayama, Shyuichi [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522 (Japan); Miyamoto, Kenji; Ohta, Hiromichi [Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522 (Japan); Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522 (Japan)


    Crystals of arylmalonate decarboxylase from A. bronchisepticus were obtained which diffracted X-rays to a resolution of at least 3.0 Å. Arylmalonate decarboxylase catalyses the enantioselective decarboxylation of α-aryl-α-methylmalonates to produce optically pure α-arylpropionates. The enzyme was crystallized with ammonium sulfate under alkaline pH conditions with the aim of understanding the mechanism of the enantioselective reaction. X-ray diffraction data collected to a resolution of 3.0 Å at cryogenic temperature showed that the crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 83.13, b = 99.62, c = 139.64 Å. This suggested that the asymmetric unit would contain between four and six molecules. Small-angle X-ray scattering revealed that the enzyme exists as a monomer in solution. Thus, the assembly of molecules in the asymmetric unit was likely to have been induced during the crystallization process.

  4. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus... (United States)


    ... preparation derived from a recombinant Bacillus subtilis. 173.115 Section 173.115 Food and Drugs FOOD AND DRUG... Bacillus subtilis. The food additive alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation, may be... derived from a modified Bacillus subtilis strain that contains the gene coding for α-ALDC from...

  5. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community. (United States)

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R


    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.

  6. Insulin and phorbol myristic acetate induce ornithine decarboxylase in Reuber H35 rat hepatoma cells by different mechanisms. (United States)

    Goodman, S A; Esau, B; Koontz, J W


    Reuber H35 rat hepatoma cells respond to insulin or to tumor promoting phorbol esters with an increase in ornithine decarboxylase enzyme activity. This occurs in a time- and dose-dependent manner with both types of agonist. We report here that the increase in ornithine decarboxylase activity with optimal concentrations of both agonists is additive. Furthermore, the initial increase is dependent on continued RNA and protein synthesis. We also find that both of these agonists cause an increase in mRNA coding for ornithine decarboxylase in a time- and dose-dependent manner which suggests that the increase in enzyme activity can be accounted for by the increase in transcript levels. The difference in the time course of induction by the agonists, the additivity of induction by the two agonists, the differential sensitivity of induction to cycloheximide and RNA synthesis inhibitors, and the observation that phorbol myristic acetate causes a further increase in ornithine decarboxylase activity and transcript levels in cells already maximally induced by insulin suggest that these two agonists act through separate mechanisms.


    Genotypic and phenotypic assays for glutamate decarboxylase (GAD) and B-D-glucuronidase (GUD) were compared for their abilities to detect various strains of Escherichia coli and to discriminate among other bacterial species. Test strains included nonpathogenic E.coli, three major...

  8. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    DEFF Research Database (Denmark)

    Zargar, K.; Saville, R.; Phelan, R. M.;


    an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (Csd...... similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding...

  9. Preliminary crystallographic data for the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from brewers' yeast. (United States)

    Dyda, F; Furey, W; Swaminathan, S; Sax, M; Farrenkopf, B; Jordan, F


    Single crystals of the thiamin diphosphate (the vitamin B1 coenzyme)-dependent enzyme pyruvate decarboxylase (EC from brewers' yeast have been grown using polyethylene glycol as a precipitating agent. Crystals of the homotetrameric version alpha 4 of the holoenzyme are triclinic, space group P1, with cell constants a = 81.0, b = 82.4, c = 116.6 A, alpha = 69.5 beta = 72.6, gamma = 62.4 degrees. The crystals are reasonably stable in a rotating anode x-ray beam and diffract to at least 2.5 A resolution. The Vm value of 2.55 A/dalton is consistent with a unit cell containing four subunits with mass of approximately 60 kDa each. Rotation function results with native data indicate strong non-crystallographic 222 symmetry relating the four identical subunits, thus density averaging methods are likely to play a role in the structure determination.

  10. Histidine decarboxylase deficiency causes Tourette syndrome: parallel findings in humans and mice (United States)

    Baldan, Lissandra Castellan; Rapanelli, Maximiliano; Crowley, Michael; Anderson, George M.; Loring, Erin; Gorczyca, Roxanne; Billingslea, Eileen; Wasylink, Suzanne; Panza, Kaitlyn E.; Ercan-Sencicek, A. Gulhan; Krusong, Kuakarun; Leventhal, Bennett L.; Ohtsu, Hiroshi; Bloch, Michael H.; Hughes, Zoë A.; Krystal, John H.; Mayes, Linda; de Araujo, Ivan; Ding, Yu-Shin; State, Matthew W.; Pittenger, Christopher


    Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal dopamine (DA) levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. Dopamine D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm HDC deficiency as a rare cause of TS and identify histamine-dopamine interactions in the basal ganglia as an important locus of pathology. PMID:24411733

  11. Heterologous expression of a plant arginine decarboxylase gene in Trypanosoma cruzi. (United States)

    Carrillo, Carolina; Serra, María P; Pereira, Claudio A; Huber, Alejandra; González, Nélida S; Algranati, Israel D


    Wild-type Trypanosoma cruzi epimastigotes lack arginine decarboxylase (ADC) enzymatic activity. However, the transformation of these parasites with a recombinant plasmid containing the oat ADC cDNA coding region gave rise to the transient heterologous expression of the enzyme, suggesting the absence of endogenous mechanisms that could inhibit the expression of a hypothetical own ADC gene or the assay used to measure its enzymatic activity. The foreign ADC enzyme expressed in the transgenic T. cruzi was characterized by identification of the products, the stoichiometry of the catalysed reaction, the specific inhibition by alpha-difluoromethylarginine (DFMA) and the study of its metabolic turnover. The half-life of the heterologous ADC activity in T. cruzi was about 150 min. Bioinformatics studies and polymerase chain reaction (PCR) analyses seem to indicate the absence of ADC-like DNA sequences in the wild-type T. cruzi genome.

  12. Immunotherapy-responsive limbic encephalitis with antibodies to glutamic acid decarboxylase. (United States)

    Markakis, Ioannis; Alexopoulos, Harry; Poulopoulou, Cornelia; Akrivou, Sofia; Papathanasiou, Athanasios; Katsiva, Vassiliki; Lyrakos, Georgios; Gekas, Georgios; Dalakas, Marinos C


    Glutamic acid decarboxylase (GAD) has been recently identified as a target of humoral autoimmunity in a small subgroup of patients with non-paraneoplastic limbic encephalitis (NPLE). We present a patient with NPLE and positive anti-GAD antibodies who showed significant improvement after long-term immunotherapy. A 48-year old female was admitted with a two-year history of anterograde amnesia and seizures. Brain MRI revealed bilateral lesions of medial temporal lobes. Screening for anti-neuronal antibodies showed high anti-GAD titers in both serum and cerebrospinal fluid (CSF) with strong evidence of intrathecal production. The patient received treatment with prednisolone and long-term plasma exchange. During a 12-month follow-up, she exhibited complete seizure remission and an improvement in memory and visuo-spatial skills. Anti-GAD antibodies may serve as a useful marker to identify a subset of NPLE patients that respond to immunoregulatory treatment.

  13. Identification and molecular cloning of glutamate decarboxylase gene from Lactobacillus casei

    Directory of Open Access Journals (Sweden)

    Yasaman Tavakoli


    Full Text Available Gamma-amino butyric acid (GABA possesses several physiological functions such as neurotransmission, induction of hypotension, diuretic and tranquilizer effects. Production of GABA-enriched products by lactic acid bacteria has been a focus of different researches in recent years because of their safety and health-promoting specifities. In this study, glutamate decarboxylase (gad gene of a local strains Lactobacillus casei was identified and cloned. In order to clone the gad gene from this strain, the PCR was carried out using primers designed based on conserved regions. The PCR product was purified and ligated into PGEM-T vector. Comparison of obtained sequences shows that this fragment codes the pyridoxal 5′-phosphate binding region. This strain could possibly be used for the industrial GABA production and also for development of functional fermented foods. Gad gene manipulation can also either decrease or increase the activity of enzyme in bacteria.

  14. Ornithine decarboxylase, mitogen-activated protein kinase and matrix metalloproteinase-2 expressions in human colon tumors

    Institute of Scientific and Technical Information of China (English)

    Takahiro Nemoto; Shunichiro Kubota; Hideyuki Ishida; Nobuo Murata; Daijo Hashimoto


    AIM: To investigate the expressions of omithine decarboxylase (ODC), MMP-2, and Erk, and their relationship in human colon tumors.METHODS: ODC activity, MMP-2 expression, and mitogenactivated protein (MAP) kinase activity (Erk phosphorylation) were determined in 58 surgically removed human colon tumors and their adjacent normal tissues, using [1-14C]-ornithine as a substrate, ELISA assay, and Western blotting, respectively.RESULTS: ODC activity, MMP-2 expression, and Erk phosphorylation were significantly elevated in colon tumors, compared to those in adjacent normal tissues. A significant correlation was observed between ODC activities and MMP-2 levels.CONCLUSION: This is the first report showing a significant correlation between ODC activities and MMP-2 levels in human colon tumors. As MMP-2 is involved in cancer invasion and metastasis, and colon cancer overexpresses ODC, suppression of ODC expression may be a rational approach to treat colon cancer which overexpresses ODC.

  15. Molecular mechanism of allosteric substrate activation in a thiamine diphosphate-dependent decarboxylase. (United States)

    Versées, Wim; Spaepen, Stijn; Wood, Martin D H; Leeper, Finian J; Vanderleyden, Jos; Steyaert, Jan


    Thiamine diphosphate-dependent enzymes are involved in a wide variety of metabolic pathways. The molecular mechanism behind active site communication and substrate activation, observed in some of these enzymes, has since long been an area of debate. Here, we report the crystal structures of a phenylpyruvate decarboxylase in complex with its substrates and a covalent reaction intermediate analogue. These structures reveal the regulatory site and unveil the mechanism of allosteric substrate activation. This signal transduction relies on quaternary structure reorganizations, domain rotations, and a pathway of local conformational changes that are relayed from the regulatory site to the active site. The current findings thus uncover the molecular mechanism by which the binding of a substrate in the regulatory site is linked to the mounting of the catalytic machinery in the active site in this thiamine diphosphate-dependent enzyme.

  16. The importance of SERINE DECARBOXYLASE1 (SDC1) and ethanolamine biosynthesis during embryogenesis of Arabidopsis thaliana. (United States)

    Yunus, Ian Sofian; Liu, Yu-Chi; Nakamura, Yuki


    In plants, ethanolamine is considered a precursor for the synthesis of choline, which is an essential dietary nutrient for animals. An enzyme serine decarboxylase (SDC) has been identified and characterized in Arabidopsis, which directly converts serine to ethanolamine, a precursor to phosphorylethanolamine and its subsequent metabolites in plants. However, the importance of SDC and ethanolamine production in plant growth and development remains unclear. Here, we show that SDC is required for ethanolamine biosynthesis in vivo and essential in plant embryogenesis in Arabidopsis. The knockout of SDC1 caused an embryonic lethal defect due to the developmental arrest of the embryos at the heart stage. During embryo development, the expression was observed at the later stages, at which developmental defect occurred in the knockout mutant. Overexpression of SDC1 in planta increased levels of ethanolamine, phosphatidylethanolamine, and phosphatidylcholine both in leaves and siliques. These results suggest that SDC1 plays an essential role in ethanolamine biosynthesis during the embryogenesis in Arabidopsis.

  17. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P. (TGRI); (Toronto)


    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.

  18. Glutamate alteration of glutamic acid decarboxylase (GAD) in GABAergic neurons: the role of cysteine proteases. (United States)

    Monnerie, Hubert; Le Roux, Peter D


    Brain cell vulnerability to neurologic insults varies greatly, depending on their neuronal subpopulation. Among cells that survive a pathological insult such as ischemia or brain trauma, some may undergo morphological and/or biochemical changes that could compromise brain function. We previously reported that surviving cortical GABAergic neurons exposed to glutamate in vitro displayed an NMDA receptor (NMDAR)-mediated alteration in the levels of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67) [Monnerie, H., Le Roux, P., 2007. Reduced dendrite growth and altered glutamic acid decarboxylase (GAD) 65- and 67-kDa isoform protein expression from mouse cortical GABAergic neurons following excitotoxic injury in vitro. Exp. Neurol. 205, 367-382]. In this study, we examined the mechanisms by which glutamate excitotoxicity caused a change in cortical GABAergic neurons' GAD protein levels. Removing extracellular calcium prevented the NMDAR-mediated decrease in GAD protein levels, measured using Western blot techniques, whereas inhibiting calcium entry through voltage-gated calcium channels had no effect. Glutamate's effect on GAD protein isoforms was significantly attenuated by preincubation with the cysteine protease inhibitor N-Acetyl-L-Leucyl-L-Leucyl-L-norleucinal (ALLN). Using class-specific protease inhibitors, we observed that ALLN's effect resulted from the blockade of calpain and cathepsin protease activities. Cell-free proteolysis assay confirmed that both proteases were involved in glutamate-induced alteration in GAD protein levels. Together these results suggest that glutamate-induced excitotoxic stimulation of NMDAR in cultured cortical neurons leads to altered GAD protein levels from GABAergic neurons through intracellular calcium increase and protease activation including calpain and cathepsin. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered balance between excitation

  19. Danish children born with glutamic acid decarboxylase-65 and islet antigen-2 autoantibodies at birth had an increased risk to develop type 1 diabetes

    DEFF Research Database (Denmark)

    Eising, Stefanie; Nilsson, Anita; Carstensen, Bendix;


    A large, population-based case-control cohort was used to test the hypothesis that glutamic acid decarboxylase-65 (GAD65) and islet antigen-2 autoantibodies (IA-2A) at birth predict type 1 diabetes.......A large, population-based case-control cohort was used to test the hypothesis that glutamic acid decarboxylase-65 (GAD65) and islet antigen-2 autoantibodies (IA-2A) at birth predict type 1 diabetes....

  20. Computational, structural, and kinetic evidence that Vibrio vulnificus FrsA is not a cofactor-independent pyruvate decarboxylase. (United States)

    Kellett, Whitney F; Brunk, Elizabeth; Desai, Bijoy J; Fedorov, Alexander A; Almo, Steven C; Gerlt, John A; Rothlisberger, Ursula; Richards, Nigel G J


    The fermentation-respiration switch (FrsA) protein in Vibrio vulnificus was recently reported to catalyze the cofactor-independent decarboxylation of pyruvate. We now report quantum mechanical/molecular mechenical calculations that examine the energetics of C-C bond cleavage for a pyruvate molecule bound within the putative active site of FrsA. These calculations suggest that the barrier to C-C bond cleavage in the bound substrate is 28 kcal/mol, which is similar to that estimated for the uncatalyzed decarboxylation of pyruvate in water at 25 °C. In agreement with the theoretical predictions, no pyruvate decarboxylase activity was detected for recombinant FrsA protein that could be crystallized and structurally characterized. These results suggest that the functional annotation of FrsA as a cofactor-independent pyruvate decarboxylase is incorrect.

  1. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L. (United States)

    Dalton, Heidi L; Blomstedt, Cecilia K; Neale, Alan D; Gleadow, Ros; DeBoer, Kathleen D; Hamill, John D


    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana.

  2. Identification of polymorphisms and balancing selection in the male infertility candidate gene, ornithine decarboxylase antizyme 3

    Directory of Open Access Journals (Sweden)

    Atkins John F


    Full Text Available Abstract Background The antizyme family is a group of small proteins that play a role in cell growth and division by regulating the biosynthesis of polyamines (putrescine, spermidine, spermine. Antizymes regulate polyamine levels primarily through binding ornithine decarboxylase (ODC, an enzyme key to polyamine production, and targeting ODC for destruction by the 26S proteosome. Ornithine decarboxylase antizyme 3 (OAZ3 is a testis-specific antizyme paralog and the only antizyme expressed in the mid to late stages of spermatogenesis. Methods To see if mutations in the OAZ3 gene are responsible for some cases of male infertility, we sequenced and evaluated the genomic DNA of 192 infertile men, 48 men of known paternity, and 34 African aborigines from the Mbuti tribe in the Democratic Republic of the Congo. The coding sequence of OAZ3 was further screened for polymorphisms by SSCP analysis in the infertile group and an additional 250 general population controls. Identified polymorphisms in the OAZ3 gene were further subjected to a haplotype analysis using PHASE 2.02 and Arlequin 2.0 software programs. Results A total of 23 polymorphisms were identified in the promoter, exons or intronic regions of OAZ3. The majority of these fell within a region of less than two kilobases. Two of the polymorphisms, -239 A/G in the promoter and 4280 C/T, a missense polymorphism in exon 5, may show evidence of association with male infertility. Haplotype analysis identified 15 different haplotypes, which can be separated into two divergent clusters. Conclusion Mutations in the OAZ3 gene are not a common cause of male infertility. However, the presence of the two divergent haplotypes at high frequencies in all three of our subsamples (infertile, control, African suggests that they have been maintained in the genome by balancing selection, which was supported by a test of Tajima's D statistic. Evidence for natural selection in this region implies that these haplotypes

  3. Dynamic regulation of glutamic acid decarboxylase 65 gene expression in rat testis

    Institute of Scientific and Technical Information of China (English)

    Haixiong Liu; Shifeng Li; Yunbin Zhang; Yuanchang Yan; Yiping Li


    Glutamate decarboxylase 65 (GAD65) produces γ-amino-butyric acid,the main inhibitory neurotransmitter in adult mammalian brain.Previous experiments,per-formed in brain,showed that GAD65 gene possesses two TATA-less promoters,although the significance is unknown.Here,by rapid amplification of cDNA ends method,two distinct GAD65 mRNA isoforms transcribed from two independent clusters of transcription start sites were identified in post-natal rat testis.RT-PCR results revealed that the two mRNA isoforms had distinct expression patterns during post-natal testis maturation,suggesting that GAD65 gene expression was regulated by alternative promoters at the transcription level.By using GAD65-speciflc antibodies,western blotting analysis showed that the 58-kDa GAD65,N-terminal 69 amino acids truncated form of full-length GAD65 protein,was developmentally expressed during post-natal testis matu-ration,suggesting that GAD65 gene expression in testis may also be regulated by post-translational processing.Confocal immunofluorescence microscopy revealed that GAD65 protein was presented in Leydig cells of Day 1 testis,primary spermatocytes and spermatids of post-natal of Day 90 testis.The above results suggested that GAD65 gene expression is dynamically regulated at mul-tiple levels during post-natal testis maturation.

  4. Solvent-derived protons in catalysis by brewers' yeast pyruvate decarboxylase. (United States)

    Harris, T K; Washabaugh, M W


    Catalysis of proton transfer to thiamin diphosphate (TDP) and 2-(1-hydroxyethyl)thiamin diphosphate (HETDP) by pyruvate decarboxylase isozymes (PDC; EC from Saccharomyces carlsbergensis was investigated by determining the solvent discrimination tritium isotope effect, (kH/kT)disc, on the reaction of pyruvate to form acetaldehyde in the presence of the nonsubstrate allosteric effector pyruvamide. The fractionation factors for TDP C(2)-L (phi C(2) = 0.98 +/- 0.06) and HETDP C(alpha)-L (phi C(alpha) = 1.01 +/- 0.07) (L = H or D) do not contribute significantly to observed enzymic isotopic discrimination. The value of (kH/kT)disc = 1.0 for reprotonation of TDP C(2)-L under single-turnover conditions ([E] > [S]) is consistent with C(2)-hydron transfer via a catalytic group (phi = 1) equilibrated with solvent. [1-L]Acetaldehyde formation under transient steady-state ([E] or = 1.2) provides significant intramolecular catalysis in the enzyme-bound coenzyme.

  5. Complexes of Thermotoga maritima S-adenosylmethionine decarboxylase provide insights into substrate specificity

    Energy Technology Data Exchange (ETDEWEB)

    Bale, Shridhar; Baba, Kavita; McCloskey, Diane E.; Pegg, Anthony E.; Ealick, Steven E.


    The polyamines putrescine, spermidine and spermine are ubiquitous aliphatic cations and are essential for cellular growth and differentiation. S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical pyruvoyl-dependent enzyme in the polyamine-biosynthetic pathway. The crystal structures of AdoMetDC from humans and plants and of the AdoMetDC proenzyme from Thermotoga maritima have been obtained previously. Here, the crystal structures of activated T. maritima AdoMetDC (TmAdoMetDC) and of its complexes with S-adenosylmethionine methyl ester and 5{prime}-deoxy-5{prime}-dimethylthioadenosine are reported. The results demonstrate for the first time that TmAdoMetDC autoprocesses without the need for additional factors and that the enzyme contains two complete active sites, both of which use residues from both chains of the homodimer. The complexes provide insights into the substrate specificity and ligand binding of AdoMetDC in prokaryotes. The conservation of the ligand-binding mode and the active-site residues between human and T. maritima AdoMetDC provides insight into the evolution of AdoMetDC.

  6. Measurement of activity for S-adenosylmethionine decarboxylase using radioisotope {sup 14}C

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyong Cheol; Park, Sang Hyun [Radiation Research Center for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kamio, Yoshiyuku [Division of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University (Japan)


    Polyamines are essential for normal cell growth and have important physiological function. They are polycationic compounds that are present in all biological materials. Also, they have been implicated in a wide variety of biological reactions. Generally, putrescine and spermidine are contained high amount in prokaryote, but spermidine and spermine are in eukaryote, respectively. However, S. ruminantium cells contain the polyamins such as spermidine and spermine. Addition of an aminopropyl group to putrescine conducts to the synthesis of spermidine. Aminopropyl group is derived from the dcSAM, a decarboxylation of S-adenosylmethionine, through action of S-adenosylmethionine decarboxylase (SAMDC). We suggested that S. ruminantium has a different pathway compare with prokaryote for polyamine synthesis. Assay for SAMDC activity was used {sup 14}C labeled substrate. Key enzyme in the biosynthesis of polyamines, SAMDC, was purified from S. ruminantium and characterized. The enzyme was purified about 1,259-fold to electrophoretic homogeneity with a specific activity of 1.89×10{sup -5} kat kg'-{sup 1} of protein.

  7. Effects of Teucrium polium aerial parts extracts on malonyl-CoA decarboxylase level.

    Directory of Open Access Journals (Sweden)

    Durdi Qujeq


    Full Text Available Malonyl-CoA decarboxylase (MCD is an enzyme involved in the decarboxylation of malonyl-CoA to acetyl-CoA. In order to explore the hypothesis that the changing plant materials’ MCD activity level can serve as therapy to diabetics, the effect of Teucrium polium compounds was studied in a diabetic rat model. In this experimental study, two groups of rats, a control and a diabetic group, each including six rats, were used. At the end of the experiment, all rats were exterminated by ether anesthesia, their pancreases removed and dissected. Isolated rat pancreas was cultured in buffers with or without 100-500µg/l T. polium aerial parts extracts containing arginine and leucine. MCD and insulin levels were measured after culture at 37°C and 5% CO2, for 1, 3 and 5 days. Results showed that T. polium aqueous and the alcoholic extract decreased MCD activity. Present data also indicate that incubation of pancreatic tissue at a concentration of 2.8 and 16.7 mmol/L glucose stimulated insulin release. For the first time it seems that aqueous and alcoholic extracts of this plant decreased MCD activity.

  8. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells

    Directory of Open Access Journals (Sweden)

    Giancarlo eRusso


    Full Text Available The function of the enzyme glutamate decarboxylase (GAD is to convert glutamate in -aminobutyric acid (GABA.GAD exists as two major isoforms, termed GAD65 and GAD67,.that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.

  9. Characterization of striatal neurons expressing high levels of glutamic acid decarboxylase messenger RNA. (United States)

    Chesselet, M F; Robbins, E


    Two types of labelled cells are detected in sections of rat and mouse striata processed for in situ hybridization histochemistry with 35S-radiolabelled RNA probes complementary to the messenger RNA (mRNA) encoding glutamic acid decarboxylase (GAD), the synthesis enzyme for gamma-aminobutyric acid (GABA): numerous lightly, and fewer very densely labelled neurons. In order to determine whether the densely labelled cells correspond to the striatal somatostatinergic neurons with which they share morphological characteristics, the presence of GAD mRNA was examined in brain sections processed successively for dihydronicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemistry, a marker of striatal somatostatinergic neurons, and in situ hybridization histochemistry. In addition, the distribution of GABAergic interneurons was analyzed with regard to striatal compartments (striosomes) indicated by patches of dense opiate binding sites. The results show that NADPH diaphorase activity and GAD mRNA do not co-exist in striatal neurons. Furthermore, in contrast to the somatostatinergic neurons which are almost exclusively located in the extrastriosomal matrix, densely labelled GAD cells were present both in the striosomes and the matrix, further suggesting that GABAergic and somatostatinergic neurons form two distinct interneuronal systems in the striatum of rats and mice.

  10. Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Diana eSánchez-Rangel


    Full Text Available Polyamines (PAs are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2 catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC. The generated transgenic lines (amiR:ADC-L1 and -L2 showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

  11. Characterization of an avian histidine decarboxylase and localization of histaminergic neurons in the chicken brain. (United States)

    Bessho, Yuki; Iwakoshi-Ukena, Eiko; Tachibana, Tetsuya; Maejima, Sho; Taniuchi, Shusuke; Masuda, Keiko; Shikano, Kenshiro; Kondo, Kunihiro; Furumitsu, Megumi; Ukena, Kazuyoshi


    In mammals, it is established that histamine is a neurotransmitter and/or neuromodulator in the central nervous system. It is produced by the enzyme histidine decarboxylase (HDC) in the tuberomammillary nucleus of the posterior hypothalamus. However, HDC as well as histaminergic neurons have not yet been characterized in the avian brain. We have cloned the cDNA for HDC from the chicken hypothalamus and demonstrated that the chicken HDC sequence is highly homologous to the mammalian counterpart, and that the expressed protein shows high enzymatic activity. The expression of HDC mRNA at various sites in the brain was investigated using quantitative RT-PCR. The results showed that the HDC mRNA was highly expressed in the hypothalamic infundibulum. In situ hybridization analyses revealed that the cells containing HDC mRNA were localized in the medial mammillary nucleus of the hypothalamic infundibulum. Intracerebroventricular injection of histamine in chicks resulted in inhibition of feeding behavior. This is the first report of the characterization of histaminergic neurons in the avian brain, and our findings indicate that neuronal histamine exerts anorexigenic effects in chicks.

  12. Immobilization and characterization of benzoylformate decarboxylase from Pseudomonas putida on spherical silica carrier. (United States)

    Peper, Stephanie; Kara, Selin; Long, Wei Sing; Liese, Andreas; Niemeyer, Bernd


    If an adequate biocatalyst is identified for a specific reaction, immobilization is one possibility to further improve its properties. The immobilization allows easy recycling, improves the enzyme performance, and it often enhances the stability of the enzyme. In this work, the immobilization of the benzoylformate decarboxylase (BFD) variant, BFD A460I-F464I, from Pseudomonas putida was accomplished on spherical silica. Silicagel is characterized by its high mechanical stability, which allows its application in different reactor types without restrictions. The covalently bound enzyme was characterized in terms of its activity, stability, and kinetics for the formation of chiral 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde. Moreover, temperature as well as pressure dependency of immobilized BFD A460I-F464I activity and enantioselectivity were analyzed. The used wide-pore silicagel shows a good accessibility of the immobilized enzyme. The activity of the immobilized BFD A460I-F464I variant was determined to be 70% related to the activity of the free enzyme. Thereby, the enantioselectivity of the enzyme was not influenced by the immobilization. In addition, a pressure-induced change in stereoselectivity was found both for the free and for the immobilized enzyme. With increasing pressure, the enantiomeric excess (ee) of (R)-2-HPP can be increased from 44% (0.1 MPa) to 76% (200 MPa) for the free enzyme and from 43% (0.1 MPa) to 66% (200 MPa) for the immobilized enzyme.

  13. Regulation of human ornithine decarboxylase expression by the c-Myc.Max protein complex. (United States)

    Peña, A; Reddy, C D; Wu, S; Hickok, N J; Reddy, E P; Yumet, G; Soprano, D R; Soprano, K J


    The presence of a CACGTG element within a region of the human ornithine decarboxylase (ODC) promoter located at -491 to -474 base pairs 5' to the start site of transcription suggested that the c-Myc.Max protein complex may play a role in the regulation of ODC expression during growth. Electrophoretic mobility shift assays and methylation interference analysis showed that the nuclei of WI-38 cells expressing ODC contained proteins that bound to this region of the ODC gene in a manner that correlated with growth-associated ODC expression. Also, use of antibodies against c-Myc and Max and purified recombinant c-Myc and Max protein in the electrophoretic mobility shift assay confirmed that these proteins can specifically bind this portion of the human ODC promoter. Transient transfection studies showed that increase in the level of c-Myc and/or Max led to a significant enhancement of expression of a human ODC promoter-CAT reporter construct. Moreover, treatment of actively growing WI-38 cells with an antisense oligomer to c-Myc reduced the amount of endogenous protein complex formed and the amount of endogenous ODC mRNA expressed. These studies show that the c-Myc.Max protein complex plays a role in the transcriptional regulation of human ODC in vivo.

  14. Ornithine decarboxylase expression in the small intestine of broilers submitted to feed restriction and glutamine supplementation

    Directory of Open Access Journals (Sweden)

    AV Fischer da Silva


    Full Text Available Six hundred and forty one-day-old Cobb male broilers were used to evaluate ornithine decarboxylase (ODC expression in the mucosa of the small intestine. Birds were submitted to early feed restriction from 7 to 14 days of age. The provided feed was supplemented with glutamine. A completely randomized design with a 2 x 2 factorial arrangement was used (with or without glutamine, with or without feed restriction. Restricted-fed birds were fed at 30% the amount of the ad libitum fed group from 7 to 14 days of age. Glutamine was added at the level of 1% in the diet supplied from 1 to 28 days of age. Protein concentration in the small intestine mucosa was determined, and ODC expression at 7, 14, 21, and 28 days of age was evaluated by dot blotting. ODC was present in the mucosa of broilers, and the presence of glutamine in the diet increased ODC activation. Glutamine prevented mucosa atrophy by stimulating protein synthesis, and was effective against the effects of feed restriction. Dot blotting can be used to quantify ODC expression in the intestinal mucosa of broilers.

  15. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase. (United States)

    Tiburcio, A F; Kaur-Sawhney, R; Galston, A W


    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  16. The role of arginine decarboxylase in modulating the sensitivity of barley to ozone. (United States)

    Rowland-Bamford, A J; Borland, A M; Lea, P J; Mansfield, T A


    Polyamines (PA) are known to be involved in the areas of plant physiology and biochemistry which are related to the response of a plant to air pollution. This study examines the role of arginine decarboxylase (ADC), an important rate-limiting enzyme in polyamine synthesis, in barley plants exposed to ozone (O(3)). The activity of ADC increased significantly in O(3)-treated leaves when visible injury was hardly apparent. The increase in ADC activity may be a mechanism to increase the PA levels in O(3)-treated leaves and so minimize the damaging effects of O(3). Supporting this, foliar applications of DL-alpha-difluoromethylarginine (DFMA), a specific inhibitor of ADC, prevented the rise in ADC activity and visible injury was considerable on exposure to O(3). This damage was not due to the foliar sprays, as little visible injury was seen in leaves in the O(3)-free controls. The results are discussed in terms of the roles of PA in conferring O(3) resistance in plants.

  17. Highly active and stable oxaloacetate decarboxylase Na⁺ pump complex for structural analysis. (United States)

    Inoue, Michio; Li, Xiaodan


    The oxaloacetate decarboxylase primary Na(+) pump (Oad) produces energy for the surviving of some pathogenic bacteria under anaerobic conditions. Oad composes of three subunits: Oad-α, a biotinylated soluble subunit and catalyzes the decarboxylation of oxaloacetate; Oad-β, a transmembrane subunit and functions as a Na(+) pump; and Oad-γ, a single transmembrane α-helical anchor subunit and assembles Oad-α/β/γ complex. The molecular mechanism of Oad complex coupling the exothermic decarboxylation to generate the Na(+) electrochemical gradient remains unsolved. Our biophysical and biochemical studies suggested that the stoichiometry of Oad complex from Vibrio cholerae composed of α, β, γ in 4:2:2 stoichiometry not that of 4:4:4. The high-resolution structure determination of the Oad complex would reveal the energetic transformation mechanism from the catalytical soluble α subunit to membrane β subunit. Sufficient amount stable, conformational homogenous and active Oad complex with the right stoichiometry is the prerequisite for structural analysis. Here we report an easy and reproducible protocol to obtain high quantity and quality Oad complex protein for structural analysis.

  18. Developmental changes of glutamate acid decarboxylase 67 in mouse brain after hypoxia ischemia

    Institute of Scientific and Technical Information of China (English)

    Fa-Lin XU; Chang-Lian ZHU; Xiao-Yang WANG


    Objective To study the developmental changes of glutamic acid decarboxylase-67 ( GAD-67, a GABA synthetic enzyme) in normal and hypoxic ischemic (HI) brain. Methods C57/BL6 mice on postnatal day (P) 5, 9, 21and 60, corresponding developmentally to premature, term, juvenile and adult human brain were investigated by using both Western blot and immunohistochemistry methods either in normal condition or after hypoxic ischemic insult. Results The immunoreactivity of GAD67 was up regulated with brain development and significant difference was seen between mature (P21, P60) and immature (P5, P9) brain. GAD67 immunoreactivity decreased in the ipsilateral hemisphere in all the ages after hypoxia ischemia (HI) insult, but, significant decrease was only seen in the immature brain. Double labeling of GAD67 and cell death marker, TUNEL, in the cortex at 8h post-HI in the P9 mice showed that (15.6 ±7.0)%TUNEL positive cells were GAD67 positive which was higher than that of P60 mice. Conclusion These data suggest that GABAergic neurons in immature brain were more vulnerable to HI insult than that of mature brain.

  19. Enzyme Architecture: The Activating Oxydianion Binding Domain for Orotidine 5′-Monophophate Decarboxylase (United States)

    Spong, Krisztina; Amyes, Tina L.; Richard, John P.


    Orotidine 5′-monophosphate decarboxylase catalyzes the decarboxylation of truncated substrate (1-β-D-erythrofuranosyl)orotic acid (EO) to form (1-β-D-erythrofuranosyl)uracil (EU). This enzymecatalyzed reaction is activated by tetrahedral oxydianions, which bind weakly to unliganded OMPDC and tightly to the enzyme-transition state complex, with the following intrinsic oxydianion binding energies (kcal/mole): SO32−, −8.3; HPO32−, −7.7; S2O32−, −4.6; SO42−, −4.5; HOPO32−, −3.0; HOAsO32−, no activation detected. We propose that oxydianion and orotate binding domains perform complementary functions in catalysis of decarboxylation reactions. (1) The orotate binding domain carries out decarboxylation of the orotate ring. (2) The activating oxydianion binding domain has the cryptic function of utilizing binding interactions with tetrahedral inorganic oxydianions to drive an enzyme conformational change that results in the stabilization of transition states at the distant orotate domain. PMID:24274746

  20. Enzyme architecture: the activating oxydianion binding domain for orotidine 5'-monophophate decarboxylase. (United States)

    Spong, Krisztina; Amyes, Tina L; Richard, John P


    Orotidine 5'-monophosphate decarboxylase catalyzes the decarboxylation of truncated substrate (1-β-D-erythrofuranosyl)orotic acid to form (1-β-D-erythrofuranosyl)uracil. This enzyme-catalyzed reaction is activated by tetrahedral oxydianions, which bind weakly to unliganded OMPDC and tightly to the enzyme-transition state complex, with the following intrinsic oxydianion binding energies (kcal/mol): SO3(2-), -8.3; HPO3(2-), -7.7; S2O3(2-), -4.6; SO4(2-), -4.5; HOPO3(2-), -3.0; HOAsO3(2-), no activation detected. We propose that the oxydianion and orotate binding domains of OMPDC perform complementary functions in catalysis of decarboxylation reactions: (1) The orotate binding domain carries out decarboxylation of the orotate ring. (2) The activating oxydianion binding domain has the cryptic function of utilizing binding interactions with tetrahedral inorganic oxydianions to drive an enzyme conformational change that results in the stabilization of transition states at the distant orotate domain.

  1. Molecular characterization of Mtb-OMP decarboxylase by modeling, docking and dynamic studies. (United States)

    Madhusudana, P; Babajan, B; Chaitanya, M; Anuradha, C M; Shobharani, C; Chikati, Rajasekar; Kumar, Chitta Suresh; Rao, K R S Sambasiva; Poda, Sudhakar


    Tuberculosis (TB), the second most deadly disease in the world is caused by Mycobacterium tuberculosis (Mtb). In the present work a unique enzyme of Mtb orotidine 5' monophosphate decarboxylase (Mtb-OMP Decase) is selected as drug target due to its indispensible role in biosynthesis of pyrimidines. The present work is focused on understanding the structural and functional aspects of Mtb-OMP Decase at molecular level. Due to absence of crystal structure, the 3D structure of Mtb-OMP Decase was predicted by MODELLER9V7 using a known structural template 3L52. Energy minimization and refinement of the developed 3D model was carried out with Gromacs 3.2.1 and the optimized homology model was validated by PROCHECK,WHAT-IF and PROSA2003. Further, the surface active site amino acids were quantified by WHAT-IF pocket. The exact binding interactions of the ligands, 6-idiouridine 5' monophosphate and its designed analogues with the receptor Mtb-OMP Decase were predicted by docking analysis with AUTODOCK 4.0. This would be helpful in understanding the blockade mechanism of OMP Decase and provide a candidate lead for the discovery of Mtb-OMP Decase inhibitors, which may bring insights into outcome new therapy to treat drug resistant Mtb.

  2. Role of the Sulfonium Center in Determining the Ligand Specificity of Human S-Adenosylmethionine Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Bale, Shridhar; Brooks, Wesley; Hanes, Jeremiah W.; Mahesan, Arnold M.; Guida, Wayne C.; Ealick, Steven E.; (Moffitt); (Cornell)


    S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in the polyamine biosynthetic pathway. Inhibition of this pathway and subsequent depletion of polyamine levels is a viable strategy for cancer chemotherapy and for the treatment of parasitic diseases. Substrate analogue inhibitors display an absolute requirement for a positive charge at the position equivalent to the sulfonium of S-adenosylmethionine. We investigated the ligand specificity of AdoMetDC through crystallography, quantum chemical calculations, and stopped-flow experiments. We determined crystal structures of the enzyme cocrystallized with 5{prime}-deoxy-5{prime}-dimethylthioadenosine and 5{prime}-deoxy-5{prime}-(N-dimethyl)amino-8-methyladenosine. The crystal structures revealed a favorable cation-{pi} interaction between the ligand and the aromatic side chains of Phe7 and Phe223. The estimated stabilization from this interaction is 4.5 kcal/mol as determined by quantum chemical calculations. Stopped-flow kinetic experiments showed that the rate of the substrate binding to the enzyme greatly depends on Phe7 and Phe223, thus supporting the importance of the cation-{pi} interaction.

  3. Partial purification and characterization of a novel histidine decarboxylase from Enterobacter aerogenes DL-1. (United States)

    Zou, Yu; Hu, Wenzhong; Jiang, Aili; Tian, Mixia


    Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca(2+) and Mn(2+) showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver-Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.

  4. Inhibition of scratching behaviour caused by contact dermatitis in histidine decarboxylase gene knockout mice. (United States)

    Seike, M; Ikeda, M; Kodama, H; Terui, T; Ohtsu, H


    A neuronal system dedicated to itch consists of primary afferent and spinothalamic projection neurons. Histamine is thought to be one of the main mediators for the transmission of itch sensation. However, there are little available information on the role of histamine in scratching behaviour and sensory transmission of atopic dermatitis and chronic eczema. In the present study, the role of histamine in scratching behaviour and neural conduction of sensation in the chronic eczema model was investigated by using l-histidine decarboxylase (HDC) gene knockout mice lacking histamine. The chronic contact dermatitis was induced with daily application of diphenylcyclopropenone (DCP) on a hind paw of HDC (+/+) and HDC (-/-) mice for 2 months. The observation of scratching behaviour and the hot-plate test were performed in both mice. Histological studies were performed in the skin and spinal cord tissues. Histological examination revealed that both HDC (+/+) and HDC (-/-) mice displayed the similar extent of inflammatory cell infiltration, hyperplastic epidermis and newly spreading of neuronal processes in the skin tissue. Scratching behaviour was exclusively induced in HDC (+/+) mice, whereas it was barely observed in HDC (-/-) mice. The expression of c-Fos was specifically upregulated in HDC (+/+) mice in lamina I of the spinal dorsal horn following repeated DCP application. Scratching behaviour in chronic contact dermatitis in mice was thought mainly mediated with histamine. The afferent pathway of sensation in chronic contact dermatitis model may connect with the central nervous system through lamina I of the spinal dorsal horn.

  5. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot]. (United States)

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe


    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity.

  6. Nucleotide variation at the dopa decarboxylase (Ddc) gene in natural populations of Drosophila melanogaster

    Indian Academy of Sciences (India)

    Andrey Tatarenkov; Francisco J. Ayala


    We studied nucleotide sequence variation at the gene coding for dopa decarboxylase (Ddc) in seven populations of Drosophila melanogaster. Strength and pattern of linkage disequilibrium are somewhat distinct in the extensively sampled Spanish and Raleigh populations. In the Spanish population, a few sites are in strong positive association, whereas a large number of sites in the Raleigh population are associated nonrandomly but the association is not strong. Linkage disequilibrium analysis shows presence of two groups of haplotypes in the populations, each of which is fairly diverged, suggesting epistasis or inversion polymorphism. There is evidence of two forms of natural selection acting on Ddc. The McDonald–Kreitman test indicates a deficit of fixed amino acid differences between D. melanogaster and D. simulans, which may be due to negative selection. An excess of derived alleles at high frequency, significant according to the -test, is consistent with the effect of hitchhiking. The hitchhiking may have been caused by directional selection downstream of the locus studied, as suggested by a gradual decrease of the polymorphism-to-divergence ratio. Altogether, the Ddc locus exhibits a complicated pattern of variation apparently due to several evolutionary forces. Such a complex pattern may be a result of an unusually high density of functionally important genes.

  7. Antitumor Effect of Antisense Ornithine Decarboxylase Adenovirus on Human Lung Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Hui TIAN; Lin LI; Xian-Xi LIU; Yan ZHANG


    Ornithine decarboxylase (ODC), the first enzyme of polyamine biosynthesis, was found to increase in cancer cells, especially lung cancer cells. Some chemotherapeutic agents aimed at decreasing ODC gene expression showed inhibitory effects on cancer cells. In this study, we examined the effects of adenoviral transduced antisense ODC on lung cancer cells. An adenovirus carrying antisense ODC (rAd-ODC/Ex3as) was used to infect lung cancer cell line A-549. The 3-(4,5-me thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to analyze the effect on cell growth. Expression of ODC and concentration of polyamines in cells were determined by Western blot analysis and high performance liquid chromatography. Terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling was used to analyze cell apoptosis. The expression of ODC in A-549 cells was reduced to 54%, and that of three polyamines was also decreased through the rAd-ODC/Ex3as treatment. Consequently, cell growth was substantially inhibited and terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling showed that rAd-ODC/Ex3as could lead to cell apoptosis, with apoptosis index of 46%. This study suggests that rAd-ODC/Ex3as has an antitumor effect on the human lung cancer cells.

  8. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.; Warby, C; Whitby, F; Kushner, J; Hill, C


    Uroporphyrinogen decarboxylase (URO-D; EC, the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.

  9. Evolution and expression analysis of the soybean glutamate decarboxylase gene family

    Indian Academy of Sciences (India)

    Tae Kyung Hyun; Seung Hee Eom; Xiao Han; Ju-Sung Kim


    Glutamate decarboxylase (GAD) is an enzyme that catalyses the conversion of L-glutamate into -aminobutyric acid (GABA), which is a four-carbon non-protein amino acid present in all organisms. Although plant GAD plays important roles in GABA biosynthesis, our knowledge concerning GAD gene family members and their evolutionary relationship remains limited. Therefore, in this study, we have analysed the evolutionary mechanisms of soybean GAD genes and suggested that these genes expanded in the soybean genome partly due to segmental duplication events. The approximate dates of duplication events were calculated using the synonymous substitution rate, and we suggested that the segmental duplication of GAD genes in soybean originated 9.47 to 11.84 million years ago (Mya). In addition, all segmental duplication pairs (GmGAD1/3 and GmGAD2/4) are subject to purifying selection. Furthermore, GmGAD genes displayed differential expression either in their transcript abundance or in their expression patterns under abiotic stress conditions like salt, drought, and cold. The expression pattern of paralogous pairs suggested that they might have undergone neofunctionalization during the subsequent evolution process. Taken together, our results provide valuable information for the evolution of the GAD gene family and represent the basis for future research on the functional characterization of GAD genes in higher plants.

  10. Targeting ornithine decarboxylase reverses the LIN28/Let-7 axis and inhibits glycolytic metabolism in neuroblastoma. (United States)

    Lozier, Ann M; Rich, Maria E; Grawe, Anissa Pedersen; Peck, Anderson S; Zhao, Ping; Chang, Anthony Ting-Tung; Bond, Jeffrey P; Sholler, Giselle Saulnier


    LIN28 has emerged as an oncogenic driver in a number of cancers, including neuroblastoma (NB). Overexpression of LIN28 correlates with poor outcome in NB, therefore drugs that impact the LIN28/Let-7 pathway could be beneficial in treating NB patients. The LIN28/Let-7 pathway affects many cellular processes including the regulation of cancer stem cells and glycolytic metabolism. Polyamines, regulated by ornithine decarboxylase (ODC) modulate eIF-5A which is a direct regulator of the LIN28/Let-7 axis. We propose that therapy inhibiting ODC will restore balance to the LIN28/Let-7 axis, suppress glycolytic metabolism, and decrease MYCN protein expression in NB. Difluoromethylornithine (DFMO) is an inhibitor of ODC in clinical trials for children with NB. In vitro experiments using NB cell lines, BE(2)-C, SMS-KCNR, and CHLA90 show that DFMO treatment reduced LIN28B and MYCN protein levels and increased Let-7 miRNA and decreased neurosphere formation. Glycolytic metabolic activity decreased with DFMO treatment in vivo. Additionally, sensitivity to DFMO treatment correlated with LIN28B overexpression (BE(2)-C>SMS-KCNR>CHLA90). This is the first study to demonstrate that DFMO treatment restores balance to the LIN28/Let-7 axis and inhibits glycolytic metabolism and neurosphere formation in NB and that PET scans may be a meaningful imaging tool to evaluate the therapeutic effects of DFMO treatment.

  11. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear. (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher


    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders.

  12. Partial purification and characterization of arginine decarboxylase from avocado fruit, a thermostable enzyme. (United States)

    Winer, L; Vinkler, C; Apelbaum, A


    A partially purified preparation of arginine decarboxylase (EC, a key enzyme in polyamine metabolism in plants, was isolated from avocado (Persea americana Mill. cv Fuerte) fruit. The preparation obtained from the crude extract after ammonium sulfate precipitation, dialysis, and heat treatment, had maximal activity between pH 8.0 and 9.0 at 60 degrees C, in the presence of 1.2 millimolar MnCl(2), 2 millimolar dithiothreitol, and 0.06 millimolar pyridoxal phosphate. The K(m), of arginine for the decarboxylation reaction was determined for enzymes prepared from the seed coat of both 4-week-old avocado fruitlet and fully developed fruit, and was found to have a value of 1.85 and 2.84 millimolar, respectively. The value of V(app) (max) of these enzymes was 1613 and 68 nanomoles of CO(2) produced per milligram of protein per hour for the fruitlet and the fully developed fruit, respectively. Spermine, an end product of polyamine metabolism, caused less than 5% inhibition of the enzyme from fully developed fruit and 65% inhibition of the enzyme from the seed coat of 4-week-old fruitlets at 1 millimolar under similar conditions. The effect of different inhibitors on the enzyme and the change in the nature of the enzyme during fruit development are discussed.

  13. Characterization of the activity and expression of arginine decarboxylase in human and animal Chlamydia pathogens. (United States)

    Bliven, Kimberly A; Fisher, Derek J; Maurelli, Anthony T


    Chlamydia pneumoniae encodes a functional arginine decarboxylase (ArgDC), AaxB, that activates upon self-cleavage and converts l-arginine to agmatine. In contrast, most Chlamydia trachomatis serovars carry a missense or nonsense mutation in aaxB abrogating activity. The G115R missense mutation was not predicted to impact AaxB functionality, making it unclear whether AaxB variations in other Chlamydia species also result in enzyme inactivation. To address the impact of gene polymorphism on functionality, we investigated the activity and production of the Chlamydia AaxB variants. Because ArgDC plays a critical role in the Escherichia coli acid stress response, we studied the ability of these Chlamydia variants to complement an E. coli ArgDC mutant in an acid shock assay. Active AaxB was detected in four additional species: Chlamydia caviae, Chlamydia pecorum, Chlamydia psittaci, and Chlamydia muridarum. Of the C. trachomatis serovars, only E appears to encode active enzyme. To determine when functional enzyme is present during the chlamydial developmental cycle, we utilized an anti-AaxB antibody to detect both uncleaved and cleaved enzyme throughout infection. Uncleaved enzyme production peaked around 20 h postinfection, with optimal cleavage around 44 h. While the role ArgDC plays in Chlamydia survival or virulence is unclear, our data suggest a niche-specific function.

  14. Mechanism of reconstitution of brewers' yeast pyruvate decarboxylase with thiamin diphosphate and magnesium. (United States)

    Vaccaro, J A; Crane, E J; Harris, T K; Washabaugh, M W


    Reconstitution of apo-pyruvate decarboxylase isozymes (PDC, EC from Saccharomyces carlsbergensis was investigated by determination of the steady-state kinetics of the reaction with thiamin diphosphate (TDP) and Mg2+ in the presence and absence of substrate (pyruvate) or allosteric effector (pyruvamide). Reconstitution of the PDC isozyme mixture and alpha 4 isozyme (alpha 4-PDC) exhibits biphasic kinetics with 52 +/- 11% of the PDC reacting with k1 = (1.0 +/- 0.3) x 10(-2) s-1 and 48 +/- 12% of the PDC reacting with k2 = (1.1 +/- 0.6) x 10(-1) s-1 when TDP (KTDP = 0.5 +/- 0.2 mM) is added to apo-PDC equilibrated with saturating Mg2+. PDC reconstitution exhibits first-order kinetics with k1 = (1.6 +/- 0.5) x 10(-2) s-1 upon addition of Mg2+ (KMg2+ = 0.2 +/- 0.1 mM) to apo-PDC equilibrated with saturating TDP. Biphasic kinetics for the PDC isozymes provides evidence that apo-PDC reconstitution with TDP and Mg2+ involves two pathways, TDP binding followed by Mg2+ (k1) or Mg2+ binding followed by TDP (k2). This is supported by a change in reconstitution pathway with the order of cofactor addition and is inconsistent with a single pathway involving ordered binding of the metal ion followed by TDP. The presence of pyruvamide has no significant effect on the rate constants for apo-PDC reconstitution and favors the k2 pathway; pyruvate decreases the value of k2 < or = 3-fold and has no effect on the value of k1.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Substrate activation of brewers' yeast pyruvate decarboxylase is abolished by mutation of cysteine 221 to serine. (United States)

    Baburina, I; Gao, Y; Hu, Z; Jordan, F; Hohmann, S; Furey, W


    Brewers' yeast pyruvate decarboxylase (EC, a thiamin diphosphate and Mg(II)-dependent enzyme, isolated from Saccharomyces cerevisiae possesses four cysteines/subunit at positions 69, 152, 221, and 222. Earlier studies conducted on a variant of the enzyme with a single Cys at position 221 (derived from a gene that was the product of spontaneous fusion) showed that this enzyme is still subject to substrate activation [Zeng, X., Farrenkopf, B., Hohmann, S., Jordan, F., Dyda, F., & Furey, W. (1993) Biochemistry 32, 2704-2709], indicating that if Cys was responsible for this activation, it had to be C221. To further test the hypothesis, the C221S and C222S single and the C221S-C222S double mutants were constructed. It is clearly shown that the mutation at C221, but not at C222, leads to abolished substrate activation according to a number of kinetic criteria, both steady state and pre steady state. On the basis of the three-dimensional structure of the enzyme [Dyda, F., Furey, W., Swaminathan, S., Sax, M., Farrenkopf, B., Jordan, F. (1993) Biochemistry 32, 6165-6170], it is obvious that while C221 is located on the beta domain, whereas thiamin diphosphate is wedged at the interface of the alpha and gamma domains, addition of pyruvate or pyruvamide as a hemiketal adduct to the sulfur of C221 can easily bridge the gap between the beta and alpha domains. In fact, residues in one or both domains must be dislocated by this adduct formation. It is very likely that regulation as expressed in substrate activation is transmitted via this direct contact made between the two domains in the presence of the activator.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Structural Basis for Putrescine Activation of Human S-Adenosylmethionine Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Bale, Shridhar; Lopez, Maria M.; Makhatadze, George I.; Fang, Qingming; Pegg, Anthony E.; Ealick, Steven E. (Cornell); (Penn)


    Putrescine (1,4-diaminobutane) activates the autoprocessing and decarboxylation reactions of human S-adenosylmethionine decarboxylase (AdoMetDC), a critical enzyme in the polyamine biosynthetic pathway. In human AdoMetDC, putrescine binds in a buried pocket containing acidic residues Asp174, Glu178, and Glu256. The pocket is away from the active site but near the dimer interface; however, a series of hydrophilic residues connect the putrescine binding site and the active site. Mutation of these acidic residues modulates the effects of putrescine. D174N, E178Q, and E256Q mutants were expressed and dialyzed to remove putrescine and studied biochemically using X-ray crystallography, UV-CD spectroscopy, analytical ultracentrifugation, and ITC binding studies. The results show that the binding of putrescine to the wild type dimeric protein is cooperative. The D174N mutant does not bind putrescine, and the E178Q and E256Q mutants bind putrescine weakly with no cooperativity. The crystal structure of the mutants with and without putrescine and their complexes with S-adenosylmethionine methyl ester were obtained. Binding of putrescine results in a reorganization of four aromatic residues (Phe285, Phe315, Tyr318, and Phe320) and a conformational change in the loop 312-320. The loop shields putrescine from the external solvent, enhancing its electrostatic and hydrogen bonding effects. The E256Q mutant with putrescine added shows an alternate conformation of His243, Glu11, Lys80, and Ser229, the residues that link the active site and the putrescine binding site, suggesting that putrescine activates the enzyme through electrostatic effects and acts as a switch to correctly orient key catalytic residues.

  17. Catalytic properties of the archaeal S-adenosylmethionine decarboxylase from Methanococcus jannaschii. (United States)

    Lu, Zichun J; Markham, George D


    S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl cofactor-dependent enzyme that participates in polyamine biosynthesis. AdoMetDC from the Archaea Methanococcus jannaschii is a prototype for a recently discovered class that is not homologous to the eucaryotic enzymes or to a distinct group of microbial enzymes. M. jannaschii AdoMetDC has a Km of 95 microm and the turnover number (kcat) of 0.0075 s(-1) at pH 7.5 and 22 degrees C. The turnover number increased approximately 38-fold at a more physiological temperature of 80 degrees C. AdoMetDC was inactivated by treatment with the imine reductant NaCNBH3 only in the presence of substrate. Mass spectrometry of the inactivated protein showed modification solely of the pyruvoyl-containing subunit, with a mass increase corresponding to reduction of a Schiff base adduct with decarboxylated AdoMet. The presteady state time course of the AdoMetDC reaction revealed a burst of product formation; thus, a step after CO2 formation is rate-limiting in turnover. Comparable D2O kinetic isotope effects of were seen on the first turnover (1.9) and on kcat/Km (1.6); there was not a significant D2O isotope effect on kcat, suggesting that product release is rate-limiting in turnover. The pH dependence of the steady state rate showed participation of acid and basic groups with pK values of 5.3 and 8.2 for kcat and 6.5 and 8.3 for kcat/Km, respectively. The competitive inhibitor methylglyoxal bis(guanylhydrazone) binds at a single site per (alphabeta) heterodimer. UV spectroscopic studies show that methylglyoxal bis(guanylhydrazone) binds as the dication with a 23 microm dissociation constant. Studies with substrate analogs show a high specificity for AdoMet.

  18. Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L.). (United States)

    Chang, K S; Lee, S H; Hwang, S B; Park, K Y


    Arginine decarboxylase (ADC; EC is a key enzyme in polyamine biosynthesis in plants. We characterized a carnation genomic clone, gDcADC8, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 77.7 kDa. The unusually long 5'-UTR that contained a short upstream open reading frame (uORF) of seven amino acids (MQKSLHI) was predicted to form an extensive secondary structure (free energy of approximately -117 kcal mol-1) using the Zuker m-fold algorithm. The result that an ADC antibody detected two bands of 45 and 33 kDa in a petal extract suggested the full length of the 78 kDa polypeptide precursor converted into two polypeptides in the processing reaction. To investigate the role of the transcript leader in translation, in vitro transcription/translation reactions with various constructs of deletion and mutation were performed using wheat germ extract. The ADC transcript leader affected positively downstream translation in both wheatgerm extract and primary transformant overexpressing ADC gene. It was demonstrated that heptapeptide (8.6 kDa) encoded by the ADC uORF was synthesized in vitro. Both uORF peptide, and the synthetic heptapeptide MQKSLHI of the uORF, repressed the translation of downstream ORF. Mutation of the uORF ATG codon alleviated the inhibitory effect. ORF translation was not affected by either a frame-shift mutation in uORF or a random peptide. To our knowledge, this is the first report to provide evidence that a uORF may inhibit the translation of a downstream ORF, not only in cis but also in trans, and that the leader sequence of the ADC gene is important for efficient translation.

