WorldWideScience

Sample records for aromatic hydrocarbons based

  1. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  2. Optimization and determination of polycyclic aromatic hydrocarbons in biochar-based fertilizers.

    Science.gov (United States)

    Chen, Ping; Zhou, Hui; Gan, Jay; Sun, Mingxing; Shang, Guofeng; Liu, Liang; Shen, Guoqing

    2015-03-01

    The agronomic benefit of biochar has attracted widespread attention to biochar-based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar-based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar-based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box-Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26-102.99%.

  3. Production of alkyl aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bonacci, J.C.; Billings, R.P.

    1975-01-30

    An improved method is claimed for producing aromatic hydrocarbons from a hydrocarbon charge containing aromatic hydrocarbons including benzene and C/sub 8/ alkyl aromatics and aliphatic hydrocarbons which charge is rich in such aromatic hydrocarbons and lean in aliphatic hydrocarbons boiling above about 220/sup 0/F by reason of conversion under severe conditions which comprises subjecting said charge to distillation conditions of temperature and pressure such that at least a portion of the benzene content of said fraction is separated as vapor from an alkyl aromatic fraction containing aliphatic hydrocarbons and the major portion of C/sub 8/ aromatics in said charge, reacting said alkyl aromatic fraction in the presence of hydrogen in contact with a catalyst containing type ZSM-5 zeolite, zeolite ZSM-12, zeolite ZSM-21 or zeolite beta in combination with a hydrogenation/dehydrogenation component at conversion conditions to convert aliphatic hydrocarbons to lower boiling material of five carbon atoms and lighter separable from aromatics by distillation including a temperature of about 500/sup 0/ to 1000/sup 0/F, a pressure of about 100 to about 600 pounds, a hydrogen to hydrocarbon mol ratio of 0.2 to 8 and weight hourly space velocity of 0.5 to 15, concurrently contacting a mixture of hydrogen and toluene with a disproportionation catalyst under reaction conditions to disproportionate said toluene, combining the effluents of said contacting steps, separating hydrogen from the combined effluents of said contacting steps, separating hydrogen from the combined effluents, recycling at least a portion of said separated hydrogen to said contacting steps, distilling the hydrocarbon residue from said separation step to recover therefrom at least toluene and mixed xylenes, and recycling at least a portion of said recovered toluene as feed to the disproportionation step aforesaid.

  4. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  5. Kekulé-based Valence Bond Model.Ⅱ. Diels-Alder Reactivity of Polycyclic Aromatic Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    MA,Jing(马晶); LI,Shu-Hua(黎书华); JIANG,Yuan-Sheng(江元生)

    2002-01-01

    The Kekule-based valence bond ( VB ) method was employed to study the ground state properties of 52 polycyclic aromatic hydrocarbons. The reactivity indices defined upon our VB calculations were demonstrated to be capable of quantitatively interpreting the secnd order rate constants of the Diels-Alder reactions. The qualitative trends of the reactivities of many homologous series can be also explained based on the local aromaticity index defined in this work.

  6. A DFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: Consideration of aqueous freely dissolved concentration.

    Science.gov (United States)

    Wang, Ying; Yang, Xianhai; Wang, Juying; Cong, Yi; Mu, Jingli; Jin, Fei

    2016-05-01

    In the present study, quantitative structure-activity relationship (QSAR) techniques based on toxicity mechanism and density functional theory (DFT) descriptors were adopted to develop predictive models for the toxicity of alkylated and parent aromatic hydrocarbons to Vibrio fischeri. The acute toxicity data of 17 aromatic hydrocarbons from both literature and our experimental results were used to construct QSAR models by partial least squares (PLS) analysis. With consideration of the toxicity process, the partition of aromatic hydrocarbons between water phase and lipid phase and their interaction with the target biomolecule, the optimal QSAR model was obtained by introducing aqueous freely dissolved concentration. The high statistical values of R(2) (0.956) and Q(CUM)(2) (0.942) indicated that the model has good goodness-of-fit, robustness and internal predictive power. The average molecular polarizability (α) and several selected thermodynamic parameters reflecting the intermolecular interactions played important roles in the partition of aromatic hydrocarbons between the water phase and biomembrane. Energy of the highest occupied molecular orbital (E(HOMO)) was the most influential descriptor which dominated the toxicity of aromatic hydrocarbons through the electron-transfer reaction with biomolecules. The results demonstrated that the adoption of freely dissolved concentration instead of nominal concentration was a beneficial attempt for toxicity QSAR modeling of hydrophobic organic chemicals. PMID:26812082

  7. Problems in the fingerprints based polycyclic aromatic hydrocarbons source apportionment analysis and a practical solution.

    Science.gov (United States)

    Zou, Yonghong; Wang, Lixia; Christensen, Erik R

    2015-10-01

    This work intended to explain the challenges of the fingerprints based source apportionment method for polycyclic aromatic hydrocarbons (PAH) in the aquatic environment, and to illustrate a practical and robust solution. The PAH data detected in the sediment cores from the Illinois River provide the basis of this study. Principal component analysis (PCA) separates PAH compounds into two groups reflecting their possible airborne transport patterns; but it is not able to suggest specific sources. Not all positive matrix factorization (PMF) determined sources are distinguishable due to the variability of source fingerprints. However, they constitute useful suggestions for inputs for a Bayesian chemical mass balance (CMB) analysis. The Bayesian CMB analysis takes into account the measurement errors as well as the variations of source fingerprints, and provides a credible source apportionment. Major PAH sources for Illinois River sediments are traffic (35%), coke oven (24%), coal combustion (18%), and wood combustion (14%). PMID:26208321

  8. Biodegradation of Polycyclic Aromatic Hydrocarbons

    OpenAIRE

    DEMİR, İsmail; DEMİRBAĞ, Zihni

    1999-01-01

    Polycylic aromatic hydrocarbons (PAHs), such as petroleum and petroleum derivatives, are widespread organic pollutants entering the environment, chiefly, through oil spills and incomplete combustion of fossil fuels. Since most PAHs are persist in the environment for a long period of time and bioaccumulate, they cause environmental pollution and effect biological equilibrium dramatically. Biodegradation of some PAHs by microorganisms has been biochemically and genetically investigated. Ge...

  9. Field effect transistors based on polycyclic aromatic hydrocarbons for the detection and classification of volatile organic compounds.

    Science.gov (United States)

    Bayn, Alona; Feng, Xinliang; Müllen, Klaus; Haick, Hossam

    2013-04-24

    We show that polycyclic aromatic hydrocarbon (PAH) based field effect transistor (FET) arrays can serve as excellent chemical sensors for the detection of volatile organic compounds (VOCs) under confounding humidity conditions. Using these sensors, w/o complementary pattern recognition methods, we study the ability of PAH-FET(s) to: (i) discriminate between aromatic and non-aromatic VOCs; (ii) distinguish polar and non-polar non-aromatic compounds; and to (iii) identify specific VOCs within the subgroups (i.e., aromatic compounds, polar non-aromatic compounds, non-polar non-aromatic compounds). We further study the effect of water vapor on the sensor array's discriminative ability and derive patterns that are stable when exposed to different constant values of background humidity. Patterns based on different independent electronic features from an array of PAH-FETs may bring us one step closer to creating a unique fingerprint for individual VOCs in real-world applications in atmospheres with varying levels of humidity.

  10. Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario.

    Science.gov (United States)

    Marquès, Montse; Mari, Montse; Audí-Miró, Carme; Sierra, Jordi; Soler, Albert; Nadal, Martí; Domingo, José L

    2016-04-01

    The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate chamber at stable conditions of temperature (20 °C) and light (9.6 W m(-2)) for 28 days, simulating a climate change base scenario. PAH concentrations in soils were analyzed throughout the experiment, and correlated with data obtained by means of Microtox(®) ecotoxicity test. Photodegradation was found to be dependent on exposure time, molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being PAHs more photodegraded than in coarse-textured soil. According to the EC50 values reported by Microtox(®), a higher detoxification was observed in fine-textured soil, being correlated with the outcomes of the analytical study. Significant photodegradation rates were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely removed after 7 days of light exposure. In addition to the PAH chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried out. The degradation of this specific compound was associated to a high enrichment in (2)H, obtaining a maximum δ(2)H isotopic shift of +232‰. This strong isotopic effect observed in benzo(a)pyrene suggests that compound-specific isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin occurring in the darkness.

  11. Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario.

    Science.gov (United States)

    Marquès, Montse; Mari, Montse; Audí-Miró, Carme; Sierra, Jordi; Soler, Albert; Nadal, Martí; Domingo, José L

    2016-04-01

    The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate chamber at stable conditions of temperature (20 °C) and light (9.6 W m(-2)) for 28 days, simulating a climate change base scenario. PAH concentrations in soils were analyzed throughout the experiment, and correlated with data obtained by means of Microtox(®) ecotoxicity test. Photodegradation was found to be dependent on exposure time, molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being PAHs more photodegraded than in coarse-textured soil. According to the EC50 values reported by Microtox(®), a higher detoxification was observed in fine-textured soil, being correlated with the outcomes of the analytical study. Significant photodegradation rates were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely removed after 7 days of light exposure. In addition to the PAH chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried out. The degradation of this specific compound was associated to a high enrichment in (2)H, obtaining a maximum δ(2)H isotopic shift of +232‰. This strong isotopic effect observed in benzo(a)pyrene suggests that compound-specific isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin occurring in the darkness. PMID:26841292

  12. Deuterated polycyclic aromatic hydrocarbons: Revisited

    CERN Document Server

    Doney, Kirstin D; Mori, Tamami; Onaka, Takashi; Tielens, A G G M

    2016-01-01

    The amount of deuterium locked up in polycyclic aromatic hydrocarbons (PAHs) has to date been an uncertain value. We present a near-infrared (NIR) spectroscopic survey of HII regions in the Milky Way, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) obtained with AKARI, which aims to search for features indicative of deuterated PAHs (PAD or Dn-PAH) to better constrain the D/H ratio of PAHs. Fifty-three HII regions were observed in the NIR (2.5-5 {\\mu}m), using the Infrared Camera (IRC) on board the AKARI satellite. Through comparison of the observed spectra with a theoretical model of deuterated PAH vibrational modes, the aromatic and (a)symmetric aliphatic C-D stretch modes were identified. We see emission features between 4.4-4.8 {\\mu}m, which could be unambiguously attributed to deuterated PAHs in only six of the observed sources, all of which are located in the Milky Way. In all cases, the aromatic C-D stretching feature is weaker than the aliphatic C-D stretching feature, and, in the case o...

  13. Polycyclic aromatic hydrocarbons with SPICA

    CERN Document Server

    Berne, O; Mulas, G; Tielens, A G G M; Goicoechea, J R

    2009-01-01

    Thanks to high sensitivity and angular resolution and broad spectral coverage, SPICA will offer a unique opportunity to better characterize the nature of polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs), to better use them as probes of astrophysical environments. The angular resolution will enable to probe the chemical frontiers in the evolution process from VSGs to neutral PAHs, to ionized PAHs and to "Grand-PAHs" in photodissotiation regions and HII regions, as a function of G$_0$/n (UV radiation field / density). High sensitivity will favor the detection of the far-IR skeletal emission bands of PAHs, which provide specific fingerprints and could lead to the identification of individual PAHs. This overall characterization will allow to use PAH and VSG populations as tracers of physical conditions in spatially resolved protoplanetary disks and nearby galaxies (using mid-IR instruments), and in high redshift galaxies (using the far-IR instrument), thanks to the broad spectral coverage SPIC...

  14. Birds and polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Albers, P.H.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.

  15. Volatilisation of aromatic hydrocarbons from soil

    DEFF Research Database (Denmark)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons were measured in the laboratory from the surface of soils contaminated with coal tar Four soil samples from a former gasworks site were used for the experiments. The fluxes were quantified for 11 selected compounds, 4 mono- and 7 polycyclic...... aromatic hydrocarbons, for a period of up to 8 or 16 days. The concentrations of the selected compounds in the soils were between 0.2 and 3,100 mu g/g. The study included the experimental determination of the distribution coefficient of the aromatic hydrocarbons between the sorbed phase and the water under...... saturated conditions. The determined distribution coefficients showed that the aromatic hydrocarbons were more strongly sorbed to the total organic carbon including the coal tar pitch - by a factor of 8 to 25 - than expected for natural organic matter. The fluxes were also estimated using an analytical...

  16. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  17. Analysis of Parent/Nitrated Polycyclic Aromatic Hydrocarbons in Particulate Matter 2.5 Based on Femtosecond Ionization Mass Spectrometry.

    Science.gov (United States)

    Itouyama, Noboru; Matsui, Taiki; Yamamoto, Shigekazu; Imasaka, Tomoko; Imasaka, Totaro

    2016-02-01

    Particulate matter 2.5 (PM2.5), collected from ambient air in Fukuoka City, was analyzed by gas chromatography combined with multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (267 nm) as the ionization source. Numerous parent polycyclic aromatic hydrocarbons (PPAHs) were observed in a sample extracted from PM2.5, and their concentrations were determined to be in the range from 30 to 190 pg/m(3) for heavy PPAHs. Standard samples of nitrated polycyclic aromatic hydrocarbons (NPAHs) were examined, and the limits of detection were determined to be in the picogram range. The concentration of NPAH adsorbed on PM2.5 in the air was less than 900-1300 pg/m(3). Graphical Abstract ᅟ. PMID:26419772

  18. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas.

    Science.gov (United States)

    Nwinyi, Obinna C; Ajayi, Oluseyi O; Amund, Olukayode O

    2016-01-01

    The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R(2)=1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site. PMID:27245129

  19. In situ biodegradation potential of aromatic hydrocarbons in anaerobic groundwaters

    Science.gov (United States)

    Acton, D. W.; Barker, J. F.

    1992-04-01

    Three types of experiments were conducted to assess the potential for enhancing the in situ biodegradation of nine aromatic hydrocarbons in anaerobic, leachate-impacted aquifers at North Bay, Ontario, and at Canada Forces Base Borden. Laboratory micrososms containing authentic aquifer material and groundwater from the North Bay site were amended with nitrate and glucose. No significant losses of aromatic hydrocarbons were observed compared to unamended controls, over a period of 187 days. A total of eight in situ biodegradation columns were installed in the North Bay and Borden aquifers. Remedial additions included electron acceptors (nitrate and sulphate) and primary substrates (acetate, lactate and yeast extract). Six aromatic hydrocarbons [toluene, ethylbenzene, m-xylene, o-xylene, cumene and 1,2,4-trimethylbenzene ( 1,2,4-TMB)] were completely degraded in at least one in situ column at the North Bay site. Only toluene was degraded in the Borden aquifer. In all cases, aromatic hydrocarbon attenuation was attributed to biodegradation by methanogenic and fermentative bacteria. No evidence of aromatic hydrocarbon degradation was observed in columns remediated with nitrate or primary substrates. A continuous forced gradient injection experiment with sulphate addition was conducted at the North Bay site over a period of 51 days. The concentration of six aromatic hydrocarbons was monitored over time in the injection wells and at piezometer fences located 2, 5 and 10 m downgradient. All compounds except toluene reached injection concentration between 14 and 26 days after pumping began, and showed some evidence of selective retardation. Toluene broke through at a subdued concentration (˜ 50% of injection levels), and eventually declined to undetectable levels on day 43. This attenuation was attributed to adaptation and biodegradation by anaerobic bacteria. The results from these experiments indicate that considerable anaerobic biodegradation of aromatic hydrocarbons in

  20. Analysis of saturated and aromatic hydrocarbons migrating from a polyolefin-based hot-melt adhesive into food.

    Science.gov (United States)

    Lommatzsch, Martin; Biedermann, Maurus; Grob, Koni; Simat, Thomas J

    2016-01-01

    Hot-melt adhesives are widely utilised to glue cardboard boxes used as food packaging material. They have to comply with the requirements of Article 3 of the European Framework Regulation for food contact materials (1935/2004). The hot melt raw materials analysed mainly consisted of paraffinic waxes, hydrocarbon resins and polyolefins. The hydrocarbon resins, functioning as tackifiers, were the predominant source of hydrocarbons of sufficient volatility to migrate into dry foods: the 18 hydrocarbon resins analysed contained 8.2-118 g kg(-1) saturated and up to 59 g kg(-1) aromatic hydrocarbons eluted from GC between n-C16 and n-C24, substantially more than the paraffinic waxes and the polyolefins. These tackfier resins, especially the oligomers ≤ C24, have been characterised structurally by GC×GC-MS and (1)H-NMR spectroscopy. Migration into food was estimated using a simulating system with polenta as food simulant, which was verified by the analysis of a commercial risotto rice sample packed in a virgin fibre folding box sealed with a hot melt. About 0.5-1.5% of the potentially migrating substances (between n-C16 and n-C24) of a hot melt were found to be transferred into food under storage conditions, which can result in a food contamination in the order of 1 mg kg(-1) food (depending on the amount of potentially migrating substances from the hot melt, the hot melt surface, amount of food, contact time etc.). Migrates from hot melts are easily mistaken for mineral oil hydrocarbons from recycled cardboard.

  1. Calculated molecular properties of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hites, R.A.; Simonsick, W.J. Jr.

    1987-01-01

    This volume contains a compilation of calculated molecular properties for 272 polycyclic aromatic hydrocarbons (PAH) and monomethylated PAH, listed in sequence according to their increasing molecular weight. The Chemical Abstracts Registry number is also included for easy reference. The molecular properties were calculated using the semiempirical MDCO method with geometric optimization. These parameters include the heats of formation, the frontier orbital energies, the electronic and nuclear energies, the dipole moment, and the net atomic charges on each atom. The shape parameter and the length/breadth ratio from the optimized geometries is also computed.

  2. Occurrence of fungi degrading aromatic hydrocarbons in activated sludge biocenoses

    Directory of Open Access Journals (Sweden)

    Anna Grabińska-Łoniewska

    2014-08-01

    Full Text Available A set of 21 strains of yeast-like microorganisms isolated from biocenoses of aerobic and anaerobic wastewater treatment systems were assayed for their ability to utilize aromatic hydrocarbons as a sole C-source. Basing on the achieved results, the highly biochemically active strains for application in enhancing of wastewaters and exhaust gases purification as well as soil bioremediation were selected.

  3. Structural Evolution of Interstellar Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Hammonds, Mark; Candian, Alessandra; Mori, Tamami; Usui, Fumihiko; Onaka, Takashi

    2015-08-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important reservoir for molecular carbon in the interstellar medium (ISM), and investigations into their chemistry and behaviour may be important to the understanding of how carbon is processed from simple forms into complex prebiotic molecules such as those detected in chondritic meteorites. In this study, infrared astronomical data from AKARI and other observatories are used together with laboratory and theoretical data to study variations in the structure of emitting PAHs in interstellar environments using spectroscopic decomposition techniques and bands arising from carbon-hydrogen bond vibrations at wavelengths from 3 - 14 microns. Results and inferences are discussed in terms of the processing of large carbonaceous molecules in astrophysical environments.

  4. Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples.

    Science.gov (United States)

    Battisti, Chiara; Girelli, Anna Maria; Tarola, Anna Maria

    2015-01-01

    The concentrations and distributions of major polycyclic aromatic hydrocarbons (PAHs) were determined in 20 kinds of yogurt specimens collected from Italian supermarkets using reversed phase high-performance liquid chromatography equipped with fluorescence detection. The method was validated by determination of recovery percentages, precision (repeatability) and sensitivity (limits of detection) with yogurt samples fortified at 0.25, 0.5 and 1 µg/kg concentration levels. The recovery of 13 PAHs, with the exception of naphthalene and acenaphthene, ranged from 61% to 130% and from 60% to 97% at all the levels for yogurts with low (0.1%) and high (3.9%) fat content, respectively. The method is repeatable with relative standard deviation values yogurts with low and high fats were compared.

  5. Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and Azaarenes in Runoff from Freshly Applied Coal-Tar-Based Pavement Sealcoat

    Science.gov (United States)

    Mahler, B. J.; Van Metre, P. C.

    2013-12-01

    Coal-tar-based sealcoat (CT-sealcoat) is extensively applied to asphalt parking lots and driveways in the U.S. and Canada. Toxicity to fish and invertebrates of runoff from pavement to which CT-sealcoat has been freshly applied has been reported, but relatively little is known about how concentrations of chemicals in runoff change in the hours to days following sealcoat application. We measured the concentrations of 16 U.S. Environmental Protection Agency Priority Pollutant polycyclic aromatic hydrocarbons (PAHs) and 7 azaarenes in 9 samples of simulated runoff from a coal-tar-sealed test plot collected at increasing intervals from 5 hours to 16 weeks following application. Azaarenes, several of which are common constituents in coal-tar pitch, and their oxidized derivatives, azaarones, are an emerging group of little-studied heterocyclic chemicals. Runoff samples were collected by spraying 25 L of a diluted groundwater to 10 m2 on sealed pavement and retrieving the runoff downgradient where the runoff pooled against spill berms. Unfiltered samples were analyzed by GC/MS following liquid-liquid extraction. In the first sample (t=5 hr), phenanthrene had the highest concentration (130 μg/L) among the 16 PAHs. Concentrations of the lower molecular weight (LMW) PAHs (2 and 3 ring) decreased during the 16 weeks following application, and concentrations of the higher molecular weight (HMW) PAHs (4 to 6 ring) increased, coincident with an increase in the concentration of suspended particulates. In the final sample (t=16 weeks), fluoranthene had the highest concentration (36 μg/L) among the 16 PAHs. Of the azaarenes measured, concentrations of acridine and carbazole (107 and 750 μg/L, respectively) in the initial sample exceeded those of any of the PAHs measured except phenanthrene; acridine and carbazole concentrations decreased over the 5 weeks to <5% of their initial values. Samples of dried sealcoat were analyzed the day of application and 5 weeks later. Samples were

  6. High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons

    Science.gov (United States)

    González-Gaya, Belén; Fernández-Pinos, María-Carmen; Morales, Laura; Méjanelle, Laurence; Abad, Esteban; Piña, Benjamin; Duarte, Carlos M.; Jiménez, Begoña; Dachs, Jordi

    2016-06-01

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 102-103 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr-1, around 15% of the oceanic CO2 uptake.

  7. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons

    KAUST Repository

    González-Gaya, Belén

    2016-05-16

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 10 2 -10 3 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr -1, around 15% of the oceanic CO2 uptake. © 2016 Macmillan Publishers Limited.

  8. Environmental Remediation: Removal of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nkansah, Marian Asantewah

    2012-11-15

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent semi-volatile organic compounds. They are contaminants that are resistant to degradation and can remain in the environment for long periods due to their high degree of conjugation, and aromaticity. PAHs are present in industrial effluents as products of incomplete combustion processes of organic compounds. Petroleum, coal and shale oil contain extremely complex mixtures of these PAHs, and their transport and refining process can also result in the release of PAHs. It is therefore prudent that such effluents are treated before discharge into the environment. In this project, different approaches to the treatment of PAHs have been investigated. Hydrous pyrolysis has been explored as a potential technique for degrading PAHs in water using anthracene as a model compound. The experiments were performed under different conditions of temperature, substrate, redox systems and durations. The conditions include oxidising systems comprising pure water, hydrogen peroxide and Nafion-SiO2 solid catalyst in water; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C catalysts to assess a range of reactivities. Products observed in GCMS analysis of the extract from the water phase include anthrone, anthraquinone, xanthone and multiple hydro-anthracene derivatives (Paper I). In addition a modified version of the Nafion-SiO2 solid catalyst in water oxidising system was tested; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C catalysts were adopted for the conversion of a mixture of anthracene, fluorene and fluoranthene. The rate of conversion in the mixture was high as compared to that of only anthracene (Paper II). Also the use of LECA (Lightweight expanded clay aggregates) as an adsorbent (Paper III) for PAHs (phenanthrene, fluoranthene and pyrene) removal from water has been.(Author)

  9. Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures

    NARCIS (Netherlands)

    Meindersma, G. Wytze; Podt, Anita (J.G.); Haan, de André B.

    2005-01-01

    The separation of aromatic hydrocarbons (benzene, toluene, ethyl benzene and xylenes) from C4 to C10 aliphatic hydrocarbon mixtures is challenging since these hydrocarbons have boiling points in a close range and several combinations form azeotropes. In this work, we investigated the separation of t

  10. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    KAUST Repository

    Diev, Vyacheslav V.

    2012-01-06

    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  11. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiyong; Stock, L.M.

    1996-05-01

    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  12. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles

    International Nuclear Information System (INIS)

    We determined eleven PAHs and four NPAHs in particulates and regulated pollutants (CO, CO2, HC, NOx, PM) exhausted from motorcycles to figure out the characteristics of motorcycle exhausts. Fluoranthene and pyrene accounted for more than 50% of the total detected PAHs. Among four detected NPAHs, 6-nitrochrysene and 7-nitrobenz[a]anthracene were the predominant NPAHs and were highly correlated relationship with their parent PAHs (R = 0.93 and 0.97, respectively). The PM and HC emissions tended to be close to the PAH emissions. NOx and NPAHs were negatively correlated. Despite their small engine size, motorcycles emitted much more PM and PAHs, showed stronger PAH-related carcinogenicity and indirect-acting mutagenicity, but weaker NPAH-related direct-acting mutagenic potency than automobiles. This is the first study to analyze both PAHs and NPAHs emitted by motorcycles, which could provide useful information to design the emission regulations and standards for motorcycles such as PM. -- Highlights: ► We characterized PAHs and NPAHs distribution in motorcycle exhausts. ► NPAHs concentrations were about three orders of magnitude lower than those of PAHs. ► We found larger amounts of PM and PAHs in exhaust of motorcycles than of automobiles. ► Motorcycles showed stronger PAH-related toxicity than automobiles. ► Motorcycles showed weaker NPAH-related direct-acting mutagenicity than automobiles. -- Control polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbon in particulates emitted by motorcycles due to their toxic potency

  13. Polycyclic aromatic hydrocarbon emissions from motorcycles

    Science.gov (United States)

    Yang, Hsi-Hsien; Hsieh, Lien-Te; Liu, Hsu-Chung; Mi, Hsiao-Hsuan

    Emissions of polycyclic aromatic hydrocarbons (PAHs, 2-7 ring) and regulated air pollutants (CO, HC, NO x, PM) from 2-stroke carburetor (2-Stk/Cb), 4-stroke carburetor (4-Stk/Cb) and 4-stroke fuel injection (4-Stk/FI) motorcycles were investigated by testing these vehicles on a chassis dynamometer. Exhaust samplings were carried out on diluted exhausts in a dilution tunnel connected to a constant volume sampling system. Measurements were performed on a standard driving cycle. The results reveal that low molecular weight PAHs (especially naphthalene) dominated in the exhaust gas. The averages of soluble organic fractions were 86.4%, 46.3% and 48.9% for the 2-Stk/Cb, 4-Stk/Cb and 4-Stk/FI motorcycles, respectively. PAH emissions are greater from cold-start driving than those from hot-start driving cycle for all these three kinds of motorcycles. Total PAH emission factors were 8320, 5990 and 3390 μg km -1 for the in-used 2-Stk/Cb, 4-Stk/Cb and 4-Stk/FI motorcycles, respectively. PAH emission factors were the largest for the 2-Stk/Cb motorcycles. Besides, the 2-Stk/Cb motorcycle had the largest total BaP equivalent emission factor of 10.8 μg km -1, indicating that the emission exhaust from the 2-Stk/Cb motorcycle was most carcinogenic. HC, PM and PAH emissions were the lowest for the 4-Stk/FI motorcycles. The correlation coefficient between CO and total PAH emissions for all the test motorcycles was 0.51, indicating that CO and PAH emissions are not highly correlated.

  14. Partition of polycyclic aromatic hydrocarbons on organobentonites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of organobentonites synthesized by exchanging organiccation such as dodecyltri-methylammonium (DTMA),benzyldimethyltetradecylammonium (BDTDA), cetyltrimethyl-ammonium (CTMA), octodeyltrimethylammonium (OTMA) on bentonite. The optimal condition, properties and mechanisms for the organobentonites to sorb phenanthrene, anthracene, naphthalene, acenaphthene in water were investigated in detail. The partition behavior was determined for four polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, anthracene and acenaphthene, from water to a series of organobentonites. The interlayer spacings and organic carbon contents of organobentonites, removal rate and sorption capacities for organobentonites to treat phenanthrene,anthracene, naphthalene, acenaphthene were correlated to the length of alkyl chains and the amounts of cation surfactant exchanged on Foundation item: the bentonite. Phenanthrene, anthracene, naphthalene, and acenaphthene sorption to organobentonites were characterized by linear isotherms, indicating solute partition between water and the organic phase composed of the large alkyl functional groups of quaternary ammonium cations. PAHs distribution coefficients (Kd)between organobentonites and water were proportional to the organic carbon contents of organobentonites. However, the partition coefficients (Koc) were nearly constants for PAHs in the system of organobentonite-water. The Koc of phenanthrene, anthracene,naphthalene, acenaphthene were 2.621x105, 2.106x105, 2.247x104,5.085x104, respectively. The means Koc values on the organobentonites are about ten to twenty times larger than the values on the soils/sediments, what is significant prerequisite for organobentonite to apply to remediation of pollution soil and groundwater. The sorption mechanism was also evaluated from octanol-water partition coefficients and aqueous solubility of PAHs. The correlations between lgKoc and 1gkow, 1gKoc and 1gS for PAHs in the system of water

  15. Critical analysis of the local aromaticity concept in polyaromatic hydrocarbons.

    Science.gov (United States)

    Bultinck, Patrick

    2007-01-01

    A large number of local aromaticity indices for the benzenoid rings in polyaromatic hydrocarbons is computed. The results are interpreted, supporting Clar's hypothesis, and mutual correlations are investigated. It is shown that there are good correlations between all indices that strictly allow comparing benzenoid character. Poor correlations are found with NICS. A rationale is offered, yielding the conclusion that NICS and ring current maps follow a fundamentally different path to local aromaticity. In this sense the lack of correlation is not due to a real multidimensional character of aromaticity but rather to confusion and vagueness of the aromaticity concept. PMID:17328438

  16. Comments on Coulomb pairing in aromatic hydrocarbons

    CERN Document Server

    Huber, D L

    2013-01-01

    Recently reported anomalies in the double-photonionization spectra of aromatic molecules such as benzene, naphthalene, anthracene and coronene are attributed to Coulomb-pair resonances of pi electrons.

  17. Measurement of Aromatic-hydrocarbons With the DOAS Technique

    OpenAIRE

    Axelsson, H; Eilard, A.; Emanuelsson, A.; Galle, B.; Edner, Hans; Ragnarson, P; Kloo, H

    1995-01-01

    Long-path DOAS (differential optical absorption spectroscopy) in the ultraviolet spectral region has been shown to be applicable for low-concentration measurements of light aromatic hydrocarbons. However, because of spectral interferences among different aromatics as well as with oxygen, ozone, and sulfur dioxide, the application of the DOAS technique for this group of components is not without problems. This project includes a study of the differential absorption characteristics, between 250...

  18. High-resolution gas chromatographic analysis of polycyclic aromatic hydrocarbons and aliphatic hydrocarbons

    International Nuclear Information System (INIS)

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons and aliphatic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column in two different polar stationary phases OV-1 and SE-54. The limitation and the advantages of the procedure are discussed in terms of separation, sensitivity and precision. (Author) 20 refs

  19. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size

    Energy Technology Data Exchange (ETDEWEB)

    Ma Bin; Chen Huaihai; Xu Minmin; Hayat, Tahir [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); He Yan, E-mail: yhe2006@zju.edu.c [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Xu Jianming, E-mail: jmxu@zju.edu.c [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China)

    2010-08-15

    Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation. - Effect size based on meta-analysis was used for building PAHs dissipation quantitative structure-activity relationship (QSAR) models.

  20. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size

    International Nuclear Information System (INIS)

    Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation. - Effect size based on meta-analysis was used for building PAHs dissipation quantitative structure-activity relationship (QSAR) models.

  1. [Polycyclic aromatic hydrocarbons (PAH) in cereal breakfast products].

    Science.gov (United States)

    Ciemniak, Artur; Chrachol, Lucyna

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants formed by incomplete combustion (pyrolysis) of several organic materials. PAHs occur as complex mixtures, never as individual components. They are chemically stable and highly lipophilic in nature and occur as contaminants in different food categories: vegetables, fruit, cereals, oils and fats, especially barbecued and smoked food. The present study was carried out to determine 16 PAHs in cereal products: musli, corn, oats and barley flakes, and crunchy. The analytical procedure was based on alkaline digestion, extraction with n-hexane and cleaned up in a florisil cartridge. Chromatographic separation was performed using gas chromatography (HP 6890) coupled to mass spectrometry (HP 5973). The levels of PAHs in most samples were generally low and excepting one sample of bred varied between 4.2 to 169 microg/kg. Benzo[a]pyrene, was detected in all samples, at level 0.02 microg/kg to 16 microg/kg. PMID:19143427

  2. CYP1A1 genetic polymorphism and polycyclic aromatic hydrocarbons on pulmonary function in the elderly: haplotype-based approach for gene-environment interaction.

    Science.gov (United States)

    Choi, Yoon-Hyeong; Kim, Jin Hee; Hong, Yun-Chul

    2013-08-29

    Lung function may be impaired by environmental pollutants not only acting alone, but working with genetic factors as well. Few epidemiologic studies have been conducted to explore the interplay of polycyclic aromatic hydrocarbons (PAHs) exposure and genetic polymorphism on lung function in the elderly. For genetic polymorphism, haplotype is considered a more informative unit than single nucleotide polymorphism markers. Therefore, we examined the role of haplotype based-CYP1A1 polymorphism in the effect of PAHs exposure on lung function in 422 participants from a community-based panel of elderly adults in Seoul, Korea. Linear mixed effect models were fit to evaluate the association of PAH exposure markers (urinary 1-hydroxypyrene and 2-naphthol) with FVC, FEV₁, FEV₁/FVC, and FEF₂₅₋₇₅, and then the interaction with CYP1A1 haplotype constructed from three single nucleotide polymorphisms of the gene (rs4646421/rs4646422/rs1048943). Urinary 1-hydroxypyrene levels were inversely associated with FEV₁/FVC (ppolymorphisms on lung functions. Our findings suggest that PAH exposure producing 1-hydroxypyrene as a metabolite compromises lung function in the elderly, and that haplotype-based CYP1A1 polymorphism modifies the risk.

  3. A highly sensitive monoclonal antibody based biosensor for quantifying 3–5 ring polycyclic aromatic hydrocarbons (PAHs in aqueous environmental samples

    Directory of Open Access Journals (Sweden)

    Xin Li

    2016-03-01

    Full Text Available Immunoassays based on monoclonal antibodies (mAbs are highly sensitive for the detection of polycyclic aromatic hydrocarbons (PAHs and can be employed to determine concentrations in near real-time. A sensitive generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental methylated PAHs, with IC50 values between 1.68 and 31 μg/L (ppb. 2G8 has been successfully applied on the KinExA Inline Biosensor system for quantifying 3–5 ring PAHs in aqueous environmental samples. PAHs were detected at a concentration as low as 0.2 μg/L. Furthermore, the analyses only required 10 min for each sample. To evaluate the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples analyzed by biosensor and GC–MS were compared. In most cases, the results yielded a good correlation between methods. This indicates that generic antibody 2G8 based biosensor possesses significant promise for a low cost, rapid method for PAH determination in aqueous samples.

  4. Polycyclic’ Aromatic Hydrocarbon Induced Intracellular Signaling and Lymphocyte Apoptosis

    DEFF Research Database (Denmark)

    Schneider, Alexander M.

    The aryl hydrocarbon (dioxin) receptor (AhR) is a transcription factor possessing high affinity to potent environmental pollutants, polycyclic aromatic hydrocarbons (PAH) and related halogenated hydrocarbons (e.g. dioxins). Numerous research attribute toxicity of these compounds to the receptor...... novel mechanistic explanations for the toxicity of the known compounds. Another unanswered question of the AhR biochemistry is,” Which factors do control the AhP expression and activity?” Using fibroblast model, the role of a cell cycle in maintaining the AhR level was evaluated. The results...

  5. Bioavailability of Polycyclic Aromatic Hydrocarbons in Soils and Sediments

    NARCIS (Netherlands)

    Cuypers, M.P.

    2001-01-01

    Polycyclic aromatic hydrocarbons (PAHs) constitute a group of priority pollutants which are of increasing environmental concern because of their adverse effects on humans, animals, and plants. Soils and sediments generally serve as a sink for PAHs, which leads to the accumulation of PAHs at contamin

  6. Polycyclic aromatic hydrocarbons in air samples of meat smokehouses

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Olsen, I L; Poulsen, O M

    1992-01-01

    In a screening programme nine Danish meat smokehouses were randomly selected for measurements on concentration of airborne polycyclic aromatic hydrocarbons (PAH). A total of 23 stationary air samples were collected during the entire working period of the kiln either above the kiln doors or approx...

  7. THE RATES OF POLYCYCLIC AROMATIC HYDROCARBON EMISSIONS FROM INCENSE BURNING

    Science.gov (United States)

    The paper presents the results of experiments performed to determine the amounts of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHS) in incense smoke. Ten brands of incense, 3 of stick, 2 of joss stick, and one each of cone, smudge bundle, rope, powder, and rock, w...

  8. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    OpenAIRE

    Lau, E. V.; Gan, S.; Ng, H.K.

    2010-01-01

    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in ...

  9. Interactions of polyhalogeneted aromatic hydrocarbons with thyroid hormone metabolism.

    NARCIS (Netherlands)

    Schuur, A.G.

    1998-01-01

    This thesis deals with the possible interactions of polyhalogenated aromatic hydrocarbons and/or their metabolites with thyroid hormone metabolism. This chapter summarizes firstly the effects of thyroid hormone on the induction of biotransformation enzymes by PHAHs. Secondly, the results on the inhi

  10. Polycyclic aromatic hydrocarbons (PAH) in Danish barbecued meat

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Aaslyng, Margit Dall; Meinert, Lene;

    2015-01-01

    Barbecuing is known to result in the formation of polycyclic aromatic hydrocarbons (PAHs). A validated method that employed pressurized liquid extraction (PLE), gel permeation chromatography (GPC) followed by solid phase extraction (SPE) on Silica and analytical determination by GC-MS was applied...

  11. Biotransformation of polycyclic aromatic hydrocarbons in marine polychaetes

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Giessing, Anders; Rasmussen, Lene Juel;

    2008-01-01

    Deposit-feeding polychaetes constitute the dominant macrofauna in marine environments that tend to be depositional centers for organic matter and contaminants. Polychaetes are known to accumulate polycyclic aromatic hydrocarbons (PAHs) from both particulate and dissolved phases but less is known...

  12. Polycyclic aromatic hydrocarbons in soils around Guanting Reservoir, Beijing, China

    NARCIS (Netherlands)

    Jiao, W.T.; Lu, Y.L.; Wang, T.Y.; Li, J.; Han, Jingyi; Wang, G.; Hu, W.Y.

    2009-01-01

    The concentrations of 16 polycyclic aromatic hydrocarbons ( 16PAHs) were measured by gas chromatography equipped with a mass spectrometry detector (GC-MS) in 56 topsoil samples around Guanting Reservior (GTR), which is an important water source for Beijing. Low to medium levels of PAH contamination

  13. Microbial Degradation of Polycyclic Aromatic Hydrocarbons and Characterization of Bacteria

    Science.gov (United States)

    Tikilili, P. V.; Chirwa, E. M. N.

    2010-01-01

    Biodegradation of polycyclic aromatic hydrocarbons was studied. Naphthalene was used as a model compound to represent these compounds. Low initial concentrations of naphthalene in a range of 30-60 mg/L were completely degraded after incubation for 15 hrs by consortia from a landfill soil while consortia from minewater took more that 29 hrs to reach complete degradation.

  14. Preconcentration and fluorimetric determination of polycyclic aromatic hydrocarbons based on the acid-induced cloud-point extraction with sodium dodecylsulfate

    Energy Technology Data Exchange (ETDEWEB)

    Goryacheva, Irina Yu.; Shtykov, Sergei N.; Loginov, Alexander S.; Panteleeva, Irina V. [Saratov State University, Chemistry Department, Saratov (Russian Federation)

    2005-07-01

    The acid-induced cloud-point extraction (CPE) technique based on sodium dodecylsulfate (SDS) micelles has been used for preconcentration of ten representatives of polycyclic aromatic hydrocarbons (PAHs) for the following fluorescence determination. The effect of the acidity of solution, SDS and electrolyte concentrations, centrifugation time and rate on the two-phase separation process and extraction percentages of PAHs have systematically been examined. Extraction percentages have been obtained for all PAHs after CPE ranged from 67 to 93%. Pyrene was used as a fluorescent probe to monitor the micropolarity of the surfactant-rich phase compared with SDS micelles and this allows one to conclude that water content in micellar phase after CPE is reduced. The spectral, metrological and analytical characteristics of PAH fluorimetric determination after acid-based CPE with sodium dodecylsulfate are presented. Advantages provided by using CPE in combination with fluorimetric determination of PAHs are discussed. The determination of benz[a]pyrene in tap water is presented as an example. (orig.)

  15. Distributions of polycyclic aromatic hydrocarbons and alkylated polycyclic aromatic hydrocarbons in Osaka Bay, Japan

    International Nuclear Information System (INIS)

    Highlights: • Contamination of sediment by PAHs and alkylated PAHs was investigated in Osaka Bay. • The major sources appeared to be pyrogenic or both pyrogenic and petrogenic. • PAH concentrations were remarkably high at a site near Kobe. • PAHs in Kobe may have been derived from the fire associated with the earthquake. - Abstract: Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40–7800 ng/g dry weights and 13.7–1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995

  16. Growth of fungi on volatile aromatic hydrocarbons

    NARCIS (Netherlands)

    Prenafeta Boldú, F.X.

    2002-01-01

    The present study aimed the better understanding of the catabolism of monoaromatic hydrocarbons by fungi. This knowledge can be used to enhance the biodegradation of BTEX pollutants. Fungi with the capacity of using toluene as the sole source of carbon and energy were isolated by enriching environme

  17. Porous carbon derived from aluminum-based metal organic framework as a fiber coating for the solid-phase microextraction of polycyclic aromatic hydrocarbons from water and soil

    International Nuclear Information System (INIS)

    A nanoporous carbon derived from an aluminum-based metal-organic framework was deposited on stainless steel wires in a sol–gel matrix. The resulting fibers were applied to the solid-phase microextraction of the polycyclic aromatic hydrocarbons (PAHs) naphthalene, acenaphthene, fluorene, phenanthrene and anthracene from water and soil samples. The fiber was then directly inserted into the GC injector and the PAHs were quantified by GC-MS. The effects of salt addition, extraction temperature, extraction time, sample volume and desorption conditions on the extraction efficiency were optimized. A linear response to the analytes was observed in the 0.1 to 12 μg∙L−1 range for water samples, and in the 0.6 to 30 μg∙kg−1 for soil samples, with the correlation coefficients ranging from 0.9934 to 0.9985. The limits of detection ranged from 5.0 to 20 ng∙L−1 for water samples, and from 30 to 90 ng∙kg−1 for soil samples. The recoveries of spiked samples were between 72.4 and 108.0 %, and the precision, expressed as the relative standard deviations, is <12.8 %. (author)

  18. Development of an ionic liquid based dispersive liquid-liquid microextraction method for the analysis of polycyclic aromatic hydrocarbons in water samples.

    Science.gov (United States)

    Pena, M Teresa; Casais, M Carmen; Mejuto, M Carmen; Cela, Rafael

    2009-09-01

    A simple, rapid and efficient method, ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME), has been developed for the first time for the determination of 18 polycyclic aromatic hydrocarbons (PAHs) in water samples. The chemical affinity between the ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate) and the analytes permits the extraction of the PAHs from the sample matrix also allowing their preconcentration. Thus, this technique combines extraction and concentration of the analytes into one step and avoids using toxic chlorinated solvents. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, type and volume of disperser solvent, extraction time, dispersion stage, centrifuging time and ionic strength, were optimised. Analysis of extracts was performed by high performance liquid chromatography (HPLC) coupled with fluorescence detection (Flu). The optimised method exhibited a good precision level with relative standard deviation values between 1.2% and 5.7%. Quantification limits obtained for all of these considered compounds (between 0.1 and 7 ng L(-1)) were well below the limits recommended in the EU. The extraction yields for the different compounds obtained by IL-DLLME, ranged from 90.3% to 103.8%. Furthermore, high enrichment factors (301-346) were also achieved. The extraction efficiency of the optimised method is compared with that achieved by liquid-liquid extraction. Finally, the proposed method was successfully applied to the analysis of PAHs in real water samples (tap, bottled, fountain, well, river, rainwater, treated and raw wastewater). PMID:19646707

  19. Correlation between atmospheric polycyclic aromatic hydrocarbons exposure and urinary hydroxyl metabolites of polycyclic aromatic hydrocarbons in elderly population in Tianjin

    Institute of Scientific and Technical Information of China (English)

    秦晓蕾

    2013-01-01

    Objective To identify suitable hydroxyl polycyclic aromatic hydrocarbons(OH-PAHs) for co-evaluation of internal exposure level of PAHs by simultaneous determination of a variety of OH-PAHs in urine. Methods The 24-h individual particulate matter and morning urine

  20. Exposure of iron foundry workers to polycyclic aromatic hydrocarbons

    DEFF Research Database (Denmark)

    Omland, Øyvind; Sherson, D; Hansen, Åse Marie;

    1994-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in foundry workers has been evaluated by determination of benzo(a)pyrene-serum albumin adducts and urinary 1-hydroxypyrene. Benzo(a)pyrene binding to albumin and 1-hydroxypyrene were quantitatively measured by enzyme linked immunosorbent assay...... (ELISA) and reverse phase high performance liquid chromatography (HPLC), respectively. 70 male foundry workers and 68 matched controls were investigated. High and low exposure groups were defined from breathing zone hygienic samples, consisting of 16 PAH compounds in particulate and gaseous phase. Mean...... than in smoking and non-smoking controls (0 (0-0.022) and 0 (0-0.010) mumol/mol creatinine). Dose-response relations between total PAH, pyrene, carcinogenic PAHs, and 1-hydroxypyrene for smokers, and polycyclic aromatic hydrocarbons adsorbed to dust for non-smokers are suggested. Exposure to PAHs...

  1. Polycyclic aromatic hydrocarbons in some grounded coffee brands.

    Science.gov (United States)

    Grover, Inderpreet Singh; Sharma, Rashmi; Singh, Satnam; Pal, Bonamali

    2013-08-01

    Potentially toxic 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined in four brands of grounded coffee. Four to 13 PAHs were detected. Concentrations of total PAHs in different brands of coffee samples were in the range of 831.7-1,589.7 μg/kg. Benzo[a]pyrene (2A: probable human carcinogen) was found in Nescafe Premium whereas naphthalene (2B: possible human carcinogen) was found in all the samples of coffee. PMID:23242460

  2. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Ricca, Alessandra [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Allamandola, Louis J., E-mail: Alessandra.Ricca-1@nasa.gov, E-mail: Charles.W.Bauschlicher@nasa.gov [Space Science Division, Mail Stop 245-6, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-10-10

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.

  3. Polycyclic aromatic hydrocarbon (PAH) occurrence and remediation methods

    OpenAIRE

    Henner, Pascale; Schiavon, Michel; Morel, Jean-Louis; Lichtfouse, Eric

    1997-01-01

    International audience Polycyclic aromatic hydrocarbons (PAHs) are potentially mutagenic and carcinogenic substances occurring at various concentrations in atmosphere, soils, waters and sediments. PAHs, inherited both from natural and anthropogenic processes, are persistent organic pollutants (POP) due to their chemical stability and biodegradation resistance. The increase of road transportation, and of industrial and agricultural activities has led to a notable build up of PAH amounts in ...

  4. Interactions of polyhalogeneted aromatic hydrocarbons with thyroid hormone metabolism.

    OpenAIRE

    Schuur, A.G.

    1998-01-01

    This thesis deals with the possible interactions of polyhalogenated aromatic hydrocarbons and/or their metabolites with thyroid hormone metabolism. This chapter summarizes firstly the effects of thyroid hormone on the induction of biotransformation enzymes by PHAHs. Secondly, the results on the inhibition of thyroid hormone sulfation by hydroxylated metabolites of PHAH are summarized. Some conclusions and remarks on the overall implications of the results are given at the end of this chapter....

  5. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China.

    Science.gov (United States)

    Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and ERM at 21.9, 0, and 21.9% of the soil sampling stations, the exposure to ∑PAH16 was >ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health. PMID:27565314

  6. Estimating individual-level exposure to airborne polycyclic aromatic hydrocarbons throughout the gestational period based on personal, indoor, and outdoor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.; Perera, F.; Pac, A.; Wang, L.; Flak, E.; Mroz, E.; Jacek, R.; Chai-Onn, T.; Jedrychowski, W.; Masters, E.; Camann, D.; Spengler, J. [Columbia University, New York, NY (United States)

    2008-11-15

    Current understanding on health effects of long-term polycyclic aromatic hydrocarbon (PAH) exposure is limited by lack of data on time-varying nature of the pollutants at an individual level. In a cohort of pregnant women in Krakow, Poland, we examined the contribution of temporal, spatial, and behavioral factors to prenatal exposure to airborne PAHs within each trimester and developed a predictive model of PAH exposure over the entire gestational period. The observed personal, indoor, and outdoor B(a)P levels we observed in Krakow far exceed the recommended Swedish guideline value for B(a)P of 0.1 ng/m{sup 3}. Based on simultaneously monitored levels, the outdoor PAH level alone accounts for 93% of total variability in personal exposure during the heating season. Living near the Krakow bus depot, a crossroad, and the city, center and time spent outdoors or commuting were not associated with higher personal exposure. During the nonheating season only, a 1-hr increase in environmental tobacco smoke (ETS) exposure was associated with a 10-16% increase in personal exposure to the nine measured PAHs. A 1{degree}C decrease in ambient temperature was associated with a 3-5% increase in exposure to benz(a)anthracene, benzo(k)fluoranthene, and dibenz(a,h)anthracene, after accounting for the outdoor concentration. A random effects model demonstrated that mean personal exposure at a given gestational period depends on the season, residence location, and ETS. Considering that most women reported spending < 3 hr/day outdoors, most women in the study were exposed to outdoor-originating PAHs within the indoor setting. Cross-sectional, longitudinal monitoring supplemented with questionnaire data allowed development of a gestation-length model of individual-level exposure with high precision and validity.

  7. Emulsification liquid-liquid microextraction based on deep eutectic solvent: An extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples.

    Science.gov (United States)

    Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza

    2015-12-18

    In this study, for the first time, a simple, inexpensive and sensitive method named emulsification liquid-liquid microextraction based on deep eutectic solvent (ELLME-DES) was used for the extraction of benzene, toluene, ethylbenzene (BTE) and seven polycyclic aromatic hydrocarbons (PAHs) from water samples. In a typical experiment, 100μL of DES (as water-miscible extraction solvent) was added to 1.5mL of sample solution containing target analytes. A homogeneous solution was formed immediately. Injection of 100μL of THF (as emulsifier agent) into homogeneous solution provided a turbid state. After extraction, phase separation (aqueous phase/DES rich phase) was performed by centrifugation. DES rich phase was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the calibration graphs were linear in the concentration range from 10 to 200μg/L for benzene, 10-400μg/L for toluene, 1-400μg/L for ethylbenzene, biphenyl, chrysene and fluorene, and 0.1-400μg/L for anthracene, benzo[a]pyrene, phenanthrene and pyrene. The coefficients of determination (r(2)) and limits of detection were 0.9924-0.9997 and 0.02-6.8μg/L, respectively. This procedure was successfully applied to the determination of target analytes in spiked water samples. The relative mean recoveries ranged from 93.1 to 103.3%. PMID:26614169

  8. Fog processing of polycyclic aromatic hydrocarbons (PAH)

    Science.gov (United States)

    Wang, Y.; Khadapkar, K.; Ehrenhauser, F. S.; Hutchings, J. W.; Wornat, M. J.; Valsaraj, K. T.; Herckes, P.

    2010-07-01

    Polyaromatic hydrocarbons (PAHs) are a class of organic species of concern for environmental and human health. The present work will present initial finding of a comprehensive study on the fate of PAHs in multiphase fog/cloud systems and across consecutive fog/smog cycles. Field observations were conducted in Fresno, CA in Winter 2010. Simultaneous measurements of gas phase, aerosol and fog PAH allowed to gain insights on the partitioning of PAH in a multiphase fog system. Partitioning results as well as temporal evolution of PAH concentrations across different phases will be discussed. Select known degradation products (oxy-PAH) from the processing of PAHs were also analyzed in the fog systems, although frequently their concentrations were close to or below detection limits, even in the polluted urban study setting. The field observations are complemented by laboratory investigations on the reactivity of PAH in fog systems, both heterogeneously and in the aqueous phase. Heterogeneously a novel reactor design is being tested to simulate fog systems and allow for repeat fog/smog cycles. A separate series of measurements investigated the processing of PAH in the aqueous phase in a solar simulator set-up.

  9. Polycyclic aromatic hydrocarbons in Italian preserved food products in oil.

    Science.gov (United States)

    Sannino, Anna

    2016-06-01

    A method based on gas chromatography/ tandem mass spectrometry was used to assess levels of 16 EU priority polycyclic aromatic hydrocarbons (PAHs) in 48 preserved food products in oil including foods such as vegetables in oil, fish in oil and oil-based sauces obtained from the Italian market. The benzo[a]pyrene concentrations ranged from <0.04 to 0.40 µg kg(-1), and 72.9% of the samples showed detectable levels of this compound. The highest contamination level was observed for chrysene with three additional PAHs (benzo[a]anthracene, benzo[b]fluoranthene and benzo[c]fluorene) giving mean values higher than the mean value for benzo[a]pyrene. Chrysene was detected in all the samples at concentrations ranging from 0.07 to 1.80 µg kg(-1) (median 0.31 µg kg(-1)). The contamination expressed as PAH4 (sum of benzo(a)pyrene, chrysene, benzo(a)anthracene and benzo(b)fluoranthene), for which the maximum tolerable limit has been set by Commission Regulation (EU) No. 835/2011, varied between 0.10 and 2.94 µg kg(-1). PMID:26886159

  10. The hydrogen coverage of interstellar PAHs [Polycyclic Aromatic Hydrocarbons

    International Nuclear Information System (INIS)

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a uv photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense uv fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments

  11. Polycyclic aromatic hydrocarbons in Dalian soils: distribution and toxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Chen, J.W.; Yang, P.; Qiao, X.L.; Tian, F. [Dalian University of Technology, Dalian (China). Dept. of Environmental Science & Technology

    2007-07-01

    Concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) were measured in surface soils collected from Dalian, China, for examination of distributions and composition profiles and their potential toxicity. The sum of 15 PAHs ({Sigma} PAHs) ranged from 190 to 8595 ng g{sup -1} dry weight, and showed an apparent urban-suburban-rural gradient in both {Sigma} PAHs and composition profiles. Using hierarchical cluster analysis (HCA), the sampling sites were grouped into four clusters corresponding to traffic area, park/residential area, suburban and rural areas. The ratios of naphthalene (Nap) and fluorene (Fl) versus fluoranthene (Flu), pyrene (Pyr) and indeno(1,2,3-cd) pyrene (InP) in the four clusters provided evidence of local distillation. The diagnostic ratios indicated the prevalent PAH sources were petroleum combustion and coal combustion in Dalian, and a cross plot of diagnostic ratios distinguished the urban samples from suburban and rural ones. Toxic potency assessment of soil PAHs presented a good relationship with benzo(a) pyrene (BaP) levels, toxic equivalent concentrations based on BaP (TEQ(BaP)) and dioxin-like toxic equivalent concentrations (TEQ(TCDD)). The study highlights that BaP is a good indicator for assessing the potential toxicity of PAHs, and presents a promising toxicity assessment method for soil PAHs.

  12. Polycyclic aromatic hydrocarbons in Dalian soils: distribution and toxicity assessment.

    Science.gov (United States)

    Wang, Zhen; Chen, Jingwen; Yang, Ping; Qiao, Xianliang; Tian, Fulin

    2007-02-01

    Concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) were measured in surface soils collected from Dalian, China, for examination of distributions and composition profiles and their potential toxicity. The sum of 15 PAHs (SigmaPAHs) ranged from 190 to 8595 ng g(-1) dry weight, and showed an apparent urban-suburban-rural gradient in both SigmaPAHs and composition profiles. Using hierarchical cluster analysis (HCA), the sampling sites were grouped into four clusters corresponding to traffic area, park/residential area, suburban and rural areas. The ratios of naphthalene (Nap) and fluorene (Fl) versus fluoranthene (Flu), pyrene (Pyr) and indeno(1,2,3-cd)pyrene (InP) in the four clusters provided evidence of local distillation. The diagnostic ratios indicated the prevalent PAH sources were petroleum combustion and coal combustion in Dalian, and a cross plot of diagnostic ratios distinguished the urban samples from suburban and rural ones. Toxic potency assessment of soil PAHs presented a good relationship with benzo(a)pyrene (BaP) levels, toxic equivalent concentrations based on BaP (TEQ(BaP)) and dioxin-like toxic equivalent concentrations (TEQ(TCDD)). The study highlights that BaP is a good indicator for assessing the potential toxicity of PAHs, and presents a promising toxicity assessment method for soil PAHs. PMID:17285163

  13. Novel Approach for Evaluating Secondary Organic Aerosol from Aromatic Hydrocarbons: SOA Yield and Chemical Composition

    Science.gov (United States)

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Qi, Li; Kacarab, Mary; Cocker, David

    2016-04-01

    Aromatic hydrocarbons account for 20%-30% of urban atmospheric VOCs and are major contributors to anthropogenic secondary organic aerosol (SOA). However, prediction of SOA from aromatic hydrocarbons as a function of structure, NOx concentration, and OH radical levels remains elusive. Innovative SOA yield and chemical composition evaluation approaches are developed here to investigate SOA formation from aromatic hydrocarbons. SOA yield is redefined in this work by adjusting the molecular weight of all aromatic precursors to the molecular weight of benzene (Yield'= Yieldi×(MWi/MWBenzene); i: aromatic hydrocarbon precursor). Further, SOA elemental ratio is calculated on an aromatic ring basis rather than the classic mole basis. Unified and unique characteristics in SOA formed from aromatic hydrocarbons with different alkyl groups (varying in carbon number and location on aromatic ring) are explored by revisiting fifteen years of UC Riverside/CE-CERT environmental chamber data on 129 experiments from 17 aromatic precursors at urban region relevant low NOx conditions (HC:NO 11.1-171 ppbC:ppb). Traditionally, SOA mass yield of benzene is much greater than that of other aromatic species. However, when adjusting for molecular weight, a similar yield is found across the 17 different aromatic precursors. More importantly, four oxygens per aromatic ring are observed in the resulting SOA regardless of the alkyl substitutes attached to the ring, which majorly affect H/C ratio in SOA. Therefore, resulting SOA bulk composition from aromatic hydrocarbons can be predicted as C6+nH6+2nO4 (n: alkyl substitute carbon number). Further, the dominating role of the aromatic ring carbons is confirmed by studying the chemical composition of SOA formed from the photooxidation of an aromatic hydrocarbon with a 13C isotopically labeled alkyl carbon. Overall, this study unveils the similarity in SOA formation from aromatic hydrocarbons enhancing the understanding of SOA formation from

  14. The formation of polycyclic aromatic hydrocarbons in evolved circumstellar environments

    CERN Document Server

    Cherchneff, Isabelle

    2010-01-01

    The formation of Polycyclic Aromatic Hydrocarbons in the circumstellar outflows of evolved stars is reviewed, with an emphasis on carbon stars on the Asymptotic Giant Branch. Evidence for PAHs present in their winds is provided by meteoritic studies and recent observations of the Unidentified Infrared bands. We detail the chemical processes leading to the closure of the first aromatic ring as well as the growth mechanisms leading to amorphous carbon grains. Existing studies on PAH formation in evolved stellar envelopes are reviewed and new results for the modelling of the inner wind of the archetype carbon star IRC+10216 are presented. Benzene, C6H6, forms close to the star, as well as water, H2O, as a result of non-equilibrium chemistry induced by the periodic passage of shocks. The growth process of aromatic rings may thus resemble that active in sooting flames due to the presence of radicals like hydroxyl, OH. Finally, we discuss possible formation processes for PAHs and aromatic compounds in the hydrogen-...

  15. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer

    Directory of Open Access Journals (Sweden)

    Thamaraiselvan Rengarajan

    2015-03-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are a group of compounds consisting of two or more fused aromatic rings. Most of them are formed during incomplete combustion of organic materials such as wood and fossil fuels, petroleum products, and coal. The composition of PAH mixtures varies with the source and is also affected by selective weathering effects in the environment. PAHs are ubiquitous pollutants frequently found in a variety of environments such as fresh water and marine sediments, the atmosphere, and ice. Due to their widespread distribution, the environmental pollution due to PAHs has aroused global concern. Many PAHs and their epoxides are highly toxic, mutagenic and/or carcinogenic to microorganisms as well as to higher forms of life including humans. The main aim of this review is to provide contemporary information on PAH sources, route of exposure, worldwide emission rate, and adverse effects on humans, especially with reference to cancer.

  16. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    Directory of Open Access Journals (Sweden)

    E. V. Lau

    2010-01-01

    Full Text Available This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction.

  17. Polycylcic Aromatic Hydrocarbons (PAH's) in dense cloud chemistry

    OpenAIRE

    Wakelam, Valentine; Herbst, Eric

    2008-01-01

    Accepted to ApJ Virtually all detailed gas-phase models of the chemistry of dense interstellar clouds exclude polycyclic aromatic hydrocarbons (PAH's). This omission is unfortunate because from the few studies that have been done on the subject, it is known that the inclusion of PAH's can affect the gas-phase chemistry strongly. We have added PAH's to our network to determine the role they play in the chemistry of cold dense cores. In the models presented here, we include radiative attachm...

  18. Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation

    CERN Document Server

    Gatchell, Michael; de Ruette, Nathalie; Chen, Tao; Giacomozzi, Linda; Nascimento, Rodrigo F; Wolf, Michael; Anderson, Emma K; Delaunay, Rudy; Viziano, Violaine; Rousseau, Patrick; Adoui, Lamri; Huber, Bernd A; Schmidt, Henning T; Zettergren, Henning; Cederquist, Henrik

    2015-01-01

    A recent study of soft X-ray absorption in native and hydrogenated coronene cations, C$_{24}$H$_{12+m}^+$ $m=0-7$, led to the conclusion that additional hydrogen atoms protect (interstellar) Polycyclic Aromatic Hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014)]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C$_{16}$H$_{10+m}^+$, $m=0$, 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.

  19. Polycyclic aromatic hydrocarbons residues in sandstorm depositions in Beijing, China.

    Science.gov (United States)

    Fu, S; Li, K; Xia, X J; Xu, X B

    2009-02-01

    This study was conducted to determine the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in sandstorm depositions in Beijing, China. The PAH concentrations in 13 samples collected in Beijing ranged from 0.18 to 3.52 microg g(-1). Analysis of the sources of contamination revealed that the PAHs were derived from a coal combustion source, although various effects of traffic emissions were also observed. Furthermore, the PAH levels in Beijing tended to be higher in the southeast. Finally, the nemerow composite index revealed that the degree of pollution in the sandstorm depositions varied widely among sampling sites. PMID:18773130

  20. Polycyclic aromatic hydrocarbons residues in sandstorm depositions in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Fu, S.; Li, K.; Xia, X.J.; Xu, X.B. [Chinese Academy of Sciences, Beijing (China)

    2009-02-15

    This study was conducted to determine the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in sandstorm depositions in Beijing, China. The PAH concentrations in 13 samples collected in Beijing ranged from 0.18 to 3.52 {mu} g g{sup -1}. Analysis of the sources of contamination revealed that the PAHs were derived from a coal combustion source, although various effects of traffic emissions were also observed. Furthermore, the PAH levels in Beijing tended to be higher in the southeast. Finally, the Nemerow composite index revealed that the degree of pollution in the sandstorm depositions varied widely among sampling sites.

  1. Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment

    Science.gov (United States)

    Deamer, D. W.

    1992-01-01

    The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.

  2. Environmental Behavior, Sources, and Effects of Chlorinated Polycyclic Aromatic Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Takeshi Ohura

    2007-01-01

    Full Text Available The environmental sources and behaviors of chlorinated 2- to 5-ring polycyclic aromatic hydrocarbons (ClPAHs. ClPAHs are ubiquitous contaminants found in urban air, vehicle exhaust gas, snow, tap water, and sediments. The concentrations of ClPAHs in each of these environments are generally higher than those of dioxins but markedly lower than the concentrations of the parent compounds, PAHs. Environmental data and emission sources analysis for ClPAHs reveal that the dominant process of generation is by reaction of PAHs with chlorine in pyrosynthesis. This secondary reaction process also occurs in aquatic environments. Certain ClPAHs show greater toxicity, such as mutagenicity and aryl hydrocarbon receptor activity, than their corresponding parent PAHs. Investigation of the sources and environmental behavior of ClPAHs is of great importance in the assessment of human health risks.

  3. Estrogenic Activity of Mineral Oil Aromatic Hydrocarbons Used in Printing Inks.

    Directory of Open Access Journals (Sweden)

    Patrick Tarnow

    Full Text Available The majority of printing inks are based on mineral oils (MOs which contain complex mixtures of saturated and aromatic hydrocarbons. Consumer exposure to these oils occurs either through direct skin contacts or, more frequently, as a result of MO migration into the contents of food packaging that was made from recycled newspaper. Despite this ubiquitous and frequent exposure little is known about the potential toxicological effects, particularly with regard to the aromatic MO fractions. From a toxicological point of view the huge amount of alkylated and unsubstituted compounds therein is reason for concern as they can harbor genotoxicants as well as potential endocrine disruptors. The aim of this study was to assess both the genotoxic and estrogenic potential of MOs used in printing inks. Mineral oils with various aromatic hydrocarbon contents were tested using a battery of in vitro assays selected to address various endpoints such as estrogen-dependent cell proliferation, activation of estrogen receptor α or transcriptional induction of estrogenic target genes. In addition, the comet assay has been applied to test for genotoxicity. Out of 15 MOs tested, 10 were found to potentially act as xenoestrogens. For most of the oils the effects were clearly triggered by constituents of the aromatic hydrocarbon fraction. From 5 oils tested in the comet assay, 2 showed slight genotoxicity. Altogether it appears that MOs used in printing inks are potential endocrine disruptors and should thus be assessed carefully to what extent they might contribute to the total estrogenic burden in humans.

  4. Sorption characteristics of polycyclic aromatic hydrocarbons in aluminum smelter residues.

    Science.gov (United States)

    Breedveld, Gijs D; Pelletier, Emilien; St Louis, Richard; Cornelissen, Gerard

    2007-04-01

    High temperature carbon oxidation in primary aluminum smelters results in the release of polycyclic aromatic hydrocarbons (PAH) into the environment. The main source of PAH are the anodes, which are composed of petroleum coke (black carbon, BC) and coal tar pitch. To elucidate the dominant carbonaceous phase controlling the environmental fate of PAH in aluminum smelter residues (coke BC and/or coal tar), the sorptive behavior of PAHs has been determined, using passive samplers and infinitesink desorption methods. Samples directly from the wet scrubber were studied as well as ones from an adjacent 20-year old storage lagoon and roof dust from the smelter. Carbon-normalized distribution coefficients of native PAHs were 2 orders of magnitude higher than expected based on amorphous organic carbon (AOC)/water partitioning, which is in the same order of magnitude as reported literature values for soots and charcoals. Sorption isotherms of laboratory-spiked deuterated phenanthrene showed strong (-100 times stronger than AOC) but nonetheless linear sorption in both fresh and aged aluminum smelter residues. The absence of nonlinear behavior typical for adsorption to BC indicates that PAH sorption in aluminum smelter residues is dominated by absorption into the semi-solid coal tar pitch matrix. Desorption experiments using Tenax showed that fresh smelter residues had a relatively large rapidly desorbing fraction of PAH (35-50%), whereas this fraction was strongly reduced (11-16%) in the lagoon and roof dust material. Weathering of the coal tar residue and/or redistribution of PAH between coal tar and BC phases could explain the reduced availability in aged samples.

  5. Polycyclic aromatic hydrocarbons and heavy metals in Kostrena coastal area.

    Science.gov (United States)

    Linsak, Dijana Tomić; Linsak, Zeljko; Besić, Denis; Vojcić, Nina; Telezar, Mirna; Coklo, Miran; Susnić, Sasa; Mićović, Vladimir

    2011-12-01

    The aim of this study was to determine pollution by polycyclic aromatic hydrocarbons (PAH) and heavy metals in seawater and sediment in Kostrena coastal area, as well as their toxicity using bioluminescence based tests. Total PAH concentration in seawater ranged 1.7-155.3 ng/L. The share of carcinogenetic PAH was relatively high, ranging 22-48.3%. Nickel concentrations in seawater were beyond detection limits (chrome concentrations were beyond detection limits, and copper concentrations were also beyond detection limits or extremely low (up to 0.32 microg/L). EC50 values in seawater ranged 23.80-90.90 ng/L. Correlation between total PAH concentration and toxicity of seawater showed strong connection between them (r = 0.9579). Total PAH concentration in marine sediment ranged 58.02-1116 microg/kg dry weight (d.w.). The share of carcinogenetic PAH was extremely high ranging 10-53%. Nickel concentrations in marine sediment ranged 8-24 mg/kg d.w., vanadium concentrations ranged 24-42 mg/kg d.w., chrome concentrations ranged 11-19 mg/kg d.w., and copper concentrations ranged 7-25 mg/kg d.w. EC50 values in marine sediment ranged 818-4596 microg/kg d.w. Correlation between total PAH concentration and toxicity of marine sediment showed weak connection between them (r = 0.2590). Previous studies of seawater samples from areas of the Adriatic sea under the direct influence of oil industry did not include concentrations of heavy metals, which makes our study the first to present such comprehensive results. Our results point out the need for further evaluations and following of marine environment pollution and its consequences on living organisms and marine ecosystem in whole.

  6. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part A-Monocyclic and Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-08-01

    Present study focused on the screening of bacterial consortium for biodegradation of monocyclic aromatic hydrocarbon (MAH) and polycyclic aromatic hydrocarbons (PAHs). Target compounds in the present study were naphthalene, acenaphthene, phenanthrene (PAHs), and benzene (MAH). Microbial consortia enriched with the above target compounds were used in screening experiments. Naphthalene-enriched consortium was found to be the most efficient consortium, based on its substrate degradation rate and its ability to degrade other aromatic pollutants with significantly high efficiency. Substrate degradation rate with naphthalene-enriched culture followed the order benzene > naphthalene > acenaphthene > phenanthrene. Chryseobacterium and Rhodobacter were discerned as the predominant species in naphthalene-enriched culture. They are closely associated to the type strain Chryseobacterium arthrosphaerae and Rhodobacter maris, respectively. Single substrate biodegradation studies with naphthalene (PAH) and benzene (MAH) were carried out using naphthalene-enriched microbial consortium (NAPH). Phenol and 2-hydroxybenzaldehyde were identified as the predominant intermediates during benzene and naphthalene degradation, respectively. Biodegradation of toluene, ethyl benzene, xylene, phenol, and indole by NAPH was also investigated. Monod inhibition model was able to simulate biodegradation kinetics for benzene, whereas multiple substrate biodegradation model was able to simulate biodegradation kinetics for naphthalene.

  7. Thermal neutron cross-section libraries for aromatic hydrocarbons

    Science.gov (United States)

    Cantargi, F.; Granada, J. R.

    2010-08-01

    Solid phases of aromatic hydrocarbons, such as benzene, toluene, mesitylene and a 3:2 mixture by volume of mesitylene and toluene, were studied as potential moderator materials for a cold neutron source. Existing information on the (lattice) translational and rotational modes of the different molecular species was used to produce generalized frequency spectra; the latter included the internal vibrational modes which in turn involved the analysis of the weights of the different modes. Cross-section libraries were generated in ENDF and ACE formats for hydrogen bounded in those materials at several temperatures, and were used in Monte Carlo calculations to analyze their neutron production compared with standard cryogenic materials like liquid hydrogen and solid methane, the best moderators in terms of cold neutron production. In particular, cross-section libraries were generated at 20 K, which is a typical operating temperature for the majority of the existing cold neutron sources. It was found that those aromatic hydrocarbons produce neutron spectra which are slightly warmer than that of solid methane while presenting a high resistance to radiation, conforming in this way a new and advantageous alternative to traditional moderator materials.

  8. Polycyclic Aromatic Hydrocarbon Degradation by a New Marine Bacterium, Neptunomonas naphthovorans gen. nov., sp. nov.

    OpenAIRE

    Hedlund, Brian P.; Geiselbrecht, Allison D.; Bair, Timothy J.; Staley, James T.

    1999-01-01

    Two strains of bacteria were isolated from creosote-contaminated Puget Sound sediment based on their ability to utilize naphthalene as a sole carbon and energy source. When incubated with a polycyclic aromatic hydrocarbon (PAH) compound in artificial seawater, each strain also degraded 2-methylnaphthalene and 1-methylnaphthalene; in addition, one strain, NAG-2N-113, degraded 2,6-dimethylnaphthalene and phenanthrene. Acenaphthene was not degraded when it was used as a sole carbon source but wa...

  9. Genotoxicity in child populations exposed to Polycyclic Aromatic Hydrocarbons (PAHs) in the air from Tabasco, Mexico

    OpenAIRE

    Gamboa, Aldeco R.; Rodríguez T. Gamboa; Bravo, Alvarez H.; Wegman P. Ostrosky

    2008-01-01

    The economy of the state of Tabasco is based on oil extraction. However, this imposes major effects to the environment and communities. Examples are the Polycyclic Aromatic Hydrocarbons (PAHs) that may be found in the soil, water and sediment of the region. Their volatility makes them available to living beings and results in genotoxic activity. The purpose of this study was to quantify the levels of PAHs in the air at several points in the state, and to analyze their relationship with possib...

  10. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  11. Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability.

    NARCIS (Netherlands)

    Meulenberg, R.; Rijnaarts, H.H.M.; Doddema, H.J.; Field, J.A.

    1997-01-01

    Polycyclic aromatic hydrocarbons have a low water solubility and tend to adsorb on soil particles, which both result in slow bioremediation processes. Many microorganisms, known for their ability to degrade polycyclic aromatic hydrocarbons, only partially oxidize these compounds. White rot fungi, fo

  12. Polycyclic Aromatic Hydrocarbons: Are They a Problem in Processed Oil Shales?

    OpenAIRE

    Maase, David L.; Adams, V. Dean

    1983-01-01

    Organic residues from processed oil shales were characterisized with specific attention to polycyclic aromatic hydrocarbons (PAH). Oil shale development in the White River Basin (Utah and Colorado) was projected and hydrological and geological parameters pertinent to estimations of polycyclic aromatic hydrocarbons (PAH) flux were focused. Oil shale samples from the Union B, Paraho, and Tosco II processes were extr...

  13. Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction.

    Science.gov (United States)

    Pena, M Teresa; Pensado, Luis; Casais, M Carmen; Mejuto, M Carmen; Cela, Rafael

    2007-04-01

    A microwave-assisted sample preparation (MASP) procedure was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and soil samples. The procedure involved the simultaneous microwave-assisted extraction of PAHs with n-hexane and the hydrolysis of samples with methanolic potassium hydroxide. Because of the complex nature of the samples, the extracts were submitted to further cleaning with silica and Florisil solid-phase extraction cartridges connected in series. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, were considered in the study. Quantification limits obtained for all of these compounds (between 0.4 and 14.8 microg kg(-1) dry mass) were well below of the limits recommended in the USA and EU. Overall recovery values ranged from 60 to 100%, with most losses being due to evaporation in the solvent exchange stages of the procedure, although excellent extraction recoveries were obtained. Validation of the accuracy was carried out with BCR-088 (sewage sludge) and BCR-524 (contaminated industrial soil) reference materials. PMID:17268774

  14. Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Pena, M.T.; Pensado, Luis; Casais, M.C.; Mejuto, M.C.; Cela, Rafael [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia. Instituto de Investigacion y Analisis Alimentario, Santiago de Compostela (Spain)

    2007-04-15

    A microwave-assisted sample preparation (MASP) procedure was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and soil samples. The procedure involved the simultaneous microwave-assisted extraction of PAHs with n-hexane and the hydrolysis of samples with methanolic potassium hydroxide. Because of the complex nature of the samples, the extracts were submitted to further cleaning with silica and Florisil solid-phase extraction cartridges connected in series. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, were considered in the study. Quantification limits obtained for all of these compounds (between 0.4 and 14.8 {mu}g kg{sup -1} dry mass) were well below of the limits recommended in the USA and EU. Overall recovery values ranged from 60 to 100%, with most losses being due to evaporation in the solvent exchange stages of the procedure, although excellent extraction recoveries were obtained. Validation of the accuracy was carried out with BCR-088 (sewage sludge) and BCR-524 (contaminated industrial soil) reference materials. (orig.)

  15. Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction.

    Science.gov (United States)

    Pena, M Teresa; Pensado, Luis; Casais, M Carmen; Mejuto, M Carmen; Cela, Rafael

    2007-04-01

    A microwave-assisted sample preparation (MASP) procedure was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and soil samples. The procedure involved the simultaneous microwave-assisted extraction of PAHs with n-hexane and the hydrolysis of samples with methanolic potassium hydroxide. Because of the complex nature of the samples, the extracts were submitted to further cleaning with silica and Florisil solid-phase extraction cartridges connected in series. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, were considered in the study. Quantification limits obtained for all of these compounds (between 0.4 and 14.8 microg kg(-1) dry mass) were well below of the limits recommended in the USA and EU. Overall recovery values ranged from 60 to 100%, with most losses being due to evaporation in the solvent exchange stages of the procedure, although excellent extraction recoveries were obtained. Validation of the accuracy was carried out with BCR-088 (sewage sludge) and BCR-524 (contaminated industrial soil) reference materials.

  16. Analysis of intervention strategies for inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk based on a Monte Carlo population exposure assessment model.

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    Full Text Available It is difficult to evaluate and compare interventions for reducing exposure to air pollutants, including polycyclic aromatic hydrocarbons (PAHs, a widely found air pollutant in both indoor and outdoor air. This study presents the first application of the Monte Carlo population exposure assessment model to quantify the effects of different intervention strategies on inhalation exposure to PAHs and the associated lung cancer risk. The method was applied to the population in Beijing, China, in the year 2006. Several intervention strategies were designed and studied, including atmospheric cleaning, smoking prohibition indoors, use of clean fuel for cooking, enhancing ventilation while cooking and use of indoor cleaners. Their performances were quantified by population attributable fraction (PAF and potential impact fraction (PIF of lung cancer risk, and the changes in indoor PAH concentrations and annual inhalation doses were also calculated and compared. The results showed that atmospheric cleaning and use of indoor cleaners were the two most effective interventions. The sensitivity analysis showed that several input parameters had major influence on the modeled PAH inhalation exposure and the rankings of different interventions. The ranking was reasonably robust for the remaining majority of parameters. The method itself can be extended to other pollutants and in different places. It enables the quantitative comparison of different intervention strategies and would benefit intervention design and relevant policy making.

  17. Role of methyl group number on SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions

    OpenAIRE

    Li, L.; Tang, P.; Nakao, S.; Chen, C.-L.; Cocker III, D. R.

    2016-01-01

    Substitution of methyl groups onto the aromatic ring determines the secondary organic aerosol (SOA) formation from the monocyclic aromatic hydrocarbon precursor (SOA yield and chemical composition). This study links the number of methyl groups on the aromatic ring to SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions (HC/NO  >  10 ppbC : ppb). Monocyclic aromatic hydrocarbons with increasing numbers of methyl groups are systemat...