  19. Glutamate Decarboxylase 1 Overexpression as a Poor Prognostic Factor in Patients with Nasopharyngeal Carcinoma (United States)

    Lee, Yi-Ying; Chao, Tung-Bo; Sheu, Ming-Jen; Tian, Yu-Feng; Chen, Tzu-Ju; Lee, Sung-Wei; He, Hong-Lin; Chang, I-Wei; Hsing, Chung-Hsi; Lin, Ching-Yih; Li, Chien-Feng


    Background: Glutamate decarboxylase 1 (GAD1) which serves as a rate-limiting enzyme involving in the production of γ-aminobutyric acid (GABA), exists in the GABAergic neurons in the central nervous system (CNS). Little is known about the relevance of GAD1 to nasopharyngeal carcinoma (NPC). Through data mining on a data set derived from a published transcriptome database, this study first identified GAD1 as a differentially upregulated gene in NPC. We aimed to evaluate GAD1 expression and its prognostic effect on patients with early and locoregionally advanced NPC. Methods: We evaluated GAD1 immunohistochemistry and performed an H-score analysis on biopsy specimens from 124 patients with nonmetastasized NPC receiving treatment. GAD1 overexpression was defined as an H score higher than the median value. The findings of such an analysis are correlated with clinicopathological behaviors and survival rates, namely disease-specific survival (DSS), distant-metastasis-free survival (DMeFS), and local recurrence-free survival (LRFS) rates. Results: GAD1 overexpression was significantly associated with an increase in the primary tumor status (p < 0.001) and American Joint Committee on Cancer (AJCC) stages III-IV (p = 0.002) and was a univariate predictor of adverse outcomes of DSS (p = 0.002), DMeFS (p < 0.0001), and LRFS (p = 0.001). In the multivariate comparison, in addition to advanced AJCC stages III-IV, GAD1 overexpression remained an independent prognosticator of short DSS (p = 0.004, hazard ratio = 2.234), DMeFS (p < 0.001, hazard ratio = 4.218), and LRFS (p = 0.013, hazard ratio = 2.441) rates. Conclusions: Our data reveal that GAD1 overexpression was correlated with advanced disease status and may thus be a critical prognostic indicator of poor outcomes in NPC and a potential therapeutic target to facilitate the development of effective treatment modalities. PMID:27698909

  20. Meat consumption, ornithine decarboxylase gene polymorphism, and outcomes after colorectal cancer diagnosis

    Directory of Open Access Journals (Sweden)

    Jason A Zell


    Full Text Available Background: Dietary arginine and meat consumption are implicated in colorectal cancer (CRC progression via polyamine-dependent processes. Polymorphism in the polyamine-regulatory gene, ornithine decarboxylase 1 (Odc1, rs2302615 is prognostic for CRC-specific mortality. Here, we examined joint effects of meat consumption and Odc1 polymorphism on CRC-specific mortality. Materials and Methods: The analytic cohort was comprised of 329 incident stage I-III CRC cases diagnosed 1994-1996 with follow- up through March 2008. Odc1 genotyping was conducted using primers that amplify a 172-bp fragment containing the polymorphic base at +316. Dietary questionnaires were administered at cohort entry. Multivariate Cox proportional hazards regression analysis for CRC-specific mortality was stratified by tumor, node, metastasis (TNM stage, and adjusted for clinically relevant variables, plus meat consumption (as a continuous variable, i.e., the number of medium-sized servings/week, Odc1 genotype, and a term representing the meat consumption and Odc1 genotype interaction. The primary outcome was the interaction of Odc1 and meat intake on CRC-specific mortality, as assessed by departures from multiplicative joint effects. Results: Odc1 genotype distribution was 51% GG, 49% GA/AA. In the multivariate model, there was a significant interaction between meat consumption and Odc1 genotype, P-int = 0.01. Among Odc1 GA/AA CRC cases in meat consumption Quartiles 1-3, increased mortality risk was observed when compared to GG cases (adjusted hazards ratio (HR = 7.06 [95% CI 2.34-21.28] - a difference not found among cases in the highest dietary meat consumption Quartile 4. Conclusions: Effects of meat consumption on CRC-specific mortality risk differ based on genetic polymorphism at Odc1. These results provide further evidence that polyamine metabolism and its modulation by dietary factors such as meat may have relevance to CRC outcomes.

  1. Epigenetic signature of panic disorder: a role of glutamate decarboxylase 1 (GAD1) DNA hypomethylation? (United States)

    Domschke, Katharina; Tidow, Nicola; Schrempf, Marie; Schwarte, Kathrin; Klauke, Benedikt; Reif, Andreas; Kersting, Anette; Arolt, Volker; Zwanzger, Peter; Deckert, Jürgen


    Glutamate decarboxylases (GAD67/65; GAD1/GAD2) are crucially involved in gamma-aminobutyric acid (GABA) synthesis and thus were repeatedly suggested to play an important role in the pathogenesis of anxiety disorders. In the present study, DNA methylation patterns in the GAD1 and GAD2 promoter and GAD1 intron 2 regions were investigated for association with panic disorder, with particular attention to possible effects of environmental factors. Sixty-five patients with panic disorder (f=44, m=21) and 65 matched healthy controls were analyzed for DNA methylation status at 38 GAD1 promoter/intron2 and 10 GAD2 promoter CpG sites via direct sequencing of sodium bisulfate treated DNA extracted from blood cells. Recent positive and negative life events were ascertained. Patients and controls were genotyped for GAD1 rs3762556, rs3791878 and rs3762555, all of which are located in the analyzed promoter region. Patients with panic disorder exhibited significantly lower average GAD1 methylation than healthy controls (p<0.001), particularly at three CpG sites in the promoter as well as in intron 2. The occurrence of negative life events was correlated with relatively decreased average methylation mainly in the female subsample (p=0.01). GAD1 SNP rs3762555 conferred a significantly lower methylation at three GAD1 intron 2 CpG sites (p<0.001). No differential methylation was observed in the GAD2 gene. The present pilot data suggest a potentially compensatory role of GAD1 gene hypomethylation in panic disorder possibly mediating the influence of negative life events and depending on genetic variation. Future studies are warranted to replicate the present finding in independent samples, preferably in a longitudinal design.

  2. Sequential elevation of autoantibodies to thyroglobulin and glutamic acid decarboxylase in type 1 diabetes

    Institute of Scientific and Technical Information of China (English)

    Eiji; Kawasaki; Jun-ichi; Yasui; Masako; Tsurumaru; Haruko; Takashima; Toshiyuki; Ikeoka; Fumi; Mori; Satoru; Akazawa; Ikuko; Ueki; Masakazu; Kobayashi; Hironaga; Kuwahara; Norio; Abiru; Hironori; Yamasaki; Atsushi; Kawakami


    We have previously reported the high levels of glutamic acid decarboxylase 65 autoantibodies(GAD65A)in patients with type 1 diabetes and autoimmune thyroid disease.Here we describe a 32-year-old Japanese female with a thirteen-year history of type 1 diabetes whose levels of GAD65A were elevated just after the emergence of anti-thyroid autoimmunity.At 19 years of age,she developed diabetic ketoacidosis and was diagnosed with type 1 diabetes.She had GAD65A,insulinoma-associated antigen-2 autoantibodies(IA-2A),and zinc transporter-8 autoantibodies(ZnT8A),but was negative for antibodies to thyroid peroxidase(TPOAb)and thyroglobulin(TGAb)at disease onset.ZnT8A and IA-2A turned negative 2-3 years after the onset,whereas GAD65A were persistently positive at lower level(approximately 40 U/mL).However,just after the emergence of TGAb at disease duration of 12.5 years,GAD65A levels were reelevated up to5717 U/mL in the absence of ZnT8A and IA-2A.Her thyroid function was normal and TPOAb were consistently negative.She has a HLA-DRB1*03:01/*04:01-DQB1*02:01/*03:02 genotype.Persistent positivity for GAD65A might be associated with increased risk to develop anti-thyroid autoimmunity.

  3. Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius. (United States)

    Van Zyl, L J; Taylor, M P; Eley, K; Tuffin, M; Cowan, D A


    This study reports the expression, purification, and kinetic characterization of a pyruvate decarboxylase (PDC) from Gluconobacter oxydans. Kinetic analyses showed the enzyme to have high affinity for pyruvate (120 μM at pH 5), high catalytic efficiency (4.75 × 10(5) M(-1) s(-1) at pH 5), a pHopt of approximately 4.5 and an in vitro temperature optimum at approximately 55 °C. Due to in vitro thermostablity (approximately 40 % enzyme activity retained after 30 min at 65 °C), this PDC was considered to be a suitable candidate for heterologous expression in the thermophile Geobacillus thermoglucosidasius for ethanol production. Initial studies using a variety of methods failed to detect activity at any growth temperature (45-55 °C). However, the application of codon harmonization (i.e., mimicry of the heterogeneous host's transcription and translational rhythm) yielded a protein that was fully functional in the thermophilic strain at 45 °C (as determined by enzyme activity, Western blot, mRNA detection, and ethanol productivity). Here, we describe the first successful expression of PDC in a true thermophile. Yields as high as 0.35 ± 0.04 g/g ethanol per gram of glucose consumed were detected, highly competitive to those reported in ethanologenic thermophilic mutants. Although activities could not be detected at temperatures approaching the growth optimum for the strain, this study highlights the possibility that previously unsuccessful expression of pdcs in Geobacillus spp. may be the result of ineffective transcription/translation coupling.

  4. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors.

    Directory of Open Access Journals (Sweden)

    Frederick Daidone

    Full Text Available Dopa decarboxylase (DDC, a pyridoxal 5'-phosphate (PLP enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD. PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a to use virtual screening to identify potential human DDC inhibitors and (b to evaluate the reliability of our virtual-screening (VS protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.

  5. Role of glutamate decarboxylase-like protein 1 (GADL1) in taurine biosynthesis. (United States)

    Liu, Pingyang; Ge, Xiaomei; Ding, Haizhen; Jiang, Honglin; Christensen, Bruce M; Li, Jianyong


    This manuscript concerns the tissue-specific transcription of mouse and cattle glutamate decarboxylase-like protein 1 (GADL1) and the biochemical activities of human GADL1 recombinant protein. Bioinformatic analysis suggested that GADL1 appears late in evolution, only being found in reptiles, birds, and mammals. RT-PCR determined that GADL1 mRNA is transcribed at high levels in mouse and cattle skeletal muscles and also in mouse kidneys. Substrate screening determined that GADL1, unlike its name implies, has no detectable GAD activity, but it is able to efficiently catalyze decarboxylation of aspartate, cysteine sulfinic acid, and cysteic acid to β-alanine, hypotaurine, and taurine, respectively. Western blot analysis verified the presence of GADL1 in mouse muscles, kidneys, C2C12 myoblasts, and C2C12 myotubes. Incubation of the supernatant of fresh muscle or kidney extracts with cysteine sulfinic acid resulted in the detection of hypotaurine or taurine in the reaction mixtures, suggesting the possible involvement of GADL1 in taurine biosynthesis. However, when the tissue samples were incubated with aspartate, no β-alanine production was observed. We proposed several possibilities that might explain the inactivation of ADC activity of GADL1 in tissue protein extracts. Although β-alanine-producing activity was not detected in the supernatant of tissue protein extracts, its potential role in β-alanine synthesis cannot be excluded. There are several inhibitors of the ADC activity of GADL1 identified. The discovery of GADL1 biochemical activities, in conjunction with its expression and activities in muscles and kidneys, provides some tangible insight toward establishing its physiological function(s).

  6. Effects of immunization with natural and recombinant lysine decarboxylase on canine gingivitis development. (United States)

    Peters, Jennifer L; DeMars, Paul L; Collins, Lindsay M; Stoner, Julie A; Matsumoto, Hiroyuki; Komori, Naoka; Singh, Anil; Feasley, Christa L; Haddock, James A; Levine, Martin


    Periodontal disease, gingival inflammation (gingivitis) and periodontal attachment loss (periodontitis), causes tooth loss and susceptibility to chronic inflammation. Professionally scaling and cleaning the teeth regularly controls the disease, but is expensive in companion animals. Eikenella corrodens is common in canine oral cavities where it is a source of lysine decarboxylase (LDC). In human dental biofilms (plaques), LDC converts lysine to cadaverine and impairs the gingival epithelial barrier to bacteria. LDC vaccination may therefore retard gingivitis development. Year-old beagle dogs provided blood samples, and had weight and clinical measurements (biofilm and gingivitis) recorded. After scaling and cleaning, two dogs were immunized subcutaneously with 0.2mg native LDC from E. corrodens and 2 sets of four dogs with 0.2mg recombinant LDC purified from Escherichia coli. A third set of 4 dogs was immunized intranasally. Rehydragel(®), Emulsigen(®), Polygen™ or Carbigen™ were used as adjuvant. Four additional pairs of dogs were sham-immunized with each adjuvant alone (controls). Immunizations were repeated twice, 3 weeks apart, and clinical measurements were obtained after another 2 weeks, when the teeth were scaled and cleaned again. Tooth brushing was then stopped and the diet was changed from hard to soft chow. Clinical measurements were repeated after 1, 2, 3, 4, 6 and 8 weeks. Compared with sham-immunized dogs, gingivitis was reduced over all 8 weeks of soft diet after subcutaneous immunization with native LDC, or after intranasal immunization with recombinant LDC in Carbigen™, but for only 6 of the 8 weeks after subcutaneous immunization with recombinant LDC in Emulsigen(®) (repeated measures ANOVA). Subcutaneous vaccination induced a strong serum IgG antibody response that decreased during the soft diet period, whereas intranasal immunization induced a weak serum IgA antibody response that did not decrease. Immunization with recombinant LDC may

  7. Cloning of tomato (Lycopersicon esculentum Mill.) arginine decarboxylase gene and its expression during fruit ripening. (United States)

    Rastogi, R; Dulson, J; Rothstein, S J


    Arginine decarboxylase (ADC) is the first enzyme in one of the two pathways of putrescine biosynthesis in plants. The genes encoding ADC have previously been cloned from oat and Escherichia coli. Degenerate oligonucleotides corresponding to two conserved regions of ADC were used as primers in polymerase chain reaction amplification of tomato (Lycopersicon esculentum Mill.) genomic DNA, and a 1.05-kb fragment was obtained. This genomic DNA fragment encodes an open reading frame of 350 amino acids showing about 50% identity with the oat ADC protein. Using this fragment as a probe, we isolated several partial ADC cDNA clones from a tomato pericarp cDNA library. The 5' end of the coding region was subsequently obtained from a genomic clone containing the entire ADC gene. The tomato ADC gene contains an open reading frame encoding a polypeptide of 502 amino acids and a predicted molecular mass of about 55 kD. The predicted amino acid sequence exhibits 47 and 38% identify with oat and E. coli ADCs, respectively. Gel blot hybridization experiments show that, in tomato, ADC is encoded by a single gene and is expressed as a transcript of approximately 2.2 kb in the fruit pericarp and leaf tissues. During fruit ripening the amount of ADC transcript appeared to peak at the breaker stage. No significant differences were seen when steady-state ADC mRNA levels were compared between normal versus long-keeping Alcobaca (alc) fruit, although alc fruit contain elevated putrescine levels and ADC activity at the ripe stage. The lack of correlation between ADC activity and steady-state mRNA levels in alc fruit suggests a translational and/or posttranslational regulation of ADC gene expression during tomato fruit ripening.

  8. [Ornithine decarboxylase in mammalian organs and tissues at hibernation and artificial hypobiosis]. (United States)

    Logvinovich, O S; Aksenova, G E


    Ornithine decarboxylase (ODC, EC is a short-lived and dynamically regulated enzyme of polyamines biosynthesis. Regulation of functional, metabolic and proliferative state of organs and tissues involves the modifications of the ODC enzymatic activity. The organ-specific changes in ODC activity were revealed in organs and tissues (liver, spleen, bone marrow, kidney, and intestinal mucosa) of hibernating mammals - squirrels Spermophilus undulates - during the hibernating season. At that, a positive correlation was detected between the decline and recovery of the specialized functions of organs and tissues and the respective modifications of ODC activity during hibernation bouts. Investigation of changes in ODC activity in organs and tissues of non-hibernating mammals under artificial hypobiosis showed that in Wistar rats immediately after exposure to hypothermia-hypoxia-hypercapnia (hypobiosis) the level of ODC activity was low in thymus, spleen, small intestine mucosa, neocortex, and liver. The most marked reduction in enzyme activity was observed in actively proliferating tissues: thymus, spleen, small intestine mucosa. In bone marrow of squirrels, while in a state of torpor, as well as in thymus of rats after exposure to hypothermia-hypoxia-hypercapnia, changes in the ODC activity correlated with changes in the rate of cell proliferation (by the criterion of cells distribution over cell cycle). The results obtained, along with the critical analysis of published data, indicate that the ODC enzyme is involved in biochemical adaptation of mammals to natural and artificial hypobiosis. A decline in the ODC enzymatic activity indicates a decline in proliferative, functional, and metabolic activity of organs and tissues of mammals (bone marrow, mucosa of small intestine, thymus, spleen, neocortex, liver, kidneys) when entering the state of hypobiosis.

  9. A tyrosine decarboxylase catalyzes the initial reaction of the salidroside biosynthesis pathway in Rhodiola sachalinensis. (United States)

    Zhang, Ji-Xing; Ma, Lan-Qing; Yu, Han-Song; Zhang, Hong; Wang, Hao-Tian; Qin, Yun-Fei; Shi, Guang-Lu; Wang, You-Nian


    Salidroside, the 8-O-β-D-glucoside of tyrosol, is the main bioactive component of Rhodiola species and is found mainly in the plant roots. It is well known that glucosylation of tyrosol is the final step in the biosynthesis of salidroside; however, the biosynthetic pathway of tyrosol and its regulation are less well understood. A summary of the results of related studies revealed that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. In this study, a cDNA clone encoding tyrosine decarboxylase (TyrDC) was isolated from Rhodiola sachalinensis A. Bor using rapid amplification of cDNA ends. The resulting cDNA was designated RsTyrDC. RNA gel-blot analysis revealed that the predominant sites of expression in plants are the roots and high levels of transcripts are also found in callus tissue culture. Functional analysis revealed that tyrosine was best substrate of recombinant RsTyrDC. The over-expression of the sense-RsTyrDC resulted in a marked increase of tyrosol and salidroside content, but the levels of tyrosol and salidroside were 274 and 412%, respectively, lower in the antisense-RsTyrDC transformed lines than those in the controls. The data presented here provide in vitro and in vivo evidence that the RsTyrDC can regulate the tyrosol and salidroside biosynthesis, and the RsTyrDC is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. sachalinensis.

  10. [Catabolism of carnitine: products of carnitine decarboxylase and carnitine dehydrogenase in vivo]. (United States)

    Seim, H; Löster, H; Strack, E


    1) Rats and mice were given large oral or subcutaneous doses of (-)-L-, (+)-D- and DL-carnitine (5 mg/g body weight). The carnitine metabolites, beta-methylcholine and acetonyltrimethylammonium, were isolated from the urine by special methods, and determined as their characteristic derivatives (2,4-dinitrophenylhydrazone and butyric ester) by thin-layer chromatography or photometry. 2) beta-Methylcholine, the product of carnitine decarboxylase, was not excreted, even when animals were heavily dosed with both carnitine isomers, with or without starvation. 3) After the administration of (+)-D- and DL-carnitine, both species excreted acetonyltrimethylammonium, which is already known as the spontaneous decarboxylation product of dehydrocarnitine (product of carnitine dehydrogenase) in bacteria. Injection of 0.71 mmol (+)-D-carnitine resulted in the excretion of 5.0 mumol (average) acetonyltrimethylammonium per mouse during the 48 h post injection. Under the same conditions, rats produced up to 40 mumol acetonyltrimethylammonium. The ratio of excreted acetonyltrimethylammonium to injected (+)-D-carnitine depended on the method of administration and the dose. 4) Production of the pharmacologically active (+)-acetyl-L-beta-methylcholine is not to be expected, following high exogenous doses of (-)-L-carnitine or (-)-acetyl-L-carnitine. The chief metabolites are trimethylamine, trimethylamine oxide and gamma-butyrobetaine (this journal 361, 1059), and both the (-)-L-carnitine pool and exogenous (-)-L-carnitine are dehydrogenated or decarboxylated only to a very small extent, if at all. When DL-carnitine is used therapeutically, the formation of acetonyltrimethylammonium must be taken into account.

  11. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)


    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  12. Glutamic acid decarboxylase 65 autoantibody levels discriminate two subtypes of latent autoimmune diabetes in adults

    Institute of Scientific and Technical Information of China (English)

    李霞; 杨琳; 周智广; 黄干; 颜湘


    Objective To compare the clinical characteristics between type 2 diabetes mellitus (T2DM) and latent autoimmune diabetes in adults (LADA) with different titers of glutamic acid decarboxylase autoantibody (GADA) and to define the two distinct subtypes of LADA.Methods Sera of 750 patients with an initial diagnosis of T2DM from central south of China were screened for GADA using a radioligand assay. The distribution and frequency of GADA levels were described. Two hundred and ninety-five patients were divided into the T2DM group (n=233) and the LADA group (n=62) to compare the age of onset, body mass index, HbA1c, C-peptide, hypertension, dyslipidemia and chronic diabetic complications. Furthermore, LADA patients with different GADA titers were subdivided to analyze the same indexes as the above. Results The prevalence of LADA (defined as GADA≥0.05, namely GADA positive) was 9.7% in the 750 initially diagnosed type 2 diabetic patients. Compared with T2DM, LADA patients were younger at their ages of onset, had lower C-peptide and body mass index, and also had less cases with hypertension and with dyslipidemia. However, only patients with high titer of GADA had poorer beta cell functions and less diabetic complications compared to T2DM and low GADA titer of LADA patients. Patients with low GADA titer were similar to T2DM patients, except that they were prone to develop ketosis more frequently.Conclusions Two clinically distinct subtypes of LADA can be identified by GADA levels in patients initially-diagnosed as type 2 diabetes. Patients with high titer of GADA (GADA≥0.5) subsequently develop more insulin dependency, which are classified as LADA-type 1; while those with lower GADA titer (0.05≤GADA<0.5) and having clinical and metabolic phenotypes of type 2 diabetes are classified as LADA-type 2.

  13. Cloning of affecting pyruvate decarboxylase gene in the production bioethanol of agricultural waste in the E.coli bacteria

    Directory of Open Access Journals (Sweden)

    Masome Zeinali


    Full Text Available Introduction: Ethanol made by a biomass is one of the useful strategies in terms of economic and environmental and as a clean and safe energy to replace fossil fuels considered and examined. Materials and methods: In this study, key enzyme in the production of ethanol (Pyruvate decarboxylase from Zymomonas mobilis bacteria was isolated and cloned at E. coli bacteria by freeze and thaw method. For gene cloning, we used specific primers of pdc and PCR reaction and then pdc gene isolated and pET 28a plasmid double digested with (Sal I and Xho I enzymes. Digestion Products were ligated by T4 DNA ligase in 16 °C for 16 hours. Results: Results of bacteria culture showed that a few colonies containing pET 28a plasmid could grow. Result of colony pcr of pdc gene with specific primers revealed 1700 bp bands in 1% agarose gel electrophoresis. The results of PCR with T7 promotor forward primer and pdc revers primer have proved the accurate direction of integration of pdc gene into plasmid and revealed 1885 bp band. Double digestion of recombinant plasmid with SalI and XhoI enzymes revealed same bands. Finally, RT showed the expected band of 1700 bp that implies the desired gene expression in the samples. Discussion and conclusion: Due to the increased production of ethanol via pyruvate decarboxylase gene cloning in expression plasmids with a strong promoter upstream of the cloning site can conclude that, pyruvate decarboxylase cloning as a key gene would be useful and according to beneficial properties of E. coli bacteria, transfering the gene to bacteria appears to be reasonable.

  14. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen (United States)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.


    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  15. Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats. (United States)

    Shetty, A K; Turner, D A


    Aging leads to alterations in the function and plasticity of hippocampal circuitry in addition to behavioral changes. To identify critical alterations in the substrate for inhibitory circuitry as a function of aging, we evaluated the numbers of hippocampal interneurons that were positive for glutamic acid decarboxylase and those that expressed calcium-binding proteins (parvalbumin, calbindin, and calretinin) in young adult (4-5 months old) and aged (23-25 months old) male Fischer 344 rats. Both the overall interneuron population and specific subpopulations of interneurons demonstrated a commensurate decline in numbers throughout the hippocampus with aging. Interneurons positive for glutamic acid decarboxylase were significantly depleted in the stratum radiatum of CA1, the strata oriens, radiatum and pyramidale of CA3, the dentate molecular layer, and the dentate hilus. Parvalbumin interneurons showed significant reductions in the strata oriens and pyramidale of CA1, the stratum pyramidale of CA3, and the dentate hilus. The reductions in calbindin interneurons were more pronounced than other calcium-binding protein-positive interneurons and were highly significant in the strata oriens and radiatum of both CA1 and CA3 subfields and in the dentate hilus. Calretinin interneurons were decreased significantly in the strata oriens and radiatum of CA3, in the dentate granule cell and molecular layers, and in the dentate hilus. However, the relative ratio of parvalbumin-, calbindin-, and calretinin-positive interneurons compared with glutamic acid decarboxylase-positive interneurons remained constant with aging, suggesting actual loss of interneurons expressing calcium-binding proteins with age. This loss contrasts with the reported preservation of pyramidal neurons with aging in the hippocampus. Functional decreases in inhibitory drive throughout the hippocampus may occur due to this loss, particularly alterations in the processing of feed-forward information through the

  16. Anti glutamate-decarboxylase antibodies: a liaison between localisation related epilepsy, stiff-person syndrome and type-1 diabetes mellitus. (United States)

    Szűcs, Anna; Barcs, Gábor; Winkler, Gábor; Soós, Zsuzsanna; Folyovich, András; Kelemen, Anna; Várallyay, Péter; Kamondi, Anita


    We present two patients with partial epilepsy, type-1 diabetes and stiff person syndrome associated with high serum auto-antibody levels to glutamate-decarboxylase (anti-GAD). Both patients were or have suffered from additional autoimmune conditions. The presence of stiff person syndrome and elevated anti-GAD levels have to make clinicians look for additional autoimmune conditions including type-1 diabetes. On the other hand, the co-morbidity of partial epilepsy with autoimmune conditions in patients with elevated serum anti-GAD suggests an autoimmune mechanism of partial epilepsy in these cases.

  17. Functional conservation between members of an ancient duplicated transcription factor family, LSF/Grainyhead. (United States)

    Venkatesan, Kavitha; McManus, Heather R; Mello, Craig C; Smith, Temple F; Hansen, Ulla


    The LSF/Grainyhead transcription factor family is involved in many important biological processes, including cell cycle, cell growth and development. In order to investigate the evolutionary conservation of these biological roles, we have characterized two new family members in Caenorhabditis elegans and Xenopus laevis. The C.elegans member, Ce-GRH-1, groups with the Grainyhead subfamily, while the X.laevis member, Xl-LSF, groups with the LSF subfamily. Ce-GRH-1 binds DNA in a sequence-specific manner identical to that of Drosophila melanogaster Grainyhead. In addition, Ce-GRH-1 binds to sequences upstream of the C.elegans gene encoding aromatic L-amino-acid decarboxylase and genes involved in post-embryonic development, mab-5 and dbl-1. All three C.elegans genes are homologs of D.melanogaster Grainyhead-regulated genes. RNA-mediated interference of Ce-grh-1 results in embryonic lethality in worms, accompanied by soft, defective cuticles. These phenotypes are strikingly similar to those observed previously in D.melanogaster grainyhead mutants, suggesting conservation of the developmental role of these family members over the course of evolution. Our phylogenetic analysis of the expanded LSF/GRH family (including other previously unrecognized proteins/ESTs) suggests that the structural and functional dichotomy of this family dates back more than 700 million years, i.e. to the time when the first multicellular organisms are thought to have arisen.

  18. Freezing of Gait in Parkinson’s Disease Is Associated with Reduced 6-[18F]Fluoro-L-m-tyrosine Uptake in the Locus Coeruleus

    Directory of Open Access Journals (Sweden)

    Sayaka Asari Ono


    Full Text Available Freezing of gait (FOG is a common disorder in Parkinson’s disease (PD and could be attributed to a reduction in brain noradrenaline. The aim of this study was to determine the relationship between aromatic L-amino acid decarboxylase (AADC activity in the locus coeruleus (LC and FOG in PD using high-resolution positron emission tomography with an AADC tracer, 6-[18F]fluoro-L-m-tyrosine (FMT. We assessed 40 patients with PD and 11 age-matched healthy individuals. PD was diagnosed based on the UK Brain Bank criteria by two movement disorder experts. FOG was directly observed by the clinician and assessed using a patient questionnaire. FMT uptake in the LC, caudate, and putamen was analyzed using PMOD software on coregistered magnetic resonance images. FOG was present in 30 patients. The severity of FOG correlated with the decrease of FMT uptake in the LC regardless of disease duration and the severity of other motor impairments, indicating dysfunction of the noradrenergic network in FOG.

  19. Neurotoxin-Induced Catecholaminergic Loss in the Colonic Myenteric Plexus of Rhesus Monkeys (United States)

    Shultz, Jeanette M; Resnikoff, Henry; Bondarenko, Viktorya; Joers, Valerie; Mejia, Andres; Simmons, Heather; Emborg, Marina E


    Objective Constipation is a common non-motor symptom of Parkinson’s disease (PD). Although pathology of the enteric nervous system (ENS) has been associated with constipation in PD, the contribution of catecholaminergic neurodegeneration to this symptom is currently debated. The goal of this study was to assess the effects of the neurotoxin 6-hydroxydopamine (6-OHDA) on the colonic myenteric plexus and shed light on the role of catecholaminergic innervation in gastrointestinal (GI) function. Methods Proximal colon tissue from 6-OHDA-treated (n=5) and age-matched control (n=5) rhesus monkeys was immunostained and quantified using ImageJ software. All animals underwent routine daily feces monitoring to assess for constipation or other GI dysfunction. Results Quantification of tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC)-immunoreactivity (-ir) revealed significant reduction in myenteric ganglia of 6-OHDA-treated animals compared to controls (TH-ir: 87.8%, P30% days) soft stool or diarrhea in 2 of the 5 6-OHDA-treated animals and 0 of the 5 control animals during the 2 months prior to necropsy, with no animals exhibiting signs of constipation. Conclusion Systemic administration of 6-OHDA to rhesus monkeys significantly reduced catecholaminergic expression in the colonic myenteric plexus without inducing constipation. These findings support the concept that ENS catecholaminergic loss is not responsible for constipation in PD. PMID:28090391

  20. Increased gene expression of catecholamine-synthesizing enzymes in adrenal glands contributes to high circulating catecholamines in pigs with tachycardia-induced cardiomyopathy. (United States)

    Tomaszek, A; Kiczak, L; Bania, J; Paslawska, U; Zacharski, M; Janiszewski, A; Noszczyk-Nowak, A; Dziegiel, P; Kuropka, P; Ponikowski, P; Jankowska, E A


    High levels of circulating catecholamines have been established as fundamental pathophysiological elements of heart failure (HF). However, it is unclear whether the increased gene expression of catecholamine-synthesis enzymes in the adrenal glands contributes to these hormone abnormalities in large animal HF models. We analyzed the mRNA levels of catecholamine-synthesizing enzymes: tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AAAD), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) in adrenal glands of 18 pigs with chronic systolic non-ischaemic HF (tachycardia-induced cardiomyopathy due to right ventricle pacing) and 6 sham-operated controls. Pigs with severe HF demonstrated an increased expression of TH and DBH (but neither AAAD nor PNMT) as compared to animals with milder HF and controls (Padrenal mRNA expression of TH and DBH was accompanied by a reduced left ventricle ejection fraction (LVEF) (Padrenal mRNA expression of TH and DBH, and the high levels of circulating adrenaline and noradrenaline (all Padrenals to the circulating pool of catecholamines in subjects with systolic HF.

  1. A dopa decarboxylase modulating the immune response of scallop Chlamys farreri.

    Directory of Open Access Journals (Sweden)

    Zhi Zhou

    Full Text Available BACKGROUND: Dopa decarboxylase (DDC is a pyridoxal 5-phosphate (PLP-dependent enzyme that catalyzes the decarboxylation of L-Dopa to dopamine, and involved in complex neuroendocrine-immune regulatory network. The function for DDC in the immunomodulation remains unclear in invertebrate. METHODOLOGY: The full-length cDNA encoding DDC (designated CfDDC was cloned from mollusc scallop Chlamys farreri. It contained an open reading frame encoding a polypeptide of 560 amino acids. The CfDDC mRNA transcripts could be detected in all the tested tissues, including the immune tissues haemocytes and hepatopancreas. After scallops were treated with LPS stimulation, the mRNA expression level of CfDDC in haemocytes increased significantly (5.5-fold, P<0.05 at 3 h and reached the peak at 12 h (9.8-fold, P<0.05, and then recovered to the baseline level. The recombinant protein of CfDDC (rCfDDC was expressed in Escherichia coli BL21 (DE3-Transetta, and 1 mg rCfDDC could catalyze the production of 1.651±0.22 ng dopamine within 1 h in vitro. When the haemocytes were incubated with rCfDDC-coated agarose beads, the haemocyte encapsulation to the beads was increased significantly from 70% at 6 h to 93% at 24 h in vitro in comparison with that in the control (23% at 6 h to 25% at 24 h, and the increased haemocyte encapsulation was repressed by the addition of rCfDDC antibody (which is acquired via immunization 6-week old rats with rCfDDC. After the injection of DDC inhibitor methyldopa, the ROS level in haemocytes of scallops was decreased significantly to 0.41-fold (P<0.05 of blank group at 12 h and 0.47-fold (P<0.05 at 24 h, respectively. CONCLUSIONS: These results collectively suggested that CfDDC, as a homologue of DDC in scallop, modulated the immune responses such as haemocytes encapsulation as well as the ROS level through its catalytic activity, functioning as an indispensable immunomodulating enzyme in the neuroendocrine-immune regulatory network of mollusc.

  2. The UDP-glucuronate decarboxylase gene family in Populus: structure, expression, and association genetics.

    Directory of Open Access Journals (Sweden)

    Qingzhang Du

    Full Text Available In woody crop plants, the oligosaccharide components of the cell wall are essential for important traits such as bioenergy content, growth, and structural wood properties. UDP-glucuronate decarboxylase (UXS is a key enzyme in the synthesis of UDP-xylose for the formation of xylans during cell wall biosynthesis. Here, we isolated a multigene family of seven members (PtUXS1-7 encoding UXS from Populus tomentosa, the first investigation of UXSs in a tree species. Analysis of gene structure and phylogeny showed that the PtUXS family could be divided into three groups (PtUXS1/4, PtUXS2/5, and PtUXS3/6/7, consistent with the tissue-specific expression patterns of each PtUXS. We further evaluated the functional consequences of nucleotide polymorphisms in PtUXS1. In total, 243 single-nucleotide polymorphisms (SNPs were identified, with a high frequency of SNPs (1/18 bp and nucleotide diversity (πT = 0.01033, θw = 0.01280. Linkage disequilibrium (LD analysis showed that LD did not extend over the entire gene (r (2<0.1, P<0.001, within 700 bp. SNP- and haplotype-based association analysis showed that nine SNPs (Q <0.10 and 12 haplotypes (P<0.05 were significantly associated with growth and wood property traits in the association population (426 individuals, with 2.70% to 12.37% of the phenotypic variation explained. Four significant single-marker associations (Q <0.10 were validated in a linkage mapping population of 1200 individuals. Also, RNA transcript accumulation varies among genotypic classes of SNP10 was further confirmed in the association population. This is the first comprehensive study of the UXS gene family in woody plants, and lays the foundation for genetic improvements of wood properties and growth in trees using genetic engineering or marker-assisted breeding.

  3. Fatal malonyl CoA decarboxylase deficiency due to maternal uniparental isodisomy of the telomeric end of chromosome 16. (United States)

    Malvagia, S; Papi, L; Morrone, A; Donati, M A; Ciani, F; Pasquini, E; la Marca, G; Scholte, H R; Genuardi, M; Zammarchi, E


    Malonic aciduria is a rare autosomal recessive disorder caused by deficiency of malonyl-CoA decarboxylase, encoded by the MLYCD gene. We report on a patient with clinical presentation in the neonatal period. Metabolic investigations led to a diagnosis of malonyl-CoA decarboxylase deficiency, confirmed by decreased activity in cultured fibroblasts. High doses of carnitine and a diet low in lipids led to a reduction in malonic acid excretion, and to an improvement in his clinical conditions, but at the age of 4 months he died suddenly and unexpectedly. No autopsy was performed. Molecular analysis of the MLYCD gene performed on the proband's RNA and genomic DNA identified a previously undescribed mutation (c.772-775delACTG) which was homozygous. This mutation was present in his mother but not in his father; paternity was confirmed by microsatellite analysis. A hypothesis of maternal uniparental disomy (UPD) was investigated using fourteen microsatellite markers on chromosome 16, and the results confirmed maternal UPD. Maternal isodisomy of the 16q24 region led to homozygosity for the MLYCD mutant allele, causing the patient's disease. These findings are relevant for genetic counselling of couples with a previously affected child, since the recurrence risk in future pregnancies is dramatically reduced by the finding of UPD. In addition, since the patient had none of the clinical manifestations previously associated with maternal UPD 16, this case provides no support for the existence of maternally imprinted genes on chromosome 16 with a major effect on phenotype.

  4. Serotonin accumulation in transgenic rice by over-expressing tryptophan decarboxylase results in a dark brown phenotype and stunted growth. (United States)

    Kanjanaphachoat, Parawee; Wei, Bi-Yin; Lo, Shuen-Fang; Wang, I-Wen; Wang, Chang-Sheng; Yu, Su-May; Yen, Ming-Liang; Chiu, Sheng-Hsien; Lai, Chien-Chen; Chen, Liang-Jwu


    A mutant M47286 with a stunted growth, low fertility and dark-brown phenotype was identified from a T-DNA-tagged rice mutant library. This mutant contained a copy of the T-DNA tag inserted at the location where the expression of two putative tryptophan decarboxylase genes, TDC-1 and TDC-3, were activated. Enzymatic assays of both recombinant proteins showed tryptophan decarboxylase activities that converted tryptophan to tryptamine, which could be converted to serotonin by a constitutively expressed tryptamine 5' hydroxylase (T5H) in rice plants. Over-expression of TDC-1 and TDC-3 in transgenic rice recapitulated the stunted growth, darkbrown phenotype and resulted in a low fertility similar to M47286. The degree of stunted growth and dark-brown color was proportional to the expression levels of TDC-1 and TDC-3. The levels of tryptamine and serotonin accumulation in these transgenic rice lines were also directly correlated with the expression levels of TDC-1 and TDC-3. A mass spectrometry assay demonstrated that the darkbrown leaves and hulls in the TDC-overexpressing transgenic rice were caused by the accumulation of serotonin dimer and that the stunted growth and low fertility were also caused by the accumulation of serotonin and serotonin dimer, but not tryptamine. These results represent the first evidence that over-expression of TDC results in stunted growth, low fertility and the accumulation of serotonin, which when converted to serotonin dimer, leads to a dark brown plant color.

  5. Biogenic Amine Degradation by Bacillus Species Isolated from Traditional Fermented Soybean Food and Detection of Decarboxylase-Related Genes. (United States)

    Eom, Jeong Seon; Seo, Bo Young; Choi, Hye Sun


    Biogenic amines in some food products present considerable toxicological risks as potential human carcinogens when consumed in excess concentrations. In this study, we investigated the degradation of the biogenic amines histamine and tyramine and the presence of genes encoding histidine and tyrosine decarboxylases and amine oxidase in Bacillus species isolated from fermented soybean food. No expression of histidine and tyrosine decarboxylase genes (hdc and tydc) were detected in the Bacillus species isolated (B. subtilis HJ0-6, B. subtilis D'J53-4, and B. idriensis RD13-10), although substantial levels of amine oxidase gene (yobN) expression were observed. We also found that the three selected strains, as non-biogenic amineproducing bacteria, were significantly able to degrade the biogenic amines histamine and tyramine. These results indicated that the selected Bacillus species could be used as a starter culture for the control of biogenic amine accumulation and degradation in food. Our study findings also provided the basis for the development of potential biological control agents against these biogenic amines for use in the food preservation and food safety sectors.

  6. Generating knock-in parasites: integration of an ornithine decarboxylase transgene into its chromosomal locus in Leishmania donovani. (United States)

    Roberts, Sigrid C; Kline, Chelsey; Liu, Wei; Ullman, Buddy


    Leishmania null mutants created by targeted gene replacement are typically complemented with chimeric episomes harboring the replaced gene in order to validate that the observed phenotype is due to the specific gene deletion. However, the current inventory of available episomes for complementation of genetic lesions in Leishmania is unstable in the absence of drug selection, and levels of gene expression cannot be controlled, especially in vivo. To circumvent this impediment, a strategy to re-introduce the targeted gene into the original chromosomal locus to generate "knock-in" parasites within selectable null backgrounds has been developed. A genomic fragment encompassing the ornithine decarboxylase locus and lacking heterologous DNA sequences was transfected into ornithine decarboxylase-deficient Leishmania donovani. The construct randomly integrated into either chromosomal allele by homologous recombination restoring polyamine prototrophy and revealing that LdODC was functionally expressed in the knock-in clones. This strategy offers a mechanism for complementing a genetic lesion amenable to positive selection in a manner that facilitates stable gene expression from its original locus in the absence of continuous drug pressure.

  7. Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase from Enterobacter sp. Px6-4.

    Directory of Open Access Journals (Sweden)

    Wen Gu

    Full Text Available Microbial ferulic acid decarboxylase (FADase catalyzes the transformation of ferulic acid to 4-hydroxy-3-methoxystyrene (4-vinylguaiacol via non-oxidative decarboxylation. Here we report the crystal structures of the Enterobacter sp. Px6-4 FADase and the enzyme in complex with substrate analogues. Our analyses revealed that FADase possessed a half-opened bottom β-barrel with the catalytic pocket located between the middle of the core β-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD superfamily. Structural analysis revealed that FADase catalyzed reactions by an "open-closed" mechanism involving a pocket of 8 × 8 × 15 Å dimension on the surface of the enzyme. The active pocket could directly contact the solvent and allow the substrate to enter when induced by substrate analogues. Site-directed mutagenesis showed that the E134A mutation decreased the enzyme activity by more than 60%, and Y21A and Y27A mutations abolished the enzyme activity completely. The combined structural and mutagenesis results suggest that during decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer.

  8. Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution. (United States)

    Zik, M; Arazi, T; Snedden, W A; Fromm, H


    The nucleotide sequences of cDNAs encoding two isoforms of Arabidopsis glutamate decarboxylase, designated GAD1 (57.1 kDa) and GAD2 (56.1 kDa) and sharing 82% identical amino acid sequences, were determined. The recombinant proteins bound [35S] calmodulin (CaM) in the presence of calcium, and a region of 30-32 amino acids from the C-terminal of each isoform was sufficient for CaM binding when fused to glutathione S-transferase. Full-length GAD1 and GAD2 were expressed in Sf9 insect cells infected with recombinant baculovirus vectors. Recombinant proteins were partially purified by CaM affinity chromatography and were found to exhibit glutamate decarboxylase activity, which was dependent on the presence of Ca2+/CaM at pH 7.3. Southern hybridizations with GAD gene-specific probes suggest that Arabidopsis possesses one gene related to GAD1 and one to GAD2. Northern hybridization and western blot analysis revealed that GAD1 was expressed only in roots and GAD2 in roots, leaves, inflorescence stems and flowers. Our study provides the first evidence for the occurrence of multiple functional Ca2+/CaM-regulated GAD gene products in a single plant, suggesting that regulation of Arabidopsis GAD activity involves modulation of isoform-specific gene expression and stimulation of the catalytic activity of GAD by calcium signalling via CaM.

  9. Consistency of polyamine profiles and expression of arginine decarboxylase in mitosis during zygotic embryogenesis of Scots pine. (United States)

    Vuosku, Jaana; Jokela, Anne; Läärä, Esa; Sääskilahti, Mira; Muilu, Riina; Sutela, Suvi; Altabella, Teresa; Sarjala, Tytti; Häggman, Hely


    In this study, we show that both arginine decarboxylase (ADC) protein and mRNA transcript are present at different phases of mitosis in Scots pine (Pinus sylvestris) zygotic embryogenesis. We also examined the consistency of polyamine (PA) profiles with the effective temperature sum, the latter indicating the developmental stage of the embryos. PA metabolism was analyzed by fitting statistical regression models to the data of free and soluble conjugated PAs, to the enzyme activities of ADC and ornithine decarboxylase (ODC), as well as to the gene expression of ADC. According to the fitted models, PAs typically had the tendency to increase at the early stages but decrease at the late stages of embryogenesis. Only the free putrescine fraction remained stable during embryo development. The PA biosynthesis strongly preferred the ADC pathway. Both ADC gene expression and ADC enzyme activity were substantially higher than putative ODC gene expression or ODC enzyme activity, respectively. ADC gene expression and enzyme activity increased during embryogenesis, which suggests the involvement of transcriptional regulation in the expression of ADC. Both ADC mRNA and ADC protein localized in dividing cells of embryo meristems and more specifically within the mitotic spindle apparatus and close to the chromosomes, respectively. The results suggest the essential role of ADC in the mitosis of plant cells.

  10. Glutamic acid decarboxylase autoantibody-positivity post-partum is associated with impaired β-cell function in women with gestational diabetes mellitus

    DEFF Research Database (Denmark)

    Lundberg, T. P.; Højlund, K.; Snogdal, L. S.;


    AIMS: To investigate whether the presence of glutamic acid decarboxylase (GAD) autoantibodies post-partum in women with prior gestational diabetes mellitus was associated with changes in metabolic characteristics, including β-cell function and insulin sensitivity. METHODS: During 1997-2010, 407...

  11. 4-Amidinoindan-1-one 2'-amidinohydrazone (CGP 48664A) exerts in vitro growth inhibitory effects that are not only related to S-adenosylmethionine decarboxylase (SAMdc) inhibition

    NARCIS (Netherlands)

    Dorhout, B; Odink, MFG; deHoog, E; Kingma, AW; vanderVeer, E; Muskiet, FAJ


    The competitive S-adenosylmethionine decarboxylase (SAMdc; EC inhibitor 4-amidinoindan-1-one 2'-amidinohydrazone (CGP 48664A) inhibits growth more effectively than the irreversible SAMdc inhibitor 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (AbeAdo), while having similar effe

  12. Physiological relation between respiration activity and heterologous expression of selected benzoylformate decarboxylase variants in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Pohl Martina


    Full Text Available Abstract Background The benzoylformate decarboxylase (BFD from Pseudomonas putida is a biotechnologically interesting biocatalyst. It catalyses the formation of chiral 2-hydroxy ketones, which are important building blocks for stereoselective syntheses. To optimise the enzyme function often the amino acid composition is modified to improve the performance of the enzyme. So far it was assumed that a relatively small modification of the amino acid composition of a protein does not significantly influence the level of expression or media requirements. To determine, which effects these modifications might have on cultivation and product formation, six different BFD-variants with one or two altered amino acids and the wild type BFD were expressed in Escherichia coli SG13009 pKK233-2. The oxygen transfer rate (OTR as parameter for growth and metabolic activity of the different E. coli clones was monitored on-line in LB, TB and modified PanG mineral medium with the Respiratory Activity MOnitoring System (RAMOS. Results Although the E. coli clones were genetically nearly identical, the kinetics of their metabolic activity surprisingly differed in the standard media applied. Three different types of OTR curves could be distinguished. Whereas the first type (clones expressing Leu476Pro-Ser181Thr or Leu476Pro had typical OTR curves, the second type (clones expressing the wild type BFD, Ser181Thr or His281Ala showed an early drop of OTR in LB and TB medium and a drastically reduced maximum OTR in modified PanG mineral medium. The third type (clone expressing Leu476Gln behaved variable. Depending on the cultivation conditions, its OTR curve was similar to the first or the second type. It was shown, that the kinetics of the metabolic activity of the first type depended on the concentration of thiamine, which is a cofactor of BFD, in the medium. It was demonstrated that the cofactor binding strength of the different BFD-variants correlated with the differences

  13. Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase

    DEFF Research Database (Denmark)

    Chen, Yun; Zhang, Yiming; Siewers, Verena


    Saccharomyces cerevisiae, acetyl-CoA is compartmentalized in the cytosol, mitochondrion, peroxisome and nucleus, and cannot be directly transported between these compartments. With the acetyl-carnitine or glyoxylate shuttle, acetyl-CoA produced in peroxisomes or the cytoplasm can be transported......Acetyl-coenzyme A (acetyl-CoA) is not only an essential intermediate in central carbon metabolism, but also an important precursor metabolite for native or engineered pathways that can produce many products of commercial interest such as pharmaceuticals, chemicals or biofuels. In the yeast...... into the cytoplasm or the mitochondria. However, whether acetyl-CoA generated in the mitochondria can be exported to the cytoplasm is still unclear. Here, we investigated whether the transfer of acetyl-CoA from the mitochondria to the cytoplasm can occur using a pyruvate decarboxylase negative, non...

  14. Structure of lpg0406, a carboxymuconolactone decarboxylase family protein possibly involved in antioxidative response from Legionella pneumophila. (United States)

    Chen, Xiaofang; Hu, Yanjin; Yang, Bo; Gong, Xiaojian; Zhang, Nannan; Niu, Liwen; Wu, Yun; Ge, Honghua


    Lpg0406, a hypothetical protein from Legionella pneumophila, belongs to carboxymuconolactone decarboxylase (CMD) family. We determined the crystal structure of lpg0406 both in its apo and reduced form. The structures reveal that lpg0406 forms a hexamer and have disulfide exchange properties. The protein has an all-helical fold with a conserved thioredoxin-like active site CXXC motif and a proton relay system similar to that of alkylhydroperoxidase from Mycobacterium tuberculosis (MtAhpD), suggesting that lpg0406 might function as an enzyme with peroxidase activity and involved in antioxidant defense. A comparison of the size and the surface topology of the putative substrate-binding region between lpg0406 and MtAhpD indicates that the two enzymes accommodate the different substrate preferences. The structural findings will enhance understanding of the CMD family protein structure and its various functions.

  15. Amino acids allosterically regulate the thiamine diphosphate-dependent alpha-keto acid decarboxylase from Mycobacterium tuberculosis. (United States)

    Werther, Tobias; Spinka, Michael; Tittmann, Kai; Schütz, Anja; Golbik, Ralph; Mrestani-Klaus, Carmen; Hübner, Gerhard; König, Stephan


    The gene rv0853c from Mycobacterium tuberculosis strain H37Rv codes for a thiamine diphosphate-dependent alpha-keto acid decarboxylase (MtKDC), an enzyme involved in the amino acid degradation via the Ehrlich pathway. Steady state kinetic experiments were performed to determine the substrate specificity of MtKDC. The mycobacterial enzyme was found to convert a broad spectrum of branched-chain and aromatic alpha-keto acids. Stopped-flow kinetics showed that MtKDC is allosterically activated by alpha-keto acids. Even more, we demonstrate that also amino acids are potent activators of this thiamine diphosphate-dependent enzyme. Thus, metabolic flow through the Ehrlich pathway can be directly regulated at the decarboxylation step. The influence of amino acids on MtKDC catalysis was investigated, and implications for other thiamine diphosphate-dependent enzymes are discussed.

  16. Inhibition of Morganella morganii Histidine Decarboxylase Activity and Histamine Accumulation in Mackerel Muscle Derived from Filipendula ulumaria Extracts. (United States)

    Nitta, Yoko; Yasukata, Fumiko; Kitamoto, Noritoshi; Ito, Mikiko; Sakaue, Motoyoshi; Kikuzaki, Hiroe; Ueno, Hiroshi


    Filipendula ulmaria, also known as meadowsweet, is an herb; its extract was examined for the prevention of histamine production, primarily that caused by contaminated fish. The efficacy of meadowsweet was assessed using two parameters: inhibition of Morganella morganii histidine decarboxylase (HDC) and inhibition of histamine accumulation in mackerel. Ellagitannins from F. ulmaria (rugosin D, rugosin A methyl ester, tellimagrandin II, and rugosin A) were previously shown to be potent inhibitors of human HDC; and in the present work, these compounds inhibited M. morganii HDC, with half maximal inhibitory concentration values of 1.5, 4.4, 6.1, and 6.8 μM, respectively. Application of the extracts (at 2 wt%) to mackerel meat yielded significantly decreased histamine accumulation compared with treatment with phosphate-buffered saline as a control. Hence, F. ulmaria exhibits inhibitory activity against bacterial HDC and might be effective for preventing food poisoning caused by histamine.

  17. The first step in the biosynthesis of cocaine in Erythroxylum coca: the characterization of arginine and ornithine decarboxylases. (United States)

    Docimo, Teresa; Reichelt, Michael; Schneider, Bernd; Kai, Marco; Kunert, Grit; Gershenzon, Jonathan; D'Auria, John C


    Despite the long history of cocaine use among humans and its social and economic significance today, little information is available about the biochemical and molecular aspects of cocaine biosynthesis in coca (Erythroxylum coca) in comparison to what is known about the formation of other pharmacologically-important tropane alkaloids in species of the Solanaceae. In this work, we investigated the site of cocaine biosynthesis in E. coca and the nature of the first step. The two principal tropane alkaloids of E. coca, cocaine and cinnamoyl cocaine, were present in highest concentrations in buds and rolled leaves. These are also the organs in which the rate of alkaloid biosynthesis was the highest based on the incorporation of ¹³CO₂. In contrast, tropane alkaloids in the Solanaceae are biosynthesized in the roots and translocated to the leaves. A collection of EST sequences from a cDNA library made from young E. coca leaves was employed to search for genes encoding the first step in tropane alkaloid biosynthesis. Full-length cDNA clones were identified encoding two candidate enzymes, ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), and the enzymatic activities of the corresponding proteins confirmed by heterologous expression in E. coli and complementation of a yeast mutant. The transcript levels of both ODC and ADC genes were highest in buds and rolled leaves and lower in other organs. The levels of both ornithine and arginine themselves showed a similar pattern, so it was not possible to assign a preferential role in cocaine biosynthesis to one of these proteins.

  18. Engineering salidroside biosynthetic pathway in hairy root cultures of Rhodiola crenulata based on metabolic characterization of tyrosine decarboxylase.

    Directory of Open Access Journals (Sweden)

    Xiaozhong Lan

    Full Text Available Tyrosine decarboxylase initializes salidroside biosynthesis. Metabolic characterization of tyrosine decarboxylase gene from Rhodiola crenulata (RcTYDC revealed that it played an important role in salidroside biosynthesis. Recombinant 53 kDa RcTYDC converted tyrosine into tyramine. RcTYDC gene expression was induced coordinately with the expression of RcUDPGT (the last gene involved in salidroside biosynthesis in SA/MeJA treatment; the expression of RcTYDC and RcUDPGT was dramatically upregulated by SA, respectively 49 folds and 36 folds compared with control. MeJA also significantly increased the expression of RcTYDC and RcUDPGT in hairy root cultures. The tissue profile of RcTYDC and RcUDPGT was highly similar: highest expression levels found in stems, higher expression levels in leaves than in flowers and roots. The gene expressing levels were consistent with the salidroside accumulation levels. This strongly suggested that RcTYDC played an important role in salidroside biosynthesis in R. crenulata. Finally, RcTYDC was used to engineering salidroside biosynthetic pathway in R. crenulata hairy roots via metabolic engineering strategy of overexpression. All the transgenic lines showed much higher expression levels of RcTYDC than non-transgenic one. The transgenic lines produced tyramine, tyrosol and salidroside at higher levels, which were respectively 3.21-6.84, 1.50-2.19 and 1.27-3.47 folds compared with the corresponding compound in non-transgenic lines. In conclusion, RcTYDC overexpression promoted tyramine biosynthesis that facilitated more metabolic flux flowing toward the downstream pathway and as a result, the intermediate tyrosol was accumulated more that led to the increased production of the end-product salidroside.

  19. Structure-function relations in oxaloacetate decarboxylase complex. Fluorescence and infrared approaches to monitor oxomalonate and Na(+ binding effect.

    Directory of Open Access Journals (Sweden)

    Thierry Granjon

    Full Text Available BACKGROUND: Oxaloacetate decarboxylase (OAD is a member of the Na(+ transport decarboxylase enzyme family found exclusively in anaerobic bacteria. OAD of Vibrio cholerae catalyses a key step in citrate fermentation, converting the chemical energy of the decarboxylation reaction into an electrochemical gradient of Na(+ ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of alpha, beta and gamma subunits. The alpha subunit contains the carboxyltransferase catalytic site. METHODOLOGY/PRINCIPAL FINDINGS: In this report, spectroscopic techniques were used to probe oxomalonate (a competitive inhibitor of OAD with respect to oxaloacetate and Na(+ effects on the enzyme tryptophan environment and on the secondary structure of the OAD complex, as well as the importance of each subunit in the catalytic mechanism. An intrinsic fluorescence approach, Red Edge Excitation Shift (REES, indicated that solvent molecule mobility in the vicinity of OAD tryptophans was more restricted in the presence of oxomalonate. It also demonstrated that, although the structure of OAD is sensitive to the presence of NaCl, oxomalonate was able to bind to the enzyme even in the absence of Na(+. REES changes due to oxomalonate binding were also observed with the alphagamma and alpha subunits. Infrared spectra showed that OAD, alphagamma and alpha subunits have a main component band centered between 1655 and 1650 cm(-1 characteristic of a high content of alpha helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of beta sheet structures and a concomitant increase of alpha helix structures. Oxomalonate binding to alphagamma and alpha subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. CONCLUSION: Oxomalonate binding affects the

  20. Anti-Glutamic Acid Decarboxylase Antibody-Associated Ataxia as an Extrahepatic Autoimmune Manifestation of Hepatitis C Infection: A Case Report

    Directory of Open Access Journals (Sweden)

    Amer Awad


    Full Text Available Extrahepatic immunological manifestations of hepatitis C virus (HCV are well described. In addition, antiglutamic acid decarboxylase (GAD antibody-associated cerebellar ataxia is well-established entity. However, there have been no reports in the literature of anti-GAD antibody-associated ataxia as an extrahepatic manifestation of HCV infection. We report the case of a young woman with chronic hepatitis C virus and multiple extrahepatic autoimmune diseases including Sjögren syndrome and pernicious anemia who presented with subacute midline cerebellar syndrome and was found to have positive antiglutamic acid decarboxylase (GAD antibody in the serum and cerebrospinal fluid. An extensive diagnostic workup to rule out neoplastic growths was negative, suggesting the diagnosis of nonparaneoplastic antiglutamic acid decarboxylase antibody-associated cerebellar ataxia as an additional extrahepatic manifestation of hepatitis C virus infection. The patient failed to respond to high-dose steroids and intravenous immunoglobulin. Treatment with the monoclonal antibody rituximab stabilized the disease. We postulate that anti-GAD associated ataxia could be an extrahepatic manifestation of HCV infection.