  18. An Emission Inventory of Polycyclic Aromatic Hydrocarbons in China

    Science.gov (United States)

    Mu, Xilong; Zhu, Xianlei; Wang, Xuesong

    2015-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are among the most dangerous compounds due to their high carcinogenic and mutagenic character. Emission inventory provides the primary data to account for the sources of ambient PAHs and server as a necessary database for effective PAHs pollution control. China is experiencing fast economic growth and large energy consumption, which might result in a large amount of PAHs anthropogenic emissions. Therefore, based on the previous studies and combined recently field emission measurements as well as socio-economic activity data, the development of a nationwide PAHs emission inventory is needed. In this work, the emission inventory of 16 PAHs listed as U.S. Environmental Protection Agency priority pollutants in China in the year 2012 is compiled. The emission amounts of PAHs were estimated as annual rates of emission-related activities multiplied by respective emission factors. The activities such as fuel consumption, including fossil fuel and biofuel, and socio-economic statistics were obtained from yearbook released by Chinese central government and/or provincial governments, as well as related industry reports. Emission factors were derived from the related literature. Recently reported emission factors from local measurements were used. The total emissions of PAHs were 120611 ton in 2012. In China, PAHs were emitted predominantly from domestic combustion of coal and biofuel, coking industry and motor vehicles, accounting for 72% of the total amount. PAHs emission profiles were significantly different between China and the other countries. The emission profile in China featured a relatively higher portion of high molecular weight species with carcinogenic potential due to large contributions of domestic combustion and coking industry. Domestic combustion of straw, coal and firewood emitted 19464 ton, 8831 ton, and 5062 ton of PAHs, respectively, which were much higher than those in other countries. Emission per capita showed

  19. Formation History of Polycyclic Aromatic Hydrocarbons in Galaxies

    CERN Document Server

    Seok, Ji Yeon; Asano, Ryosuke S

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are some of the major dust components in the interstellar medium (ISM). We present our evolution models for the abundance of PAHs in the ISM on a galaxy-evolution timescale. We consider shattering of carbonaceous dust grains in interstellar turbulence as the formation mechanism of PAHs while the PAH abundance can be reduced by coagulation onto dust grains, destruction by supernova shocks, and incorporation into stars. We implement these processes in a one-zone chemical evolution model to obtain the evolution of the PAH abundance in a galaxy. We find that PAH formation becomes accelerated above certain metallicity where shattering becomes efficient. For PAH destruction, while supernova shock is the primary mechanism in the metal-poor environment, coagulation is dominant in the metal-rich environment. We compare the evolution of the PAH abundances in our models with observed abundances in galaxies with a wide metallicity range. Our models reproduce both the paucity of PAH...

  20. Polycyclic aromatic hydrocarbons in sediments of China Sea.

    Science.gov (United States)

    Li, Yanxia; Duan, Xiaoyong

    2015-10-01

    Increasing pollution pressures were placed in the coastal and estuarine ecosystems in China because of the elevated pollutants discharged from various sources. Polycyclic aromatic hydrocarbons (PAHs) in the environment were closely linked to human activities, which have been intensively studied for their geochemical interest as markers. In this review, the status of PAH contamination in China Sea was assessed by comprehensive reviews of the concentrations, sources, and fates of PAHs in sediments of China Sea. PAH concentrations in China Sea sediments decreased from north to south due to the higher emissions in North China. Atmosphere was probably the main carrier of PAHs in the north due to the higher contents of atmospheric fine particles and higher wind speeds. However, riverine inputs were probably the most important sources of PAHs in the coastal sediments of South China due to higher rainfall.

  1. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food.

    Science.gov (United States)

    Singh, Lochan; Varshney, Jay G; Agarwal, Tripti

    2016-05-15

    Polycyclic aromatic hydrocarbons (PAHs) emerged as an important contaminant group in a gamut of processed food groups like dairy, nuts, herbs, beverages, meat products etc. Different cooking processes and processing techniques like roasting, barbecuing, grilling, smoking, heating, drying, baking, ohmic-infrared cooking etc. contribute towards its formation. The level of PAHs depends on factors like distance from heat source, fuel used, level of processing, cooking durations and methods, whereas processes like reuse, conching, concentration, crushing and storage enhance the amount of PAHs in some food items. This review paper provides insight into the impact of dietary intake of PAHs, its levels and formation mechanism in processed food items and possible interventions for prevention and reduction of the PAHs contamination. The gaps and future prospects have also been assessed.

  2. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food.

    Science.gov (United States)

    Singh, Lochan; Varshney, Jay G; Agarwal, Tripti

    2016-05-15

    Polycyclic aromatic hydrocarbons (PAHs) emerged as an important contaminant group in a gamut of processed food groups like dairy, nuts, herbs, beverages, meat products etc. Different cooking processes and processing techniques like roasting, barbecuing, grilling, smoking, heating, drying, baking, ohmic-infrared cooking etc. contribute towards its formation. The level of PAHs depends on factors like distance from heat source, fuel used, level of processing, cooking durations and methods, whereas processes like reuse, conching, concentration, crushing and storage enhance the amount of PAHs in some food items. This review paper provides insight into the impact of dietary intake of PAHs, its levels and formation mechanism in processed food items and possible interventions for prevention and reduction of the PAHs contamination. The gaps and future prospects have also been assessed. PMID:26776034

  3. Polycyclic aromatic hydrocarbons in cereal products on the Turkish market.

    Science.gov (United States)

    Kacmaz, Sibel

    2016-09-01

    The contamination level of four EU marker polycyclic aromatic hydrocarbons (PAHs) in some cereal-derived products was surveyed in this study. Thirty-eight samples, 20 bread and 18 breakfast cereals, were purchased from retail shops and local markets of East Black sea region in Turkey. The samples were analysed for four EU marker PAHs, using ultrasonic extraction, solid-phase extraction (SPE) clean up and stable-isotope dilution gas chromatography with mass-spectrometric (GC/MS) detection. The method was validated with the parameters linearity, accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ) and uncertainty. Total content of the four PAHs in bread varied from 0.19 to 0.46 µg kg(-1) and in breakfast cereals from 0.10 to 0.87 µg kg(-1). PMID:26986946

  4. A Shape-Persistent Cryptand for Capturing Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Zhang, Rui-Feng; Hu, Wen-Jing; Liu, Yahu A; Zhao, Xiao-Li; Li, Jiu-Sheng; Jiang, Biao; Wen, Ke

    2016-07-01

    A shape-persistent cryptand 1, containing two face-to-face oriented electron-deficient 2,4,6-triphenyl-1,3,5-triazine units separated by approximately 7 Å, and bridged by two rigid 1,8-naphthyridine linkers and a pentaethylene oxide loop, is created for capturing polycyclic aromatic hydrocarbons. Cryptand 1 formed 1:1 complexes with PAH guest molecules, such as phenanthrene (6), anthracene (7), pyrene (8), triphenylene (9), and tetraphene (10). The single-crystal structure of complex 6⊂1 revealed that 6 was included in the cavity of 1 via face-to-face π···π stacking interactions. Soaking crystalline 1 in a toluene solution of anthracene resulted in anthracene from the toluene solution being picked up by the crystalline solid of 1. PMID:27258531

  5. Removal of high-molecular weight polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Ulrich Vasconcelos

    2011-01-01

    Full Text Available Alternatives for the removal of high-molecular weight polycyclic aromatic hydrocarbons (HWM-PAH from soil were tested by adding fertilizer or glycerol, as well as the combination of both. Experiments were carried out for 60 days in reactors containing a HWM-PAH-contaminated soil (8030 μg kg-1, accompanied by pH monitoring, humidity control and quantification of total heterotrophic bacteria and total fungus. Fertilizer addition removed 41.6% of HWM-PAH. Fertilizer and glycerol in combination removed 46.2%. When glycerol was added individually, degradation reached 50.4%. Glycerol also promoted the increase of degradation rate during the first 30 days suggesting the HMW-PAH removal occurred through cometabolic pathways.

  6. Magnetic instability and pair binding in aromatic hydrocarbon superconductors

    Science.gov (United States)

    Huang, Zhongbing; Zhang, Chao; Lin, Hai-Qing

    2012-01-01

    Understanding magnetism and electron correlation in many unconventional superconductors is essential to explore mechanism of superconductivity. In this work, we perform a systematic numerical study of the magnetic and pair binding properties in recently discovered polycyclic aromatic hydrocarbon (PAH) superconductors including alkali-metal-doped picene, coronene, phenanthrene, and dibenzopentacene. The π-electrons on the carbon atoms of a single molecule are modelled by the one-orbital Hubbard model, and the energy difference between carbon atoms with and without hydrogen bonds is taking into account. We demonstrate that the spin polarized ground state is realized for charged molecules in the physical parameter regions, which provides a reasonable explanation of local spins observed in PAHs. In alkali-metal-doped dibenzopentacene, our results show that electron correlation may produce an effective attraction between electrons for the charged molecule with one or three added electrons. PMID:23213358

  7. Modeling the fate of polynuclear aromatic hydrocarbons in the rhizosphere

    International Nuclear Information System (INIS)

    Polynuclear aromatic hydrocarbons (PAHs) are major contaminants associated with wastes from manufactured gas plants, wood treating operations, and petroleum refining; they are potentially carcinogenic and mutagenic. It has been known that vegetation can enhance the rate and extent of degradation of PAHs in contaminated soil. Plant roots release exudates capable of supplying carbon and energy to microflora for degrading PAHs. It has also been well established that the population of microorganisms in the rhizosphere is significantly greater than that in the non-vegetated soil; these microorganisms are apparently responsible for the enhanced biodegradation of PAHs. A model has been derived for describing the rate of disappearance of a non-aqueous phase contaminant in the rhizosphere, which takes into account dissolution, adsorption, desorption and biodegradation of the contaminant, without neglecting the size distribution of the organic-phase droplets; the rate of biodegradation is expressed in terms of the Monod kinetics. The model is validated with the available experimental data for pyrene

  8. Oil and gas potential assessment for coal measure source rocks on absolute concentration of n-alkanes and aromatic hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Absolute concentration of normal alkanes(n-alkanes) and aromatic hydrocarbons in bitumen extracted from source rocks in the period of thermodegradation from Turpan-Hami Basin suggests that aromatic hydrocarbons are dominant in coal and carbargilite while n-alkanes are dominant in mudstones. Bulkrock analysis and gas chromatograph/mass spectrum(GC-MS) of source rocks shows aromatic hydrocarbons are dominant in total ion chromatograms(TIC) of samples with poor perhydrous macerals while n-alkanes are dominant in TICs of samples with abundant perhydrous macerals. The identification of oil-prone and gas prone property based on GC-MS of bitumen "A" together with bulkrock analysis indicates that source rocks from Shengbei area are more oil-prone while source rocks from Qiudong and Xiaocaohu areas are more gas-prone,coinciding with the distribution of oil and gas reservoirs in Taibei Sag. Ratios used to identify oil-prone and gas-prone property for source rocks from Turpan Basin are proposed:n-alkanes >110 μg·mg-1,aromatics <15 μg·mg-1,and n-alkanes/aromatics >8 for oil-prone source rock bitumen while n-alkanes<82 μg·mg-1,aromatics >40 μg·mg-1,and n-alkanes/aromatics <1.5 for gas-prone source rock bitumen.

  9. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    Energy Technology Data Exchange (ETDEWEB)

    Haritash, A.K., E-mail: akharitash@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India); Kaushik, C.P. [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India)

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H{sub 2}O, CO{sub 2} (aerobic) or CH{sub 4} (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions

  10. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    International Nuclear Information System (INIS)

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H2O, CO2 (aerobic) or CH4 (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can be

  11. Study on Aromatization of C6 Aliphatic Hydrocarbons on ZRP Zeolite Catalyst

    Institute of Scientific and Technical Information of China (English)

    Wang Yongjun; Xie Chaogang

    2004-01-01

    The performance of ZRP zeolite catalysts for aromatization of C6 aliphatic hydrocarbons was investigated in a pulsed microreactor. The influence of metal modified ZRP zeolites on aromatization reaction was also studied, coupled with comparison of aromatization tendencies of olefins, paraffins and paraffins with different degrees of chain branching. Test results had shown that the lower the silicon/aluminum ratio in the ZRP zeolite, the higher the aromatization reactivity of aliphatic hydrocarbons. Modification of ZRP zeolite by zinc and its zinc content had apparent impact on the yield and distribution of aromatics. The aromatization tendency of olefins was apparently better than paraffins, while the aromatization tendency of monomethyl paraffins was better than that of straight-chain paraffins with the exception of dimethyl paraffins, which had worse aromatization tendency because of their steric hindrance.

  12. Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic.

    Science.gov (United States)

    Liu, Lijing; Fokkink, Remco; Koelmans, Albert A

    2016-07-01

    Microplastic has become an emerging contaminant of global concern. Bulk plastic can degrade to form smaller particles down to the nanoscale (<100 nm), which are referred to as nanoplastics. Because of their high surface area, nanoplastic may bind hydrophobic chemicals very effectively, increasing their hazard when such nanoplastics are taken up by biota. The present study reports distribution coefficients for sorption of polycyclic aromatic hydrocarbons (PAHs) to 70 nm polystyrene in freshwater, and PAH adsorption isotherms spanning environmentally realistic aqueous concentrations of 10(-5)  μg/L to 1 μg/L. Nanopolystyrene aggregate state was assessed using dynamic light scattering. The adsorption isotherms were nonlinear, and the distribution coefficients at the lower ends of the isotherms were very high, with values up to 10(9) L/kg. The high and nonlinear sorption was explained from π-π interactions between the planar PAHs and the surface of the aromatic polymer polystyrene and was higher than for micrometer-sized polystyrene. Reduction of nanopolystyrene aggregate sizes had no significant effect on sorption, which suggests that the PAHs could reach the sorption sites on the pristine nanoparticles regardless of the aggregation state. Pre-extraction of the nanopolystyrene with C18 polydimethylsiloxane decreased sorption of PAHs, which could be explained by removal of the most hydrophobic fraction of the nanopolystyrene. Environ Toxicol Chem 2016;35:1650-1655. © 2015 SETAC.

  13. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer

    Institute of Scientific and Technical Information of China (English)

    Thamaraiselvan; Rengarajan; Peramaiyan; Rajendran; Natarajan; Nandakumar; Boopathy; Lokeshkumar; Palaniswami; Rajendran; Ikuo; Nishigaki

    2015-01-01

    Polycyclie aromatic hydrocarbons(PAHs) are a group of compounds consisting of two or more fused aromatic rings.Most of them are formed during incomplete combustion of organic materials such as wood and fossil fuels,petroleum products,and coal.The composition of PAH mixtures varies with the source and is also affected by selective weathering effects in the environment.PAHs are ubiquitous pollutants frequently found in a variety of environments such as fresh water and marine sediments,the atmosphere,and ice.Due to their widespread distribution,the environmental pollution due to PAHs has aroused global concern.Many PAHs and their epoxides are highly toxic,mutagenic and/or carcinogenic to microorganisms as well as to higher forms of life including humans.The main aim of this review is to provide contemporary information on PAH sources,route of exposure,worldwide emission rate,and adverse effects on humans,especially with reference to cancer.

  14. Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust

    Science.gov (United States)

    Casal, Carina S.; Arbilla, Graciela; Corrêa, Sergio M.

    2014-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely studied in environmental matrices, such as air, water, soil and sediment, because of their toxicity, mutagenicity and carcinogenicity. Because of these properties, the environmental agencies of developed countries have listed sixteen PAHs as priority pollutants. Few countries have limits for these compounds for ambient air, but they only limit emissions from stationary and mobile sources and occupational areas. There are several studies to specifically address the 16 priority PAHs and very little for the alkyl PAHs. These compounds are more abundant, more persistent and frequently more toxic than the non-alkylated PAHs, and the toxicity increases with the number of alkyl substitutions on the aromatic ring. In this study, a method was developed for the analysis of PAHs and alkyl PAHs by using a GC-MS and large injection volume injection coupled with program temperature vaporisation, which allows for limits of detection below 1.0 ng μL-1. Several variables were tested, such as the injection volume, injection velocity, injector initial temperature, duration of the solvent split and others. This method was evaluated in samples from particulate matter from the emissions of engines employing standard diesel, commercial diesel and biodiesel B20. Samples were collected on a dynamometer bench for a diesel engine cycle and the results ranged from 0.5 to 96.9 ng mL-1, indicating that diesel/biodiesel makes a significant contribution to the formation of PAHs and alkyl PAHs.

  15. Toxicity of aromatic hydrocarbons on algal based on GLM model and neural networks%基于GLM模型和神经网络研究芳烃化合物对藻类毒性

    Institute of Scientific and Technical Information of China (English)

    杨胜龙; 邬旸; 于红霞; 王连生; 王翠华

    2012-01-01

    The health of marine ecosystemas are affected by aromatic hydrocarbons generated by the rapid industrial development and frequent oeourrence of oil spill accident. The establishment of nonlinear relationship between the physical and chemical properties of aromatic hydrocarbons and the inhibition toxicity of Chlorella vulgaris was one of the main method to predict the unknown aromatic hydrocarbons toxicity. Based on the 96 hr-EC50 of the inhibition toxicity of aromatic hydrocarbons to Chlorella vulgaris and the optimized geometries of aromatic hydrocarbons carried out at the B3LYP/6-311 G^** level by density functional theory (DFT) calculation, the nonlinear relationship between aromatic hydrocarbons and the inhibition activity were fit and approximated with General Linear Model (GLM) , Wavelet Neural Networks (WNN) and Takagi-sugeno Fuzzy Neural Networks (T-SFNN) models. The significance of GLM equation was confirmed by F test (p 〈0. 001 ), and the three models, GLM, T-SFNN and WNN, were reliable by matched pair t testwith high precision by the determinative coefficient(R^2 〉 0.96). The results showed that three models could be used to predict the unknown aromatic hydrocarbons toxicity well. The WNN model with mean square error (rose) 0. 0076 and the mean absolute error (mae) 0. 0533 is the best choice for forecasting the unknown aromatic hydrocarbons toxicity.%工业的快速发展和溢油事故的频繁发生所产生的大量芳烃化合物正威胁海洋生态系统的健康,建立芳烃化合物物化性质与小球藻急性毒性间的非线性模型,是预测未知芳烃化合物对藻类毒性的主要手段之一.本研究以实验获取的25种芳烃化合物对小球藻96h的毒性数据为基础,采用密度泛函理论(DFT)中的B3LYP方法,在6-311G^**基组上全优化计算25种芳烃化合物结构参数和热力学参数,通过逐步广义线性回归(GLM)、小波神经网络(WNN

  16. Accumulation of Trace Metals, Petroleum Hydrocarbons, and Polycyclic Aromatic Hydrocarbons in Marine Copepods from the Arabian Gulf

    OpenAIRE

    El-Din, N.M. Nour; Abdel-Moati, M. A. R.

    2001-01-01

    In this study, zooplankton samples were collected from the coastal waters of Qatar during winter and summer 1998 to assess the impact of growing industrialization on the bioaccumulation of trace metals, total petroleum hydrocarbons (TPHCs) and polycyclic aromatic hydrocarbons (PAHs) in copepods, the dominant zooplankton group and main food for fish in the Arabian Gulf.

  17. Biodegradation of polycyclic aromatic hydrocarbons by arbuscular mycorrhizal leek plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A.; Dalpe, Y. [Agriculture Canada, Ottawa, ON (Canada). Grain and Oilseeds Branch

    2005-07-01

    A study was conducted to examine the response of arbuscular mycorrhizal fungi (AMF) on the degradation of polycyclic aromatic hydrocarbon (PAH), nutrient uptake, and leek growth under greenhouse conditions. This experiment included 3 mycorrhizal treatments, 2 microorganism treatments, 2 PAH chemicals, and 4 concentrations of PAHs. Plant growth was greatly reduced by the addition of anthracene or phenanthrene in soil, whereas mycorrhizal inoculation not only increased plant growth, but also enhanced uptake of nitrogen and phosphorus. PAH concentrations in soil was lowered through the inoculation of two different strains of the species G. intraradices and G. versiforme. In 12 weeks of pot cultures, anthracene and phenanthrene concentrations decreased for all 3 PAH levels tested. However, the reduced amount of phenanthrene in soil was greater than that of anthracene. The addition of a soil microorganism extract into pot cultures accelerated the PAH degradation. The inoculation of AMF in a hydrocarbon contaminated soil was shown to enhance PAHs soil decontamination. It was concluded that a soil colonized with AMF can not only improve plant growth but can also stimulate soil microflora abundance and diversity. AMF may therefore directly influence PAH soil decontamination through plant growth enhancement.

  18. Functional Gene Markers for Fumarate-Adding and Dearomatizing Key Enzymes in Anaerobic Aromatic Hydrocarbon Degradation in Terrestrial Environments.

    Science.gov (United States)

    von Netzer, Frederick; Kuntze, Kevin; Vogt, Carsten; Richnow, Hans H; Boll, Matthias; Lueders, Tillmann

    2016-01-01

    Anaerobic degradation is a key process in many environments either naturally or anthropogenically exposed to petroleum hydrocarbons. Considerable advances into the biochemistry and physiology of selected anaerobic degraders have been achieved over the last decades, especially for the degradation of aromatic hydrocarbons. However, researchers have only recently begun to explore the ecology of complex anaerobic hydrocarbon degrader communities directly in their natural habitats, as well as in complex laboratory systems using tools of molecular biology. These approaches have mainly been facilitated by the establishment of a suite of targeted marker gene assays, allowing for rapid and directed insights into the diversity as well as the identity of intrinsic degrader populations and degradation potentials established at hydrocarbon-impacted sites. These are based on genes encoding either peripheral or central key enzymes in aromatic compound breakdown, such as fumarate-adding benzylsuccinate synthases or dearomatizing aryl-coenzyme A reductases, or on aromatic ring-cleaving hydrolases. Here, we review recent advances in this field, explain the different detection methodologies applied, and discuss how the detection of site-specific catabolic gene markers has improved the understanding of processes at contaminated sites. Functional marker gene-based strategies may be vital for the development of a more elaborate population-based assessment and prediction of aromatic degradation potentials in hydrocarbon-impacted environments. PMID:26959523

  19. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity.

    Science.gov (United States)

    Jajoo, Anjana; Mekala, Nageswara Rao; Tomar, Rupal Singh; Grieco, Michele; Tikkanen, Mikko; Aro, Eva-Mari

    2014-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are very toxic and highly persistent environmental pollutants which accumulate in soil and affect growth of the plants adversely. This study aims to investigate inhibitory effects of 3 major PAH particularly on photosynthetic processes in Arabidopsis thaliana grown in soil treated with PAH. The 3 PAH chosen differ from each other in aromaticity (number of rings) comprising their structure (2 rings: naphthalene, 3 rings: anthracene and 4 rings: pyrene). Several growth parameters and Chlorophyll a fluorescence was monitored in PAH treated plants. BN-PAGe analysis was done in order to get information about change in the protein conformation. PAH treatment led to increased value of Fo which collaborated with increase in the amount of free LHC as seen through BN-Page analysis. Thus PAH were found to inhibit PS II photochemistry and caused distinct change in pigment composition. However the results led us to infer that 3-ring anthracence is more inhibitory as compared to 2-ring naphthalene and 4-ring pyrene. This indicates that aromaticity of PAH is unrelated to their response on photosynthetic processes.

  20. Chemometric-based determination of polycyclic aromatic hydrocarbons in aqueous samples using ultrasound-assisted emulsification microextraction combined to gas chromatography-mass spectrometry.

    Science.gov (United States)

    Ahmadvand, Mohammad; Sereshti, Hassan; Parastar, Hadi

    2015-09-25

    In the present research, ultrasonic-assisted emulsification-microextraction (USAEME) coupled with gas chromatography-mass spectrometry (GC-MS) has been proposed for analysis of thirteen environmental protection agency (EPA) polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Tetrachloroethylene was selected as extraction solvent. The main parameters of USAEME affecting the efficiency of the method were modeled and optimized using a central composite design (CCD). Under the optimum conditions (9μL for extraction solvent, 1.15% (w/v) NaCl (salt concentration) and 10min for ultrasonication time), preconcentration factor (PF) of the PAHs was in the range of 500-950. In order to have a comprehensive analysis, multivariate curve resolution-alternating least squares (MCR-ALS) as a second-order calibration algorithm was used for resolution, identification and quantification of the target PAHs in the presence of uncalibrated interferences. The regression coefficients and relative errors (REs, %) of calibration curves of the PAHs were in the satisfactory range of 0.9971-0.9999 and 1.17-6.59%, respectively. Furthermore, analytical figures of merit (AFOM) for univariate and second-order calibrations were obtained and compared. As an instance, the limit of detections (LODs) of target PAHs were in the range of 1.87-18.9 and 0.89-6.49ngmL(-1) for univariate and second-order calibration, respectively. Finally, the proposed strategy was used for determination of target PAHs in real water samples (tap and hookah waters). The relative recoveries (RR) and the relative standard deviations (RSDs) were 68.4-109.80% and 2.15-6.93%, respectively. It was concluded that combination of multivariate chemometric methods with USAEME-GC-MS can be considered as a new insight for the analysis of target analytes in complex sample matrices. PMID:26319375

  1. Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons. 1: Physical model based on chemical kinetics in a two-compartment system

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, S.N.; Huang, X.D.; Zeiler, L.F.; Dixon, D.G.; Greenberg, B.M. [Univ. of Waterloo, Ontario (Canada). Dept. of Biology

    1997-11-01

    A quantitative structure-activity relationship model for the photoinduced toxicity of 16 polycyclic aromatic hydrocarbons (PAHs) to duckweed (Lemna gibba) in simulated solar radiation (SSR) was developed. Lemna gibba was chosen for this study because toxicity could be considered in two compartments: water column and leaf tissue. Modeling of photoinduced toxicity was described by photochemical reactions between PAHs and a hypothetical group of endogenous biomolecules (G) required for normal growth, with damage to G by PAHs and/or photomodified PAHs in SSR resulting in impaired growth. The reaction scheme includes photomodification of PAHs, uptake of PAHs into leaves, triplet-state formation of intact PAHs, photosensitization reactions that damage G, and reactions between photomodified PAHs and G. The assumptions used were: the PAH photomodification rate is slower than uptake of chemicals into leaves, the PAH concentration in aqueous solution is nearly constant during a toxicity test, the fluence rate of actinic radiation is lower within leaves than in the aqueous phase, and the toxicity of intact PAHs in the dark is negligible. A series of differential equations describing the reaction kinetics of intact and photomodifed PAHs with G was derived. The resulting equation for PAH toxicity was a function of treatment period, initial PAH concentration, relative absorbance of SSR by each PAH, quantum yield for formation of triplet-state PAH, and rate of PAH photomodification. Data for growth in the presence of intact and photomodified PAHs were used to empirically solve for a photosensitization constant (PSC) and a photomodification constant (PMC) for each of the 16 PAHs tested. For 9 PAHs the PMC dominates and for 7 PAHs the PSC dominates.

  2. Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy

    Science.gov (United States)

    Cloutis, Edward; Szymanski, Paul; Applin, Daniel; Goltz, Douglas

    2016-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely present throughout the Solar System and beyond. They have been implicated as a contributor to unidentified infrared emission bands in the interstellar medium, comprise a substantial portion of the insoluble organic matter in carbonaceous chondrites, are expected stable components of organic matter on Mars, and are present in a wide range of terrestrial hydrocarbons and as components of biomolecules. However, PAH structures can be very complicated, making their identification challenging. Raman spectroscopy is known to be especially sensitive to the highly polarizable C-C and C=C bonds found in PAHs, and therefore, can be a powerful tool for PAH structural and compositional elucidation. This study examined Raman spectra of 48 different PAHs to determine the degree to which Raman spectroscopy could be used to uniquely identify different species, factors that control the positions of major Raman peaks, the degree to which induced fluorescence affects the intensity of Raman peaks, its usefulness for PAH discrimination, and the effects of varying excitation wavelength on some PAH Raman spectra. It was found that the arrangement and composition of phenyl (benzene) rings, and the type and position of functional groups can greatly affect fluorescence, positions and intensities of Raman peaks associated with the PAH backbone, and the introduction of new Raman peaks. Among the functional groups found on many of the PAHs that were analyzed, only a few Raman peaks corresponding to the molecular vibrations of these groups could be clearly distinguished. Comparison of the PAH Raman spectra that were acquired with both 532 and 785 nm excitation found that the longer wavelength resulted in reduced fluorescence, consistent with previous studies.

  3. The Exobiological Role of Interstellar Polycyclic Aromatic Hydrocarbons and Ices

    Science.gov (United States)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Before this time, the composition of interstellar dust was largely guessed-at, the presence of ices in interstellar clouds ignored, and the notion that large, gas phase, carbon rich molecules might be abundant and widespread throughout the interstellar medium (ISM) considered impossible. Today, the composition of dust in the ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these cold dust particles secrete mantles of mixed molecular ices whose compositions are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by the standards of interstellar chemistry, the telltale infrared spectral signature of which is now recognized throughout the Universe. In the first part of this talk, we will review the spectroscopic evidence that forms the basis for the currently accepted abundance and ubiquity of PANs in the ISM. We will then look at a few specific examples which illustrate how experimental and theoretical data can be applied to interpret the interstellar spectra and track how the PAN population evolves as it passes from its formation site in the circumstellar outflows of dying stars, through the various phases of the ISM, and into forniing planetary systems. Nevertheless, despite the fact that PANs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered

  4. Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil

    Science.gov (United States)

    The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed ...

  5. 基于QSAR模型研究芳烃化合物对小球藻的抑制活性%Study on aromatic hydrocarbons inhibition activity to Chlorella vulgaris based on QSAR model

    Institute of Scientific and Technical Information of China (English)

    王翠华; 杨胜龙; 邬旸; 于红霞; 王连生

    2012-01-01

    With the rapid industrial development and frequent ocourrence of oil spill accident, the health of marine ecosystems are affected by aromatic hydrocarbons, the unknown aromatic hydrocarbons toxicity of predicting ability based on the QSAR model is one of the task of security precaution. To establish the QSAR model between the physical and chemical properties of aromatic hydrocarbons and the inhibition activity of Chlorella vulgaris, the optimized geometries, based on the 96 hr-EC50 of 21 aromatic hydrocarbons with Chlorella vulgaris were carried out at the B3LYP/6-311G** level by density functional theory (DFT) calculation. With SPSS 12.0 for Windows, the structural parameters obtained from the optimized geometries were taken as theoretical descriptors to establish the predicting QSAR model of algal inhibition activity QSAR model. The correlation coefficient (R2) and a cross-validated (q2) of the best QSAR model are 0.925 and 0898, respectively, indicating the model has the better predicting ability and stronger stability. The model including two parameters-V, and qH+,V1 is the main parameter in affecting the algal inhibition activity.%芳烃化合物正随着工业的快速发展和溢油事故的频繁发生影响着海洋生态系统的健康,提高定量构效关系(QSAR)模型预测未知芳烃化合物毒性的能力是做好芳烃化合物安全防范措施的任务之一.为建立芳烃化合物物化性质与小球藻抑制活性间的QSAR模型,以实验获取的21种芳烃化合物对小球藻96 h的抑制活性数据为基础,采用密度泛函理论(DFT)中的B3LYP方法,在6-311G**基组上全优化计算21种芳烃化合物结构参数,运用SPSS 12.0 for Windows程序,将这些结构参数作为理论描述符,逐步回归得到芳烃化合物对藻类抑制活性的QSAR模型.该模型相关系数R2为0.925,交叉验证相关系数q2为0.898,说明所建模型具有良好的预测能力和较强的稳定性;所建模型包含2个参数(分子体

  6. MONITORING POLYNUCLEAR AROMATIC HYDROCARBONS IN SEDIMENT POREWATER BY SPMD

    Institute of Scientific and Technical Information of China (English)

    朱亚先; 张勇; 庄一廷; Ka-FaiPoon; MichaelH.W.Lam; 洪华生; RudolfS.S.Wu

    2001-01-01

    A new mimic biological Semi-permeable Membrane Device (SPMD) introduced for sampling organic pollutants yielded satisfactory results when it was frrst used as a passive sampler to concentrate and determine 16 kinds of polynuclear aromatic hydrocarbons (PAHs) by means of capillary GC on an HP 5890 GC-FID in coastal sediment perewater. The concentration of PAHs in sediment porewater for naphthalene(N), acenaphthlene(AL), acenaphthene (AE), fluorene (F), phenaphthene(P), anthracene(A), fluoranthene(FA), pyrene(Py), benzo[a]anthracene(B[a]A), chrysene(Chr), benzo[b] fluor- anthene(B[b]F), benzo[k]fluoranthene(B[k]F), benzo[a]pyrene(B[a]P),indeno[1,2,3,-cd]-Pyrene(I[123]P), dibenz[a,h]anthracene(D[ab]A) and benzo[g,h,i] perylene(B[ghi]P) were:50.36, under detection limits(UD), 18.19, 8.41, 8.40, 1.44, UD, 8.01, 524.15, 168.47, 50.13,123.66, 63.48, 27.40, 82.04 and 58,81 ng/L, respectively.

  7. Polycyclic Aromatic Hydrocarbon Ionization Energy Lowering in Water Ices

    Science.gov (United States)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2004-01-01

    In studying various interstellar and solar system ice analogs, we have recently found that upon vacuum ultraviolet photolysis, polycyclic aromatic hydrocarbons (PAHs) frozen in water ice at low temperatures are easily ionized and indefinitely stabilized as trapped ions (Gudipati; Gudipati & Allamandola). Here we report the first experimental study that shows that PAH ionization energy is significantly lowered in PAH/H2O ices, in agreement with recent theoretical work (Woon & Park). The ionization energy (IE) of the PAH studied here, quaterrylene (C40H20, IE = 6.11 eV), is lowered by up to 2.11 eV in water ice. PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons may be important. This reduction in ionization energy should also hold for other types of trapped species in waterrich interstellar, circumstellar, and solar system ices. Subject headings: ISM: clouds - methods: laboratory - molecular processes - radiation mechanisms: nonthermal -ultraviolet: ISM - ultraviolet: solar system

  8. Polycyclic aromatic hydrocarbon formation under simulated coal seam pyrolysis conditions

    Institute of Scientific and Technical Information of China (English)

    Liu Shuqin; Wang Yuanyuan; Wang Caihong; Bao Pengcheng; Dang Jinli

    2011-01-01

    Coal seam pyrolysis occurs during coal seam fires and during underground coal gasification.This is an important source of polycyclic aromatic hydrocarbon (PAH) emission in China.Pyrolysis in a coal seam was simulated in a tubular furnace.The 16 US Environmental Protection Agency priority controlled PAHs were analyzed by HPLC.The effects of temperature,heating rate,pyrolysis atmosphere,and coal size were investigated.The results indicate that the 3-ring PAHs AcP and AcPy are the main species in the pyrolysis gas.The 2-ring NaP and the 4-ring Pyr are also of concern.Increasing temperature caused the total PAH yield to go through a minimum.The lowest value was obtained at the temperature of 600 ℃ Higher heating rates promote PAH formation,especially formation of the lower molecular weight PAHs.The typical heating rate in a coal seam,5 ℃/min,results in intermediate yields of PAHs.The total PAHs yield in an atmosphere of N2 is about 1.81 times that seen without added N2,which indicates that an air flow through the coal seam accelerates the formation of PAHs.An increase in coal particle size reduces the total PAHs emission but promotes the formation of 5- and 6-ring PAHs.

  9. Fibrous adsorbent for removal of aqueous aromatic hydrocarbons.

    Science.gov (United States)

    Jung, Yong-Jun; Kiso, Yoshiaki; Oguchi, Tatsuo; Yamada, Toshiro; Takagi, Hiroo; Nishimura, Kazuyuki

    2007-01-01

    Bundles of a strongly hydrophobic fibrous material (p-phenylene-2,6-benzobisoxazole; PBO; Zylon) were employed as an adsorbent for the removal of aqueous aromatic compounds, because the PBO fibers are too rigid to be woven and did not entrap suspended solids. The removal performance for nine kinds of polyaromatic hydrocarbons (PAHs) and di-(2-ethylhexyl) phthalate (DEHP) was evaluated. PAHs and DEHP at initial concentrations of 50 microg L(-1) were removed at 72.5-99.9% and ca. 95%, respectively, although the removal efficiencies were affected by the phase ratio (fiber weight/solution volume). The logarithm of the partition coefficient (log K) for planar PAHs was linearly correlated with the logarithm of the n-octanol/water partition coefficient (log P), but nonplanar PAHs, such as cis-stilbene, p-terphenyl, and o-terphenyl, showed significantly lower adsorption performance. The adsorbed PAHs were not desorbed effectively with CH3CN, CH2Cl2, and toluene. On the other hand, DEHP was effectively desorbed with methanol.

  10. Polycyclic aromatic hydrocarbons in household dust near diesel transport routes.

    Science.gov (United States)

    Kuo, Chung-Yih; Chen, Heng-Chun; Cheng, Fang-Ching; Huang, Li-Ru; Chien, Po-Shan; Wang, Jing-Ya

    2012-02-01

    A river-dredging project has been undertaken in Nantou, Taiwan. A large number of diesel vehicles carrying gravel and sand shuttle back and forth on the main roads. Ten stations along major thoroughfares were selected as the exposure sites for testing, while a small village located about 9 km from a main traffic route was selected as the control site. Levels of household dust loading at the exposure sites (60.3 mg/m(2)) were significantly higher than those at the control site (38.2 mg/m(2)). The loading (μg/m(2)) of t-PAHs (total polycyclic aromatic hydrocarbons) in the household dust at the exposure sites was significantly higher (P < 0.05) than was the case at the control site. The diagnostic ratios of PAHs showed that diesel emissions were the dominant source of PAHs at the exposure sites. The lack of a significant correlation between the concentrations of Fe and t-PAHs suggested that the t-PAHs in household dust might come from diverse sources. However, a significant correlation (P = 0.003) between the concentrations of Mo and t-PAHs implied that the most of the t-PAHs in the household dust might have resulted from diesel emissions. The lifetime cancer risks of BaP(eq) from household dust exposure were markedly higher than those resulting from inhalation exposure.

  11. Solubilization and biodegradation of polycyclic aromatic hydrocarbons in microemulsions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J.W.C.; Zhao, Z.Y.; Yang, J.; Wong, S.Y. [Hong Kong Baptist Univ., Hong Kong (China). Sino-Forest Applied Research Centre for Pearl River Delta Environment, Dept. of Biology

    2009-07-01

    This study investigated the feasibility of using microemulsions to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs). Microemulsions are commonly used in soil washing as a means of enhancing the solubility of hydrophobic pollutants. The microemulsions were composed of Tween-80, 1-pentanol and linseed oil. Phenanthrene (PHE) was dissolved in dichloromethane and added to a glass vial. Microemulsions were added separately to the vials. A high performance liquid chromatograph (HPLC) was used to determine PHE concentrations. The vials were inoculated with an isolated PAH degradative bacterium Bacillus subtilis B-UM. Soil collected from abandoned shipyards in Hong Kong were then spiked with the mixtures and aged for 3 months. One way analysis of variance (ANOVA) analyses were conducted. Results of the study showed that a microemulsion composed of 0.4 Tween-80, 0.1 per cent 1-pentanol, and 0.05 linseed oil effectively enhanced the biodegradation of PHE in the aqueous phase. It was concluded that microemulsions can be used to remediate soils contaminated by PAHs. 26 refs., 2 tabs., 4 figs.

  12. Polycyclic aromatic hydrocarbons and pesticides in soil of Vojvodina

    Directory of Open Access Journals (Sweden)

    Pucarević Mira M.

    2004-01-01

    Full Text Available The paper deals with several groups of compounds that represent the most frequent pollutants of soil in the world. The paper also reviews results of long-term studies conducted at the Institute of Field and Vegetable Crops in Novi Sad on the residues of pesticides and polycyclic aromatic hydrocarbons (PAHs in the soil of the Vojvodina Province. The analyzed samples have been found to contain residues of persistent pesticides and their metabolites lindane and its metabolites 6,20 μg/kg, alachlor 3,56 μg/kg, aldrin 2,3 μg/kg, heptachlor epoxide 0,99 μg/kg, chlordane 3,82 μg/kg, DDT and its metabolites 10,77 μg/kg, dieldrin 2,04 μg/kg, endrin 3,57 μg/kg and endrin aldehyde 1,36 μg/kg. Soil samples from Novi Sad municipality contained 53,69 μg/kg of DDT and its metabolites. The values of atrazine ranged from 0,0005 to 0,8 mg/kg. The values of PAHs were 6,64 mg/kg in industrial soil, 4,93 mg/kg in agricultural soil, and 4,55 mg/kg and 5,48 mg/kg in the Novi Sad municipality. The lowest value, 0.83 mg/kg, was found for nonagricultural/nonindustrial soils.

  13. Polycyclic aromatic hydrocarbons and pesticides in milk powder.

    Science.gov (United States)

    Dobrinas, Simona; Soceanu, Alina; Popescu, Viorica; Coatu, Valentina

    2016-05-01

    This Research Communication reports analysis of 37 compounds comprising polycyclic aromatic hydrocarbons (PAHs), organochlorine and organophosphate pesticides (OCPS and OPPS) in milk powder (one brand each of commercial infant formulae, follow-on formulae and baby formulae purchased from a local supermarket in Romania). The selected analytes were investigated using gas chromatography-mass spectrometry (GC-MS), gas chromatography with electron capture detector (GC-ECD) and gas chromatography with thermionic sensitive detection (GC-TSD). The estimated limits of detection for most target analytes were in the μg/kg level (range 0·001-0·320 µg/kg). The purpose of the study was to determine the selected analytes, to assess the exposure of babies and infants and to produce data for comparison with tolerable limits according to the European Union Regulations. In most of the samples the organochlorine pesticides values were under the limit of detection. Exceptions were heptachlor epoxide and endosulfan sulphate, the last of which was found in all analysed samples at low concentrations. We also found detectable levels of ethoprophos, parathion-methyl, chlorpyrifos, prothiofos, guthion, disulfoton and fenchlorphos in most of the analysed samples. Benzo[a]pyrene, which is used as an indicator for the presence of PAHs, was not detected in selected samples. The low level of exposure to contaminants indicates that there are no health risks for the infants and babies that consume this brand of milk powder formulae. PMID:27210498

  14. Some carcinogenic polycyclic aromatic hydrocarbons by photoacoustic spectroscopy

    Science.gov (United States)

    Garg, R. K.; Kumar, Pardeep; Ram, R. S.; Zaidi, Zahid H.

    1999-12-01

    Polycyclic aromatic hydrocarbons (PAHs) have attracted spectroscopists, astrophysicts and environmentalist because of their importance in our day to day life. It is well known that epoxides are produced during the metabolism of PAHs and have the requisite chemical reactivity to qualify them for the role as an ultimate carcinogenic form of PAHs. Several carcinogenic PAHs such as 3.4-benzopyrene, 1.2,3.4-dibenzopyrene, 3.4,9.10- dibenzopyrene etc. are found to be present in tobacco smoke and among air pollutants. Although PAH molecules are being studied for last several years by using conventional spectroscopy but no systematic attempt has been made to study non-radiative transitions. In our laboratory, we have studied many PAH molecules by a non-destructive technique with unique capability and sensitivity, known as Photoacoustic (PA) spectroscopy. PA spectroscopy is an analytical and research tool to get information about non-radiative transitions and singlet-triplet electronic transitions, where the conventional spectroscopic technique fails. The study of electronic transitions of some carcinogenic molecules are reported using PA and optical absorption spectra in boric acid glass in the region 250 - 400 nm. The electronic transitions of these molecules observed experimentally, have been interpreted using the optimized geometries and CNDO/S-CI method. A good agreement is found between the experimental and calculated results. Assignments of observed electronic transitions are made on the basis of singlet-triplet electronic transitions. Vibrations attached to these electronic transitions are attributed to the ground state vibrational modes.

  15. Fibrous adsorbent for removal of aqueous aromatic hydrocarbons.

    Science.gov (United States)

    Jung, Yong-Jun; Kiso, Yoshiaki; Oguchi, Tatsuo; Yamada, Toshiro; Takagi, Hiroo; Nishimura, Kazuyuki

    2007-01-01

    Bundles of a strongly hydrophobic fibrous material (p-phenylene-2,6-benzobisoxazole; PBO; Zylon) were employed as an adsorbent for the removal of aqueous aromatic compounds, because the PBO fibers are too rigid to be woven and did not entrap suspended solids. The removal performance for nine kinds of polyaromatic hydrocarbons (PAHs) and di-(2-ethylhexyl) phthalate (DEHP) was evaluated. PAHs and DEHP at initial concentrations of 50 microg L(-1) were removed at 72.5-99.9% and ca. 95%, respectively, although the removal efficiencies were affected by the phase ratio (fiber weight/solution volume). The logarithm of the partition coefficient (log K) for planar PAHs was linearly correlated with the logarithm of the n-octanol/water partition coefficient (log P), but nonplanar PAHs, such as cis-stilbene, p-terphenyl, and o-terphenyl, showed significantly lower adsorption performance. The adsorbed PAHs were not desorbed effectively with CH3CN, CH2Cl2, and toluene. On the other hand, DEHP was effectively desorbed with methanol. PMID:17585293

  16. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review.

    Science.gov (United States)

    Lamichhane, Shanti; Bal Krishna, K C; Sarukkalige, Ranjan

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic micro pollutants which are persistent compounds in the environment due to their hydrophobic nature. Concerns over their adverse effects in human health and environment have resulted in extensive studies on various types of PAHs removal methods. Sorption is one of the widely used methods as PAHs possess a great sorptive ability into the solid media and their low aqueous solubility property. Several adsorbent media such as activated carbon, biochar, modified clay minerals have been largely used to remove PAHs from aqueous solution and to immobilise PAHs in the contaminated soils. According to the past studies, very high removal efficiency could be achieved using the adsorbents such as removal efficiency of activated carbon, biochar and modified clay mineral were 100%, 98.6% and >99%, respectively. PAHs removal efficiency or adsorption/absorption capacity largely depends on several parameters such as particle size of the adsorbent, pH, temperature, solubility, salinity including the production process of adsorbents. Although many studies have been carried out to remove PAHs using the sorption process, the findings have not been consolidated which potentially hinder to get the correct information for future study and to design the sorption method to remove PAHs. Therefore, this paper summarized the adsorbent media which have been used to remove PAHs especially from aqueous solutions including the factor affecting the sorption process reported in 142 literature published between 1934 and 2015. PMID:26820781

  17. Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite

    Science.gov (United States)

    Becker, L.; Bunch, T. E.

    1997-01-01

    In this paper, we confirm our earlier observations of fullerenes (C60 and C70) in the Allende meteorite (Becker et al., 1994a, 1995). Fullerene C60 was also detected in two separate C-rich (approximately 0.5-1.0%) dark inclusions (Heymann et al., 1987) that were hand picked from the Allende sample. The amounts of C60 detected were approximately 5 and approximately 10 ppb, respectively, which is considerably less than what was detected in the Allende 15/21 sample (approximately 100 ppb; Becker et al., 1994a, 1995). This suggests that fullerenes are heterogeneously distributed in the meteorite. In addition, we present evidence for fulleranes, (C60Hx), detected in separate samples by laser desorption (reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The LDMS spectra for the Allende extracts were remarkably similar to the spectra generated for the synthetic fullerane mixtures. Several fullerane products were synthesized using a Rh catalyst (Becker et al., 1993a) and separated using high-performance liquid chromatography (HPLC). Polycyclic aromatic hydrocarbons (PAHs) were also observed ppm levels) that included benzofluoranthene and corannulene, a cup-shaped molecule that has been proposed as a precursor molecule to the formation of fullerenes in the gas phase (Pope et al., 1993).

  18. Anharmonicity and infrared bands of Polycyclic Aromatic Hydrocarbon (PAH) molecules

    Science.gov (United States)

    Petrignani, Annemieke; Maltseva, Elena; Candian, Alessandra; Mackie, Cameron; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander; Oomens, Jos; Buma, Wybren Jan

    2015-08-01

    We present a systematic laboratory study of the CH stretching region in Polycyclic Aromatic Hydrocarbon (PAH) molecules of different shapes and sizes to investigate anharmonic behaviour and address the reliability of the never-validated but universally accepted scaling factors employed in astronomical PAH models. At the same time, new anharmonic theoretical quantum chemistry studies have been performed with the software program Spectro using our experimental data as benchmark. We performed mass and conformational-resolved, high-resolution spectroscopy of cold (~10K) linear and compact PAH molecules starting with naphthalene (C10H8) in the 3-µm CH stretching region. Surprisingly, the measured infrared spectra show many more strong modes than expected. Measurements of the deuterated counterparts demonstrate that these bands are the result of Fermi Resonances. First comparisons with harmonic and anharmonic DFT calculations using Gaussian 09 show that both approximations are not able to reproduce in detail the observed molecular reality. The improved anharmonic calculations performed with Spectro now include the effects of Fermi resonances and have been applied to PAHs for the first time. The analysis of the experimental data is greatly aided by these new theoretical quantum chemistry studies. Preliminary assignments are presented, aided by comparison between the observed rotational contour and the symmetry of candidate bands.

  19. Multiphoton ionization mass spectrometry of nitrated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Tang, Yuanyuan; Imasaka, Tomoko; Yamamoto, Shigekazu; Imasaka, Totaro

    2015-08-01

    In order to suppress the fragmentation and improve the sensitivity for determination of nitrated polycyclic aromatic hydrocarbons (NPAHs), the mechanism of multiphoton ionization was studied for the following representative NPAHs, 9-nitroanthracene, 3-nitrofluoranthene, and 1-nitropyrene. The analytes were extracted from the PM2.5 on the sampling filter ultrasonically, and were measured using gas chromatography/multiphoton ionization/time-of-flight mass spectrometry with a femtosecond tunable laser in the range from 267 to 405 nm. As a result, a molecular ion was observed as the major ion and fragmentation was suppressed at wavelengths longer than 345 nm. Furthermore, the detection limit measured at 345 nm was measured to be the subpicogram level. The organic compounds were extracted from a 2.19 mg sample of particulate matter 2.5 (PM2.5), and the extract was subjected to multiphoton ionization mass spectrometry after gas chromatograph separation. The background signals were drastically suppressed at 345 nm, and the target NPAHs, including 9-nitroanthracene and 1-nitropyrene, were detected, and their concentrations were determined to be 5 and 3 pg/m(3), respectively. PMID:26048831

  20. Photoinduced toxicity of sediment-bound polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, B.M.; Duxbury, C.L.; Marwood, C.A.; Huang, X.D.; Dixon, D.G. [Univ. of Waterloo, Ontario (Canada)

    1994-12-31

    Polycyclic aromatic hydrocarbons (PAHs) are known to be both mutagenic and toxic. Light, in particular UV irradiation, increases their toxicity. Since aquatic plants cannot avoid PAHs or light, they are at risk. However, the major loadings of PAHs are in sediment. In this study the authors examined the assimilation of both intact and photomodified labelled PAHs bound to a surrogate, sediment (sand) by the higher aquatic plant Lemna gibba L. G-3. They found that simulated solar radiation significantly promoted the release of PAHs from sand and their assimilation by Lemna, although assimilation from the solid phase was slower than for chemicals placed directly into the aqueous medium. Toxicity of PAHs bound to sand was then measured by exposing plants to the sand-chemical composite for 8 d. Plants were exposed to both visible and SSR light conditions during this period, and toxicity was measured as inhibition of growth, inhibition of photosynthesis (chlorophyll fluorescence induction) and chlorosis. All three endpoints indicated that PAHs bound to a sediment phase can express phototoxicity and that the effects are most strongly promoted by the UV region of the solar spectrum. The authors have now extended this work to probe the effects of UV-B and PAHs on chloroplast development, with the finding that both stresses inhibit development of the photosynthetic apparatus.

  1. Separation and analysis of aromatic hydrocarbons from two Chinese coals

    Institute of Scientific and Technical Information of China (English)

    DING Ming-jie; LI Wen-dian; XIE Rui-lun; ZONG Ying; CAI Ke-ying; PENG Yao-li; ZONG Zhi-min; XIE Rui-lun; WEI Xian-yong

    2008-01-01

    Separation and analysis of aromatic hydrocarbons (AHs) from coals is of considerable significance for both fuel and non-fuel use of the coals. In present work two Chinese bituminous coals were selected for separation of AHs by ultrasonic extraction with CS2 followed by column chromatography using hexane as eluent. A series of AHs were separated from the two coals and analyzed by GC/MS. FTIR was employed to characterize the raw coals and the extracted residues. The results of GC/MS analysis show that the separated AHs are mono- to tetracyclic arenes, among which the principle AHs are alkyl naphthalenes and phenanthrenes. Obvious differences in the composition and the structure of AHs exist between the two coals, i.e., the AHs from Tongting coal tend to be higher rings compared to those from Pingshuo coal both from the variety and from the abundance of the AHs. FFIR analysis shows that the raw and extracted coals are similar in terms of functional groups, suggesting that the composition and structure of CS extract, especially the AHs, from coals can be used to interpret the coal structure to some extent.

  2. Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil

    International Nuclear Information System (INIS)

    The removal of phenanthrene, anthracene and benzo(a)pyrene added at three different concentrations was investigated with or without earthworms (Eisenia fetida) within 11 weeks. Average anthracene removal by the autochthonous micro-organisms was 23%, 77% for phenanthrene and 13% for benzo(a)pyrene, while it was 51% for anthracene, 47% for benzo(a)pyrene and 100% for phenanthrene in soil with earthworms. At 50 and 100 mg phenanthrene kg-1 E. fetida survival was 91% and 83%, but at 150 mg kg-1 all died within 15 days. Survival of E. fetida in soil amended with anthracene ≤1000 mg kg-1 and benzo(a)pyrene ≤150 mg kg-1 was higher than 80% and without weight loss compared to the untreated soil. Only small amounts of PAHs were detected in the earthworms. It was concluded that E. fetida has the potential to remove large amounts of PAHs from soil, but more work is necessary to elucidate the mechanisms involved. - Addition of earthworms, Eisenia fetida, accelara removal of polycyclic aromatic hydrocarbons from soil

  3. Threshold Energies for Single Carbon Knockout from Polycyclic Aromatic Hydrocarbons

    CERN Document Server

    Stockett, M H; Chen, T; de Ruette, N; Giacomozzi, L; Wolf, M; Schmidt, H T; Zettergren, H; Cederquist, H

    2015-01-01

    We have measured absolute cross sections for ultrafast (fs) single-carbon knockout from Polycyclic Aromatic Hydrocarbon (PAH) cations as functions of He-PAH center-of-mass collision energy in the range 10-200 eV. Classical Molecular Dynamics (MD) simulations cover this range and extend up to 10$^5$ eV. The shapes of the knockout cross sections are well described by a simple analytical expression yielding experimental and MD threshold energies of $E_{th}^{Exp}=32.5\\pm 0.4$ eV and $E_{th}^{MD}=41.0\\pm 0.3$ eV, respectively. These are the first measurements of knockout threshold energies for molecules isolated \\emph{in vacuo}. We further deduce semi-empirical (SE) and MD displacement energies --- \\emph{i.e.} the energy transfers to the PAH molecules at the threshold energies for knockout --- of $T_{disp}^{SE}=23.3\\pm 0.3$ eV and $T_{disp}^{MD}=27.0\\pm 0.3$ eV. The semi-empirical results compare favorably with measured displacement energies for graphene $T_{disp}=23.6$ eV [Meyer \\emph{et al.} Phys. Rev Lett. \\tex...

  4. Investigation of polycyclic aromatic hydrocarbons from coal gasification

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-cang; JIN Bao-sheng; ZHONG Zhao-ping; HUANG Ya-ji; XIAO Rui; LI Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  5. Occupational exposure to Polycyclic Aromatic Hydrocarbons in wood dust

    Science.gov (United States)

    Huynh, C. K.; Schüpfer, P.; Boiteux, P.

    2009-02-01

    Sino-nasal cancer (SNC) represents approximately 3% of Oto-Rhino-Laryngology (ORL) cancers. Adenocarcinoma SNC is an acknowledged occupational disease affecting certain specialized workers such as joiners and cabinetmakers. The high proportion of woodworkers contracting a SNC, subjected to an estimated risk 50 to 100 times higher than that affecting the general population, has suggested various study paths to possible causes such as tannin in hardwood, formaldehyde in plywood and benzo(a)pyrene produced by wood when overheated by cutting tools. It is acknowledged that tannin does not cause cancer to workers exposed to tea dust. Apart from being an irritant, formaldehyde is also classified as carcinogenic. The path involving carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs) emitted by overheated wood is attractive. In this study, we measured the particle size and PAHs content in dust emitted by the processing of wood in an experimental chamber, and in field situation. Quantification of 16 PAHs is carried out by capillary GC-ion trap Mass Spectrometric analysis (GC-MS). The materials tested are rough fir tree, oak, impregnated polyurethane (PU) oak. The wood dust contains carcinogenic PAHs at the level of μg.g-1 or ppm. During sanding operations, the PU varnish-impregnated wood produces 100 times more PAHs in dust than the unfinished wood.

  6. Occupational exposure to Polycyclic Aromatic Hydrocarbons in wood dust

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, C K; Schuepfer, P; Boiteux, P, E-mail: chuynh@hospvd.c [Institute for Work and Health, rue du Bugnon 21, CH-1005 Lausanne (Switzerland)

    2009-02-01

    Sino-nasal cancer (SNC) represents approximately 3% of Oto-Rhino-Laryngology (ORL) cancers. Adenocarcinoma SNC is an acknowledged occupational disease affecting certain specialized workers such as joiners and cabinetmakers. The high proportion of woodworkers contracting a SNC, subjected to an estimated risk 50 to 100 times higher than that affecting the general population, has suggested various study paths to possible causes such as tannin in hardwood, formaldehyde in plywood and benzo(a)pyrene produced by wood when overheated by cutting tools. It is acknowledged that tannin does not cause cancer to workers exposed to tea dust. Apart from being an irritant, formaldehyde is also classified as carcinogenic. The path involving carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs) emitted by overheated wood is attractive. In this study, we measured the particle size and PAHs content in dust emitted by the processing of wood in an experimental chamber, and in field situation. Quantification of 16 PAHs is carried out by capillary GC-ion trap Mass Spectrometric analysis (GC-MS). The materials tested are rough fir tree, oak, impregnated polyurethane (PU) oak. The wood dust contains carcinogenic PAHs at the level of mug.g{sup -1} or ppm. During sanding operations, the PU varnish-impregnated wood produces 100 times more PAHs in dust than the unfinished wood.

  7. Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash

    Energy Technology Data Exchange (ETDEWEB)

    Ping Sun; Panuwat Taerakul; Linda K. Weavers; Harold W. Walker [Ohio State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

    2005-10-01

    Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAH concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.

  8. Source and deposition of polycyclic aromatic hydrocarbons to Shanghai, China

    Institute of Scientific and Technical Information of China (English)

    Lili Yan; Xiang Li; Jianmin Chen; Xinjun Wang; Jianfei Du; Lin Ma

    2012-01-01

    Despite recent efforts to investigate the distribution and fate of polycyclic aromatic hydrocarbons (PAHs) in air,water,and soil,very little is known about their temporal change in wet deposition.As a result of increased attention to public health,a large-scale survey on the deposition flux and distribution of PAH contamination in rainwater was urgently conducted in Shanghai,China.In this study,163 rainwater samples were collected from six sites,and 15 PAH compounds were detected by the use of a simple solid phase microextraction (SPME) technique coupled with gas chromatography-mass spectrometry.The dominant PAH species monitored were naphthalene,phenanthrene,anthracene,and fluoranthene.The concentration of total PAHs per event was between 74 and 980 ng/L,with an average value of 481 ng/L,which is at the high end of worldwide figures.The annual deposition flux of PAHs in rainwater was estimated to be 4148 kg/yr in the Shanghai area,suggesting rainfall as a major possible pathway for removing PAHs from the atmosphere.Diagnostic analysis by the ratios of An/178 and F1/F1+Py suggested that combustion of grass,wood,and coal was the major contributor to PAHs in the Shanghai region.Back trajectory analysis also indicated that the pollutant sources could be from the southern part of China.

  9. Polycyclic aromatic hydrocarbon in urban soil from Beijing, China

    Institute of Scientific and Technical Information of China (English)

    LI Xing-hong; MA Ling-ling; LIU Xiu-fen; FU Shan; CHENG Hang-xin; XU Xiao-bai

    2006-01-01

    Polycyclic aromatic hydrocarbons (EPA-PAHs) in the urban surface soils from Beijing were determined using gas chromatography and mass spectrometry (GC-MS). It is significantly complementary for understanding the PAHs pollution in soil of integrated Beijing city on the basis of the information known in the outskirts. The total concentration of 16 EPA-PAH was from 0.467 to 5.470 μg/g and was described by the contour map. Compound profiles presented that the 4-, 5- and 6-ring PAHs were major compositions. The correlation analysis showed that PAHs have the similar source in the most sampling sites and BaP might be considered as the indicator of PAHs. Characteristic ratios of anthracene (An)/(An+ phenanthrene (Phe)), fluoranthene (Flu)/(Flu+pyrene (Pyr)) and benzo[a]pyrene (BaP)/benzo[g,h,i]perylene (BghiP) indicated that the PAHs pollutants probably mainly originated from the coal combustion and it was not negligible from vehicular emission. The level of PAHs in our study area was compared with other studies.

  10. Polycylcic Aromatic Hydrocarbons (PAH's) in dense cloud chemistry

    CERN Document Server

    Wakelam, Valentine

    2008-01-01

    Virtually all detailed gas-phase models of the chemistry of dense interstellar clouds exclude polycyclic aromatic hydrocarbons (PAH's). This omission is unfortunate because from the few studies that have been done on the subject, it is known that the inclusion of PAH's can affect the gas-phase chemistry strongly. We have added PAH's to our network to determine the role they play in the chemistry of cold dense cores. In the models presented here, we include radiative attachment to form PAH-, mutual neutralization between PAH anions and small positively-charged ions, and photodetachment. We also test the sensitivity of our results to changes in the size and abundance of the PAH's. Our results confirm that the inclusion of PAH's changes many of the calculated abundances of smaller species considerably. In TMC-1, the general agreement with observations is significantly improved contrary to L134N. This may indicate a difference in PAH properties between the two regions. With the inclusion of PAH's in dense cloud c...

  11. Polycyclic aromatic hydrocarbons in insular and coastal soils of the Russian Arctic

    Science.gov (United States)

    Abakumov, E. V.; Tomashunas, V. M.; Lodygin, E. D.; Gabov, D. N.; Sokolov, V. T.; Krylenkov, V. A.; Kirtsideli, I. Yu.

    2015-12-01

    The content and individual component compositions of polycyclic aromatic hydrocarbons in polar soils of the Russian Arctic sector have been studied. The contamination of soils near research stations is identified from the expansion of the range of individual polycyclic aromatic hydrocarbons, the abrupt increase in the content of heavy fractions, and the accumulation of benzo[ a]pyrene. Along with heavy hydrocarbons, light hydrocarbons (which are not only natural compounds, but also components of organic pollutants) are also accumulated in the contaminated soils. Heavy polycyclic aromatic hydrocarbons are usually of technogenic origin and can serve as markers of anthropogenic impact in such areas as Cape Sterligov, Cape Chelyuskin, and the Izvestii TsIK Islands. The content of benzo[ a]pyrene, the most hazardous organic toxicant, appreciably increases in soils around the stations, especially compared to the control; however, the level of MPC is exceeded only for the soils of Cape Chelyuskin.

  12. Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark

    DEFF Research Database (Denmark)

    Feilberg, A.; Poulsen, M.W.B.; Nielsen, T.;

    2001-01-01

    The occurrence of selected nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) associated with atmospheric particulate matter has been investigated at an urban site and at a semi-rural site. For this purpose an analysis method based on gas chromatography and tandem ion trap mass spectrometry has...... been developed and applied. The nitro-PAK levels have been compared with levels of other air pollutants including unsubstituted PAHs, inorganic gases and particulate matter, as well as with meteorological parameters. Correlations and concentration ratios suggest that the dominant source of 9...

  13. Oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) and their parent-PAHs in soil

    OpenAIRE

    Bandowe, Benjamin Acham Musa

    2010-01-01

    In spite of the higher toxicity of oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) than of their parent-PAHs, there are only a few studies of the concentrations, composition pattern, sources and fate of OPAHs in soil, the presumably major environmental sink of OPAHs. This is related to the fact that there are only few available methods to measure OPAHs together with PAHs in soil. rnThe objectives of my thesis were to (i) develop a GC/MS-based method to measure OPAHs and their paren...

  14. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine.

    Science.gov (United States)

    Zhu, Linli; Xu, Hui

    2014-09-01

    Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons.

  15. Putting corannulene in its place. Reactivity studies comparing corannulene with other aromatic hydrocarbons.

    Science.gov (United States)

    George, Stephen R D; Frith, Thomas D H; Thomas, Donald S; Harper, Jason B

    2015-09-14

    A series of aromatic hydrocarbons were investigated so as to compare the reactivity of corannulene with planar aromatic hydrocarbons. Corannulene was found to be more reactive than benzene, naphthalene and triphenylene to Friedel-Crafts acylation whilst electrophilic aromatic bromination was also used to confirm that triphenylene was less reactive than corannulene and that pyrene, perylene and acenaphthene were more so. The stabilisation of a neighbouring carbocation by the various aromatic systems was investigated through consideration of the rates of methanolysis of a series of benzylic alcohols. The reactivity series was found to parallel that observed for the electrophilic aromatic substitutions and both series are supported by computational studies. As such, a reactivity scale was devised that showed that corannulene was less reactive than would be expected for an aromatic planar species of similar pi electron count. PMID:26220565

  16. Retention behavior of polycyclic aromatic hydrocarbons in supercritical fluid chromatography on a chemically bonded stationary phases based upon liquid-crystalline polymer

    Energy Technology Data Exchange (ETDEWEB)

    Gritti [Bordeaux I Univ., Pessac (France). INSCPB; Bordeaux I Univ., Pessac (France). CRPP; Felix, G. [Bordeaux I Univ., Pessac (France). INSCPB; Achard, M.F.; Hardouin, F. [Bordeaux I Univ., Pessac (France). CRPP

    2001-02-01

    The retention behavior of a set of polycyclic hydrocarbons in supercritical fluid chromatography have been studied on a chemically bonded stationary phase based upon a side chain liquid crystalline polymer (LCP) with carbon dioxide-based mobile phase. The effects of the mobile phase pressure, column temperature and amount of mobile phase organic modifier have been investigated in order to detect a possible structural change in the liquid crystal polymer linked to the silica support. The influence of these factors on the selectivity coefficients has also been studied. Two distinctive behaviors with temperature are noted at low pressure on the one hand and at higher pressure on the other. This change in behavior is based on the density of the supercritical CO{sub 2} and the PAH volatility rather than on any specific stationary phase structural change. Both lower mobile phase pressure and amount of mobile phase modifier are required to obtain better selectivities. Better planarity recognition is observed in SFC than in HPLC with these new bonded liquid crystal stationary phases. The bonded liquid crystal phase is only weakly affected by the addition of organic modifier in the supercritical CO{sub 2}. (orig.)

  17. Quantitative determination of hydroxy polycylic aromatic hydrocarbons as a biomarker of exposure to carcinogenic polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Woudneh, Million B; Benskin, Jonathan P; Grace, Richard; Hamilton, M Coreen; Magee, Brian H; Hoeger, Glenn C; Forsberg, Norman D; Cosgrove, John R

    2016-07-01

    A high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) method was developed for quantitative analysis of hydroxy polycyclic aromatic hydrocarbons (OH-PAHs). Four hydroxy metabolites of known and suspected carcinogenic PAHs (benzo[a]pyrene (B[a]P), benz[a]anthracene (B[a]A), and chrysene (CRY)) were selected as suitable biomarkers of PAH exposure and associated risks to human health. The analytical method included enzymatic deconjugation, liquid - liquid extraction, followed by derivatization with methyl-N-(trimethylsilyl) trifluoroacetamide and instrumental analysis. Photo-induced oxidation of target analytes - which has plagued previously published methods - was controlled by a combination of minimizing exposure to light, employing an antioxidant (2-mercaptoethanol) and utilizing a nitrogen atmosphere. Stability investigations also indicated that conjugated forms of the analytes are more stable than the non-conjugated forms. Accuracy and precision of the method were 77.4-101% (<4.9% RSD) in synthetic urine and 92.3-117% (<15% RSD) in human urine, respectively. Method detection limits, determined using eight replicates of low-level spiked human urine, ranged from 13 to 24pg/mL. The method was successfully applied for analysis of a pooled human urine sample and 78 mouse urine samples collected from mice fed with PAH-contaminated diets. In mouse urine, greater than 94% of each analyte was present in its conjugated form. PMID:27266337

  18. Polycyclic Aromatic Hydrocarbons as Plausible Prebiotic Membrane Components

    OpenAIRE

    Groen, Joost; Deamer, David W.; Kros, Alexander; Ehrenfreund, Pascale

    2012-01-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different p...

  19. Aliphatic and aromatic hydrocarbons in Candiota coal samples: novel series of bicyclic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, A.C.M.L.; Loureiro, M.R.B.; Cardoso, J.N. [Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil). Inst. de Quimica

    1999-07-01

    Gas chromatography - mass spectrometry was used to analyse aliphatic and aromatic fractions obtained from nine samples taken from two different seams of five boreholes in the Candiota coalfield (Lower Permian). The occurrence of certain tetracyclic diterpenoids among the aliphatic hydrocarbons, and the tricyclic diterpenoids simonellite and retene in the aromatic hydrocarbon concentrates, suggest an important input from conifers to the sedimentary biomass. This may explain the origin of a novel series of saturated and aromatic bicyclic compounds detected in the extracts which may be structurally related to the same precursor, possibly a conifer resin-derived tricyclic diterpenoid.

  20. Near Infrared Spectra of Large Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J.

    The widespread, mid-IR interstellar emission features at 3.3, 6.2, 7.7, 8.6, and 11.2 microns are generally attributed to vibrationally excited polycyclic aromatic hydrocarbons (PAHs). Since these features typcially originate from radiation-rich regions, it has been generally thought that UV photons must dominate the interstellar excitation process since PAHs have very strong UV absorption bands. However, observations have shown that lower energy photons can also pump the emission (Aitken and Roche, Uchida and Sellgren), raising questions about the PAH model. Although it has long been known that larger PAHs should absorb at longer wavelengths (e.g. Schutte et. al., Salama et al., Li and Draine) data was not available for the isolated, neutral and ionized PAHs of sizes comparable to those thought responsible for the interstellar emission features. Here the matrix-isolated near-IR (NIR) spectra (from 0.7 to 2.5 microns) are presented for the anions and cations of PAHs ranging in size from C34H16 to C50H22. These molecules are characterized by strong absorption bands in this region, bands that can account for the emission of the interstellar features from UV poor regions. These NIR PAH transitions could also contribute to the extinction curve associated with the diffuse interstellar medium. For example, band overlap, as expected from a mixture of PAHs, can contribute to the continuum. Overlapping broad bands could lead to slight undulations in the continuum reminiscent of the Very Broad Structure (VBS, e.g. Hayes et al.). Furthermore, as previously pointed out, individual PAH bands may contribute to the diffuse interstellar band (DIB) spectrum (e.g. Romanini)

  1. POLYCYCLIC AROMATIC HYDROCARBONS AND THE DIFFUSE INTERSTELLAR BANDS: A SURVEY

    International Nuclear Information System (INIS)

    We discuss the proposal of relating the origin of some of the diffuse interstellar absorption bands (DIBs) to neutral polycyclic aromatic hydrocarbons (PAHs) present in translucent interstellar clouds. An assessment of ionized PAHs will be examined in a future report. The spectra of several cold, isolated gas-phase PAHs have been measured in the laboratory under experimental conditions that mimic the interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early-type stars. This comparison provides-for the first time-accurate upper limits for the abundances of specific PAH molecules along specific lines of sight, something not attainable from IR observations alone. The comparison of these unique laboratory data with high-resolution, high signal-to-noise ratio spectra leads to two major findings: (1) a finding specific to the individual molecules that were probed in this study and, which leads to the clear and unambiguous conclusion that the abundance of these specific neutral PAHs must be very low in the individual translucent interstellar clouds that were probed in this survey (PAH features remain below the level of detection) and, (2) a general finding that neutral PAHs exhibit intrinsic band profiles that are similar to the profile of the narrow DIBs indicating that the carriers of the narrow DIBs must have close molecular structure and characteristics. This study is the first quantitative survey of neutral PAHs in the optical range and it opens the way for unambiguous quantitative searches of PAHs in a variety of interstellar and circumstellar environments.

  2. Generation of polycyclic aromatic hydrocarbons (PAH during woodworking operations

    Directory of Open Access Journals (Sweden)

    Evin Danisman Bruschweiler

    2012-10-01

    Full Text Available Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC. Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs. PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools.To determine if PAHs are generated from wood during common woodworking operations, PAHs concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n=30 were collected.Wood dust was generated using tree different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF, beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personnel sampler device during wood working operations. We measured 21 PAHs concentrations in wood dust samples by capillary gas chromatographic-ion trap mass spectrometric analysis (GC-MS.Total PAH concentrations in wood dust varied greatly (0.24 – 7.95 ppm with the lowest being in MDF dust and the highest in wood melamine dust. Personal exposures to PAHs observed were between 37.5-119.8 ng m-3 among workers during wood working operations.Our results suggest that PAH exposures during woodworking operation are present and hence could play a role in the mechanism of cancer induction related to wood dust exposure.

  3. The C--H Stretching Features at 3.2--3.5 Micrometer of Polycyclic Aromatic Hydrocarbons with Aliphatic Sidegroups

    CERN Document Server

    Yang, Xuejuan; Glaser, Rainer; Zhong, Jianxin

    2016-01-01

    The so-called unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometer are ubiquitously seen in a wide variety of astrophysical regions. The UIE features are characteristic of the stretching and bending vibrations of aromatic hydrocarbon materials, e.g., polycyclic aromatic hydrocarbon (PAH) molecules. The 3.3 micrometer aromatic C--H stretching feature is often accompanied by a weaker feature at 3.4 micrometer. The latter is often thought to result from the C--H stretch of aliphatic groups attached to the aromatic systems. The ratio of the observed intensity of the 3.3 micrometer aromatic C--H feature to that of the 3.4 micrometer aliphatic C--H feature allows one to estimate the aliphatic fraction of the UIE carriers, provided that the intrinsic oscillator strengths of the 3.3 micrometer aromatic C--H stretch (A3.3) and the 3.4 micrometer aliphatic C--H stretch (A3.4) are known. While previous studies on the aliphatic fraction of the UIE carriers were mostly based on the A3.4...

  4. Effect of the Structure of Cations and Anions of Ionic Liquids on Separation of Aromatics from Hydrocarbon Mixtures

    Institute of Scientific and Technical Information of China (English)

    Liu Yansheng; Zhang Zhongxin; Zhang Guofu; Liu Zhichang; Hu Yufeng; Shi Quan; Ji Dejun

    2006-01-01

    The effects of the structure of typical cations and anions of ionic liquids on the separation of benzene and toluene from aromatic/paraffin mixtures were studied. The results showed that the corresponding separation factors were considerably larger than those of the traditional solvents (Benzene+Hexane+sulfolane), and that the ionic liquids could be used as novel solvents for the separation of aromatics from hydrocarbon mixtures. The key parameters governing the ability of ionic liquids for separating aromatics from hydrocarbon sources were investigated. It was found that the effectiveness of the ionic liquids, based on the same anion, changed in the cation order of [BIqu]+< [BPy]+< [BMIM]+. The selectivity of the ionic liquid toward aromatics decreased apparently with the increasing length of the substituted alkyl chain of its cationic head ring. The separation factors, based on the same cation, changed in the anion order of [Tf2N]-<[PF6]-<[BF4]-<[C2H5SO4]-. The solubilities of the aromatics were greater in the ionic liquids based on the former three anions than that in the ionic liquids involving [C2H5SO4]-.

  5. Retention mechanism for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography with monomeric stationary phases.

    Science.gov (United States)

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2011-12-23

    Reversed-phase liquid chromatography (RPLC) is the foremost technique for the separation of analytes that have very similar chemical functionalities, but differ only in their molecular shape. This ability is crucial in the analysis of various mixtures with environmental and biological importance including polycyclic aromatic hydrocarbons (PAHs) and steroids. A large amount of effort has been devoted to studying this phenomenon experimentally, but a detailed molecular-level description remains lacking. To provide some insight on the mechanism of shape selectivity in RPLC, particle-based simulations were carried out for stationary phases and chromatographic parameters that closely mimic those in an experimental study by Sentell and Dorsey [J. Chromatogr. 461 (1989) 193]. The retention of aromatic hydrocarbons ranging in size from benzene to the isomeric PAHs of the formula C(18)H(12) was examined for model RPLC systems consisting of monomeric dimethyl octadecylsilane (ODS) stationary phases with surface coverages ranging from 1.6 to 4.2 μmol/m(2) (i.e., stationary phases yielding low to intermediate shape selectivity) in contact with a 67/33 mol% acetonitrile/water mobile phase. The simulations show that the stationary phase acts as a very heterogeneous environment where analytes with different shapes prefer different spatial regions with specific local bonding environments of the ODS chains. However, these favorable retentive regions cannot be described as pre-existing cavities because the chain conformation in these local stationary phase regions adapts to accommodate the analytes.

  6. POLYCYCLIC AROMATIC HYDROCARBON CONTAMINATION LEVELS IN COLLECTED SAMPLES FROM VICINITY OF A HIGHWAY

    Directory of Open Access Journals (Sweden)

    S. V. Samimi ، R. Akbari Rad ، F. Ghanizadeh

    2009-01-01

    Full Text Available Tehran as the biggest city of Iran with a population of more than 10 millions has potentially high pollutant exposures of gas oil and gasoline combustion from vehicles that are commuting in the highways every day. The vehicle exhausts contain polycyclic aromatic hydrocarbons, which are produced by incomplete combustion and can be directly deposited in the environment. In the present study, the presence of polycyclic aromatic hydrocarbons contamination in the collected samples of a western highway in Tehran was investigated. The studied location was a busy highway in Tehran. High performance liquid chromatography equipped with florescence detector was used for determination of polycyclic aromatic hydrocarbons concentrations in the studied samples. Total concentration of the ten studied polycyclic aromatic hydrocarbons compounds ranged from 11107 to 24342 ng/g dry weight in the dust samples and increased from 164 to 2886 ng/g dry weight in the soil samples taken from 300 m and middle of the highway, respectively. Also the average of Σ PAHs was 1759 ng/L in the water samples of pools in parks near the highway. The obtained results indicated that polycyclic aromatic hydrocarbons contamination levels were very high in the vicinity of the highway.

  7. Bioremediation of Mixtures of High Molecular Weight Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Xu, H.; Wu, J.; Shi, X.; Sun, Y.