  1. Anti-glutamic Acid decarboxylase antibody-associated ataxia as an extrahepatic autoimmune manifestation of hepatitis C infection: a case report. (United States)

    Awad, Amer; Stüve, Olaf; Mayo, Marlyn; Alkawadri, Rafeed; Estephan, Bachir


    Extrahepatic immunological manifestations of hepatitis C virus (HCV) are well described. In addition, antiglutamic acid decarboxylase (GAD) antibody-associated cerebellar ataxia is well-established entity. However, there have been no reports in the literature of anti-GAD antibody-associated ataxia as an extrahepatic manifestation of HCV infection. We report the case of a young woman with chronic hepatitis C virus and multiple extrahepatic autoimmune diseases including Sjögren syndrome and pernicious anemia who presented with subacute midline cerebellar syndrome and was found to have positive antiglutamic acid decarboxylase (GAD) antibody in the serum and cerebrospinal fluid. An extensive diagnostic workup to rule out neoplastic growths was negative, suggesting the diagnosis of nonparaneoplastic antiglutamic acid decarboxylase antibody-associated cerebellar ataxia as an additional extrahepatic manifestation of hepatitis C virus infection. The patient failed to respond to high-dose steroids and intravenous immunoglobulin. Treatment with the monoclonal antibody rituximab stabilized the disease. We postulate that anti-GAD associated ataxia could be an extrahepatic manifestation of HCV infection.

  2. Pharmacotherapy of Parkinson’s disease:Progress or regress?

    Directory of Open Access Journals (Sweden)

    Karolina Pytka


    Full Text Available Parkinson’s disease (PD is a chronic, progressive disease of the central nervous system (CNS,characterized by a slow loss of dopaminergic neurons in the substantia nigra, leading to significantdecrease in dopamine (DA levels in the striatum. Currently used drugs, such as levodopa(L-DOPA, amantadine, dopamine agonists (D or anticholinergic drugs, are not effective enough,and do not eliminate the causes of disease. Many research centers are conducting researchon new forms of currently used drugs (e.g. Duodopa, XP21279, IPX066, new drugs of alreadyknown groups (e.g. safinamide, medicines that suppress side effects of L-DOPA (e.g. AFQ056,fipamezole, and, finally, compounds with a novel mechanism of action (e.g. PMY50028, A2Areceptor antagonists. A lot of scientific reports indicate an important role of A2A receptorsin the regulation of the central movement system, so a new group of compounds – selectiveantagonists of A2A receptors (e.g. istradefylline, preladenant, SYN115 – has been developed and their potential use in PD has been examined. Clinical studies of A2A receptor antagonistshave shown that this group of compounds can shorten off periods and at the same time theydo not worsen dyskinesias in patients with PD. Moreover, there is ongoing research on newforms of treatment, such as gene therapy. Attempts to apply the viral vector AAV-2, whichwill be able to infect neurons with a variety of genes, including the gene of glutamate decarboxylase(GAD, neurturin (NTN, or aromatic L-amino acid decarboxylase, are currently beingcarried out. The results of phase I and II clinical studies showed some efficacy of this form oftreatment, but the method requires further studies. An analysis of potential future therapiesof Parkinson’s disease suggests that some progress in this field has been made.

  3. Active site binding modes of inhibitors of Staphylococcus aureus mevalonate diphosphate decarboxylase from docking and molecular dynamics simulations. (United States)

    Addo, James K; Skaff, D Andrew; Miziorko, Henry M


    Bacterial mevalonate diphosphate decarboxylase (MDD) is an attractive therapeutic target for antibacterial drug development. In this work, we discuss a combined docking and molecular dynamics strategy toward inhibitor binding to bacterial MDD. The docking parameters utilized in this study were first validated with observations for the inhibitors 6-fluoromevalonate diphosphate (FMVAPP) and diphosphoglycolylproline (DPGP) using existing structures for the Staphylococcus epidermidis enzyme. The validated docking protocol was then used to predict structures of the inhibitors bound to Staphylococcus aureus MDD using the unliganded crystal structure of Staphylococcus aureus MDD. We also investigated a possible interactions improvement by combining this docking method with molecular dynamics simulations. Thus, the predicted docking structures were analyzed in a molecular dynamics trajectory to generate dynamic models and reinforce the predicted binding modes. FMVAPP is predicted to make more extensive contacts with S. aureus MDD, forming stable hydrogen bonds with Arg144, Arg193, Lys21, Ser107, and Tyr18, as well as making stable hydrophobic interactions with Tyr18, Trp19, and Met196. The differences in predicted binding are supported by experimentally determined Ki values of 0.23 ± 0.02 and 34 ± 8 μM, for FMVAPP and DPGP, respectively. The structural information coupled with the kinetic characterization obtained from this study should be useful in defining the requirements for inhibition as well as in guiding the selection of active compounds for inhibitor optimization.

  4. Cloning and molecular characterization of an ornithine decarboxylase gene and its expression during embryonic development of the housefly, Musca domestica. (United States)

    Toutges, Michelle J; Santoso, Adi


    We are interested in identifying targets that may be used to develop new control products for the common housefly, Musca domestica, a vector of disease for many vertebrates. One such target, ornithine decarboxylase (ODC), is an embryonic enzyme involved in the regulation of polyamines and is a critical enzyme during M. domestica development. In this study, the cDNA for ODC from M. domestica was cloned, sequenced, and characterized. The full-length cDNA was 1,337-bp, consistent with a single band of approximately 1.35 kb obtained by northern analysis. The open-reading frame contains 1,191 bp, yielding a deduced polypeptide of 396 amino acid residues with a predicted mass of 44,618 Da. The deduced M. domestica ODC protein was homologous to other ODC proteins. mRNA expression profiles analyzed by real-time PCR indicated that the ODC transcript is temporally regulated throughout embryogenesis. Sequence data and Southern blot analysis suggests that there were likely only one or two closely linked copies of the M. domestica ODC gene.

  5. Real-Time kinetic studies of Bacillus subtilis oxalate decarboxylase and Ceriporiopsis subvermispora oxalate oxidase using a luminescent oxygen sensor

    Directory of Open Access Journals (Sweden)

    Laura Molina


    Full Text Available Oxalate decarboxylase (OxDC, an enzyme of the bicupinsuperfamily, catalyzes the decomposition of oxalate into carbondioxide and formate at an optimal pH of 4.3 in the presence ofoxygen. However, about 0.2% of all reactions occur through anoxidase mechanism that consumes oxygen while producing twoequivalents of carbon dioxide and one equivalent of hydrogenperoxide. The kinetics of oxidase activity were studied bymeasuring the consumption of dissolved oxygen over time using a luminescent oxygen sensor. We describe the implementation of and improvements to the oxygen consumption assay. The oxidase activity of wild type OxDC was compared to that of the T165V OxDC mutant, which contains an impaired flexible loop covering the active site. The effects of various carboxylic acid-based buffers on the rate of oxidase activity were also studied. These results were compared to the oxidase activity of oxalate oxidase (OxOx, a similar bicupin enzyme that only carries out oxalate oxidation. Thetemperature dependence of oxidase activity was analyzed, andpreliminary results offer an estimate for the overall activationenergy of the oxidase reaction within OxDC. The data reported here thus provide insights into the mechanism of the oxidase activity of OxDC.

  6. The krebs cycle enzyme α-ketoglutarate decarboxylase is an essential glycosomal protein in bloodstream African trypanosomes. (United States)

    Sykes, Steven; Szempruch, Anthony; Hajduk, Stephen


    α-Ketoglutarate decarboxylase (α-KDE1) is a Krebs cycle enzyme found in the mitochondrion of the procyclic form (PF) of Trypanosoma brucei. The bloodstream form (BF) of T. brucei lacks a functional Krebs cycle and relies exclusively on glycolysis for ATP production. Despite the lack of a functional Krebs cycle, α-KDE1 was expressed in BF T. brucei and RNA interference knockdown of α-KDE1 mRNA resulted in rapid growth arrest and killing. Cell death was preceded by progressive swelling of the flagellar pocket as a consequence of recruitment of both flagellar and plasma membranes into the pocket. BF T. brucei expressing an epitope-tagged copy of α-KDE1 showed localization to glycosomes and not the mitochondrion. We used a cell line transfected with a reporter construct containing the N-terminal sequence of α-KDE1 fused to green fluorescent protein to examine the requirements for glycosome targeting. We found that the N-terminal 18 amino acids of α-KDE1 contain overlapping mitochondrion- and peroxisome-targeting sequences and are sufficient to direct localization to the glycosome in BF T. brucei. These results suggest that α-KDE1 has a novel moonlighting function outside the mitochondrion in BF T. brucei.

  7. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available Glutamate decarboxylase (GAD catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA. In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C. Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C, superior thermostability (2.8-fold greater than that of GAD-C, and higher kcat/Km (1.6-fold higher than that of GAD-C. Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA.

  8. Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea. (United States)

    Eram, Mohammad S; Wong, Alton; Oduaran, Erica; Ma, Kesen


    Hyperthermophilic bacteria Thermotoga maritima and Thermotoga hypogea produce ethanol as a metabolic end product, which is resulted from acetaldehyde reduction catalysed by an alcohol dehydrogenase (ADH). However, the enzyme that is involved in the production of acetaldehyde from pyruvate is not well characterized. An oxygen sensitive and coenzyme A-dependent pyruvate decarboxylase (PDC) activity was found to be present in cell free extracts of T. maritima and T. hypogea. Both enzymes were purified and found to have pyruvate ferredoxin oxidoreductase (POR) activity, indicating their bifunctionality. Both PDC and POR activities from each of the purified enzymes were characterized in regards to their optimal assay conditions including pH dependency, oxygen sensitivity, thermal stability, temperature dependency and kinetic parameters. The close relatedness of the PORs that was shown by sequence analysis could be an indication of the presence of such bifunctionality in other hyperthermophilic bacteria. This is the first report of a bifunctional PDC/POR enzyme in hyperthermophilic bacteria. The PDC and the previously reported ADHs are most likely the key enzymes catalysing the production of ethanol from pyruvate in bacterial hyperthermophiles.

  9. Enhanced production of recombinant Escherichia coli glutamate decarboxylase through optimization of induction strategy and addition of pyridoxine. (United States)

    Su, Lingqia; Huang, Yan; Wu, Jing


    This report describes the optimization of recombinant Escherichia coli glutamate decarboxylase (GAD) production from engineered E. coli BL21(DE3) in a 3-L fermentor. Investigation of different induction strategies revealed that induction was optimal when the temperature was maintained at 30°C, the inducer (lactose) was fed at a rate of 0.2 g L(-1)h(-1), and protein expression was induced when the cell density (OD600) reached 50. Under these conditions, the GAD activity of 1273.8 U mL(-1) was achieved. Because GAD is a pyridoxal 5'-phosphate (PLP)-dependent enzyme, the effect of supplementing the medium with pyridoxine hydrochloride (PN), a cheap and stable PLP precursor, on GAD production was also investigated. When the culture medium was supplemented with PN to a concentration of 2mM at the initiation of protein expression, and then again 10h later, the GAD activity reached 3193.4 U mL(-1), which represented the highest GAD production ever reported.

  10. Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Shuhei Noda

    Full Text Available To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC, which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.

  11. QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling. (United States)

    Li, Jiazhong; Lei, Beilei; Liu, Huanxiang; Li, Shuyan; Yao, Xiaojun; Liu, Mancang; Gramatica, Paola


    Quantitative structure-activity relationship (QSAR) of a series of structural diverse malonyl-CoA decarboxylase (MCD) inhibitors have been investigated by using the predictive single model as well as the consensus analysis based on a new strategy proposed by us. Self-organizing map (SOM) neural network was employed to divide the whole data set into representative training set and test set. Then a multiple linear regressions (MLR) model population was built based on the theoretical molecular descriptors selected by Genetic Algorithm using the training set. In order to analyze the diversity of these models, multidimensional scaling (MDS) was employed to explore the model space based on the Hamming distance matrix calculated from each two models. In this space, Q(2) (cross-validated R(2)) guided model selection (QGMS) strategy was performed to select submodels. Then consensus modeling was built by two strategies, average consensus model (ACM) and weighted consensus model (WCM), where each submodel had a different weight according to the contribution of model expressed by MLR regression coefficients. The obtained results prove that QGMS is a reliable and practical method to guide the submodel selection in consensus modeling building and our weighted consensus model (WCM) strategy is superior to the simple ACM.

  12. Dynamic changes in gamma-aminobutyric acid and glutamate decarboxylase activity in oats (Avena nuda L.) during steeping and germination. (United States)

    Xu, Jian Guo; Hu, Qing Ping; Duan, Jiang Lian; Tian, Cheng Rui


    Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the central nervous system and provides beneficial effects for human and other animals health. To accumulate GABA, samples from two different naked oat cultivars, Baiyan II and Bayou I, were steeped and germinated in an incubator. The content of GABA and glutamic acid as well as the activity of the glutamate decarboxylase (GAD) in oats during steeping and germination were investigated with an amino acid automatic analyzer. Compared with raw groats, an increase in GABA content of oat groats during steeping and germination was continuously observed for two oat cultivars. The activity of GAD increased greatly at the end of steeping and the second stage of germination for Baiyan II and Bayou I, respectively. Glutamic acid content of treated oat groats was significantly lower than that in raw groats until the later period of germination. GABA was correlated (p<0.01) significantly and positively with the glutamic acid rather than GAD activity in the current study. The results indicates that steeping and germination process under highly controlled conditions can effectively accumulate the GABA in oat groats for Baiyan II and Bayou I, which would greatly facilitate production of nutraceuticals or food ingredients that enable consumers to gain greater access to the health benefits of oats. However, more assays need to be further performed with more oat cultivars.

  13. Trypanocidal activity of 8-methyl-5'-{[(Z)-4-aminobut-2-enyl]-(methylamino)}adenosine (Genz-644131), an adenosylmethionine decarboxylase inhibitor. (United States)

    Bacchi, Cyrus J; Barker, Robert H; Rodriguez, Aixa; Hirth, Bradford; Rattendi, Donna; Yarlett, Nigel; Hendrick, Clifford L; Sybertz, Edmund


    Genzyme 644131, 8-methyl-5'-{[(Z)-4-aminobut-2-enyl](methylamino)}adenosine, is an analog of the enzyme activated S-adenosylmethionine decarboxylase (AdoMetDC) inhibitor and the trypanocidal agent MDL-7381, 5-{[(Z)-4-aminobut-2-enyl](methylamino)}adenosine. The analog differs from the parent in having an 8-methyl group on the purine ring that bestows favorable pharmacokinetic, biochemical, and trypanocidal activities. The compound was curative in acute Trypanosoma brucei brucei and drug-resistant Trypanosoma brucei rhodesiense model infections, with single-dose activity in the 1- to 5-mg/kg/day daily dose range for 4 days against T. brucei brucei and 25- to 50-mg/kg twice-daily dosing against T. brucei rhodesiense infections. The compound was not curative in the TREU 667 central nervous system model infection but cleared blood parasitemia and extended time to recrudescence in several groups. This study shows that AdoMetDC remains an attractive chemotherapeutic target in African trypanosomes and that chemical changes in AdoMetDC inhibitors can produce more favorable drug characteristics than the lead compound.

  14. Buffer-free production of gamma-aminobutyric acid using an engineered glutamate decarboxylase from Escherichia coli. (United States)

    Kang, Taek Jin; Ho, Ngoc Anh Thu; Pack, Seung Pil


    Escherichia coli glutamate decarboxylase (GAD) converts glutamate into γ-aminobutyric acid (GABA) through decarboxylation using proton as a co-substrate. Since GAD is active only at acidic conditions even though pH increases as the reaction proceeds, the conventional practice of using this enzyme involved the use of relatively high concentration of buffers, which might complicate the downstream purification steps. Here we show by simulation and experiments that the free acid substrate, glutamic acid, rather than its monosodium salt can act as a substrate and buffer at the same time. This yielded the buffer- and salt-free synthesis of GABA conveniently in a batch mode. Furthermore, we engineered GAD to hyper active ones by extending or reducing the length of the enzyme by just one residue at its C-terminus. Through the buffer-free reaction with engineered GAD, we could synthesize 1M GABA in 3h, which can be translated into a space-time yield of 34.3g/L/h.

  15. The Histidine Decarboxylase Gene Cluster of Lactobacillus parabuchneri Was Gained by Horizontal Gene Transfer and Is Mobile within the Species (United States)

    Wüthrich, Daniel; Berthoud, Hélène; Wechsler, Daniel; Eugster, Elisabeth; Irmler, Stefan; Bruggmann, Rémy


    Histamine in food can cause intolerance reactions in consumers. Lactobacillus parabuchneri (L. parabuchneri) is one of the major causes of elevated histamine levels in cheese. Despite its significant economic impact and negative influence on human health, no genomic study has been published so far. We sequenced and analyzed 18 L. parabuchneri strains of which 12 were histamine positive and 6 were histamine negative. We determined the complete genome of the histamine positive strain FAM21731 with PacBio as well as Illumina and the genomes of the remaining 17 strains using the Illumina technology. We developed the synteny aware ortholog finding algorithm SynOrf to compare the genomes and we show that the histidine decarboxylase (HDC) gene cluster is located in a genomic island. It is very likely that the HDC gene cluster was transferred from other lactobacilli, as it is highly conserved within several lactobacilli species. Furthermore, we have evidence that the HDC gene cluster was transferred within the L. parabuchneri species. PMID:28261177

  16. Thiol Redox Sensitivity of Two Key Enzymes of Heme Biosynthesis and Pentose Phosphate Pathways: Uroporphyrinogen Decarboxylase and Transketolase

    Directory of Open Access Journals (Sweden)

    Brian McDonagh


    Full Text Available Uroporphyrinogen decarboxylase (Hem12p and transketolase (Tkl1p are key mediators of two critical processes within the cell, heme biosynthesis, and the nonoxidative part of the pentose phosphate pathway (PPP. The redox properties of both Hem12p and Tkl1p from Saccharomyces cerevisiae were investigated using proteomic techniques (SRM and label-free quantification and biochemical assays in cell extracts and in vitro with recombinant proteins. The in vivo analysis revealed an increase in oxidized Cys-peptides in the absence of Grx2p, and also after treatment with H2O2 in the case of Tkl1p, without corresponding changes in total protein, demonstrating a true redox response. Out of three detectable Cys residues in Hem12p, only the conserved residue Cys52 could be modified by glutathione and efficiently deglutathionylated by Grx2p, suggesting a possible redox control mechanism for heme biosynthesis. On the other hand, Tkl1p activity was sensitive to thiol redox modification and although Cys622 could be glutathionylated to a limited extent, it was not a natural substrate of Grx2p. The human orthologues of both enzymes have been involved in certain cancers and possess Cys residues equivalent to those identified as redox sensitive in yeast. The possible implication for redox regulation in the context of tumour progression is put forward.

  17. Distribution of messenger RNAs encoding the enzymes glutaminase, aspartate aminotransferase and glutamic acid decarboxylase in rat brain. (United States)

    Najlerahim, A; Harrison, P J; Barton, A J; Heffernan, J; Pearson, R C


    In situ hybridization histochemistry (ISHH) using synthetic oligonucleotide probes has been used to identify cells containing the mRNAs coding for glutaminase (GluT), aspartate aminotransferase (AspT) and glutamic acid decarboxylase (GAD). The distribution of GAD mRNA confirms previous descriptions and matches the distribution of GAD detected using specific antibodies. AspT mRNA is widely distributed in the brain, but is present at high levels in GABAergic neuronal populations, some that may be glutamatergic, and in a subset of neurons which do not contain significant levels of either GAD or GluT mRNA. Particularly prominent are the neurons of the magnocellular division of the red nucleus, the large cells in the deep cerebellar nuclei and the vestibular nuclei and neurons of the lateral superior olivary nucleus. GluT mRNA does not appear to be present at high levels in all GAD-containing neurons, but is seen prominently in many neuronal populations that may use glutamate as a neurotransmitter, such as neocortical and hippocampal pyramidal cells, the granule cells of the cerebellum and neurons of the dentate gyrus of the hippocampus. The heaviest labelling of GluT mRNA is seen in the lateral reticular nucleus of the medulla. ISHH using probes directed against the mRNAs encoding these enzymes may be an important technique for identifying glutamate and aspartate using neuronal populations and for examining their regulation in a variety of experimental and pathological circumstances.

  18. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. (United States)

    Baum, G; Lev-Yadun, S; Fridmann, Y; Arazi, T; Katsnelson, H; Zik, M; Fromm, H


    Glutamate decarboxylase (GAD) catalyzes the decarboxylation of glutamate to CO2 and gamma-aminobutyrate (GABA). GAD is ubiquitous in prokaryotes and eukaryotes, but only plant GAD has been shown to bind calmodulin (CaM). Here, we assess the role of the GAD CaM-binding domain in vivo. Transgenic tobacco plants expressing a mutant petunia GAD lacking the CaM-binding domain (GADdeltaC plants) exhibit severe morphological abnormalities, such as short stems, in which cortex parenchyma cells fail to elongate, associated with extremely high GABA and low glutamate levels. The morphology of transgenic plants expressing the full-length GAD (GAD plants) is indistinguishable from that of wild-type (WT) plants. In WT and GAD plant extracts, GAD activity is inhibited by EGTA and by the CaM antagonist trifluoperazine, and is associated with a CaM-containing protein complex of approximately 500 kDa. In contrast, GADdeltaC plants lack normal GAD complexes, and GAD activity in their extracts is not affected by EGTA and trifluoperazine. We conclude that CaM binding to GAD is essential for the regulation of GABA and glutamate metabolism, and that regulation of GAD activity is necessary for normal plant development. This study is the first to demonstrate an in vivo function for CaM binding to a target protein in plants.

  19. Selection and Test of L-histidine Decarboxylase Enzyme Activity of Six Isolates of Histamine Forming Bacteria

    Directory of Open Access Journals (Sweden)

    Romauli Aya Sophia


    Full Text Available Six isolates of histamine forming bacteria were screened to see the degree of ability in producing histamine on modified Niven's medium. The result showed that the six bacteria were able to produce histamine by giving a pinkish color on the medium, which could be used as a preliminary identification of histamine-forming bacteria (HFB. The isolates were grown in liquid modified Niven medium to measure the production of histamine. The histamine produced were determined by Hardy and Smith method. The result showed that all of the isolates produced high level of histamine (92.35 - 305.49 mg/100 ml of the medium. From all of them, Enterobacter spp. produced the highest level of histamine (305.49 mg/100 ml. A synthetic medium was used to measure the growth pattern and optimum time required by Enterobacter spp and Morganella morganii (as control bacteria to produce the L-histidine decarboxylase enzyme (HDC which is responsible for histamine production. The result showed that for both bacteria, the optimum enzim production was 8 hours after incubation.

  20. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. (United States)

    Kim, Yong-Kyoung; Kim, Yeon Bok; Uddin, Md Romij; Lee, Sanghyun; Kim, Soo-Un; Park, Sang Un


    To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and PgFPS than that by the wild-type control. Among the hairy root lines transformed with PgMVD, M18 showed the highest level of transcription compared to the control (14.5-fold higher). Transcriptions of F11 and F20 transformed with PgFPS showed 11.1-fold higher level compared with control. In triterpene analysis, M25 of PgMVD produced 4.4-fold higher stigmasterol content (138.95 μg/100 mg, dry weight [DW]) than that by the control; F17 of PgFPS showed the highest total ginsenoside (36.42 mg/g DW) content, which was 2.4-fold higher compared with control. Our results indicate that metabolic engineering in P. ginseng was successfully achieved through Agrobacterium rhizogenes-mediated transformation and that the accumulation of phytosterols and ginsenosides was enhanced by introducing the PgMVD and PgFPS genes into the hairy roots of the plant. Our results suggest that PgMVD and PgFPS play an important role in the triterpene biosynthesis of P. ginseng.

  1. Convulsions and inhibition of glutamate decarboxylase by pyridoxal phosphate-gamma-glutamyl hydrazone in the developing rat. (United States)

    Massieu, L; Rivera, A; Tapia, R


    We have previously shown that in the adult rat the inhibition of brain glutamate decarboxylase (GAD) activity by pyridoxal phosphate-gamma-glutamyl hydrazone (PLPGH) administration does not result in convulsions, whereas in the adult mouse intense convulsions invariably occur. In the present study we report that, surprisingly, immature rats from 2 to 20 days of age treated with PLPGH (80 mg/kg) showed generalized tonic-clonic convulsions, whereas no convulsions at all were present in 30 days-old or older rats. GAD activity, measured by enzymic determination of GABA formed in forebrain homogenates, was inhibited by about 60% at the time of convulsions in 15 days-old and younger rats, whereas the inhibition was between 40 and 50% in older animals. The addition of the coenzyme pyridoxal 5'-phosphate to the incubation medium completely reversed this inhibition. In all treated animals GABA levels were lower compared to controls. The results indicate that the susceptibility of GAD in vivo to a diminished cofactor concentration decreases with age. It seems possible that changes in the expression of enzyme forms are reflected in developmental variations in the susceptibility to seizures induced by vitamin B6 depletion, but alterations of other B6-dependent biochemical pathways cannot be discarded.

  2. Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells (United States)

    Zhu, Qingsong; Jin, Lihua; Casero, Robert A.


    Our previous studies demonstrated that specific polyamine analogues, oligoamines, down-regulated the activity of a key polyamine biosynthesis enzyme, ornithine decarboxylase (ODC), and suppressed expression of estrogen receptor alpha (ERα) in human breast cancer cells. However, the mechanism underlying the potential regulation of ERα expression by polyamine metabolism has not been explored. Here, we demonstrated that RNAi-mediated knockdown of ODC (ODC KD) down-regulated the polyamine pool, and hindered growth in ERα-positive MCF7 and T47D and ERα-negative MDA-MB-231 breast cancer cells. ODC KD significantly induced the expression and activity of the key polyamine catabolism enzymes, spermine oxidase (SMO) and spermidine/spermine N1-acetyltransferase (SSAT). However, ODC KD-induced growth inhibition could not be reversed by exogenous spermidine or overexpression of antizyme inhibitor (AZI), suggesting that regulation of ODC on cell proliferation may involve the signaling pathways independent of polyamine metabolism. In MCF7 and T47D cells, ODC KD, but not DFMO treatment, diminished the mRNA and protein expression of ERα. Overexpression of antizyme (AZ), an ODC inhibitory protein, suppressed ERα expression, suggesting that ODC plays an important role in regulation of ERα expression. Decrease of ERα expression by ODC siRNA altered the mRNA expression of a subset of ERα response genes. Our previous analysis showed that oligoamines disrupt the binding of Sp1 family members to an ERα minimal promoter element containing GC/CA-rich boxes. By using DNA affinity precipitation and mass spectrometry analysis, we identified ZBTB7A, MeCP2, PARP-1, AP2, and MAZ as co-factors of Sp1 family members that are associated with the ERα minimal promoter element. Taken together, these data provide insight into a novel antiestrogenic mechanism for polyamine biosynthesis enzymes in breast cancer. PMID:22976807

  3. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina (United States)

    Ishida, Yuko; Ozaki, Mamiko


    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  4. Distribution of the thiamin diphosphate C(2)-proton during catalysis of acetaldehyde formation by brewers' yeast pyruvate decarboxylase. (United States)

    Harris, T K; Washabaugh, M W


    The distribution of tritium derived from enzyme-bound [thiazole-2-T]thiamin diphosphate (TDP) during the reaction of pyruvate to form acetaldehyde catalyzed by pyruvate decarboxylase isozymes (PDC; EC from Saccharomyces carlsbergensis was determined under single-turnover conditions ([E] > [S]) in the presence of the nonsubstrate allosteric effector pyruvamide. The specific radioactivity of the [1-L]acetaldehyde product and solvent ([L]H2O) was 43 +/- 4% and 54 +/- 2%, respectively, of the initial specific radioactivity of PDC-bound [thiazole-2-T]TDP and was independent of the extent of the single-turnover reaction. There is little (< or = 3%) or no return of the abstracted C(2)-hydron to the C(2) position of PDC-bound TDP. This provides evidence that the abstracted C(2)-hydron is involved in the specific protonation of the C(alpha) position of the PDC-bound intermediate 2-(1-hydroxyethyl)thiamin diphosphate (HETDP), which is cleaved to form [1-L]acetaldehyde and PDC-bound [thiazole-2-H]TDP. The partial exchange of C(2)-derived tritium into solvent requires that (1) hydron transfer from C(2) occurs to a catalytic-base in which the conjugate catalytic acid is partially shielded from hydron exchange with the solvent, (2) the conjugate catalytic acid transfers the C(2)-derived hydron to the C(alpha) position of HETDP, and (3) hydron transfer to C(2) to regenerate the coenzyme occurs either from solvent directly or from a second catalytic acid of the enzyme that undergoes rapid hydron exchange with the solvent.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Associations of polymorphisms in histidine decarboxylase, histamine N-methyltransferase and histamine receptor H3 genes with breast cancer.

    Directory of Open Access Journals (Sweden)

    Gong-Hao He

    Full Text Available We previously found that genetic polymorphisms in gene coding for histamine H4 receptors were related to the risk and malignant degree of breast cancer. The roles of polymorphisms in other histamine-related genes, such as histidine decarboxylase (HDC, histamine N-methyltransferase (HNMT and histamine H3 receptor (HRH3, remain unexplored. The aim of this study is to analyze the clinical associations of polymorphisms in HDC, HNMT and HRH3 with breast cancer. Two hundred and one unrelated Chinese Han breast cancer patients and 205 ethnicity-matched health controls were recruited for case-control investigation. Genomic DNA from the participants was extracted and 5 single nucleotide polymorphisms (SNPs in HDC, HNMT and HRH3 were genotyped. We found that polymorphisms of HNMT and HRH3 were irrelevant with breast cancer in the present study. However, the T allele of rs7164386 in HDC significantly decreased the risk of breast cancer (adjusted odds ratios [ORs], 0.387; 95% confidence intervals [CIs], 0.208-0.720; P = 0.003. Furthermore, for HDC haplotypes, the CG haplotype of rs7164386-rs7182203 was more frequent among breast cancer patients (adjusted OR, 1.828; 95% CI, 1.218-2.744; P = 0.004 while the TG haplotype was more frequent among health controls (adjusted OR, 0.351; 95% CI, 0.182-0.678; P = 0.002. These findings indicated that polymorphisms of HDC gene were significantly associated with breast cancer in Chinese Han population and may be novel diagnostic or therapeutic targets for breast cancer. Further studies with larger participants worldwide are still needed for conclusion validation.

  6. The expanding spectrum of pediatric anti-glutamic acid decarboxylase antibody mediated CNS disease - a chance association?

    Institute of Scientific and Technical Information of China (English)

    Deepak Menon; Ramshekhar N Menon; Hardeep Kumar; Ashalatha Radhakrishnan; Sudheeran Kannoth; Muralidharan Nair; Sanjeev Thomas


    Central nervous system autoimmunity in the pediatric age group represents an evolving constellation of various syndromes distinct from the adult age group. One of the rarely described pathogenic auto-antibodies (ab) is the one directed against glutamic acid decarboxylase (GAD). While its pathogenic role is controversial, literature concerning adult patients abounds with heterogeneous presentations with epilepsy often as part of limbic encephalitis or chronic temporal lobe epilepsy and cerebellar ataxia accompanying endocrinopathies or paraneoplastic disorders. Diagnosis is often delayed until late adulthood. The authors report hitherto under-reported syndromes in the pediatric age group. The ifrst case was a 3-year-old boy with sub-acute myoclonus-ataxia following a lfu-like illness akin to para-infectious cerebellitis. The second case was a 7-year-old girl with long-standing chronic extratemporal partial epilepsy and electrical status epilepticus in sleep (ESES) with right hemiparesis and developmental delay. Investigations revealed two-four fold elevations in titres of GAD-65-ab. The absence of systemic diseases like diabetes and the dramatic clinical response to steroids as well as intravenous immunoglobulin in both the cases argued for GAD-ab mediated neuronal injury rather than a chance association. The concern exists regarding other potentially co-existent auto-ab to gamma-amino butyric acid and glycine receptors, and demonstration of intrathecal synthesis of GAD-ab would be ideal. This entity should be contemplated in children presenting with acute/sub-acute onset episodic or progressive ataxia or refractory cryptogenic focal epilepsy syndromes, epileptic encephalopathy such as ESES and worsening neurological deifcits. These children ought to be maintained on regular follow-up for monitoring evolution of other autoimmune disorders in adult life.

  7. Chronic treatment with glucocorticoids alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels. (United States)

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Regunathan, Soundar


    In the present study, we examined the possible effect of chronic treatment with glucocorticoids on the morphology of the rat brain and levels of endogenous agmatine and arginine decarboxylase (ADC) protein, the enzyme essential for agmatine synthesis. Seven-day treatment with dexamethasone, at a dose (10 and 50 mug/kg/day) associated to stress effects contributed by glucocorticoids, did not result in obvious morphologic changes in the medial prefrontal cortex and hippocampus, as measured by immunocytochemical staining with beta-tubulin III. However, 21-day treatment (50 mug/kg/day) produced noticeable structural changes such as the diminution and disarrangement of dendrites and neurons in these areas. Simultaneous treatment with agmatine (50 mg/kg/day) prevented these morphological changes. Further measurement with HPLC showed that endogenous agmatine levels in the prefrontal cortex and hippocampus were significantly increased after 7-day treatments with dexamethasone in a dose-dependent manner. On the contrary, 21-day treatment with glucocorticoids robustly reduced agmatine levels in these regions. The treatment-caused biphasic alterations of endogenous agmatine levels were also seen in the striatum and hypothalamus. Interestingly, treatment with glucocorticoids resulted in a similar change of ADC protein levels in most brain areas to endogenous agmatine levels: an increase after 7-day treatment versus a reduction after 21-day treatment. These results demonstrated that agmatine has neuroprotective effects against structural alterations caused by glucocorticoids in vivo. The parallel alterations in the endogenous agmatine levels and ADC expression in the brain after treatment with glucocorticoids indicate the possible regulatory effect of these stress hormones on the synthesis and metabolism of agmatine in vivo.

  8. Expression of glutamic acid decarboxylase messenger RNA in rat medial preoptic area neurones during the oestrous cycle and after ovariectomy. (United States)

    Herbison, A E; Augood, S J; McGowan, E M


    Evidence suggests that medial preoptic area (MPOA) neurones containing gamma-aminobutyric acid (GABA) are modulated directly by oestrogen. We have used an alkaline phosphatase-labelled antisense oligonucleotide probe to examine glutamic acid decarboxylase67 (GAD) mRNA expression within individual cells of the MPOA, diagonal band of Broca (DBB) and parietal cortex in rats killed at noon on each day of the oestrous cycle and after ovariectomy (n = 4-5). As a fall in extracellular GABA concentrations occurs in the MPOA on the afternoon of proestrus, the GAD67 mRNA content of cells was also examined in proestrous rats at 15:00h immediately prior to the preovulatory luteinising hormone (LH) surge. The MPOA was found to have an intermediate number of GAD67 mRNA-containing cells compared with the DBB and cortex (P less than 0.01) but expressed the lowest mean hybridisation signal (P less than 0.01). The parietal cortex had significantly fewer (P less than 0.01) GAD mRNA-containing cells than either the MPOA or DBB but these contained higher mean density of signal (P less than 0.01). The hybridisation signal for GAD mRNA was abolished by either ribonuclease pre-treatment or the use of excess non-labelled probe. No significant (P greater than 0.05) differences in GAD67 mRNA were detected in animals killed at noon throughout the oestrous cycle or after ovariectomy. On the afternoon of proestrus (15:00h) there was a significant 40% reduction in mean GAD67 mRNA content within cells of only the MPOA compared with noon (P less than 0.05). The numbers of cells in the MPOA expressing GAD67 mRNA were not significantly different.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Skaff, D. Andrew; McWhorter, William J.; Herdendorf, Timothy J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)


    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 {angstrom} resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 {angstrom} resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 {angstrom} resolution). Comparison of these structures provides a physical basis for the significant differences in K{sub i} values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser{sup 192} as making potential contributions to catalysis. Significantly, Ser {yields} Ala substitution of this side chain decreases k{sub cat} by {approx}10{sup 3}-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 {angstrom} cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  10. Regulation of human ornithine decarboxylase expression following prolonged quiescence: role for the c-Myc/Max protein complex. (United States)

    Peña, A; Wu, S; Hickok, N J; Soprano, D R; Soprano, K J


    WI-38 cells can remain quiescent for long periods of time and still be induced to reenter the cell cycle by the addition of fresh serum. However, the longer these cells remain growth arrested, the more time they require to enter S phase. This prolongation of the prereplicative phase has been localized to a point early in G1, after the induction of "immediate early" G1 genes such as c-fos and c-jun but before maximal expression of "early" G1 genes such as ornithine decarboxylase (ODC). Understanding the molecular basis for ODC mRNA induction can therefore provide information about the molecular events which regulate the progression of cells out of long-term quiescence into G1 and subsequently into DNA synthesis. Studies utilizing electrophoretic mobility shift assays (EMSA) of nuclear extracts from short- and long-term quiescent WI-38 cells identified a region of the human ODC promoter at -491 bp to -474 bp which exhibited a protein binding pattern that correlated with the temporal pattern of ODC mRNA expression. The presence of a CACGTG element within this fragment, studies with antibodies against c-Myc and Max, the use of purified recombinant c-Myc protein in the mobility shift assay, and antisense studies suggest that these proteins can specifically bind this portion of the human ODC promoter in a manner consistent with growth-associated modulation of the expression of ODC and other early G1 genes following prolonged quiescence. These studies suggest a role for the c-Myc/Max protein complex in regulating events involved in the progression of cells out of long-term quiescence into G1 and subsequently into S.

  11. Expression of arginine decarboxylase is induced during early fruit development and in young tissues of Pisum sativum (L.). (United States)

    Pérez-Amador, M A; Carbonell, J; Granell, A


    A cDNA coding for arginine decarboxylase (ADC, EC has been isolated from a cDNA library of parthenocarpic young fruits of Pisum sativum (L.). The deduced aminoacid sequence is 74%, 46% and 35% identical to ADCs from tomato, oat and Escherichia coli, respectively. When the pea ADC cDNA was put under the control of the galactose inducible yeast promoter CYC1-GAL10 and introduced into Saccharomyces cerevisiae, it conferred galactose-regulated expression of the ADC activity. The ADC activity expressed in S. cerevisiae was inhibited 99% by alpha-DL-difluoromethylarginine (DFMA), a specific inhibitor of ADC activity. No activity was detected in the untransformed S. cerevisiae, nor when it was transformed with an antisense ADC construct. This provides direct evidence that the ADC cDNA from pea encoded a functional, specific ADC activity and that S. cerevisiae is able to process correctly the protein. In the pea plant, gene expression of the ADC is high in young developing tissues like shoot tips, young leaflets and flower buds. Fully expanded leaflets and roots have much lower, but still detectable, levels of the ADC transcript. In the ovary and fruit, they are developmentally regulated, showing high levels of expression during the early stages of fruit growth, which in pea is mainly due to cell expansion. The observed changes in the steady-state levels of ADC mRNA alone, however, cannot account for the differences in ADC activity suggesting that other regulatory mechanisms must be acting.

  12. Interaction of Human Dopa Decarboxylase with L-Dopa: Spectroscopic and Kinetic Studies as a Function of pH

    Directory of Open Access Journals (Sweden)

    Riccardo Montioli


    Full Text Available Human Dopa decarboxylase (hDDC, a pyridoxal 5′-phosphate (PLP enzyme, displays maxima at 420 and 335 nm and emits fluorescence at 384 and 504 nm upon excitation at 335 nm and at 504 nm when excited at 420 nm. Absorbance and fluorescence titrations of hDDC-bound coenzyme identify a single pKspec of ~7.2. This pKspec could not represent the ionization of a functional group on the Schiff base but that of an enzymic residue governing the equilibrium between the low- and the high-pH forms of the internal aldimine. During the reaction of hDDC with L-Dopa, monitored by stopped-flow spectrophotometry, a 420 nm band attributed to the 4′-N-protonated external aldimine first appears, and its decrease parallels the emergence of a 390 nm peak, assigned to the 4′-N-unprotonated external aldimine. The pH profile of the spectral change at 390 nm displays a pK of 6.4, a value similar to that (~6.3 observed in both kcat and kcat/Km profiles. This suggests that this pK represents the ESH+ → ES catalytic step. The assignment of the pKs of 7.9 and 8.3 observed on the basic side of kcat and the PLP binding affinity profiles, respectively, is also analyzed and discussed.

  13. How to identify Raoultella spp. including R. ornithinolytica isolates negative for ornithine decarboxylase? The reliability of the chromosomal bla gene. (United States)

    Walckenaer, Estelle; Leflon-Guibout, Véronique; Nicolas-Chanoine, Marie-Hélène


    Although Raoultella planticola and Raoultella ornithinolytica were described more than 20 years ago, identifying them remains difficult. The reliability of the chromosomal bla gene for this identification was evaluated in comparison with that of the 16S rDNA and rpoB genes in 35 Raoultella strains from different origins. Of the 26 strains previously identified as R. planticola by biochemical tests alone or in association with molecular methods, 21 harboured a bla gene with 99.8% identity with the bla gene of two reference R. ornithinolytica strains (bla(ORN) gene) and 5 harboured a bla gene with 99.2% identity with the bla gene of two reference R. planticola strains (bla(PLA) gene). The 9 isolates previously identified as R. ornithinolytica harboured a bla(ORN) gene. The bla gene-based identification was confirmed by 16S rDNA and rpoB sequencing. The 21 isolates newly identified as R. ornithinolytica had a test negative for ornithine decarboxylase (ODC). Molecular experiments suggested one copy of ODC-encoding gene in both ODC-negative R. ornithinolytica and R. planticola strains and two copies in ODC-positive R. orninthinolytica strains. Analysis of the 35 bla genes allowed us (i) to confirm an identity of only 94% between the bla genes of the two Raoultella species while this identity was > 98% for rpoB and > 99% for 16S rDNA genes and (ii) to develop and successfully apply a bla PCR RFLP assay for Raoultella spp. identification. Overall, this study allowed us to discover ODC-negative R. ornithinolytica and to provide a reliable Raoultella identification method widely available as not requiring sequencing equipment.

  14. Multifaceted interactions and regulation between antizyme and its interacting proteins cyclin D1, ornithine decarboxylase and antizyme inhibitor. (United States)

    Liu, Yen-Chin; Lee, Chien-Yun; Lin, Chi-Li; Chen, Hui-Yi; Liu, Guang-Yaw; Hung, Hui-Chih


    Ornithine decarboxylase (ODC), cyclin D1 (CCND1) and antizyme inhibitor (AZI) promote cell growth. ODC and CCND1 can be degraded through antizyme (AZ)-mediated 26S proteasomal degradation. This paper describes a mechanistic study of the molecular interactions between AZ and its interacting proteins. The dissociation constant (Kd) of the binary AZ-CCND1 complex and the respective binding sites of AZ and CCND1 were determined. Our data indicate that CCND1 has a 4-fold lower binding affinity for AZ than does ODC and an approximately 40-fold lower binding affinity for AZ than does AZI. The Kd values of AZ-CCND1, AZ-ODC and AZ-AZI were 0.81, 0.21 and 0.02 μM, respectively. Furthermore, the Kd values for CCND1 binding to the AZ N-terminal peptide (AZ34-124) and AZ C-terminal peptide (AZ100-228) were 0.92 and 8.97 μM, respectively, indicating that the binding site of CCND1 may reside at the N-terminus of AZ, rather than the C-terminus. Our data also show that the ODC-AZ-CCND1 ternary complex may exist in equilibrium. The Kd values of the [AZ-CCND1]-ODC and [AZ-ODC]-CCND1 complexes were 1.26 and 4.93 μM, respectively. This is the first paper to report the reciprocal regulation of CCND1 and ODC through AZ-dependent 26S proteasomal degradation.

  15. [Molecular cloning and characterization of S-adenosyl-L-methionine decarboxylase gene (DoSAMDC1) in Dendrobium officinale]. (United States)

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Guo, Shun-Xing


    S-Adenosyl-L-methionine decarboxylase (SAMDC) is a key enzyme in the polyamines biosynthesis, thus is essential for basic physiological and biochemical processes in plant. In the present study, a full length cDNA of DoSAMDC1 gene was obtained from symbiotic germinated seeds of an endangered medicinal orchid species Dendrobium officinale, using the rapid amplification of cDNA ends (RACE)-PCR technique for the first time. The full length cDNA was 1 979 bp, with three open reading frames, i.e. tiny-uORF, small-uORF and main ORF (mORF). The mORF was deduced to encode a 368 amino acid (aa) protein with a molecular mass of 40.7 kD and a theoretical isoelectric point of 5.2. The deduced DoSAMDC1 protein, without signal peptide, had two highly conserved function domains (proenzyme cleavage site and PEST domain) and a 22-aa transmembrane domain (89-110). Multiple sequence alignments and phylogenetic relationship analyses revealed DoSAMDC1 had a higher level of sequence similarity to monocot SAMDCs than those of dicot. Expression patterns using qRT-PCR analyses showed that DoSAMDC1 transcripts were expressed constitutively without significant change in the five tissues (not infected with fungi). While in the symbiotic germinated seeds, the expression level was enhanced by 2.74 fold over that in the none-germinated seeds, indicating possible involvement of the gene in symbiotic seed germination of D. officinale.

  16. Overexpression and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis362 for high gamma-aminobutyric acid production. (United States)

    Tajabadi, Naser; Baradaran, Ali; Ebrahimpour, Afshin; Rahim, Raha A; Bakar, Fatimah A; Manap, Mohd Yazid A; Mohammed, Abdulkarim S; Saari, Nazamid


    Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products.

  17. Secondary. beta. -deuterium isotope effects in decarboxylation and elimination reactions of. cap alpha. -lactylthiamin: intrinsic isotope effects of pyruvate decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Kluger, R.; Brandl, M.


    The reactions of the adduct of pyruvate and thiamine, lactylthiamin (2-(lact-2-yl)thiamine), are accurate nonenzymic models for reactions of intermediates formed during catalysis by pyruvate decarboxylase. The enzymatic reaction generates lactylthiamin diphosphate from pyruvate and thiamine diphosphate. ..beta..-Deuterium isotope effects were determined for the nonenzymic reactions, and the results were related to isotope effects on the enzymic reaction. 2-(Lact-2-yl-..beta..-d/sub 3/) thiamine was prepared by condensation of methyl pyruvate-d/sub 3/ with thiamine followed by hydrolysis. The isotope effect for decarboxylation of lactylthiamin in acidic solution at 25/sup 0/C (k/sub H3//k/sub D3/) is 1.09 (standard deviation (SD) 0.015) in pH 3.8, 0.5 M sodium acetate: isotope effect = 1.095 (SD 0.014) in 0.001 M HCl. The reaction was also studied using 38% ethanolic aqueous sodium acetate (pH 3.8 before mixing with ethanol) since the enzymic sites are less polar than water and the reaction is significantly accelerated by the cosolvent. The isotope effect is within statistical range of that for the reaction in water, 1.105 (SD 0.016), indicating that acceleration by the solvent does not change the extent of hyperconjugative stabilization of the transition state relative to the ground state. The isotope effect for the base-catalyzed elimination of pyruvate from lactylthiamin was determined from kinetic studies by using multiwavelength analysis for reactions in pH 11 sodium carbonate solution. The isotope effect (k/sub H3//k/sub D3/) is 1.12 (SD 0.01), which is slightly higher than the effect on decarboxylation.

  18. Glutamate decarboxylase-dependent acid resistance in Brucella spp.: distribution and contribution to fitness under extremely acidic conditions. (United States)

    Damiano, Maria Alessandra; Bastianelli, Daniela; Al Dahouk, Sascha; Köhler, Stephan; Cloeckaert, Axel; De Biase, Daniela; Occhialini, Alessandra


    Brucella is an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new species Brucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genus Brucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus, Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains of Brucella ceti, Brucella pinnipedialis, and newly described species (B. microti, Brucella inopinata BO1, B. inopinata-like BO2, and Brucella sp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistant in vitro than classical terrestrial brucellae. Expression in trans of the gad locus from representative Brucella species in the Escherichia coli MG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypical Brucella species may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latter Brucella strains from Ochrobactrum and from classical terrestrial pathogenic Brucella species, which are GAD negative.

  19. Combined administration of testosterone plus an ornithine decarboxylase inhibitor as a selective prostate-sparing anabolic therapy. (United States)

    Jasuja, Ravi; Costello, James C; Singh, Rajan; Gupta, Vandana; Spina, Catherine S; Toraldo, Gianluca; Jang, Hyeran; Li, Hu; Serra, Carlo; Guo, Wen; Chauhan, Pratibha; Narula, Navjot S; Guarneri, Tyler; Ergun, Ayla; Travison, Thomas G; Collins, James J; Bhasin, Shalender


    Because of its anabolic effects on muscle, testosterone is being explored as a function-promoting anabolic therapy for functional limitations associated with aging; however, concerns about testosterone's adverse effects on prostate have inspired efforts to develop strategies that selectively increase muscle mass while sparing the prostate. Testosterone's promyogenic effects are mediated through upregulation of follistatin. We show here that the administration of recombinant follistatin (rFst) increased muscle mass in mice, but had no effect on prostate mass. Consistent with the results of rFst administration, follistatin transgenic mice with constitutively elevated follistatin levels displayed greater muscle mass than controls, but had similar prostate weights. To elucidate signaling pathways regulated differentially by testosterone and rFst in prostate and muscle, we performed microarray analysis of mRNAs from prostate and levator ani of castrated male mice treated with vehicle, testosterone, or rFst. Testosterone and rFst shared the regulation of many transcripts in levator ani; however, in prostate, 593 transcripts in several growth-promoting pathways were differentially expressed after testosterone treatment, while rFst showed a negligible effect with only 9 transcripts differentially expressed. Among pathways that were differentially responsive to testosterone in prostate, we identified ornithine decarboxylase (Odc1), an enzyme in polyamine biosynthesis, as a testosterone-responsive gene that is unresponsive to rFst. Accordingly, we administered testosterone with and without α-difluoromethylornithine (DFMO), an Odc1 inhibitor, to castrated mice. DFMO selectively blocked testosterone's effects on prostate, but did not affect testosterone's anabolic effects on muscle. Co-administration of testosterone and Odc1 inhibitor presents a novel therapeutic strategy for prostate-sparing anabolic therapy.

  20. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Directory of Open Access Journals (Sweden)

    Milanovic Vesna


    Full Text Available Abstract Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1 and alcohol dehydrogenase (Adh1 were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation

  1. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation (United States)


    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  2. Glutamic acid decarboxylase 65: a link between GABAergic synaptic plasticity in the lateral amygdala and conditioned fear generalization. (United States)

    Lange, Maren D; Jüngling, Kay; Paulukat, Linda; Vieler, Marc; Gaburro, Stefano; Sosulina, Ludmila; Blaesse, Peter; Sreepathi, Hari K; Ferraguti, Francesco; Pape, Hans-Christian


    An imbalance of the gamma-aminobutyric acid (GABA) system is considered a major neurobiological pathomechanism of anxiety, and the amygdala is a key brain region involved. Reduced GABA levels have been found in anxiety patients, and genetic variations of glutamic acid decarboxylase (GAD), the rate-limiting enzyme of GABA synthesis, have been associated with anxiety phenotypes in both humans and mice. These findings prompted us to hypothesize that a deficiency of GAD65, the GAD isoform controlling the availability of GABA as a transmitter, affects synaptic transmission and plasticity in the lateral amygdala (LA), and thereby interferes with fear responsiveness. Results indicate that genetically determined GAD65 deficiency in mice is associated with (1) increased synaptic length and release at GABAergic connections, (2) impaired efficacy of GABAergic synaptic transmission and plasticity, and (3) reduced spillover of GABA to presynaptic GABAB receptors, resulting in a loss of the associative nature of long-term synaptic plasticity at cortical inputs to LA principal neurons. (4) In addition, training with high shock intensities in wild-type mice mimicked the phenotype of GAD65 deficiency at both the behavioral and synaptic level, indicated by generalization of conditioned fear and a loss of the associative nature of synaptic plasticity in the LA. In conclusion, GAD65 is required for efficient GABAergic synaptic transmission and plasticity, and for maintaining extracellular GABA at a level needed for associative plasticity at cortical inputs in the LA, which, if disturbed, results in an impairment of the cue specificity of conditioned fear responses typifying anxiety disorders.

  3. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate. (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A


    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures.


    Institute of Scientific and Technical Information of China (English)


    The preparation and characterization of an immobilized L-glutamic decarboxylase (GDC)were studied This work is to develop a sensitive method for the determination of L-glutamate using a new biosensor, which consists of an enzyme column reactor of GDC immobilized on a novel ion exchange resin (carboxymethyl-copolymer of allyl dextran and N.N'-methylene-bisacrylamide CM-CADB) and ion analyzer coupled with a CO2 electrode. The conditions for the enzyme immobilization were optimized by the parameters: buffer composition and concentration, adsorption equilibration time, amount of enzyme, temperature, ionic strength and pH. The properties of the immobilized enzyme on CM-CADB were studied by investigating the initial rate of the enzyme reaction, the efffect of various parameters on the immobilized GDC activity and its stability. An immobilized GDC enzyme column reactor matched with a flow injection system-ion analyzer coupled with CO2 electrode-data collection system made up the original form of the apparatus of biosensor for determining of L-glutamate acid. The limit of detection is 1.O ×1O-5 M. The linearity response is in the range of 5 × 1O -2-5 × 1O -5 M. The equation of linear regression of the calibration curve is y= 43.3x + 181.6 (y is the milli-volt of electrical potential response, x is the logarithm of the concentration of the substrate of L-glutamate acid). The correlation coefficient equals 0.99. The coefficient of variation equals 2.7%.

  5. Crystal Structures of Apo and Liganded 4-Oxalocrotonate Decarboxylase Uncover a Structural Basis for the Metal-Assisted Decarboxylation of a Vinylogous β-Keto Acid. (United States)

    Guimarães, Samuel L; Coitinho, Juliana B; Costa, Débora M A; Araújo, Simara S; Whitman, Christian P; Nagem, Ronaldo A P


    The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent β-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous β-keto acid decarboxylase and the first crystal structure of a 4-OD.

  6. Quantitative analysis of histidine decarboxylase gene (hdcA) transcription and histamine production by Streptococcus thermophilus PRI60 under conditions relevant to cheese making. (United States)

    Rossi, Franca; Gardini, Fausto; Rizzotti, Lucia; La Gioia, Federica; Tabanelli, Giulia; Torriani, Sandra


    This study evaluated the influence of parameters relevant for cheese making on histamine formation by Streptococcus thermophilus. Strains possessing a histidine decarboxylase (hdcA) gene represented 6% of the dairy isolates screened. The most histaminogenic, S. thermophilus PRI60, exhibited in skim milk a high basal level of expression of hdcA, upregulation in the presence of free histidine and salt, and repression after thermization. HdcA activity persisted in cell extracts, indicating that histamine might accumulate after cell lysis in cheese.

  7. Quantitative Analysis of Histidine Decarboxylase Gene (hdcA) Transcription and Histamine Production by Streptococcus thermophilus PRI60 under Conditions Relevant to Cheese Making▿† (United States)

    Rossi, Franca; Gardini, Fausto; Rizzotti, Lucia; La Gioia, Federica; Tabanelli, Giulia; Torriani, Sandra


    This study evaluated the influence of parameters relevant for cheese making on histamine formation by Streptococcus thermophilus. Strains possessing a histidine decarboxylase (hdcA) gene represented 6% of the dairy isolates screened. The most histaminogenic, S. thermophilus PRI60, exhibited in skim milk a high basal level of expression of hdcA, upregulation in the presence of free histidine and salt, and repression after thermization. HdcA activity persisted in cell extracts, indicating that histamine might accumulate after cell lysis in cheese. PMID:21378060

  8. The timing of administration, dose dependence and efficacy of dopa decarboxylase inhibitors on the reversal of motor disability produced by L-DOPA in the MPTP-treated common marmoset. (United States)

    Tayarani-Binazir, Kayhan A; Jackson, Michael J; Fisher, Ria; Zoubiane, Ghada; Rose, Sarah; Jenner, Peter


    Dopa decarboxylase inhibitors are routinely used to potentiate the effects of L-DOPA in the treatment of Parkinson's disease. However, neither in clinical use nor in experimental models of Parkinson's disease have the timing and dose of dopa decarboxylase inhibitors been thoroughly explored. We now report on the choice of dopa decarboxylase inhibitors, dose and the time of dosing relationships of carbidopa, benserazide and L-alpha-methyl dopa (L-AMD) in potentiating the effects of L-DOPA in the 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-treated common marmoset. Pre-treatment with benserazide for up to 3h did not alter the motor response to L-DOPA compared to simultaneous administration with L-DOPA. There was some evidence of a relationship between carbidopa and benserazide dose and increased locomotor activity and the reversal of motor disability. But in general, commonly used dose levels of dopa decarboxylase inhibitors appeared to produce a maximal motor response to L-DOPA. In contrast, dyskinesia intensity and duration continued to increase with both carbidopa and benserazide dose. The novel dopa decarboxylase inhibitor, L-AMD, increased locomotor activity and improved motor disability to the same extent as carbidopa or benserazide but importantly this was accompanied by significantly less dyskinesia. This study shows that currently, dopa decarboxylase inhibitors may be routinely employed in the MPTP-treated primate at doses which are higher than those necessary to produce a maximal potentiation of the anti-parkinsonian effect of L-DOPA. This may lead to excessive expression of dyskinesia in this model of Parkinson's disease and attention should be given to the dose regimens currently employed.