    2014-12-01

    Although bioremediation has been considered as one of the most promising means to remove polycyclic aromatic hydrocarbons (PAHs) from polluted environments, the efficacy of PAHs bioremediation still remains challenged, especially for high molecular weight PAHs (HMW PAHs) and their mixtures. This study was focused on (a) isolation and characterization of pure strain and mixed microbial communities able to degrade HMW PAHs and (b) further evaluation of the ability of the isolated microbes to degrade HMW PAHs mixtures in the absence and presence of indigenous flora. Fluoranthene, benzo[b]fluoranthene and pyrene were selected as the representative HMW PAHs in this study. A pure bacterial strain, identified as Herbaspirillum chlorophenolicum FA1, was isolated from activated sludge. A mixed bacterial community designated as consortium-4 was isolated from petroleum contaminated soils, containing Pseudomonas sp. FbP1、Enterobacter sp. FbP2、Hydrogenophaga sp. FbP3 and Luteolibacter pohnpeiensis. FbP4. To our knowledge, this is the first study to demonstrate that bacterial strains of Herbaspirillum chlorophenolicum FA1 and Luteolibacter pohnpeiensis. FbP4 can also degrade fluoranthene, benzo[b]fluoranthene and pyrene. Experiment results showed that both strain FA1 and consortium-4 could degrade fluoranthene, benzo[b]fluoranthene and pyrene within a wide range of temperature, pH and initial PAHs concentration. Degradation of HMW PAHs mixtures (binary and ternary) demonstrated the interactive effects that can alter the rate and extent of biodegradation within a mixture. The presence of indigenous flora was found to either increase or decrease the degradation of HMW PAHs, suggesting possible synergistic or competition effects. Biodegradation kinetics of HMW PAHs for sole substrates, binary and ternary systems was evaluated, with the purpose to better characterize and compare the biodegradation process of individual HMW PAH and mixtures of HMW PAHs. Results of this study

  8. The Origins of Polycyclic Aromatic Hydrocarbons: Are They Everywhere?

    Science.gov (United States)

    Allamandola, L. J.; Morrison, David (Technical Monitor)

    1994-01-01

    During the past 15 years considerable progress in observational techniques has been achieved in the middle-infrared region (5000-500 per centimeter, 2-20 micron), the region where most diagnostic molecular vibrations occur. Spectra of many different astronomical infrared sources, some deeply embedded in dark molecular clouds and others at their edges, are now available. These spectra provide a powerful probe, not only for the identification of interstellar molecules in both the gas and solid phases, but also of the physical and chemical conditions which prevail in these two very different domains. The two lectures will focus on the evidence that polycyclic aromatic hydrocarbons (PAHs) are an important, ubiquitous and abundant interstellar species. PAHs are. extremely stable species which can range in size from a few angstroms across to several hundred angstroms (PAHs are also the building blocks of amorphous carbon particles). This identification rests on the suggestive agreement between the laboratory spectra of PAHs with a set of IR emission bands which emanate from many different sources where ultraviolet starlight impinges on a "dusty" region. The picture is that individual PAHs are first pumped into highly vibrationally excited states and relax by fluorescence at their fundamental vibrational frequencies. That PAHs are a ubiquitous interstellar component has serious ramifications in other spectral regions as well, including the strong extinction in the ultraviolet, and the classic visible diffuse interstellar bands discovered more than 50 years ago (but unexplained to this day) The first part of the course will focus on the interpretation of astronomical spectra. The second lecture will start by showing how recent laboratory data on PAHs taken under realistic interstellar conditions has con borated the PAH hypothesis and led to great insight into the conditions in the PAH containing regions. This lecture will end by reviewing the ever-increasing evidence for

  9. Aromatic hydrocarbons in the atmospheric environment. Part III: personal monitoring

    Science.gov (United States)

    Ilgen, E.; Levsen, K.; Angerer, J.; Schneider, P.; Heinrich, J.; Wichmann, H.-E.

    As part of a larger study, personal sampling of the aromatic hydrocarbons benzene, toluene, ethylbenzene and the isomeric xylenes (BTEX) was carried out by 55 nonsmoking volunteers for a period of 14 days. Thirty-nine persons lived in a rural area near Hannover (Germany) with hardly any traffic at all, while 16 persons lived in a high-traffic city street in Hannover. The personal exposure level of the persons in the rural area (some commuting to Hannover) was: 2.9, 24.8, 2.4 and 7.7 μg m -3 for benzene, toluene, ethylbenzene and the sum of xylenes, respectively, while the corresponding data for the high traffic city streets were 4.0, 22.2, 2.8 and 9.7 μg m -3 (geometric means). Four microenvironments have been monitored which contribute to the total exposure to BTEX, i.e. the home, the outdoor air, the workplace and the car cabin. The most important microenvironment for non-working persons is the private home. The concentration of most BTEX in the private home is almost equal to the personal exposure level, demonstrating that the indoor pollution in the home makes by far the highest contribution to the total exposure. For working people (mostly office workers), the workplace is the second most important microenvironment contributing to the total BTEX exposure. Taking all working persons into consideration (independent of the location of their private home) the personal exposure level is higher by a factor of 1.2-1.4 than that of the workplace (for toluene this factor is 2.2). As already found by others, very high BTEX concentrations may be found in car cabins, in particular, if the engine is gasoline-driven. In the cabin of 44 cars in the rural/urban area average benzene concentrations (geometric mean) of 12/14 μg m -3 and a maximum value of ˜550 μg m -3 were found. On average, the participating volunteers drove their car for 45 min day -1 (i.e. 3% of the day). Nevertheless, the car cabin constitutes about 10% of the total benzene exposure. Refueling of the

  10. Emissions of polycyclic aromatic hydrocarbons from coking industries in China

    Institute of Scientific and Technical Information of China (English)

    Ling Mu; Lin Peng; Junji Cao; Qiusheng He; Fan Li; Jianqiang Zhang; Xiaofeng Liu

    2013-01-01

    This study set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emission from coking industries,with field samplings conducted at four typical coke plants.For each selected plant,stack flue gas samples were collected during processes that included charging coal into the ovens (CC),pushing coke (PC) and the combustion of coke-oven gas (CG).Sixteen individual PAHs on the US EPA priority list were analyzed by gas chromatography/mass spectrometry (GC/MS).Results showed that the total PAH concentrations in the flue gas ranged from 45.776 to 414.874 μg/m3,with the highest emission level for CC (359.545 μg/m3).The concentration of PAH emitted from the CC process in CP1 (stamp charging) was lower than that from CP3 and CP4 (top charging).Low-molecular-weight PAHs (i.e.,two-to three-ring PAHs) were predominant contributors to the total PAH contents,and Nap,AcPy,Flu,PhA,and AnT were found to be the most abundant ones.Total BaPeq concentrations for CC (2.248 iμg/m3) were higher than those for PC (1.838 μg/m3) and CG (1.082 μg/m3),and DbA was an important contributor to carcinogenic risk as BaP in emissions from coking processes.Particulate PAH accounted for more than 20% of the total BaPeq concentrations,which were significantly higher than the corresponding contributions to the total PAH mass concentration (5%).Both particulate and gaseous PAH should be taken into consideration when the potential toxicity risk of PAH pollution during coking processes is assessed.The mean total-PAH emission factors were 346.132 and 93.173 μg/kg for CC and PC,respectively.

  11. Polycyclic aromatic hydrocarbons in the South American environment.

    Science.gov (United States)

    Barra, Ricardo; Castillo, Caroline; Torres, Joao Paulo Machado

    2007-01-01

    Pollution of the environment with polycyclic aromatic hydrocarbons (PAHs) should be a global concern, especially in urbanized areas. In South American countries, where notable increase in urban populations has been observed in the past few years, reliable information about the pollution status of these urban environments is not always easily accessible, and therefore an effort to collect updated information is required. This review attempts to contribute by analyzing the existing information regarding environmental levels of PAHs in some South American countries. A regional trend for environmental PAH information is an uneven contribution, because some countries, such as Bolivia, Peru, Paraguay, and Ecuador, have reported no information at all in the scientific literature, reflecting to a certain extent the different patterns of economic, technical, and scientific development. PAH air monitoring is one of the areas that has received the most attention during the last few years, mainly in Brazil, Chile, and Argentina, where data represent a few geographical areas within the region. PAH levels in air from some urban areas in Argentina, Brazil, and Chile, considered moderate to high (100-1000ng/m3), are probably among the highest values reported in the open literature. Urbanization, vehicle pollution, and wood fires are the principal contributors to the high reported levels. In more temperate areas, a clear distinction is observed between summer and winter levels. PAH monitoring in soils is very limited within the region, with few data available, and most information indicates widespread pollution. In Brazil, values for many representative ecosystems were found. In Chile, data from forestry and agricultural areas indicate in general low concentrations, in spite of a relatively high detection frequency. Pollution levels in soils are highly dependent on their closeness to PAH sources and certain cultural practices (agricultural burnings, forest fires, etc.). Water PAH

  12. Polycyclic aromatic hydrocarbons in the South American environment.

    Science.gov (United States)

    Barra, Ricardo; Castillo, Caroline; Torres, Joao Paulo Machado

    2007-01-01

    Pollution of the environment with polycyclic aromatic hydrocarbons (PAHs) should be a global concern, especially in urbanized areas. In South American countries, where notable increase in urban populations has been observed in the past few years, reliable information about the pollution status of these urban environments is not always easily accessible, and therefore an effort to collect updated information is required. This review attempts to contribute by analyzing the existing information regarding environmental levels of PAHs in some South American countries. A regional trend for environmental PAH information is an uneven contribution, because some countries, such as Bolivia, Peru, Paraguay, and Ecuador, have reported no information at all in the scientific literature, reflecting to a certain extent the different patterns of economic, technical, and scientific development. PAH air monitoring is one of the areas that has received the most attention during the last few years, mainly in Brazil, Chile, and Argentina, where data represent a few geographical areas within the region. PAH levels in air from some urban areas in Argentina, Brazil, and Chile, considered moderate to high (100-1000ng/m3), are probably among the highest values reported in the open literature. Urbanization, vehicle pollution, and wood fires are the principal contributors to the high reported levels. In more temperate areas, a clear distinction is observed between summer and winter levels. PAH monitoring in soils is very limited within the region, with few data available, and most information indicates widespread pollution. In Brazil, values for many representative ecosystems were found. In Chile, data from forestry and agricultural areas indicate in general low concentrations, in spite of a relatively high detection frequency. Pollution levels in soils are highly dependent on their closeness to PAH sources and certain cultural practices (agricultural burnings, forest fires, etc.). Water PAH

  13. Occurrence and transformation of tricyclic aromatic hydrocarbons in low rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Hazai, I.; Alexander, G. (Hungarian Academy of Sciences, Budapest (Hungary). Research Laboratory for Inorganic Chemistry)

    1991-08-01

    Aromatic components of extracts obtained from four low rank coal samples were investigated by gas chromatography-mass spectrometry. A number of compounds were observed for the first time. The tricyclic aromatic hydrocarbons were investigated in detail. They show close similarities in structure to those reported to be formed in laboratory dehydrogenation experiments. The co-occurrence of molecules in the same samples containing additional unsaturation as well as the aromatic ring(s), offers strong support for the hypothesis of progressive aromatization of diterpenoids. A hypothetical diagenetic pathway is proposed to explain the generation of many of the compounds present. In the pathway the following reactions were considered: aromatization (i.e. dehydrogenation), elimination of substituents, methyl shift, isomerization and side chain shortening of fully aromatized species. 40 refs., 5 figs., 2 tabs.

  14. Fast automated dual-syringe based dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    Science.gov (United States)

    Guo, Liang; Tan, Shufang; Li, Xiao; Lee, Hian Kee

    2016-03-18

    An automated procedure, combining low density solvent based solvent demulsification dispersive liquid-liquid microextraction (DLLME) with gas chromatography-mass spectrometry analysis, was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Capitalizing on a two-rail commercial autosampler, fast solvent transfer using a large volume syringe dedicated to the DLLME process, and convenient extract collection using a small volume microsyringe for better GC performance were enabled. Extraction parameters including the type and volume of extraction solvent, the type and volume of dispersive solvent and demulsification solvent, extraction and demulsification time, and the speed of solvent injection were investigated and optimized. Under the optimized conditions, the linearity ranged from 0.1 to 50 μg/L, 0.2 to 50 μg/L, and 0.5 to 50 μg/L, depending on the analytes. Limits of detection were determined to be between 0.023 and 0.058 μg/L. The method was applied to determine PAHs in environmental water samples.

  15. Sedimentary record of polycyclic aromatic hydrocarbons in Lake Erhai,Southwest China

    Institute of Scientific and Technical Information of China (English)

    Jianyang Guo; Zhang Liang; Haiqing Liao; Zhi Tang; Xiaoli Zhao; Fengchang Wu

    2011-01-01

    The temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was investigated in a sediment core from Lake Erhal in Southwest China using gas-chromatography/mass spectrometry (GC/MS) method.The total organic carbon (TOC) normalized total PAHs concentrations (sum of US Environmental Protection Agency proposed 16 priority PAHs) ranged from 31.9 to 269 μg/g dry weight (dw),and were characterized by a slowly increasing stage in the deeper sediments and a sharp increasing stage in the upper sediments.The PAHs in the sediments were dominated by low molecular weight (LMW) PAHs,suggesting that the primary source of PAHs was low- and moderate temperature combustion processes.However,both the significant increase in high molecular weight (HMW) PAHs in the upper sediments and the vertical profile of diagnostic ratios pointed out a change in the sources of PAHs from low-temperature combustion to high-temperature combustion.The ecotoxicological assessment based on consensus-based sediment quality guidelines implied that potential adverse biological impacts were possible for benzo(ghi)perylenelene and most LMW PAHs.In addition,the total BaP equivalent quotient of seven carcinogenic polycyclic aromatic hydrocarbons (BaA,CHr,BbF,BkF,BaP,DBA and INP) was 106.1 ng/g,according to the toxic equivalency factors.Although there was no great biological impact associated with the HMW PAlls,great attention should be paid to these PAH components based on their rapid increase in the upper sediments.

  16. Variability of Biological Degradation of Aromatic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 aromatic hydrocarbons (benzene, toluene, o-xylene, p-dichlorobenzene, o-dichlorobenzene, naphthalene and biphenyl) was studied for 149 days in replicate laboratory batch experiments with groundwater and sediment from 8 localities representing a 15 m × 30 m...... section of an aerobic aquifer. Compared to biologically deactivated control experiments all compounds were biologically degraded. Degradation curves were very reproducible for some compounds (benzene, toluene, o-xylene, o-dichlorobenzene and p-dichlorobenzene) and less reproducible for other (naphthalene...... and biphenyl). Based on observed length of lag phases, length of the degradation periods and percent degradation, the variation among the 8 localities appears to be modest. However, detailed examination of the degradation rates revealed statistically significant variation among localities for benzene, toluene...

  17. Application of random forests method to predict the retention indices of some polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Goudarzi, N; Shahsavani, D; Emadi-Gandaghi, F; Chamjangali, M Arab

    2014-03-14

    In this work, a quantitative structure-retention relationship (QSRR) investigation was carried out based on the new method of random forests (RF) for prediction of the retention indices (RIs) of some polycyclic aromatic hydrocarbon (PAH) compounds. The RIs of these compounds were calculated using the theoretical descriptors generated from their molecular structures. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. Optimization of these parameters showed that in the point m=70, nt=460, the RF method can give the best results. Also, performance of the RF model was compared with that of the artificial neural network (ANN) and multiple linear regression (MLR) techniques. The results obtained show the relative superiority of the RF method over the MLR and ANN ones.

  18. Estimation of cytogenetic risk among coke oven workers exposed to polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Sureshkumar, Shanmugam; Balachandar, Vellingiri; Devi, Subramaniam Mohana; Arun, Meyyazhagan; Karthickkumar, Alagamuthu; Balamuralikrishnan, Balasubramanian; Sankar, Kathannan; Mustaqahamed, Shafi Ahammed Khan; Dharwadkar, Shanwaz N; Sasikala, Keshavarao; Cho, Ssang-Goo

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) result from the incomplete combustion of natural or synthetic organic materials. The working environment at a coke plant can negatively affect the employed workers who were exposed to coke oven emissions containing PAHs, which formed and released into the environment by the process of pyrolysis of coke. This study aims to analyze the relationship between the exposure of PAHs and the risk of genetic damages such as chromosomal alteration (CA), micronucleus (MN), and DNA damage (PCR-RFLP) in peripheral blood lymphocytes of 27 coke oven workers and equal number of control subjects. The exposed subjects and controls were divided into two groups based on their age (group Icoke oven workers under risk should be monitored for adverse effects of the any long-term exposure. PMID:24040626

  19. [Limit values for polycyclic aromatic hydrocarbons in soil of children's playgrounds--basic criteria and recommendations].

    Science.gov (United States)

    Roscher, E; Liebl, B; Schwegler, U; Schmied, R; Kerscher, G

    1996-01-01

    Elevated concentrations of polycyclic aromatic hydrocarbons (PAK) are often found in the soil of former waste disposal sites, industrial areas, etc. It is desirable and useful to determine orientation values to facilitate and unify the evaluation of contaminations under the aspects of present or planned uses of an area, health protection and decision-making on remedial measures. In the present paper we wish to draw attention to, and discuss problems resulting from, particular characteristics of PAK, e.g. the toxicological property "complete carcinogens" or the necessity of taking into account oral, inhalative and dermal exposure of children on a playground. Based on the discussion, orientation values for benzo[a]pyrene and PAK ("normal" pattern) of 0.5 mg/kg soil and 5 mg/kg soil, respectively, are recommended for top soil of vegetation-free playgrounds. In comparison, deductions carried out by other working groups are presented.

  20. The phototoxicity of polycyclic aromatic hydrocarbons: a theoretical study of excited states and correlation to experiment.

    Science.gov (United States)

    Betowski, Leon D; Enlow, Mark; Riddick, Lee

    2002-06-01

    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHs) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calculated for ten PAHs by several ab initio methods. The main method used for these calculations was the Configuration Interaction approach, modeling excited states as combinations of single substitutions out of the Hartree-Fock ground state. These calculations correlate well with both experimentally measured singlet and triplet state energies and also previous HOMO-LUMO gap energies that approximate the singlet state energies. The excited state calculations then correlate well with general models of photo-induced toxicity based for the PAHs.

  1. [Symptoms of atopy in persons exposed to chronic immunosuppression of polycyclic aromatic hydrocarbons].

    Science.gov (United States)

    Szczeklik, J; Kowalczyk, E; Gałuszka, Z

    1995-01-01

    The frequency of the atopy symptoms was estimated in 126 coke oven workers chronically exposed to polycyclic aromatic hydrocarbons (PAHs). The assessment was based on questionnaire, point skin tests with the allergens of dust, feathers, mould grass as well as on the measurements of total blood serum IgE concentration. The control group was consisted of 75 men, workers of cold rolling mill division where the environmental conditions were much better. It was observed that positive questionnaire data and positive skin tests were significantly less frequent in men exposed to PAHs. The men serum IgE values were not statistically different in both group workers although in coke oven workers the tendency to higher IgE values was observed. It is rather suggested that more useful method might be the measurement of specific serum IgE.

  2. Artificial neural network for modeling the extraction of aromatic hydrocarbons from lube oil cuts

    Energy Technology Data Exchange (ETDEWEB)

    Mehrkesh, A.H.; Hajimirzaee, S. [Islamic Azad University, Majlesi Branch, Isfahan (Iran, Islamic Republic of); Hatamipour, M.S.; Tavakoli, T. [Department of Chemical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2011-03-15

    An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training the ANN model was obtained from a lubricating oil production company. The input parameters of the ANN model were the volumetric flow rates of feed and solvent, the temperatures of feed and solvent, and the disc rotation rate. The output parameters were the volumetric flow rate of the raffinate phase and the extraction yield. In this study, a feed-forward multi-layer perceptron neural network was successfully used to demonstrate the complex relationship between the mentioned input and output parameters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. A molecular dynamics study on slow ion interactions with the polycyclic aromatic hydrocarbon molecule anthracene

    International Nuclear Information System (INIS)

    Atomic collisions with polycyclic aromatic hydrocarbon (PAH) molecules are astrophysically particularly relevant for collision energies of less than 1 keV. In this regime, the interaction dynamics are dominated by elastic interactions. We have employed a molecular dynamics simulation based on analytical interaction potentials to model the interaction of low energy hydrogen and helium projectiles with isolated anthracene (C14H10) molecules. This approach allows for a very detailed investigation of the elastic interaction dynamics on an event by event basis. From the simulation data the threshold projectile kinetic energies above which direct C atom knock out sets in were determined. Anthracene differential energy transfer cross sections and total (dissociation) cross sections were computed for a wide range of projectile kinetic energies. The obtained results are interpreted in the context of PAH destruction in astrophysical environments.

  4. Characterization of polycyclic aromatic hydrocarbons from the diesel engine by adding light cycle oil to premium diesel fuel.

    Science.gov (United States)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chen, Chung-Bang

    2006-06-01

    Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L(-1), respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L(-1), respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.

  5. Probing the role of polycyclic aromatic hydrocarbons in the photoelectric heating within photodissociation regions

    NARCIS (Netherlands)

    Okada, Y.; Pilleri, P.; Berne, O.; Ossenkopf, V.; Fuente, A.; Goicoechea, J. R.; Joblin, C.; Kramer, C.; Roellig, M.; Teyssier, D.; van der Tak, F. F. S.

    2013-01-01

    Aims. We observationally investigate the relation between the photoelectric heating efficiency in photodissociation regions (PDRs) and the charge of polycyclic aromatic hydrocarbons (PAHs), which are considered to play a key role in photoelectric heating. Methods. Using PACS onboard Herschel, we obs

  6. Novel β-cyclodextrin modified quantum dots as fluorescent probes for polycyclic aromatic hydrocarbons (PAHs)

    Institute of Scientific and Technical Information of China (English)

    Cui Ping Han; Hai Bing Li

    2008-01-01

    Water-soluble CdSe/ZnS quantum dots (QDs)were prepared via a simple sonochemical procedure using β-cyclodextrin (CD)as surface coating agent.The QDs displayed a sensitive emission enhancement for anthracene over other related polycyclic aromatic hydrocarbons,and the detection limit was around 1.6 × 10-8 mol/L.

  7. The NASA Ames Polycyclic Aromatic Hydrocarbon Infrared Spectroscopic Database : The Computed Spectra

    NARCIS (Netherlands)

    Bauschlicher, C. W.; Boersma, C.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; de Armas, F. Sanchez; Saborido, G. Puerta; Hudgins, D. M.; Allamandola, L. J.

    2010-01-01

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant t

  8. 多环芳烃的加氢裂化%Hydrocracking of polycyclic aromatic hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    张全信; 刘希尧

    2001-01-01

    This paper reviews the progress on the catalysts, reaction network and reaction mechanism for hydrocracking of polycyclic aromatic hydrocarbons in recent years.%本文综述了近年来多环芳烃加氢裂化反应催化剂、反应网络及反应机理等方面的研究进展。

  9. Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Jonker, M.T.O.; Sinke, A.; Brils, J.M.; Murk, A.J.; Koelmans, A.A.

    2006-01-01

    Many sediments are contaminated with mixtures of oil residues and polycyclic aromatic hydrocarbons (PAHs), but little is known about the toxicity of such mixtures to sediment-dwelling organisms and the change in toxicity on weathering. In the present study, we investigated the effects of a seminatur

  10. Longitudinal study of excretion of metabolites of polycyclic aromatic hydrocarbons in urine from two psoriatic patients

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Poulsen, O M; Menné, T

    1993-01-01

    Coal tar, which is widely used in the treatment of patients with atopic dermatitis, chronic eczema, and psoriasis, contains a large amount of polycyclic aromatic hydrocarbons (PAH). Some of the PAH compounds are known either to be carcinogenic or to potentiate the effects of other carcinogenic...

  11. Gas-phase infrared spectra of cationized nitrogen-substituted polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Galué, Alvaro; Pirali, O.; Oomens, J.

    2010-01-01

    Gas-phase infrared spectra of several ionized nitrogen substituted polycyclic aromatic hydrocarbons (PANHs) have been recorded in the 600-1600 cm(-1) region via IR multiple-photon dissociation (IRMPD) spectroscopy. The UV photoionized PANH ions are trapped and isolated in a quadrupole ion trap where

  12. Gas-phase infrared spectra of cationized nitrogen-substituted polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    H.A. Galué; O. Pirali; J. Oomens

    2010-01-01

    Gas-phase infrared spectra of several ionized nitrogen substituted polycyclic aromatic hydrocarbons (PANHs) have been recorded in the 600-1600 cm-1 region via IR multiple-photon dissociation (IRMPD) spectroscopy. The UV photoionized PANH ions are trapped and isolated in a quadrupole ion trap where t

  13. Availabiltiy and leaching of polycyclic aromatic hydrocarbons: Controlling processes and comparison of testing methods

    NARCIS (Netherlands)

    Roskam, G.; Comans, R.N.J.

    2009-01-01

    We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (¿16 US-EPA PAHs 3412 mg/kg) and gasworks soil (¿PAHs 900 mg/kg), by comparing results from three typical types of leaching tests: a column, se

  14. Extraction of polycyclic aromatic hydrocarbons from soot and sediment : solvent selection and implications for sorption mechanism

    NARCIS (Netherlands)

    Jonker, M.T.O.; Koelmans, A.A.

    2002-01-01

    Soot contains high levels of toxic compounds such as polycyclic aromatic hydrocarbons (PAHs). Extraction of PAHs from soot for quantitative analysis is difficult because the compounds are extremely tightly bound to the sorbent matrix. This study was designed to investigate the effect of solvent type

  15. Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates:A review

    Institute of Scientific and Technical Information of China (English)

    LIU Li-bin; LIU Yan; LIN Jin-ming; TANG Ning; HAYAKAWA Kazuichi; MAEDA Tsuneaki

    2007-01-01

    In the present work,the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of these pretreatment and analytical methods for PAHs are compared in detail. Some comments on the future expectation are also presented.

  16. Polycyclic aromatic hydrocarbons and dust in regions of massive star formation

    NARCIS (Netherlands)

    Peeters, Els

    2002-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are known on earth as a large family of tarry materials naturally present in for example coal and crude oil. In addition, they are also formed in the combustion of all sorts of carbonaceous fuels and hence are found in auto exhaust, cigarette smoke, candle soo

  17. Gas phase adiabatic electron affinities of cyclopenta-fused polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Todorov, P.D.; Koper, C.; van Lenthe, J.H.; Jenneskens, L.W.

    2008-01-01

    The B3LYP/DZP++ adiabatic electron affinity (AEA) of nine (non)-alternant polycyclic aromatic hydrocarbons are reported and discussed. Calculations became feasible for molecules this size by projecting out the near-linearly dependent part of the one-electron basis. Non-alternant PAH consisting of an

  18. Polycyclic aromatic hydrocarbon ionization as a tracer of gas flows through protoplanetary disk gaps

    NARCIS (Netherlands)

    K.M. Maaskant; M. Min; L.B.F.M. Waters; A.G.G.M. Tielens

    2014-01-01

    Context. Planet-forming disks of gas and dust around young stars contain polycyclic aromatic hydrocarbons (PAHs). Aims. We aim to characterize how the charge state of PAHs can be used as a probe of flows of gas through protoplanetary gaps. In this context, our goal is to understand the PAH spectra o

  19. Effect of three polycyclic aromatic hydrocarbons on nodulation of Rhizobium tropici CIAT 899 on Phaseolus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Paredes, Y.; Ferrera-Cerrato, R.; Alarcon, A.

    2009-07-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous organic pollutants that are considered toxic and carcinogenic compounds to living organisms. There us scarce information about the effect of PAH on symbiotic systems such as Azolla-Anabaena, arbuscular mycorrhizal fungi-plants, or legume-rhizobia. (Author)

  20. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography

    NARCIS (Netherlands)

    J.J.H. Haftka; J.R. Parsons; H.A.J. Govers

    2006-01-01

    A gas chromatographic method using Kovats retention indices has been applied to determine the liquid vapour pressure (P-i), enthalpy of vaporization (Delta H-i) and difference in heat capacity between gas and liquid phase (Delta C-i) for a group of polycyclic aromatic hydrocarbons (PAHs). This group

  1. COMPARATIVE STUDIES OF THE EFFECT OF POLYCYCLIC AROMATIC HYDROCARBON GEOMETRY ON THE HYDROLYSIS OF DIOL EPOXIDES

    Science.gov (United States)

    Comparative studies of the effect of polycyclic aromatic hydrocarbon geometry on the hydrolysis of diol epoxides The interaction of the diol epoxides (DEs) of both planar and non-planar PAHs with water have been examined using quantum mechanical and molecular dynamics. Th...

  2. [Retrieval of monocyclic aromatic hydrocarbons with differential optical absorption spectroscopy].

    Science.gov (United States)

    Xie, Pin-Hua; Fu, Qiang; Liu, Jian-Guo; Liu, Wen-Qing; Qin, Min; Li, Ang; Liu, Shi-Sheng; Wei, Qing-Nong

    2006-09-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, e. g. SO2, NO2, O3 etc. However, unlike the absorption spectra of SO2 and NO2, the analysis of aromatic compounds is difficult and strongly suffers from the cross interference of other absorbers (Herzberg bands of oxygen, ozone and sulfur dioxide), especially with relatively low concentrations of aromatic compounds in the atmosphere. In the present paper, the DOAS evaluation of aromatic compounds was performed by nonlinear least square fit with two interpolated oxygen optical density spectra at different path lengths and reference spectra of ozone at different temperature and SO2 cross section to correct the interference from absorbers of O2, O3 and SO2. The measurement of toluene, benzene, (m, p, o) xylene and phenol with a DOAS system showed that DOAS method is suitable for monocyclic aromatic compounds monitoring in the atmosphere. PMID:17112022

  3. Aliphatic and polycyclic aromatic hydrocarbons risk assessment in coastal water and sediments of Khark Island, SW Iran.

    Science.gov (United States)

    Akhbarizadeh, Razegheh; Moore, Farid; Keshavarzi, Behnam; Moeinpour, Alireza

    2016-07-15

    The potential sources and ecotoxicological risks of 26 aliphatic hydrocarbons (AHs), 16 polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPHs) were investigated in coastal water and sediments of Khark Island, SW Iran. The major sources of the contamination were petroleum and petroleum combustion based on the PCA analysis and diagnostic indices of AHs and PAHs, and also ring classification of PAHs. The ecological risk of both individual and multiple PAHs was quite low in sediments compared with screening benchmarks. Likewise, the low concentration of TEQ, MEQ and TEQ(carc) of sediments suggest low toxicity of PAHs in the study area. However, environmental control is recommended to reduce the pollution burden of PAHs in seawater. The human health risk assessment for PAHs through dermal adsorption indicated that the possibility of negative adverse effects of PAHs in sediments is rare but swimming in the vicinity of industrial facilities should be done cautiously. PMID:27207022

  4. Polycyclic Aromatic Hydrocarbons and Breast Cancer: A Review of the Literature.

    Science.gov (United States)

    Korsh, Jessica; Shen, Allison; Aliano, Kristen; Davenport, Thomas

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) exist and persist in the atmosphere due to the incomplete combustion of fossil fuels, and are established human carcinogens. The influence of PAHs on the development of breast cancer, the most commonly diagnosed cancer in women worldwide, remains unclear. As established risk factors only account for approximately 41% of the breast cancer cases in the USA, researchers have sought to uncover environmental factors involved in breast cancer development. The breasts are particularly susceptible to aromatic carcinogenesis, and the implementation of biomarkers has provided promising insights regarding PAH-DNA adducts in breast cancer. The use of biomarkers measuring PAH-DNA adducts assesses exposure to eliminate the bias inherent in self-reporting measures in case-control studies investigating the link between PAHs and cancer. Adduct levels reflect exposure dose as well as how the body responds to this exposure, which is partially attributable to genetic variability. Evidence suggests that exposure to PAHs has a causational effect on breast cancer in humans, yet this interaction is not clearly understood. In vitro and animal-based studies have consistently revealed that exposure to PAHs deleteriously affects breast tissue, but there is no definitive link between these compounds and breast cancer. PMID:26688678

  5. Non-covalent Interactions of Graphene with Polycyclic Aromatic Hydrocarbons

    NARCIS (Netherlands)

    Zygouri, Panagiota; Potsi, Georgia; Mouzourakis, Eleftherios; Spyrou, Konstantinos; Gournis, Dimitrios; Rudolf, Petra

    2015-01-01

    In this mini review we discuss the interactions of polyaromatic hydrocarbons (PAHs) with graphene and the experimental approaches developed so far to create novel graphene/PAH hybrids and composite systems. The utilization of these systems in electrical, biomedical and polymer-reinforcement applicat

  6. Adsorption of polar aromatic hydrocarbons on synthetic calcite

    DEFF Research Database (Denmark)

    Madsen, Lene; Grahl-Madsen, Laila; Grøn, Christian;

    1996-01-01

    The wettability of hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. A model system of synthetic call cite, cyclohexane and the three probe molecules: benzoic acid, benzyl alcohol and benzylamine, have been...

  7. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    NARCIS (Netherlands)

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soi

  8. Polycyclic aromatic hydrocarbons in atmospheric depositions around the Venice Lagoon

    OpenAIRE

    Rossini, Paolo; Matteucci, Gabriele; Raccanelli, Stefano; Favotto, Maurizio; Guerzoni, Stefano; Gattolin, Massimo

    2007-01-01

    Studies have revealed the potential risks to which human health and ecosystems are exposed in the Venice Lagoon, due to the atmospheric deposition of persistent pollutants such as trace metals and organic compounds. A total of 77 atmospheric bulk deposition samples were collected monthly from April 2002 to December 2004, from three sites located in the cities of Mestre and Venice, and inside the industrial area of Porto Marghera. Samples were analyzed by HRGC/HRMS for polycyclic aromatic hydr...

  9. Aromatic Hydrocarbons: Degrading Bacteria in the Desert Soil of Kuwait

    International Nuclear Information System (INIS)

    Soil samples of different levels of oil pollutants were collected from Kuwait's Burgan Oil Field, near an oil lake. The samples represented, highly polluted (8.0% w/w), moderately polluted (2.1%-3.4%) and slightly polluted (2.1%-3.4%) and slightly polluted (0.5- 0.8%). The aromatic fractions of the collected samples were in the range of (0.21-2.57g/100g) soil. (GC) analysis of the aromatic fractions of the resolution of the different individual (PAHs) revealed the presence of (16) different (PAHs) resolved from the aromatic fraction of the highly polluted sample (S3). (15), (14) and (13) individual (PAHs) were identified soil samples (S5), (S2) and (S1, S4, S6) respectively. The most frequent (PAH) was indeno (1, 2, 3-c, d) pyrene (22.5%-45.11%) followed chrysene (13.6%-19.48%). Eight carcinogenic (PAHs) were resolved from the aromatic fractions of the polluted samples. Total carcinogenic (PAHs) recorded in this study were in this study were in the range of (11.53) (forS4) - (510.98) (for S3) ppm. The counts of (CFU) of aromatic degraders (AD) were in the range of (3x10) - (110x 10) (CFU/g) soil (with a percent of (2.2%-69.6%)). The results show that, higher counts of (AD) were recorded from a highly polluted sample (S3), followed by the moderately polluted samples; total of (51) bacteria, that gave presumptive positive biodegradation activities, were isolated and identified (45.1%) of them were isolated and identified. (45.1%) of them were isolated from the highly polluted sample (S3). Total of (13) different species were identified of which Micrococcus luteus was more frequent (23.5) followed by Bacillus licheniformis (19.6%) and Bacillus subtilis (11.8%). The three Pseudomonas species collectively were presented by (11.8%). Five different species proved to be of good activities, they are: Bacillus brevis, Bacillus lichenoformis, Pseudomonas aeruginosa, Pseudomonas stutzeri and Pseudomonas flourescens. The ability of five species and their mixture was

  10. Novel Approach for Evaluating Secondary Organic Aerosol from Aromatic Hydrocarbons: Unified Method for Predicting Aerosol Composition and Formation.

    Science.gov (United States)

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Kacarab, Mary; Cocker, David R

    2016-06-21

    Innovative secondary organic aerosol (SOA) composition analysis methods normalizing aerosol yield and chemical composition on an aromatic ring basis are developed and utilized to explore aerosol formation from oxidation of aromatic hydrocarbons. SOA yield and chemical composition are revisited using 15 years of University of California, Riverside/CE-CERT environmental chamber data on 17 aromatic hydrocarbons with HC:NO ranging from 11.1 to 171 ppbC:ppb. SOA yield is redefined in this work by normalizing the molecular weight of all aromatic precursors to the molecular weight of the aromatic ring [Formula: see text], where i is the aromatic hydrocarbon precursor. The yield normalization process demonstrates that the amount of aromatic rings present is a more significant driver of aerosol formation than the vapor pressure of the precursor aromatic. Yield normalization also provided a basis to evaluate isomer impacts on SOA formation. Further, SOA elemental composition is explored relative to the aromatic ring rather than on a classical mole basis. Generally, four oxygens per aromatic ring are observed in SOA, regardless of the alkyl substitutes attached to the ring. Besides the observed SOA oxygen to ring ratio (O/R ∼ 4), a hydrogen to ring ratio (H/R) of 6 + 2n is observed, where n is the number of nonaromatic carbons. Normalization of yield and composition to the aromatic ring clearly demonstrates the greater significance of aromatic ring carbons compared with alkyl carbon substituents in determining SOA formation and composition. PMID:27177154

  11. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    OpenAIRE

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soils, sediments and groundwater. The mobility and toxicity of the BTEX compounds are of major concern. In situ bioremediation of BTEX by using naturally occurring microorganisms or introduced microor...

  12. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy

    Science.gov (United States)

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-01

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

  13. Participant-Based Monitoring of Indoor and Outdoor Nitrogen Dioxide, Volatile Organic Compounds, and Polycyclic Aromatic Hydrocarbons among MICA-Air Households

    Science.gov (United States)

    The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air c...

  14. Monitoring of polycyclic aromatic hydrocarbons in seafoods from Lake Timsah.

    Science.gov (United States)

    Mostafa, Gamal A

    2002-03-01

    Concentrations of polycyclic aromatic hydrpcarvons (PAHs) in some seafoods caught from Lake Timsah were determined. The tested samples were tilapia fish (Oreochromis aureus), crabs (Portuns pelagicus), bivalves (Venerupis decussata), clams (Strombus tricornis) and gastropods (Munes Sp.). Where these seafoods are locally and favorite consumed foods in the area around the lake (Ismailia governorate). Results showed that crabs contained significantly higher concentrations of both total and carcinogenic PAHs ranging from 1318.6 to 3767.4 and 1230.3 to 3442.2 microg kg(-1), respectively. Meanwhile, clams contained significantly lower levels with mean value of 28.4 microg kg(-1) for total and 24.4 microg kg(-1) for carcinogenic PAHs. The most frequently detected PAHs in the tested samples were indeno(1,2,3-cd)pyrene followed by benzo(a)pyrene, dibenzo(a,h)anthracene, and benzo(b)fluoranthene which are characterized as carcinogenic compounds. PMID:11970818

  15. Analysis of aliphatic and aromatic hydrocarbons in particulate matter in Madrid urban area

    International Nuclear Information System (INIS)

    Levels of n-alkanes and polycyclic aromatic hydrocarbons have been measured in the air particulate matter during six months, from January to June of 1987, in an urban area of Madrid. The hydrocarbons were collected on glass fiber filters by high volumen sampling. The extraction was carried out by Sohxlet and ultrasonic techniques. The extracts were clean-up on silicagel fractionation and the chromatographic analysis was performed by capillary column gas chromatographic. Final results are discussed as well as the immission values related to the possible emission sources. (Author)

  16. IUPAC-NIST Solubility Data Series. 101. Alcohols + Hydrocarbons + Water Part 3. C1-C3 Alcohols + Aromatic Hydrocarbons

    Science.gov (United States)

    Oracz, Paweł; Góral, Marian; Wiśniewska-Gocłowska, Barbara; Shaw, David G.; Mączyński, Andrzej

    2016-09-01

    The mutual solubilities and related liquid-liquid equilibria for 11 ternary systems of C1-C3 alcohols with aromatic hydrocarbons and water are exhaustively and critically reviewed. Reports of experimental determination of solubility that appeared in the primary literature prior to the end of 2012 are compiled. For nine systems, sufficient data are available (two or more independent determinations) to allow critical evaluation. All new data are expressed as mass percent and mole fraction as well as the originally reported units. In addition to the standard evaluation criteria used throughout the Solubility Data Series, an additional criterion was used for each of the evaluated systems. These systems include one binary miscibility gap in the hydrocarbon + water subsystem. The binary tie lines were compared with the recommended values published previously.

  17. Polycyclic aromatic hydrocarbons affect survival and development of common snapping turtle (Chelydra serpentina) embryos and hatchlings

    Energy Technology Data Exchange (ETDEWEB)

    Van Meter, Robin J. [School of Environmental Science, Engineering, and Policy and Department of Bioscience and Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States)]. E-mail: robinjvanmeter@yahoo.com; Spotila, James R. [School of Environmental Science, Engineering, and Policy and Department of Bioscience and Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States)]. E-mail: spotiljr@drexel.edu; Avery, Harold W. [School of Environmental Science, Engineering, and Policy and Department of Bioscience and Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States)]. E-mail: Haltort@aol.com

    2006-08-15

    Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds found in the John Heinz National Wildlife Refuge in Philadelphia, Pennsylvania. We assessed the impact of PAHs and crude oil on snapping turtle development and behavior by exposing snapping turtle eggs from the Refuge and from three clean reference sites to individual PAHs or a crude oil mixture at stage 9 of embryonic development. Exposure to PAHs had a significant effect on survival rates in embryos from one clean reference site, but not in embryos from the other sites. There was a positive linear relationship between level of exposure to PAHs and severity of deformities in embryos collected from two of the clean reference sites. Neither righting response nor upper temperature tolerance (critical thermal maximum, CTM) of snapping turtle hatchlings with no or minor deformities was significantly affected by exposure to PAHs. - Exposure to polycyclic aromatic hydrocarbons on the egg reduces survival of snapping turtle embryos and causes developmental abnormalities.

  18. Thyroid hormone binding proteins as novel targets for hydroxylated polyhalogenated aromatic hydrocarbons (PHAHs): possible implications for toxicity.

    NARCIS (Netherlands)

    Lans, M.C.

    1995-01-01

    Some toxic effects caused by polyhalogenated aromatic hydrocarbons (PHAHs) develop through alterations in the reproductive and thyroid hormone regulatory systems, thereby affecting (brain) development, reproduction and behaviour of several species (Stone, 1995, Birnbaum, 1994, for review: Brouwer et

  19. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR GROWTH TO SOOT -A REVIEW OF CHEMICAL REACTION PATHWAYS. (R824970)

    Science.gov (United States)

    The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...

  20. Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget sound sediments.

    OpenAIRE

    Geiselbrecht, A D; Herwig, R P; Deming, J. W.; Staley, J T

    1996-01-01

    Naphthalene- and phenanthrene-degrading bacteria in Puget Sound sediments were enumerated by most-probable-number enumeration procedures. Sediments from a creosote-contaminated Environmental Protection Agency Superfund Site (Eagle Harbor) contained from 10(4) to 10(7) polycyclic aromatic hydrocarbon (PAH)-degrading bacteria g (dry weight) of sediment-1, whereas the concentration at an uncontaminated site ranged from 10(3) to 10(4) g of sediment(-1). Isolates of PAH-degrading bacteria were obt...

  1. Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek's hypothesis revisited

    OpenAIRE

    Den Hond, Elly; Roels, Harry A.; Hoppenbrouwers, Karel; Nawrot, Tim; Thijs, Lutgarde; Vandermeulen, Corinne; Winneke, Gerhard; Vanderschueren, Dirk; Staessen, Jan A.

    2002-01-01

    Polychlorinated aromatic hydrocarbons (PCAHs) have been described as endocrine disruptors in animals and in accidentally or occupationally exposed humans. In the present study we examined the effect of moderate exposure to PCAHs on sexual maturation. Two hundred adolescents (mean age, 17.4 years) who resided in two polluted suburbs and a rural control area in Flanders (Belgium) participated. We measured the serum concentration of polychlorinated biphenyl (PCB) congeners 138, 153, and 180 and ...

  2. Molecular comparison of cultivable protozoa from a pristine and a polycyclic aromatic hydrocarbon polluted site

    OpenAIRE

    Lara, Enrique; Berney, Cédric; Ekelund, Flemming; Harms, Hauke; Chatzinotas, Antonis

    2010-01-01

    We compared the abundance and diversity of cultivable protozoa (flagellates and amoebae) in a polycyclic aromatic hydrocarbon (PAH) polluted soil and an unpolluted control, by isolating and cultivating clonal strains. The number of cultivable protozoa was higher in the polluted soil; however, the polluted soil displayed an impoverished community, dominated by certain taxa, such as Acanthamoeba sp. We isolated a total of 31 protozoan strains to characterize them morphologically and by 18S rRNA...

  3. Estimated IR and phosphorescence emission fluxes for specific Polycyclic Aromatic Hydrocarbons in the Red Rectangle

    CERN Document Server

    Mulas, G; Joblin, C; Toublanc, D

    2005-01-01

    Following the tentative identification of the blue luminescence in the Red Rectangle by Vijh et al. (2005), we compute absolute fluxes for the vibrational IR emission and phosphorescence bands of three small polycyclic aromatic hydrocarbons. The calculated IR spectra are compared with available ISO observations. A subset of the emission bands are predicted to be observable using presently available facilities, and can be used for an immediate, independent, discriminating test on their alleged presence in this well-known astronomical object.

  4. On-line DACC-HPLC analysis of polycyclic aromatic hydrocarbons in edible oils

    OpenAIRE

    Neđeral, Sandra; Pukec, Dragutin; Škevin, Dubravka; Kraljić, Klara; Obranović, Marko; Zrinjan, Petra

    2014-01-01

    In this work an HPLC method for determination of polycyclic aromatic hydrocarbons (PAH) in edible oils on a DACC (donor-acceptor complex chromatography) column coupled with an on-line HPLC system with fluorescent detection. Method was used to determine the content of individual PAHs in the refined sunflower oil, virgin olive oil, cold pressed pumpkin seed oil, dark sesame oil and pumpkin seed oil produced with roasting obtained from domestic market. Calibration and validation were conducted f...

  5. Determination of polycyclic aromatic hydrocarbons in water using an electrochemical DNA biosensor

    OpenAIRE

    R Manaffar; B Sehatnia; R Sabzi; Ehsani, A.

    2015-01-01

    Background and Objectives: Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants in aquatic environments. These contaminants are generated through oil spills, manufactory processes, and industrial wastes or naturally through the incomplete combustion of coal, oil, gas, and wood waste. Most of these compounds are noted as carcinogenic and mutagenic. Therefore, detection of these pollutants by a sensitive and inexpensive method is very important. Materials and Method...

  6. Exposure to Polycyclic Aromatic Hydrocarbons, Plasma Cytokines, and Heart Rate Variability

    OpenAIRE

    Binyao Yang; Qifei Deng; Wangzhen Zhang; Yingying Feng; Xiayun Dai; Wei Feng; Xiaosheng He; Suli Huang; Xiao Zhang; Xiaohai Li; Dafeng Lin; Meian He; Huan Guo; Huizhen Sun; Jing Yuan

    2016-01-01

    Epidemiological studies have suggested associations between polycyclic aromatic hydrocarbons (PAHs) and heart rate variability (HRV). However, the roles of plasma cytokines in these associations are limited. In discovery stage of this study, we used Human Cytokine Antibody Arrays to examine differences in the concentrations of 280 plasma cytokines between 8 coke-oven workers and 16 community residents. We identified 19 cytokines with significant different expression (fold change ≥2 or ≤−2, an...

  7. Estimation of individual dermal and respiratory uptake of polycyclic aromatic hydrocarbons in 12 coke oven workers.

    OpenAIRE

    VanRooij, J G; Bodelier-Bade, M M; Jongeneelen, F.J.

    1993-01-01

    Twelve workers from a coke plant in The Netherlands participated in an intensive skin monitoring programme combined with personal air sampling and biological monitoring during five consecutive eight hour workshifts. The purpose of the study was to make a quantitative assessment of both the dermal and respiratory intake of polycyclic aromatic hydrocarbons (PAHs). Pyrene was used as a marker compound for both dermal and respiratory exposure to PAHs. The biological measure for the internal expos...

  8. Biological monitoring of polycyclic aromatic hydrocarbon exposure in a highly polluted area of Poland.

    OpenAIRE

    Ovrebø, S; Fjeldstad, P E; Grzybowska, E; Kure, E H; Chorazy, M; Haugen, A

    1995-01-01

    Air pollution in Poland and particularly in Silesia is among the worst in Europe. Many coal mines and coke oven plants are located in this area, representing a major source of carcinogenic polycyclic aromatic hydrocarbons (PAHs). We quantitated the PAH exposure level in air samples using personal sampling devices, collected urine samples from the same individuals, and measured 1-hydroxypyrene with high performance liquid chromatography. Samples were collected twice, once in February and once ...

  9. DNA adducts as a measure of lung cancer risk in humans exposed to polycyclic aromatic hydrocarbons.

    OpenAIRE

    Kriek, E; van Schooten, F.J.; Hillebrand, M J; van Leeuwen, F E; Den Engelse, L; De Looff, A J; Dijkmans, A P

    1993-01-01

    Workers in the coking, foundry, and aluminum industry can be exposed to high concentrations of polycyclic aromatic hydrocarbons (PAHs) and are at increased risk for lung cancer, as are cigarette smokers. In recent years several studies on workers in the foundry and coking industries have been reported. In these studies, white blood cell(WBC) DNA was used for analysis of PAH-DNA adducts. Theoretically, DNA adduct formation is a more relevant biological parameter for assessing exposure risk tha...

  10. Lung cancer mortality and exposure to polycyclic aromatic hydrocarbons in British coke oven workers

    OpenAIRE

    Miller, Brian G.; Doust, Emma; Cherrie, John W.; Hurley, J Fintan

    2013-01-01

    Background Workers on coke oven plants may be exposed to potentially carcinogenic polycyclic aromatic hydrocarbons (PAHs), particularly during work on the ovens tops. Two cohorts, employees of National Smokeless Fuels (NSF) and the British Steel Corporation (BSC) totalling more than 6,600 British coke plant workers employed in 1967, had been followed up to mid-1987 for mortality. Previous analyses suggested an excess in lung cancer risk of around 25%, or less when compared with Social Class I...

  11. Pollution of Flooded Arable Soils with Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs)

    OpenAIRE

    Ciesielczuk, Tomasz; Kusza, Grzegorz; Poluszyńska, Joanna; Kochanowska, Katarzyna

    2014-01-01

    Soils that are exposed to floodwaters because of shallow groundwater and periodical wetlands are, to a large extent, exposed to contamination by organic and inorganic compounds. These are mainly compounds that have drifted along with the inflow of heavily laden floodwater and are produced within the soil profile by the anaerobic transformation of organic matter. Heavy metals and polycyclic aromatic hydrocarbon (PAH) compounds are absorbed by the soil of the floodwaters, and moving in the soil...

  12. Structural Vector Description and Estimation of Normal Boiling Points for 66 Aromatic Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A molecular vector-type descriptor containing 6 variables is used to describe the structure of aromatic hydrocarbons (AHs) and relate to normal boiling points (bp) of AHs. The correlation coefficient (R) between the estimated bp and experimental bp is 0.9988 and the root mean square error (RMS) is 7.907° C for 66 AHs. The RMS obtained by cross-validation is 9.131° C, which implies the relationship model having good prediction ability.

  13. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons

    DEFF Research Database (Denmark)

    Hoff, Thomas C.; Gardner, David W.; Thilakaratne, Rajeeva;

    2016-01-01

    The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represent...... a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high...

  14. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts.

    OpenAIRE

    Newman, M J; Light, B A; Weston, A; Tollurud, D; Clark, J L; Mann, D L; Blackmon, J P; Harris, C C

    1988-01-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz[a]anthracene and benzo[a]pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactio...

  15. Polycyclic Aromatic Hydrocarbons Identification and Source Discrimination in Rural Soil of the Northern Persian Gulf Coast

    OpenAIRE

    Fatemeh Valizadeh-kakhki; Mohamad Pauzi Zakaria; Ahmad Zaharin Aris; Syaizwan Zahmir Zulkifli; Mehdi Mohammadi; Hasan Tajik

    2014-01-01

    Due to strategic situation of the Persian Gulf, identifying the petroleum pollution level and source is an important issue. Therefore, this paper enhanced fingerprinting method of applying biomarkers Polycyclic Aromatic Hydrocarbons (PAHs) in identifying source and distribution of oil spills of the exposed areas. 10 soil samples collected from the northern coasts of the Persian Gulf along three provinces in the south of Iran. PAH concentrations in the soil ranged from 42.76 to 5596.49 ng.g-1....

  16. Calculation of electron affinities of polycyclic aromatic hydrocarbons and solvation energies of their radical anion.

    Science.gov (United States)

    Betowski, Leon D; Enlow, Mark; Riddick, Lee; Aue, Donald H

    2006-11-30

    Electron affinities (EAs) and free energies for electron attachment (DeltaGo(a,298K)) have been directly calculated for 45 polynuclear aromatic hydrocarbons (PAHs) and related molecules by a variety of theoretical methods, with standard regression errors of about 0.07 eV (mean unsigned error = 0.05 eV) at the B3LYP/6-31 + G(d,p) level and larger errors with HF or MP2 methods or using Koopmans' Theorem. Comparison of gas-phase free energies with solution-phase reduction potentials provides a measure of solvation energy differences between the radical anion and neutral PAH. A simple Born-charging model approximates the solvation effects on the radical anions, leading to a good correlation with experimental solvation energy differences. This is used to estimate unknown or questionable EAs from reduction potentials. Two independent methods are used to predict DeltaGo(a,298K) values: (1) based upon DFT methods, or (2) based upon reduction potentials and the Born model. They suggest reassignments or a resolution of conflicting experimental EAs for nearly one-half (17 of 38) of the PAH molecules for which experimental EAs have been reported. For the antiaromatic molecules, 1,3,5-tri-tert-butylpentalene and the dithia-substituted cyclobutadiene 1, the reduction potentials lead to estimated EAs close to those expected from DFT calculations and provide a basis for the prediction of the EAs and reduction potentials of pentalene and cyclobutadiene. The Born model has been used to relate the electrostatic solvation energies of PAH and hydrocarbon radical anions, and spherical halide anions, alkali metal cations, and ammonium ions to effective ionic radii from DFT electron-density envelopes. The Born model used for PAHs has been successfully extended here to quantitatively explain the solvation energy of the C60 radical anion.

  17. Characterizing polycyclic aromatic hydrocarbon build-up processes on urban road surfaces.

    Science.gov (United States)

    Liu, Liang; Liu, An; Li, Dunzhu; Zhang, Lixun; Guan, Yuntao

    2016-07-01

    Reliable prediction models are essential for modeling pollutant build-up processes on urban road surfaces. Based on successive samplings of road deposited sediments (RDS), this study presents empirical models for mathematical replication of the polycyclic aromatic hydrocarbon (PAH) build-up processes on urban road surfaces. The contaminant build-up behavior was modeled using saturation functions, which are commonly applied in US EPA's Stormwater Management Model (SWMM). Accurate fitting results were achieved in three typical urban land use types, and the applicability of the models was confirmed based on their acceptable relative prediction errors. The fitting results showed high variability in PAH saturation value and build-up rate among different land use types. Results of multivariate data and temporal-based analyses suggested that the quantity and property of RDS significantly influenced PAH build-up. Furthermore, pollution sources, traffic parameters, road surface conditions, and sweeping frequency could synthetically impact the RDS build-up and RDS property change processes. Thus, changes in these parameters could be the main reason for variations in PAH build-up in different urban land use types. PMID:27086074

  18. Geochemical markers and polycyclic aromatic hydrocarbons in solvent extracts from diesel engine particulate matter.

    Science.gov (United States)

    Fabiańska, Monika; Kozielska, Barbara; Bielaczyc, Piotr; Woodburn, Joseph; Konieczyński, Jan

    2016-04-01

    Exhaust particulate from compression ignition (CI) engines running on engine and chassis dynamometers was studied. Particulate dichloromethane extracts were qualitatively and quantitatively analyzed for polycyclic aromatic hydrocarbons (PAHs) and biomarkers by gas chromatography with flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). PAH group profiles were made and the PAH group shares according to the number of rings (2 or 3; 4; 5 or more) as well as diagnostic indices were calculated. Values of geochemical ratios of selected biomarkers and alkyl aromatic hydrocarbons were compared with literature values. A geochemical interpretation was carried out using these values and biomarker and alkyl aromatic hydrocarbon distributions. It has been shown that geochemical features are unequivocally connected to the emission of fossil fuels and biofuels burned in CI engines. The effect of the exothermic combustion process is limited to low-molecular-weight compounds, which shows that the applied methodology permits source identification of PAHs coexisting in the particulate emitted. PMID:26728284

  19. Assessment of the bioavailability and phytotoxicity of sediment spiked with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Rončević, Srđan; Spasojević, Jelena; Maletić, Snežana; Jazić, Jelena Molnar; Isakovski, Marijana Kragulj; Agbaba, Jasmina; Grgić, Marko; Dalmacija, Božo

    2016-02-01

    Large amounts of sediment are dredged globally every year. This sediment is often contaminated with low concentrations of metals, polycyclic aromatic hydrocarbons, pesticides and other organic pollutants. Some of this sediment is disposed of on land, creating a need for risk assessment of the sediment disposal method, to minimize the degradation of environmental quality and prevent risks to human health. Evaluating the available fractions of certain polycyclic aromatic hydrocarbons is very important, as in the presence of various organisms, they are believed to be easily subject to the processes of bioaccumulation, biosorption and transformation. In order to determine the applicability of applying these methods for the evaluation of pollutant bioavailability in sediments, the desorption kinetics from the sediment of various polycyclic aromatic hydrocarbons in the presence of Tenax and XAD4 were examined over the course of 216 h. Changes in the PAH concentrations in dredged sediments using five different seed plants during a short time of period (10 days) were also followed. Using chemical extraction techniques with Tenax and XAD4, a time of around 24 h is enough to achieve equilibrium for all four PAHs. Results showed good agreement between the seed accumulation and PAH extraction methods with both agents. If we compare the two extraction techniques, XAD4 gave better results for phenanthrene, pyrene and benzo(a)pyrene, and Tenax gave better results for chrysene. PMID:26490893

  20. MODELING GALACTIC EXTINCTION WITH DUST AND 'REAL' POLYCYCLIC AROMATIC HYDROCARBONS

    Energy Technology Data Exchange (ETDEWEB)

    Mulas, Giacomo; Casu, Silvia; Cecchi-Pestellini, Cesare [INAF-Osservatorio Astronomico di Cagliari, Strada n.54, Loc. Poggio dei Pini, I-09012 Capoterra (Italy); Zonca, Alberto, E-mail: gmulas@oa-cagliari.inaf.it, E-mail: silvia@oa-cagliari.inaf.it, E-mail: ccp@oa-cagliari.inaf.it, E-mail: azonca@oa-cagliari.inaf.it [Dipartimento di Fisica, Universita di Cagliari, Strada Prov.le Monserrato-Sestu Km 0.700, I-09042 Monserrato (Italy)

    2013-07-01

    We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually 'bumpless' profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproduce the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 Multiplication-Sign 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.

  1. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  2. DISTRIBUTION AND CHARACTERIZATION OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN AIRBORNE PARTICULATES OF EAST ASIA

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Libin Liu; Jin-Ming Lin; Ning Tang; Kazuichi Hayakawa

    2006-01-01

    A review is presented on the distribution and characterization of polycyclic aromatic hydrocarbons (PAHs)and their derivatives, including nitro-PAHs and hydro-PAHs, on atmospheric particulates of East Asia. Generally, PAH compounds with two or three aromatic rings are released mainly into the gas phase, while those containing three or more aromatic rings are associated with particulate matter (PM) emission. Particle-associated PAHs are primarily adsorbed on fine particles, and little associated with coarse particles. Investigation into the concentration level of PAHs in different areas can serve not only to reflect the pollutant status and sources but also to lead to the formulation of control strategies.The results of the present study show that China has more severe PAH pollution than such East Asian countries as Japan and Korea.

  3. Impact of molecular structure on secondary organic aerosol formation from aromatic hydrocarbon photooxidation under low-NOx conditions

    Science.gov (United States)

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Cocker, David R., III

    2016-08-01

    The molecular structure of volatile organic compounds determines their oxidation pathway, directly impacting secondary organic aerosol (SOA) formation. This study comprehensively investigates the impact of molecular structure on SOA formation from the photooxidation of 12 different eight- to nine-carbon aromatic hydrocarbons under low-NOx conditions. The effects of the alkyl substitute number, location, carbon chain length and branching structure on the photooxidation of aromatic hydrocarbons are demonstrated by analyzing SOA yield, chemical composition and physical properties. Aromatic hydrocarbons, categorized into five groups, show a yield order of ortho (o-xylene and o-ethyltoluene) > one substitute (ethylbenzene, propylbenzene and isopropylbenzene) > meta (m-xylene and m-ethyltoluene) > three substitute (trimethylbenzenes) > para (p-xylene and p-ethyltoluene). SOA yields of aromatic hydrocarbon photooxidation do not monotonically decrease when increasing alkyl substitute number. The ortho position promotes SOA formation while the para position suppresses aromatic oxidation and SOA formation. Observed SOA chemical composition and volatility confirm that higher yield is associated with further oxidation. SOA chemical composition also suggests that aromatic oxidation increases with increasing alkyl substitute chain length and branching structure. Further, carbon dilution conjecture developed by Li et al. (2016) is extended in this study to serve as a standard method to determine the extent of oxidation of an alkyl-substituted aromatic hydrocarbon.

  4. Gas-Phase Polycyclic Aromatic Hydrocarbons in Absorption toward Protostellar Sources?

    Science.gov (United States)

    Bregman, Jesse D.; Temi, Pasquale

    2001-06-01

    One of the major criticisms of identifying the infrared emission bands with polycyclic aromatic hydrocarbon (PAH) molecules has been the lack of a match between laboratory spectra of individual PAHs and the emission features. Part of the difficulty arises from the complexity of modeling the emission mechanism with an a priori unknown mixture of ionized and neutral PAHs. A direct comparison between laboratory spectra of PAHs and astronomical sources is possible for absorption spectra. However, because of poor atmospheric transmission, ground-based spectra of the PAH absorption band in the C-H stretch region are too noisy to make a detailed comparison with laboratory spectra. In this paper we show that ISO Short Wavelength Spectrometer spectra of a few protostars that show a 3.25 μm absorption band can be well matched by laboratory absorption spectra of a mixture of isolated PAHs. Based on observations with ISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom), with the participation of ISAS and NASA.

  5. Risk assessment of urban soils contamination: The particular case of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Cachada, A; da Silva, E Ferreira; Duarte, A C; Pereira, R

    2016-05-01

    The assessment of soil quality and characterization of potential risks to the environment and human health can be a very difficult task due to the heterogeneity and complexity of the matrix, the poor understanding about the fate of contaminants in the soil matrix, scarcity of toxicological/ecotoxicological data and variability of guidelines. In urban soils these difficulties are enhanced by the patchy nature of urban areas and the presence of complex mixtures of organic and inorganic contaminants resulting from diffuse pollution caused by urban activities (e.g. traffic, industrial activity, and burning of carbon sources for heating). Yet, several tools are available which may help to assess the risks of soil contamination in a simpler, cost effective and reliable way. Within these tools, a tiered risk assessment (RA) approach, first based on a chemical screening in combination with geostatistical tools, may be very useful in urban areas. However, there is still much to improve and a long way to go in order to obtain a reliable RA, especially in the case of hydrophobic organic compounds such as polycyclic aromatic hydrocarbons (PAHs). This paper aims at proposing a RA framework to assess the environmental and human health risks of PAHs present in urban soils, based on existing models. In addition, a review on ecotoxicological, toxicological, and exposure assessment data was made, as well as of the existing soil quality guidelines for PAHs that can be used in the RA process. PMID:26878639

  6. Asymmetric polycyclic aromatic hydrocarbon as a capable source of astronomically observed interstellar infrared spectrum

    CERN Document Server

    Ota, Norio

    2015-01-01

    In order to find out capable molecular source of astronomically well observed infrared (IR) spectrum, asymmetric molecular configuration polycyclic aromatic hydrocarbon (PAH) was analyzed by the density functional theory (DFT) analysis. Starting molecules were benzene C6H6, naphthalene C10H8 and 1H-phenalene C13H9. In interstellar space, those molecules will be attacked by high energy photon and proton, which may bring cationic molecules as like C6H6n+ (n=0~3 in calculation), C10H8n+, and C13H9n+, also CH lacked molecules C5H5n+, C9H7n+, and C12H8n+. IR spectra of those molecules were analyzed based on DFT based Gaussian program. Results suggested that symmetrical configuration molecules as like benzene, naphthalene , 1H-phenalene and those cation ( +, 2+, and 3+) show little resemblance with observed IR. Contrast to such symmetrical molecules, several cases among cationic and asymmetric configuration molecules show fairly good IR tendency. One typical example was C12H83+, of which calculated harmonic IR wave...

  7. Regionalized concentrations and fingerprints of polycyclic aromatic hydrocarbons (PAHs) in German forest soils

    International Nuclear Information System (INIS)

    Samples of 474 forest stands in Germany were analysed for concentrations of polycyclic aromatic hydrocarbons (PAHs) in three sampling depths. Enhanced concentrations were mainly found at spots relatively close to densely industrialized and urbanized regions and at some topographically elevated areas. Average enrichment factors between mineral soil and humic layer depend on humus type i.e. decrease from mull via moder to mor. Based on their compound-patterns, the observed samples could be assigned to three main clusters. For some parts of our study area a uniform assignment of samples to clusters over larger regions could be identified. For instance, samples taken at vicinity to brown-coal strip-mining districts are characterized by high relative abundances of low-molecular-weight PAHs. These results suggest that PAHs are more likely originated from local and regional emitters rather than from long-range transport and that specific source-regions can be identified based on PAH fingerprints. - Regional sources dominate PAH concentrations and patterns in soil more than long-range transport. - Highlights: • Highest PAH concentrations were found relatively close to potential emitters. • PAH fingerprints show regional-specific distribution patterns. • Enrichment factors between mineral soils and humic layers depend on humus type. • Regional sources dominate contents and patterns more than long-range transport

  8. Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction

    International Nuclear Information System (INIS)

    In this study, an aqueous-based hydroxypropyl-β-cyclodextrin (HPCD) extraction technique was assessed for its capacity to determine the microbially degradable fraction of mono- and polycyclic aromatic hydrocarbons in four dissimilar soils. A linear relationship (slope = 0.90; R 2 = 0.89), approaching 1:1 between predicted and observed phenanthrene mineralization, was demonstrated for the cyclodextrin extraction; however, the water only extraction underestimated the microbially available fraction by a factor of three (slope = 3.35; R 2 = 0.64). With respect to determining the mineralizable fraction of p-cresol in soils, the cyclodextrin extraction (slope = 0.94; R 2 = 0.84) was more appropriate than the water extraction (slope = 1.50; R 2 = 0.36). Collectively, these results suggested that the cyclodextrin extraction technique was suitable for the prediction of the mineralizable fraction of representative PAHs and phenols present in dissimilar soils following increasing soil-contaminant contact times. The assessment of the microbial availability of contaminants in soils is important for a more representative evaluation of soil contamination. - An aqueous-based HPCD extraction technique was more appropriate than the water extraction in prediction of the mineralizable fraction of phenanthrene and p-cresol present in a range of dissimilar soils

  9. Draft Genome Sequence of Pseudomonas sp. Strain 10-1B, a Polycyclic Aromatic Hydrocarbon Degrader in Contaminated Soil

    OpenAIRE

    Bello-Akinosho, Maryam; Adeleke, Rasheed; Swanevelder, Dirk; Thantsha, Mapitsi

    2015-01-01

    Pseudomonas sp. strain 10-1B was isolated from artificially polluted soil after selective enrichment. Its draft genome consists of several predicted genes that are involved in the hydroxylation of the aromatic ring, which is the rate-limiting step in the biodegradation of polycyclic aromatic hydrocarbons.

  10. Aliphatic and aromatic hydrocarbons in particulate fallout of Alexandria, Egypt: Sources and implications

    Energy Technology Data Exchange (ETDEWEB)

    Aboul-Kassim, T.A.T.; Simoneit, B.R.T. [Oregon State Univ., Corvallis, OR (United States)

    1995-10-01

    Particulate fallout samples (PFS) were collected in Alexandria, and their aliphatic and aromatic hydrocarbon compositions were determined both quantitatively and qualitatively to characterize the homologous and biomarker compounds in terms of their original sources. The results show that all samples contain aliphatic hydrocarbons, including n-alkanes, UCM, isoprenoids, tri- and tetracyclic terpanes, hopanes, and steranes/diasteranes. The main source of these compounds is from petrochemical contamination with trace input of terrestrial higher plant wax. In addition, polycyclic aromatic hydrocarbons, which are considered to be combustion products from fossil fuels such as petroleum, are also widely distributed in all samples. Multivariate statistical analysis, including extended Q-mode factor analysis and linear programming technique, was performed in order to reduce the hydrocarbon data set into a meaningful number of end members (sources). This analysis indicates that there are two significant end members explaining 90% of the total variation among the samples and confirming petrochemical (79.6%), and thermogenic/pyrolytic (10.4%) sources in the PFS model. 65 refs., 7 figs., 4 tabs.

  11. Structurally Distinct Polycyclic Aromatic Hydrocarbons Induce Differential Transcriptional Responses in Developing Zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Goodale, Britton; Tilton, Susan C.; Corvi, Margaret M.; Wilson, Glenn V.; Janszen, Derek B.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert

    2013-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures.

  12. Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Marco-Urrea, Ernest; García-Romera, Inmaculada; Aranda, Elisabet

    2015-12-25

    In previous decades, white-rot fungi as bioremediation agents have been the subjects of scientific research due to the potential use of their unspecific oxidative enzymes. However, some non-white-rot fungi, mainly belonging to the Ascomycota and Zygomycota phylum, have demonstrated their potential in the enzymatic transformation of environmental pollutants, thus overcoming some of the limitations observed in white-rot fungi with respect to growth in neutral pH, resistance to adverse conditions and the capacity to surpass autochthonous microorganisms. Despite their presence in so many soil and water environments, little information exists on the enzymatic mechanisms and degradation pathways involved in the transformation of hydrocarbons by these fungi. This review describes the bioremediation potential of non-ligninolytic fungi with respect to chlorinated hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) and also shows known conversion pathways and the prospects for future research.

  13. Development of miniaturized submersible fluorometers for the detection of aromatic hydrocarbons in marine waters

    Science.gov (United States)

    Tedetti, Marc; Bachet, Caroline; Joffre, Pascal; Ferretto, Nicolas; Guigue, Catherine; Goutx, Madeleine

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread organic contaminants in aquatic environments. Due to their physico-chemical properties, PAHs are persistent and mobile, can strongly bioaccumulate in food chains and are harmful to living organisms. They are thus recognized by various international organizations as priority contaminants and are included in the list of 45 priority regulated substances by the European Union. Because of their aromatic structure, PAHs are "optically active" and have inherent fluorescence properties in the ultraviolet (UV) spectral domain (200-400 nm). Therefore, UV fluorescence spectroscopy has been successfully used to develop PAH sensors (i.e. UV fluorometers). Currently, five UV submersible fluorometers are commercially available for in situ measurements of PAHs: EnviroFlu-HC (TriOS Optical Sensors, Germany), Hydrocarbon Fluorometer (Sea & Sun Technology, Germany), HydroC ™ / PAH (CONTROS, Germany), UviLux AquaTracka (Chelsea Technology Group, UK) and Cyclops-7 (Turner Designs, US). These UV fluorometers are all dedicated to the measurement of phenanthrene (λEx /λEm: 255/360 nm), one of the most abundant and fluorescent PAHs found in the aquatic environment. In this study, we developed original, miniaturized submersible fluorometers based on deep UV light-emitting diodes (LEDs) for simultaneous measurements of two PAHs of interest: the MiniFluo-UV 1 for the detection of phenanthrene (PHE, at λEx /λEm: 255/360 nm) and naphthalene (NAP, at λEx /λEm: 270/340 nm), and the MiniFluo-UV 2 for the detection of fluorene (FLU, at λEx /λEm: 255/315 nm) and pyrene (PYR, at λEx /λEm: 270/380 nm). The MiniFluo-UV sensors have several features: measurements of two PAHs at the same time, small size (puck format, 80 x 60 mm), very low energy consumption (500 mW at 12V), LED monitoring, analog and numerical communication modes. The two MiniFluo-UV sensors were first tested in the laboratory: 1) on standard solutions of

  14. Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion

    Science.gov (United States)

    Landera, Alexander

    2013-12-01

    Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards

  15. Current-voltage characteristics of a homologous series of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Böhme, Thilo; Simpson, Christopher D; Müllen, Klaus; Rabe, Jürgen P

    2007-01-01

    A novel alkyl-substituted polycyclic aromatic hydrocarbon (PAH) with D(2h) symmetry and 78 carbon atoms in the aromatic core (C78) was synthesized, thereby completing a homologous series of soluble PAH compounds with increasing size of the aromatic pi system (42, 60, and 78 carbon atoms). The optical band gaps were determined by UV/Vis and fluorescence spectroscopy in solution. Scanning tunneling microscopy (STM) and spectroscopy (STS) revealed diode-like current versus voltage (I-V) characteristics through individual aromatic cores in monolayers at the interface between the solution and the basal plane of graphite. The asymmetry of the current-voltage (I-V) characteristics increases with the increasing size of the aromatic core, and the concomitantly decreasing HOMO-LUMO gap. This is attributed to resonant tunneling through the HOMO of the adsorbed molecule, and an asymmetric position of the molecular species in the tunnel junction. Consistently, submolecularly resolved STM images at negative substrate bias are in good agreement with the calculated pattern for the electron densities of the HOMOs. The analysis provides the basis for tailoring rectification with a single molecule in an STM junction. PMID:17579898

  16. Urinary polycyclic aromatic hydrocarbon metabolites as biomarkers to woodsmoke exposure - results from a controlled exposure study.

    Science.gov (United States)

    Li, Zheng; Trinidad, Debra; Pittman, Erin N; Riley, Erin A; Sjodin, Andreas; Dills, Russell L; Paulsen, Michael; Simpson, Christopher D

    2016-01-01

    Woodsmoke contains harmful components - such as fine particulate matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) - and impacts more than half of the global population. We investigated urinary hydroxylated PAH metabolites (OH-PAHs) as woodsmoke exposure biomarkers in nine non-smoking volunteers experimentally exposed to a wood fire. Individual urine samples were collected from 24-h before to 48-h after the exposure and personal PM2.5 samples were collected during the 2-h woodsmoke exposure. Concentrations of nine OH-PAHs increased by 1.8-7.2 times within 2.3-19.3 h, and returned to baseline approximately 24 h after the exposure. 2-Naphthol (2-NAP) had the largest post-exposure increase and exhibited a clear excretion pattern in all participants. The level of urinary OH-PAHs, except 1-hydroxypyrene (1-PYR), correlated with those of PM2.5, levoglucosan and PAHs in personal PM2.5 samples. This finding suggests that several urinary OH-PAHs, especially 2-NAP, are potential exposure biomarkers to woodsmoke; by contrast, 1-PYR may not be a suitable biomarker. Compared with levoglucosan and methoxyphenols - two other urinary woodsmoke biomarkers that were measured in the same study and reported previously - OH-PAHs might be better biomarkers based on sensitivity, robustness and stability, particularly under suboptimal sampling and storage conditions, like in epidemiological studies carried out in less developed areas. PMID:25605446

  17. Bioaccumulation of Polycyclic Aromatic Hydrocarbons and Mercury in Oysters (Crassostrea rhizophorae from Two Brazilian Estuarine Zones

    Directory of Open Access Journals (Sweden)

    Ronaldo J. Torres

    2012-01-01

    Full Text Available Nowadays, organisms are increasingly being used in biomonitoring to assess bioavailability and bioaccumulation of contaminants. This approach can use both native and transplanted organisms in order to accomplish this task. In Brazil, most of the studies related to bioaccumulation of contaminants in oysters deal with metals. The present work employs this kind of test in Brazilian coastal estuaries (Santos and Paranaguá to evaluate total mercury and polycyclic aromatic hydrocarbon contamination in sediments and oysters (native and caged Crassostrea rhizophorae. The methodologies employed were based on known USEPA methods. Results have shown a significant contamination in Santos sediments and consequent bioavailability of organisms. Paranaguá sediments presented lower contamination in sediments, but native oysters were able to accumulate total Hg. The experiments done with caged oysters did not show significant bioaccumulation of Hg and PAHs in the Paranaguá site, but proved to be an excellent tool to assess bioavailability in the Santos estuary since they were able to bioaccumulate up to 1,600% of total PAH in the samples from the inner part of this estuary when compared to control organisms. Multivariate statistical analyses employed to these results have separated the sites evaluated and the most contaminated samples from the least contaminated.

  18. Emissions of Polycyclic Aromatic Hydrocarbons from Natural Gas Extraction into Air.

    Science.gov (United States)

    Paulik, L Blair; Donald, Carey E; Smith, Brian W; Tidwell, Lane G; Hobbie, Kevin A; Kincl, Laurel; Haynes, Erin N; Anderson, Kim A

    2016-07-19

    Natural gas extraction, often referred to as "fracking", has increased rapidly in the United States in recent years. To address potential health impacts, passive air samplers were deployed in a rural community heavily affected by the natural gas boom. Samplers were analyzed for 62 polycyclic aromatic hydrocarbons (PAHs). Results were grouped based on distance from each sampler to the nearest active well. Levels of benzo[a]pyrene, phenanthrene, and carcinogenic potency of PAH mixtures were highest when samplers were closest to active wells. PAH levels closest to natural gas activity were comparable to levels previously reported in rural areas in winter. Sourcing ratios indicated that PAHs were predominantly petrogenic, suggesting that PAH levels were influenced by direct releases from the earth. Quantitative human health risk assessment estimated the excess lifetime cancer risks associated with exposure to the measured PAHs. At sites closest to active wells, the risk estimated for maximum residential exposure was 0.04 in a million, which is below the U.S. Environmental Protection Agency's acceptable risk level. Overall, risk estimates decreased 30% when comparing results from samplers closest to active wells to those farthest from them. This work suggests that natural gas extraction is contributing PAHs to the air, at levels that would not be expected to increase cancer risk. PMID:27400263

  19. Global atmospheric emissions and transport of polycyclic aromatic hydrocarbons: Evaluation of modeling and transboundary pollution

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu

    2014-05-01

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimated country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). MOZART-4 (The Model for Ozone and Related Chemical Tracers, version 4) was applied to simulate the global tropospheric transport of Benzo(a)pyrene, one of the high molecular weight carcinogenic PAHs, at a horizontal resolution of 1.875° (longitude) × 1.8947° (latitude). The reaction with OH radical, gas/particle partitioning, wet deposition, dry deposition, and dynamic soil/ocean-air exchange of PAHs were considered. The simulation was validated by observations at both background and non-background sites, including Alert site in Canadian High Arctic, EMEP sites in Europe, and other 254 urban/rural sites reported from literatures. Key factors effecting long-range transport of BaP were addressed, and transboundary pollution was discussed.

  20. QSAR for Predicting Biodegradation Rates of Polycyclic Aromatic Hydrocarbons in Aqueous Systems

    Institute of Scientific and Technical Information of China (English)

    XU Xiang; LI Xian-Guo

    2012-01-01

    The relationship between chemical structures and biodegradation rates (k b) of 22 polycyclic aromatic hydrocarbons (PAHs) was studied using density functional theory (DFT) and stepwise multiple linear regression analysis (SMLR) method.The equilibrium geometries and vibration frequency have been investigated at the B3LYP/6-31+G(d,p) level by thinking Solvent effects using a selfconsistent reaction field (SCRF) based on the polarizable continuum model (PCM).It was concluded that the biodegradation rate was closely related to its molecular structure,and there is one high correlation coefficient between the in-plane bending vibration frequency of the conjugated ring of PAHs (Freq) and k b.By means of regression analysis,the main factors affecting the biodegradation rate were obtained and the equation of quantitative structure-activity relationship (QSAR) was successfully established kb =-0.653+0.001Freq+0.068CQ+0.049N1.Statistical evaluation of the developed QSAR showed that the relationships were statistically significant and the model had good predictive ability.The fact that a bending frequency is more important than the HOMO or LUMO energies in predicting k b suggests that the bending of benzene ring might play an important role in the enzymatic catalysis of the initial oxidation step.