  9. Role of the proteasome in excitotoxicity-induced cleavage of glutamic acid decarboxylase in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Márcio S Baptista

    Full Text Available Glutamic acid decarboxylase is responsible for synthesizing GABA, the major inhibitory neurotransmitter, and exists in two isoforms--GAD65 and GAD67. The enzyme is cleaved under excitotoxic conditions, but the mechanisms involved and the functional consequences are not fully elucidated. We found that excitotoxic stimulation of cultured hippocampal neurons with glutamate leads to a time-dependent cleavage of GAD65 and GAD67 in the N-terminal region of the proteins, and decrease the corresponding mRNAs. The cleavage of GAD67 was sensitive to the proteasome inhibitors MG132, YU102 and lactacystin, and was also abrogated by the E1 ubiquitin ligase inhibitor UBEI-41. In contrast, MG132 and UBEI-41 were the only inhibitors tested that showed an effect on GAD65 cleavage. Excitotoxic stimulation with glutamate also increased the amount of GAD captured in experiments where ubiquitinated proteins and their binding partners were isolated. However, no evidences were found for direct GADs ubiquitination in cultured hippocampal neurons, and recombinant GAD65 was not cleaved by purified 20S or 26S proteasome preparations. Since calpains, a group of calcium activated proteases, play a key role in GAD65/67 cleavage under excitotoxic conditions the results suggest that GADs are cleaved after ubiquitination and degradation of an unknown binding partner by the proteasome. The characteristic punctate distribution of GAD65 along neurites of differentiated cultured hippocampal neurons was significantly reduced after excitotoxic injury, and the total GAD activity measured in extracts from the cerebellum or cerebral cortex at 24h postmortem (when there is a partial cleavage of GADs was also decreased. The results show a role of the UPS in the cleavage of GAD65/67 and point out the deregulation of GADs under excitotoxic conditions, which is likely to affect GABAergic neurotransmission. This is the first time that the UPS has been implicated in the events triggered during

  10. Assessment of the effects of glutamic acid decarboxylase antibodies and trace elements on cognitive performance in older adults

    Directory of Open Access Journals (Sweden)

    Alghadir AH


    Full Text Available Ahmad H Alghadir,1 Sami A Gabr,1,2 Einas Al-Eisa11Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia; 2Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, EgyptBackground: Homeostatic imbalance of trace elements such as iron (Fe, copper (Cu, and zinc (Zn demonstrated adverse effects on brain function among older adults.Objective: The present study aimed to investigate the effects of trace elements and the presence of anti-glutamic acid decarboxylase antibodies (GADAs in human cognitive abilities among healthy older adults.Methods: A total of 100 healthy subjects (65 males, 35 females; age range; 64–96 years were recruited for this study. Based on Loewenstein Occupational Therapy Cognitive Assessment (LOTCA score, the participants were classified according to cognitive performance into normal (n=45, moderate (n=30, and severe (n=25. Cognitive functioning, leisure-time physical activity (LTPA, serum trace elements – Fe, Cu, Zn, Zn/Cu, and GADAs were assessed using LOTCA battery, pre-validated physical activity (PA questionnaire, atomic absorption, and immunoassay techniques, respectively.Results: Approximately 45% of the study population (n=45 had normal distribution of cognitive function and 55% of the study population (n=55 had abnormal cognitive function; they were classified into moderate (score 62–92 and severe (score 31–62. There was a significant reduction in the level of Zn and Zn/Cu ratio along with an increase in the level of Fe, Cu, and anti-GADAs in subjects of severe (P=0.01 and moderate (P=0.01 cognitive performance. LOTCA-cognitive scores correlated positively with sex, HbA1c, Fe, Cu, Zn, and Zn/Cu ratio, and negatively with age, PA, body mass index, and anti-GADAs. Significant inter-correlation was reported between serum trace element concentrations and anti-GADAs which suggest producing a cognitive decline via oxidative and neural

  11. Proteolytic degradation of glutamate decarboxylase mediates disinhibition of hippocampal CA3 pyramidal cells in cathepsin D-deficient mice. (United States)

    Shimizu, Tokiko; Hayashi, Yoshinori; Yamasaki, Ryo; Yamada, Jun; Zhang, Jian; Ukai, Kiyoharu; Koike, Masato; Mine, Kazunori; von Figura, Kurt; Peters, Christoph; Saftig, Paul; Fukuda, Takaichi; Uchiyama, Yasuo; Nakanishi, Hiroshi


    Although of clinical importance, little is known about the mechanism of seizure in neuronal ceroid lipofuscinosis (NCL). In the present study, we have attempted to elucidate the mechanism underlying the seizure of cathepsin D-deficient (CD-/-) mice that show a novel type of lysosomal storage disease with a phenotype resembling late infantile NCL. In hippocampal slices prepared from CD-/- mice at post-natal day (P)24, spontaneous burst discharges were recorded from CA3 pyramidal cells. At P24, the mean amplitude of IPSPs after stimulation of the mossy fibres was significantly smaller than that of wild-type mice, which was substantiated by the decreased level of gamma-aminobutyric acid (GABA) contents in the hippocampus measured by high-performance liquid chromatography (HPLC). At this stage, activated microglia were found to accumulate in the pyramidal cell layer of the hippocampal CA3 subfield of CD-/- mice. However, there was no significant change in the numerical density of GABAergic interneurons in the CA3 subfield of CD-/- mice at P24, estimated by counting the number of glutamate decarboxylase (GAD) 67-immunoreactive somata. In the hippocampus and the cortex of CD-/- mice at P24, some GABAergic interneurons displayed extremely high somatic granular immunoreactivites for GAD67, suggesting the lysosomal accumulation of GAD67. GAD67 levels in axon terminals abutting on to perisomatic regions of hippocampal CA3 pyramidal cells was not significantly changed in CD-/- mice even at P24, whereas the total protein levels of GAD67 in both the hippocampus and the cortex of CD-/- mice after P24 were significantly decreased as a result of degradation. Furthermore, the recombinant human GAD65/67 was rapidly digested by the lysosomal fraction prepared from the whole brain of wild-type and CD-/- mice. These observations strongly suggest that the reduction of GABA contents, presumably because of lysosomal degradation of GAD67 and lysosomal accumulation of its degraded forms

  12. Mechanism of the Orotidine 5’-Monophosphate Decarboxylase-Catalyzed Reaction: Importance of Residues in the Orotate Binding Site† (United States)

    Iiams, Vanessa; Desai, Bijoy J.; Fedorov, Alexander A.; Fedorov, Elena V.; Almo, Steven C.; Gerlt, John A.


    The reaction catalyzed by orotidine 5’-monophosphate decarboxylase (OMPDC) is accompanied by exceptional values for the rate enhancement [kcat/knon = 7.1 × 1016] and catalytic proficiency [(kcat/KM)/knon = 4.8 × 1022 M−1]. Although a stabilized vinyl carbanion/carbene intermediate is located on the reaction coordinate, the structural strategies by which the reduction in the activation energy barrier is realized remain incompletely understood. This laboratory recently reported that “substrate destabilization” by Asp 70 in the OMPDC from Methanothermobacter thermoautotrophicus (MtOMPDC) lowers the activation energy barrier by ~5 kcal/mol (contributing ~2.7 × 103 to the rate enhancement) [K. K. Chan, B. M. Wood, A. A. Fedorov, E. V. Fedorov, H. J. Imker, T. L. Amyes, J. P. Richard, S. C. Almo, and J. A. Gerlt (2009) Biochemistry 48, 5518–31]. We now report that substitutions of hydrophobic residues in a pocket proximal to the carboxylate group of the substrate (Ile 96, Leu 123, and Val 155) with neutral hydrophilic residues decrease the value of kcat by as much as 400-fold but have minimal effect on the value of kex for exchange of H6 of the FUMP product analog with solvent deuterium; we hypothesize that this pocket destabilizes the substrate by preventing hydration of the substrate carboxylate group. We also report that substitutions for Ser 127 that is proximal to O4 of the orotate ring decrease the value of kcat/KM, with the S127P substitution that eliminates hydrogen-bonding interactions with O4 producing a 2.5 × 106-fold reduction in the value of kcat/KM; this effect is consistent with delocalization of the negative charge of the carbanionic intermediate on O4 to produce an anionic carbene intermediate and thereby provide a structural strategy for stabilization of the intermediate. These observations provide additional information on the identities of the active site residues that contribute to the rate enhancement and, therefore, insights into the

  13. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles (United States)

    Petrényi, Katalin; Molero, Cristina; Kónya, Zoltán; Erdődi, Ferenc; Ariño, Joaquin; Dombrádi, Viktor


    Protein phosphatase Z (Ppz) is a fungus specific enzyme that regulates cell wall integrity, cation homeostasis and oxidative stress response. Work on Saccharomyces cerevisiae has shown that the enzyme is inhibited by Hal3/Vhs3 moonlighting proteins that together with Cab3 constitute the essential phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. In Candida albicans CaPpz1 is also involved in the morphological changes and infectiveness of this opportunistic human pathogen. To reveal the CaPpz1 regulatory context we searched the C. albicans database and identified two genes that, based on the structure of their S. cerevisiae counterparts, were termed CaHal3 and CaCab3. By pull down analysis and phosphatase assays we demonstrated that both of the bacterially expressed recombinant proteins were able to bind and inhibit CaPpz1 as well as its C-terminal catalytic domain (CaPpz1-Cter) with comparable efficiency. The binding and inhibition were always more pronounced with CaPpz1-Cter, indicating a protective effect against inhibition by the N-terminal domain in the full length protein. The functions of the C. albicans proteins were tested by their overexpression in S. cerevisiae. Contrary to expectations we found that only CaCab3 and not CaHal3 rescued the phenotypic traits that are related to phosphatase inhibition by ScHal3, such as tolerance to LiCl or hygromycin B, requirement for external K+ concentrations, or growth in a MAP kinase deficient slt2 background. On the other hand, both of the Candida proteins turned out to be essential PPCDC components and behaved as their S. cerevisiae counterparts: expression of CaCab3 and CaHal3 rescued the cab3 and hal3 vhs3 S. cerevisiae mutations, respectively. Thus, both CaHal3 and CaCab3 retained the PPCDC related functions and have the potential for CaPpz1 inhibition in vitro. The fact that only CaCab3 exhibits its phosphatase regulatory potential in vivo suggests that in C. albicans CaCab3, but not CaHal3, acts as a

  14. Ornithine decarboxylase antizyme finder (OAF: Fast and reliable detection of antizymes with frameshifts in mRNAs

    Directory of Open Access Journals (Sweden)

    Atkins John F


    Full Text Available Abstract Background Ornithine decarboxylase antizymes are proteins which negatively regulate cellular polyamine levels via their affects on polyamine synthesis and cellular uptake. In virtually all organisms from yeast to mammals, antizymes are encoded by two partially overlapping open reading frames (ORFs. A +1 frameshift between frames is required for the synthesis of antizyme. Ribosomes change translation phase at the end of the first ORF in response to stimulatory signals embedded in mRNA. Since standard sequence analysis pipelines are currently unable to recognise sites of programmed ribosomal frameshifting, proper detection of full length antizyme coding sequences (CDS requires conscientious manual evaluation by a human expert. The rapid growth of sequence information demands less laborious and more cost efficient solutions for this problem. This manuscript describes a rapid and accurate computer tool for antizyme CDS detection that requires minimal human involvement. Results We have developed a computer tool, OAF (ODC antizyme finder for identifying antizyme encoding sequences in spliced or intronless nucleic acid sequenes. OAF utilizes a combination of profile hidden Markov models (HMM built separately for the products of each open reading frame constituting the entire antizyme coding sequence. Profile HMMs are based on a set of 218 manually assembled antizyme sequences. To distinguish between antizyme paralogs and orthologs from major phyla, antizyme sequences were clustered into twelve groups and specific combinations of profile HMMs were designed for each group. OAF has been tested on the current version of dbEST, where it identified over six thousand Expressed Sequence Tags (EST sequences encoding antizyme proteins (over two thousand antizyme CDS in these ESTs are non redundant. Conclusion OAF performs well on raw EST sequences and mRNA sequences derived from genomic annotations. OAF will be used for the future updates of the RECODE

  15. Rapid detection and quantification of tyrosine decarboxylase gene (tdc) and its expression in gram-positive bacteria associated with fermented foods using PCR-based methods. (United States)

    Torriani, Sandra; Gatto, Veronica; Sembeni, Silvia; Tofalo, Rosanna; Suzzi, Giovanna; Belletti, Nicoletta; Gardini, Fausto; Bover-Cid, Sara


    In this study, PCR-based procedures were developed to detect the occurrence and quantify the expression of the tyrosine decarboxylase gene (tdc) in gram-positive bacteria associated with fermented foods. Consensus primers were used in conventional and reverse transcription PCR to analyze a collection of 87 pure cultures of lactic acid bacteria and staphylococci. All enterococci, Staphylococcus epidermidis, Lactobacillus brevis, Lactobacillus curvatus, and Lactobacillus fermentum strains and 1 of 10 Staphylococcus xylosus strains produced amplification products with the primers DEC5 and DEC3 in accordance with results of the screening plate method and with previously reported result obtained with high-performance liquid chromatography. No amplicons were obtained for tyramine-negative strains, confirming the high specificity of these new primers. A novel quantitative real-time PCR assay was successfully applied to quantify tdc and its transcript in pure cultures and in meat and meat products. This assay allowed estimation of the influence of different variables (pH, temperature, and NaCl concentration) on the tdc expression of the tyraminogenic strain Enterococcus faecalis EF37 after 72 h of growth in M17 medium. Data obtained suggest that stressful conditions could induce greater tyrosine decarboxylase activity. The culture-independent PCR procedures developed here may be used for reliable and fast detection and quantification of bacterial tyraminogenic activity without the limitations of conventional techniques.

  16. Impact of Cell-free Supernatant of Lactic Acid Bacteria on Putrescine and Other Polyamine Formation by Foodborne Pathogens in Ornithine Decarboxylase Broth. (United States)

    Ozogul, Fatih; Tabanelli, Giulia; Toy, Nurten; Gardini, Fausto


    Conversion of ornithine to putrescine by Salmonella Paratyphi A, Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli was investigated in ornithine decarboxylase broth (ODB) using cell-free supernatants (CFSs) obtained from Leuconostoc mesenterodies subsp. cremoris, Pediococcus acidilactici, Lactococcus lactis subsp. lactis, Streptococcus thermophilus. Two groups of cell-free supernatants (25 or 50%) and control (only ODB) were prepared to investigate putrescine (PUT) and other polyamine formation by foodborne pathogens (FBPs). Significant differences (p < 0.05) were observed among the species for each amine. All of the CFSs reduced the formation of PUT by ≥65%. The production of cadaverine (CAD) was scarcely affected by the presence of CFSs, with the exception of the samples inoculated with L. monocytogenes. The variation in polyamine was found with respect to the control samples. Spermidine (SPD) was produced in lower amount in many samples, especially in Gram-negative FBPs, whereas spermine (SPN) increased drastically in the major part of the samples concerning the control. Histamine (HIS) was characterized by a marked concentration decrease in all of the samples, and tyramine (TYR) was accumulated in very low concentrations in the controls. Therefore, the ability of bacteria to produce certain biogenic amines such as HIS, TYR, PUT, and CAD has been studied to assess their risk and prevent their formation in food products. The results obtained from this study concluded that the lactic acid bacteria (LAB) strains with non-decarboxylase activity are capable of avoiding or limiting biogenic amine formation by FBP.

  17. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis. (United States)

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil


    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  18. Characteristic expression of γ-aminobutyric acid and glutamate decarboxylase in rat jejunum and its relation to differentiation of epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Fang-Yu Wang; Masahito Watanabe; Ren-Min Zhu; Kentaro Maemura


    AIM: To investigate the expression between γ-aminobutyric acid (GABA) and glutamate decarboxylase and its relation with differentiation and maturation of jejunal epithelial cells in rat jejunum.METHODS: Immunohistochemical expression of GABA and glutamate decarboxylase (GAD, including two isoforms,GAD65 and GAD67) was investigated in rat jejunum.Meanwhile, double staining was performed with GAD65 immunohistochemistry, followed by lectin histochemistry of fluorescent wheat germ agglutinin. Furthermore,evaluation of cell kinetics in jejunum was conducted by 3Hthymidine autoradiography and immunohistochemistry using a monoclonal antibody to proliferating cell nuclear antigen (PCNA).RESULTS: The cells showing positive immunoreactivity GABA and GAD65 were mainly distributed in the villi in rat jejunum, while jejunal epithelial cells were negative for GAD67. Positive GABA or GAD65 staining was mainly located in the cytoplasm and along the brush border of epithelial cells in the middle and upper portions. In addition, a few GABA and GAD65 strongly positive cells were scattered in the upper two thirds of jejunal villi. Double staining showed that GAD65 immunoreactivity was not found in goblet cells.3H-thymidine-labeled nuclei were found in the lower and middle portions of jejunal crypts, which was consistent with PCNA staining. Therefore, GABA and GAD65 were expressed in a maturation or functional zone.CONCLUSION: The characteristic expression of GABA and GAD suggests that GABA might be involved in regulation of differentiation and maturation of epithelial cells in rat jejunum.

  19. Anti-Yo and anti-glutamic acid decarboxylase antibodies presenting in carcinoma of the uterus with paraneoplastic cerebellar degeneration: a case report

    Directory of Open Access Journals (Sweden)

    Panegyres Peter K


    Full Text Available Abstract Introduction Paraneoplastic cerebellar degeneration is a rare non-metastatic manifestation of malignancy. In this report, to the best of our knowledge we describe for the first time a diagnosis of paraneoplastic cerebellar degeneration several months prior to the diagnosis of clear carcinoma of the uterus. Case presentation A 75-year-old Caucasian woman manifested a rapidly progressive cerebellar syndrome with nystagmus, past-pointing, dysdiadochokinesis, dysarthria, truncal ataxia and titubation. The paraneoplastic cerebellar degeneration was associated with anti-Yo and anti-glutamic acid decarboxylase antibodies. 14-3-3 protein was detected in the cerebrospinal fluid. She was treated with intravenous immunoglobulin prior to laparotomy, hysterectomy and bilateral salpingoophorectomy. Our patient has survived for three years following diagnosis and treatment. Conclusions To the best of our knowledge this is the first report of an association of clear cell carcinoma of the uterus and paraneoplastic cerebellar degeneration with both anti-Yo and anti-glutamic acid decarboxylase antibodies. The findings imply that both antibodies contributed to the fulminating paraneoplastic cerebellar degeneration observed in our patient, and this was of such severity it resulted in the release of 14-3-3 protein in the cerebrospinal fluid, a marker of neuronal death.

  20. Elimination of islet cell antibodies and glutamic acid decarboxylase antibodies II in a patient with newly diagnosed insulin-dependent diabetes mellitus. (United States)

    Richter, W O; Donner, M G; Schwandt, P


    Islet cell antibodies and glutamic acid decarboxylase II (GAD II) antibodies have been discussed in the autoimmune pathogenesis of insulin-dependent diabetes mellitus (IDDM). Hence, immunosuppressants, intravenous immunoglobulins, and plasmapheresis have been used in an effort to modulate autoimmune activity and thereby prevent the destruction of pancreatic beta-cells. We describe the autoantibody (islet cell antibody and GAD II) kinetics and clinical course in a patient with newly diagnosed IDDM treated with a specific immunoglobulin apheresis technique. Five days after the initial diagnosis a 37-year-old patient with IDDM underwent a series of seven immunoglobulin aphereses. Immunoglobulin (IgG, IgA, IgM), islet cell antibody, GAD II, and C-peptide concentrations were monitored for a time course of 74 days. Daily insulin requirements were recorded. One single immunoglobulin apheresis decreased IgG by 66.2 +/- 9.1%, IgA by 66.8 +/- 8.7%, and IgM by 57.7 +/- 12.9%. GAD II antibodies were reduced by 61.9 +/- 12.4%. The islet cell antibody titer declined from 1:32 to 1:4 after the treatment series. There were no relevant changes in the safety parameters determined nor were there any clinical side effects. The efficient decrease in islet cell antibodies and glutamic acid decarboxylase II antibodies in a patient with IDDM encourages further investigations into the impact of this treatment on the clinical course of this autoimmune disorder.

  1. Intrinsic vascular dopamine - a key modulator of hypoxia-induced vasodilatation in splanchnic vessels. (United States)

    Pfeil, Uwe; Kuncova, Jitka; Brüggmann, Doerthe; Paddenberg, Renate; Rafiq, Amir; Henrich, Michael; Weigand, Markus A; Schlüter, Klaus-Dieter; Mewe, Marco; Middendorff, Ralf; Slavikova, Jana; Kummer, Wolfgang


    Dopamine not only is a precursor of the catecholamines noradrenaline and adrenaline but also serves as an independent neurotransmitter and paracrine hormone. It plays an important role in the pathogenesis of hypertension and is a potent vasodilator in many mammalian systemic arteries, strongly suggesting an endogenous source of dopamine in the vascular wall. Here we demonstrated dopamine, noradrenaline and adrenaline in rat aorta and superior mesenteric arteries (SMA) by radioimmunoassay. Chemical sympathectomy with 6-hydroxydopamine showed a significant reduction of noradrenaline and adrenaline, while dopamine levels remained unaffected. Isolated endothelial cells were able to synthesize and release dopamine upon cAMP stimulation. Consistent with these data, mRNAs coding for catecholamine synthesizing enzymes, i.e. tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase, and dopamine-β-hydroxylase were detected by RT-PCR in cultured endothelial cells from SMA. TH protein was detected by immunohistochemisty and Western blot. Exposure of endothelial cells to hypoxia (1% O2) increased TH mRNA. Vascular smooth muscle cells partially expressed catecholaminergic traits. A physiological role of endogenous vascular dopamine was shown in SMA, where D1 dopamine receptor blockade abrogated hypoxic vasodilatation. Experiments on SMA with endothelial denudation revealed a significant contribution of the endothelium, although subendothelial dopamine release dominated. From these results we conclude that endothelial cells and cells of the underlying vascular wall synthesize and release dopamine in an oxygen-regulated manner. In the splanchnic vasculature, this intrinsic non-neuronal dopamine is the dominating vasodilator released upon lowering of oxygen tension.

  2. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord

    Directory of Open Access Journals (Sweden)

    Elizabeth A Gozal


    Full Text Available The trace amines (TAs, tryptamine, tyramine, and β-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC. We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC and for receptor-mediated actions via trace amine-associated receptors (TAARs 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na+-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine actions depended on intracellular uptake via pentamidine-sensitive Na+-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known

  3. Absence of autoantibodies connected to autoimmune polyendocrine syndrome type I and II and Addison's disease in girls and women with Turner syndrome

    Directory of Open Access Journals (Sweden)

    Kämpe Olle


    Full Text Available Abstract Background A disturbance in the immune system has been described in Turner syndrome (45,X, with an association to low levels of IgG and IgM and decreased levels of T- and B-lymphocytes. Also different autoimmune diseases have been connected to Turner syndrome (45,X, thyroiditis being the most common. Other autoimmune diseases seen are inflammatory bowel disease, insulin dependent diabetes mellitus, Addison's disease, rheumatoid arthritis, myasthenia gravis, vitiligo, alopecia, pernicious anaemia and hypoparathyroidism, but the association to Turner syndrome is not definite. Besides the typical features of Turner syndrome (short stature, failure to enter puberty spontaneously and infertility due to ovarian insufficiency ear problems are common. Otitis media and a progressive sensorineural hearing disorder are commonly seen. In the normal population there are known inner ear disorders related to autoimmune diseases. The aim of this study was to investigate patients with Turner syndrome regarding autoantibodies connected to the autoimmune disorders; autoimmune polyendocrine syndrome type I and II and Addison's disease, to screen for overlapping profile of autoantibodies. Blood samples from 110 Turner patients (7–65 years were investigated using in vitro transcription, translation and immunoprecipitation techniques regarding autoantibodies connected to autoimmune polyendocrine syndrome type I and II and Addison's disease (21-hydroxylase, 17α-hydroxylase, side-chain cleavage enzyme, aromatic L-amino acid decarboxylase, tyrosine hydroxylase and tryptophan hydroxylase. Results The autoantibodies investigated were not overrepresented among the Turner patients. Conclusion The autoimmune disorders associated with Turner syndrome do not seem to be of the same origin as Addison's disease, the type I or II autoimmune polyendocrine syndrome.

  4. Dopamine release via the vacuolar ATPase V0 sector c-subunit, confirmed in N18 neuroblastoma cells, results in behavioral recovery in hemiparkinsonian mice. (United States)

    Jin, Duo; Muramatsu, Shin-Ichi; Shimizu, Nobuaki; Yokoyama, Shigeru; Hirai, Hirokazu; Yamada, Kiyofumi; Liu, Hong-Xiang; Higashida, Chiharu; Hashii, Minako; Higashida, Akihiko; Asano, Masahide; Ohkuma, Shoji; Higashida, Haruhiro


    A 16-kDa proteolipid, mediatophore, in Torpedo electric organs mediates Ca(2+)-dependent acetylcholine release. Mediatophore is identical to the pore-forming stalk c-subunit of the V0 sector of vacuolar proton ATPase (ATP6V0C). The function of ATP6V0C in the mammalian central nervous system is not clear. Here, we report transfection of adeno-associated viral vectors harboring rat ATP6V0C into the mouse substantia nigra, in which high potassium stimulation increased overflow of endogenous dopamine (DA) measured in the striatum by in vivo microdialysis. Next, in the striatum of 6-hydroxydopamine-lesioned mice, a model of Parkinson's disease (PD), human tyrosine hydroxylase, aromatic l-amino-acid decarboxylase and guanosine triphosphate cyclohydrolase 1, together with or without ATP6V0C, were expressed in the caudoputamen for rescue. Motor performance on the accelerating rotarod test and amphetamine-induced ipsilateral rotation were improved in the rescued mice coexpressing ATP6V0C. [(3)H]DA, taken up into cultured N18 neuronal tumor cells transformed to express ATP6V0C, was released by potassium stimulation. These results indicated that ATP6V0C mediates DA release from nerve terminals in the striatum of DA neurons of normal mice and from gene-transferred striatal cells of parkinsonian mice. The results suggested that ATP6V0C may be useful as a rescue molecule in addition to DA-synthetic enzymes in the gene therapy of PD.

  5. Mutation of His465 Alters the pH-dependent Spectroscopic Properties of Escherichia coli Glutamate Decarboxylase and Broadens the Range of Its Activity toward More Alkaline pH

    NARCIS (Netherlands)

    Pennacchietti, E.; Lammens, T.M.; Capitani, G.; Franssen, M.C.R.; John, R.A.; Bossa, F.; Biase, De D.


    Glutamate decarboxylase (GadB) from Escherichia coli is a hexameric, pyridoxal 5'-phosphate-dependent enzyme catalyzing CO2 release from the a-carboxyl group of l-glutamate to yield ¿-aminobutyrate. GadB exhibits an acidic pH optimum and undergoes a spectroscopically detectable and strongly cooperat

  6. Distribution of glutamic acid decarboxylase messenger RNA-containing nerve cell populations of the male rat brain. (United States)

    Ferraguti, F; Zoli, M; Aronsson, M; Agnati, L F; Goldstein, M; Filer, D; Fuxe, K


    The distribution of glutamic acid decarboxylase (GAD) mRNA was investigated throughout the rat brain by means of in situ hybridization. Hybridization was carried out with a 35S-radiolabeled cRNA probe transcribed from a cDNA from cat occipital cortex and cloned in a SP6-T7 promoter-containing vector. Fixed tissue sections were hybridized with 35S GAD probe (0.6 kb length). Signal was detected by means of film or emulsion autoradiography. The autoradiograms were semiquantitatively evaluated by means of computer-assisted image analysis. The results obtained with this evaluation were correlated with the results of the semiquantitative analysis of GAD immunoreactivity performed by Mugnaini and Oertel. Specific labeling was only observed in neuronal cell bodies, whereas no labeling was found over neuropil, glial and endothelial cells. The highest labeling was found in the bulbus olfactorius (internal plexiform and granular layers) and in the caudal magnocellular nucleus of the hypothalamus. Strong labeling was observed in the Purkinje layer of the cerebellar cortex, the interpeduncular nucleus, the interstitial nucleus of Cajal, the nucleus of Darkschewitsch and the suprachiasmatic nucleus. Intermediate or low levels of GAD mRNA were present in various brain nuclei, where gamma-aminobutyric acid (GABA)-containing cell bodies had been observed with other techniques. Interestingly, a low level of GAD mRNA was found in the caudate-putamen and nucleus accumbens, where the vast majority of nerve cells is known to contain GAD immunoreactivity. Only a poor correlation was found between the present semiquantitative measurements of GAD mRNA content and previous analyses of the number of GAD-immunoreactive cell bodies. The present study demonstrates that there exists a differential regional expression of GAD mRNA. The comparison with cell counts performed by immunocytochemistry suggests that some brain areas, such as caudate-putamen and nucleus accumbens, contain a large number

  7. Immunohistochemical expression of ornithine decarboxylase, diamine oxidase, putrescine, and spermine in normal canine enterocolic mucosa, in chronic colitis, and in colorectal cancer. (United States)

    Rossi, Giacomo; Cerquetella, Matteo; Pengo, Graziano; Mari, Subeide; Balint, Emilia; Bassotti, Gabrio; Manolescu, Nicolae


    We compared the immunohistochemical expression of putrescine (PUT), spermine (SPM), ornithine decarboxylase (ODC), and diamine oxidase (DAO) in bioptic samples of canine colonic mucosa with chronic inflammation (i.e., granulomatous colitis and lymphoplasmacytic colitis) or neoplasia. Single and total polyamines levels were significantly higher in neoplastic tissue than in normal samples. Samples with different degrees of inflammation showed a general decrease expression of ODC if compared to controls; SPM was practically not expressed in control samples and very low in samples with chronic-granulomatous inflammation. In carcinomatous samples, the ODC activity was higher with respect to controls and samples with inflammation. This is the first description of polyamines expression in dog colonic mucosa in normal and in different pathological conditions, suggesting that the balance between polyamine degradation and biosynthesis is evidently disengaged during neoplasia.

  8. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and glutamine synthetase (GS) in the area postrema of the cat. Light and electron microscopy (United States)

    D'Amelio, Fernando E.; Mehler, William R.; Gibbs, Michael A.; Eng, Lawrence F.; Wu, Jang-Yen


    Morphological evidence is presented of the existence of the putative neurotransmitter gamma-aminobutyric acid (GABA) in axon terminals and of glutamine synthetase (GS) in ependymoglial cells and astroglial components of the area postrema (AP) of the cat. Purified antiserum directed against the GABA biosynthetic enzyme glutamic acid decarboxylase (GAD) and GS antiserum were used. The results showed that punctate structures of variable size corresponding to axon terminals exhibited GAD-immunoreactivity and were distributed in varying densities. The greatest accumulation occurred in the caudal and middle segment of the AP and particularly in the area subpostrema, where the aggregation of terminals was extremely dense. The presence of both GAD-immunoreactive profiles and GS-immunostained ependymoglial cells and astrocytes in the AP provide further evidence of the functional correlation between the two enzymes.

  9. Occurrence of Type 1 Diabetes in Graves' Disease Patients Who Are Positive for Antiglutamic Acid Decarboxylase Antibodies: An 8-Year Followup Study

    Directory of Open Access Journals (Sweden)

    Matsuo Taniyama


    Full Text Available Glutamic acid decarboxylase antibodies (GADAs are one of the markers of islet cell autoimmunity and are sometimes present before the onset of type 1 diabetes (T1D. GADA can be present in Graves' patients without diabetes; however, the outcome of GADA-positive Graves' patients is not fully understood, and the predictive value of GADA for the development of T1D in Graves' patients remains to be clarified. We investigated the prevalence of GADA in 158 patients with Graves' disease and detected GADA in 10 patients. They were followed up to discover whether or not T1D developed. In the course of eight years, 2 patients with high titers of GADA developed T1D, both had long-standing antithyroid drug-resistant Graves' disease. Thus, Graves' disease with high GADA titer seems to be at high risk for T1D.

  10. 4-Vinylphenol biosynthesis from cellulose as the sole carbon source using phenolic acid decarboxylase- and tyrosine ammonia lyase-expressing Streptomyces lividans. (United States)

    Noda, Shuhei; Kawai, Yoshifumi; Tanaka, Tsutomu; Kondo, Akihiko


    Streptomyces lividans was adopted as a host strain for 4-vinylphenol (4VPh) production directly from cellulose. In order to obtain novel phenolic acid decarboxylase (PAD) expressed in S. lividans, PADs distributed among Streptomyces species were screened. Three novel PADs, derived from Streptomycessviceus, Streptomyceshygroscopicus, and Streptomycescattleya, were successfully obtained and expressed in S. lividans. S. sviceus PAD (SsPAD) could convert p-hydroxycinnamic acid (pHCA) to 4VPh more efficiently than the others both in vitro and in vivo. For 4VPh production directly from cellulose, l-tyrosine ammonia lyase derived from Rhodobacter sphaeroides and SsPAD were introduced into endoglucanase-secreting S. lividans, and the 4VPh biosynthetic pathway was constructed therein. The created transformants successfully produced 4VPh directly from cellulose.

  11. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. (United States)

    Dung Pham, Van; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho


    Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8% by inactivating competing pathways.

  12. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. (United States)

    Yu, Guang-Hui; Zou, Jie; Feng, Jing; Peng, Xiong-Bo; Wu, Ju-You; Wu, Ying-Liang; Palanivelu, Ravishankar; Sun, Meng-Xiang


    γ-Aminobutyric acid (GABA) is implicated in pollen tube growth, but the molecular and cellular mechanisms that it mediates are largely unknown. Here, it is shown that exogenous GABA modulates putative Ca(2+)-permeable channels on the plasma membranes of tobacco pollen grains and pollen tubes. Whole-cell voltage-clamp experiments and non-invasive micromeasurement technology (NMT) revealed that the influx of Ca(2+) increases in pollen tubes in response to exogenous GABA. It is also demonstrated that glutamate decarboxylase (GAD), the rate-limiting enzyme of GABA biosynthesis, is involved in feedback controls of Ca(2+)-permeable channels to fluctuate intracellular GABA levels and thus modulate pollen tube growth. The findings suggest that GAD activity linked with Ca(2+)-permeable channels relays an extracellular GABA signal and integrates multiple signal pathways to modulate tobacco pollen tube growth. Thus, the data explain how GABA mediates the communication between the style and the growing pollen tubes.

  13. Immunohistochemical Expression of Ornithine Decarboxylase, Diamine Oxidase, Putrescine, and Spermine in Normal Canine Enterocolic Mucosa, in Chronic Colitis, and in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Giacomo Rossi


    Full Text Available We compared the immunohistochemical expression of putrescine (PUT, spermine (SPM, ornithine decarboxylase (ODC, and diamine oxidase (DAO in bioptic samples of canine colonic mucosa with chronic inflammation (i.e., granulomatous colitis and lymphoplasmacytic colitis or neoplasia. Single and total polyamines levels were significantly higher in neoplastic tissue than in normal samples. Samples with different degrees of inflammation showed a general decrease expression of ODC if compared to controls; SPM was practically not expressed in control samples and very low in samples with chronic-granulomatous inflammation. In carcinomatous samples, the ODC activity was higher with respect to controls and samples with inflammation. This is the first description of polyamines expression in dog colonic mucosa in normal and in different pathological conditions, suggesting that the balance between polyamine degradation and biosynthesis is evidently disengaged during neoplasia.

  14. Synergistic and antagonistic effect of lactic acid bacteria on tyramine production by food-borne pathogenic bacteria in tyrosine decarboxylase broth. (United States)

    Kuley, Esmeray; Ozogul, Fatih


    The effect of lactic acid bacteria (LAB) strains on tyramine (TYR) and also other biogenic amines (BA) production by eight common food-borne pathogen (FBP) in tyrosine decarboxylase broth (TDB) was investigated by using a rapid HPLC method. Significant differences were observed among the FBP strains in ammonia (AMN) and BA production apart from tryptamine, histamine (HIS) and spermine formation (pfood-borne pathogenic bacteria, although the effect of some LAB strains on BA production was strain-dependent. Lactococcus spp. and Streptococcus spp. resulted in significantly higher TYR accumulation by Aeromonas hydrophila and Enterococcus faecalis in TDB. The presence of Lactococcus and/or Lactobacillus in TDB significantly increased HIS production by A. hydrophila, Escherichia coli, Ent. faecalis, Klebsiella pneumoniae and Pseudomonas aeruginosa, whereas HIS accumulation was significantly reduced by Staphylococcus aureus, S. paratyphi A and Listeria monocytogenes.

  15. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: evoked release of glutamate, GABA, aspartate and glutamate decarboxylase activity in control and degranulated rat hippocampus. (United States)

    Taupin, P; Ben-Ari, Y; Roisin, M P


    Using discontinuous density gradient centrifugation in isotonic Percoll sucrose, we have characterized two subcellular fractions (PII and PIII) enriched in mossy fiber synaptosomes and two others (SII and SIII) enriched in small synaptosomes. These synaptosomal fractions were compared with those obtained from adult hippocampus irradiated at neonatal stage to destroy granule cells and their mossy fibers. Synaptosomes were viable as judged by their ability to release aspartate, glutamate and GABA upon K+ depolarization. After irradiation, compared to the control values, the release of glutamate and GABA was decreased by 57 and 74% in the PIII fraction, but not in the other fractions and the content of glutamate, aspartate and GABA was also decreased in PIII fraction by 62, 44 and 52% respectively. These results suggest that mossy fiber (MF) synaptosomes contain and release glutamate and GABA. Measurement of the GABA synthesizing enzyme, glutamate decarboxylase, exhibited no significant difference after irradiation, suggesting that GABA is not synthesized by this enzyme in mossy fibers.

  16. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase. (United States)

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A


    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  17. Loss of autonoetic consciousness of recent autobiographical episodes and accelerated long-term forgetting in a patient with previously unrecognized glutamic acid decarboxylase antibody related limbic encephalitis

    Directory of Open Access Journals (Sweden)

    Juri-Alexander eWitt


    Full Text Available We describe a 35-year old male patient presenting with depressed mood and emotional instability who complained about severe anterograde and retrograde memory deficits characterized by accelerated long-term forgetting and loss of autonoetic consciousness regarding autobiographical memories of the last three years. Months before he had experienced two breakdowns of unknown etiology giving rise to the differential diagnosis of epileptic seizures after various practitioners and clinics had suggested different etiologies such as a psychosomatic condition, burnout, depression or dissociative amnesia. Neuropsychological assessment indicated selectively impaired figural memory performance. Extended diagnostics confirmed accelerated forgetting of previously learned and retrievable verbal material. Structural imaging showed bilateral swelling and signal alterations of temporomesial structures (left > right. Video-EEG monitoring revealed a left temporal epileptic focus and subclincal seizure, but no overt seizures. Antibody tests in serum and liquor were positive for glutamic acid decarboxylase antibodies. These findings led to the diagnosis of glutamic acid decarboxylase antibody related limbic encephalitis. Monthly steroid pulses over six months led to recovery of subjective memory and to intermediate improvement but subsequent worsening of objective memory performance. During the course of treatment the patient reported de novo paroxysmal non-responsive states. Thus, antiepileptic treatment was started and the patient finally became seizure free. At the last visit vocational reintegration was successfully in progress.In conclusion, amygdala swelling, retrograde biographic memory impairment, accelerated long-term forgetting and emotional instability may serve as indicators of limbic encephalitis, even in the absence of overt epileptic seizures. The monitoring of such patients calls for a standardized and concerted multilevel diagnostic approach with

  18. 13C magnetic resonance spectroscopy measurements with hyperpolarized [1‐13C] pyruvate can be used to detect the expression of transgenic pyruvate decarboxylase activity in vivo (United States)

    Dzien, Piotr; Tee, Sui‐Seng; Kettunen, Mikko I.; Lyons, Scott K.; Larkin, Timothy J.; Timm, Kerstin N.; Hu, De‐En; Wright, Alan; Rodrigues, Tiago B.; Serrao, Eva M.; Marco‐Rius, Irene; Mannion, Elizabeth; D'Santos, Paula; Kennedy, Brett W. C.


    Purpose Dissolution dynamic nuclear polarization can increase the sensitivity of the 13C magnetic resonance spectroscopy experiment by at least four orders of magnitude and offers a novel approach to the development of MRI gene reporters based on enzymes that metabolize 13C‐labeled tracers. We describe here a gene reporter based on the enzyme pyruvate decarboxylase (EC, which catalyzes the decarboxylation of pyruvate to produce acetaldehyde and carbon dioxide. Methods Pyruvate decarboxylase from Zymomonas mobilis (zmPDC) and a mutant that lacked enzyme activity were expressed using an inducible promoter in human embryonic kidney (HEK293T) cells. Enzyme activity was measured in the cells and in xenografts derived from the cells using 13C MRS measurements of the conversion of hyperpolarized [1‐13C] pyruvate to H13 CO3–. Results Induction of zmPDC expression in the cells and in the xenografts derived from them resulted in an approximately two‐fold increase in the H13 CO3–/[1‐13C] pyruvate signal ratio following intravenous injection of hyperpolarized [1‐13C] pyruvate. Conclusion We have demonstrated the feasibility of using zmPDC as an in vivo reporter gene for use with hyperpolarized 13C MRS. Magn Reson Med 76:391–401, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26388418

  19. Glutamic acid decarboxylase antibodies are indicators of the course, but not of the onset, of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities Study

    Directory of Open Access Journals (Sweden)

    A. Vigo


    Full Text Available To efficiently examine the association of glutamic acid decarboxylase antibody (GADA positivity with the onset and progression of diabetes in middle-aged adults, we performed a case-cohort study representing the ~9-year experience of 10,275 Atherosclerosis Risk in Communities Study participants, initially aged 45-64 years. Antibodies to glutamic acid decarboxylase (GAD65 were measured by radioimmunoassay in 580 incident diabetes cases and 544 non-cases. The overall weighted prevalence of GADA positivity (³1 U/mL was 7.3%. Baseline risk factors, with the exception of smoking and interleukin-6 (P £ 0.02, were generally similar between GADA-positive and -negative individuals. GADA positivity did not predict incident diabetes in multiply adjusted (HR = 1.04; 95%CI = 0.55, 1.96 proportional hazard analyses. However, a small non-significant adjusted risk (HR = 1.29; 95%CI = 0.58, 2.88 was seen for those in the highest tertile (³2.38 U/mL of positivity. GADA-positive and GADA-negative non-diabetic individuals had similar risk profiles for diabetes, with central obesity and elevated inflammation markers, aside from glucose, being the main predictors. Among diabetes cases at study's end, progression to insulin treatment increased monotonically as a function of baseline GADA level. Overall, being GADA positive increased risk of progression to insulin use almost 10 times (HR = 9.9; 95%CI = 3.4, 28.5. In conclusion, in initially non-diabetic middle-aged adults, GADA positivity did not increase diabetes risk, and the overall baseline profile of risk factors was similar for positive and negative individuals. Among middle-aged adults, with the possible exception of those with the highest GADA levels, autoimmune pathophysiology reflected by GADA may become clinically relevant only after diabetes onset.

  20. Application of Glutamic Acid Decarboxylase Antibody Test in Children with Diabetes%谷氨酸脱羧酶抗体检测在儿童糖尿病中的应用

    Institute of Scientific and Technical Information of China (English)



    Objective To explore the application value of detection of glutamic acid decarboxylase antibody in children with diabetes in. Methods Select the January 2013, 2015 years 1 month in the hospital of glutamic acid decarboxylase antibody detection of 97 cases of diabetes mellitus patients as the observation group, and the selection of 97 cases of normal children as control group, on the two groups of glutamic acid decarboxylase antibody positive rate. Results After testing, observation group of glutamic acid decarboxylase antibody positive rate was 97.9%, control group of glutamic acid decarboxylase anti-body positive rate was 0, two groups compared with statistical significance (P<0.05). Conclusion Glutamic acid decarboxy-lase antibody detection of children with type 1 diabetes diagnosis has important clinical significance, it is worth in the clini-cal application.%目的:探讨谷氨酸脱羧酶抗体检测在儿童糖尿病中的应用价值。方法选取2013年1月-2015年1月在医院进行谷氨酸脱羧酶抗体检测的97例糖尿病患儿作为观察组,并选取97例正常儿童作为对照组,对两组谷氨酸脱羧酶抗体阳性率做比较。结果经过检测后,观察组谷氨酸脱羧酶抗体阳性率为97.9%,对照组谷氨酸脱羧酶抗体阳性率为0,两组比较差异具有统计学意义(P<0.05)。结论进行谷氨酸脱羧酶抗体检测对儿童1型糖尿病的诊断具有重大的临床意义,值得在临床上推广应用。

  1. Expression of messenger RNAs for glutamic acid decarboxylase, preprotachykinin, cholecystokinin, somatostatin, proenkephalin and neuropeptide Y in the adult rat superior colliculus. (United States)

    Harvey, A R; Heavens, R P; Yellachich, L A; Sirinathsinghji, D J


    The mammalian superior colliculus is an important subcortical integrator of sensorimotor behaviours. It is multi-layered, each layer containing specific neuronal types and possessing distinct input/output relationships. Here we use in situ hybridisation methods to map the distribution of seven neurotransmitters/neuromodulator systems in adult rat superior colliculus. Coronal sections were probed for preprotachykinin, cholecystokinin, somatostatin, proenkephalin, neuropeptide Y and the enzymes glutamic acid decarboxylase and choline acetyltransferase, markers for GABA and acetylcholine respectively. Cells expressing glutamic acid decarboxylase messenger RNA were the most abundant, the highest density being found in the superficial layers. Many cells containing proprotachykinin messenger RNA were found in stratum zonale and the upper two-thirds of stratum griseum superficiale; cells were also located in deeper tectal laminae, particularly caudomedially. Most cholecystokinin messenger RNA expressing cells were located in the superficial layers with a prominent band in the middle third of stratum griseum superficiale. Cells expressing moderate to high levels of somatostatin messenger RNA formed a dense band in the lower third of stratum griseum superficiale/upper stratum opticum; two less distinct tiers of labelling were seen in deeper layers. These in situ hybridisation data reveal three distinct sub-laminae in rat stratum griseum superficiale. Cells expressing moderate to low levels of proenkephalin messenger RNA were located in lower stratum griseum superficiale/upper stratum opticum and intermediate laminae. A cluster of enkephalinergic cells was located medially in the deep tectal laminae. Expression of neuropeptide Y messenger RNA was relatively low and mostly confined to cells in stratum griseum superficiale and stratum opticum. No choline acetyltransferase messenger RNA was detected. This in situ analysis of seven different neurotransmitters

  2. Brewers' yeast pyruvate decarboxylase produces acetoin from acetaldehyde: a novel tool to study the mechanism of steps subsequent to carbon dioxide loss. (United States)

    Chen, G C; Jordan, F


    A gas-liquid chromatographic technique was developed for the determination of both acetaldehyde and the 3-4% acetoin side product that results from the brewers' yeast pyruvate decarboxylase (EC catalyzed reaction of pyruvic acid. Employing this method enabled the demonstration of the catalysis of acetaldehyde condensation to acetoin by the enzyme. It was found that the acetoin produced enzymatically from pyruvic acid or from acetaldehyde was optically active, thus providing stereochemical information about the reaction. Deuterium kinetic isotope effects (employing CH3CHO and CH3CDO) were determined on the steady-state kinetic parameters to be 4.5 (Vmax) and 3.2 (Vmax/Kappm), respectively. This enabled, for the first time, the estimation of relative kinetic barriers for steps past decarboxylation. It could be concluded that (a) C-H bond scission was part of rate limitation in the enzyme-catalyzed condensation of acetaldehyde to acetoin and that (b) among the steps leading to the release of acetaldehyde, protonation of the key enamine intermediate was part of rate limitation. This latter finding is also directly applicable to the mechanism of pyruvate decarboxylation.

  3. FcWRKY70, a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene. (United States)

    Gong, Xiaoqing; Zhang, Jingyan; Hu, Jianbing; Wang, Wei; Wu, Hao; Zhang, Qinghua; Liu, Ji-Hong


    WRKY comprises a large family of transcription factors in plants, but most WRKY members are still poorly understood. In this study, we report functional characterization of a Group III WRKY gene (FcWRKY70) from Fortunella crassifolia. FcWRKY70 was greatly induced by drought and abscisic acid, but slightly or negligibly by salt and cold. Overexpression of FcWRKY70 in tobacco (Nicotiana nudicaulis) and lemon (Citrus lemon) conferred enhanced tolerance to dehydration and drought stresses. Transgenic tobacco and lemon exhibited higher expression levels of ADC (arginine decarboxylase), and accumulated larger amount of putrescine in comparison with wild type (WT). Treatment with D-arginine, an inhibitor of ADC, caused transgenic tobacco plants more sensitive to dehydration. Knock-down of FcWRKY70 in kumquat down-regulated ADC abundance and decreased putrescine level, accompanied by compromised dehydration tolerance. The promoter region of FcADC contained two W-box elements, which were shown to be interacted with FcWRKY70. Taken together, our data demonstrated that FcWRKY70 functions in drought tolerance by, at least partly, promoting production of putrescine via regulating ADC expression.

  4. Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat. (United States)

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Lu, Lingli; Lin, Xianyong


    Aluminum (Al) stress induces putrescine (Put) accumulation in several plants and this response is proposed to alleviate Al toxicity. However, the mechanisms underlying this alleviation remain largely unknown. Here, we show that exposure to Al clearly increases Put accumulation in the roots of wheat plants (Triticum aestivum L. 'Xi Aimai-1') and that this was accompanied by significant increase in the activity of arginine decarboxylase (ADC), a Put producing enzyme. Application of an ADC inhibitor (d-arginine) terminated the Al-induced Put accumulation, indicating that increased ADC activity may be responsible for the increase in Put accumulation in response to Al. The d-arginine treatment also increased the Al-induced accumulation of cell wall polysaccharides and the degree of pectin demethylation in wheat roots. Thus, it elevated Al retention in cell walls and exacerbated Al accumulation in roots, both of which aggravate Al toxicity in wheat plants. The opposite effects were true for exogenous Put application. These results suggest that ADC-dependent Put accumulation plays important roles in providing protection against Al toxicity in wheat plants through decreasing cell wall polysaccharides and increasing the degree of pectin methylation, thus decreasing Al retention in the cell walls.

  5. Trypanosoma cruzi Coexpressing Ornithine Decarboxylase and Green Fluorescence Proteins as a Tool to Study the Role of Polyamines in Chagas Disease Pathology

    Directory of Open Access Journals (Sweden)

    Jeremías José Barclay


    Full Text Available Polyamines are essential for Trypanosoma cruzi, the causative agent of Chagas disease. As T. cruzi behaves as a natural auxotrophic organism, it relies on host polyamines biosynthesis. In this paper we obtained a double-transfected T. cruzi parasite that expresses the green fluorescent protein (GFP and a heterologous ornithine decarboxylase (ODC, used itself as a novel selectable marker. These autotrophic and fluorescent parasites were characterized; the ODC presented an apparent Km for ornithine of 0.51 ± 0.16 mM and an estimated Vmax value of 476.2 nmoles/h/mg of protein. These expressing ODC parasites showed higher metacyclogenesis capacity than the auxotrophic counterpart, supporting the idea that polyamines are engaged in this process. This double-transfected T. cruzi parasite results in a powerful tool—easy to follow by its fluorescence—to study the role of polyamines in Chagas disease pathology and in related processes such as parasite survival, invasion, proliferation, metacyclogenesis, and tissue spreading.

  6. Inhibition of ileal and colonic ornithine decarboxylase activity by alpha-difluoromethylornithine in rats: transient atrophic changes and loss of postresectional adaptive growth. (United States)

    Kingsnorth, A N; Abu-Khalaf, M; LaMuraglia, G M; McCann, P P; Diekema, K A; Ross, J S; Malt, R A


    To determine the role of putrescine synthesis in adaptive hyperplasia of the ileum and colon, DL-alpha-difluoromethylornithine (DFMO), an enzyme-activated, irreversible inhibitor of ornithine decarboxylase (ODC), the enzyme controlling putrescine biosynthesis, was fed to rats after excision of the proximal half of the small bowel. A rise in ODC activity (280% in the proximal ileum, 62% in the proximal colon) and a rise in putrescine content (220% in the proximal ileum, 250% in the proximal colon) normally accompanied characteristic cytochemical adaptive increases in the ileum and colon at day 6. Inclusion of 1% DFMO (2.1 gm/kg/day) in drinking water for 12 hours before operation and for 14 days thereafter decreased ODC activity by 85% to 96%, reduced levels of putrescine and spermidine and measurements of the adaptive response by 50% in the ileum, and abolished the adaptive response in the colon. During the first 10 days of DFMO feeding, villous atrophy and other hypoplastic changes occurred in control rats, but by 14 days of DFMO feeding atrophy and hypoplasia were no longer present. Although DFMO inhibits adaptive hyperplasia occurring in the ileum and colon of rats after resection of the proximal half of the small bowel, spontaneous recovery of villous atrophy occurs during further DFMO feeding and may protect the host during chemotherapy.

  7. Consequence of nigrostriatal denervation and L-dopa therapy on the expression of glutamic acid decarboxylase messenger RNA in the pallidum. (United States)

    Herrero, M T; Levy, R; Ruberg, M; Luquin, M R; Villares, J; Guillen, J; Faucheux, B; Javoy-Agid, F; Guridi, J; Agid, Y; Obeso, J A; Hirsch, E C


    To examine the consequences of nigrostriatal denervation and L-dopa treatment on the basal ganglia output system, we analyzed, by quantitative in situ hybridization, the messenger RNA coding for glutamic acid decarboxylase (Mr 67,000) (GAD67 mRNA) in pallidal cells from patients with Parkinson's disease (PD), monkeys rendered parkinsonian by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) receiving or not receiving L-dopa, and their respective control subjects. In MPTP-treated monkeys, the expression of GAD67 mRNA was increased in cells from the internal pallidum, and this effect was abolished by L-dopa treatment. There were no differences in the levels of GAD67 mRNA between patients with PD, who were all treated with L-dopa, and control subjects. These results indicate that the level of GAD67 mRNA is increased in the cells of the internal pallidum after nigrostriatal dopaminergic denervation and that this increase can be reversed by L-dopa therapy.

  8. Differential effect of functional olfactory bulb deafferentation on tyrosine hydroxylase and glutamic acid decarboxylase messenger RNA levels in rodent juxtaglomerular neurons. (United States)

    Stone, D M; Grillo, M; Margolis, F L; Joh, T H; Baker, H


    Expression of the dopaminergic phenotype in olfactory bulb (OB) juxtaglomerular neurons (constituting a population of periglomerular and external tufted cells) is dependent upon functional innervation by peripheral olfactory receptors. Loss of functional input in rodents, by either peripheral deafferentation or deprivation of odorant access, results in a profound decrease in the expression of juxtaglomerular tyrosine hydroxylase (TH). We have examined the effects of such treatments on the expression of the neurotransmitter biosynthetic enzyme glutamic acid decarboxylase (GAD), which is colocalized with TH in the majority of TH-containing juxtaglomerular neurons. Following either chemically induced OB deafferentation in adult mice or unilateral odor deprivation in neonatal rats, steady-state OB GAD messenger RNA levels remained essentially unchanged as assessed by Northern blot analysis 20-40 days after treatment. These results were confirmed by in situ hybridization analysis, which demonstrated a profound loss of juxtaglomerular TH messenger RNA but no accompanying decrease in regionally colocalized GAD message. Since GAD is found in nearly all dopaminergic OB cells, the preservation of juxtaglomerular GAD message implies that olfactory receptor neurons exert a differential transneuronal regulation of TH and GAD gene transcription.

  9. Measuring L-dopa in plasma and urine to monitor therapy of elderly patients with Parkinson disease treated with L-dopa and a dopa decarboxylase inhibitor. (United States)

    Dutton, J; Copeland, L G; Playfer, J R; Roberts, N B


    We have established a method for measuring L-dopa in plasma and urine, including the metabolites dopamine and L-dopac, using separation by ion-pair reversed-phase HPLC and quantification with an electrochemical detector. The assay was applied to the therapeutic monitoring of elderly patients with established Parkinson disease being treated with L-dopa plus a dopa decarboxylase inhibitor. Plasma L-dopa was evaluated in relation to dosage and postdose sampling time in 71 outpatients with Parkinson disease. L-Dopa concentrations were greatest in the patients taking the highest dosages prescribed and decreased significantly with increasing time after postdose sampling. Comparison of plasma L-dopa concentrations with a published therapeutic range established by intravenous administration of L-dopa was helpful in assessing the suitability of each patient's drug dosage, assessing patients' compliance, and avoiding overdosage but was not useful in the overall clinical assessment of progression of disease or of the long-term therapeutic response. Urine measurements confirmed the plasma concentrations but showed no further advantage. The recommended time for sample collection is between 1.5 and 3 h after the first morning dose. Plasma is the preferred matrix but if blood sampling is difficult, particularly from elderly/infirm individuals, an untimed urine collection could be used.