  1. Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Man, Yu Bon [School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 311300 (China); State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Kang, Yuan [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Higher Education Mega Center, Guangzhou 510006 (China); Wang, Hong Sheng [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Lau, Winifred; Li, Hui; Sun, Xiao Lin [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Giesy, John P. [Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR (China); Chow, Ka Lai [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Wong, Ming Hung, E-mail: mhwong@hkbu.edu.hk [School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 311300 (China); State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China)

    2013-10-15

    Highlights: ► High levels of soil organic matter in soils render PAHs more resistant to degradation. ► Open burning site contain high concentrations of PAHs in Hong Kong. ► Car dismantling workshop can increase potential cancer risk on human. -- Abstract: The aim of this study was to evaluate soils from 12 different land use types on human cancer risks, with the main focus being on human cancer risks related to polycyclic aromatic hydrocarbons (PAHs). Fifty-five locations were selected to represent 12 different types of land use (electronic waste dismantling workshop (EW (DW)); open burning site (OBS); car dismantling workshop (CDW) etc.). The total concentrations of 16 PAHs in terms of total burden and their bioaccessibility were analysed using GC/MS. The PAHs concentrations were subsequently used to establish cancer risks in humans via three exposure pathways, namely, accident ingestion of soil, dermal contact soil and inhalation of soil particles. When the 95th centile values of total PAH concentrations were used to derive ingestion and dermal cancer risk probabilities on humans, the CDW land use type indicated a moderate potential for cancerous development (244 × 10{sup −6} and 209 × 10{sup −6}, respectively). Bioaccessible PAHs content in soil samples from CDW (3.60 × 10{sup −6}) were also classified as low cancer risk. CDW soil possessed a higher carcinogenic risk based on PAH concentrations. Bioremediation is recommended to treat the contaminated soil.

  2. NATO Advanced Research and CNRS Workshop on Polycyclic Aromatic Hydrocarbons and Astrophysics

    CERN Document Server

    d’Hendecourt, L; Boccara, N

    1987-01-01

    The near Infra-Red emission of the Interstellar Medium is a very puzzling subject. In the brightest regions, where spectroscopic observa­ tions are possible from the ground, several bands (3.3 - 3.4 - 6.2 - 7.7 - 8.6 - 11.3 ~m) have been observed since 1973. The absence of satisfying explanation was so obvious that they were called "Unidenti­ fied IR Emission Bands". The puzzle still increased when were known the first results of the general IR sky survey made by the satellite IRAS. On a large scale, the near IR emission of the Interstellar medium was expected to be very small but it was observed to be about one third of the total IR emission for our own galaxy ..• The situation has moved in 1984 when it was suggested that a class of stable organic molecules, the Polycyclic Aromatic Hydrocarbons (PAH's) could be at the origin of this near IR emission. Initially based on the required refractory character of particules that should be heated to high temperature without subliming, this hypothesis leads to a s...

  3. Biological Monitoring of Occupational Exposure to Polycyclic Aromatic Hydrocarbons at an Electric Steel Foundry in Tunisia.

    Science.gov (United States)

    Campo, Laura; Hanchi, Mariem; Olgiati, Luca; Polledri, Elisa; Consonni, Dario; Zrafi, Ines; Saidane-Mosbahi, Dalila; Fustinoni, Silvia

    2016-07-01

    Occupational exposures during iron and steel founding have been classified as carcinogenic to humans, and the exposure to polycyclic aromatic hydrocarbons (PAHs) in this industrial setting may contribute to cancer risk. The occupational exposure to PAHs was assessed in 93 male workers at an electric steel foundry in Tunisia by biomonitoring, with the aims of characterizing the excretion profile and investigating the influence of job title and personal characteristics on the biomarkers. Sixteen 2-6 ring unmetabolized PAHs (U-PAHs) and eight hydroxylated PAH metabolites (OHPAHs) were analyzed by gas chromatography-triple quadrupole tandem mass spectrometry and liquid chromatography triple quadrupole tandem mass spectrometry, respectively. Among U-PAHs, urinary naphthalene (U-NAP) was the most abundant compound (median level: 643ng l(-1)), followed by phenanthrene (U-PHE, 18.5ng l(-1)). Urinary benzo[a]pyrene (U-BaP) level was foundries. Based on 1-OHPYR levels, our findings show that occupational exposure of these workers was similar to that reported in recent studies of electric steel foundry workers. The multianalytic approach is useful in revealing different exposure levels among job titles. PMID:27206821

  4. Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Highlights: ► High levels of soil organic matter in soils render PAHs more resistant to degradation. ► Open burning site contain high concentrations of PAHs in Hong Kong. ► Car dismantling workshop can increase potential cancer risk on human. -- Abstract: The aim of this study was to evaluate soils from 12 different land use types on human cancer risks, with the main focus being on human cancer risks related to polycyclic aromatic hydrocarbons (PAHs). Fifty-five locations were selected to represent 12 different types of land use (electronic waste dismantling workshop (EW (DW)); open burning site (OBS); car dismantling workshop (CDW) etc.). The total concentrations of 16 PAHs in terms of total burden and their bioaccessibility were analysed using GC/MS. The PAHs concentrations were subsequently used to establish cancer risks in humans via three exposure pathways, namely, accident ingestion of soil, dermal contact soil and inhalation of soil particles. When the 95th centile values of total PAH concentrations were used to derive ingestion and dermal cancer risk probabilities on humans, the CDW land use type indicated a moderate potential for cancerous development (244 × 10−6 and 209 × 10−6, respectively). Bioaccessible PAHs content in soil samples from CDW (3.60 × 10−6) were also classified as low cancer risk. CDW soil possessed a higher carcinogenic risk based on PAH concentrations. Bioremediation is recommended to treat the contaminated soil

  5. Modeling the formation of some polycyclic aromatic hydrocarbons during the roasting of Arabica coffee samples.

    Science.gov (United States)

    Houessou, Justin Koffi; Goujot, Daniel; Heyd, Bertrand; Camel, Valerie

    2008-05-28

    Roasting is a critical process in coffee production, as it enables the development of flavor and aroma. At the same time, roasting may lead to the formation of nondesirable compounds, such as polycyclic aromatic hydrocarbons (PAHs). In this study, Arabica green coffee beans from Cuba were roasted under controlled conditions to monitor PAH formation during the roasting process. Roasting was performed in a pilot-spouted bed roaster, with the inlet air temperature varying from 180 to 260 degrees C, for roasting conditions ranging from 5 to 20 min. Several PAHs were determined in both roasted coffee samples and green coffee samples. Different models were tested, with more or less assumptions on the chemical phenomena, with a view to predict the system global behavior. Two kinds of models were used and compared: kinetic models (based on Arrhenius law) and statistical models (neural networks). The numbers of parameters to adjust differed for the tested models, varying from three to nine for the kinetic models and from five to 13 for the neural networks. Interesting results are presented, with satisfactory correlations between experimental and predicted concentrations for some PAHs, such as pyrene, benz[a]anthracene, chrysene, and anthracene. PMID:18433138

  6. Source apportionment of polycyclic aromatic hydrocarbons in the Dahuofang Reservoir, Northeast China.

    Science.gov (United States)

    Lin, Tian; Qin, Yanwen; Zheng, Binghui; Li, Yuanyuan; Chen, Ying; Guo, Zhigang

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in 24 surface sediments from the Dahuofang Reservoir (DHF), the largest man-made lake in Northeast China, were measured. The results showed that the concentrations of 16 US EPA priority PAHs in the sediments ranged from 323 to 912 ng/g dry weight with a mean concentration of 592 ± 139 ng/g. The PAH source contributions were estimated based on positive matrix factorization model. The coal combustion contributed to 31 % of the measured PAHs, followed by residential emissions (22%), biomass burning (21%), and traffic-related emissions (10%). Pyrogenic sources contributed ~84% of anthropogenic PAHs to the sediments, indicating that energy consumption release was a predominant contribution of PAH pollution in DHF. Compared with the results from the urban atmospheric PAHs in the region, there was a low contribution from traffic-related emissions in the sediments possibly due to the low mobility of the traffic-related derived 5+6-ring PAHs and their rapid deposition close to the urban area. PMID:22454050

  7. Highly selective detection of oil spill polycyclic aromatic hydrocarbons using molecularly imprinted polymers for marine ecosystems.

    Science.gov (United States)

    Krupadam, Reddithota J; Nesterov, Evgueni E; Spivak, David A

    2014-06-15

    Im*plications due to oil spills on marine ecosystems have created a great interest toward developing more efficient and selective materials for oil spill toxins detection and remediation. This research paper highlights the application of highly efficient molecularly imprinted polymer (MIP) adsorbents based on a newly developed functional crosslinker (N,O-bismethacryloyl ethanolamine, NOBE) for detection of highly toxic polycyclic aromatic hydrocarbons (PAHs) in seawater. The binding capacity of MIP for oil spill toxin pyrene is 35 mg/g as compared to the value of 3.65 mg/g obtained using a non-imprinted polymer (NIP). The selectivity of all three high molecular weight PAHs (pyrene, chrysene and benzo[a]pyrene) on the NOBE-MIP shows an excellent selective binding with only 5.5% and 7% cross-reactivity for chrysene and benzo[a]pyrene, respectively. Not only is this particularly significant because the rebinding solvent is water, which is known to promote non-selective hydrophobic interactions; the binding remains comparable under salt-water conditions. These selective and high capacity adsorbents will find wide application in industrial and marine water monitoring/remediation.

  8. Emissions of Polycyclic Aromatic Hydrocarbons from Natural Gas Extraction into Air.

    Science.gov (United States)

    Paulik, L Blair; Donald, Carey E; Smith, Brian W; Tidwell, Lane G; Hobbie, Kevin A; Kincl, Laurel; Haynes, Erin N; Anderson, Kim A

    2016-07-19

    Natural gas extraction, often referred to as "fracking", has increased rapidly in the United States in recent years. To address potential health impacts, passive air samplers were deployed in a rural community heavily affected by the natural gas boom. Samplers were analyzed for 62 polycyclic aromatic hydrocarbons (PAHs). Results were grouped based on distance from each sampler to the nearest active well. Levels of benzo[a]pyrene, phenanthrene, and carcinogenic potency of PAH mixtures were highest when samplers were closest to active wells. PAH levels closest to natural gas activity were comparable to levels previously reported in rural areas in winter. Sourcing ratios indicated that PAHs were predominantly petrogenic, suggesting that PAH levels were influenced by direct releases from the earth. Quantitative human health risk assessment estimated the excess lifetime cancer risks associated with exposure to the measured PAHs. At sites closest to active wells, the risk estimated for maximum residential exposure was 0.04 in a million, which is below the U.S. Environmental Protection Agency's acceptable risk level. Overall, risk estimates decreased 30% when comparing results from samplers closest to active wells to those farthest from them. This work suggests that natural gas extraction is contributing PAHs to the air, at levels that would not be expected to increase cancer risk.

  9. Polycyclic Aromatic Hydrocarbons in the Dagang Oilfield (China: Distribution, Sources, and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Haihua Jiao

    2015-05-01

    Full Text Available The levels of 16 polycyclic aromatic hydrocarbons (PAHs were investigated in 27 upper layer (0–25 cm soil samples collected from the Dagang Oilfield (China in April 2013 to estimate their distribution, possible sources, and potential risks posed. The total concentrations of PAHs (∑PAHs varied between 103.6 µg·kg−1 and 5872 µg·kg−1, with a mean concentration of 919.8 µg·kg−1; increased concentrations were noted along a gradient from arable desert soil (mean 343.5 µg·kg−1, to oil well areas (mean of 627.3 µg·kg−1, to urban and residential zones (mean of 1856 µg·kg−1. Diagnostic ratios showed diverse source of PAHs, including petroleum, liquid fossil fuels, and biomass combustion sources. Combustion sources were most significant for PAHs in arable desert soils and residential zones, while petroleum sources were a significant source of PAHs in oilfield areas. Based ontheir carcinogenity, PAHs were classified as carcinogenic (B or not classified/non-carcinogenic (NB. The total concentrations of carcinogenic PAHs (∑BPAHs varied from 13.3 µg·kg−1 to 4397 µg·kg−1 across all samples, with a mean concentration of 594.4 µg·kg−1. The results suggest that oilfield soil is subject to a certain level of ecological environment risk.

  10. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: Synthesis through meta-analysis

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are widespread and persistent organic pollutants with high carcinogenic effect and toxicity; their behavior and fate in the soil-plant system have been widely investigated. In the present paper, meta-analysis was used to explore the interaction between plant growth and dissipation of PAHs in soil based on the large body of published literature. Plants have a promoting effect on PAH dissipation in soils. There was no difference in PAH dissipation between soils contaminated with single and mixed PAHs. However, plants had a more obvious effect on PAH dissipation in freshly-spiked soils than in long-term field-polluted soils. Additionally, a positive effect of the number of microbial populations capable of degrading PAHs was observed in the rhizosphere compared with the bulk soil. Our meta-analysis established the importance of the rhizosphere effect on PAH dissipation in variety of the soil-plant systems. - The meta-analysis provides the first quantitative evidence of the positive effect of rhizosphere processes on PAH dissipation.

  11. A double isotope dilution method for assaying of polycyclic aromatic hydrocarbons in cigarette smoke condensate

    International Nuclear Information System (INIS)

    This report describes a double isotope dilution method for analysis of the polycyclic aromatic hydrocarbons (PAH) phenanthrene, fluor-anthene, pyrene, and benzo[a]pyrene in cigarette smoke particulates. The first isotope dilution used deuterated analogues of the first three PAH as internal standards. The second isotope dilution, for benzo[a]pyrene, used the tritiated analogue as an internal standard. The PAH were isolated from extracts of cigarette smoke particulates using a two-step procedure based on selective extraction from aqueous dimethyl sulfoxide (DMSO) followed by chromatography on silica gel extraction columns. After isolation, aliquots of the samples were analyzed for phenanthrene, pyrene, and fluoranthene by gas chromatography with mass spectrometric detection (GC/MS). Separate aliquots of the samples were analyzed for benzo[a]pyrene by high pressure liquid chromatography with fluorescence detection followed by liquid scintillation spectrometry. PAH levels from cigarette smoke condensates collected from different exposure modes were compared; no exposure-related differences were found. (author)

  12. SERS detection of polycyclic aromatic hydrocarbons using a bare gold nanoparticles coupled film system.

    Science.gov (United States)

    Gu, Hai-Xin; Hu, Kai; Li, Da-Wei; Long, Yi-Tao

    2016-07-21

    A facile approach based on a bare gold nanoparticles (Au NPs) coupled film system as the surface-enhanced Raman scattering (SERS) substrate was developed for the effective detection of polycyclic aromatic hydrocarbons (PAHs). A smooth gold film (Au film) was self-assembled with a hydrophobic layer of an alkyl chain in order to capture the PAHs molecules from bulk solution to its surface. Next, the bare gold nanoparticles, about 60 nm in diameter without functional modification, were paved onto the PAHs-molecule-coated Au film. This was aimed at generating a plasmon coupling effect to illuminate a stronger electromagnetic field within the gaps between particles and film, exactly where the absorbed molecules were located. The effects of the Au film, alkyl chain, and Au NPs on the SERS response to PAHs were respectively investigated. Through utilizing this simple system, a reproducible and interference-free SERS detection was demonstrated. Furthermore, the excellent detection ability to sense a series of PAHs was achieved with low concentrations of 1.2 × 10(-8) M, 2.0 × 10(-8) M, 5.5 × 10(-8) M, and 6.3 × 10(-8) M for benzo[b]fluoranthene, fluoranthene, benzo[a]anthracene, and pyrene, respectively. This method, capable of sample preparation and SERS measurement on a portable carrier, would be an ideal candidate for practical applications under field conditions.

  13. Application of the cubic-plus-association (CPA) equation of state to complex mixtures with aromatic hydrocarbons

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht;

    2006-01-01

    The cubic-plus-association (CPA) equation of state is applied to phase equilibria of mixtures containing alcohols, glycols, water, and aromatic or olefinic hydrocarbons. Previously, CPA has been successfully used for mixtures containing various associating compounds (alcohols, glycols, amines......, organic acids, and water) and aliphatic hydrocarbons. We show in this work that the model can be satisfactorily extended to complex vapor-liquid-liquid equilibria with aromatic or olefinic hydrocarbons. The solvation between aromatics/olefinics and polar compounds is accounted for. This is particularly...... important for mixtures containing water and glycols, but less so for mixtures with alcohols. For water/hydrocarbons, a single binary interaction parameter which accounts for the solvation is fitted to the experimental liquid-liquid equilibria (LLE) data. The interaction parameter of the physical term...

  14. Biodegradation Of Polycyclic Aromatic Hydrocarbons In Petroleum Oil Contaminating The Environment

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in urban atmospheres (Chen et al., 2013). PAHs enter the environment via incomplete combustion of fossil fuels and accidental leakage of petroleum products, and as components of products such as creosote (Muckian et al., 2009). Due to PAHs carcinogenic activity, they have been included in the European Union (EU) and the Environmental Protection Agency (EPA) priority pollutant lists. Human exposure to PAHs occurs in three ways, inhalation, dermal contact and consumption of contaminated foods, which account for 88-98% of such contamination; in other words, diet is the major source of human exposure to these contaminants (Rey-Salgueiro et al., 2008). Both the World Health Organization and the UK Expert Panel on Air Quality Standards (EPAQS) have considered benzo(a)pyrene (BaP) as a marker of the carcinogenic potency of the polycyclic aromatic hydrocarbons (PAH) mixture (Delgado-Saborit et al., 2011). Polycyclic aromatic and heavier aliphatic hydrocarbons, which have a stable recalcitrant molecular structure, exhibit high hydrophobicity and low aqueous solubility, are not readily removed from soil through leaching and volatilization (Brassington et al., 2007). The hydrophobicity of PAHs limits desorption to the aqueous phase (Donlon et al., 2002). Six main ways of dissipation, i.e. disappearance, are recognized in the environment: volatilization, photooxidation, Aim of the Work chemical oxidation, sorption, leaching and biodegradation. Microbial degradation is considered to be the main process involved in the dissipation of PAH (Yuan et al., 2002). Thus, more and more research interests are turning to the biodegradation of PAHs. Some microorganisms can utilize PAHs as a source of carbon and energy so that PAHs can be degraded to carbon dioxide and water, or transformed to other nontoxic or low-toxic substances (Perelo, 2010). Compared with other physical and chemical methods such as combustion

  15. Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Alexander E. Karu Ph.D; Victoria A. Roberts Ph.D.; Qing X. Li, Ph.D.

    2002-01-17

    This project was undertaken to fill needs in ODE's human and ecosystem health effects research, site remediation, rapid emergency response, and regulatory compliance monitoring programs. Doe has greatly stimulated development and validation of antibody-based, rapid, field-portable detection systems for small hazardous compounds. These range from simple dipsticks, microplate enzyme-linked immunosorbent assays (ELISAs), and hand-held colorimeters, to ultrasensitive microfluidic reactors, fiber-optic sensors and microarrays that can identify multiple analytes from patterns of cross-reactivity. Unfortunately, the technology to produce antibodies with the most desirable properties did not keep pace. Lack of antibodies remains a limiting factor in production and practical use of such devices. The goals of our project were to determine the chemical and structural bases for the antibody-analyte binding interactions using advanced computational chemistry, and to use this information to create useful new binding properties through in vitro genetic engineering and combinatorial library methods.

  16. C-H and N-H bond dissociation energies of small aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Barckholtz, C.; Barckholtz, T.A.; Hadad, C.M.

    1999-01-27

    A survey of computational methods was undertaken to calculate the homolytic bond dissociation energies (BDEs) of the C-H and N-H bonds in monocyclic aromatic molecules that are representative of the functionalities present in coal. These include six-membered rings (benzene, pyridine, pyridazine, pyrimidine, pyrazine) and five-membered rings (furan, thiophene, pyrrole, oxazole). By comparison of the calculated C-H BDEs with the available experimental values for these aromatic molecules, the B3LYP/6-31G(d) level of theory was selected to calculate the BDEs of polycyclic aromatic hydrocarbons (PAHs), including carbonaceous PAHs (naphthalene, anthracene, pyrene, coronene) and heteroatomic PAHs (benzofuran, benzothiophene, indole, benzoxazole, quinoline, isoquinoline, dibenzofuran, carbazole). The cleavage of a C-H or a N-H bond generates a {sigma} radical that is, in general, localized at the site from which the hydrogen atom was removed. However, delocalization of the unpaired electron results in {approximately} 7 kcal {center{underscore}dot} mol{sup {minus}1} stabilization of the radical with respect to the formation of phenyl when the C-H bond is adjacent to a nitrogen atom in the azabenzenes. Radicals from five-membered rings are {approximately} 6 kcal {center{underscore}dot} mol{sup {minus}1} less stable than those formed from six-membered rings due to both localization of the spin density and geometric factors. The location of the heteroatoms in the aromatic ring affects the C-H bond strengths more significantly than does the size of the aromatic network. Therefore, in general, the monocyclic aromatic molecules can be used to predict the C-H BDE of the large PAHs within 1 kcal {center{underscore}dot} mol{sup {minus}1}.

  17. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China.

    Science.gov (United States)

    Zhang, Yanxu; Tao, Shu

    2008-12-01

    A regression model based on the provincial energy consumption data was developed to calculate the monthly proportions of residential energy consumption compared to the total year volume. This model was also validated by comparing with some survey and statistical data. With this model, a PAHs emission inventory with seasonal variation was developed. The seasonal variations of different sources in different regions of China and the spatial distribution of the major sources in different seasons were also achieved. The PAHs emissions were larger in the winter than in the summer, with a difference of about 1.3-folds between the months with the largest and the smallest emissions. Residential solid fuel combustion dominated the pattern of seasonal variation with the winter-time emissions as much as 1.6 times as that in the summer, while the emissions from wild fires and open fire straw burning was mainly concentrated during the spring and summer. PMID:18649978

  18. Distribution and Geochemical Implication of Aromatic Hydrocarbons across the Meishan Permian-Triassic Boundary

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Aromatic compounds extracted from sedimentary rocks can reflect environmental conditions, organic sources and maturity. The aromatics, identified in association with mass extinction in particular, would provide a signature assisting our understanding of the causes of the biotic crisis. Aromatic hydrocarbons were fractionated from the total lipid extracts of 37 samples taken from the Permian Triassic boundary (beds 23 to 34) of section B at Meishan(煤山),Zhejiang(浙江)Province in South China. These aromatics were analyzed by using gas chromatography-mass spectrometry (GC-MS). Main compounds identified include naphthalene, phenanthrenes, fluorene, dibenzothiophene, dibenzofuran, fluoranthene, pyrene and some of their methyl homologues. The indices of methyl phenanthrene distribution fraction indicate the comparable maturity (within the oil window, 0.7% - 1.0% of the mean vitrinite reflectance) of the organic matter throughout the whole profile analyzed. The ratio of dibenzothiophene to phenanthrene (DBT/PHN) varies generally at a comparable pace with lithology. Significantly,a gradual decrease of this ratio was observed within bed 24 limestone, which is probably due to the variation of sedimentary environment. This change is in line with the drop in the carbon isotope composition of carbonate, the loss of the Changhsingian reef ecosystem, and the decrease of cyanobacteria abundance within the bacteria population. The coincidence of these records suggests a close relation between the biotic crisis and marine environmental conditions, and these records clearly show the onset of the biotic crisis prior to event bed 25.

  19. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China

    International Nuclear Information System (INIS)

    A regression model based on the provincial energy consumption data was developed to calculate the monthly proportions of residential energy consumption compared to the total year volume. This model was also validated by comparing with some survey and statistical data. With this model, a PAHs emission inventory with seasonal variation was developed. The seasonal variations of different sources in different regions of China and the spatial distribution of the major sources in different seasons were also achieved. The PAHs emissions were larger in the winter than in the summer, with a difference of about 1.3-folds between the months with the largest and the smallest emissions. Residential solid fuel combustion dominated the pattern of seasonal variation with the winter-time emissions as much as 1.6 times as that in the summer, while the emissions from wild fires and open fire straw burning was mainly concentrated during the spring and summer. - The seasonal variation of the PAHs emission in China was examined with a regression model

  20. Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47.

    Science.gov (United States)

    Bergmann, Franz; Selesi, Draženka; Weinmaier, Thomas; Tischler, Patrick; Rattei, Thomas; Meckenstock, Rainer U

    2011-05-01

    Anaerobic degradation of polycyclic aromatic hydrocarbons (PAHs) is an important process during natural attenuation of aromatic hydrocarbon spills. However, knowledge about metabolic potential and physiology of organisms involved in anaerobic degradation of PAHs is scarce. Therefore, we introduce the first genome of the sulfate-reducing Deltaproteobacterium N47 able to catabolize naphthalene, 2-methylnaphthalene, or 2-naphthoic acid as sole carbon source. Based on proteomics, we analysed metabolic pathways during growth on PAHs to gain physiological insights on anaerobic PAH degradation. The genomic assembly and taxonomic binning resulted in 17 contigs covering most of the sulfate reducer N47 genome according to general cluster of orthologous groups (COGs) analyses. According to the genes present, the Deltaproteobacterium N47 can potentially grow with the following sugars including d-mannose, d-fructose, d-galactose, α-d-glucose-1P, starch, glycogen, peptidoglycan and possesses the prerequisites for butanoic acid fermentation. Despite the inability for culture N47 to utilize NO(3) (-) as terminal electron acceptor, genes for nitrate ammonification are present. Furthermore, it is the first sequenced genome containing a complete TCA cycle along with the carbon monoxide dehydrogenase pathway. The genome contained a significant percentage of repetitive sequences and transposase-related protein domains enhancing the ability of genome evolution. Likewise, the sulfate reducer N47 genome contained many unique putative genes with unknown function, which are candidates for yet-unknown metabolic pathways.

  1. Laboratory studies of polycyclic aromatic hydrocarbons: the search for interstellar candidates

    CERN Document Server

    Joblin, C; Simon, A; Mulas, G

    2009-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are considered as a major constituent of interstellar dust. They have been proposed as the carriers of the Aromatic Infrared Bands (AIBs) observed in emission in the mid-IR. They likely have a significant contribution to various features of the extinction curve such as the 220 nm bump,the far-UV rise and the diffuse interstellar bands. Emission bands are also expected in the far-IR, which are better fingerprints of molecular identity than the AIBs. They will be searched for with the Herschel Space Observatory. Rotational emission is also expected in the mm range for those molecules which carry significant dipole moments. Despite spectroscopic studies in the laboratory, no individual PAH species could be identified. This emphasises the need for an investigation on where interstellar PAHs come from and how they evolve due to environmental conditions: ionisation and dissociation upon UV irradiation, interactions with electrons, gas and dust. There is also evidence for PAH ...

  2. Understanding the Reactivity of Planar Polycyclic Aromatic Hydrocarbons: Towards the Graphene Limit.

    Science.gov (United States)

    García-Rodeja, Yago; Solà, Miquel; Fernández, Israel

    2016-07-18

    The Diels-Alder reactivity of maleic anhydride towards the bay regions of planar polycyclic aromatic hydrocarbons was explored computationally in the DFT framework. The process becomes more and more exothermic and the associated activation barriers become lower and lower when the size of the system increases. This enhanced reactivity follows an exponential behavior that reaches its maximum for systems having 18-20 benzenoid rings in their structures. This peculiar behavior was analyzed in detail by using the activation strain model of reactivity in combination with energy decomposition analysis. The influence of the change in the aromaticity of the polycyclic compound during the process on the respective activation barriers was also studied. PMID:27304921

  3. Polycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes

    Energy Technology Data Exchange (ETDEWEB)

    Grimalt, Joan O.; Drooge, Barend L. van; Ribes, Alejandra; Fernandez, Pilar; Appleby, Peter

    2004-09-01

    Polycyclic aromatic hydrocarbons (PAH) in lake sediments and nearby soils of two European high mountain regions, Pyrenees and Tatra, have been studied. Similar mixtures of parent PAH were observed in all cases, indicating predominance of airborne transported combustion products. Nevertheless, the composition of these atmospherically long-range transported PAH was better preserved in the superficial layers of soils than sediments. This difference points to significant PAH degradation process, e.g. during lake water column transport, before accumulation in the latter. Post-depositional transformation was also different in both types of environmental compartments. Thus, lake sediments exhibit higher preservation of the more labile PAH involving lower degree of post-depositional oxidation. However, they also show the formation of major amounts of perylene by diagenetic transformation in the deep sections. This compound is not formed in soils where downcore enrichments of phenanthrene are observed, probably as a consequence of diagenetic aromatization of diterpenoids.

  4. [Polycyclic aromatic hydrocarbons in tea and tea infusions].

    Science.gov (United States)

    Ciemniak, Artur; Mocek, Kamila

    2010-01-01

    Tea is the one of most widely consumed beverage in the world. It is generally believed that tea consumption might have health promoting properties. But residues of certain chemical compounds might impose a health threat on tea drinkers. The main contaminants are heavy metals, fluoride, pesticides and even dioxins. Tea lives which possess a high surface area can be contaminated with atmospheric PAHs. The manufacturing processes may also introduce PAHs into tea lives. The aim of his study was to determine the contamination of black, green, red and white teas by PAHs. In this investigation, content of 23 PAH, i.e 16 EPA PAH and 15 EU PAH were determined in 18 brands of tea and its infusions. The analytical procedure was based on ultrasonic extraction for dried tea and liquid-liquid extraction for infusions. All samples were cleaned up by florisil cartridge. The total content of 23 PAH varied between 22.9 microg/kg to 2945.5 microg/kg and 2.7 microg/kg to 63,1 microg/kg microg/kg for BaP. The analysed tea samples showed an increasing presence of PAH in the following order (mean value): black tea < red tea < green tea < white tea. However the highest content of PAH was found in the one brand of black tea bag both in sum of PAH and BaP content. During tea infusion 1.6% of total PAHs contained in tea was released into the beverage. The dominant PAHs in tea infusion were 2, 3 and 4 rings PAH, while the most toxic compounds were found at trace amounts. The concentrations of total 23 PAHs and BaP in tea infusions ranged from 332.5 ng/dm3 to 2245.9 ng/dm3 and 0.35 ng/dm3 to 18.7 ng/dm3 respectively. PMID:21365858

  5. Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Trujillo-Rodríguez, María J; Nacham, Omprakash; Clark, Kevin D; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M

    2016-08-31

    This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 μL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 μL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 μg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion. PMID:27506350

  6. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baoliang, E-mail: blchen@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Yuan Miaoxin; Liu Hao [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2011-04-15

    Graphical abstract: The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants. Research highlights: {yields} Polycyclic aromatic hydrocarbons are effectively removed by plant residues. {yields} Biosorption mechanism of plant residues to abate PAHs is a partitioning process. {yields} Partition coefficients are negatively related with sugar contents of biosorbent. {yields} The aromatic component and K{sub ow} exhibit positive effects on biosorption. {yields} The structure-effect relationship guides plant residue using as a biosorbent. - Abstract: To elucidate biosorption mechanism and removal efficiency of plant residues as a biosorbent to abate polycyclic aromatic hydrocarbons (PAHs) in wastewater, sorption of PAHs onto wood chips (WC), ryegrass roots (RR), orange peels (OP), bamboo leaves (BL), and pine needles (PN) were investigated. The structural characterization of the biosorbents was analyzed by elemental composition, BET-N{sub 2} surface area, and Fourier transform infrared spectroscopy. PAHs sorption to the selected biosorbents were compared and correlated with their structures. Biosorption isotherms fit well with Freundlich equation and the mechanism was dominated by partition process. The magnitude of phenanthrene partition coefficients (K{sub d}) followed the order of PN > BL > OP > RR > WC, ranged from 2484 {+-} 24.24 to 5306 {+-} 92.49 L/kg. Except the WC sample, the K{sub d} values were negatively correlated with sugar content, polar index [(N + O)/C] of the biosorbents, while the aromatic component exhibited positive effects. For a given biosorbent of bamboo leaves, the carbon-normalized partition coefficients (K{sub oc}) were linearly correlated with octanol-water partition coefficients (K{sub ow}) of PAHs, i.e., log K{sub oc} = 1.16 log K{sub ow} - 1.21. The structure-effect relationship provides a reference to select and modify plant residues as a

  7. Interstellar polycyclic aromatic hydrocarbons and carbon in interplanetary dust particles and meteorites

    Science.gov (United States)

    Allamandola, L. J.; Sandford, S. A.; Wopenka, B.

    1987-01-01

    Raman spectra of interplanetary dust particles (IDPs) and meteorites containing material similar to polycyclic aromatic hydrocarbons (PAHs) show features that are similar in position and relative strength to interstellar IR emission features attributable to vibrational transitions in free molecular-sized PAHs. In addition, these spectra sometimes show red photoluminescence that has elsewhere been attributed to PAHs, and a part of the carbonaceous phase in IDPs and meteorites contain a degree of deuterium enrichment anticipated in small, free PAHs that are exposed to ISM UV radiation. These observations suggest that some of the IDPs' carbonaceous material may have been produced in circumstellar dust shells, and only slightly modified in interstellar space.

  8. Assessment of concentration, bioaccumulation and sources of polycyclic aromatic hydrocarbons in zooplankton of Chabahar Bay.

    Science.gov (United States)

    Ziyaadini, Morteza; Mehdinia, Ali; Khaleghi, Leila; Nassiri, Mahmoud

    2016-06-15

    The amounts and sources of polycyclic aromatic hydrocarbons (PAHs) and their bioaccumulation factors (BAFs) in the zooplankton community of Chabahar Bay were investigated. The highest amounts of total PAHs (tPAHs) in the water and zooplankton samples were 62.2ngL(-1) and 1478.6ngg(-1) dry weights, in near the Shahid Beheshti Port and desalination, respectively. The greatest amount of BAF (51,780) was obtained in the entry of Bay, and it was related to the phenanthrene accumulation. Using molecular ratio, the results showed that the major input source of PAH compounds in zooplankton of Chabahar Bay was pyrolytic (fuel) source. PMID:26944700

  9. Exposures to Particulate Matter and Polycyclic Aromatic Hydrocarbons and Oxidative Stress in Schoolchildren

    OpenAIRE

    Bae, Sanghyuk; Pan, Xiao-Chuan; Kim, Su-Young; Park, Kwangsik; Kim, Yoon-Hee; Kim, Ho; Hong, Yun-Chul

    2009-01-01

    Background Air pollution is known to contribute to respiratory and cardiovascular mortality and morbidity. Oxidative stress has been suggested as one of the main mechanisms for these effects on health. Objective The aim of this study was to analyze the effects of exposure to particulate matter (PM) with aerodynamic diameters ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) on urinary malondialdehyde (MDA) levels in schoolchildren. Methods The study population co...

  10. Polycyclic aromatic hydrocarbons fingerprints in the Pichavaram mangrove-estuarine sediments, southeastern India

    OpenAIRE

    Ranjan, Rajesh Kumar; Routh, Joyanto; Ramanathan, A.L.; Klump, J. Val

    2012-01-01

    The sources and historical deposition of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated in dated sediment cores from the Pichavaram mangrove–estuarine complex. The ΣPAH flux in mangrove and estuarine sediments was 0.064 ± 0.031 μg/cm2/yr and 0.043 ± 0.020 μg/cm2/yr, respectively. The PAH flux in sediments increased up-core, coinciding with rapid urbanization since the 1970s. The flux showed a decrease in recent years (since 1990), coinciding with less riverine discharge, and per...

  11. Structures and electronic properties of thin-films of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Natsume, Yutaka [Asahi-Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka (Japan)], E-mail: natsume.yc@om.asahi-kasei.co.jp; Minakata, Takashi; Aoyagi, Takeshi [Asahi-Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka (Japan)

    2009-03-02

    We report the fabrication and characterization of organic thin-film transistors (TFTs) using several polycyclic aromatic hydrocarbons (PAHs). Pentacene, ovalene, dibenzocoronene and hexabenzocoronene were deposited as organic semiconductors on silicon wafers with gold electrodes as the bottom-contact configuration of the TFTs. The pentacene TFT showed the highest field-effect mobility of more than 0.1 cm{sup 2}/Vs in comparison with the other PAHs. The results clarified that the high field-effect mobility of the pentacene thin film is due to large grain size and intrinsic electronic properties.

  12. Polycyclic aromatic hydrocarbons and the Oak Ridge National Laboratory's experimental coal program: minimizing the hazards

    Energy Technology Data Exchange (ETDEWEB)

    Forrester, R.C. III; Cochran, H.D.; Bolton, N.E.

    1977-01-01

    Many processing techniques for the liquefaction or gasification of coal are being developed at the Oak Ridge National Laboratory and elsewhere. Although different in many other respects, all coal conversion processes produce a liquid effluent comprising a complex mixture of hydrocarbons. Such mixtures invariably contain significant amounts of polycyclic, aromatic compounds, some of which are known to be highly active carcinogens. The underlying philosophy that has been adopted for the protection of personnel involved in experimental coal processing operations is defined, and procedures that have been instituted to govern the conduct of such experimental work and handling of associated coal-derived liquids are detailed.

  13. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK

    OpenAIRE

    Vane, Christopher H.; Kim, Alexander W.; Beriro, Darren J.; Cave, Mark R.; Knights, Katherine; Moss-Hayes, Vicky; Nathanail, Paul C.

    2014-01-01

    Surface soils from a 19 km2 area in east London, UK were analysed for polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) (n = 76). ∑16 PAH ranged from 4 to 67 mg/kg (mean, 18 mg/kg) and ∑50 PAH ranged from 6 to 88 mg/kg (mean, 25 mg/kg). ∑7 PCB ranged from 1 to 750 μg/kg (mean, 22 μg/kg) and ∑tri-hepta PCB ranged 9 to 2600 μg/kg (mean, 120 μg/kg). Compared to other international cities concentrations were similar for PAH but higher for PCB. Normal background concentrat...

  14. Contamination of soils in the urbanized areas of Belarus with polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Kukharchyk, T. I.; Khomich, V. S.; Kakareka, S. V.; Kurman, P. V.; Kozyrenko, M. I.

    2013-02-01

    The content of polycyclic aromatic hydrocarbons (PAHs) in the soils of urbanized areas, including the impact zones of Belarus, were studied. The concentrations of 16 PAHs in the soils were determined for individual and high-rise building zones, forests, and forest parks of Belarus. The levels of the PAH accumulation in the soils of different industrial enterprises and boiler stations were analyzed. Possible sources of soil contamination with PAHs were considered, and the structure of the PAHs in the soils was shown. The levels of the soil contamination were determined from the regulated parameters for individual compounds and the sum of 16 PAHs.

  15. Aromatic hydrocarbon pathology in fish following a large spill into the Nemadji River, Wisconsin, USA

    Science.gov (United States)

    Caldwell, C.A.

    1997-01-01

    On June 30, 1992, a train accident resulted in a rail car releasing 114,000 L of a complex mixture of aromatic hydrocarbons into the Nemadji River, a tributary of Lake Superior near Superior, Wisconsin (Table 1). Although the majority of the spilled material evaporated, damage to aquatic life was extensive. Several thousand fishes were killed and an inestimable number were exposed to low concentrations (kidney were examined for histopathology. Blood was collected to determine the severity of liver damage reflected by the presence of the serum enzymes (aspartate aminotransferase, alanine aminotransferase, and d - glutamyl transferase).