  10. Oxidative Status of DJ-1-dependent Activation of Dopamine Synthesis through Interaction of Tyrosine Hydroxylase and 4-Dihydroxy-l-phenylalanine (l-DOPA) Decarboxylase with DJ-1* (United States)

    Ishikawa, Shizuma; Taira, Takahiro; Niki, Takeshi; Takahashi-Niki, Kazuko; Maita, Chinatsu; Maita, Hiroshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M. M.


    Parkinson disease (PD) is caused by loss of dopamine, which is synthesized from tyrosine by two enzymes, tyrosine hydroxylase (TH) and 4-dihydroxy-l-phenylalanine decarboxylase (DDC). DJ-1 is a causative gene for the familial form of PD, but little is known about the roles of DJ-1 in dopamine synthesis. In this study, we found that DJ-1 directly bound to TH and DDC and positively regulated their activities in human dopaminergic cells. Mutants of DJ-1 found in PD patients, including heterozygous mutants, lost their activity and worked as dominant-negative forms toward wild-type DJ-1. When cells were treated with H2O2, 6-hydroxydopamine, or 1-methyl-4-phenylpyridinium, changes in activities of TH and DDC accompanied by oxidation of cysteine 106 of DJ-1 occurred. It was found that DJ-1 possessing Cys-106 with SH and SOH forms was active and that DJ-1 possessing Cys-106 with SO2H and SO3H forms was inactive in terms of stimulation of TH and DDC activities. These findings indicate an essential role of DJ-1 in dopamine synthesis and contribution of DJ-1 to the sporadic form of PD. PMID:19703902

  11. Cysteine dioxygenase and cysteine sulfinate decarboxylase genes of the deep-sea mussel Bathymodiolus septemdierum: possible involvement in hypotaurine synthesis and adaptation to hydrogen sulfide. (United States)

    Nagasaki, Toshihiro; Hongo, Yuki; Koito, Tomoko; Nakamura-Kusakabe, Ikumi; Shimamura, Shigeru; Takaki, Yoshihiro; Yoshida, Takao; Maruyama, Tadashi; Inoue, Koji


    It has been suggested that invertebrates inhabiting deep-sea hydrothermal vent areas use the sulfinic acid hypotaurine, a precursor of taurine, to protect against the toxicity of hydrogen sulfide contained in the seawater from the vent. In this protective system, hypotaurine is accumulated in the gill, the primary site of sulfide exposure. However, the pathway for hypotaurine synthesis in mollusks has not been identified. In this study, we screened for the mRNAs of enzymes involved in hypotaurine synthesis in the deep-sea mussel Bathymodiolus septemdierum and cloned cDNAs encoding cysteine dioxygenase and cysteine sulfinate decarboxylase. As mRNAs encoding cysteamine dioxygenase and cysteine lyase were not detected, the cysteine sulfinate pathway is suggested to be the major pathway of hypotaurine and taurine synthesis. The two genes were found to be expressed in all the tissues examined, but the gill exhibited the highest expression. The mRNA level in the gill was not significantly changed by exposure to sulfides or thiosulfate. These results suggests that the gill of B. septemdierum maintains high levels of expression of the two genes regardless of ambient sulfide level and accumulates hypotaurine continuously to protect against sudden exposure to high level of sulfide.

  12. Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli. (United States)

    Le Vo, Tam Dinh; Ko, Ji-seun; Park, Si Jae; Lee, Seung Hwan; Hong, Soon Ho


    Gamma-aminobutyric acid (GABA) is a precursor of one of the most promising heat-resistant biopolymers, Nylon-4, and can be produced by the decarboxylation of monosodium glutamate (MSG). In this study, a synthetic protein complex was applied to improve the GABA conversion in engineered Escherichia coli. Complexes were constructed by assembling a single protein-protein interaction domain SH3 to the glutamate decarboxylase (GadA and GadB) and attaching a cognate peptide ligand to the glutamate/GABA antiporter (GadC) at the N-terminus, C-terminus, and the 233rd amino acid residue. When GadA and GadC were co-overexpressed via the C-terminus complex, a GABA concentration of 5.65 g/l was obtained from 10 g/l MSG, which corresponds to a GABA yield of 93 %. A significant increase of the GABA productivity was also observed where the GABA productivity increased 2.5-fold in the early culture period due to the introduction of the synthetic protein complex. The GABA pathway efficiency and GABA productivity were enhanced by the introduction of the complex between Gad and glutamate/GABA antiporter.

  13. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2 in human oral cancer cell line.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamamoto

    Full Text Available BACKGROUND: Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM, which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails. METHODOLOGY/PRINCIPAL FINDINGS: Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2. Protein level of DNA methyltransferase 3B (DNMT3B and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant. CONCLUSIONS/SIGNIFICANCE: OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.

  14. Brain histaminergic system in mast cell-deficient (Ws/Ws) rats: histamine content, histidine decarboxylase activity, and effects of (S) alpha-fluoromethylhistidine. (United States)

    Sugimoto, K; Maeyama, K; Alam, K; Sakurai, E; Onoue, H; Kasugai, T; Kitamura, Y; Watanabe, T


    The mast cell-deficient [Ws/Ws (White spotting in the skin)] rat was investigated with regard to the origin of histamine in the brain. No mast cells were detected in the pia mater and the perivascular region of the thalamus of Ws/Ws rats by Alcian Blue staining. The histamine contents and histidine decarboxylase (HDC) activities of various brain regions of Ws/Ws rats were similar to those of +/+ rats except the histamine contents of the cerebral cortex and cerebellum. As the cerebral cortex and cerebellum have meninges that are difficult to remove completely, the histamine contents of these two regions may be different between Ws/Ws and +/+ rats. We assume that the histamine content of whole brain with meninges in Ws/Ws rats is < 60% of that in +/+ rats. So we conclude that approximately half of the histamine content of rat brain is derived from mast cells. Next, the effects of (S) alpha-fluoromethylhistidine (FMH), a specific inhibitor of HDC, on the histamine contents and HDC activities of various regions of the brain were examined in Ws/Ws rats. In the whole brain of Ws/Ws rats, 51 and 37% of the histamine content of the control group remained 2 and 6 h, respectively, after FMH administration (100 mg/kg of body weight). Therefore, we suggest that there might be other histamine pools including histaminergic neurons in rat brain.

  15. Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants. (United States)

    Fujiwara, Ryosuke; Noda, Shuhei; Tanaka, Tsutomu; Kondo, Akihiko


    To produce styrene from a biomass-derived carbon source, Streptomyces lividans was adopted as a host strain. The gene encoding ferulic acid decarboxylase from Saccharomyces cerevisiae (FDC1) was introduced into S. lividans, and the resulting S. lividans transformant successfully expressed FDC1 and converted trans-cinnamic acid (CA) to styrene. A key factor in styrene production using microbes is the recovery of volatile styrene. In the present study, we selected polystyrene resin beads XRD-4 as the absorbent agent to recover styrene produced using S. lividans transformants, which enabled recovery of styrene from the culture broth. For styrene production from biomass-derived carbon sources, S. lividans/FDC1 was cultured together with S. lividans/p-encP, which we previously reported as a CA-producing S. lividans strain. This coculture system combined with the recovery of styrene using XAD-4 allowed the production of styrene from glucose, cellobiose, or xylo-oligosaccharide, respectively.

  16. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a "fail-safe" mechanism of early embryogenesis

    Institute of Scientific and Technical Information of China (English)



    In Xenopus, injection of S-adenosylmethionine decarboxylase (SAMDC) mRNA into fertilized eggs or2-cell stage embryos induces massive cell dissociation and embryo-lysis at the early gastrula stage due toactivation of the maternal program of apoptosis. We injected SAMDC mRNA into only one of the animalside blastomeres of embryos at different stages of cleavage, and examined the timing of the onset of theapoptotic reaction. In the injection at 4- and 8-cell stages, a considerable number of embryos developed intotadpoles and in the injection at 16- and 32-cell stages, all the embryos became tadpoles, although tadpolesobtained were sometimes abnormal. However, using GFP as a lineage tracer, we found that descendant cellsof the blastomere injected with SAMDC mRNA at 8- to 32-cell stages are confined within the blastocoel atthe early gastrula stage and undergo apoptotic cell death within the blastocoel, in spite of the continueddevelopment of the injected embryos. These results indicate that cells overexpressed with SAMDC undergoapoptotic cell death consistently at the early gastrula stage, irrespective of the timing of the mRNA injection.We assume that apoptosis is executed in Xenopus early gastrulae as a "fail-safe" mechanism to eliminatephysiologically-severely damaged cells to save the rest of the embryo.

  17. Heterofunctional Magnetic Metal-Chelate-Epoxy Supports for the Purification and Covalent Immobilization of Benzoylformate Decarboxylase From Pseudomonas Putida and Its Carboligation Reactivity. (United States)

    Tural, Servet; Tural, Bilsen; Demir, Ayhan S


    In this study, the combined use of the selectivity of metal chelate affinity chromatography with the capacity of epoxy supports to immobilize poly-His-tagged recombinant benzoylformate decarboxylase from Pseudomonas putida (BFD, E.C. via covalent attachment is shown. This was achieved by designing tailor-made magnetic chelate-epoxy supports. In order to selectively adsorb and then covalently immobilize the poly-His-tagged BFD, the epoxy groups (300 µmol epoxy groups/g support) and a very small density of Co(2+)-chelate groups (38 µmol Co(2+)/g support) was introduced onto magnetic supports. That is, it was possible to accomplish, in a simple manner, the purification and covalent immobilization of a histidine-tagged recombinant BFD. The magnetically responsive biocatalyst was tested to catalyze the carboligation reactions. The benzoin condensation reactions were performed with this simple and convenient heterogeneous biocatalyst and were comparable to that of a free-enzyme-catalyzed reaction. The enantiomeric excess (ee) of (R)-benzoin was obtained at 99 ± 2% for the free enzyme and 96 ± 3% for the immobilized enzyme. To test the stability of the covalently immobilized enzyme, the immobilized enzyme was reused in five reaction cycles for the formation of chiral 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde, and it retained 96% of its original activity after five reaction cycles.

  18. Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: tyramine and 2-phenylethylamine accumulation and tyrDC gene expression. (United States)

    Bargossi, Eleonora; Tabanelli, Giulia; Montanari, Chiara; Lanciotti, Rosalba; Gatto, Veronica; Gardini, Fausto; Torriani, Sandra


    The ability to accumulate tyramine and 2-phenylethylamine by two strains of Enterococcus faecalis and two strains Enterococcus faecium was evaluated in two cultural media added or not with tyrosine. All the enterococcal strains possessed a tyrosine decarboxylase (tyrDC) which determined tyramine accumulation in all the conditions tested, independently on the addition of high concentration of free tyrosine. Enterococci differed in rate and level of biogenic amines accumulation. E. faecalis EF37 and E. faecium FC12 produced tyramine in high amount since the exponential growth phase, while 2-phenylethylamine was accumulated when tyrosine was depleted. E. faecium FC12 and E. faecalis ATCC 29212 showed a slower tyraminogenic activity which took place mainly in the stationary phase up to 72 h of incubation. Moreover, E. faecalis ATCC 29212 produced 2-phenylethylamine only in the media without tyrosine added. In BHI added or not with tyrosine the tyrDC gene expression level differed considerably depending on the strains and the growth phase. In particular, the tyrDC gene expression was high during the exponential phase in rich medium for all the strains and subsequently decreased except for E. faecium FC12. Even if tyrDC presence is common among enterococci, this study underlines the extremely variable decarboxylating potential of strains belonging to the same species, suggesting strain-dependent implications in food safety.

  19. Over-expression of mouse ornithine decarboxylase gene under the control of fruit-specific promoter enhances fruit quality in tomato. (United States)

    Pandey, Roopali; Gupta, Aarti; Chowdhary, Anuj; Pal, Ram Krishna; Rajam, Manchikatla Venkat


    Diamine putrescine (Put) and polyamines; spermidine (Spd) and spermine (Spm) are essential component of every cell because of their involvement in the regulation of cell division, growth and development. The aim of this study is to enhance the levels of Put during fruit development and see its implications in ripening and quality of tomato fruits. Transgenic tomato plants over-expressing mouse ornithine decarboxylase gene under the control of fruit-specific promoter (2A11) were developed. Transgenic fruits exhibited enhanced levels of Put, Spd and Spm, with a concomitant reduction in ethylene levels, rate of respiration and physiological loss of water. Consequently such fruits displayed significant delay of on-vine ripening and prolonged shelf life over untransformed fruits. The activation of Put biosynthetic pathway at the onset of ripening in transgenic fruits is also consistent with the improvement of qualitative traits such as total soluble solids, titratable acids and total sugars. Such changes were associated with alteration in expression pattern of ripening specific genes. Transgenic fruits were also fortified with important nutraceuticals like lycopene, ascorbate and antioxidants. Therefore, these transgenic tomatoes would be useful for the improvement of tomato cultivars through breeding approaches.

  20. Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli (United States)

    Kim, Junyoung; Seo, Hyung-Min; Bhatia, Shashi Kant; Song, Hun-Seok; Kim, Jung-Ho; Jeon, Jong-Min; Choi, Kwon-Young; Kim, Wooseong; Yoon, Jeong-Jun; Kim, Yun-Gon; Yang, Yung-Hun


    Itaconate, a C5 unsaturated dicarboxylic acid, is an important chemical building block that is used in manufacturing high-value products, such as latex and superabsorbent polymers. Itaconate is produced by fermentation of sugars by the filamentous fungus Aspergillus terreus. However, fermentation by A. terreus involves a long fermentation period and the formation of various byproducts, resulting in high production costs. E. coli has been developed as an alternative for producing itaconate. However, fermentation of glucose gives low conversion yields and low productivity. Here, we report the whole-cell bioconversion of citrate to itaconate with enhanced aconitase and cis-aconitate decarboxylase activities by controlling the expression of multiple cadA genes. In addition, this bioconversion system does not require the use of buffers, which reduces the production cost and the byproducts released during purification. Using this whole-cell bioconversion system, we were able to catalyze the conversion of 319.8 mM of itaconate (41.6 g/L) from 500 mM citrate without any buffer system or additional cofactors, with 64.0% conversion in 19 h and a productivity of 2.19 g/L/h. Our bioconversion system suggests very high productivity for itaconate production. PMID:28051098

  1. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose. (United States)

    Choi, Eun-Ji; Kim, Jin-Woo; Kim, Soo-Jung; Seo, Seung-Oh; Lane, Stephan; Park, Yong-Cheol; Jin, Yong-Su; Seo, Jin-Ho


    Galactose and glucose are two of the most abundant monomeric sugars in hydrolysates of marine biomasses. While Saccharomyces cerevisiae can ferment galactose, its uptake is tightly controlled in the presence of glucose by catabolite repression. It is desirable to construct engineered strains capable of simultaneous utilization of glucose and galactose for producing biofuels and chemicals from marine biomass. The MTH1 gene coding for transcription factor in glucose signaling was mutated in a pyruvate decarboxylase (Pdc)-deficient S. cerevisiae expressing heterologous 2,3-butanediol (2,3-BD) biosynthetic genes. The engineered S. cerevisiae strain consumed glucose and galactose simultaneously and produced 2,3-BD as a major product. Total sugar consumption rates increased with a low ratio of glucose/galactose, though, occurrence of the glucose depletion in a fed-batch fermentation decreased 2,3-BD production substantially. Through optimizing the profiles of sugar concentrations in a fed-batch cultivation with the engineered strain, 99.1 ± 1.7 g/L 2,3-BD was produced in 143 hours with a yield of 0.353 ± 0.022 g 2,3-BD/g sugars. This result suggests that simultaneous and efficient utilization of glucose and galactose by the engineered yeast might be applicable to the economical production of not only 2,3-BD, but also other biofuels and chemicals from marine biomass.

  2. HosA, a MarR Family Transcriptional Regulator, Represses Nonoxidative Hydroxyarylic Acid Decarboxylase Operon and Is Modulated by 4-Hydroxybenzoic Acid. (United States)

    Roy, Ajit; Ranjan, Akash


    Members of the Multiple antibiotic resistance Regulator (MarR) family of DNA binding proteins regulate transcription of a wide array of genes required for virulence and pathogenicity of bacteria. The present study reports the molecular characterization of HosA (Homologue of SlyA), a MarR protein, with respect to its target gene, DNA recognition motif, and nature of its ligand. Through a comparative genomics approach, we demonstrate that hosA is in synteny with nonoxidative hydroxyarylic acid decarboxylase (HAD) operon and is present exclusively within the mutS-rpoS polymorphic region in nine different genera of Enterobacteriaceae family. Using molecular biology and biochemical approach, we demonstrate that HosA binds to a palindromic sequence downstream to the transcription start site of divergently transcribed nonoxidative HAD operon and represses its expression. Furthermore, in silico analysis showed that the recognition motif for HosA is highly conserved in the upstream region of divergently transcribed operon in different genera of Enterobacteriaceae family. A systematic chemical search for the physiological ligand revealed that 4-hydroxybenzoic acid (4-HBA) interacts with HosA and derepresses HosA mediated repression of the nonoxidative HAD operon. Based on our study, we propose a model for molecular mechanism underlying the regulation of nonoxidative HAD operon by HosA in Enterobacteriaceae family.

  3. Study of orotidine 5'-monophosphate decarboxylase in complex with the top three OMP, BMP, and PMP ligands by molecular dynamics simulation. (United States)

    Jamshidi, Shirin; Jalili, Seifollah; Rafii-Tabar, Hashem


    Catalytic mechanism of orotidine 5'-monophosphate decarboxylase (OMPDC), one of the nature most proficient enzymes which provides large rate enhancement, has not been fully understood yet. A series of 30 ns molecular dynamics (MD) simulations were run on X-ray structure of the OMPDC from Saccharomyces cerevisiae in its free form as well as in complex with different ligands, namely 1-(5'-phospho-D-ribofuranosyl) barbituric acid (BMP), orotidine 5'-monophosphate (OMP), and 6-phosphonouridine 5'-monophosphate (PMP). The importance of this biological system is justified both by its high rate enhancement and its potential use as a target in chemotherapy. This work focuses on comparing two physicochemical states of the enzyme (protonated and deprotonated Asp91) and three ligands (substrate OMP, inhibitor, and transition state analog BMP and substrate analog PMP). Detailed analysis of the active site geometry and its interactions is properly put in context by extensive comparison with relevant experimental works. Our overall results show that in terms of hydrogen bond occupancy, electrostatic interactions, dihedral angles, active site configuration, and movement of loops, notable differences among different complexes are observed. Comparison of the results obtained from these simulations provides some detailed structural data for the complexes, the enzyme, and the ligands, as well as useful insights into the inhibition mechanism of the OMPDC enzyme. Furthermore, these simulations are applied to clarify the ambiguous mechanism of the OMPDC enzyme, and imply that the substrate destabilization and transition state stabilization contribute to the mechanism of action of the most proficient enzyme, OMPDC.

  4. Expression of an oxalate decarboxylase impairs the necrotic effect induced by Nep1-like protein (NLP) of Moniliophthora perniciosa in transgenic tobacco. (United States)

    da Silva, Leonardo F; Dias, Cristiano V; Cidade, Luciana C; Mendes, Juliano S; Pirovani, Carlos P; Alvim, Fátima C; Pereira, Gonçalo A G; Aragão, Francisco J L; Cascardo, Júlio C M; Costa, Marcio G C


    Oxalic acid (OA) and Nep1-like proteins (NLP) are recognized as elicitors of programmed cell death (PCD) in plants, which is crucial for the pathogenic success of necrotrophic plant pathogens and involves reactive oxygen species (ROS). To determine the importance of oxalate as a source of ROS for OA- and NLP-induced cell death, a full-length cDNA coding for an oxalate decarboxylase (FvOXDC) from the basidiomycete Flammulina velutipes, which converts OA into CO(2) and formate, was overexpressed in tobacco plants. The transgenic plants contained less OA and more formic acid compared with the control plants and showed enhanced resistance to cell death induced by exogenous OA and MpNEP2, an NLP of the hemibiotrophic fungus Moniliophthora perniciosa. This resistance was correlated with the inhibition of ROS formation in the transgenic plants inoculated with OA, MpNEP2, or a combination of both PCD elicitors. Taken together, these results have established a pivotal function for oxalate as a source of ROS required for the PCD-inducing activity of OA and NLP. The results also indicate that FvOXDC represents a potentially novel source of resistance against OA- and NLP-producing pathogens such as M. perniciosa, the causal agent of witches' broom disease of cacao (Theobroma cacao L.).

  5. Effects of S-adenosylmethionine decarboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos. (United States)

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Takai, Jun-Ichi; Yoshida, Junki; Mishina, Takamichi; Fuchimukai, Kota; Ogasawara, Tsukasa; Kariya, Taro; Tashiro, Kosuke; Igarashi, Kazuei


    We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.

  6. Involvement of caspase-9 in execution of the maternal program of apoptosis in Xenopus late blastulae overexpressed with S-adenosylmethionine decarboxylase. (United States)

    Takayama, Eiji; Higo, Takayasu; Kai, Masatake; Fukasawa, Masashi; Nakajima, Keisuke; Hara, Hiroshi; Tadakuma, Takushi; Igarashi, Kazuei; Yaoita, Yoshio; Shiokawa, Koichiro


    We previously demonstrated that overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus early embryos induces execution of maternal program of apoptosis shortly after midblastula transition, which likely serves as a fail-safe mechanism of early development to eliminate physiologically damaged cells before they entering the gastrula stage. To determine how caspases are involved in this process, we microinjected peptide inhibitors and "dominant-negative forms" of caspase-9 and -1 into Xenopus fertilized eggs, and found that inhibitors of caspase-9, but not caspase-1, completely suppress SAMDC-induced apoptosis. The lysate of SAMDC-overexpressing late blastulae contained activity to cleave in vitro-synthesized [(35)S]procaspase-9, but not [(35)S]procaspase-1, and mRNA for caspase-9, but not caspase-1, occurred abundantly in the unfertilized egg as maternal mRNA. We also found that overexpression of caspase-9 and -1 equally executes the apoptosis, but the apoptosis executed by these mRNAs was only partially rescued by Bcl-2 and rescued embryos did not develop beyond neurula stage. These results indicate that activation of caspase-9 is a key step for execution of the maternally preset program of apoptosis in Xenopus early embryos.

  7. Discovery of novel inhibitors of human S-adenosylmethionine decarboxylase based on in silico high-throughput screening and a non-radioactive enzymatic assay. (United States)

    Liao, Chenzeng; Wang, Yanlin; Tan, Xiao; Sun, Lidan; Liu, Sen


    Natural polyamines are small polycationic molecules essential for cell growth and development, and elevated level of polyamines is positively correlated with various cancers. As a rate-limiting enzyme of the polyamine biosynthetic pathway, S-adenosylmethionine decarboxylase (AdoMetDC) has been an attractive drug target. In this report, we present the discovery of novel human AdoMetDC (hAdoMetDC) inhibitors by coupling computational and experimental tools. We constructed a reasonable computational structure model of hAdoMetDC that is compatible with general protocols for high-throughput drug screening, and used this model in in silico screening of hAdoMetDC inhibitors against a large compound library using a battery of computational tools. We also established and validated a simple, economic, and non-radioactive enzymatic assay, which can be adapted for experimental high-throughput screening of hAdoMetDC inhibitors. Finally, we obtained an hAdoMetDC inhibitor lead with a novel scaffold. This study provides both new tools and a new lead for the developing of novel hAdoMetDC inhibitors.

  8. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells. (United States)

    Medina-Enríquez, Miriam Marlene; Alcántara-Farfán, Verónica; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José Guadalupe; Rodríguez-Páez, Lorena; Vargas-Ramírez, Alba Laura


    Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.

  9. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity. (United States)

    Shin, Sun-Mi; Kim, Hana; Joo, Yunhye; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sang Jun; Lee, Dong-Woo


    The gadB gene encoding glutamate decarboxylase (GAD) from Lactobacillus plantarum was cloned and expressed in Escherichia coli. The recombinant enzyme exhibited maximal activity at 40 °C and pH 5.0. The 3D model structure of L. plantarum GAD proposed that its C-terminal region (Ile454-Thr468) may play an important role in the pH dependence of catalysis. Accordingly, C-terminally truncated (Δ3 and Δ11 residues) mutants were generated and their enzyme activities compared with that of the wild-type enzyme at different pH values. Unlike the wild-type GAD, the mutants showed pronounced catalytic activity in a broad pH range of 4.0-8.0, suggesting that the C-terminal region is involved in the pH dependence of GAD activity. Therefore, this study may provide effective target regions for engineering pH dependence of GAD activity, thereby meeting industrial demands for the production of γ-aminobutyrate in a broad range of pH values.

  10. Tomato Glutamate Decarboxylase Genes SlGAD2 and SlGAD3 Play Key Roles in Regulating γ-Aminobutyric Acid Levels in Tomato (Solanum lycopersicum). (United States)

    Takayama, Mariko; Koike, Satoshi; Kusano, Miyako; Matsukura, Chiaki; Saito, Kazuki; Ariizumi, Tohru; Ezura, Hiroshi


    Tomato (Solanum lycopersicum) can accumulate relatively high levels of γ-aminobutyric acid (GABA) during fruit development. However, the molecular mechanism underlying GABA accumulation and its physiological function in tomato fruits remain elusive. We previously identified three tomato genes (SlGAD1, SlGAD2 and SlGAD3) encoding glutamate decarboxylase (GAD), likely the key enzyme for GABA biosynthesis in tomato fruits. In this study, we generated transgenic tomato plants in which each SlGAD was suppressed and those in which all three SlGADs were simultaneously suppressed. A significant decrease in GABA levels, i.e. 50-81% compared with wild-type (WT) levels, was observed in mature green (MG) fruits of the SlGAD2-suppressed lines, while a more drastic reduction (up to tomato fruits. The importance of SlGAD3 expression was also confirmed by generating transgenic tomato plants that over-expressed SlGAD3. The MG and red fruits of the over-expressing transgenic lines contained higher levels of GABA (2.7- to 5.2-fold) than those of the WT. We also determined that strong down-regulation of the SlGADs had little effect on overall plant growth, fruit development or primary fruit metabolism under normal growth conditions.

  11. Repeated morphine treatment alters polysialylated neural cell adhesion molecule, glutamate decarboxylase-67 expression and cell proliferation in the adult rat hippocampus. (United States)

    Kahn, Laëtitia; Alonso, Gérard; Normand, Elisabeth; Manzoni, Olivier J


    Altered synaptic transmission and plasticity in brain areas involved in reward and learning are thought to underlie the long-lasting effects of addictive drugs. In support of this idea, opiates reduce neurogenesis [A.J. Eisch et al. (2000) Proceedings of the National Academy of Sciences USA, 97, 7579-7584] and enhance long-term potentiation in adult rodent hippocampus [J.M. Harrison et al. (2002) Journal of Neurophysiology, 87, 2464-2470], a key structure of learning and memory processes. Here we studied how repeated morphine treatment and withdrawal affect cell proliferation and neuronal phenotypes in the dentate gyrus-CA3 region of the adult rat hippocampus. Our data showed a strong reduction of cellular proliferation in morphine-dependent animals (54% of control) that was followed by a rebound increase after 1 week withdrawal and a return to normal after 2 weeks withdrawal. Morphine dependence was also associated with a drastic reduction in the expression levels of the polysialylated form of neural cell adhesion molecule (68% of control), an adhesion molecule expressed by newly generated neurons and involved in cell migration and structural plasticity. Polysialylated neural cell adhesion molecule levels quickly returned to normal following withdrawal. In morphine-dependent rats, we found a significant increase of glutamate decarboxylase-67 mRNA transcription (170% of control) in dentate gyrus granular cells which was followed by a marked rebound decrease after 1 week withdrawal and a return to normal after 4 weeks withdrawal. Together, the results show, for the first time, that, in addition to reducing cell proliferation and neurogenesis, chronic exposure to morphine dramatically alters neuronal phenotypes in the dentate gyrus-CA3 region of the adult rat hippocampus.

  12. Role of cysteines in the activation and inactivation of brewers' yeast pyruvate decarboxylase investigated with a PDC1-PDC6 fusion protein. (United States)

    Zeng, X; Farrenkopf, B; Hohmann, S; Dyda, F; Furey, W; Jordan, F


    Possible roles of the Cys side chains in the activation and inactivation mechanisms of brewers' yeast pyruvate decarboxylase were investigated by comparing the behavior of the tetrameric enzyme pdc1 containing four cysteines/subunit (positions 69, 152, 221, and 222) with that of a fusion enzyme (pdc1-6, a result of spontaneous gene fusion between PDC1 and PDC6 genes) that is 84% identical in sequence with pdc1 and has only Cys221 (the other three Cys being replaced by aliphatic side chains). The two forms of the enzyme are rather similar so far as steady-state kinetic parameters and substrate activation are considered, as tested for activation by the substrate surrogate pyruvamide. Therefore, if a cysteine is responsible for substrate activation, it must be Cys221. The inactivation of the two enzymes was tested with several inhibitors. Methylmethanethiol sulfonate, a broad spectrum sulfhydryl reagent, could substantially inactivate both enzymes, but was slightly less effective toward the fusion enzyme. (p-Nitrobenzoyl)formic acid is an excellent alternate substrate, whose decarboxylation product p-nitrobenzaldehyde inhibited both enzymes possibly at a Cys221, the only one still present in the fusion enzyme. Exposure of the fusion enzyme, just as of pdc1, to (E)-2-oxo-4-phenyl-3-butenoic acid type inhibitors/alternate substrates enabled detection of the enzyme-bound enamine intermediate at 440 nm. However, unlike pdc1, the fusion enzyme was not irreversibly inactivated by these substrates. These substrates are now known to cause inactivation of pdc1 with concomitant modification of one Cys of the four [Zeng, X.; Chung, A.; Haran, M.; Jordan, F. (1991) J. Am. Chem. Soc. 113, 5842-49].(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae

    Directory of Open Access Journals (Sweden)

    Santamaria Anna


    Full Text Available Abstract Background Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT. At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. Results The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. Conclusions The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors.

  14. L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Geomela Panagiota-Aikaterini


    Full Text Available Abstract Background Head and neck squamous cell carcinoma (HNSCC represents one of the most commonly diagnosed malignancies worldwide. The DDC gene encodes L-DOPA decarboxylase, an enzyme catalyzing the decarboxylation of L-DOPA to dopamine. We have recently shown that DDC mRNA is a significant predictor of patients’ prognosis in colorectal adenocarcinoma and prostate cancer. The aim of the current study was to analyze the DDC mRNA expression in HNSCC patients. Methods 53 malignant tumors were resected from the larynx, pharynx, tongue, buccal mucosa, parotid glands, and nasal cavity, as well as from 34 adjacent non-cancerous tissues of HNSCC patients, and were homogenized. Total RNA was isolated and converted into first-strand cDNA. An ultrasensitive real-time PCR method based on the SYBR Green chemistry was used for DDC mRNA quantification in head and neck tissue specimens. Relative quantification was performed using the comparative Ct (2-ddCt method. Results DDC mRNA levels were lower in squamous cell carcinomas (SCCs of the larynx and tongue than in adjacent non-cancerous tissue specimens. Furthermore, low DDC mRNA expression was noticed in laryngeal and tongue tumors of advanced TNM stage or bigger size, compared to early-stage or smaller tumors, respectively. No statistically significant differences were observed between SCCs resected from pharynx, buccal mucosa, or nasal cavity, and their normal counterparts. Conclusion This is the first study examining the DDC mRNA expression in HNSCC. According to our results, DDC mRNA expression may constitute a potential prognostic biomarker in tongue and/or larynx SCCs, which principally represent the overwhelming majority of HNSCC cases.

  15. Role of Dopaminergic D2 Receptors in the Regulation of Glutamic Acid Decarboxylase Messenger RNA in the Striatum of the Rat. (United States)

    Caboche, Jocelyne; Vernier, Philippe; Rogard, Monique; Julien, Jean-François; Mallet, Jacques; Besson, Marie-Jo


    Levels of messenger RNA (mRNA) encoding glutamic acid decarboxylase (GAD) and preproenkephalin (PPE) were measured by Northern blot and in situ hybridization analyses in the striatum of the rat, after chronic injections of two neuroleptics, sulpiride and haloperidol. The Northern blot analysis showed that the chronic injection of sulpiride at high doses (80 mg/kg, twice a day, 14 days) increased striatal GAD and PPE mRNA levels by 120% and 78% respectively, when compared to vehicle-injected rats. Haloperidol injections at relatively low doses (1 mg/kg, once a day, 14 days) produced parallel increases in GAD (40%) and PPE (52%) mRNA levels. After in situ hybridization densitometric measurements were performed on autoradiograms from rats treated with sulpiride, haloperidol or vehicle. The distribution of GAD and PPE mRNA signals in control rats was homogeneous along the rostrocaudal extension of the striatum. A similar increase was found along this axis after sulpiride (20%) and haloperidol (30%) treatments. The cellular observation of hybridization signals showed that grain density for GAD mRNA was increased in a majority of striatal cells after both treatments. By contrast, the PPE mRNA hybridization signal only increased in a subpopulation of neurons. The effects of such treatments were also analysed by measuring GAD activity in the striatum and in its output structures, the globus pallidus and the substantia nigra. After the administration of sulpiride, GAD activity was not modified in the striatum but increased in the globus pallidus (by 17%). After haloperidol treatment, GAD activity was increased in the globus pallidus (20%) and the substantia nigra (17%). It is concluded that the interruption of dopaminergic transmission, more precisely the D2 receptor blockade, promotes in striatopallidal neurons an increase in GAD mRNA accompanied by an increase in GAD activity and PPE mRNA. A possible regulation of GAD mRNA and GAD activity in striatonigral neurons is also

  16. Role of dopamine in the plasticity of glutamic acid decarboxylase messenger RNA in the rat frontal cortex and the nucleus accumbens. (United States)

    Rétaux, S; Trovero, F; Besson, M J


    The modulatory role of dopamine (DA) on the expression of mRNA encoding the large isoform of glutamic acid decarboxylase (GAD67), the biosynthesis enzyme of gamma aminobutyric acid (GABA), was examined in GABA neurons of two structures innervated by DA neurons originating from the ventral tegmental area (VTA): the medial frontal cortex (MFC) and the nucleus accumbens (NAcc). A bilateral electrolytic lesion of VTA was performed in rats to produce a DA denervation of both the MFC and NAcc. The efficacy of VTA lesions was verified by measurement of locomotor activity and by immunohistochemical detection of tyrosine hydroxylase in the mesencephalon. GAD67 mRNA was detected by in situ hybridization histochemistry using a 35S-labelled cDNA probe. Densitometric analysis of GAD67 mRNA hybridization signals revealed in VTA-lesioned rats a significant decrease (-24%) in GAD67 mRNA levels in the prelimbic area of the MFC and no significant effect in the anterior cingulate area or the frontoparietal cortex. Single cell analyses by computer-assisted grain counting showed that the decrease in GAD67 mRNA levels in prelimbic MFC was due to a change in GAD67 mRNA expression in a subpopulation of GABA interneurons located in the deep cortical layers (V-VI). By contrast, in the NAcc of VTA-lesioned rats, GAD67 mRNA levels were significantly increased in the anterior part and in the core but were unchanged in the shell part. These results suggest that in two target structures of VTA DA neurons, GAD67 mRNA expression is, in normal conditions, under a tonic stimulatory and a tonic inhibitory DA control in the MFC and the NAcc respectively. A schematic diagram is proposed for functional interactions between these structures.

  17. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and substance P in neural areas mediating motion-induced emesis: Effects of vagal stimulation on GAD immunoreactivity (United States)

    Damelio, F.; Gibbs, M. A.; Mehler, W. R.; Daunton, Nancy G.; Fox, Robert A.


    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid (GABA) by means of its biosynthetic enzyme glutamic acid decarboxylase (GAD) and the neuropeptide substance P in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), and gelatinous nucleus (GEL). In addition, electrical stimulation was applied to the night vagus nerve at the cervical level to assess the effects on GAD-immunoreactivity (GAR-IR). GAD-IR terminals and fibers were observed in the AP, ASP, NTS, and GEL. They showed pronounced density at the level of the ASP and gradual decrease towards the solitary complex. Nerve cells were not labelled in our preparations. Ultrastructural studies showed symmetric or asymmetric synaptic contracts between labelled terminals and non-immunoreactive dendrites, axons, or neurons. Some of the labelled terminals contained both clear- and dense-core vesicles. Our preliminary findings, after electrical stimulation of the vagus nerve, revealed a bilateral decrease of GAD-IR that was particularly evident at the level of the ASP. SP-immunoreactive (SP-IR) terminals and fibers showed varying densities in the AP, ASP, NTS, and GEL. In our preparations, the lateral sub-division of the NTS showed the greatest accumulation. The ASP showed medium density of immunoreactive varicosities and terminals and the AP and GEL displayed scattered varicose axon terminals. The electron microscopy revealed that all immunoreactive terminals contained clear-core vesicles which make symmetric or asymmetric synaptic contact with unlabelled dendrites. It is suggested that the GABAergic terminals might correspond to vagal afferent projections and that GAD/GABA and substance P might be co-localized in the same terminal allowing the possibility of a regulated release of the transmitters in relation to demands.

  18. Raman micro-spectroscopic investigation of the interaction of cultured HCT116 colon cancer cells with alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (United States)

    Akyuz, S.; Ozel, A. E.; Balci, K.; Akyuz, T.; Coker, A.; Arisan, E. D.; Palavan-Unsal, N.; Ozalpan, A.


    The interaction of cultured colon cancer cells with alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, has been investigated, using Raman micro-spectroscopy, in order to investigate DFMO induced effects. Raman spectra of the cultured HCT116 colon cancer cells treated with DFMO at different concentrations (0, 1, 2.5, 5, and 7.5 mM) were recorded in the range 550-2300 cm -1. It has been shown that second derivative profile of the raw Raman spectrum of the colon cancer cells (i.e., the original experimental spectrum without any computational corrections) discriminates the weak but sharp bands from the strong, broad fluorescence background, and gives information about the position of the peaks and their band widths. The relative integrated intensities of the 781 cm -1 and 788 cm -1 DNA/RNA marker bands to that of 1451 cm -1 band are found to decrease by addition of DFMO. Up to 65% reduction in the magnitude of the 1003 cm -1 band, the characteristic phenylalanine ring breathing mode, in comparison to that of 1451 band, is observed. The results indicate DFMO induced apoptosis. On the other hand the intensity ratio of the tyrosine Fermi doubled around 830 cm -1 and 850 cm -1, which is a marker of hydrogen-bonding state of phenolic OH, is changed. The addition of DFMO may alter the tyrosine environment in cells, and parts of tyrosine residues are exposed. We also observed some modifications in amide I band, pointing out the alterations of the secondary structure of cell proteins by the presence of DFMO.

  19. Colonic ornithine decarboxylase in inflammatory bowel disease: ileorectal activity gradient, guanosine triphosphate stimulation, and association with epithelial regeneration but not the degree of inflammation and clinical features. (United States)

    Allgayer, Hubert; Roisch, Ulla; Zehnter, Elmar; Ziegenhagen, Dieter J; Dienes, Hans P; Kruis, Wolfgang


    The role of colonic mucosal ornithine decarboxylase (ODC) in inflammatory bowel disease (IBD) remains controversial. This study assessed mucosal ODC activity in IBD patients segment by segment with regard to patient characteristics, disease activity/duration, medication, degree of mucosal inflammation, and presence/absence of epithelial regeneration and guanosine triphosphate (GTP) stimulation. Mucosal ODC activity was determined in biopsy specimens from the terminal ileum, cecum/ascending, transverse, and descending colon, and the sigmoid/rectum of 35 patients with IBD (18 with Crohn's disease, 17 with ulcerative colitis) and 29 controls, using the amount of 14CO2 liberated from (carboxyl-14C)ornithine hydrochloride. GTP-stimulatable activity was expressed as the ratio of ODC activity in the presence and absence of GTP (70 micromol/L). Mucosal inflammation was assessed endoscopically/microscopically with previously described criteria. Presence/absence of mucosal regeneration also was determined by predefined criteria. Mucosal ODC-activity did not significantly differ in IBD patients and controls. There was a 4.4-fold activity gradient from the ileum to the rectum. Mucosal ODC activity was significantly higher in areas with epithelial regeneration compared to those without regeneration, and was stimulated by GTP by a factor of 1.42 in Crohn's disease and 1.19 in ulcerative colitis patients compared to controls (p < 0.004). On the other hand, there was no significant association/relationship of mucosal ODC activity with disease activity/duration and the endoscopic/histologic degree of mucosal inflammation. The observation of unchanged mucosal ODC activity in patients with IBD and the absence of a significant relationship with clinical and endoscopic/histologic disease characteristics speaks against a major role of ODC in IBD as a major disease marker. The role of the ileorectal gradient, the enhanced activity in areas with epithelial regeneration, and the GTP

  20. Corticotropin-releasing hormone (CRH)-containing neurons in the immature rat hippocampal formation: light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin. (United States)

    Yan, X X; Toth, Z; Schultz, L; Ribak, C E; Baram, T Z


    Corticotropin-releasing hormone (CRH) excites hippocampal neurons and induces death of selected CA3 pyramidal cells in immature rats. These actions of CRH require activation of specific receptors that are abundant in CA3 during early postnatal development. Given the dramatic effects of CRH on hippocampal neurons and the absence of CRH-containing afferents to this region, we hypothesized that a significant population of CRHergic neurons exists in developing rat hippocampus. This study defined and characterized hippocampal CRH-containing cells by using immunocytochemistry, ultrastructural examination, and colocalization with gamma-aminobutyric acid (GABA)-synthesizing enzyme and calcium-binding proteins. Numerous, large CRH-immunoreactive (ir) neurons were demonstrated in CA3 strata pyramidale and oriens, fewer were observed in the corresponding layers of CA1, and smaller CRH-ir cells were found in stratum lacunosum-moleculare of Ammon's horn. In the dentate gyrus, CRH-ir somata resided in the granule cell layer and hilus. Ultrastructurally, CRH-ir neurons had aspiny dendrites and were postsynaptic to both asymmetric and symmetric synapses. CRH-ir axon terminals formed axosomatic and axodendritic symmetric synapses with pyramidal and granule cells. Other CRH-ir terminals synapsed on axon initial segments of principal neurons. Most CRH-ir neurons were coimmunolabeled for glutamate decarboxylase (GAD)-65 and GAD-67 and the majority also contained parvalbumin, but none were labeled for calbindin. These results confirm the identity of hippocampal CRH-ir cells as GABAergic interneurons. Further, a subpopulation of neurons immunoreactive for both CRH and parvalbumin and located within and adjacent to the principal cell layers consists of basket and chandelier cells. Thus, axon terminals of CRH-ir interneurons are strategically positioned to influence the excitability of the principal hippocampal neurons via release of both CRH and GABA.

  1. Progressive loss of glutamic acid decarboxylase, parvalbumin, and calbindin D28K immunoreactive neurons in the cerebral cortex and hippocampus of adult rat with experimental hydrocephalus. (United States)

    Tashiro, Y; Chakrabortty, S; Drake, J M; Hattori, T


    The authors investigated functional neuronal changes in experimental hydrocephalus using immunohistochemical techniques for glutamic acid decarboxylase (GAD) and two neuronal calcium-binding proteins: parvalbumin (PV) and calbindin D28K (CaBP). Hydrocephalus was induced in 16 adult Wistar rats by intracisternal injection of a kaolin solution, which was confirmed microscopically via atlantooccipital dural puncture. Four control rats received the same volume of sterile saline. Immunohistochemical staining for GAD, PV, and CaBP, and Nissl staining were performed at 1, 2, 3, and 4 weeks after the injection. Hydrocephalus occurred in 90% of kaolin-injected animals with various degrees of ventricular dilation. In the cerebral cortex, GAD-, PV-, and CaBP-immunoreactive (IR) interneurons initially lost their stained processes together with a concomitant loss of homogeneous neuropil staining, followed by the reduction of their total number. With progressive ventricular dilation, GAD- and PV-IR axon terminals on the cortical pyramidal cells disappeared, whereas the number of CaBP-IR pyramidal cells decreased, and ultimately in the most severe cases of hydrocephalus, GAD, PV, and CaBP immunoreactivity were almost entirely diminished. In the hippocampus, GAD-, PV-, and CaBP-IR interneurons demonstrated a reduction of their processes and terminals surrounding the pyramidal cells, with secondary reduction of CaBP-IR pyramidal and granular cells. On the other hand, Nissl staining revealed almost no morphological changes induced by ischemia or neuronal degeneration even in the most severe cases of hydrocephalus. Hydrocephalus results in the progressive functional impairment of GAD-, PV-, and CaBP-IR neuronal systems in the cerebral cortex and hippocampus, often before there is evidence of morphological injury. The initial injury of cortical and hippocampal interneurons suggests that the functional deafferentation from intrinsic projection fibers may be the initial neuronal event

  2. Transcriptional and functional analysis of oxalyl-coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes from Lactobacillus acidophilus. (United States)

    Azcarate-Peril, M Andrea; Bruno-Bárcena, Jose M; Hassan, Hosni M; Klaenhammer, Todd R


    Oxalic acid is found in dietary sources (such as coffee, tea, and chocolate) or is produced by the intestinal microflora from metabolic precursors, like ascorbic acid. In the human intestine, oxalate may combine with calcium, sodium, magnesium, or potassium to form less soluble salts, which can cause pathological disorders such as hyperoxaluria, urolithiasis, and renal failure in humans. In this study, an operon containing genes homologous to a formyl coenzyme A transferase gene (frc) and an oxalyl coenzyme A decarboxylase gene (oxc) was identified in the genome of the probiotic bacterium Lactobacillus acidophilus. Physiological analysis of a mutant harboring a deleted version of the frc gene confirmed that frc expression specifically improves survival in the presence of oxalic acid at pH 3.5 compared with the survival of the wild-type strain. Moreover, the frc mutant was unable to degrade oxalate. These genes, which have not previously been described in lactobacilli, appear to be responsible for oxalate degradation in this organism. Transcriptional analysis using cDNA microarrays and reverse transcription-quantitative PCR revealed that mildly acidic conditions were a prerequisite for frc and oxc transcription. As a consequence, oxalate-dependent induction of these genes occurred only in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 5.5. Where genome information was available, other lactic acid bacteria were screened for frc and oxc genes. With the exception of Lactobacillus gasseri and Bifidobacterium lactis, none of the other strains harbored genes for oxalate utilization.

  3. Glutamic acid decarboxylase-67-positive hippocampal interneurons undergo a permanent reduction in number following kainic acid-induced degeneration of ca3 pyramidal neurons. (United States)

    Shetty, A K; Turner, D A


    Kainic acid (KA)-induced degeneration of CA3 pyramidal neurons leads to synaptic reorganization and hyperexcitability in both dentate gyrus and CA1 region of the hippocampus. We hypothesize that the substrate for hippocampal inhibitory circuitry incurs significant and permanent alterations following degeneration of CA3 pyramidal neurons. We quantified changes in interneuron density (N(v)) in all strata of the dentate gyrus and the CA1 and CA3 subfields of adult rats at 1, 4, and 6 months following intracerebroventricular (icv) KA administration, using glutamic acid decarboxylase-67 (GAD-67) immunocytochemistry. At 1 month postlesion, GAD-67-positive interneuron density was significantly reduced in all strata of every hippocampal region except stratum pyramidale of CA1. The reduction in GAD-67-positive interneuron density either persisted or exacerbated at 4 and 6 months postlesion in every stratum of all hippocampal regions. Further, the soma of remaining GAD-67-positive interneurons in dentate gyrus and CA3 subfield showed significant hypertrophy. Thus, both permanent reductions in the density of GAD-67-positive interneurons in all hippocampal regions and somatic hypertrophy of remaining GAD-67-positive interneurons in dentate gyrus and CA3 subfield occur following icv KA. In contrast, the density of interneurons visualized with Nissl in CA1 and CA3 regions was nearly equivalent to that in the intact hippocampus at all postlesion time points. Collectively, these results suggest that persistent reductions in GAD-67-positive interneuron density observed throughout the hippocampus following CA3 lesion are largely due to a permanent loss of GAD-67 expression in a significant fraction of interneurons, rather than widespread degeneration of interneurons. Nevertheless, a persistent decrease in interneuron activity, as evidenced by permanent down-regulation of GAD-67 in a major fraction of interneurons, would likely enhance the degree of hyperexcitability in the CA3

  4. Aging in the rat hippocampus is associated with widespread reductions in the number of glutamate decarboxylase-67 positive interneurons but not interneuron degeneration. (United States)

    Stanley, Dirk P; Shetty, Ashok K


    Increased excitability of principal excitatory neurons is one of the hallmarks of aging in the hippocampus, signifying a diminution in the number and/or function of inhibitory interneurons with aging. To elucidate this, we performed comprehensive GABA-ergic interneuron cell counts in all layers of the dentate gyrus and the CA1 and CA3 subfields, using serial sections from adult, middle-aged and aged Fischer 344 rats. Sections were immunostained for glutamate decarboxylase-67 (GAD-67, a synthesizing enzyme of GABA) and GAD-67 immunopositive interneurons were counted using an unbiased cell counting method, the optical fractionator. Substantial declines in the absolute number of GAD-67 immunopositive interneurons were found in all hippocampal layers/subfields of middle-aged and aged animals, in comparison with the adult animals. However, the counts were comparable between the middle-aged and aged groups for all regions. Interestingly, determination of the absolute number of interneurons using neuron-specific nuclear antigen (NeuN) expression in the strata oriens and radiatum of CA1 and CA3 subfields revealed an analogous number of interneurons across the three age groups. Furthermore, the ratio of GAD-67 immunopositive and NeuN positive interneurons decreased from adult age to middle age but remained relatively static between middle age and old age. Collectively, the results underscore that aging in the hippocampus is associated with wide-ranging decreases in the number of GAD-67 immunopositive interneurons and most of the age-related changes in GAD-67 immunopositive interneuron numbers transpire by middle age. Additionally, this study provides novel evidence that age-related reductions in hippocampal GAD-67 immunopositive interneuron numbers are due to loss of GAD-67 expression in interneurons rather than interneuron degeneration.

  5. Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. (United States)

    Wi, Soo Jin; Kim, Woo Taek; Park, Ky Young


    Polyamines (PAs), such as putrescine, spermidine, and spermine, are present in all living organism and implicate in a wide range of cellular physiological processes. We have used transgenic technology in an attempt to evaluate their potential for mitigating the adverse effects of several abiotic stresses in plants. Sense construct of full-length cDNA for S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in PA biosynthesis, from carnation (Dianthus caryophyllus L.) flower was introduced into tobacco (Nicotiana tabacum L.) by Agrobacterium tumefaciens-mediated transformation. Several transgenic lines overexpressing SAMDC gene under the control of cauliflower mosaic virus 35S promoter accumulated soluble total PAs by 2.2 (S16-S-4) to 3.1 (S16-S-1) times than wild-type plants. The transgenic tobacco did not show any difference in organ phenotype compared to the wild-type. The number and weight of seeds increased, and net photosynthetic rate also increased in transgenic plants. Stress-induced damage was attenuated in these transgenic plants, in the symptom of visible yellowing and chlorophyll degradation after all experienced stresses such as salt stress, cold stress, acidic stress, and abscisic acid treatment. H2O2-induced damage was attenuated by spermidine treatment. Transcripts for antioxidant enzymes (ascorbate peroxidase, manganase superoxide dismutase, and glutathione S-transferase) in transgenic plants and GUS activity transformed with SAMDC promoter::GUS fusion were induced more significantly by stress treatment, compared to control. These results that the transgenic plants with sense SAMDC cDNA are more tolerant to abiotic stresses than wild-type plants suggest that PAs may play an important role in contributing stress tolerance in plants.

  6. Vibrio cholerae proteome-wide screen for immunostimulatory proteins identifies phosphatidylserine decarboxylase as a novel Toll-like receptor 4 agonist.

    Directory of Open Access Journals (Sweden)

    Ann Thanawastien


    Full Text Available Recognition of conserved bacterial components provides immediate and efficient immune responses and plays a critical role in triggering antigen-specific adaptive immunity. To date, most microbial components that are detected by host innate immune system are non-proteinaceous structural components. In order to identify novel bacterial immunostimulatory proteins, we developed a new high-throughput approach called "EPSIA", Expressed Protein Screen for Immune Activators. Out of 3,882 Vibrio cholerae proteins, we identified phosphatidylserine decarboxylase (PSD as a conserved bacterial protein capable of activating host innate immunity. PSD in concentrations as low as 100 ng/ml stimulated RAW264.7 murine macrophage cells and primary peritoneal macrophage cells to secrete TNFalpha and IL-6, respectively. PSD-induced proinflammatory response was dependent on the presence of MyD88, a known adaptor molecule for innate immune response. An enzymatically inactive PSD mutant and heat-inactivated PSD induced approximately 40% and approximately 15% of IL-6 production compared to that by native PSD, respectively. This suggests that PSD induces the production of IL-6, in part, via its enzymatic activity. Subsequent receptor screening determined TLR4 as a receptor mediating the PSD-induced proinflammatory response. Moreover, no detectable IL-6 was produced in TLR4-deficient mouse macrophages by PSD. PSD also exhibited a strong adjuvant activity against a co-administered antigen, BSA. Anti-BSA response was decreased in TLR4-deficient mice immunized with BSA in combination with PSD, further proving the role of TLR4 in PSD signaling in vivo. Taken together, these results provide evidence for the identification of V. cholerae PSD as a novel TLR4 agonist and further demonstrate the potential application of PSD as a vaccine adjuvant.

  7. Hemin inhibits cyclooxygenase-2 expression through nuclear factor-kappa B activation and ornithine decarboxylase expression in 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hee; Lee, Chang Ki [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Oral Cancer Research Institute, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Hwang, Young Sun [Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Park, Kwang-Kyun [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Chung, Won-Yoon [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of)], E-mail:


    Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H{sub 2}O{sub 2} formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-{kappa}B) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-{kappa}B activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-{kappa}B signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent.

  8. Investigation of a Possible Role for the Histidine Decarboxylase Gene in Tourette Syndrome in the Chinese Han Population: A Family-Based Study (United States)

    Liu, Meixin; Xu, Longqiang; Li, Qiang; Zhang, Ru; Zhang, Xin; Liu, Shiguo


    Tourette syndrome (TS) is a polygenic neuropsychiatric disease. Previous studies have indicated that dysregulation in the histaminergic system may play a crucial role in disease onset. In this study, we investigated the role of the histidine decarboxylase gene (HDC) in TS susceptibility in the Chinese Han population. After genotyping 241 TS nuclear families trios, we analyzed three tag HDC single nucleotide polymorphisms (rs854150, rs854151, and rs854157) in a family-based study using the transmission disequilibrium test (TDT) and haplotype relative risk (HRR). TDT showed no over-transmission in these SNPs across the HDC region (for rs854150: χ2 = 0.472, P = 0.537, OR = 1.097, 95%CI = 0.738–1.630; for rs854151: χ2 = 0.043, P = 0.889, OR = 1.145, 95%CI = 0.767–1.709; for rs854157:χ2 = 0.984, P = 0.367, OR = 1.020, 95%CI = 0.508–2.049). HRR also showed the same tendency (for rs854150: χ2 = 0.211, P = 0.646, OR = 1.088, 95%CI = 0.759–1.559; for rs854151: χ2 = 0.134, P = 0.714, OR = 0.935, 95%CI = 0.653–1.339; for rs854157:χ2 = 0.841, P = 0.359, OR = 1.206, 95%CI = 0.808–1.799). Additionally, the haplotype-based haplotype relative risk showed a negative association. Although these findings indicate an unlikely association between HDC and TS in the Chinese Han population, a potential role for HDC cannot be ruled out in TS etiology. Future research should investigate this more thoroughly using different populations and larger samples. PMID:27529419

  9. The influence of the cell free solution of lactic acid bacteria on tyramine production by food borne-pathogens in tyrosine decarboxylase broth. (United States)

    Toy, Nurten; Özogul, Fatih; Özogul, Yesim


    The function of cell-free solutions (CFSs) of lactic acid bacteria (LAB) on tyramine and other biogenic amine production by different food borne-pathogens (FBPs) was investigated in tyrosine decarboxylase broth (TDB) using HPLC. Cell free solutions were prepared from four LAB strains. Two different concentrations which were 50% (5 ml CFS+5 ml medium/1:1) and 25% (2.5 ml CFS+7.5 ml medium/1:3) CFS and the control without CFS were prepared. Both concentration of CFS of Streptococcus thermophilus and 50% CFS of Pediococcus acidophilus inhibited tyramine production up to 98% by Salmonella paratyphi A. Tyramine production by Escherichia coli was also inhibited by 50% CFS of Lactococcus lactis subsp. lactis and 25% CFS of Leuconostoc lactis. subsp. cremoris. The inhibitor effect of 50% CFS of P. acidophilus was the highest on tyramine production (55%) by Listeria monocytogenes, following Lc. lactis subsp. lactis and Leuconostoc mesenteroides subsp. cremoris (20%) whilst 25% CFS of Leu. mes. subsp. cremoris and Lc. lactis subsp. lactis showed stimulator effects (160%). The stimulation effects of 50% CFS of S. thermophilus and Lc. lactis subsp. lactis were more than 70% by Staphylococcus aureus comparing to the control. CFS of LAB strains showed statistically inhibitor effect since lactic acid inhibited microbial growth, decreased pH quickly and reduced the formation of AMN and BAs. Consequently, in order to avoid the formation of high concentrations of biogenic amines in fermented food by bacteria, it is advisable to use CFS for food and food products.

  10. C3-C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis. (United States)

    Khoshravesh, Roxana; Stinson, Corey R; Stata, Matt; Busch, Florian A; Sage, Rowan F; Ludwig, Martha; Sage, Tammy L


    Photorespiratory glycine shuttling and decarboxylation in bundle sheath (BS) cells exhibited by C2 species is proposed to be the evolutionary bridge to C4 photosynthesis in eudicots. To evaluate this in grasses, we compare anatomy, cellular localization of glycine decarboxylase (GDC), and photosynthetic physiology of a suspected C2 grass, Homolepis aturensis, with these traits in known C2 grasses, Neurachne minor and Steinchisma hians, and C3 S laxum that is sister to S hians We also use publicly available genome and RNA-sequencing data to examine the evolution of GDC subunits and enhance our understanding of the evolution of BS-specific GDC expression in C2 and C4 grasses. Our results confirm the identity of H aturensis as a C2 species; GDC is confined predominantly to the organelle-enriched BS cells in H aturensis and S hians and to mestome sheath cells of N minor Phylogenetic analyses and data obtained from immunodetection of the P-subunit of GDC are consistent with the hypothesis that the BS dominant levels of GDC in C2 and C4 species are due to changes in expression of a single GLDP gene in M and BS cells. All BS mitochondria and peroxisomes and most chloroplasts in H aturensis and S hians are situated centripetally in a pattern identical to C2 eudicots. In S laxum, which has C3-like gas exchange patterns, mitochondria and peroxisomes are positioned centripetally as they are in S hians This subcellular phenotype, also present in eudicots, is posited to initiate a facilitation cascade leading to C2 and C4 photosynthesis.

  11. High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process. (United States)

    Furuya, Toshiki; Miura, Misa; Kuroiwa, Mari; Kino, Kuniki


    Vanillin is one of the world's most important flavor and fragrance compounds in foods and cosmetics. Recently, we demonstrated that vanillin could be produced from ferulic acid via 4-vinylguaiacol in a coenzyme-independent manner using the decarboxylase Fdc and the oxygenase Cso2. In this study, we investigated a new two-pot bioprocess for vanillin production using the whole-cell catalyst of Escherichia coli expressing Fdc in the first stage and that of E. coli expressing Cso2 in the second stage. We first optimized the second-step Cso2 reaction from 4-vinylguaiacol to vanillin, a rate-determining step for the production of vanillin. Addition of FeCl2 to the cultivation medium enhanced the activity of the resulting E. coli cells expressing Cso2, an iron protein belonging to the carotenoid cleavage oxygenase family. Furthermore, a butyl acetate-water biphasic system was effective in improving the production of vanillin. Under the optimized conditions, we attempted to produce vanillin from ferulic acid by a two-pot bioprocess on a flask scale. In the first stage, E. coli cells expressing Fdc rapidly decarboxylated ferulic acid and completely converted 75 mM of this substrate to 4-vinylguaiacol within 2 h at pH 9.0. After the first-stage reaction, cells were removed from the reaction mixture by centrifugation, and the pH of the resulting supernatant was adjusted to 10.5, the optimal pH for Cso2. This solution was subjected to the second-stage reaction. In the second stage, E. coli cells expressing Cso2 efficiently oxidized 4-vinylguaiacol to vanillin. The concentration of vanillin reached 52 mM (7.8 g L(-1)) in 24 h, which is the highest level attained to date for the biotechnological production of vanillin using recombinant cells.

  12. Conformational Changes in Orotidine 5’-Monophosphate Decarboxylase: A Structure-Based Explanation for How the 5’-Phosphate Group Activates the Enzyme† (United States)

    Desai, Bijoy J.; Wood, McKay; Fedorov, Alexander A.; Fedorov, Elena V.; Goryanova, Bogdana; Amyes, Tina L.; Richard, John P.; Almo, Steven C.; Gerlt, John A.


    The binding of a ligand to orotidine 5’-monophosphate decarboxylase (OMPDC) is accompanied by a conformational change from an open, inactive conformation (Eo) to a closed, active conformation (Ec). As the substrate traverses the reaction coordinate to form the stabilized vinyl carbanion/carbene intermediate, interactions are enforced that destabilize the carboxylate group of the substrate as well as stabilize the intermediate (in the Ec•S‡ complex). Focusing on the OMPDC from Methanothermobacter thermautotrophicus, the “remote” 5’-phosphate group of the substrate activates the enzyme 2.4 × 108-fold; the activation is equivalently described by an intrinsic binding energy (IBE) of 11.4 kcal/mol. We studied residues in the activation that 1) directly contact the 5’-phosphate group; 2) participate in a hydrophobic cluster near the base of the active site loop that sequesters the bound substrate from solvent; and 3) form hydrogen-bonding interactions across the interface between the “mobile” and “fixed” half-barrel domains of the (β/α8-barrel structure. Our data support a model in which the IBE provided by the 5’-phosphate group is used to enable interactions both near the N-terminus of the active site loop and across the domain interface that stabilize both the Ec•S and Ec•S‡ complexes relative to the Eo•S complex. The conclusion that the IBE of the 5’-phosphate group provides stabilization of both the Ec•S and Ec•S‡ complexes, not just the Ec•S‡ complex, is central to understanding the structural origins of enzymatic catalysis as well as the requirements for the de novo design of enzymes that catalyze novel reactions. PMID:23030629

  13. Overexpression of 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases causes growth defects possibly due to abnormal auxin transport in Arabidopsis. (United States)

    Kim, Bokyung; Kim, Gyusik; Fujioka, Shozo; Takatsuto, Suguru; Choe, Sunghwa


    Sterols play crucial roles as membrane components and precursors of steroid hormones (e.g., brassinosteroids, BR). Within membranes, sterols regulate membrane permeability and fluidity by interacting with other lipids and proteins. Sterols are frequently enriched in detergent-insoluble membranes (DIMs), which organize molecules involved in specialized signaling processes, including auxin transporters. To be fully functional, the two methyl groups at the C-4 position of cycloartenol, a precursor of plant sterols, must be removed by bifunctional 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases (3βHSD/D). To understand the role of 3βHSD/D in Arabidopsis development, we analyzed the phenotypes of knock-out mutants and overexpression lines of two 3βHSD/D genes (At1g47290 and At2g26260). Neither single nor double knock-out mutants displayed a noticeable phenotype; however, overexpression consistently resulted in plants with wrinkled leaves and short inflorescence internodes. Interestingly, the internode growth defects were opportunistic; even within a plant, some stems were more severely affected than others. Endogenous levels of BRs were not altered in the overexpression lines, suggesting that the growth defect is not primarily due to a flaw in BR biosynthesis. To determine if overexpression of the sterol biosynthetic genes affects the functions of membrane-localized auxin transporters, we subjected plants to the auxin efflux carrier inhibitor, 1-N-naphthylphthalamic acid (NPA). Where-as the gravity vectors of wild-type roots became randomly scattered in response to NPA treatment, those of the overexpression lines continued to grow in the direction of gravity. Overexpression of the two Arabidopsis 3βHSD/D genes thus appears to affect auxin transporter activity, possibly by altering sterol composition in the membranes.

  14. Spectroscopic and magnetic studies of wild-type and mutant forms of the Fe(II)- and 2-oxoglutarate-dependent decarboxylase ALKBH4. (United States)

    Bjørnstad, Linn G; Zoppellaro, Giorgio; Tomter, Ane B; Falnes, Pål Ø; Andersson, K Kristoffer


    The Fe(II)/2OG (2-oxoglutarate)-dependent dioxygenase superfamily comprises proteins that couple substrate oxidation to decarboxylation of 2OG to succinate. A member of this class of mononuclear non-haem Fe proteins is the Escherichia coli DNA/RNA repair enzyme AlkB. In the present work, we describe the magnetic and optical properties of the yet uncharacterized human ALKBH4 (AlkB homologue). Through EPR and UV-visible spectroscopy studies, we address the Fe-binding environment of the proposed catalytic centre of wild-type ALKBH4 and an Fe(II)-binding mutant. We could observe a novel unusual Fe(III) high-spin EPR-active species in the presence of sulfide with a g(max) of 8.2. The Fe(II) site was probed with NO. An intact histidine-carboxylate site is necessary for productive Fe binding. We also report the presence of a unique cysteine-rich motif conserved in the N-terminus of ALKBH4 orthologues, and investigate its possible Fe-binding ability. Furthermore, we show that recombinant ALKBH4 mediates decarboxylation of 2OG in absence of primary substrate. This activity is dependent on Fe as well as on residues predicted to be involved in Fe(II) co-ordination. The present results demonstrate that ALKBH4 represents an active Fe(II)/2OG-dependent decarboxylase and suggest that the cysteine cluster is involved in processes other than Fe co-ordination.

  15. C-terminal residues of plant glutamate decarboxylase are required for oligomerization of a high-molecular weight complex and for activation by calcium/calmodulin. (United States)

    Zik, Moriyah; Fridmann-Sirkis, Yael; Fromm, Hillel


    Bacterial glutamate decarboxylase (GAD) is a homohexameric enzyme of about 330 kDa. Plant GAD differs from the bacterial enzyme in having a C-terminal extension of 33 amino acids within which resides a calmodulin (CaM)-binding domain. In order to assess the role of the C-terminal extension in the formation of GAD complexes and in activation by Ca2+/CaM, we examined complexes formed with the purified full-length recombinant petunia GAD expressed in E. coli, and with a 9 amino acid C-terminal deletion mutant (GADDeltaC9). Size exclusion chromatography revealed that the full-length GAD formed complexes of about 580 kDa and 300 kDa in the absence of Ca2+/CaM, whereas in the presence of Ca2+/CaM all complexes shifted to approximately 680 kDa. With deletion of 9 amino acids from the C-terminus (KKKKTNRVC(500)), the ability to bind CaM in the presence of Ca2+, and to purify it by CaM-affinity chromatography was retained, but the formation of GAD complexes larger than 340 kDa and enzyme activation by Ca2+/CaM were completely abolished. Hence, responsiveness to Ca2+/CaM is associated with the formation of protein complexes of 680 kDa, and requires some or all of the nine C-terminal amino acid residues. We suggest that evolution of plant GAD from a bacterial ancestral enzyme involved the formation of higher molecular weight complexes required for activation by Ca2+/CaM.

  16. Inhibitory effects of brown algae extracts on histamine production in mackerel muscle via inhibition of growth and histidine decarboxylase activity of Morganella morganii. (United States)

    Kim, Dong Hyun; Kim, Koth Bong Woo Ri; Cho, Ji Young; Ahn, Dong Hyun


    This study was performed to investigate the inhibitory effects of brown algae extracts on histamine production in mackerel muscle. First, antimicrobial activities of brown algae extracts against Morganella morganii were investigated using a disk diffusion method. An ethanol extract of Ecklonia cava (ECEE) exhibited strong antimicrobial activity. The minimum inhibitory concentration (MIC) of ECEE was 2 mg/ml. Furthermore, the brown algae extracts were examined for their ability to inhibit crude histidine decarboxylase (HDC) of M. morganii. The ethanol extract of Eisenia bicyclis (EBEE) and ECEE exhibited significant inhibitory activities (19.82% and 33.79%, respectively) at a concentration of 1 mg/ml. To obtain the phlorotannin dieckol, ECEE and EBEE were subjected to liquid-liquid extraction, silica gel column chromatography, and HPLC. Dieckol exhibited substantial inhibitory activity with an IC50 value of 0.61 mg/ml, and exhibited competitive inhibition. These extracts were also tested on mackerel muscle. The viable cell counts and histamine production in mackerel muscle inoculated with M. morganii treated with ≥2.5 MIC of ECEE (weight basis) were highly inhibited compared with the untreated sample. Furthermore, treatment of crude HDC-inoculated mackerel muscle with 0.5% ECEE and 0.5% EBEE (weight basis), which exhibited excellent inhibitory activities against crude HDC, reduced the overall histamine production by 46.29% and 56.89%, respectively, compared with the untreated sample. Thus, these inhibitory effects of ECEE and EBEE should be helpful in enhancing the safety of mackerel by suppressing histamine production in this fish species.

  17. The novel R347g pathogenic mutation of aromatic amino acid decarboxylase provides additional molecular insights into enzyme catalysis and deficiency. (United States)

    Montioli, Riccardo; Paiardini, Alessandro; Kurian, Manju A; Dindo, Mirco; Rossignoli, Giada; Heales, Simon J R; Pope, Simon; Voltattorni, Carla Borri; Bertoldi, Mariarita


    We report here a clinical case of a patient with a novel mutation (Arg347→Gly) in the gene encoding aromatic amino acid decarboxylase (AADC) that is associated with AADC deficiency. The variant R347G in the purified recombinant form exhibits, similarly to the pathogenic mutation R347Q previously studied, a 475-fold drop of kcat compared to the wild-type enzyme. In attempting to unravel the reason(s) for this catalytic defect, we have carried out bioinformatics analyses of the crystal structure of AADC-carbidopa complex with the modelled catalytic loop (residues 328-339). Arg347 appears to interact with Phe103, as well as with both Leu333 and Asp345. We have then prepared and characterized the artificial F103L, R347K and D345A mutants. F103L, D345A and R347K exhibit about 13-, 97-, and 345-fold kcat decrease compared to the wild-type AADC, respectively. However, unlike F103L, the R347G, R347K and R347Q mutants as well as the D345A variant appear to be more defective in catalysis than in protein folding. Moreover, the latter mutants, unlike the wild-type protein and the F103L variant, share a peculiar binding mode of dopa methyl ester consisting of formation of a quinonoid intermediate. This finding strongly suggests that their catalytic defects are mainly due to a misplacement of the substrate at the active site. Taken together, our results highlight the importance of the Arg347-Leu333-Asp345 hydrogen-bonds network in the catalysis of AADC and reveal the molecular basis for the pathogenicity of the variants R347. Following the above results, a therapeutic treatment for patients bearing the mutation R347G is proposed.

  18. Sexually dimorphic expression of glutamate decarboxylase mRNA in the hypothalamus of the deep sea armed grenadier, Coryphaenoides (Nematonurus) armatus. (United States)

    Trudeau, V L; Bosma, P T; Collins, M; Priede, I G; Docherty, K


    Glutamate decarboxylase (GAD), is a key enzyme in the central nervous system (CNS) that synthesizes the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) from glutamate. Our previous phylogenetic studies on the evolution of this enzyme indicates that there are at least two distinct forms: GAD65 and GAD67. They are the products of separate genes and probably derive from a common ancestral GAD gene following gene duplication prior to the emergence of the teleosts more than 200 Myr ago. Furthermore, a third GAD-like molecule, GAD3, discovered in the armed grenadier, Coryphaenoides (Nematonurus) armatus, is equally divergent from both GAD65 and GAD67. Specimens of C. (N.) armatus were collected by trawl at a depth of 4,000 m in the Porcupine Seabight (Northeastern Atlantic), and brains dissected and frozen for RNA extraction. All three GAD forms are found in the cerebellum, telencephalon and hypothalamus. Semiquantitative PCR analysis showed that males and females have similar levels of expression of GAD67 and GAD3 in the tissues studied. Independent of the sex examined, the levels of expression of GAD65 and GAD67 in the cerebellum were approximately half that in the telencephalon. GAD3 levels were approximately 30% higher in the cerebellum than in either the telencephalon or hypothalamus. In contrast to GAD67 and GAD3, hypothalamic expression of GAD65 mRNA is 1.8 times higher (p < 0.05) in males than in females. These data indicate that the expression of GAD65, a key enzyme for the synthesis of GABA is sexually dimorphic in females and males of C. (N.) armatus.

  19. Investigating the role of a backbone to substrate hydrogen bond in OMP decarboxylase using a site-specific amide to ester substitution. (United States)

    Desai, Bijoy J; Goto, Yuki; Cembran, Alessandro; Fedorov, Alexander A; Almo, Steven C; Gao, Jiali; Suga, Hiroaki; Gerlt, John A


    Hydrogen bonds between backbone amide groups of enzymes and their substrates are often observed, but their importance in substrate binding and/or catalysis is not easy to investigate experimentally. We describe the generation and kinetic characterization of a backbone amide to ester substitution in the orotidine 5'-monophosphate (OMP) decarboxylase from Methanobacter thermoautotrophicum (MtOMPDC) to determine the importance of a backbone amide-substrate hydrogen bond. The MtOMPDC-catalyzed reaction is characterized by a rate enhancement (∼10(17)) that is among the largest for enzyme-catalyzed reactions. The reaction proceeds through a vinyl anion intermediate that may be stabilized by hydrogen bonding interaction between the backbone amide of a conserved active site serine residue (Ser-127) and oxygen (O4) of the pyrimidine moiety and/or electrostatic interactions with the conserved general acidic lysine (Lys-72). In vitro translation in conjunction with amber suppression using an orthogonal amber tRNA charged with L-glycerate ((HO)S) was used to generate the ester backbone substitution (S127(HO)S). With 5-fluoro OMP (FOMP) as substrate, the amide to ester substitution increased the value of Km by ∼1.5-fold and decreased the value of kcat by ∼50-fold. We conclude that (i) the hydrogen bond between the backbone amide of Ser-127 and O4 of the pyrimidine moiety contributes a modest factor (∼10(2)) to the 10(17) rate enhancement and (ii) the stabilization of the anionic intermediate is accomplished by electrostatic interactions, including its proximity of Lys-72. These conclusions are in good agreement with predictions obtained from hybrid quantum mechanical/molecular mechanical calculations.


    Institute of Scientific and Technical Information of China (English)

    WUGuoqi; LINGDaren; 等


    The preparation and characterization of an immobilized L-glutamic decarboxylase(GDC) were studied.This work is to develop a sensitive method for the determination of L-glutamate using a new biosensor,which consists of an enzyme column reactor of GDC immobilized on a novel ion exchange resin(carboxymethyl-copolymer of allyl dextran and N.N'-methylene-bisacrylamide CM-CADB) and ion analyzer coupled with a CO2 electrode.The conditions for the enzyme immobilization were optimized by the parameters:buffer composition and concentration,adsorption equilibration time,amount of enzyme,temperature,ionic strength and pH.The properties of the immobilized enzyme on CM-CADB were studied by investigating the initial ate of the enzyme reaction,the effect of various parameters on the immobilized GDC activity and its stability.An immobilized GDC enzyme column reactor matched with a flow injection system-ion analyzer coupled with CO2 electrode-data collection system made up the original form of the apparatus of biosensor for determining of L-glutamate acid.The limit of detection is 1.0×10-5M.The linearity response is in the range of 5×10-2-5×10-5M.The equation of linear regression of the calibration curve is y=43.3x+181.6(y is the milli-volt of electrical potential response,x is the logarithm of the concentration of the substrate of L-glutamate acid).The correlation coefficient equals 0.99.The coefficient of varioation equals 2.7%.

  1. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals. (United States)

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M


    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu.

  2. Evolution of Substrate Specificity within a Diverse Family of [beta/alpha]-Barrel-fold Basic Amino Acid Decarboxylases X-ray Structure Determination of Enzymes with Specificity for L-Arginine and Carboxynorspermidine

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiaoyi; Lee, Jeongmi; Michael, Anthony J.; Tomchick, Diana R.; Goldsmith, Elizabeth J.; Phillips, Margaret A. (Sungkyunkwan); (UTSMC)


    Pyridoxal 5{prime}-phosphate (PLP)-dependent basic amino acid decarboxylases from the {beta}/{alpha}-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-{angstrom} resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the {beta}/{alpha}-barrel domain of one subunit and the {beta}-barrel of the other. ADC contains both a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the {beta}-barrel domain we refer to as the 'specificity helix.' Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu{sup 314}, which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5{prime}-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.

  3. Change of glutamic acid decarboxylase antibody and protein tyrosine phosphatase antibody in Chinese patients with acute-onset type 1 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    CHAO Chen; HUANG Gan; LI Xia; YANG Lin; LIN Jian; JIN Ping; LUO Shuo-ming


    Background Glutamic acid decarboxylase antibody (GADA) and protein tyrosine phosphatase antibody (IA-2A) are two major autoantibodies,which exert important roles in the process of type 1 diabetes mellitus (T1D).Our study aimed to investigate the changes in positivity and titers of GADA and IA-2A during the course of Chinese acute-onset T1D patients and their relationships with clinical features.Methods Two hundreds and forty-seven Chinese newly diagnosed acute-onset T1D patients were consecutively recruited.GADA and IA-2A were detected at the time of diagnosis,one year later,3-5 years later after diagnosis during the follow-up; all the clinical data were recorded and analyzed as well.Results During the course of acute-onset T1D,the majority of patients remained stable for GADA or IA-2A,however,a few patients changed from positivity to negativity and fewer patients converted from negativity to positivity.The prevalence of GADA was 56.3% at diagnosis,decreasing to 50.5% one year later,and 43.3% 3-5 years later while the corresponding prevalence of IA-2A were 32.8%,31.0% and 23.3%,respectively.The median GADA titers were 0.0825 at diagnosis,declining to 0.0585 one year later and 0.0383 3-5 years later (P <0.001),while the corresponding median titers were 0.0016,0.0010,0.0014 for IA-2A,respectively.Fasting C-peptide (FCP) and postprandial C-peptide 2 hours (PCP2h)levels of GADA or IA-2A negativity persistence patients were higher than those of positivity persistence and negativity conversion patients (P <0.05) which indicated GADA or IA-2A negativity persistence T1D patients had a less loss of β cell function.Conclusion Our data suggest that repeated detection of GADA and IA-2A are necessary for differential diagnosis of autoimmune diabetes and the indirect prediction of the β cell function in Chinese patients.

  4. Gene expression of ornithine decarboxylase, cyclooxygenase-2, and gastrin in atrophic gastric mucosa infected with Helicobacter pylori before and after eradication therapy. (United States)

    Konturek, Peter C; Rembiasz, Kazimierz; Konturek, Stanislaw J; Stachura, Jerzy; Bielanski, Wladyslaw; Galuschka, K; Karcz, Danuta; Hahn, Eckhart G


    H. pylori (Hp) -induced atrophic gastritis is a well-known risk factor for the development of gastric cancer. Whether Hp eradication can prevent or retard the progress of atrophy and metaplasia has been the topic of numerous studies but the subject remains controversial. Recently, the increased expression of ornithine decarboxylase (ODC), gastrin and cyclooxygenase (COX)-2 has been shown to be increased in premalignant lesions in gastric mucosa and to play an essential role in the malignant transformation. The aim of the study is to assess the effect of eradication therapy on atrophic gastritis and analyze the gene expression for ODC, COX-2 and gastrin in gastric mucosa after succesful eradication in patients with atrophic gastritis. Twenty patients with chronic atrophic gastritis including both corpus and antrum of the stomach were included in this study. Four antral mucosal biopsy specimens were obtained from antrum and four from corpus. The histopathologic evaluation of gastritis was based on Sydney classification of gastritis. All patients were Hp positive based on the [13C] urea breath test (UBT) and the presence of anti-Hp IgG and anti-CagA-antibodies detected by ELISA. The patients were then eradicated with triple therapy consiting of omeprazol (2 x 20 mg), amoxycillin (2 x 1 g) and clarithromycin (2 x 500 mg) for seven days and vitamin C 1 g/day for three months. In gastric mucosal samples obtained from the antrum and corpus before and after eradication, the mRNA expression for ODC, COX-2, and gastrin was assessed by reverse-transcription polymerase chain reaction (RT-PCR). In all patients the gastric secretory analysis was performed by measuring gastric acid output and serum gastrin levels. After triple therapy the successful eradication assessed by UBT was observed in 95% of patients. In 45% of patients the infection with CagA-positive Hp strain was observed. Three months after eradication a significant reduction in the gastric activity (neutrophilic

  5. Enhanced flux of substrates into polyamine biosynthesis but not ethylene in tomato fruit engineered with yeast S-adenosylmethionine decarboxylase gene. (United States)

    Lasanajak, Yi; Minocha, Rakesh; Minocha, Subhash C; Goyal, Ravinder; Fatima, Tahira; Handa, Avtar K; Mattoo, Autar K


    S-adenosylmethionine (SAM), a major substrate in 1-C metabolism is a common precursor in the biosynthetic pathways of polyamines and ethylene, two important plant growth regulators, which exhibit opposing developmental effects, especially during fruit ripening. However, the flux of various substrates including SAM into the two competing pathways in plants has not yet been characterized. We used radiolabeled (14)C-Arg, (14)C-Orn, L-[U-(14)C]Met, (14)C-SAM and (14)C-Put to quantify flux through these pathways in tomato fruit and evaluate the effects of perturbing these pathways via transgenic expression of a yeast SAM decarboxylase (ySAMDC) gene using the fruit ripening-specific promoter E8. We show that polyamines in tomato fruit are synthesized both from Arg and Orn; however, the relative contribution of Orn pathway declines in the later stages of ripening. Expression of ySAMDC reversed the ripening associated decline in spermidine (Spd) and spermine (Spm) levels observed in the azygous control fruit. About 2- to 3-fold higher levels of labeled-Spd in transgenic fruit (556HO and 579HO lines) expressing ySAMDC confirmed the enzymatic function of the introduced gene. The incorporation of L-[U-(14)C]Met into Spd, Spm, ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC) was used to determine Met-flux into these metabolites. The incorporation of (14)C-Met into Spd/Spm declined during ripening of the control azygous fruit but this was reversed in fruits expressing ySAMDC. However, incorporation of (14)C-Met into ethylene or ACC during ripening was not altered by the expression of ySAMDC in the fruit. Taken together these results show that: (1) There is an inverse relationship between the production of higher polyamines and ethylene during fruit ripening, (2) the inverse relationship between higher polyamines and ethylene is modulated by ySAMDC expression in that the decline in Spd/Spm during fruit ripening can be reversed without significantly altering ethylene

  6. Knockdown of ornithine decarboxylase antizyme 1 causes loss of uptake regulation leading to increased N1, N11-bis(ethyl)norspermine (BENSpm) accumulation and toxicity in NCI H157 lung cancer cells. (United States)

    Fraser, Alison V; Goodwin, Andrew C; Hacker-Prietz, Amy; Sugar, Elizabeth; Woster, Patrick M; Casero, Robert A


    Ornithine decarboxylase antizyme 1 (AZ1) is a major regulatory protein responsible for the regulation and degradation of ornithine decarboxylase (ODC). To better understand the role of AZ1 in polyamine metabolism and in modulating the response to anticancer polyamine analogues, a small interfering RNA strategy was used to create a series of stable clones in human H157 non-small cell lung cancer cells that expressed less than 5-10% of basal AZ1 levels. Antizyme 1 knockdown clones accumulated greater amounts of the polyamine analogue N (1),N (11)-bis(ethyl)norspermine (BENSpm) and were more sensitive to analogue treatment. The possibility of a loss of polyamine uptake regulation in the knockdown clones was confirmed by polyamine uptake analysis. These results are consistent with the hypothesis that AZ1 knockdown leads to dysregulation of polyamine uptake, resulting in increased analogue accumulation and toxicity. Importantly, there appears to be little difference between AZ1 knockdown cells and cells with normal levels of AZ1 with respect to ODC regulation, suggesting that another regulatory protein, potentially AZ2, compensates for the loss of AZ1. The results of these studies are important for the understanding of both the regulation of polyamine homeostasis and in understanding the factors that regulate tumor cell sensitivity to the anti-tumor polyamine analogues.

  7. DL-alpha-difluoromethyl[3,4-3H]arginine metabolism in tobacco and mammalian cells. Inhibition of ornithine decarboxylase activity after arginase-mediated hydrolysis of DL-alpha-difluoromethylarginine to DL-alpha-difluoromethylornithine. (United States)

    Slocum, R D; Bitonti, A J; McCann, P P; Feirer, R P


    DL-alpha-Difluoromethylarginine (DFMA) is an enzyme-activated irreversible inhibitor of arginine decarboxylase (ADC) in vitro. DFMA has also been shown to inhibit ADC activities in a variety of plants and bacteria in vivo. However, we questioned the specificity of this inhibitor for ADC in tobacco ovary tissues, since ornithine decarboxylase (ODC) activity was strongly inhibited as well. We now show that [3,4-3H]DFMA is metabolized to DL-alpha-difluoromethyl[3,4-3H]ornithine [( 3,4-3H]DFMO), the analogous mechanism-based inhibitor of ODC, by tobacco tissues in vivo. Both tobacco and mammalian (mouse, bovine) arginases (EC hydrolyse DFMA to DFMO in vitro, suggesting a role for this enzyme in mediating the indirect inhibition of ODC by DFMA in tobacco. These results suggest that DFMA may have other effects, in addition to the inhibition of ADC, in tissues containing high arginase activities. The recent development of potent agmatine-based ADC inhibitors should permit selective inhibition of ADC, rather than ODC, in such tissues, since agmatine is not a substrate for arginase.

  8. Effects of the suicide inhibitors of arginine and ornithine decarboxylase activities on organogenesis, growth, free polyamine and hydroxycinnamoyl putrescine levels in leaf explants of Nicotiana xanthi N.C. Cultivated in vitro in a medium producing callus formation. (United States)

    Burtin, D; Martin-Tanguy, J; Paynot, M; Rossin, N


    We studied the effects of dl-alpha-difluoromethylarginine (DFMA) and dl-alpha-difluoromethylornithine (DFMO), specific, irreversible inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC), respectively, on organogenesis growth and titers of free polyamines and conjugated putrescines (hydroxycinnamoyl putrescines) in tobacco (Nicotiana tabacum cv Xanthi n.c.) calli. These results suggest that ADC and ODC regulate putrescine biosynthesis during early and later stages of tobacco callus development, respectively. ADC appears active in biosynthesis of large levels of free amines (agmatine and putrescine) while ODC appears active only in biosynthesis of large levels of putrescine conjugates (hydroxycinnamoyl putrescines). DFMA inhibits the fresh and dry weight increases of tobacco calli, whereas DFMO even promoted the fresh and dry weight increases, thus supporting the view that ADC is important for cell division and callus induction. Inhibition of ODC activity by DFMO resulting in an amide deficiency after 4 weeks of culture facilates the expression of differentiated cell functions. Formation of buds is associated with a significant decrease of hydroxycinnamoyl putrescines.

  9. 产气肠杆菌α-乙酰乳酸脱羧酶基因的克隆表达及鉴定%Cloning and Expression of α-Acetolactate Decarboxylase Gene from Enterobacter aerogenes

    Institute of Scientific and Technical Information of China (English)

    王爱娥; 荫俊


    根据已知α-乙酰乳酸脱羧酶(α-acetolactate decarboxylase,ALDC)的基因序列,用PCR法从产气肠杆菌(Ebterobacter aerogenes)中克隆到约0.8kb的DNA片段,经DNA测序证明是ALDC基因,将该基因重组到质粒pBV220中,转化大肠杆菌,实现了高表达,获得了目的蛋白表达量约50%的转化子;表达产物经鉴定具有ALDC酶活性,为可溶性表达.为下一步应用基因工程手段对其进行改造奠定了基础.

  10. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble

    DEFF Research Database (Denmark)

    Christgau, S; Schierbeck, H; Aanstoot, H J;


    The 64-kDa pancreatic beta-cell autoantigen, which is a target of autoantibodies associated with early as well as progressive stages of beta-cell destruction, resulting in insulin-dependent diabetes (IDDM) in humans, has been identified as the gamma-aminobutyric acid-synthesizing enzyme glutamic...... acid decarboxylase. We have identified two autoantigenic forms of this protein in rat pancreatic beta-cells, a Mr 65,000 (GAD65) hydrophilic and soluble form of pI 6.9-7.1 and a Mr 64,000 (GAD64) component of pI 6.7. GAD64 is more abundant than GAD65 and has three distinct forms with regard to cellular...

  11. Integration of ¹H NMR and UPLC-Q-TOF/MS for a comprehensive urinary metabonomics study on a rat model of depression induced by chronic unpredictable mild stress.

    Directory of Open Access Journals (Sweden)

    Hong-Mei Jia

    Full Text Available Depression is a type of complex psychiatric disorder with long-term, recurrent bouts, and its etiology remains largely unknown. Here, an integrated approach utilizing (1H NMR and UPLC-Q-TOF/MS together was firstly used for a comprehensive urinary metabonomics study on chronic unpredictable mild stress (CUMS treated rats. More than twenty-nine metabolic pathways were disturbed after CUMS treatment and thirty-six potential biomarkers were identified by using two complementary analytical technologies. Among the identified biomarkers, nineteen (10, 11, 16, 17, 21-25, and 27-36 were firstly reported as potential biomarkers of CUMS-induced depression. Obviously, this paper presented a comprehensive map of the metabolic pathways perturbed by CUMS and expanded on the multitude of potential biomarkers that have been previously reported in the CUMS model. Four metabolic pathways, including valine, leucine and isoleucine biosynthesis; phenylalanine, tyrosine and tryptophan biosynthesis; tryptophan metabolism; synthesis and degradation of ketone bodies had the deepest influence in the pathophysiologic process of depression. Fifteen potential biomarkers (1-2, 4-6, 15, 18, 20-23, 27, 32, 35-36 involved in the above four metabolic pathways might become the screening criteria in clinical diagnosis and predict the development of depression. Moreover, the results of Western blot analysis of aromatic L-amino acid decarboxylase (DDC and indoleamine 2, 3-dioxygenase (IDO in the hippocampus of CUMS-treated rats indicated that depletion of 5-HT and tryptophan, production of 5-MT and altered expression of DDC and IDO together played a key role in the initiation and progression of depression. In addition, none of the potential biomarkers were detected by NMR and LC-MS simultaneously which indicated the complementary of the two kinds of detection technologies. Therefore, the integration of (1H NMR and UPLC-Q-TOF/MS in metabonomics study provided an approach to identify

  12. 鸟氨酸脱羧酶抗酶抑制子基因在小鼠发育过程中的作用%Ornithine Decarboxylase Antizyme Inhibitor (Oazin) Induces Mouse Death at Newborn Stage

    Institute of Scientific and Technical Information of China (English)

    罗蓉; 黄婷婷; 黄爱龙; 汤华


    Objective This study was aimed to identify the function of ornithine decarboxylase antizyme inhibitor (Oazin) gene in mouse development.Methods We have generated Oazin gene inhibited mice by using gene trapping method. The expression pattern of Oazin in the mutant line was analyzed with Western blot, RT-PCR and X-gal staining. Heterozygous mutant mice were mated and all offsprings in different developmental stage were genotyped with PCR.Results The expression of Oazin gene was inhibited in mutant mice. And all homozygous mutant mice were dead at P0 stage.Conclusion The results demonstrated that ornithine decarboxylase antizyme inhibitor is a lethal gene and plays a crucial role in mouse surviving.%目的 探索鸟氨酸脱羧酶抗酶抑制子基因在小鼠发育过程中的功能.方法 用特殊的基因诱捕载体(gene trapping vector)制作了鸟氨酸脱羧酶抗酶抑制子基因敲除小鼠.用Western印迹、RT-PCR、X-gal染色方法分析该基因在突变小鼠体内的表达.PCR法鉴定小鼠不同发育时期的基因型.结果 鸟氨酸脱羧酶抗酶抑制子基因在纯合型突变小鼠体内被抑制后,纯合型突变小鼠在出生后死亡.结论 鸟氨酸脱羧酶抗酶抑制子基因是致死基因,对小鼠生存有不可缺少的作用.

  13. Functional analysis and transcriptional regulation of two orthologs of ARO10, encoding broad-substrate-specificity 2-oxo-acid decarboxylases, in the brewing yeast Saccharomyces pastorianus CBS1483. (United States)

    Bolat, Irina; Romagnoli, Gabriele; Zhu, Feibai; Pronk, Jack T; Daran, Jean-Marc


    The hybrid genomes of Saccharomyces pastorianus consist of subgenomes similar to those of S. cerevisiae and S. eubayanus, and impact of the genome structure on flavour production and its regulation is poorly understood. This study focuses on ARO10, a 2-oxo-acid decarboxylase involved in production of higher alcohols. In S. pastorianus CBS1483, four ARO10 copies were identified, three resembled S. cerevisiae ARO10 and one S. eubayanus ARO10. Substrate specificities of lager strain (Lg)ScAro10 and LgSeubAro10 were compared by individually expressing them in a pdc1Δ-pdc5Δ-pdc6Δ-aro10Δ-thi3Δ S. cerevisiae strain. Both isoenzymes catalysed decarboxylation of the 2-oxo-acids derived from branched-chain, sulphur-containing amino acids and preferably phenylpyruvate. Expression of both alleles was induced by phenylalanine, however in contrast to the S. cerevisiae strain, the two genes were not induced by leucine. Additionally, LgSeubARO10 showed higher basal expression levels during growth with ammonia. ARO80, which encodes ARO10 transcriptional activator, is located on CHRIV and counts three Sc-like and one Seub-like copies. Deletion of LgSeubARO80 did not affect LgSeubARO10 phenylalanine induction, revealing 'trans' regulation across the subgenomes. ARO10 transcript levels showed a poor correlation with decarboxylase activities. These results provide insights into flavour formation in S. pastorianus and illustrate the complexity of functional characterization in aneuploid strains.

  14. Isolation and bioinformatics analysis of a glutamate decarboxylase gene inDendrobium officinale%铁皮石斛谷氨酸脱羧酶基因的分离与生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    张岗; 胡本祥; 李依民; 张大为; 郭顺星


    目的分离珍稀濒危兰科药用铁皮石斛谷氨酸脱羧酶(GAD)基因并进行生物信息学和表达分析。方法采用 RT-PCR和 RACE技术获基因 cDNA全长;利用生物信息学软件分析蛋白理化性质、结构域和三维建模等分子特性;用 DNASTAR 6.0和 MEGA 4.0分别进行氨基酸多序列比对和进化树分析;借助实时定量 PCR检测基因表达。结果分离到DoGAD基因,cDNA全长1795 bp,编码一条由498个氨基酸组成的多肽,分子量55.90 kD,等电点5.32;DoGAD蛋白不含跨膜域或信号肽,具有谷氨酸脱羧酶和磷酸吡哆醛依赖的脱羧酶结构域(17-443、37-381);DoGAD与植物 GADs蛋白一致性为69.5%~78.8%,隶属于 GADs分子进化树的植物类群;DoGAD转录本在石斛叶和茎中相对表达量较高,分别为根中的5.16和3.92倍。结论成功克隆得到铁皮石斛谷氨酸脱羧酶基因全长, DoGAD 的表达特征暗示其可能在铁皮石斛叶和茎中发挥重要的调控作用。%ObjectiveThis study is aimed to isolate and characterize a glutamate decarboxylase (GAD) geneDoGAD fromDendrobium officinale, a rare endangered medicinal orchid species. MethodsRT-PCR and RACE technologies were used for gene isolation. The physiochemical properties, conserved domains and three dimensional structure of the deduced DoGAD protein were determined using a series of bioinformatics tools. The analyses of multiple alignment and phylogenetic tree were performed using DNASTAR 6.0 and MEGA 4.0, respectively. Real time quantitative PCR was used for gene expression analysis.Results The full-length cDNA ofDoGAD, with 1795 bp in size, was deduced to encode a 498-aa protein with molecular weight of 55.90 kD and isoelectric point of 5.32. The deduced DoGAD protein, without transmembrane or signal peptide residues, contained glutamate decarboxylase and pyridoxal phosphate dependant decarboxylase domains (17-443, 37-381). DoGAD had high identities (69.5% - 78

  15. Effect of Ornithine decarboxylase gene silencing on endometrial cancer Ishikawa%鸟氨酸脱羧酶基因沉默对子宫内膜癌细胞Ishikawa的影响

    Institute of Scientific and Technical Information of China (English)

    楚广民; 张建波; 陈小兵; 刘红亮


    Objective To observe the effect of the ornithine decarboxylase gene silence on endometrial cancer Ishikawa cells by use the RNA interference technology. Methods The ornithine decarboxylase gene siRNA plasmid was designed and synthesized, and transfected into endometrial cancer Ishikawa cells, The experiment was divided into three groups: Ishikawa group, pSUPER-EGFP group, pSUPER-EGFP-ODC group. Real-time PCR and Western blot was used to detect the expression of ODC. MTT and flow cy tome try were used to detect the impact of the ODC gene silencing on the growth of Ishikawa cells. Results Real-time PCR and Western results showed that the ODC mRNA and protein expression levels in pSUPER-EGFP-ODC group were significantly decreased. MTT results showed that the pSUPER-EGFP-ODC could significantly inhibit the proliferation activity of Ishikawa cells compared with the Ishikawa (P < 0.01). Flow cytometry results showed pSUPER-EGFP-ODC could significantly blocked of Ishikawa cells in G0/G1 phase, a corresponding reduction in the number of S-phase cells, and induction of apoptosis, compared with the Ishikawa (P < 0.01). Conclusion Transfected with targeting siRNA sequences of the ODC gene plasmid could down-regulate ODC gene expression, inhibit the proliferation of human endometrial carcinoma Ishikawa in vitro block of Ishikawa cells in G0/G1 phase and induction of apoptosis.%目的 利用RNA干扰技术,观察鸟氨酸脱羧酶(ornithine decarboxylase,ODC)基因在子宫内膜癌Ishikawa细胞的沉默效应及对Ishikawa细胞增殖周期的影响.方法 设计合成以鸟氨酸脱羧酶基因为靶向目标的siRNA序列质粒,利用脂质体介导的方法 将质粒转染至子宫内膜癌Ishikawa细胞,实验分三组:Ishikawa组,pSUPER-EGFP组,pSUPER-EGFP-ODC组.用Real-time PCR和Western blot检测ODC的表达情况.采用MTT和流式细胞术来检测ODC基因沉默对Ishikawa细胞生长的影响.结果 Real-time PCR和Western显示pSUPER-EGFP-ODC组细胞ODC mRNA

  16. 粘质沙雷氏菌α-乙酰乳酸脱羧酶基因的体外表达%Expression of Serratia marcescens α-Acetolactate Decarboxylase Gene in Escherichia coli and Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    王亚平; 周荣华; 饶犇; 马立新


    根据GenBank中α-乙酰乳酸脱羧酶的基因序列(slaA)设计引物,以粘质沙雷氏菌(Serratia marcescens)HU1基因组DNA为模板通过PCR扩增得到了目标基因,全长为780 bp.将该基因分别连接到大肠杆菌表达载体pET30a和毕赤酵母表达栽体pPICZαA上,构建表达质粒pET30a-slaA和pPICZαA-slaA,并在对应的宿主中进行了表达.结果表明,大肠杆菌和毕赤酵母的表达产物的最适温度和pH均分别为40℃和7,两者在不同pH下的稳定性也相似,只不过毕赤酵母的表达产物的热稳定性要略强于大肠杆菌的表达产物.%Serratia marcescens α-acetolactate decarboxylase gene in Escherichia coli and Pichia pastoris,repectively.Primers of α-acetolactate decarboxylase gene (slaA) were designed according to the gene sequence in GeneBank; and target gene was obtained by PCR amplification using S.marcescens MG1 genomic DNA as template,which was 780 bp.Then slaA gene was inserted into pET-30a,expression vector of E.coli,and pPICZαA,expression vector of P.pastoris,resulting in plasmids pET30a-slaA and pPICZoA-slaA.The two expression vectors were introduced into the corresponding hosts and the gene was successfully expressed.The results showed that the optimum temperature and pH of the enzyme produced by E.coli and P.pastoris were both about 40 ℃ and 7,respectively.The stability of the enzyme at different pH from E.coli and P.pastoris was also similar.However,the thermal stability of the enzyme produced by P.pastoris was slightly stronger than that from E.coii.

  17. Active site directed irreversible inactivation of brewers' yeast pyruvate decarboxylase by the conjugated substrate analogue (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid: development of a suicide substrate. (United States)

    Kuo, D J; Jordan, F


    (E)-4-(4-Chlorophenyl)-2-oxo-3-butenoic acid (CPB) was found to irreversibly inactivate brewers' yeast pyruvate decarboxylase (PDC, EC in a biphasic, sigmoidal manner, as is found for the kinetic behavior of substrate. An expression was derived for two-site irreversible inhibition of allosteric enzymes, and the kinetic behavior of CPB fit the expression for two-site binding. The calculated Ki's of 0.7 mM and 0.3 mM for CPB were assigned to the catalytic site and the regulatory site, respectively. The presence of pyruvic acid at high concentrations protected PDC from inactivation, whereas low concentrations of pyruvic acid accelerated inactivation by CPB. Pyruvamide, a known allosteric activator of PDC, was found to enhance inactivation by CPB. The results can be explained if pyruvamide binds only to a regulatory site, but CPB and pyruvic acid compete for both the regulatory and the catalytic centers. [1-14C]CPB was found to lose 14CO2 concurrently with the inactivation of the enzyme. Therefore, CPB was being turned over by PDC, in addition to inactivating it. CPB can be labeled a suicide-type inactivator for PDC.

  18. Comparison of Measurements of Autoantibodies to Glutamic Acid Decarboxylase and Islet Antigen-2 in Whole Blood Eluates from Dried Blood Spots Using the RSR-Enzyme Linked Immunosorbent Assay Kits and In-House Radioimmunoassays

    Directory of Open Access Journals (Sweden)

    Anders Persson


    Full Text Available To evaluate the performance of dried blood spots (DBSs with subsequent analyses of glutamic acid decarboxylase (GADA and islet antigen-2 (IA-2A with the RSR-ELISAs, we selected 80 children newly diagnosed with type 1 diabetes and 120 healthy women. DBSs from patients and controls were used for RSR-ELISAs while patients samples were analysed also with in-house RIAs. The RSR-ELISA-GADA performed well with a specificity of 100%, albeit sensitivity (46% was lower compared to in RIA (56%; P=.008. No prozone effect was observed after dilution of discrepant samples. RSR-ELISA-IA-2A achieved specificity of 69% and sensitivity was lower (59% compared with RIA (66%; P<.001. Negative or low positive patients and control samples in the RSR-ELISA-IA-2A increased after dilution. Eluates from DBS can readily be used to analyse GADA with the RSR-ELISA, even if low levels of autoantibodies were not detected. Some factor could disturb RSR-ELISA-IA-2A analyses.

  19. Occurrence of pre-MBT synthesis of caspase-8 mRNA and activation of caspase-8 prior to execution of SAMDC (S-adenosylmethionine decarboxylase)-induced, but not p53-induced, apoptosis in Xenopus late blastulae. (United States)

    Shiokawa, Koichiro; Takayama, Eiji; Higo, Takayasu; Kuroyanagi, Shinsaku; Kaito, Chikara; Hara, Hiroshi; Kajitani, Masayuki; Sekimizu, Kazuhisa; Tadakuma, Takushi; Miura, Kin-Ichiro; Igarashi, Kazuei; Yaoita, Yoshio


    Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus fertilized eggs activates caspase-9 and executes maternal program of apoptosis shortly after midblastula transition (MBT). We find that overexpression of caspase-8 and p53, like that of SAMDC, induces apoptosis in Xenopus late blastulae. The apoptosis induced by p53 was abolished by injection of mRNA for xdm-2, a negative regulator of p53, and by injection of a peptide inhibitor or a dominant-negative type mutant of caspase-9, but not caspase-8. The apoptosis induced by SAMDC was not abolished by injection of xdm-2 mRNA, but was abolished by injection of a peptide inhibitor or a dominant-negative type mutant mRNA of both caspase-9 and caspase-8. Unlike caspase-9 mRNA, caspase-8 mRNA did not occur as a maternal mRNA rather induced to be expressed during cleavage stage (pre-MBT stage) by overexpression of SAMDC but not p53. Furthermore, while activities to process procaspase-8 and procaspase-9 appeared in SAMDC-overexpressed apoptotic embryos, the activity to process procaspase-8 did not appear in p53-overexpressed apoptotic embryos. We conclude there are at least two pathways in the execution of the maternal program of apoptosis in Xenopus embryos; one being through do novo expression of caspase-8 gene during cleavage stage, and the other without involvement of caspase-8.

  20. Identification and transcript analysis of two glutamate decarboxylase genes, CsGAD1 and CsGAD2, reveal the strong relationship between CsGAD1 and citrate utilization in citrus fruit. (United States)

    Liu, Xiao; Hu, Xiao-Mei; Jin, Long-Fei; Shi, Cai-Yun; Liu, Yong-Zhong; Peng, Shu-Ang


    Glutamate decarboxylase (GAD, EC has been suggested to be a key, regulatory point in the biosynthesis of γ-aminobutyrate (GABA) and in the utilization of citric acid through GABA shunt pathway. In this study we discovered two GAD genes, named as CsGAD1 and CsGAD2, in citrus genome database and then successfully cloned. Both CsGAD1 and CsGAD2 have a putative pyridoxal 5-phosphate binding domain in the middle region and a putative calmodulin-binding domain at the carboxyl terminus. Gene structure analysis showed that much difference exists in the size of exons and introns or in cis-regulatory elements in promoter region between the two GAD genes. Gene expression indicated that CsGAD1 transcript was predominantly expressed in flower and CsGAD2 transcript was predominantly expressed in fruit juice sacs; in the ripening fruit, CsGAD1 transcript level was at least 2-time higher than CsGAD2 transcript level. Moreover, CsGAD1 transcript level was increased significantly along with the increase of GAD activity and accompanied by a significant decrease of titratable acid (TA), suggesting that it is CsGAD1 rather than CsGAD2 plays a role in the citric acid utilization during fruit ripening. In addition, injection of abscisic acid and foliar spray of K2SO4 significantly increased the TA content of Satsuma mandarin, and significantly decreased GAD activity as well as CsGAD1 transcript, further suggesting the important role of CsGAD1 in the citrate utilization of citrus fruit.

  1. Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter. (United States)

    Rasmussen, Morten; Kong, Lingxin; Zhang, Guo-rong; Liu, Meng; Wang, Xiaodan; Szabo, Gabor; Curthoys, Norman P; Geller, Alfred I


    Many potential uses of direct gene transfer into neurons require restricting expression to one of the two major types of forebrain neurons, glutamatergic or GABAergic neurons. Thus, it is desirable to develop virus vectors that contain either a glutamatergic or GABAergic neuron-specific promoter. The brain/kidney phosphate-activated glutaminase (PAG), the product of the GLS1 gene, produces the majority of the glutamate for release as neurotransmitter, and is a marker for glutamatergic neurons. A PAG promoter was partially characterized using a cultured kidney cell line. The three vesicular glutamate transporters (VGLUTs) are expressed in distinct populations of neurons, and VGLUT1 is the predominant VGLUT in the neocortex, hippocampus, and cerebellar cortex. Glutamic acid decarboxylase (GAD) produces GABA; the two molecular forms of the enzyme, GAD65 and GAD67, are expressed in distinct, but largely overlapping, groups of neurons, and GAD67 is the predominant form in the neocortex. In transgenic mice, an approximately 9 kb fragment of the GAD67 promoter supports expression in most classes of GABAergic neurons. Here, we constructed plasmid (amplicon) Herpes Simplex Virus (HSV-1) vectors that placed the Lac Z gene under the regulation of putative PAG, VGLUT1, or GAD67 promoters. Helper virus-free vector stocks were delivered into postrhinal cortex, and the rats were sacrificed 4 days or 2 months later. The PAG or VGLUT1 promoters supported approximately 90% glutamatergic neuron-specific expression. The GAD67 promoter supported approximately 90% GABAergic neuron-specific expression. Long-term expression was observed using each promoter. Principles for obtaining long-term expression from HSV-1 vectors, based on these and other results, are discussed. Long-term glutamatergic or GABAergic neuron-specific expression may benefit specific experiments on learning or specific gene therapy approaches. Of note, promoter analyses might identify regulatory elements that determine

  2. Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in glutamate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro. (United States)

    Monnerie, H; Hsu, F-C; Coulter, D A; Le Roux, P D


    The vulnerability of brain neuronal cell subpopulations to neurologic insults varies greatly. Among cells that survive a pathological insult, for example ischemia or brain trauma, some may undergo morphological and/or biochemical changes that may compromise brain function. The present study is a follow-up of our previous studies that investigated the effect of glutamate-induced excitotoxicity on the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67)'s expression in surviving DIV 11 cortical GABAergic neurons in vitro [Monnerie and Le Roux, (2007) Exp Neurol 205:367-382, (2008) Exp Neurol 213:145-153]. An N-methyl-D-aspartate receptor (NMDAR)-mediated decrease in GAD expression was found following glutamate exposure. Here we examined which NMDAR subtype(s) mediated the glutamate-induced change in GAD protein levels. Western blotting techniques on cortical neuron cultures showed that glutamate's effect on GAD proteins was not altered by NR2B-containing diheteromeric (NR1/NR2B) receptor blockade. By contrast, blockade of triheteromeric (NR1/NR2A/NR2B) receptors fully protected against a decrease in GAD protein levels following glutamate exposure. When receptor location on the postsynaptic membrane was examined, extrasynaptic NMDAR stimulation was observed to be sufficient to decrease GAD protein levels similar to that observed after glutamate bath application. Blocking diheteromeric receptors prevented glutamate's effect on GAD proteins after extrasynaptic NMDAR stimulation. Finally, NR2B subunit examination with site-specific antibodies demonstrated a glutamate-induced, calpain-mediated alteration in NR2B expression. These results suggest that glutamate-induced excitotoxic NMDAR stimulation in cultured GABAergic cortical neurons depends upon subunit composition and receptor location (synaptic vs. extrasynaptic) on the neuronal membrane. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered

  3. Assessment of CD4+ T cell responses to glutamic acid decarboxylase 65 using DQ8 tetramers reveals a pathogenic role of GAD65 121-140 and GAD65 250-266 in T1D development.

    Directory of Open Access Journals (Sweden)

    I-Ting Chow

    Full Text Available Susceptibility to type 1 diabetes (T1D is strongly associated with MHC class II molecules, particularly HLA-DQ8 (DQ8: DQA1*03:01/DQB1*03:02. Monitoring T1D-specific T cell responses to DQ8-restricted epitopes may be key to understanding the immunopathology of the disease. In this study, we examined DQ8-restricted T cell responses to glutamic acid decarboxylase 65 (GAD65 using DQ8 tetramers. We demonstrated that GAD65 121-140 and GAD65 250-266 elicited responses from DQ8+ subjects. Circulating CD4+ T cells specific for these epitopes were detected significantly more often in T1D patients than in healthy individuals after in vitro expansion. T cell clones specific for GAD65 121-140 and GAD65 250-266 carried a Th1-dominant phenotype, with some of the GAD65 121-140-specific T cell clones producing IL-17. GAD65 250-266-specific CD4+ T cells could also be detected by direct ex vivo staining. Analysis of unmanipulated peripheral blood mononuclear cells (PBMCs revealed that GAD65 250-266-specific T cells could be found in both healthy and diabetic individuals but the frequencies of specific T cells were higher in subjects with type 1 diabetes. Taken together, our results suggest a proinflammatory role for T cells specific for DQ8-restricted GAD65 121-140 and GAD65 250-266 epitopes and implicate their possible contribution to the progression of T1D.

  4. Expression of Recombinant Tryptophan Decarboxylase in Different Subcellular Compartments in Tobacco Plant%重组色氨酸脱羧酶在烟草不同亚细胞区室的表达

    Institute of Scientific and Technical Information of China (English)

    王淼; 李秋荣; Stefano Di DIORE


    The gene encoded for tryptophan decarboxylase (TDC), which is the key enzyme in terpenoil indole alkaloids pathway, was targeted to different subcellular compartments and stably expressed in transgenic tobacco (Nicotiana tabacum L.) plants at the levels detected by Western blot and tryptamine accumulation analysis. It was shown that the TDC was located in subcellular compartments, the chloroplasts and cytosol. The recombinant TDC targeted to chloroplasts and cytosol in tobacco plants was effectively expressed as soluble protein by Western blot analysis and enzymatic assay. The level of tryptamine accumulation in chloroplast was higher than that in cytosol and very low in vacuole and endoplasmic reticulum (ER) to be hardly detected by Western blot analysis. It was indicated that the highest amount of tryptamine was in chloroplasts, lower in endoplasmic reticula and the lowest in vacuoles as compared to those in wild type plants. The TDC targeted to different subcellular compartments of tobacco plants and its expression level were studied by different nucleotide sequences coding signal peptides at 5′-end of tdc gene in order to know the effects of the TDC in compartmentation on its functionality.%将萜烯类吲哚生物碱代谢关键酶--色氨酸脱羧酶(TDC)的编码基因转到烟草(Nicotiana tabacum L.)植物体内,标定在不同的亚细胞区室表达。通过蛋白免疫印迹法和色胺在植物体内的累积量测定分析,对转基因植物进行筛选。结果表明,TDC在叶绿体和胞液中高效表达,TDC在叶绿体中的表达水平最高,高于在胞液中的表达,在内质网和液泡中表达水平很低,用蛋白免疫印迹法未检出。

  5. Comparison of ultraviolet light-induced skin carcinogenesis and ornithine decarboxylase activity in sencar and hairless SKH-1 mice fed a constant level of dietary lipid varying in corn and coconut oil. (United States)

    Berton, T R; Fischer, S M; Conti, C J; Locniskar, M F


    To investigate the effect of various levels of corn oil and coconut oil on ultraviolet (UV) light-induced skin tumorigenesis and ornithine decarboxylase (ODC) activity, Sencar and SKH-1 mice were fed one of three 15% (weight) fat semipurified diets containing three ratios of corn oil to coconut oil: 1.0%:14.0%, 7.9%:7.1%, and 15.0%:0.0% in Diets A, B, and C, respectively. Groups of 30 Sencar and SKH-1 mice were fed one of the diets for three weeks before UV irradiation; then both strains were UV irradiated with an initial dose of 90 mJ/cm2. The dose was given three times a week and increased 25% each week. For Sencar mice (irradiated 33 wks for a total dose of 48 J/cm2), tumor incidence reached a maximum of 60%, 60%, and 53% for Diets A, B, and C, respectively, with an overall average of one to two tumors per tumor-bearing animal. For the SKH-1 mice (irradiated 29 wks for a total dose of 18 J/cm2), all diet groups reached 100% incidence by 29 weeks, with approximately 12 tumors per tumor-bearing mouse. No significant effect of dietary corn oil/coconut oil was found for tumor latency, incidence, or yield in either strain. The effect of increasing corn oil on epidermal ODC activity in chronically UV-irradiated Sencar and SKH-1 mice was assessed. Three groups of mice from each strain were fed one of the experimental diets and UV irradiated for six weeks. Sencar mice showed no increase in ODC activity until six weeks of treatment, when the levels of ODC activity in the UV-irradiated mice fed Diet A were significantly higher than those in mice fed Diet B or Diet C: 1.27, 0.55, and 0.52 nmol/mg protein/hr, respectively. In the SKH-1 mice, ODC activity was increased by the first week of UV treatment, and by three weeks of treatment a dietary effect was observed; ODC activity was significantly higher in mice fed Diet C (0.70 nmol/mg protein/hr) than in mice fed Diet A (0.18 nmol/mg protein/hr). Although there was no significant effect of dietary corn oil/coconut oil on UV

  6. Cloning and expression analysis of pyruvate decarboxylase gene in Salvia miltiorrhiza%白花丹参丙酮酸脱羧酶基因的克隆和表达分析

    Institute of Scientific and Technical Information of China (English)

    史仁玖; 常正尧; 王健美; 王德才


    Objective To obtain the fulllength of Salvia miltiorrhiza pyruvate decarboxylase (SmPDC) gene, to analyze the expression differences in various tissues of S. miltiorrhiza after anaerobic stress treatment. Methods The fulllength of SmPDC gene was isolated through sequencing cDNA library, and semi-quantitative RT-PCR was used to detect the gene expression levels. Results The fulllength of SmPDC cDNA has an open reading frame of 2 190 bp. The deduced amino acid sequence of SmPDC has 605 amino acid residues which form a 6.485×104 polypeptide with a calculated pI of 5.49. Semi-quantitative RT-PCR indicated that SmPDC gene was expressed at a high level in root, followed by stem and leaf of 5. miltiorrhiza. Anaerobic stress could induce the expression of SmPDC gene and the expression was increased with the stress time elongating. Conclusion SmPDC is a new member of the PDC family and plays an important role in anaerobic respiration pathway.%目的 获得白花丹参丙酮酸脱羧酶(SmPDC)全长基因,分析该基因在白花丹参不同组织部位,以及缺氧胁迫处理后的该基因表达差异.方法 利用cDNA文库筛选获得SmPDC基因全长,利用半定量RT-PCR,分析SmPDC基因在白花丹参不同部位的表达情况,及缺氧处理条件下的表达情况.结果 获得的SmPDC基因由2 190个核苷酸组成,编码605个氨基酸,蛋白相对分子质量药6.485×104,等电点pI 5.49;半定量RT-PCR检测,该基因在丹参的根中表达量最高,其次是茎和叶;缺氧胁迫处理会诱导该基因的表达,随胁迫时间延长表达量逐渐增加.结论 白花丹参SmPDC基因是PDC家族新成员,其功能与植物耐缺氧代谢途径有关.

  7. Subcellular localization of the voltage-gated potassium channels Kv3.1b and Kv3.3 in the cerebellar dentate nucleus of glutamic acid decarboxylase 67-green fluorescent protein transgenic mice. (United States)

    Alonso-Espinaco, V; Elezgarai, I; Díez-García, J; Puente, N; Knöpfel, T; Grandes, P


    Deep cerebellar dentate nuclei are in a key position to control motor planning as a result of an integration of cerebropontine inputs and hemispheric Purkinje neurons signals, and their influence through synaptic outputs onto extracerebellar hubs. GABAergic dentate neurons exhibit broader action potentials and slower afterhyperpolarization than non-GABAergic (presumably glutamatergic) neurons. Specific potassium channels may be involved in these distinct firing profiles, particularly, Kv3.1 and Kv3.3 subunits which rapidly activate at relatively positive potentials to support the generation of fast action potentials. To investigate the subcellular localization of Kv3.1b and Kv3.3 in GAD- and GAD+ dentate neurons of glutamic acid decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mice a preembedding immunocytochemical method for electron microscopy was used. Kv3.1b and Kv3.3 were in membranes of cell somata, dendrites, axons and synaptic terminals of both GAD- and GAD+ dentate neurons. The vast majority of GAD- somatodendritic membrane segments domains labeled for Kv3.1b and Kv3.3 (96.1% and 84.7%, respectively) whereas 56.2% and 69.8% of GAD- axonal membrane segments were immunopositive for these subunits. Furthermore, density of Kv3.1b immunoparticles was much higher in GAD- somatodendritic than axonal domains. As to GAD+ neurons, only 70.6% and 50% of somatodendritic membrane segments, and 53.3% and 59.5% of axonal membranes exhibited Kv3.1b and Kv3.3 labeling, respectively. In contrast to GAD- cells, GAD+ cells exhibited a higher density labeling for both Kv3 subunits at their axonal than at their somatodendritic membranes. Taken together, Kv3.1b and Kv3.3 potassium subunits are expressed in both GAD- and GAD+ cells, albeit at different densities and distribution. They likely contribute to the distinct biophysical properties of both GAD- and GAD+ neurons in the dentate nucleus.

  8. Cloning and Prokaryotic Expressing of Glutamate Decarboxylase Gene from Lactobacillus plantarum%植物乳杆菌谷氨酸脱羧酶基因的克隆及原核表达

    Institute of Scientific and Technical Information of China (English)

    时粲; 刘昭明; 黎娅; 易弋; 伍时华


    Based on the sequence of Lactobacillus plantarum WCFS1 published in GenBank, primers were designed and the glutamate decarboxylase encoding gene gadB from L. plantarum QL-14 was amplified by PCR technology. Then the target gene was expressed in Escherichia coli BL21 through fusion expression vector pGEX-4T-3, and the expression condition was optimized and target protein was purified. The results showed that the ORF of gadB gene was 1 407 bp and encoded 469 amino acids, 99.6% homology with L. plantarum WCFS1. After optimizing the inducing condition, the molecular weight and pI of purified GAD protein reached to 53.6 ku and 5.58 respectively, with an activity of 9.9 U/mg.%根据GenBank中植物乳杆菌(Lactobacillus plantarum)基因组序列设计引物,利用PCR技术扩增了植物乳杆菌QL-14的谷氨酸脱羧酶编码基因gadB,克隆至表达载体pGEX-4T-3,转化大肠杆菌(Es-cherichia coli)后进行原核表达,对表达条件进行了优化并对表达蛋白质进了纯化。结果表明,扩增目的gadB基因的开放阅读框(ORF)全长1407 bp,编码469个氨基酸,氨基酸序列与植物乳杆菌WCFS1同源性为99.6%。通过优化诱导表达条件,得到纯化蛋白质GAD大小为53.6 ku,等电点为5.58,比活力为9.9 U/mg。

  9. L-Histidine Decarboxylase and Tourette's Syndrome

    NARCIS (Netherlands)

    Ercan-Sencicek, A. Gulhan; Stillman, Althea A.; Ghosh, Ananda K.; Bilguvar, Kaya; O'Roak, Brian J.; Mason, Christopher E.; Abbott, Thomas; Gupta, Abha; King, Robert A.; Pauls, David L.; Tischfield, Jay A.; Heiman, Gary A.; Singer, Harvey S.; Gilbert, Donald L.; Hoekstra, Pieter J.; Morgan, Thomas M.; Loring, Erin; Yasuno, Katsuhito; Fernandez, Thomas; Sanders, Stephan; Louvi, Angeliki; Cho, Judy H.; Mane, Shrikant; Colangelo, Christopher M.; Biederer, Thomas; Lifton, Richard P.; Gunel, Murat; State, Matthew W.


    Tourette's syndrome is a common developmental neuropsychiatric disorder characterized by chronic motor and vocal tics. Despite a strong genetic contribution, inheritance is complex, and risk alleles have proven difficult to identify. Here, we describe an analysis of linkage in a two-generation pedig

  10. Glutaminsyre-decarboxylase-antistoffer og diabetes

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, Thomas


    The 1999 WHO classification delineates immune mediated type 1 diabetes from other types of diabetes by the presence of auto-antibodies against beta-cell constituents. The GAD65 auto-antibody test is the method of first choice because it has the highest sensitivity, specificity and positive...... predictive value and is the most standardized and well-characterized type 1 diabetes related auto-antibody analysis. It is recommended that demonstration of GAD auto-antibodies leads to diagnosis, classification or re-classification of diabetes patients as immune mediated type 1 diabetes. Udgivelsesdato...

  11. Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Directory of Open Access Journals (Sweden)

    Woods C Geoffrey


    Full Text Available Abstract Background Cerebral palsy (CP is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67, involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA. Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS, epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts. Table 4 GAD1 single nucleotide substitutions detected on mutation analysis and occurring in sequences submitted to NCBI SNP database and in the literature. This is not a definitive list, but includes those described at the time of the mutational analysis. *Nucleotide positions were not provided by Maestrini et al. [47]. Source SNP position in mRNA, from the translational start site (bp Gene position of SNP(bp Amino acid change (ALappalainen et al. (2002 A(-478Del Exon

  12. Optimization ofγ-aminobutyric Preparation by Recombinant Glutamate Decarboxylase%重组谷氨酸脱羧酶制备γ-氨基丁酸的工艺条件优化

    Institute of Scientific and Technical Information of China (English)

    黄燕; 宿玲恰; 吴敬


    谷氨酸脱羧酶,一种磷酸吡哆醛(PLP)依赖性酶,能专一、不可逆地催化L-谷氨酸脱羧得到γ-氨基丁酸(GABA)。构建了产Lactobacillus brevisWJH3谷氨酸脱羧酶重组大肠杆菌E.coliBL21(DE3)/pET-24a-gad,以此作为菌种进行摇瓶发酵诱导培养,发酵过程中一次性添加0.05mmol/LPLP培养24h,破壁上清酶活达81.7U/mL,是不添加PLP对照酶活的1.8倍。对酶转化L-谷氨酸钠生成GABA反应条件进行了优化,结果表明,在转化体系不添加PLP的情况下,底物谷氨酸钠浓度为250g/L,反应初始pH5.0,温度37℃,加酶量60U/g底物,转速200r/min,在此条件下反应18h,GABA转化率达到100%,为γ-氨基丁酸的工业化生产奠定基础。%Glutamate decarboxylase(GAD),a pyridoxal 5'-phosphate(PLP)-dependent enzyme,irreversibly catalyzes the decarboxylation of L-glutamate to be the valuable food additive γ-aminobutyric acid(GABA). In this study,a recombinant Escherichia coli BL21(DE3)/pET-24a-gad producing Lactobacillus brevis WJH3 GAD was constructed as strain in the flask culturing of fermentation and induction. The activity of GAD produced in the supernatant of culturing for 24 h medium supplemented one-time with 0.05 mmol/L PLP was 81.7 U/mL,and this was 1.8-fold of that without PLP supplementation. Furthermore,the condition for GABA preparation by enzymatic conversion was optimized;under the condition of 250 g/L monosodium glutamate(MSG),pH5.0,37℃,60 U GAD per gram substrate incubated for 18 hours,and rotation rate 200 r/min,100% of the MSG was transformed into GABA. These results establish the utility of PLP supplementation and lay the foundation for large-scale enzymatic production of GABA.

  13. Cloning and expression analysis of a lysine decarboxylase gene in Sophora alopecuroides%苦豆子赖氨酸脱羧酶基因克隆与表达分析

    Institute of Scientific and Technical Information of China (English)

    杨毅; 陆姗姗; 刘萍; 田蕾


    赖氨酸脱羧酶(lysine decarboxylase,LDC)基因是苦豆子中氧化苦参碱(oxymatrine,OMA)生物合成的第一个关键酶基因。根据近缘物种苦参的赖氨酸脱羧酶基因设计特异引物,同源克隆法克隆了苦豆子赖氨酸脱羧酶基因的蛋白质编码区序列,全长1368 bp,命名为 Sa-LDC,GenBank 登录号为 KM249871。生物信息学分析表明 Sa-LDC 编码区序列无内含子,与苦参和狗苦参的 LDC 序列一致性均达到97%;属于Ⅲ型5-磷酸吡哆醛依赖酶[typeⅢ pyridoxal 5-phosphate (PLP)-dependent enzymes,PLPDE-Ⅲ]超基因家族,功能活跃。Sa-LDC 编码455个氨基酸残基,其编码的肽链相对分子质量49.14 kD,理论等电点5.63,无信号肽和跨膜结构;在其氨基酸序列中具有产喹诺里西啶生物碱的特征性保守位点 Phe340;系统进化树将苦豆子与其他产喹诺里西啶类生物碱的植物聚为一类。qPCR 和 HPLC 检测显示,苦豆子赖氨酸脱羧酶基因的表达和氧化苦参碱的积累均受干旱胁迫的影响,且基因的表达量与氧化苦参碱的积累呈正相关关系。%In the biochemical metabolic processes of Sophora alopecuroides ,a lysine decarboxylase (LDC)gene is one of the key enzyme genes involved in the process of Oxymatrine biosynthesis.In the present study,the full length of the LDC coding sequence in S .alopecuroides was cloned using a pair of specific primers designed based on the LDC sequence of Sophora flavescens and was named Sa-LDC (gene bank accession number:KM249871).Sa-LDC belongs to the Type Ⅲ Pyridoxal 5-phosphate (PLP)-Dependent enzyme supergene fami-ly,is comprised of a 1368 bps open reading frame (ORF)without intron,and has 97% identity with the LDC of Echinosophora koreensis and S .flavescens in GeneBank.Its nucleotide sequence encodes 455 amino acid resi-dues whose putative protein had a relative molecular mass of 49.14 kD and the theoretical isoelectric point

  14. In silico cloning and sequencing of anarginine decarboxylase gene from Fragaria vesca%森林草莓精氨酸脱羧酶基因的电子克隆与序列分析

    Institute of Scientific and Technical Information of China (English)

    王静; 赵密珍; 王壮伟; 吴伟民; 钱亚明


    In this study, an arginine decarboxylase gene was isolated from Fragaria vesca, named FvADC (Fragar-ia vesca ADC) , and its expression pattern, sequence characteristics and evolutionary relationship were investigated. FvADC was isolated by RT-PCR in combination with in silico cloning. Semi-quantitative RT-PCR was used to determine the expression pattern under salt, hot and cold stresses. Bioinformatics analysis was used to study the structure, evolutionary relationship of FvADC. The results showed that the full-length cDNA sequence was 2 905 bp, which contained a complete open reading frame (ORF) of 2 154 bp, with a 456 bp 5'-untranslated region (UTR) and a 293 bp3'-UTR. The ORF encoded a putative protein containing 717 amino acids. The two single RT-PCR bands confirmed the results. FvADC amino acid sequence shared high identity with those from Primus persica (87% , AB379849) , Malus×domestica (84% , AB181854) and Malus hupehensis (83% , EU431331). A putative N-terminal signal peptide was predicted. FvADC contained two highly conservative domains, I. E. , the ADC family 2 pyridoxal phosphate binding site and the ADC family 2 signature 2 sequence. FvADC putative protein had a calculated molecular mass of 243 243. 17 and an isoelectric point of 4. 80. FvADC was located in the cytoplasm. There was a close relationship between apple FvADC and peach FvADC by phylogenetic tree analysis. Based on the database of ESTs, FvADC was expressed in response to stress such as hot, drought, salt, chilling and exogenous salicylic acid. Semi-quantitative RT-PCR results showed that FvADC expression was induced under salt, hotor cold stresses. The above results indicated that in silico cloning would be efficient in isolation of strawberry genes, and FvADC was a good stress-resistant candidate gene for strawberry genetic improvement.%从森林草莓中分离精氨酸脱羧酶基因(FvADC),分析其表达模式、序列特征和进化关系。采用电子克隆结合RT-PCR分离FvADC


    Institute of Scientific and Technical Information of China (English)

    马建敏; 和俊涛; 索世英; 宁黔冀; 徐存栓


    Objective The regulation of ornithine decarboxylase (ODC) gene expression and enzyme activity by corticosterone, the main glucocorticoid in rat, during rat liver regeneration induced by partial hepatectomy (PH) was evaluated.Methods Bilateral adrenaleetomies (ADX) and sham-ADX were performed on ether-anesthetized rats 3 days before PH.Corticosterone in sesame oil was injected subcutaneously to adrenalectomied rats. ODC mRNA, ODC protein and enzyme activity were detected by RT-PCR, Western blotting and high performance liquid chromatography (HPLC), respectively. Results The ODC mRNA levels, protein accumulation and enzyme activity were lower in the intact liver compared to the regenerating liver.After PH, mRNA levels were remarkably enhanced in all groups (n=6 in each group) and peaked at 5 hours post-PH. Till 7 hours, the contents in all groups from high to low were ADX group,control group (Sham-ADX group), ADX treated with 10mg/kg and 40mg/kg body weight corticosterone group, respectively. ODC protein accumulation in ADX rats was higher than that in control rats (n=13, the same below), but it decreasod in corticosterone-treated (10mg/kg) rats until 24 hours post-PH, with a strong decline seen in 40mg/kg corticosterone-treated rats. ODC activity was rapidly promoted, and the highest levels were observed at 6 hours after PH in all groups (n=6 in each group). After corticosterone treatment, the activities declined significantly at 6 hours post-PH, with the lowest value found in the 40mg/kg group. Conclusion Corticosterone treatment results in dose-dependent decreases in ODC mRNA and enzyme protein both in the intact liver and the regenerating liver. The change in ODC activity is partially related to alterations of ODC mRNA and protein accumulation.%目的 研究大鼠体内主要的糖皮质激素--皮质酮对部分肝切除(PH)诱导的再生肝鸟氨酸脱羧酶(ODC)基因表达及酶活性的影响.方法 乙醚麻醉大鼠,于PH前3d行双侧肾上腺切除术

  16. Seasonal postembryonic maturation of the diurnal rhythm of serotonin in the chicken pineal gland. (United States)

    Piesiewicz, Aneta; Kedzierska, Urszula; Turkowska, Elzbieta; Adamska, Iwona; Majewski, Pawel M


    Previously, we have demonstrated the postembryonic development of chicken (Gallus gallus domesticus L.) pineal gland functions expressed as changes in melatonin (MEL) biosynthesis. Pineal concentrations of MEL and its precursor serotonin (5-HT) were shown to increase between the 2nd and 16th day of life. We also found that levels of the mRNAs encoding the enzymes participating in the final two steps of MEL biosynthesis from 5-HT: arylalkylamine-N-acetyltransferase (AANAT) and hydroxyindole-O-methyltransferase (HIOMT), as well as their enzymatic activities, were raised during postembryonic development. Moreover, the manner of these changes was season-of-hatch dependent, even in animals kept under constant laboratory conditions (L:D 12:12). The most pronounced changes were seen in the concentrations of 5-HT and MEL, as well as in Aanat mRNA level and its enzymatic activity. The high daily variability in 5-HT content suggested that season- and age-dependent changes in the activity of the chicken pineal gland might rely on the availability of 5-HT, i.e. it may be limited by changes in pineal tryptophan (TRP) and/or 5-hydroxytryptophan (5-HTP) levels as well as by the activity of tryptophan hydroxylase (TPH) and aromatic l-amino acid decarboxylase (AADC): two enzymes participating in the conversion of TRP to 5-HT. The present study was undertaken with the following objectives: (1) to examine whether the pineal concentration of the 5-HT precursors TRP and 5-HTP exhibit age- and season-related changes; (2) to look for season-related differences in the transcription of the Tph1 and Ddc genes encoding enzymes TPH and AADC; (3) to identify the step(s) in postembryonic development in which these season-related variations in pineal gland function are most pronounced. Male Hy-line chickens hatched in the summer or winter, from eggs laid by hens held in L:D 16:8 conditions were kept from the day of hatch in L:D 12:12 conditions. At the age of 2 or 9 days, animals were sacrificed

  17. 谷氨酸脱羧酶抗体微量平板放射结合检测法的建立与初步应用%Micro-plate radiobinding assay of autoantibody to glutamic acid decarboxylase

    Institute of Scientific and Technical Information of China (English)

    黄干; 金河来; 王霞; 李卉; 张松; 周智广


    Objective The purpose of this study was to develop a high-throughput micro-plate radiobinding assay (RBA) of glutamic acid decarboxylase antibody (GAD-Ab) and to evaluate its clinical application. Methods 35labeled GAD65 antigen was incubated with sera for 24 h on a 96-well plate, and then transferred to the Millipore plate coated with protein A, which was washed with 4℃ PBS buffer, and then counted by a liquid scintillation counter. The GAD-Ab results were expressed by WHO standard unit (U/ml). A total of 224 healthy controls, 162 patients with type 1 diabetes mellitus(T1DM) and 210 patients with newly diagnosed type 2 diabetes (T2DM) were recruited. A total of 119 TI DM and healthy cases with gradually changing GAD-Ab levels were selected to compare the consistency of micro-plate RBA with conventional radioligand assay (RLA). Blood samples were obtained from the peripheral vein and finger tip in 32 healthy controls, 35 T1DM and 24 T2DM patients, and tested with micro-plate RBA and then compared with the conventional RLA to investigate the reliability of finger tip sampling. Linear correlation,student's t-test, variance analysis and receiver operating characteristic (ROC) curve were performed using SPSS 11.5. Results (1) The optimized conditions of micro-plate RBA included 2 μl serum incubated with3 ×104 counts/min 35S-GAD for 24 h under slow vibration, antigen-antibody compounds washed 10 times by 4℃ PBS buffer, and radioactivity counted with Optiphase Supermix scintillation liquid. (2)The intra-batch CV of the micro-plate RBA was 3.8%- 10.2%, and the inter-batch CV was 5.6%- 11.9%. The linearity analysis showed a good correlation when the GAD-Ab in serum samples ranged from 40.3 to 664 U/ml and the detection limit of measurement was 3.6 U/ml. The results from Diabetes Autoantibody Standardization Program (DASP) 2005 showed that the sensitivity and specificity for GAD-Ab were 78% (39 positive among 50 new-onset T1DM) and 98% (2 positive among 100 healthy

  18. 牛奶中分离的乳酸菌GGMCC1306中谷氨酸脱羧酶的分离纯化及酶学性质研究%Purification and Characterization of Glutamate Decarboxylase of Lactobacillus brevis CGMCC 1306 Isolated from Fresh Milk

    Institute of Scientific and Technical Information of China (English)

    黄俊; 梅乐和; 盛清; 姚善泾; 林东强


    A Lactobacillus brevis CGMCC 1306 isolated from fresh milk without pasteurization was found to have higher glutamate decarboxylase (GAD) activity. An effective isolation and purification procedure of GAD from a cell-free extract of Lactobacillus brevis was developed, and the procedure included four steps: 30%-90% saturation (NH4)2SO4 fractional precipitation,Q sepharose FF anion-exchange chromatography,sephacryl S-200 gel filtration,and resource Q anion-exchange chromatography.Using this protocol,the purified GAD was demonstrated to possess electrophoretic homogeneity via SDS-PAGE. The purificaton fold and activity recovery of GAD were 43.78 and 16.95%, respectively. The molecular weight of the purified GAD was estimated to be approximately 62 kDa via SDS-PAGE. The optimum pH and temperature of the purified GAD were 4.4 and 37℃,respecively.The purified GAD had a half-life of 50minat 45℃ and the Km value of the enzyme from Lineweaver-Burk polt was found to be 8.22.5'-pyridoxal phosphate (PLP) had little effect on the regulation of its activity.

  19. 谷氨酸脱羧酶抗体在2型糖尿病患者中的检出率及分布特征%Analysis of the Detection Rate and Distrubution Feature of Glutamic Acid Decarboxylase Antibodies in Patients with Type 2 Diabetes Mellitus

    Institute of Scientific and Technical Information of China (English)

    张利方; 刘莹; 石莉萍; 汪薇


    Objective: To explore the change of detection rate and distribution feature of glutamic acid decarboxylase antibody (GAD-Ab) in patients with type 2 diabetes mellitus (T2DM). Method: To detect the positive rate of GAD-Ab using EL1SA method in 1970 patients with T2DM and its distribution in different sex, age, course of disease and body mass index (BM1). Fasting, postprandial insulin 2H (FINS, 2hLNS) and fasting, postprandial 2h C peptide (FCP, 2hCP) level were detected by electro-chemiluminescence in GAD-Ab positive and negative patients and compared with the healthy people. Results: 126 cases were GAD-Ab positive among the 1970 patients with T2DM and the total positive rate was 6. 39%. GAD-Ab was mainly distributed in patients during the 30 ~49 years old (P0.05).GAD-Ab阳性组T2DM FINS、2hINS、FCP和2hCP均低于GAD-Ab阴性组和健康对照组(P<0.05).结论:GAD-Ab检测有助于临床对T2DM患者胰岛素功能变化进行评价.

  20. Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels. (United States)

    Shimajiri, Yasuka; Oonishi, Takayuki; Ozaki, Kae; Kainou, Kumiko; Akama, Kazuhito


    Gamma-aminobutyric acid (GABA) is a non-protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA-transaminase, GABA-T), we attempted seed-specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB-1) or rice embryo globulin promoters (REG) and GABA-T-based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T₁ and T₂ generations of rice lines displayed high GABA concentrations (2-100 mg/100 g grain). In analyses of two selected lines from the T₃ generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA-T expression was relatively weak. In these two lines both with two T-DNA copies, their starch, amylose, and protein levels were slightly lower than non-transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75-350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts.

  1. 一种谷氨酸脱羧酶65相关肽融合蛋白的制备及其治疗1型糖尿病的药效研究%Genetic Fusion of Glutamic Acid Decarboxylase 65 Derived Peptides to the B-Subunit of Cholera Toxin and Its Retardation Effect of Diabetes in NOD Mice

    Institute of Scientific and Technical Information of China (English)

    王华倩; 张会勇; 杨洁; 鲁勇; 李泰明; 金亮; 曹荣月; 刘景晶


    使用基因工程方法构建了霍乱毒素B亚单位(Cholera toxin B subunit,CTB)与谷氨酸脱羧酶65(glutamic acid decarboxylase 65,GAD65)串联三肽GADⅢ(包括p217-236,p524-538,p290-306)合基因CTB-GADⅢ.将融合基因克隆到大肠杆菌表达载体pET-28a中,获得的重组质粒转化大肠杆菌BL21(DE3).重组菌株经乳糖诱导后,其表达产物经过15%SDS-PAGE分析表明该菌株可以以包涵体形式表达融合蛋白,Mr约为17.6 k.含有CTB-GADⅢ重组蛋白的包涵体经过变性、复性、纯化后,可以得到五聚体结构的CTB-GADⅢ.神经节苷脂GM1(monosialoganglioside)结合实验表明重组CTB-GADⅢ蛋白可以与GM1特异性结合,表明该融合蛋白保持了CTB形成五聚体的生物活性.使用该重组蛋白在NOD小鼠周龄、10周龄和12周龄时滴鼻免疫小鼠共3次,可以显著降低小鼠的发病率,达到治疗1型糖尿病的作用.

  2. Identification of γ-aminobutyric Acid producing Enterococcus faecium and Characterization of Its Glutamate Decarboxylase%产γ-氨基丁酸屎肠球菌的鉴定及其谷氨酸脱羧酶酶学性质

    Institute of Scientific and Technical Information of China (English)

    李云; 杨胜远; 杨韵晴; 黄荣城; 陈郁娜; 刘祥流


    目的: 鉴定1株产γ氨基丁酸(γ-aminobutyric acid,GABA)的乳酸菌HS3,并研究了其谷氨酸脱羧酶(Glutamate decarboxylase,GAD)粗酶酶学性质.方法:根据形态培养特征、生理生化特征和16S rDNA序列比对及系统发育分析对菌株HS3进行了鉴定.采用菌体细胞破碎后的粗酶液,研究了温度、pH和金属离子对酶活的影响.结果:菌株HS3的形态培养和生理生化特征符合肠球菌属(Enterococcus)特征,其16S rDNA序列与Enterococcus faecium(EU717962)16S rDNA序列同源性达99%,鉴定菌株HS3为屎肠球菌(Enterococcus faecium),菌株HS3 GAD最适作用温度为40 ℃,最适作用pH4.5.酶的热稳定较好,50℃处理4h,在pH3.5~6.0酶活基本稳定.Ca~(2+)对酶有激活作用,5mmol/L和50mmol/L浓度酶活分别提高了37.41%和17.43%.Ba~(2+)和Zn~(2+)在5mmol/L浓度时激活作用明显,而Mg~(2+)在5mmol/L浓度激活作用较好.结论:菌株HS3的GAD活力较高,稳定性较好,为生物合成GABA提供了新的微生物菌种资源.

  3. 经皮三叉神经电刺激预处理对戊四氮致痫大鼠海马谷氨酸脱羧酶表达的影响%Effects of pretreatment with transcutaneous trigeminal nerve electrostimulation on expression of glutamic acid decarboxylase in rat hippocampus with pentetrazol-induced seizures

    Institute of Scientific and Technical Information of China (English)

    张慧敏; 李良勇; 李家林; 王玉


    Objective To observe the effects of pretreatment with transcutaneous trigeminal nerve electrostimulation ( TNS ) on expression of glutamic acid decarboxylase( GAD )65/67 in rat hippocampus with pentetrazol-induced seizures and explone its possible anti-epileptic mechanisms. Methods Rats were divided into control group and TNS group which were given pentetrazol( PTZ ) after I ,7.14,28 d consecutive electrostimulation respectively, and subsequently the severity of seizure was quantitatively evaluated within 2 h after intraperitoneal injection of PTZ. The GAD65 and CAD67 protein was analyzed by immunohistochemistry at different time quantitatively in the regions of hippocampus. Results ① Compared with the corresponding control group, the severity of seizure in 14 d and 28 d consecutive TNS groups was significantly milder ( P <0. 05 ), while in I d and 7 d groups, little but no significant change was observed ( P>0. 05 ).② Compared with the corresponding control group, the number of GAD65 posi tive cells in hippocampus was significantly increased in the 7 , 14 ,28 d TNS groups ( P 0.05),TNS组连续刺激14、28 d大鼠癫痫发作程度明显减轻(P0.05),TNS组7、14、28 d大鼠海马区GAD65表达数目明显增加(P<0.05),并且随刺激时间延长,GAD65阳性细胞增加越明显.③ 与相应时间点对照组比较,TNS各组GAD67阳性细胞光密度差异均有统计学意义(P<0.05),但表达增加与刺激时间长短无明显关系.结论 经皮TNS预处理对癫痫发作有一定影响,可能与海马区内GAD65和GAD67阳性表达增多,进而诱导脑内抑制性机制的增强有关.

  4. 水杨酸钠对幼年和成年豚鼠听性脑干反应阈值及螺旋神经节谷氨酸脱羧酶表达的影响%Effect of sodium salicylate on the auditory brain stem response threshold and expression of glutamic acid decarboxylase in spiral ganglion of juvenile and adult guinea pigs

    Institute of Scientific and Technical Information of China (English)

    尹时华; 唐安洲; 谭颂华; 陈平; 谢利红; 任毅


    目的 观察水杨酸钠对幼年和成年豚鼠听性脑干反应(ABR)阈值以及螺旋神经节谷氨酸脱羧酶(glutamic acid decarboxylase,GAD)表达的影响.方法 选择出生4 d的豚鼠40只和出生后1个月的成年豚鼠40只,分成4组(每组20只):幼年对照组,成年对照组,幼年水杨酸钠给药组[300 mg/(kg·d)],成年水杨酸钠给药组[300 mg/(kg·d)].给药15 d后每组随机选取10只豚鼠检测ABR阈值,采用免疫组织化学染色方法检测螺旋神经节GAD的表达.各组剩下的动物停止给药,继续喂养30 d后检测ABR阈值和螺旋神经节GAD的表达.结果 给药15 d后幼年水杨酸钠给药组和成年水杨酸钠给药组豚鼠ABR阈值较给药前以及同期对照组均有提高(P值均<0.001),停药30 d后幼年水杨酸钠给药组ABR阈值恢复到给药前水平,而成年水杨酸钠给药组仍停留在高阈值水平;水杨酸钠给药15 d后能明显下调幼年以及成年豚鼠螺旋神经节GAD蛋白表达,幼年豚鼠GAD表达水平低于成年豚鼠(t=4.7,P<0.001),停药30 d后幼年给药组螺旋神经节GAD表达恢复到同期对照组水平,而成年给药组则继续停留在低表达水平.结论 水杨酸钠在对幼年和成年豚鼠ABR阚值以及螺旋神经节GAD表达的影响上存在差异,其对幼年豚鼠的影响更为明显,但停药后幼年豚鼠较成年豚鼠更容易恢复到正常水平.%Objective To study the differences of regulation of sodium salicylate on the auditory brain stem response(ABR)threshold and expression of glutamic acid decarboxylase(GAD)protein in spiral ganglion of juvenile and adult guinea pigs.Methods Fourty juvenile guinea pigs which were born just four days and fourty adult guinea pigs which were born thirty days were selected.They were divided four groups (group A;group B;group C;group D).ABR threshold was detected before administration.after administration for 15 days and after administration stopped for 30 days.The protein expression of GAD

  5. Molecular cloning and characterization of S-adenosyl-L-methionine decarboxylase gene (DoSAMDC1) in Dendrobium officinale%铁皮石斛S-腺苷酸脱羧酶基因DoSAMDC1的克隆及特征分析

    Institute of Scientific and Technical Information of China (English)

    赵明明; 张岗; 张大为; 郭顺星


    S-腺苷甲硫氨酸脱羧酶(S-adenosyl-L-methionine decarboxylase,SAMDC)是多胺合成的关键酶,通过调节多胺的代谢途径参与植物的多项生理生化过程.本文利用cDNA末端快速克隆技术(RACE),首次从铁皮石斛共生萌发种子中分离得到一个新的SAMDC基因,命名为DoSAMDC1 (GenBank注册号JX966243),并对其编码蛋白的理化性质、保守结构域等特征进行分析.生物信息学分析表明,DoSAMDC1基因的全长为1 979 bp,涵盖tiny-uORF、small-uORF和mainORF 3个植物SAMDC基因特征ORF.mORF编码一条368个氨基酸的肽链,预测分子质量为40.7 kD,等电点为5.2,编码蛋白不含信号肽,具有22个氨基酸的跨膜域(89~110位),具有植物SAMDC的典型结构特点,包括酶原剪切位点、PEST结构域及催化功能必须的氨基酸.序列比对及系统发育树分析结果表明DoSAMDC1与单子叶植物SAMDC具有很高的同源性,与双子叶植物的亲缘关系较远.应用实时荧光定量PCR对DoSAMDC1基因在石斛不同组织中的表达模式分析发现,该基因在未接菌的植物组织中表达变化差异不大,在接菌共生萌发的植物种子中显著上调表达,为未萌发种子的2.74倍,具有受真菌侵染诱导表达的特性,揭示其可能通过参与多胺调控途径在植物-真菌共生方面发挥作用.%S-Adenosyl-L-methionine decarboxylase (SAMDC) is a key enzyme in the polyamines biosynthesis,thus is essential for basic physiological and biochemical processes in plant.In the present study,a full length cDNA of DoSAMDC1 gene was obtained from symbiotic germinated seeds of an endangered medicinal orchid species Dendrobium officinale,using the rapid amplification of cDNA ends (RACE)-PCR technique for the first time.The full length cDNA was 1 979 bp,with three open reading frames,i.e.tiny-uORF,small-uORF and main ORF (mORF).The mORF was deduced to encode a 368 amino acid (aa) protein with a molecular mass of 40.7 kD and a theoretical

  6. Substrate Binding Induces Domain Movements in Orotidine 5'-Monophosphate Decarboxylase

    DEFF Research Database (Denmark)

    Harris, Pernille Hanne; Poulsen, Jens-Christian Navarro; Jensen, Kaj Frank;


    ); here we present the 2.5 Å structure of the uncomplexed apo enzyme, determined from twinned crystals. A structural analysis and comparison of the two structures of the E. coli enzyme show that binding of the inhibitor is accompanied by significant domain movements of approximately 12° around a hinge...... that crosses the active site. Hence, the ODCase dimer, which contains two active sites, may be divided in three domains: a central domain that is fixed, and two lids which independently move 12° upon binding. Corresponding analyses, presented herein, of the two Saccharomyces cerevisiae ODCase structures (with...

  7. 苦瓜果实S-腺苷蛋氨酸脱羧酶基因McSAMDC的克隆、表达及亚细胞定位%Cloning, Expression and Subcellular Localization of S-adenosylmethionine Decarboxylase Gene (McSAMDC)Gene from Fruit in Momordica charantia L.

    Institute of Scientific and Technical Information of China (English)

    高山; 陈桂信; 许端祥; 钟开勤; 林义章; 潘东明


    The full length cDNA sequence of S-adenosylmethionine decarboxylase (SAMDC) gene named McSAMDC (GenBank accession No.:KC632099) was cloned by 3′RACE technique based on the related EST sequence from the normalized Full-Length cDNA library of bitter gourd fruit.The cDNA sequence is 1900 bp in full length with a 501 bp 5′-UTR and a 325 bp 3′-UTR.The cDNA sequence consists of three ORFs (tiny ORF,upstream ORF and main ORF),and the main ORF was 1077 bp encoding 358 amino acids with a calculated molecular weight of 39.31 ku.The mORF deduced protein had two conserved function domains (proenzyme cleavage site and rapid degradation of SAMDC protein domain).In the secondary structure,Random coil,α-helix,Extended strand,and β-tum was 45.53%,29.33%,19.83% and 5.31%,respectively.Amino acid sequence alignment showed the McSAMDC shared high identity with Arabidopsis thaliana (CAA69073.1),Arabidopsis lyrata subsp.(XP 002882231.1),and Brassica juncea (AAS45435.1) as 69%,68% and 68%.Subcellular localization analysis showed that the mORF was mainly found in the cytoplasm.Fluorescent quantitative PCR analysis showed the McSAMDC gene was expressed at the highest level at the fruit enlargement stage and rapidly decreased thereafter,and the expression level was continuously increased from the mature green stage until full mature stage.%根据已构建苦瓜果实均一化文库中获得的1个与SAMDC基因相关的EST序列,采用3′RACE技术,克隆获得1个苦瓜SAMDC基因的cDNA全长序列,命名为McSAMDC(GenBank登录号为KC632099).生物信息分析结果表明,该cDNA全长l900bp,5′UTR和3′UTR分别长501、325bp.该cDNA序列存在3个开放读码框(微型tORF、上游读码框uORF和主读码框mORF),其中mORF长1077bp,编码358个氨基酸,预测分子量为39.31ku,含有酶原剪切位点结构域和蛋白快速降解有关的PEST二个保守结构域.二级结构分析显示,McSAMDC含有无规卷曲(45.53%)、α-螺旋(29.33

  8. Development of a Novel Cysteine Sulfinic Acid Decarboxylase Knockout Mouse: Dietary Taurine Reduces Neonatal Mortality

    Directory of Open Access Journals (Sweden)

    Eunkyue Park


    Full Text Available We engineered a CSAD KO mouse to investigate the physiological roles of taurine. The disruption of the CSAD gene was verified by Southern, Northern, and Western blotting. HPLC indicated an 83% decrease of taurine concentration in the plasma of CSAD-/-. Although CSAD-/- generation (G1 and G2 survived, offspring from G2 CSAD-/- had low brain and liver taurine concentrations and most died within 24 hrs of birth. Taurine concentrations in G3 CSAD-/- born from G2 CSAD-/- treated with taurine in the drinking water were restored and survival rates of G3 CSAD-/- increased from 15% to 92%. The mRNA expression of CDO, ADO, and TauT was not different in CSAD-/- compared to WT and CSAD mRNA was not expressed in CSAD-/-. Expression of Gpx 1 and 3 was increased significantly in CSAD-/- and restored to normal levels with taurine supplementation. Lactoferrin and the prolactin receptor were significantly decreased in CSAD-/-. The prolactin receptor was restored with taurine supplementation. These data indicated that CSAD KO is a good model for studying the effects of taurine deficiency and its treatment with taurine supplementation.

  9. Proliferation of intestinal crypt cells by gastrin-induced ornithine decarboxylase

    Institute of Scientific and Technical Information of China (English)

    Zi-Li Zhang; Wei-Wen Chen


    AIM: to oetermine whether the gastrin stimulated intestinalcrypt cell (IEC-6) proliferation by induction of omithinedecarboxylase (ODC).METHODS: IEC-6 cells were grown in DMEM containing50mL- L- 1 dialyzed fetal bovine serum for 24h and then weretreated with gastrin. The proliferative capablty of the cellswas monitored subsequently on d 1, 2, 3, and 4 aftertreatment with MTT assay at aborbance 570nm. The cellularODC mRNA expression, ODC activity, and putrescinecontent were examined by RT-PCR method, radiometrictechnique and high-performance liquid chromatography(HPLC) analysis respectively after 12h of treatment.RESULTS: On dl after exposure of IEC-6 cells topentagastrin, the proliferation increased initially and reacheda peak on d3 at 250μg@ L- 1 concentration. Pentagastrin 500μg@ L-1 increased cell proliferation on day 1 and day 2, andthen decreased. Compared with control group, pentagastrin250μg@ L-1 increased ODC mRNA level by 1.09-fold (P<0.05), ODC activity by 1.71-fold(P< 0.01), and putrescinecontent 5.30-fold ( P < 0.01 ) respectively. Similarly,pentagastrin of 500μg@ L-1 also increased ODC mRNA levelby 1.16-fold (P<0.05), ODC activity 1.63-fold(P< 0.05),and putrescine content 4.41-fold ( P < 0.01 ) respectively.But there was not significant difference between them.CONCLUSION: Gastrin is an agent which promotes IEC-6 cellproliferation involved in regulating ODC activity nechanism.

  10. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

    DEFF Research Database (Denmark)

    Zhang, Yiming; Liu, Guodong; Engqvist, Martin K. M.


    DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase...... further increased the maximum specific growth rate to 0.069 h-1. Conclusions: In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing...... expression of several hexose transporter genes. The non-synonymous mutations in HXT2 and CIT1 may function in the presence of mutated MTH1 alleles and could be related to an altered central carbon metabolism in order to ensure production of cytosolic acetyl-CoA in the Pdc negative strain....

  11. Screening for mutations in the uroporphyrinogen decarboxylase gene using denaturing gradient gel electrophoresis

    DEFF Research Database (Denmark)

    Christiansen, L; Ged, C; Hombrados, I;


    , confirming the heterogeneity of the underlying genetic defects of these diseases. We have established a denaturing gradient gel electrophoresis (DGGE) assay for mutation detection in the UROD gene, enabling the simultaneous screening for known and unknown mutations. The established assay has proved able...

  12. Targeted expression of ornithine decarboxylase antizyme prevents upper aerodigestive tract carcinogenesis in p53-deficient mice


    Feith, David J.; Pegg, Anthony E.; Fong, Louise Y. Y.


    Upper aerodigestive tract (UADT) cancers of the oral cavity and esophagus are a significant global health burden, and there is an urgent need to develop relevant animal models to identify chemopreventive and therapeutic strategies to combat these diseases. Antizyme (AZ) is a multifunctional negative regulator of cellular polyamine levels, and here, we evaluate the susceptibility of keratin 5 (K5)-AZ transgenic mice to tumor models that combine chemical carcinogenesis with dietary and genetic ...

  13. Quantitative in situ hybridization analysis of glutamic acid decarboxylase messenger RNA in developing rat cerebellum. (United States)

    Willcutts, M D; Morrison-Bogorad, M


    The appearance and relative amounts of GAD mRNA in rat cerebellar neurons during postnatal development was studied by in situ hybridization. GAD mRNA content within all GABAergic neurons increased during the first month of postnatal development, but the degree and time course of the increase varied among different neuronal types. In newborn rats, GAD mRNA was present only in the prenatally-formed Purkinje and Golgi cells. GAD mRNA in Golgi cells had reached adult levels by postnatal day 14, while GAD mRNA levels in Purkinje cells reached adult levels one week later. Most basket cells expressed GAD mRNA by postnatal day 14, and final levels were attained one week later. Stellate cells in the bottom two-thirds of the molecular layer attained their final GAD mRNA content by postnatal day 21 whereas stellate cells in close proximity to the pial surface were not yet mature at this age. No GAD mRNA was detected within the external granular layer at any time during development. In adult rat, approximately 40% of cerebellar GAD mRNA was contained within the Purkinje cell population, 38% within the stellate cells, 17% within the basket cells, and only 5% within the Golgi cells. Increases in GAD mRNA within GABAergic neurons during cerebellar development correlated with the timing of neuronal maturation and synaptogenesis in these cell populations, suggesting that synaptic activity affects GAD gene expression in developing cerebellum.

  14. Molecular cloning, expression and in situ hybridization of rat brain glutamic acid decarboxylase messenger RNA. (United States)

    Julien, J F; Legay, F; Dumas, S; Tappaz, M; Mallet, J


    A cDNA library was generated in the expression vector lambda GT11 from rat brain poly(A)+ RNAs and screened with a GAD antiserum. Two clones reacted positively. One of them was shown to express a GAD activity which was specifically trapped on anti-GAD immunogel and was inhibited by gamma-acetylenic-GABA. Blot hybridization analysis of RNAs from rat brain revealed a single 4 kilobases band. Preliminary in situ hybridizations showed numerous cells labelled by the GAD probe such as the Purkinje and stellate cells in the cerebellar cortex and the cells of the reticular thalamic nucleus.

  15. Expression of glutamic acid decarboxylase and identification of GABAergic cells in the ischemic rat dentate gyrus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Dogonowski, Anne-Marie; Finsen, Bente;


    We have investigated the glutamic acid dexcarboxylase (GAD) mRNA and protein isoforms as markers for ischemic loss of GABAergic neurons in the dentate hilus. Stereological counts of these neurons were performed in rats surviving 8 days after 10 min of transient forebrain ischemia, and in control...

  16. Expression of glutamic acid decarboxylase and identification of GABAergic cells in the ischemic rat dentate gyrus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Dogonowski, Anne-Marie; Finsen, Bente;


    We have investigated the glutamic acid dexarboxylase (GAD) mRNA and protein isoforms as markers for ischemic loss of GABAergic neurons in the dentate hilus. Stereological counts of these neurons were performed in rats surviving 8 days after 10 min of transient forebrain ischemia, and in control...

  17. Differential expression of glutamic acid decarboxylase in rat and human islets

    DEFF Research Database (Denmark)

    Petersen, J S; Russel, S; Marshall, M O;


    The GABA synthesizing enzyme GAD is a prominent islet cell autoantigen in type I diabetes. The two forms of GAD (GAD64 and GAD67) are encoded by different genes in both rats and humans. By in situ hybridization analysis of rat and human pancreases, expression of both genes was detected in rat isl...

  18. The application of glutamic acid alpha-decarboxylase for the valorization of glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Biase, De Daniela; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.


    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of nitrogen containing bulk chemicals, thereby decreasing the dependency on fossil fuels. On the pathway from glutamic acid to a range of molecules, the decar

  19. Partial Cloning and Nucleotide Sequencing of Glutamate Decarboxylase Gene Isoform 65 from Human Brain

    Directory of Open Access Journals (Sweden)

    Abolghasem Esmaeili


    Conclusion: Because obtaining fresh human brain is difficult and amount of mRNA is low, it may not be easy to clone full length of human gad gene. The approach described in this paper may be useful in cloning of other genes for which the corresponding mRNA is present at low levels.

  20. Gender differences in associations of glutamate decarboxylase 1 gene (GAD1 variants with panic disorder.

    Directory of Open Access Journals (Sweden)

    Heike Weber

    Full Text Available BACKGROUND: Panic disorder is common (5% prevalence and females are twice as likely to be affected as males. The heritable component of panic disorder is estimated at 48%. Glutamic acid dehydrogenase GAD1, the key enzyme for the synthesis of the inhibitory and anxiolytic neurotransmitter GABA, is supposed to influence various mental disorders, including mood and anxiety disorders. In a recent association study in depression, which is highly comorbid with panic disorder, GAD1 risk allele associations were restricted to females. METHODOLOGY/PRINCIPAL FINDINGS: Nineteen single nucleotide polymorphisms (SNPs tagging the common variation in GAD1 were genotyped in two independent gender and age matched case-control samples (discovery sample n = 478; replication sample n = 584. Thirteen SNPs passed quality control and were examined for gender-specific enrichment of risk alleles associated with panic disorder by using logistic regression including a genotype×gender interaction term. The latter was found to be nominally significant for four SNPs (rs1978340, rs3762555, rs3749034, rs2241165 in the discovery sample; of note, the respective minor/risk alleles were associated with panic disorder only in females. These findings were not confirmed in the replication sample; however, the genotype×gender interaction of rs3749034 remained significant in the combined sample. Furthermore, this polymorphism showed a nominally significant association with the Agoraphobic Cognitions Questionnaire sum score. CONCLUSIONS/SIGNIFICANCE: The present study represents the first systematic evaluation of gender-specific enrichment of risk alleles of the common SNP variation in the panic disorder candidate gene GAD1. Our tentative results provide a possible explanation for the higher susceptibility of females to panic disorder.

  1. Aromatic L-Aminoacid Decarboxylase Deficiency A Defect of the Neurotransmitter Metabolism with Severe Neurological Impairment


    Sequeira, S.; Calado, E.; Maia, AL; Pacheco, L.


    A descarboxilase dos L-aminoácidos aromáticos, um enzima piridoxina dependente, é responsável pela conversão da L-dopa em dopamina e do 5 hidroxitriptofano em serotonina. A deficiência desse enzima, um erro inato do metabolismo dos neurotransmissores, resulta numa doença autossómica recessiva com manifestações neurológicas graves. Os dois casos apresentados de deficiência da descarboxilase dos L-aminoácidos aromáticos, entidade pela primeira vez descrita no nosso país, apresentam caracterí...

  2. Malonyl-CoA Decarboxylase (MCD) as a Potential Therapeutic Target for Breast Cancer (United States)


    of detection, using the ATP Bioluminescence Kit CLS II (Roche Diagnostics, Indianapolis, IN, USA) following the manufacturer’s protocol and read on a... ATP levels, and is cytotoxic to MCF7 cells, but not to human fibroblasts. In addition, we s ynthesized a s mall m olecule i nhibitor o f M CD, 5...Figure 1). Acetyl-CoA carboxylase (ACC), the rate limiting enzyme of fatty acid synthesis, produces malonyl-CoA from the ATP dependent carboxylation of

  3. Variation in oxalate and oxalate decarboxylase production by six species of brown and white rot fungi

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Oliver, Jason; Howell, Caitlin;

    cell lumen where it quickly dissociates into hydrogen ions and oxalate, resulting in a pH decrease of the environment, and oxalate-cation complexes. Generally, brown rot fungi accumulate larger quantities of oxalic acid in the wood than white rot fungi. The amount of oxalic acid has been shown to vary...... of formic acid and CO2 (Makela et al., 2002). So far only a few species of brown rot fungi have been shown to accumulate this enzyme (Micales, 1995, Howell and Jellison, 2006).   The purpose of this study was to investigate the variation in the levels of soluble oxalate and total oxalate, in correlation...

  4. Cloning and expression of ornithine decarboxylase gene from human colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hai-Yan Hu; Xiao-Ming Wang; Wei Wang; Xian-Xi Liu; Chun-Ying Jiang; Yan Zhang; Ji-Feng Bian; Yi Lu; Zhao Geng; Shi-Lian Liu; Chuan-Hua Liu


    AIM: To construct and express ODC recombinant gene for further exploring its potential use in early diagnosis of colorectal carcinoma.METHODS: Total RNA was extracted from colon cancer tissues and amplified by reverse-transcription PCR with two primers, which span the whole coding region of ODC. The synthesized ODC cDNA was cloned into vector pQE-30 at restriction sites BamH I and Sal I which constituted recombinant expression plasmid pQE30-ODC. The sequence of inserted fragment was confirmed by DNA sequencing,the fusion protein including 6His-tag was facilitated for purification by Ni-NTA chromatographic column.RESULTS: ODC expression vector was constructed and confirmed with restriction enzyme digestion and subsequent DNA sequencing. The DNA sequence matching on NCBI Blast showed 99 % affinity. The vector was transformed into E.coli M15 and expressed. The expressed ODC protein was verified with Western blotting.CONCLUSION: The ODC prokaryote expression vector is constructed and thus greatly facilitates to study the role of ODC in colorectal carcinoma.

  5. Substrate Specificity of Thiamine Pyrophosphate-Dependent 2-Oxo-Acid Decarboxylases in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Romagnoli, G.; Luttik, M.A.H.; Kötter, P.; Pronk, J.T.; Daran, J.M.


    Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share seque

  6. Structure-Function Relationships in l-Amino Acid Deaminase, a Flavoprotein Belonging to a Novel Class of Biotechnologically Relevant Enzymes. (United States)

    Motta, Paolo; Molla, Gianluca; Pollegioni, Loredano; Nardini, Marco


    l-Amino acid deaminase from Proteus myxofaciens (PmaLAAD) is a membrane flavoenzyme that catalyzes the deamination of neutral and aromatic l-amino acids into α-keto acids and ammonia. PmaLAAD does not use dioxygen to re-oxidize reduced FADH2 and thus does not produce hydrogen peroxide; instead, it uses a cytochrome b-like protein as an electron acceptor. Although the overall fold of this enzyme resembles that of known amine or amino acid oxidases, it shows the following specific structural features: an additional novel α+β subdomain placed close to the putative transmembrane α-helix and to the active-site entrance; an FAD isoalloxazine ring exposed to solvent; and a large and accessible active site suitable to bind large hydrophobic substrates. In addition, PmaLAAD requires substrate-induced conformational changes of part of the active site, particularly in Arg-316 and Phe-318, to achieve the correct geometry for catalysis. These studies are expected to pave the way for rationally improving the versatility of this flavoenzyme, which is critical for biocatalysis of enantiomerically pure amino acids.

  7. Development and vulnerability of rat brain and testes reflected by parameters for apoptosis and ornithine decarboxylase activity

    DEFF Research Database (Denmark)

    Lam, Henrik Rye; Dalgaard, Majken; Ladefoged, Ole


    apoptotic ladders were not detected between P9 and 60. In the testes, apoptotic laddering was weak from G21 to P15, but increased significantly from P15 to 60. Histologic examination and DNA laddering analyses revealed low-level germ cell apoptosis from G15 to P11. At onset of spermatogenesis at P15...

  8. High-performance liquid chromatography method with radiochemical detection for measurement of nitric oxide synthase, arginase, and arginine decarboxylase activities

    DEFF Research Database (Denmark)

    Volke, A; Wegener, Gregers; Vasar, E


    regulate NOS activity. We aimed to develop a HPLC-based method to measure simultaneously the products of these three enzymes. Traditionally, the separation of amino acids and related compounds with HPLC has been carried out with precolumn derivatization and reverse phase chromatography. We describe here...... a simple and fast HPLC method with radiochemical detection to separate radiolabeled L-arginine, L-citrulline, L-ornithine, and agmatine. 3H-labeled L-arginine, L-citrulline, agmatine, and 14C-labeled L-citrulline were used as standards. These compounds were separated in the normal phase column (Allure...

  9. Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase

    DEFF Research Database (Denmark)

    Chen, Yun; Zhang, Yiming; Siewers, Verena;


    Acetyl-coenzyme A (acetyl-CoA) is not only an essential intermediate in central carbon metabolism, but also an important precursor metabolite for native or engineered pathways that can produce many products of commercial interest such as pharmaceuticals, chemicals or biofuels. In the yeast Saccha...... mitochondria and the cytosol. These results will increase our fundamental understanding of intracellular transport of acetyl units, and also help to develop microbial cell factories for many kinds of acetyl-CoA derived products.......Acetyl-coenzyme A (acetyl-CoA) is not only an essential intermediate in central carbon metabolism, but also an important precursor metabolite for native or engineered pathways that can produce many products of commercial interest such as pharmaceuticals, chemicals or biofuels. In the yeast......-fermentative yeast strain. We found that mitochondrial Ach1 can convert acetyl-CoA in this compartment into acetate, which crosses the mitochondrial membrane before being converted into acetyl-CoA in the cytosol. Based on our finding we propose a model in which acetate can be used to exchange acetyl units between...

  10. The function of glycine decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its reaction products

    DEFF Research Database (Denmark)

    Bykova, Natalia V; Møller, Ian Max; Gardeström, Per


    Oxidation of glycine in photorespiratory pathway is the major flux through mitochondria of C3 plants in the light. It sustains increased intramitochondrial concentrations of NADH and NADPH, which are required to engage the internal rotenone-insensitive NAD(P)H dehydrogenases and the alternative...

  11. Combined administration of testosterone plus an ornithine decarboxylase inhibitor as a selective prostate-sparing anabolic therapy



    Because of its anabolic effects on muscle, testosterone is being explored as a function-promoting anabolic therapy for functional limitations associated with aging; however, concerns about testosterone’s adverse effects on prostate have inspired efforts to develop strategies that selectively increase muscle mass while sparing the prostate. Testosterone’s promyogenic effects are mediated through upregulation of follistatin. We show here that the administration of recombinant follistatin (rFst)...

  12. Differential Regulation of Glutamic Acid Decarboxylase Gene Expression after Extinction of a Recent Memory vs. Intermediate Memory (United States)

    Sangha, Susan; Ilenseer, Jasmin; Sosulina, Ludmila; Lesting, Jorg; Pape, Hans-Christian


    Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65…

  13. Optimization of Expression Conditions for Pyruvate Decarboxylase and Alcohol Dehydrogenase%重组大肠杆菌内PDC和ADH表达条件优化

    Institute of Scientific and Technical Information of China (English)

    叶广彬; 葛菁萍; 秦锐; 宋刚; 平文祥


    丙酮酸脱羧酶和乙醇脱氢酶Ⅱ可将丙酮酸定向转化成乙醇.将已构建的含有丙酮酸脱羧酶和乙醇脱氢酶Ⅱ基因的表达载体pET-28a(+)-pdc-RBS-adhB转入大肠杆菌BL21中,实现在大肠杆菌体内高产乙醇的目的.对该工程菌株进行定性检测,优化诱导表达条件,定量检测,SDS-PAGE分析和做发酵试验,结果表明丙酮酸脱羧酶和乙醇脱氢酶Ⅱ的最佳表达条件为IPTG浓度1.0 mmol/L,诱导时间7h,诱导温度37℃.其最大酶活分别为1.34 U/mg和3.88 U/mg.重组子利用葡萄糖、木糖和混合糖发酵.在葡萄糖中发酵72 h,获得最大乙醇产量6.86 g/L,最高乙醇得率0.40 g/g.

  14. Isolation of Catharanthus roseus (L. G. Don Nuclei and Measurement of Rate of Tryptophan decarboxylase Gene Transcription Using Nuclear Run-On Transcription Assay.

    Directory of Open Access Journals (Sweden)

    Santosh Kumar

    Full Text Available An accurate assessment of transcription 'rate' is often desired to describe the promoter activity. In plants, isolation of transcriptionally active nuclei and their subsequent use in nuclear run-on assays has been challenging and therefore limit an accurate measurement of gene transcription 'rate'. Catharanthus roseus has emerged as a model medicinal plant as it exhibits an unsurpassed spectrum of chemodiversity, producing over 130 alkaloids through the terpenoid indole alkaloid (TIA pathway and therefore serves as a 'molecular hub' to understand gene expression profiles.The protocols presented here streamline, adapt and optimize the existing methods of nuclear run-on assay for use in C. roseus. Here, we fully describe all the steps to isolate transcriptionally active nuclei from C. roseus leaves and utilize them to perform nuclear run-on transcription assay. Nuclei isolated by this method transcribed at a level consistent with their response to external stimuli, as transcription rate of TDC gene was found to be higher in response to external stimuli i.e. when seedlings were subjected to UV-B light or to methyl jasmonate (MeJA. However, the relative transcript abundance measured parallel through qRT-PCR was found to be inconsistent with the synthesis rate indicating that some post transcriptional events might have a role in transcript stability in response to stimuli.Our study provides an optimized, efficient and inexpensive method of isolation of intact nuclei and nuclear 'run-on' transcription assay to carry out in-situ measurement of gene transcription rate in Catharanthus roseus. This would be valuable in investigating the transcriptional and post transcriptional response of other TIA pathway genes in C. roseus. Isolated nuclei may also provide a resource that could be used for performing the chip assay as well as serve as the source of nuclear proteins for in-vitro EMSA studies. Moreover, nascent nuclear run-on transcript could be further subjected to RNA-Seq for global nuclear run-on assay (GNRO-Seq for genome wide in-situ measurement of transcription rate of plant genes.

  15. α-乙酰乳酸脱羧酶在啤酒酿造中的应用%The Application of α- Acetolactate Decarboxylase During Beer Brewing

    Institute of Scientific and Technical Information of China (English)

    王传荣; 张安宁; 徐大好


    @@ 连二酮(VDK)是双乙酰和2,3-戊二酮的总称,但对啤酒风味起主要作用的是双乙酰.在影响啤酒风味成熟的众多物质中,双乙酰是关键的影响因素,其含量高低是啤酒质量优劣的重要标志,被认为是衡量啤酒成熟与否的决定性指标.

  16. Corticotropin-Releasing Hormone (CRH)-Containing Neurons in the Immature Rat Hippocampal Formation: Light and Electron Microscopic Features and Colocalization With Glutamate Decarboxylase and Parvalbumin


    Yan, Xiao-Xin; Toth, Zsolt; Schultz, Linda; Ribak, Charles E; Tallie Z. Baram


    Corticotropin-releasing hormone (CRH) excites hippocampal neurons and induces death of selected CA3 pyramidal cells in immature rats. These actions of CRH require activation of specific receptors that are abundant in CA3 during early postnatal development. Given the dramatic effects of CRH on hippocampal neurons and the absence of CRH-containing afferents to this region, we hypothesized that a significant population of CRHergic neurons exists in developing rat hippocampus. This study defined ...

  17. Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: tyramine and 2-phenylethylamine accumulation and tyrDC gene expression

    Directory of Open Access Journals (Sweden)

    Eleonora eBargossi


    Full Text Available The ability to accumulate tyramine and 2-phenylethylamine by two strains of Enterococcus faecalis and two strains Enterococcus faecium was evaluated in two cultural media added or not with tyrosine. All the enterococcal strains possessed a tyrDC which determined tyramine accumulation in all the conditions tested, independently on the addition of high concentration of free tyrosine. Enterococci differed in rate and level of biogenic amines accumulation. E. faecalis EF37 and E. faecium FC12 produced tyramine in high amount since the exponential growth phase, while 2-phenylethylamine was accumulated when tyrosine was depleted. Enterococcus faecium FC12 and E. faecalis ATCC 29212 showed a slower tyraminogenic activity which took place mainly in the stationary phase up to 72 h of incubation. Moreover, E. faecalis ATCC 29212 produced 2-phenylethylamine only in the media without tyrosine added. In BHI added or not with tyrosine the tyrDC gene expression level differed considerably depending on the strains and the growth phase. In particular, the tyrDC gene expression was high during the exponential phase in rich medium for all the strains and subsequently decreased except for E. faecium FC12. Even if tyrDC presence is common among enterococci, this study underlines the extremely variable decarboxylating potential of strains belonging to the same species, suggesting strain-dependent implications in food safety.

  18. The effect of lactose, NaCl and an aero/anaerobic environment on the tyrosine decarboxylase activity of Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp. lactis. (United States)

    Buňková, Leona; Buňka, František; Pollaková, Eva; Podešvová, Tereza; Dráb, Vladimír


    The aim of this work was to study, under model conditions, combined effects of the concentration of lactose (0-1% w/v), NaCl (0-2% w/v) and aero/anaerobiosis on the growth and tyramine production in 3 strains of Lactococcus lactis subsp. lactis and 2 strains of L. lactis subsp. cremoris. The levels of the factors tested were chosen with respect to the conditions which can occur during the real process of natural cheese production, including the culture temperature (10 ± 1°C). In all strains tested, tyrosine decarboxylation was most influenced by NaCl concentration; the highest production of tyramine was obtained within the culture with the highest (2% w/v) salt concentration applied. Two of the strains L. lactis subsp. lactis produced tyramine only in broth with the highest NaCl concentration tested. In the remaining 3 strains of L. lactis, tyramine was detected under all conditions applied. The tested concentration of lactose and aero/anaerobiosis had a less significant effect on tyramine decarboxylation. However, it was also found that at the same concentrations of NaCl and lactose, a higher amount of tyramine was detected under anaerobic conditions. In all strains tested, tyramine decarboxylation started during the active growth phase of the cells.

  19. Stiff-Person Syndrome (United States)

    ... a blood test that measures the level of glutamic acid decarboxylase (GAD) antibodies in the blood. People with ... a blood test that measures the level of glutamic acid decarboxylase (GAD) antibodies in the blood. People with ...

  20. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E;


    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  1. SwissProt search result: AK059503 [KOME

    Lifescience Database Archive (English)

    Full Text Available 1.50) (AdoMetDC) (SamDC) (Induced stolen tip protein TUB13) [Contains: S-adenosylmethionine decarboxylase alpha chain; S-adenosylmethionine decarboxylase beta chain] DCAM_SOLTU 3e-73 ...

  2. SwissProt search result: AK062001 [KOME

    Lifescience Database Archive (English)

    Full Text Available 1.50) (AdoMetDC) (SamDC) (Induced stolen tip protein TUB13) [Contains: S-adenosylmethionine decarboxylase alpha chain; S-adenosylmethionine decarboxylase beta chain] DCAM_SOLTU 3e-72 ...

  3. SwissProt search result: AK100589 [KOME

    Lifescience Database Archive (English)

    Full Text Available .50) (AdoMetDC) (SamDC) (Induced stolen tip protein TUB13) [Contains: S-adenosylmethionine decarboxylase alpha chain; S-adenosylmethionine decarboxylase beta chain] DCAM_SOLTU 1e-103 ...

  4. SwissProt search result: AK100397 [KOME

    Lifescience Database Archive (English)

    Full Text Available .50) (AdoMetDC) (SamDC) (Induced stolen tip protein TUB13) [Contains: S-adenosylmethionine decarboxylase alpha chain; S-adenosylmethionine decarboxylase beta chain] DCAM_SOLTU 2e-95 ...

  5. 产气肠杆菌α-乙酰乳酸脱羧酶基因的克隆和表达%Cloning and Expression of α-acetolactate Decarboxylase Gene in Enterobacter aerogenes

    Institute of Scientific and Technical Information of China (English)

    苟帮超; 叶盛; 李维; 杨玉


    根据已知的α-乙酰乳酸脱羧酶(α-acetolactatedecarboxylase,ALDC,EC.基因序列,利用PCR方法从产气大肠杆菌(Enterobacter aerogenes)中克隆到0.8kb的DNA片段,经DNA序列分析表明该DNA片段为ALDC基因.将该片段插入到原核表达载体pBV220中,获得表达质粒pBVEDAD,转化大肠杆菌DH5α(Escherichia coli),经热诱导后,通过SDS-PAGE分析和酶活测定,结果表明ALDC获得了高效表达.重组细胞表达的ALDC酶活是出发菌产气肠杆菌(E.aerogenes)的1 100倍.DH5α(pBVEDAD)在无选择压力下37℃连续培养60代,在42℃下热诱导5 h未见质粒丢失.

  6. Effect of Antenatal Glucocorticoids on Ornithin Decarboxylase Activity of Hippocampus in Offspring Rats%产前应用糖皮质激素对仔鼠海马鸟苷酸脱氢酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    智月丽; 张香敏; 徐发林; 程秀永


    目的 探讨产前应用不同疗程糖皮质激素(GCs)对仔鼠海马鸟苷酸脱氧酶(ODC)活性的影响.方法 健康3月龄雌性SD大鼠30只,孕18 d时(E18)随机分为3组:多疗程组,E18开始每天肌注地塞米松0.48 mg/(kg·次),q4 h,4次/d,连用3 d;单疗程组,E18肌注地塞米松0.48 mg/(kg·次),q4 h,4次为1个疗效,共1个疗程,余2 d以等容积9 g/L盐水代替;对照组以等容积9 g/L盐水代替.于出生第3、15天(P3、P15)取仔鼠脑组织采用免疫组织化学法测定其海马部位ODC酶的活性.结果 免疫组织化学显示P3时仔鼠海马部位ODC酶的活性在各组均有表达,其COD值分别为5.78±1.62、10.37±1.36、11.96±1.13,但多疗程组较单疗程组、对照组明显降低(Pa0.05).结论 产前多疗程应用GCs可导致仔鼠脑组织海马部位ODC活性表达的改变,从而影响海马的功能,如学习记忆能力;临床上对高危早产孕妇产前重复应用GCs需权衡利弊.

  7. Dense spermatozoa in stallion ejaculates contain lower concentrations of mRNAs encoding the sperm specific calcium channel 1, ornithine decarboxylase antizyme 3, aromatase, and estrogen receptor alpha than less dense spermatozoa. (United States)

    Ing, N H; Forrest, D W; Love, C C; Varner, D D


    Stallions are unique among livestock in that, like men, they commonly receive medical treatment for subfertility. In both species, about 15% of individuals have normal semen parameters but are subfertile, indicating a need for novel analyses of spermatozoa function. One procedure for improving fertilizing capability of stallions and men is isolation of dense spermatozoa from an ejaculate for use in artificial insemination. In the current study, dense and less dense spermatozoa were purified by density gradient centrifugation from individual ejaculates from seven reproductively normal adult stallions. The RNA isolated from the spermatozoa seemed to be naturally fragmented to an average length of 250 bases, consistent with reports of spermatozoa RNA from other species. The DNAse treatment of RNA prepared from spermatozoa removed any genomic DNA contamination, as assessed by PCR with intron spanning primers for the protamine 1 (PRM1) gene. Concentrations of seven mRNAs in spermatozoa, correlated with the fertility of men and bulls, were quantified by reverse transcription polymerase chain reaction in dense and less dense spermatozoa. Concentrations of four mRNAs were two- to four-fold lower in dense spermatozoa compared with less dense spermatozoa: Encoding the spermatozoa-specific calcium channel (P 0.1). These results identify new differences in mRNA concentrations in populations of spermatozoa with dissimilar densities.

  8. Select nutrients in the ovine uterine lumen. IX. Differential effects of arginine, leucine, glutamine, and glucose on interferon tau, ornithine decarboxylase, and nitric oxide synthase in the ovine conceptus. (United States)

    Kim, Jinyoung; Burghardt, Robert C; Wu, Guoyao; Johnson, Greg A; Spencer, Thomas E; Bazer, Fuller W


    Nutrients are primary requirements for development of conceptuses (embryo and extraembryonic membranes), including protein synthesis. We have shown that arginine (Arg), leucine (Leu), and glucose stimulate protein synthesis through phosphorylation of MTOR signaling molecules, thereby increasing proliferation of ovine trophectoderm cells. This study determined whether Arg, Leu, glutamine (Gln), and glucose influence gene expression and protein synthesis in explant cultures of ovine conceptuses recovered from ewes on Day 16 of pregnancy. Conceptuses were deprived of select nutrients and then cultured with either Arg, Leu, Gln, or glucose for 18 h, after which they were analyzed for abundance of MTOR, RPS6K, RPS6, EIF4EBP1 (also known as 4EBP1), IFNT, NOS2, NOS3, GCH1, and ODC1 mRNAs and proteins. Levels of MTOR, RPS6K, RPS6, and EIF4EBP1 mRNAs were not affected by treatment with any of the select nutrients. Similarly, expression of IFNT, NOS2, NOS3, and ODC1 mRNAs were not different. Interestingly, GCH1 mRNA levels increased in response to Arg treatment. Importantly, Arg, Leu, Gln, and glucose increased the abundance of phosphorylated MTOR, RPS6K, RPS6, and EIF4EBP1 proteins as well as NOS and ODC1 proteins, but only Arg increased the abundance of IFNT protein. These findings indicate that Arg, Leu, Gln, and glucose stimulate translation of mRNAs to increase synthesis of proteins through phosphorylation and activation of components of the MTOR signaling pathway. Increases in abundance of IFNT protein (the pregnancy recognition signal), NOS2, NOS3 and GCH1 for conversion of Arg to nitric oxide, and ODC1 for synthesis of polyamines are all important for growth and development of the ovine conceptus during pregnancy.

  9. 半胱亚磺酸脱羧酶在成年小鼠副性腺器官中的表达%Expression of Cysteine Sulfinate Decarboxylase in Male Accessory Organs of Adult Mice

    Institute of Scientific and Technical Information of China (English)

    范晶晶; 庞立义


    We conducted semi-quantitative reverse transcription polymerase chain reaction(RT-PCR),western blott and immunohistochemical analysis in order to examine CSD mRNA and protein expression in the accessory organs of male mice.The results show that CSD is expressed both at the mRNA and protein levels in the organs.Immunohistochemical analysis reveals that CSD is expressed in the tall columnar cells of the seminal vesicle,the glandular epithelium of the bulbourethral gland,and the epithelial cells of the prostate gland.These results suggest that male accessory organs have the function to produce taurine through the CSD pathway.%采用RT-PCR、Western blot、免疫组织化学方法检测了CSD在小鼠副性腺器官中mRNA和蛋白水平的表达。结果显示,CSD在小鼠副性腺器官中都有mRNA和蛋白水平的表达。CSD主要定位于精囊腺的高柱状上皮细胞、前列腺的腺上皮细胞和尿道球腺的腺上皮细胞中。结果表明雄性副性腺器官可以通过CSD合成通路参与牛磺酸的合成。

  10. Clinical efficacy of selegiline added to levodopa/decarboxylase inhibitor in Parkinson's disease%司来吉兰添加治疗帕金森病临床疗效评价

    Institute of Scientific and Technical Information of China (English)

    翁中芳; 张璟; 王瑛; 李琳; 肖勤; 王增; 刘振国; 陈生弟



  11. Polyamines and plant stress - Activation of putrescine biosynthesis by osmotic shock (United States)

    Flores, H. E.; Galston, A. W.


    The putrescine content of oat leaf cells and protoplasts increases up to 60-fold within 6 hours of exposure to osmotic stress (0.4 to 0.6 molar sorbitol). Barley, corn, wheat, and wild oat leaves show a similar response. Increased arginine decarboxylase activity parallels the rise in putrescine, whereas ornithine decarboxylase remains unchanged. DL-alpha-Difluoromethylarginine, a specific irreversible inhibitor of arginine decarboxylase, prevents the stress-induced rise in increase in arginine decarboxylase activity and putrescine synthesis, indicating the preferential activation of this pathway.

  12. Sequence Classification: 400043 [

    Lifescience Database Archive (English)


  13. Sequence Classification: 390266 [

    Lifescience Database Archive (English)


  14. Regulation of polyamine synthesis in plants. Final progress report, July 1, 1991--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Malmberg, R.L.


    This research focused on unusual post-translational modifications occuring in a arginine decarboxylase cDNA clone in oats. A novel regulatory mechanism for polyamines was explored and an attempt was made to characterize it. A plant ornithine decarboxylase cDNA was identified in Arabidopsis. Further work remains on the mechanisms of polyamine regulation and function in plants.

  15. Development of a detection system for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test

    NARCIS (Netherlands)

    Le Jeune, C.; Lonvaud-Funel, A.; Brink, B. ten; Hofstra, H.; Vossen, J.M.B.M. van der


    On the basis of the comparison of the nucleotide sequences of the histidine decarboxylase genes (hdcA) of Lactobacillus 30A and Clostridium perfringens and the amino acid sequences of these histidine decarboxylases and those of Lactobacillus buchneri and Micrococcus, oligonucleotides unique to the h

  16. PCR detection of foodborne bacteria producing the biogenic amines histamine, tyramine, putrescine, and cadaverine. (United States)

    de las Rivas, Blanca; Marcobal, Angela; Carrascosa, Alfonso V; Muñoz, Rosario


    This study describes an easy PCR method for the detection of foodborne bacteria that potentially produce histamine, tyramine, putrescine, and cadaverine. Synthetic oligonucleotide pairs for the specific detection of the gene coding for each group of bacterial histidine, tyrosine, ornithine, or lysine decarboxylases were designed. Under the conditions used in this study, the assay yielded fragments of 372 and 531 bp from histidine decarboxylase-encoding genes, a 825-bp fragment from tyrosine decarboxylases, fragments of 624 and 1,440 bp from ornithine decarboxylases, and 1,098- and 1,185-bp fragments from lysine decarboxylases. This is the first PCR method for detection of cadaverine-producing bacteria. The method was successfully applied to several biogenic amine-producing bacterial strains.

  17. 力竭运动前后及恢复期大鼠脑皮质运动区GABA含量及GAD、GABA-T活性的变化%Changes of Gamma-aminobutyric Acid Content and Glutamic Acid Decarboxylase, GABA Transaminase Activity in Motor Area of Rats Cortex after Acute Exhausting Swimming

    Institute of Scientific and Technical Information of China (English)

    胡江平; 张蕴琨



  18. Determination of γ-aminobutyric acid from glutamate in the presence of L-Glutamate decarboxylase by Colorimetric method%比色法快速测定酶转化反应中γ-氨基丁酸含量的研究

    Institute of Scientific and Technical Information of China (English)

    孙波; 梁海文; 迟玉杰; 王喜波; 夏宁


    基于Berthelot显色反应,研究L-谷氨酸在谷氨酸脱羧酶催化下产物γ-氨基丁酸含量测定的比色法.实验确定测定γ-氨基丁酸适宜反应条件为酶反应液1.0 mL,1.0 mol/L Na2CO2溶液0.2 mL,0.01 moL/L四硼酸钠缓冲液1.0 mL,6%苯酚溶液1.0 mL,7.5%NaClO溶液5.0 mL,沸水浴10 min,冰浴5 min,60%乙醇溶液2.0 mL,测定OD640绘制标准曲线并计算样品中γ-氨基丁酸的含量.结果表明,该方法灵敏度较高、重现性较好.测量相对误差<5%、操作简单易行、设备要求简单,适合大批量样品的快速分析.

  19. 产L-天冬氨酸α-脱羧酶细菌的分离、鉴定及发酵条件优化%Isolation, identification and fermentation optimization of Bacillus tequilensis PanD37 producing L-aspartate α-decarboxylase

    Institute of Scientific and Technical Information of China (English)

    冯志彬; 张娟; 陈国忠; 察亚萍; 刘进杰; 葛宜和; 程仕伟; 于波涛


    [目的]从葡萄园土壤中分离L-天冬氨酸α-脱羧酶的产生菌株,对其进行分类鉴定,优化其产生L-天冬氨酸α-脱羧酶的发酵条件,为p-丙氨酸的生物合成提供基础.[方法]采用变色圈法和液体复筛培养基分离筛选具有L-天冬氨酸α-脱羧酶活力的菌株,对菌株进行形态、生理生化特征试验及16SrRNA序列同源性分析鉴定菌株的系统发育学地位,采用单因素及正交设计试验优化培养基及发酵条件.[结果]筛选到一株L-天冬氨酸α-脱羧酶高产菌株PanD37,其亲缘关系和特基拉芽孢杆菌(Bacillus tequilensis)较近,且形态与培养特征、生理生化特性与特基拉芽孢杆菌基本相符.研究表明其最佳发酵配方和培养条件为:蔗糖22.5 g/L、富马酸7.5 g/L、蛋白胨20 g/L、L-天冬氨酸6 g/L、Triton X-100 2 g/L,起始pH为7.0,装液量50 mL/500 mL,摇床转速220 r/min,种子液接种量为5%(V/V),35℃C培养28h.在最优条件下L-天冬氨酸α-脱羧酶活力可达44.57 U/mL,比初筛时提高2.57倍.[结论]分离并获得一株特基拉芽孢杆菌(Bacillus tequilensis) PanD37,经条件优化后具有较高的L-天冬氨酸α-脱羧酶产生能力,有望应用于β-丙氨酸的工业生产.

  20. 鸟氨酸脱羧酶和c-myc在胃癌及其癌前病变组织中的表达及意义%Expression of ornithine decarboxylase and c-myc in gastric cancer and premalignant lesions and its significance

    Institute of Scientific and Technical Information of China (English)

    魏小娟; 王云溪


    Objective:To detect the expression of ODC and c-myc in chronic superficial gastritis, intestinal metaplasia, atypical hy-perplasia and gastric carcinoma, to explore the correlation and significance of the expression of ODC and c-myc in gastric carcinoma and precancerous lesions.Methods:The expressions of ODC and c-myc were detected by RT-PCR and immunohistochemistry in 18 cases of chronic superficial gastritis( CSG) , 18 chronic atrophic gastritis with intestinal metaplasia CAG( with IM) ,12 gastric dysplasia ( DYS) and 30 gastric carcinoma ( GC) , to explore the correlation between ODC and c-myc and their relationship with precancerous gastric le-sions.Results:The expression of ODC in CAG with IM, DYS and GC was significantly higher than that in CSG(P<0.01).The expres-sion of c-myc was significantly higher in GC comparing with CSG and CAG with IM (P<0.01).In addition, ODC and c-myc positive immunostaining rates were significantly higher in poorly-differentiated GC than in well-differentiated GC (P<0.01).The expression of ODC was positively correlated with c-myc at different stages of gastric carcinogenesis.Conclusions:ODC may play an important role as carcinogenic factor, and c-myc promotes cell proliferation by inducing ODC expression.Detecting both markers together may help in ear-ly diagnosis of gastric carcinoma.%及蛋白的表达。结果:ODC mRNA及蛋白在萎缩性胃炎肠化生( CAG与IM)、不典型增生( DYS)及胃癌( GC)组织中的表达水平显著高于浅表性胃炎(CSG)(P<0.01)。 c-myc mRNA及蛋白在胃癌(GC)组织中的表达水平显著高于浅表性胃炎(CSG)、萎缩性胃炎肠化生(CAG with IM)(P<0.01),ODC和c-myc在中低分化腺癌的表达水平显著高于高分化腺癌(P<0.05)。 ODC与c-myc在胃粘膜癌变多阶段中的表达呈正相关( P<0.01)。结论:ODC作为致癌因子在胃癌发生中有重要作用,且c-myc通过促进ODC的表达促进细胞增殖,将2指标联合检测,有助于胃癌及其癌前病变的早期诊断。

  1. Peculiarities of the regulation of fermentation and respiration in the crabtree-negative, xylose-fermenting yeast Pichia stipitis. (United States)

    Passoth, V; Zimmermann, M; Klinner, U


    The respiration of Pichia stipitis was not repressed by either high concentrations of fermentable sugars or oxygen limitation. Fermentation was not induced by high sugar concentrations, but was inactivated by aerobic conditions. The activity of pyruvate dehydrogenase was constitutive. In contrast, pyruvate decarboxylase, alcohol dehydrogenase, and aldehyde dehydrogenase were induced by a reduction in the oxygen tension. It was demonstrated that in P. stipitis, the pyruvate decarboxylase is not induced by a signal from glycolysis. Contrary to Saccharomyces cerevisiae, the pyruvate decarboxylase was not inhibited by phosphate.

  2. Protein (Cyanobacteria): 441113 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007045238.1 1117:25511 1118:7874 167375:491 59930:654 292564:654 polyprenyl p-hydroxybenzoate/phenylacryl...ic acid decarboxylase Cyanobium gracile PCC 6307 MAPSSLPVVLAVSGASAQPLAERALQLLLEDDLP

  3. Protein (Cyanobacteria): 441159 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available -hydroxybenzoate/phenylacrylic acid decarboxylase Pleurocapsa sp. PCC 7327 MTSNQLPAIGSKTRPLILGISGASGLIYAVRAI...YP_007083232.1 1117:25511 52604:2774 44474:2781 54308:2781 118163:2781 polyprenyl p

  4. Protein (Cyanobacteria): 441174 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007054066.1 1117:25511 1161:4031 1185:4005 373984:1204 373994:1204 polyprenyl p-hydroxybenzoate/phenylacr...ylic acid decarboxylase Rivularia sp. PCC 7116 MSNNARPLILGVSGASGLIYAVRALKFLLAADYAIE

  5. Sequence Classification: 778807 [

    Lifescience Database Archive (English)

    Full Text Available shifting from yeast to mammals (9.3 kD) (1G671) || ... ...hine decarboxylase antizyme, involved in polyamine regulation and subject to a conserved translational frame

  6. Disease progression and search for monogenic diabetes among children with new onset type 1 diabetes negative for ICA, GAD- and IA-2 Antibodies

    DEFF Research Database (Denmark)

    Pörksen, Sven; Laborie, Lene Bjerke; Nielsen, Lotte


    BACKGROUND: To investigate disease progression the first 12 months after diagnosis in children with type 1 diabetes negative (AAB negative) for pancreatic autoantibodies [islet cell autoantibodies(ICA), glutamic acid decarboxylase antibodies (GADA) and insulinoma-associated antigen-2 antibodies (...

  7. Sequence Classification: 893285 [

    Lifescience Database Archive (English)

    Full Text Available nner in the presence of excess polyamines; Spe1p || ... ...ine decarboxylase, catalyzes the first step in polyamine biosynthesis; degraded in a proteasome-dependent ma

  8. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Smits, H. P.; Hauf, J.; Muller, S.


    Recombinant S. cerevisiae strains, with elevated levels of the enzymes of lower glycolysis (glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase, phosphoglycerate kinase, enolase, pyruvate kinase, pyruvate decarboxylase and alcohol dehydrogenase) were physiologically characterized...

  9. Protein: MPA5 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA5 Pyrimidine biosynthesis Tb927.5.3810 Orotidine-5-phosphate decarboxylase/orota...te phosphoribosyltransferase, putative 999953 Trypanosoma brucei brucei (strain 927/4 GUTat10.1) 3657490 Q57U85 ...

  10. Differential effect of benserazide (Ro4-4602) on the concentration of indoleamines in rat pineal and hypothalamus.


    Arendt, J; HO, A.K.; Laud, C.; Marston, A.; Nohria, V.; Smith, J A; Symons, A. M.


    1 Low doses (50 and 80 mg/kg) of benserazide (Ro4-4602), an aromatic amino acid decarboxylase inhibitor, markedly reduced 5-hydroxytryptamine and melatonin in the rat pineal gland without affecting hypothalamic 5-hydroxytryptamine. 2 This differential effect shows that inhibition of the pineal gland decarboxylase activity is possible, and confirms that the rat pineal gland is accessible to peripherally acting agents.

  11. Transcriptional effects of polyamines on ribosomal proteins and on polyamine-synthesizing enzymes in Escherichia coli. (United States)

    Huang, S C; Panagiotidis, C A; Canellakis, E S


    We find that the transcription of various ribosomal proteins can be differentially affected by polyamines and by changes in growth rates. Using strain MG1655 of Escherichia coli K-12 (F-, lambda-), we have determined the effects of polyamines and changes in growth rate on the transcription of several ribosomal genes and the polyamine-synthesizing enzymes ornithine decarboxylase (L-ornithine carboxy-lyase; EC and arginine decarboxylase (L-arginine carboxylyase; EC Ribosomal proteins S20 and L34 can be differentiated from the other ribosomal proteins studied; the transcription of S20 and L34 is especially sensitive to polyamines and less sensitive to changes in growth rates. In contrast, the transcription of S10, S15, S19, L2, L4, L20, L22, and L23 is insensitive to polyamines although it is particularly sensitive to changes in growth rates. Like S20 and L34, the transcription of ornithine decarboxylase and arginine decarboxylase is especially sensitive to polyamines. Polyamines specifically enhance the transcription of ribosomal proteins S20 and L34, and decrease that of ornithine decarboxylase and arginine decarboxylase. It is evident that polyamines can exert both positive and negative regulation of gene expression in E. coli that can be differentiated from the effects caused by changes in growth rates.

  12. Tyramine production in Dutch-type semi-hard cheese from two different producers. (United States)

    Komprda, T; Burdychová, R; Dohnal, V; Cwiková, O; Sládková, P; Dvorácková, H


    Tyramine content and counts of lactic acid bacteria (LAB) and enterococci were measured (including tyrosine-decarboxylase activity testing, and testing of the presence of the tyrosine-decarboxylase gene sequence, tyrdc, by PCR) during ripening (0, 26, 54, 88, 119, 146, and 176 days) in the core (C)- and edge (E)-samples of Dutch-type semi-hard cheese produced from pasteurized milk by two dairies (R, H) with two levels of fat content (30 and 45%) using two different starter cultures (Y, L), respectively. Tyramine content (y, mgkg(-1)) increased (Ptyramine content in the cheese, respectively. After 26 days of ripening, using decarboxylase screening medium (DCM), tyrosine-decarboxylase positive LAB isolates constituted 7-27% and 6-32% of the square root of total countable colonies of LAB isolates of the producer R and H, respectively; tyrosine-decarboxylase positive enterococci were present only in R-cheeses (4-26% of the square root of total countable colonies). Tyrdc was confirmed only in 13% and 42% of the tyrosine-decarboxylase positive LAB and enterococci isolates, respectively (presumably due to the tendency of DCM to give false-positive results). Lactobacillus curvatus subsp. curvatus and Enterococcus durans, Enterococcus faecalis, and Enterococcus casseliflavus were identified as tyrdc-positive LAB and enterococci in the cheeses, respectively.

  13. GAD65 antibodies among Greenland Inuit and its relation to glucose intolerance. (United States)

    Pedersen, Michael Lynge; Bjerregaard, Peter; Jørgensen, Marit Eika


    The aim of this study was to compare the prevalence of circulating Glutamin-Acid-decarboxylase 65 antibodies in a sample of Greenlanders (Inuit) with clinically verified diabetes with samples of participants from a population survey. The study population included participants with known diabetes from a population-based study (sample 1) and patients with clinically verified diabetes in Nuuk Greenland (sample 2). In addition, age- and gender-matched participants from the population study without known diabetes were categorized in groups with (1) normal glucose tolerance test, (2) with impaired fasting glycemia, (3) with impaired glucose tolerance and (4) with previously unknown diabetes based on oral glucose tolerance test and were enrolled in the study. Presence of circulating Glutamin-Acid-decarboxylase 65 antibodies were measured in all participants. A total of 484 persons were enrolled in the study. Six individuals had circulating Glutamin-Acid-decarboxylase 65 antibodies: four of them had known diabetes, one had impaired glucose tolerance and one normal glucose tolerance test. The prevalence of circulating Glutamin-Acid-decarboxylase 65 antibodies among Greenlanders with diabetes was 4.3 % and less than 1 % among Greenlanders without diabetes (p = 0.001). The prevalence of circulating Glutamin-Acid-decarboxylase 65 antibodies among Greenlanders with and without diabetes is relatively low in a global perspective in accordance with one former study among Inuit. Autoimmune diabetes seems to be uncommon in Greenland .

  14. Screening of potential targets in Plasmodium falciparum using stage-specific metabolic network analysis. (United States)

    Dholakia, Neel; Dhandhukia, Pinakin; Roy, Nilanjan


    The Apicomplexa parasite Plasmodium is a major cause of death in developing countries which are less equipped to bring new medicines to the market. Currently available drugs used for treatment of malaria are limited either by inadequate efficacy, toxicity and/or increased resistance. Availability of the genome sequence, microarray data and metabolic profile of Plasmodium parasite offers an opportunity for the identification of stage-specific genes important to the organism's lifecycle. In this study, microarray data were analysed for differential expression and overlapped onto metabolic pathways to identify differentially regulated pathways essential for transition to successive erythrocytic stages. The results obtained indicate that S-adenosylmethionine decarboxylase/ornithine decarboxylase, a bifunctional enzyme required for polyamine synthesis, is important for the Plasmodium cell growth in the absence of exogenous polyamines. S-adenosylmethionine decarboxylase/ornithine decarboxylase is a valuable target for designing therapeutically useful inhibitors. One such inhibitor, [Formula: see text]-difluoromethyl ornithine, is currently in use for the treatment of African sleeping sickness caused by Trypanosoma brucei. Structural studies of ornithine decarboxylase along with known inhibitors and their analogues were carried out to screen drug databases for more effective and less toxic compounds.

  15. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit. (United States)

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin


    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline.

  16. Cloning and molecular evolution research of porcine GAD65 gene

    Institute of Scientific and Technical Information of China (English)

    YU Hao; SONG Yuefen; LI Li; LIU Di


    Glutamate decarboxylase (GAD) has been found in animal and higher plant tissues as well as in yeasts and microorganisms.In animals the enzyme plays an important role in central nervous system activity because the enzyme substrate glutamic acid is a mediator of excitation process and the product, gamma-aminobutyric acid, is the most important mediator of inhibition process in the central nervous system. GAD65 is one form of the glutamate decarboxylases (GAD), GAD65 has been identified as a major autoantigen in type 1 diabetes, so the GAD65 gene of porcine was cloned by RT-PCR method to construct phylogenetic tree, the homology of 13glutamate decarboxylases (GAD) of different origin was analyzed by multiple alignment.

  17. A pathoadaptive deletion in an enteroaggregative Escherichia coli outbreak strain enhances virulence in a Caenorhabditis elegans model. (United States)

    Hwang, Jennifer; Mattei, Lisa M; VanArendonk, Laura G; Meneely, Philip M; Okeke, Iruka N


    Enteroaggregative Escherichia coli (EAEC) strains are important diarrheal pathogens. EAEC strains are defined by their characteristic stacked-brick pattern of adherence to epithelial cells but show heterogeneous virulence and have different combinations of adhesin and toxin genes. Pathoadaptive deletions in the lysine decarboxylase (cad) genes have been noted among hypervirulent E. coli subtypes of Shigella and enterohemorrhagic E. coli. To test the hypothesis that cad deletions might account for heterogeneity in EAEC virulence, we developed a Caenorhabditis elegans pathogenesis model. Well-characterized EAEC strains were shown to colonize and kill C. elegans, and differences in virulence could be measured quantitatively. Of 49 EAEC strains screened for lysine decarboxylase activity, 3 tested negative. Most notable is isolate 101-1, which was recovered in Japan, from the largest documented EAEC outbreak. EAEC strain 101-1 was unable to decarboxylate lysine in vitro due to deletions in cadA and cadC, which, respectively, encode lysine decarboxylase and a transcriptional activator of the cadAB genes. Strain 101-1 was significantly more lethal to C. elegans than control strain OP50. Lethality was attenuated when the lysine decarboxylase defect was complemented from a multicopy plasmid and in single copy. In addition, restoring lysine decarboxylase function produced derivatives of 101-1 deficient in aggregative adherence to cultured human epithelial cells. Lysine decarboxylase inactivation is pathoadapative in an important EAEC outbreak strain, and deletion of cad genes could produce hypervirulent EAEC lineages in the future. These results suggest that loss, as well as gain, of genetic material can account for heterogeneous virulence among EAEC strains.

  18. Flavanols and procyanidins of cocoa and chocolate inhibit growth and polyamine biosynthesis of human colonic cancer cells. (United States)

    Carnésecchi, Stéphanie; Schneider, Yann; Lazarus, Sheryl A; Coehlo, David; Gossé, Francine; Raul, Francis


    The effects of cocoa powder and extracts with different amounts of flavanols and related procyanidin oligomers were investigated on the growth of Caco-2 cells. Treatment of the cells with 50 microg/ml of procyanidin-enriched (PE) extracts caused a 70% growth inhibition with a blockade of the cell cycle at the G2/M phase. PE extracts caused a significant decrease of ornithine decarboxylase and S-adenosylmethionine decarboxylase activities, two key enzymes of polyamine biosynthesis. This led to a decrease in the intracellular pool of the polyamines. These observations indicate that polyamine metabolism might be an important target in the anti-proliferative effects of cocoa polyphenols.

  19. 放線菌Streptomyces sp.590由来l-メチオニン脱炭酸酵素の精製および性質検討


    前村, 知美; 内富, 久美子; 日下, 知香; 稲垣, 純子; 田村, 隆; 左右田, 健次; 稲垣, 賢二


    L-Methionine decarboxylase [EC] catalyzes the decarboxylation of L-methionine and is a pyridoxal 5’-phosohate(PLP)-dependent enzyme. L-Methionine decarboxylase has been purified 630-fold by DEAE-Toyopearl 650M, Phenyl-Toyopearl 650M and Sephacryl S-300 column chromatographies from Streptomyces sp.590. The enzyme has a dimeric structure with identical subunits of Mr 60,000. This enzyme shows optimum activity at pH7.0 and 45°C, and is stable between pH5.7 and pH9.0. L-Methionine decarb...

  20. Autoimmune disease

    Institute of Scientific and Technical Information of China (English)


    2005164 Optimal cut-point of glutamic acid decar-boxylase antibody (GAD-Ab) for differentiating two subtypes of latent autoimmune diabetes in adults (LADA). LI Xia(李霞), et al. Dept Endocrinol, 2nd Xiangya Hosp, Central South Univ, Changsha, 410011. Chin J Diabetes, 2005;13(1) :34-38. Objective: To investigate the optimal cut-point of glutamate decarboxylase antibody (GAD-Ab) for differentiating two subtypes of latent autoimmune diabetes in adults (I. ADA). Methods: The frequency

  1. No Contribution of GAD-65 and IA-2 Autoantibodies around Time of Diagnosis to the Increasing Incidence of Juvenile Type 1 Diabetes

    DEFF Research Database (Denmark)

    Thorsen, Steffen U.; Pipper, Christian B.; Mortensen, Henrik B.;


    Aims. A new perspective on autoantibodies as pivotal players in the pathogenesis of type 1 diabetes (T1D) has recently emerged. Our key objective was to examine whether increased levels of autoantibodies against the β-cell autoantigens glutamic acid decarboxylase (isoform 65) (GADA) and insulinom...

  2. Main: 1MVN [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available se (Ppc Decarboxylase Athal3a) S.Steinbacher, P.Hernandez-Acosta, B.Bies...eler, M.Blaesse, R.Huber, F.A.Culianez-Macia, T.Kupke S.Steinbacher, P.Hernandez-Acosta, B.Bieseler, M.Blaes

  3. Main: 1MVL [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available se (Ppc Decarboxylase Athal3a) S.Steinbacher, P.Hernandez-Acosta, B.Bies...eler, M.Blaesse, R.Huber, F.A.Culianez-Macia, T.Kupke S.Steinbacher, P.Hernandez-Acosta, B.Bieseler, M.Blaes

  4. Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O. (Gainesville, FL); Conway, Tyrrell (Lincoln, NE); Alterthum, Flavio (Gainesville, FL)


    A novel operon and plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase activities of Zymomonas mobilis are described. Also disclosed are methods for increasing the growth of microorganisms or eukaryotic cells and methods for reducing the accumulation of undesirable metabolic products in the growth medium of microorganisms or cells.

  5. Characterization of the tyramine-producing pathway in Sporolactobacillus sp P3J

    NARCIS (Netherlands)

    Coton, Monika; Fernandez, Maria; Trip, Hein; Ladero, Victor; Mulder, Niels L.; Lolkema, Juke S.; Alvarez, Miguel A.; Coton, Emmanuel


    A sporulated lactic acid bacterium (LAB) isolated from cider must was shown to harbour the tdc gene encoding tyrosine decarboxylase. The isolate belonged to the Sporolactobacillus genus and may correspond to a novel species. The ability of the tdc-positive strain, Sporolactobacillus sp. strain P3J,

  6. Putrescine production by engineered Corynebacterium glutamicum. (United States)

    Schneider, Jens; Wendisch, Volker F


    Here, we report the engineering of the industrially relevant Corynebacterium glutamicum for putrescine production. C. glutamicum grew well in the presence of up to 500 mM of putrescine. A reduction of the growth rate by 34% and of biomass formation by 39% was observed at 750 mM of putrescine. C. glutamicum was enabled to produce putrescine by heterologous expression of genes encoding enzymes of the arginine- and ornithine decarboxylase pathways from Escherichia coli. The results showed that the putrescine yield by recombinant C. glutamicum strains provided with the arginine-decarboxylase pathway was 40 times lower than the yield by strains provided with the ornithine decarboxylase pathway. The highest production efficiency was reached by overexpression of speC, encoding the ornithine decarboxylase from E. coli, in combination with chromosomal deletion of genes encoding the arginine repressor ArgR and the ornithine carbamoyltransferase ArgF. In shake-flask batch cultures this strain produced putrescine up to 6 g/L with a space time yield of 0.1 g/L/h. The overall product yield was about 24 mol% (0.12 g/g of glucose).

  7. Changes in free polyamines and related enzymes during stipule and pod wall development in Pisum sativum. (United States)

    Chattopadhyay, Soumen; Lahiri, Kajari; Bharati, Ghosh


    Level of free polyamines, their key metabolic enzymes, and other features related to ageing were examined during stipule and pod wall development in pea (Pisum sativum). Free polyamine titre (per unit fresh mass) in both the organs, the specific activities of arginine decarboxylase and ornithine decarboxylase in the pod wall, gradually decreased with maturation. In stipule, these enzymes attained peak activity at 15 days after pod emergence and declined thereafter. Ornithine decarboxylase activity was greater in pod wall than in stipule; while, arginine decarboxylase activity was higher in stipule. Activity of degradative enzyme diamine oxidase increased with the onset of senescence in both the organs. Chlorophyll and electrical conductance had a inverse relationship throughout the experimental period, whereas, the chlorophyll content was directly related with polyamine levels in both stipule and pod wall during aging. On the other hand, protein and RNA contents were positively correlated with free polyamines throughout the test period in stipule, but in the pod wall this was true only for the later stages of development.

  8. Protection of wheat against leaf and stem rust and powdery mildew diseases by inhibition of polyamine metabolism. (United States)

    Weinstein, L H; Osmeloski, J F; Wettlaufer, S H; Galston, A W


    In higher plants, polyamines arise from arginine by one of two pathways: via ornithine and ornithine decarboxylase or via agmatine and arginine decarboxylase but in fungi, only the ornithine decarboxylase pathway is present. Since polyamines are required for normal growth of microorganisms and plants and since the ornithine pathway can be irreversibly blocked by alpha-difluoromethylornithine (DFMO) which has no effect on arginine decarboxylase, fungal infection of green plants might be controlled by the site-directed use of such a specific metabolic inhibitor. DFMO at relatively low concentrations provided effective control of the three biotrophic fungal pathogens studied, Puccinia recondita (leaf rust), P. graminis f. sp. tritici (stem rust), and Erysiphe graminis (powdery mildew) on wheat (Triticum aestivum L.) Effective control of infection by leaf or stem rust fungi was obtained with sprays of DFMO that ranged from about 0.01 to 0.20 mM in experiments where the inhibitor was applied after spore inoculation. The powdery mildew fungus was somewhat more tolerant of DFMO, but good control of the pathogen was obtained at less than 1.0 mM. In general, application of DFMO after spore inoculation was more effective than application before inoculation. Less control was obtained following treatment with alpha-difluoromethylarginine (DFMA) but the relatively high degree of control obtained raises the possibility of a DFMA to DFMO conversion by arginase.

  9. In vivo inhibition of polyamine biosynthesis and growth in tobacco ovary tissues. (United States)

    Slocum, R D; Galston, A W


    Post fertilization growth of tobacco ovary tissues treated with inhibitors of polyamine (PA) biosynthesis was examined in relation to endogenous PA titers and the activities of arginine decarboxylase (ADC, EC and ornithine decarboxylase (ODC, EC DL-alpha-Difluoromethylornithine (DFMO) and DL-alpha-difluoromethylarginine (DFMA), specific, irreversible ("suicide") inhibitors of ODC and ADC in vitro, were used to modulate PA biosynthesis in excised flowers. ODC represented >99% of the total decarboxylase activity in tobacco ovaries. In vivo inhibition of ODC with DFMO resulted in a significant decrease in PA titers, ovary fresh weight and protein content. Simultaneous inhibition of both decarboxylases by DFMO and DFMA produced only a marginally greater depression in growth and PA titers, indicating that ODC activity is rate-limiting for PA biosynthesis in these tissues. Paradoxically, DFMA alone inhibited PA biosynthesis, not as a result of a specific inhibition of ADC, but primarily through the inactivation of ODC. In vivo inhibition of ODC by DFMA appears to result from arginase-mediated hydrolysis of this inhibitor to urea and DFMO, the suicide substrate for ODC. Putrescine conjugates in tobacco appear to function as a storage form of this amine which, upon hydrolysis, may contribute to Put homeostasis during growth.

  10. Sequence Classification: 890590 [

    Lifescience Database Archive (English)

    Full Text Available els of levels of 5,10-methylene-THF in the cytoplasm; Gcv3p || ... ...chondrial glycine decarboxylase complex, required for the catabolism of glycine to 5,10-methylene-THF; expression is regulated by lev

  11. AcEST: DK947226 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ein (Fragment) OS=Flaveria palmeri ... 117 4e-25 tr|A9PKZ9|A9PKZ9_POPTM Mitochondrial glycine decarboxylase ...INKSPYEEGWMIKVKPSNPSELESLLGAKEYTKLCEEEDH 163 >tr|Q39750|Q39750_FLAPA H-protein (Fragment) OS=Flaveria palmer

  12. Rerouting Citrate Metabolism in Lactococcus lactis to Citrate-Driven Transamination

    NARCIS (Netherlands)

    Pudlik, Agata M.; Lolkema, Juke S.


    Oxaloacetate is an intermediate of the citrate fermentation pathway that accumulates in the cytoplasm of Lactococcus lactis ILCitM(pFL3) at a high concentration due to the inactivation of oxaloacetate decarboxylase. An excess of toxic oxaloacetate is excreted into the medium in exchange for citrate

  13. Metabolic engineering of itaconate production in Escherichia coli

    NARCIS (Netherlands)

    Vuoristo, K.S.; Mars, A.E.; Vidal Sangra, J.; Springer, J.; Eggink, G.; Sanders, J.P.M.; Weusthuis, R.A.


    Interest in sustainable development has led to efforts to replace petrochemical-based monomers with biomass-based ones. Itaconic acid, a C5-dicarboxylic acid, is a potential monomer for the chemical industry with many prospective applications. cis-aconitate decarboxylase (CadA) is the key enzyme of

  14. Sequence Classification: 398655 [

    Lifescience Database Archive (English)

    Full Text Available Non-TMB Non-TMH Non-TMB Non-TMB Non-TMB Non-TMB >gi|15609378|ref|NP_216757.1| Probable pyruvat...e dehydrogenase E1 component aceE (PYRUVATE DECARBOXYLASE) (PYRUVATE DEHYDROGENASE) (PYRUVIC DEHYDROGENASE) || ...

  15. Sequence Classification: 388910 [

    Lifescience Database Archive (English)

    Full Text Available Non-TMB Non-TMH Non-TMB Non-TMB Non-TMB Non-TMB >gi|31793421|ref|NP_855914.1| Probable pyruvat...e dehydrogenase E1 component aceE (PYRUVATE DECARBOXYLASE) (PYRUVATE DEHYDROGENASE) (PYRUVIC DEHYDROGENASE) || ...

  16. AcEST: DK960586 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 8UF9 Definition sp|Q98UF9|VMHF3_BOTJA Zinc metalloproteinase-disintegrin HF3 OS=Bothrops jararaca Align leng...rinogen decarboxylase OS=Agrobacte... 30 8.9 >sp|Q98UF9|VMHF3_BOTJA Zinc metalloproteinase-disintegrin HF3 OS=Bothrops jar

  17. Endogenous histamine and promethazine-induced gastric ulcers in the guinea pig (United States)

    Djahanguiri, B.; Hemmati, M.


    Experiments performed with an inhibitor of diaminoxydase, aminoguanidine and an inhibitor of histidine decarboxylase, NSD 1055, showed that the frequency of gastric ulcers induced by promethazine was increased with the first inhibitor and decreased with the second. It is suggested that ulcers induced by promethazine in guinea pigs might be due to histamino-liberator effect of the antihistaminio compound.

  18. Disease progression and search for monogenic diabetes among children with new onset type 1 diabetes negative for ICA, GAD- and IA-2 Antibodies

    DEFF Research Database (Denmark)

    Pörksen, Sven; Laborie, Lene; Nielsen, Lotte


    BACKGROUND:To investigate disease progression the first 12 months after diagnosis in children with type 1 diabetes negative (AAB negative) for pancreatic autoantibodies [islet cell autoantibodies(ICA), glutamic acid decarboxylase antibodies (GADA) and insulinoma-associated antigen-2 antibodies (I...

  19. Compartmentalization of GABA synthesis by GAD67 differs between pancreatic beta cells and neurons

    DEFF Research Database (Denmark)

    Kanaani, Jamil; Cianciaruso, Chiara; Phelps, Edward A;


    The inhibitory neurotransmitter GABA is synthesized by the enzyme glutamic acid decarboxylase (GAD) in neurons and in pancreatic β-cells in islets of Langerhans where it functions as a paracrine and autocrine signaling molecule regulating the function of islet endocrine cells. The localization of...

  20. GABA and its B-receptor are present at the node of Ranvier in a small population of sensory fibers, implicating a role in myelination

    DEFF Research Database (Denmark)

    Corell, Mikael; Wicher, Grzegorz; Radomska, Katarzyna J;


    of the GABAB receptor, GABA, and glutamic acid decarboxylase GAD65/67 in both development and injury in fetal dissociated dorsal root ganglia (DRG) cell cultures and in the rat sciatic nerve. We found that GABA, GAD65/67, and the GABAB receptor were expressed in premyelinating and nonmyelinating Schwann cells...

  1. Multiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine-producing lactic acid bacteria in foods. (United States)

    Marcobal, Angela; de las Rivas, Blanca; Moreno-Arribas, M Victoria; Muñoz, Rosario


    In a screening of primers, we have selected three pairs of primers for a multiplex PCR assay for the simultaneous detection of lactic acid bacteria (LAB) strains, which potentially produce histamine, tyramine, and putrescine on fermented foods. These primers were based on sequences from histidine, tyrosine, and ornithine decarboxylases from LAB. Under the optimized conditions, the assay yielded a 367-bp DNA fragment from histidine decarboxylases, a 924-bp fragment from tyrosine decarboxylases, and a 1,446-bp fragment from ornithine decarboxylases. When the DNAs of several target organisms were included in the same reaction, two or three corresponding amplicons of different sizes were observed. This assay was useful for the detection of amine-producing bacteria in control collection strains and in a LAB collection. No amplification was observed with DNA from nonproducing LAB strains. This article is the first describing a multiplex PCR approach for the simultaneous detection of potentially amine-producing LAB in foods. It can be easily incorporated into the routine screening for the accurate selection of starter LAB and in food control laboratories.

  2. Unigene BLAST: CBRC-MMUS-23-0020 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MMUS-23-0020 gnl|UG|Mm#S26696308 Mus musculus 16 days neonate thymus cDNA, RIK...EN full-length enriched library, clone:A130003J18 product:Similar to phosphatidylserine decarboxylase homolog [Mus musculus

  3. Unigene BLAST: CBRC-MMUS-09-0005 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MMUS-09-0005 gnl|UG|Mm#S26696308 Mus musculus 16 days neonate thymus cDNA, RIK...EN full-length enriched library, clone:A130003J18 product:Similar to phosphatidylserine decarboxylase homolog [Mus musculus

  4. Unigene BLAST: CBRC-MMUS-23-0044 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MMUS-23-0044 gnl|UG|Mm#S26696308 Mus musculus 16 days neonate thymus cDNA, RIK...EN full-length enriched library, clone:A130003J18 product:Similar to phosphatidylserine decarboxylase homolog [Mus musculus

  5. Domain Modeling: NP_000364.1 [SAHG[Archive

    Lifescience Database Archive (English)

    Full Text Available NP_000364.1 chr3 Crystal Structure of Human Orotidine 5'-monophosphate Decarboxylas...e Covalently Modified by 5-fluoro-6-azido-UMP p3g3db_ chr3/NP_000364.1/NP_000364.1_holo_221-479.pdb blast 25

  6. Ca2+-Citrate Uptake and Metabolism in Lactobacillus casei ATCC 334

    NARCIS (Netherlands)

    Mortera, Pablo; Pudlik, Agata; Magni, Christian; Alarcon, Sergio; Lolkema, Juke S.


    The putative citrate metabolic pathway in Lactobacillus casei ATCC 334 consists of the transporter CitH, a proton symporter of the citrate-divalent metal ion family of transporters CitMHS, citrate lyase, and the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Resting cells of Lactobacill

  7. The molecular origin of the thiamin diphosphate-induced spectral bands of ThDP-dependent enzymes

    NARCIS (Netherlands)

    Kovina, M.V.; Kok, A.; Sevostyanova, I.A.; Khailova, L.S.; Belkina, N.V.; Kochetov, G.A.


    New and previously published data on a variety of ThDP-dependent enzymes such as baker's yeast transketolase, yeast pyruvate decarboxylase and pyruvate dehydrogenase from pigeon breast muscle, bovine heart, bovine kidney, Neisseria meningitidis and E. coli show their spectral sensitivity to ThDP bin

  8. Domain Modeling: NP_057073.3 [SAHG[Archive

    Lifescience Database Archive (English)

    Full Text Available NP_057073.3 chr12 HUMAN CYSTEINE SULFINIC ACID DECARBOXYLASE (CSAD) IN COMPLEX WITH... PLP. p2jisb_ chr12/NP_057073.3/NP_057073.3_holo_7-493.pdb blast 93L,151G,152G,153S,154I,156N,190C,193S,244T

  9. Pantothenic acid biosynthesis in zymomonas

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.


    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  10. Ketogenesis in isolated rat-liver mitochondria. IV. Oxaloacetate decarboxylation: Consequences for metabolic calculations

    NARCIS (Netherlands)

    Lopes-Cardozo, M.; Bergh, S.G. van den


    Oxaloacetate which is formed by isolated rat-liver mitochondria during oxidation of malate may be decarboxylated to pyruvate by the action of oxaloacetate decarboxylase (EC The pyruvate so formed is rapidly oxidized to acetyl-CoA from which citrate is formed by condensation with a second m

  11. GenBank blastx search result: AK060824 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060824 001-034-B04 AY143338.1 Pseudomonas putida mandelate racemase (mdlA), S-mandela...te dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), putative regulatory protein MdlX (mdlX), mandela

  12. GenBank blastx search result: AK104746 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104746 001-038-E07 AY143338.1 Pseudomonas putida mandelate racemase (mdlA), S-mandela...te dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), putative regulatory protein MdlX (mdlX), mandela

  13. GenBank blastx search result: AK103933 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103933 001-013-E11 AY143338.1 Pseudomonas putida mandelate racemase (mdlA), S-mandela...te dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), putative regulatory protein MdlX (mdlX), mandela

  14. GenBank blastx search result: AK062189 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062189 001-046-E08 AY143338.1 Pseudomonas putida mandelate racemase (mdlA), S-mandela...te dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), putative regulatory protein MdlX (mdlX), mandela

  15. GenBank blastx search result: AK060221 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060221 001-002-F07 AY143338.1 Pseudomonas putida mandelate racemase (mdlA), S-mandela...te dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), putative regulatory protein MdlX (mdlX), mandela

  16. GenBank blastx search result: AK061719 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061719 001-037-H12 AY143338.1 Pseudomonas putida mandelate racemase (mdlA), S-mandela...te dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), putative regulatory protein MdlX (mdlX), mandela

  17. GenBank blastx search result: AK241698 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241698 J065196B09 AY143338.1 AY143338 Pseudomonas putida mandelate racemase (mdlA), S-mandela...te dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), putative regulatory protein MdlX (mdlX), mandela

  18. GenBank blastx search result: AK288014 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288014 J075120L13 AY143338.1 AY143338 Pseudomonas putida mandelate racemase (mdlA), S-mandela...te dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), putative regulatory protein MdlX (mdlX), mandela

  19. GenBank blastx search result: AK059236 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059236 001-024-F01 AY143338.1 Pseudomonas putida mandelate racemase (mdlA), S-mandela...te dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), putative regulatory protein MdlX (mdlX), mandela

  20. Endocarditis caused by Haemophilus aegyptius. (United States)

    Porath, A; Wanderman, K; Simu, A; Vidne, B; Alkan, M


    Endocarditis due to Haemophilus is uncommon. This is the first reported case caused by Haemophilus aegyptius. The course of the disease was complicated by pericarditis, congestive heart failure, and myocardial abscess formation. Surgical removal of the damaged aortic valve was not beneficial. The biologic properties of the organism included urea degradation, absence of indole metabolism, and absence of the enzyme ornithine decarboxylase.