  16. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and

    Directory of Open Access Journals (Sweden)

    Hussein I. Abdel-Shafy

    2016-03-01

    The aim of this review is to discuss PAHs impact on the environmental and the magnitude of the human health risks posed by such substances. They also contain important information on concentrations, burdens and fate of polycyclic aromatic hydrocarbons (PAHs in the atmosphere. The main anthropogenic sources of PAHs and their effect on the concentrations of these compounds in air are discussed. The fate of PAHs in the air, their persistence and the main mechanisms of their losses are presented. Health hazards associated with PAH air pollution are stressed.

  17. Humoral immunosuppression in men exposed to polycyclic aromatic hydrocarbons and related carcinogens in polluted environments.

    OpenAIRE

    Szczeklik, A; Szczeklik, J; Galuszka, Z; Musial, J; Kolarzyk, E; Targosz, D

    1994-01-01

    We evaluated humoral immunity by measuring IgG, IgA, IgM, and IgE concentrations in 274 male workers in an iron foundry in Cracow, Poland. There were two groups: 199 coke oven workers and 76 cold-rolling mill workers. The groups were similar with respect to age, length of work (average 15 years), and smoking habits. Exposure to polycyclic aromatic hydrocarbons (PAHs), assessed by personal and area monitoring, ranged from 0.2 to 50 micrograms/m3 benzo[a]pyrene in coke plant workers and was of ...

  18. Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Sediments from the Bohai Sea, China

    Science.gov (United States)

    Liu, Jihua; Hu, Ningjing; Shi, Xuefa

    2015-04-01

    Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Sediments from the Bohai Sea, China Liu Jihua, Hu Ningjing, Shi Xuefa First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous organic contaminants in the environment. Indeed, 16 PAH compounds have been listed as priority pollutants by the United States Environmental Protection Agency and the European Union because of their potential toxicity to humans and ecosystems. As POPs are released or escape into the environment, their global accumulation in marine sediments generates a complex balance between inputs and outputs. Furthermore, PAHs in coastal sediments can serve as effective tracers of materials transport from land-to-sea (Fang et al., 2009). Hence, investigations of PAHs in sediments can provide useful information for further understanding of environmental processes and material transport. In this study, sixteen polycyclic aromatic hydrocarbons (PAHs) were extracted from a total of 112 surface sediment samples collected across the entire territory of the Bohai Sea. The detectable concentrations of PAHs ranged from 97.2 to 300.7 ng/g across all samples, indicating low contamination levels of PAHs compared with reported values for other coastal sediments in China and developed countries. The highest concentrations were found within three belts in the vicinity of Luan River Estuary-Qinhuangdao Harbor, the Cao River Estuary-Bohai Sea Center, and north of the Yellow River Estuary. The distribution patterns of PAHs and source identification implied that PAH contamination in the Bohai Sea mainly originates from offshore oil exploration, sewage discharge from rivers and shipping activities. Further Principal components analysis (PCA)/multivariate linear regression (MLR) analysis suggested that the contributions of spilled oil products (petrogenic), coal combustion and traffic

  19. Distribution and Risk Assessment of Polycyclic Aromatic Hydrocarbons in Vegetables Grown in Pakistan

    OpenAIRE

    Ashraf, Mohammad W.; Syed Iqleem H. Taqvi; Solangi, Amber R.; Qureshi, Umair A.

    2013-01-01

    Distribution and risk assessment of eight priority polycyclic aromatic hydrocarbons (PAHs) contents have been examined in different varieties of vegetables grown in Pakistan. The results showed that the total PAH contents were higher for root vegetables like potato and carrot (~13 μg/kg) and relatively lower for turnip (10.9 μg/kg), respectively while for the fruit vegetables, all the peels were found to be more contaminated than cores. The ratio of total PAH concentrations in peels with resp...

  20. Dermal uptake of polycyclic aromatic hydrocarbons after hairwash with coal-tar shampoo

    Energy Technology Data Exchange (ETDEWEB)

    Schooten, F.-J. van; Moonen, E.J.C.; Rhijnsburger, E.; Agen, B. van; Thijssen, H.H.W.; Kleinjans, J.C.S. [University of Limburg, Maastricht (Netherlands). Dept. of Health Risk Analysis and Toxicology

    1994-11-26

    Describes an experiment to assess the dermal uptake of polycyclic aromatic hydrocarbons (PAHs) after hairwashing with coal tar antidandruff shampoo. The urinary excretion of 1-hydroxypyrene (1-OH-P), a PAH metabolile was used to assess internal dose of PAH. A single use of coal tar shampoo resulted in increased 1-OH-P excretion in all members of the experimental group compared with the control group using a non-coal tar antidandruff shampoo. It is suggested that repeated use of coal tar shampoo would result in a high internal dose of carcinogenic PAH. 5 refs., 1 fig.

  1. Characteristics of wintertime polycyclic aromatic hydrocarbon assemblage in aerosol of the Southern Adriatic

    Science.gov (United States)

    Jovanović, V. Ž.; Pfendt, P. A.; Filipović, A. J.

    2007-09-01

    Features of polycyclic aromatic hydrocarbon (PAH) assemblage in aerosol samples collected from the atmosphere of Herceg Novi during the winter months of two successive years were studied. The results showed almost the same concentration profiles of identified PAHs for samples from the two periods analyzed, generally suggesting a similar origin. Diagnostic ratios indicated combustion of wood and coal, emissions from petrol and diesel engines, and dust resuspension as sources that predominantly contributed to the atmospheric PAH concentrations. Statistical analysis, principal component analysis (PCA) in particular, allowed us to identify the impact of meteorological parameters on PAH abundance.

  2. Determination of basic azaarenes and polynuclear aromatic hydrocarbons in airborne particulate matter by gas chromatography

    DEFF Research Database (Denmark)

    Nielsen, Torben; Clausen, Peraxel; Jensen, Finn Palmgren

    1986-01-01

    phase (adjusted to pH 14 with potassium hydroxide) with dichloromethane, and determined by capillary gas chromatography (g.c.) with a nitrogen-sensitive detector. The PAH in the toluene phase are isolated by means of semipreparative high-performance liquid chromatography and liquid-liquid extraction......Polynuclear aromatic hydrocarbons (PAH) and their nitrogen analogs, basic azaarenes, are extracted from samples of airborne particulate matter by toluene with ultrasonic treatment. The basic azaarenes are extracted from the toluene phase with phosphoric acid, re-extracted from the phosphoric acid...

  3. Statistical Modeling of Occupational Exposure to Polycyclic Aromatic Hydrocarbons Using OSHA Data.

    Science.gov (United States)

    Lee, Derrick G; Lavoué, Jérôme; Spinelli, John J; Burstyn, Igor

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of pollutants with multiple variants classified as carcinogenic. The Occupational Safety and Health Administration (OSHA) provided access to two PAH exposure databanks of United States workplace compliance testing data collected between 1979 and 2010. Mixed-effects logistic models were used to predict the exceedance fraction (EF), i.e., the probability of exceeding OSHA's Permissible Exposure Limit (PEL = 0.2 mg/m3) for PAHs based on industry and occupation. Measurements of coal tar pitch volatiles were used as a surrogate for PAHs. Time, databank, occupation, and industry were included as fixed-effects while an identifier for the compliance inspection number was included as a random effect. Analyses involved 2,509 full-shift personal measurements. Results showed that the majority of industries had an estimated EF < 0.5, although several industries, including Standardized Industry Classification codes 1623 (Water, Sewer, Pipeline, and Communication and Powerline Construction), 1711 (Plumbing, Heating, and Air-Conditioning), 2824 (Manmade Organic Fibres), 3496 (Misc. Fabricated Wire products), and 5812 (Eating Places), and Major group's 13 (Oil and Gas Extraction) and 30 (Rubber and Miscellaneous Plastic Products), were estimated to have more than an 80% likelihood of exceeding the PEL. There was an inverse temporal trend of exceeding the PEL, with lower risk in most recent years, albeit not statistically significant. Similar results were shown when incorporating occupation, but varied depending on the occupation as the majority of industries predicted at the administrative level, e.g., managers, had an estimated EF < 0.5 while at the minimally skilled/laborer level there was a substantial increase in the estimated EF. These statistical models allow the prediction of PAH exposure risk through individual occupational histories and will be used to create a job-exposure matrix for use in a population-based case

  4. Indoor emission, dispersion and exposure of total particle-bound polycyclic aromatic hydrocarbons during cooking

    Science.gov (United States)

    Gao, Jun; Jian, Yating; Cao, Changsheng; Chen, Lei; Zhang, Xu

    2015-11-01

    Cooking processes highly contribute to indoor polycyclic aromatic hydrocarbon (PAH) pollution. High molecular weight and potentially carcinogenic PAHs are generally found attached to small particles, i.e., particulate phase PAHs (PPAHs). Due to the fact that indoor particle dynamics have been clear, describing the indoor dynamics of cooking-generated PPAHs within a specific time span is possible. This paper attempted to quantify the dynamic emission rate, simultaneous spatial dispersion and individual exposure of PPAHs using a cooking source. Experiments were conducted in a real-scale kitchen chamber to elucidate the time-resolved emission and effect of edible oil temperature and mass. Numerical simulations based on indoor particle dynamics were performed to obtain the spatial dispersion and individual inhalation intake of PPAHs under different emission and ventilation conditions. The present work examined the preheating cooking stage, at which edible oil is heated up to beyond its smoke point. The dynamic emission rate peak point occurred much earlier than the oil heating temperature. The total PPAH emission ranged from 2258 to 6578 ng upon heating 40-85 g of edible oil. The overall intake fraction by an individual within a period of 10 min, including 3 min for heating and 7 min for natural cooling, was generally ∼1/10,000. An important outcome of this work was that the overall intake fraction could be represented by multiplying the range hood escape efficiency by the inhalation-to-ventilation rate ratio, which would be no greater than the same ratio. The methodology and results of this work were extendible for the number-based assessment of PPAHs. This work is expected to help us understand the health risks due to inhalation exposure to cooking-generated PPAHs in the kitchen.

  5. Spatial and Temporal Distribution of Polycyclic Aromatic Hydrocarbons and Heavy Metals in Stormwater Detention Basin Sediments

    Science.gov (United States)

    Schifman, L. A.; Kasaraneni, V. K.; Boving, T. B.; Craver, V.

    2015-12-01

    Stormwater runoff is a conduit for several pollutants such as polycyclic aromatic hydrocarbons (PAHs) into surface and ground water bodies. The control of runoff and pollutants is typically addressed by best management practices, such as retention/detention ponds. While the effectiveness of catchment basins in runoff volume reduction and removal of some contaminants has been established, very little is known about contaminant fate within these structures. Particularly in coastal regions and places with shallow groundwater tables PAH accumulation in the bottom sediments poses a potential threat for groundwater contamination. The concentrations of PAHs accumulated in the sediments of these catchment basins will primarily depend on the sources of runoff origin and the surrounding land use. Here, five stormwater catchment basins along the I-95 corridor in Rhode Island were selected based on the stormwater runoff origin and land use (industrial, urban, highway, and commercial). To study the stratification of PAHs one foot sediment cores were collected and analyzed for 17 PAHs (16 EPA parent PAH and Retene). The concentrations of PAHs in sediments of detention ponds in urban and industrial land use areas ranged from 20 μg/g to 200 μg/g. Generally higher concentrations of contaminants were found in sediments near the pond inlet and a decreasing concentration gradient is observed laterally and vertically throughout the pond. To compare stormwater ponds in various land use settings a new index based on sediment contamination, pond size and age, and catchment area will be presented. Further, it will be investigated whether BMP maintenance has to be targeted towards pollutant removal to maintain an effective stormwater treatment system.

  6. A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons

    KAUST Repository

    Raj, Abhijeet

    2012-02-01

    This work aims to develop a reaction mechanism for gasoline surrogate fuels (n-heptane, iso-octane and toluene) with an emphasis on the formation of large polycyclic aromatic hydrocarbons (PAHs). Starting from an existing base mechanism for gasoline surrogate fuels with the largest chemical species being pyrene (C 16H 10), this new mechanism is generated by adding PAH sub-mechanisms to account for the formation and growth of PAHs up to coronene (C 24H 12). The density functional theory (DFT) and the transition state theory (TST) have been adopted to evaluate the rate constants for several PAH reactions. The mechanism is validated in the premixed laminar flames of n-heptane, iso-octane, benzene and ethylene. The characteristics of PAH formation in the counterflow diffusion flames of iso-octane/toluene and n-heptane/toluene mixtures have also been tested for both the soot formation and soot formation/oxidation flame conditions. The predictions of the concentrations of large PAHs in the premixed flames having available experimental data are significantly improved with the new mechanism as compared to the base mechanism. The major pathways for the formation of large PAHs are identified. The test of the counterflow diffusion flames successfully predicts the PAH behavior exhibiting a synergistic effect observed experimentally for the mixture fuels, irrespective of the type of flame (soot formation flame or soot formation/oxidation flame). The reactions that lead to this synergistic effect in PAH formation are identified through the rate-of-production analysis. © 2011 The Combustion Institute.

  7. Distribution and fate of aliphatic and aromatic hydrocarbons in Antarctic fauna and environment

    Science.gov (United States)

    Platt, H. M.; Mackie, P. R.

    1980-03-01

    With the depletion of oil resources in more accessible areas, those of remote regions are being considered or indeed are now being exploited. In many of these regions, especially the polar ones, little is known of the effects such exploitation will have on the environment. But it is known that the ecosystems are often subject to great stress by natural climatic conditions and additional burdens imposed by man may have catastrophic environmental effects. South Georgia, a sub-Antarctic island, has a history of industrial activity mainly concerned with whaling operations that peaked around 1925-1935 but has since declined to virtually nothing. Studies of the ecology of the area provided a unique opportunity to assess the long-term effects that such activities had on the ecosystem. Off the whaling stations a considerable amount of waste material, including fuel oil, was released into the bays and inevitably some of this material was deposited in the sediments. Chemical evidence in the form of both paraffinic and aromatic hydrocarbons still persists in the sediments. The implications of this persistence in relation to the possible influence of the low temperature conditions are discussed. The superficial sediments, marine biota and terrestrial plants, which since 1965 have returned virtually to a pristine state, contain hydrocarbons essentially similar to unpolluted areas around the coast of Britain. Relatively high levels of carcinogenic/mutagenic polynuclear aromatic hydrocarbons in surface sediments suggests a world-wide background of abiogenic hydrocarbons probably disseminated by airborne transport. This appears to indicate that contamination reaches even remote parts of the world in relatively undiminished quantities.

  8. Analysis of aromatic hydrocarbons in overburden from coal mines: Assessment of the environmental impact

    International Nuclear Information System (INIS)

    Bituminous coals are known to contain significant amounts of petroleum-like hydrocarbons trapped in the pore system of the macromolecular network. With increasing thermal stress acting upon coals under the particular conditions in their deposits, the relative amount of volatile aromatic hydrocarbons within the trapped bitumen increases until the coal reaches the rank of medium-volatile bituminous coals. Coking coals particularly are rich in compounds such as benzene, biphenyl, naphthalene, and their alkylated derivatives. Potential hazardous environmental impact of these hydrocarbons has to be considered when mining or reclaiming overburden because approximately 10% overburden material related to coal mining is coal. Exposure to long-term weathering destroys the pore system of coals, which might result in a release of highly volatile bituminous coal constituents into the atmosphere. This view is supported by analyses of coals present in overburden material. In the present study, the on-line combination of thermodesorption coupled to gas chromatography and mass spectrometry is shown to be an appropriate tool for the detection and quantitation of hydrocarbons of a wide boiling temperature range present in solid sample material. The method is preferentially suitable for the analysis of highly volatile constituents such as benzene, toluene, and xylenes, which are not quantitatively analyzed using conventional solvent-extraction methods

  9. DNA damage in humans exposed to environmental and dietary polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Schoket, Bernadette [National Institute of Environmental Health, Jozsef Fodor National Centre of Public Health, Gyaliut 2-6, Budapest (Hungary)

    1999-03-08

    The paper describes recent research on human DNA damage related to environmental and dietary polycyclic aromatic hydrocarbon (Pah) exposures. The study populations either represent general populations of large geographical regions, or their exposure situation may have relevance to the general population. In Silesia, Poland, and Northern Bohemia, Czech Republic, where coal-based industry and domestic heating are the major sources of PAHs, significant differences have been observed in white blood cell DNA adducts and cytogenetic biomarkers between environmentally exposed and rural control populations, and significant seasonal variations of DNA damage have been detected. Bus drivers, traffic policemen and local residents have been involved in biomarker studies in Copenhagen, Athens, Genoa and Cairo, and differences have been measured in the level of DNA damage of urban and rural populations. Burning of smoky coal in unvented homes in Xuan Weiregion, China, causes high PAH exposure of residents, which has been reflected in DNA adduct levels in different tissues. Indoor wood burning in open fireplaces did not increase human DNA adduct levels. Oil-well fires left burning in Kuwait after the Persian Gulf war created an unprecedented environmental pollution. However, insignificant environmental PAH levels were measured several miles from these fires. Aromatic and PAH-DNA adduct level sin white blood cells of US Army soldiers were lower during their deployment in Kuwait, than in Fulda, Germany, where they were stationed before and after serving in Kuwait. The contribution of dietary PAH exposure to blood cell DNA adduct levels had been demonstrated in studies in which volunteers consumed heavily charbroiled beef. Environmental tobacco smoke did not cause detectable changes, as measured by{sup 32}P-postlabelling, in DNA adduct levels in non-smokers. In the reviewed studies, observed DNA adduct levels were generally in the range of 1 to 10 adducts, and not higher than 40

  10. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors.

    Science.gov (United States)

    Zhang, Yanyan; Dong, Sijun; Wang, Hongou; Tao, Shu; Kiyama, Ryoiti

    2016-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are often detected in the environment and are regarded as endocrine disruptors. We here designated mixtures of PAHs in the environment as environmental PAHs (ePAHs) to discuss their effects collectively, which could be different from the sum of the constituent PAHs. We first summarized the biological impact of environmental PAHs (ePAHs) found in the atmosphere, sediments, soils, and water as a result of human activities, accidents, or natural phenomena. ePAHs are characterized by their sources and forms, followed by their biological effects and social impact, and bioassays that are used to investigate their biological effects. The findings of the bioassays have demonstrated that ePAHs have the ability to affect the endocrine systems of humans and animals. The pathways that mediate cell signaling for the endocrine disruptions induced by ePAHs and PAHs have also been summarized in order to obtain a clearer understanding of the mechanisms responsible for these effects without animal tests; they include specific signaling pathways (MAPK and other signaling pathways), regulatory mechanisms (chromatin/epigenetic regulation, cell cycle/DNA damage control, and cytoskeletal/adhesion regulation), and cell functions (apoptosis, autophagy, immune responses/inflammation, neurological responses, and development/differentiation) induced by specific PAHs, such as benz[a]anthracene, benzo[a]pyrene, benz[l]aceanthrylene, cyclopenta[c,d]pyrene, 7,12-dimethylbenz[a]anthracene, fluoranthene, fluorene, 3-methylcholanthrene, perylene, phenanthrene, and pyrene as well as their derivatives. Estrogen signaling is one of the most studied pathways associated with the endocrine-disrupting activities of PAHs, and involves estrogen receptors and aryl hydrocarbon receptors. However, some of the actions of PAHs are contradictory, complex, and unexplainable. Although several possibilities have been suggested, such as direct interactions between PAHs and

  11. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Goodale, Britton C. [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Tilton, Susan C. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States); Corvi, Margaret M.; Wilson, Glenn R. [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Janszen, Derek B. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States); Anderson, Kim A. [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Waters, Katrina M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States); Tanguay, Robert L., E-mail: tanguay.robert@oregonstate.edu [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States)

    2013-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC–MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures. - Highlights: • Defined global mRNA expression

  12. Determination of polycyclic aromatic hydrocarbons in water using an electrochemical DNA biosensor

    Directory of Open Access Journals (Sweden)

    R Manaffar

    2015-08-01

    Full Text Available Background and Objectives: Polycyclic aromatic hydrocarbons (PAHs are widespread environmental contaminants in aquatic environments. These contaminants are generated through oil spills, manufactory processes, and industrial wastes or naturally through the incomplete combustion of coal, oil, gas, and wood waste. Most of these compounds are noted as carcinogenic and mutagenic. Therefore, detection of these pollutants by a sensitive and inexpensive method is very important. Materials and Methods: In this study, an electrochemical DNA biosensor was used to detect PAHs due to its sensitivity, ability, and high response rate. For this purpose, the bovine thymus double-stranded DNA was fixed on a screen-printed electrode. Then, the electrodes electrochemical behavior was investigated. This electrochemical DNA biosensor works upon the difference between the electrochemical response of guanine bases in DNA structure in the presence and absence of PAH compounds. To evaluate the biosensors performance, the response of biosensor to real samples was compared with conventional pollutant determination methods like liquid-liquid chromatography. Results: Optimum conditions were examined for biosensor response including effect of activation potential and time on electrode pretreatment, applied potential for DNA immobilization, and detection potential. Under optimal conditions, the pretreatment of the electrode obtained in 1.6 V for 350s, then the DNA was immobilized on the electrode surface by applying a potential of -0.5 V to detect different PAHs in real samples in the range of micro molar. Conclusion: Electrochemical DNA biosensors are capable of detecting the sum of PAHs in water samples with high accuracy, sensitivity, and low cost compared with chromatographic methods.

  13. A computational study of ethylene–air sooting flames: Effects of large polycyclic aromatic hydrocarbons

    KAUST Repository

    Selvaraj, Prabhu

    2015-11-05

    An updated reduced gas-phase kinetic mechanism was developed and integrated with aerosol models to predict soot formation characteristics in ethylene nonpremixed and premixed flames. A primary objective is to investigate the sensitivity of the soot formation to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). The gas-phase chemical mechanism adopted the KAUST-Aramco PAH Mech 1.0, which utilized the AramcoMech 1.3 for gas-phase reactions validated for up to C2 fuels. In addition, PAH species up to coronene (C24H12 or A7) were included to describe the detailed formation pathways of soot precursors. In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph with expert knowledge (DRG-X) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames at low strain rate sooting conditions were considered, for which the sensitivity of soot formation characteristics to different nucleation pathways were investigated. Premixed flame experiment data at different equivalence ratios were also used for validation. The findings show that higher PAH concentrations result in a higher soot nucleation rate, and that the total soot volume and average size of the particles are predicted in good agreement with experimental results. Subsequently, the effects of different pathways, with respect to pyrene- or coronene-based nucleation models, on the net soot formation rate were analyzed. It was found that the nucleation processes (i.e., soot inception) are sensitive to the choice of PAH precursors, and consideration of higher PAH species beyond pyrene is critical for accurate prediction of the overall soot formation.

  14. Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan.

    Science.gov (United States)

    Chen, Chih-Feng; Chen, Chiu-Wen; Dong, Cheng-Di; Kao, Chih-Ming

    2013-10-01

    Polycyclic aromatic hydrocarbon (PAH) contamination and toxicity levels in the surface sediments of Kaohsiung Harbor, Taiwan were evaluated using sediment quality guidelines (SQGs) and toxic equivalent factors. Eighty surface sediment samples were collected from twenty locations in Kaohsiung Harbor for PAH analysis using gas chromatography/mass spectrometry (GC/MS). Concentrations of total PAHs varies from 34.0 to 16,700 ng/g with a mean concentration of 1490±2689 ng/g. The spatial distribution of PAHs reveals that PAH concentration is relatively higher in the river mouth regions, especially in the Salt River mouth where it gradually diminishes toward the harbor region. Distributions of PAHs, during both the wet and dry seasons, show that PAHs are more easily disbursed in the receiving sea water thereby leading to a wider range of chemical distribution. Hence, most of the chemicals accumulate in the harbor water channel. Diagnostic ratios show that the possible source of PAHs in the southern industrial area of the harbor could be coal combustion while in the other zones it could be petroleum combustion and/or a mixed sources. The toxic equivalent concentrations (TEQ(carc)) of PAHs varied from 3.9 to 1970 ng TEQ/g. The higher total TEQ(carc) values were found in the southern industrial area of the harbor. As compared with US sediment quality guidelines, the observed levels of PAHs in the industrial zone exceeded the effects range low (ERL), which will eventually cause acute biological damage. Based on the analyses using the SQGs, surface sediments from Kaohsiung Harbor were moderately contaminated and most samples have a low probability of toxicity pollution, except for the Salt River mouth situated in the south Kaohsiung Harbor area. This area has a medium to high probability of toxicity pollution. PMID:22818911

  15. Genotoxicity in child populations exposed to Polycyclic Aromatic Hydrocarbons (PAHs in the air from Tabasco, Mexico

    Directory of Open Access Journals (Sweden)

    Aldeco R. Gamboa

    2008-12-01

    Full Text Available The economy of the state of Tabasco is based on oil extraction. However, this imposes major effects to the environment and communities. Examples are the Polycyclic Aromatic Hydrocarbons (PAHs that may be found in the soil, water and sediment of the region. Their volatility makes them available to living beings and results in genotoxic activity. The purpose of this study was to quantify the levels of PAHs in the air at several points in the state, and to analyze their relationship with possible damage to DNA on local inhabitants. Single Cell Gel Electrophoresis Assay (Comet Assay was applied to peripheral blood lymphocytes of five groups of children between six and 15 years of age. PAH samples were analyzed following US/EPA TO-13-A method. Results indicated the presence in the air of most of the 16 PAHs considered as high priority by EPA, some of which have been reported with carcinogenic activity. Differences (p<0.05 were found between PAHs concentration in the gaseous component and in the particulate component of air samples, with the greatest values for the gaseous component. Greatest PAH concentrations were detected in areas with high oil extraction activities. Children groups from high oil activity areas presented genotoxic damage labeled from moderate to high according to DNA migration from nuclei (Tail Length: 14.2 - 42.14 mm and Tail/Head: 0.97 - 2.83 mm compared with control group (12.25 and 0.63 mm, respectively. The group with greatest cell damage was located in the area with the greatest oil activity. We conclude that the presence of PAHs in the air may represent a health risk to populations that are chronically exposed to them at high oil activity regions.

  16. Emission characteristics of polycyclic aromatic hydrocarbons from combustion of different residential coals in North China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wen X. [Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)], E-mail: wxliu@urban.pku.edu.cn; Dou Han; Wei, Zhi C.; Chang Biao; Qiu, Wei X.; Liu Yuan; Tao Shu [Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)

    2009-02-01

    Emission properties of polycyclic aromatic hydrocarbons (PAHs) from combustion of six residential coals in North China were investigated. The results indicated that, the total emission factors (EFs) for 15 PAH species in gaseous and particulate phases ranged from 52.8 to 1434.8 mg/kg with a decreasing sequence of local bituminous coals and anthracite coals, and honeycomb briquettes were largely dependent on the raw coals used to produce them. Particulate phase, dominated by median or high molecular weight components, made a major contribution (68.8% - 76.5%) to the total EFs for bituminous coals, while gaseous phase with principal low molecular weight species accounted for most (86.3% - 97.9%) of the total EFs for anthracite coals. The phase partitioning of PAH emission for honeycomb briquettes was similarly dependent on the crude coals. The total EFs, phase partitioning and component profiles of emitted PAHs were mainly influenced by the inner components of the studied coals. Burning mode and flue number on household coal-stoves also affected the emission characteristics by means of the oxygen supply. A sum of seven carcinogenic PAHs, benzo(a)pyrene(BaP)-equivalent carcinogenic power and total toxicity potency expressed in 2,3,7,8-tetrachlorodibenzo-dioxin(TCDD) toxic equivalence exhibited that bituminous coals and produced honeycomb briquettes had remarkably elevated values. Fluoranthene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and indeno(1,2,3-cd)pyrene from anthracite coals showed higher levels of BaP-based toxic equivalent factor, though the other toxicity indices were rather low for this type of coal.

  17. Bioconcentration of polycyclic aromatic hydrocarbons in roots of three mangrove species in Jiulong River Estuary

    Institute of Scientific and Technical Information of China (English)

    LU Zhi-qiang; ZHENG Wen-jiao; MA Li

    2005-01-01

    The polycyclic aromatic hydrocarbons(PAHs) concentrations were determined in the root of three mangrove species( Kandelia candel, Avicennia marina and Bruguiera gymnorrhiza) and their growing environment(sediment) in mangrove wetlands of Jiulong River Estuary, Fujian, China. The total PAHs(16 parent PAHs) in mangrove sediments ranged from 193.44 to 270.53 ng/g dw, with a mean value of 231.76 ± 31.78 ng/g dw. Compared with other mangrove and coastal marine sediments, the PAHs concentrations of all the sampling areas in this study were at relatively lower level. The total PAHs(13 parent PAHs) values varied from 30.83 to 62.73 ng/g dw in mangrove roots. Benzo[a] pyrene(five-ring), fluoranthene(four-ring) and pyrene(four- ring) dominated in mangrove sediments. Based on ratios of phenathrene/anthracene, fluoranthene/pyrene and fluoranthene/pyrene + fluoranthene, the main possible sources of surface sediment PAHs were identified as grass, wood or coal combustion for mangrove wetlands of Jiulong River Estuary. Naphthalene(two-ring)and phenathrene(three-ring) were the most abundant compounds in mangrove roots. Sediment-to-vegetation bioconcentration factors (BCFsvS) were calculated and their relationships with PAHs' physico-chemical properties were investigated. The average BCFsv s of PAHs for three mangrove species roots were almost all under the level of 1 except for naphthalene. Good linear relationship between BCFsv values for mangrove roots and PAHs water solubility, octanol-water partitioning coefficients was derived in present study. The solubility and the octanol-water partition coefficient were proved to be good predictors for the accumulation of PAHs in mangrove roots,respectively.

  18. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants.

    Science.gov (United States)

    Zhang, Wanhui; Wei, Chaohai; Yan, Bo; Feng, Chunhua; Zhao, Guobao; Lin, Chong; Yuan, Mengyang; Wu, Chaofei; Ren, Yuan; Hu, Yun

    2013-09-01

    Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography-mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5 ± 8.9 to 216 ± 20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8 ± 2.7 to 31.9 ± 6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters. PMID:23589270

  19. Accumulation, allocation, and risk assessment of polycyclic aromatic hydrocarbons (PAHs in soil-Brassica chinensis system.

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    Full Text Available Farmland soil and leafy vegetables accumulate more polycyclic aromatic hydrocarbons (PAHs in suburban sites. In this study, 13 sampling areas were selected from vegetable fields in the outskirts of Xi'an, the largest city in northwestern China. The similarity of PAH composition in soil and vegetation was investigated through principal components analysis and redundancy analysis (RDA, rather than discrimination of PAH congeners from various sources. The toxic equivalent quantity of PAHs in soil ranged from 7 to 202 μg/kg d.w., with an average of 41 μg/kg d.w., which exceeded the agricultural/horticultural soil acceptance criteria for New Zealand. However, the cancer risk level posed by combined direct ingestion, dermal contact, inhalation of soil particles, and inhalation of surface soil vapor met the rigorous international criteria (1 × 10(-6. The concentration of total PAHs was (1052 ± 73 μg/kg d.w. in vegetation (mean ± standard error. The cancer risks posed by ingestion of vegetation ranged from 2×10-5 to 2 × 10(-4 with an average of 1.66 × 10(-4, which was higher than international excess lifetime risk limits for carcinogens (1 × 10(-4. The geochemical indices indicated that the PAHs in soil and vegetables were mainly from vehicle and crude oil combustion. Both the total PAHs in vegetation and bioconcentration factor for total PAHs (the ratio of total PAHs in vegetation to total PAHs in soil increased with increasing pH as well as decreasing sand in soil. The total variation in distribution of PAHs in vegetation explained by those in soil reached 98% in RDA, which was statistically significant based on Monte Carlo permutation. Common pollution source and notable effects of soil contamination on vegetation would result in highly similar distribution of PAHs in soil and vegetation.

  20. Polymorphisms in DNA repair genes, traffic-related polycyclic aromatic hydrocarbon exposure and breast cancer incidence.

    Science.gov (United States)

    Mordukhovich, Irina; Beyea, Jan; Herring, Amy H; Hatch, Maureen; Stellman, Steven D; Teitelbaum, Susan L; Richardson, David B; Millikan, Robert C; Engel, Lawrence S; Shantakumar, Sumitra; Steck, Susan E; Neugut, Alfred I; Rossner, Pavel; Santella, Regina M; Gammon, Marilie D

    2016-07-15

    Vehicular traffic polycyclic aromatic hydrocarbons (PAHs) have been associated with breast cancer incidence in epidemiologic studies, including our own. Because PAHs damage DNA by forming adducts and oxidative lesions, genetic polymorphisms that alter DNA repair capacity may modify associations between PAH-related exposures and breast cancer risk. Our goal was to examine the association between vehicular traffic exposure and breast cancer incidence within strata of a panel of nine biologically plausible nucleotide excision repair (NER) and base excision repair (BER) genotypes. Residential histories of 1,508 cases and 1,556 controls were assessed in the Long Island Breast Cancer Study Project between 1996 and 1997 and used to reconstruct residential traffic exposures to benzo[a]pyrene, as a proxy for traffic-related PAHs. Likelihood ratio tests from adjusted unconditional logistic regression models were used to assess multiplicative interactions. A gene-traffic interaction was evident (p = 0.04) for ERCC2 (Lys751); when comparing the upper and lower tertiles of 1995 traffic exposure estimates, the odds ratio (95% confidence interval) was 2.09 (1.13, 3.90) among women with homozygous variant alleles. Corresponding odds ratios for 1960-1990 traffic were also elevated nearly 2-3-fold for XRCC1(Arg194Trp), XRCC1(Arg399Gln) and OGG1(Ser326Cys), but formal multiplicative interaction was not evident. When DNA repair variants for ERCC2, XRCC1 and OGG1 were combined, among women with 4-6 variants, the odds ratios were 2.32 (1.22, 4.49) for 1995 traffic and 2.96 (1.06, 8.21) for 1960-1990 traffic. Our study is first to report positive associations between traffic-related PAH exposure and breast cancer incidence among women with select biologically plausible DNA repair genotypes. PMID:26946191

  1. Computational Spectroscopy of Polycyclic Aromatic Hydrocarbons In Support of Laboratory Astrophysics

    Science.gov (United States)

    Tan, Xiaofeng; Salama, Farid

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are strong candidates for the molecular carriers of the unidentified infrared bands (UIR) and the diffuse interstellar bands (DIBs). In order to test the PAH hypothesis, we have systematically measured the vibronic spectra of a number of jet-cooled neutral and ionized PAHs in the near ultraviolet (UV) to visible spectral ranges using the cavity ring-down spectroscopy. To support this experimental effort, we have carried out theoretical studies of the spectra obtained in our measurements. Ab initio and (time-dependent) density.functiona1 theory calculations are performed to obtain the geometries, energetics, vibrational frequencies, transition dipole moments, and normal coordinates of these PAH molecules. Franck-Condon (FC) calculations and/or vibronic calculations are then performed using the calculated normal coordinates and vibrational frequencies to simulate the vibronic spectra. It is found that vibronic interactions in these conjugated pi electron systems are often strong enough to cause significant deviations from the Born-Oppenheimer (BO) approximation. For vibronic transitions that are well described by the BO approximation, the vibronic band profiles are simulated by calculating the rotational structure of the vibronic transitions. Vibronic oscillator strength factors are calculated in the frame of the FC approximation from the electronic transition dipole moments and the FC factors. This computational effort together with our experimental measurements provides, for the first time, powerful tools for comparison with space-based data and, hence, a powerful approach to understand the spectroscopy of interstellar PAH analogs and the nature of the UIR and DIBs.

  2. Effect of irradiance spectra on the photoinduced toxicity of three polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, S.A.; Mount, D.R.; Burkhard, L.P.; Ankley, G.T.; Makynen, E.A.; Leonard, E.N.

    2000-05-01

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events underlying phototoxicity. This suggests that variation in light spectra present in natural waters, arising from variation in dissolved organic carbon composition, is an important determinant of phototoxicity risk in specific, PAH-contaminated waterbodies. To quantify the effect of environmentally realistic variation in light spectra on toxicity, brine shrimp (Artemia salina) assays were conducted under various light spectra and with three PAHs (pyrene, fluoranthene, and anthracene) of known phototoxicity potential. In these spectral assays, the total ultraviolet light present was equivalent; only the spectral characteristics varied. Based on the absorbance spectra of these PAHs, it was predicted that toxicity, quantified using immobilization as the endpoint, would vary significantly among light spectra in pyrene assays, but not in anthracene assays, and that variation in toxicity in fluoranthene assays would be intermediate. The results supported these assumptions. In the pyrene exposures, the glass filter time to 50% population immobilization (IT50) (39.5 min) was 117% longer than the KCr filter IT50 (18.2 min). In the fluoranthene exposures, the glass filter IT50 (49.5 min) was 27% longer than the KCr filter IT50 (39.1 min). In the anthracene exposures, the glass filter IT50 (62.2 min) was not statistically different from the KCr filter IT50 (63.8 min). Comparison of these results with the results of assays conducted under neutral-density filters (that change intensity but not spectral distribution) demonstrate that multiplying spectral intensity by wavelength-specific absorbance accurately predicts relative photoinduced toxicity among the experimental treatments. These results indicate

  3. Water clusters adsorbed on polycyclic aromatic hydrocarbons: Energetics and conformational dynamics

    Science.gov (United States)

    Simon, Aude; Spiegelman, Fernand

    2013-05-01

    In this work, we present some classical molecular dynamics (MD) simulations and finite temperature infrared (IR) spectra of water clusters adsorbed on coronene (C24H12), a compact polycyclic aromatic hydrocarbon (PAH). The potential energy surface is obtained within the self-consistent-charge density-functional based tight-binding approach with modifications insuring the correct description of water-water and water-PAH interactions. This scheme is benchmarked for the minimal energy structures of (C24H12)(H2O)n (n = 3-10) against density-functional theory (DFT) calculations and for the low-energy isomers of (H2O)6 and (C6H6)(H2O)3 against correlated wavefunction and DFT calculations. A detailed study of the low energy isomers of (C24H12)(H2O)3, 6 complexes is then provided. On-the-fly Born-Oppenheimer MD simulations are performed in the temperature T range 10-350 K for (C24H12)(H2O)n (n = 3-7) complexes. The description of the evolution of the systems with T is provided with emphasis on (C24H12)(H2O)n (n = 3,6). For T in the range 50-150 K, isomerisation processes are observed and when T increases, a solid-to-liquid phase-change like behavior is shown. The desorption of one water molecule is frequently observed at 300 K. The isomerisation processes are evidenced on the finite temperature IR spectra and the results are presented for (C24H12)(H2O)n (n = 3,6). A signature for the edge-coordination of the water cluster on the PAH is also proposed.

  4. Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    L. C. Marr

    2005-12-01

    Full Text Available Understanding sources, concentrations, and transformation of polycyclic aromatic hydrocarbons (PAHs in the atmosphere is important because of their potent mutagenicity and carcinogenicity. The measurement of particle-bound PAHs by three different methods during the Mexico City Metropolitan Area field campaign in April 2003 presents a unique opportunity for characterization of these compounds and assessment of the methods. The three methods are (1 collection and analysis of bulk samples for time-integrated gas- and particle-phase speciation by gas chromatography/mass spectrometry; (2 aerosol photoionization for fast detection of PAHs on particles' surfaces; and (3 aerosol mass spectrometry for fast analysis of size and chemical composition. This research represents the first time aerosol mass spectrometry has been used to measure ambient PAH concentrations and the first time that fast, real-time methods have been used to quantify PAHs alongside traditional filter-based measurements in an extended field campaign. Speciated PAH measurements suggest that motor vehicles and garbage and wood burning are important sources in Mexico City. The diurnal concentration patterns captured by aerosol photoionization and aerosol mass spectrometry are generally consistent. Ambient concentrations typically peak at ~110 ng m−3 during the morning rush hour and rapidly decay due to changes in source activity patterns and dilution as the boundary layer rises, although surface-bound PAH concentrations decay faster. The more rapid decrease in surface versus bulk PAH concentrations during the late morning suggests that freshly emitted combustion-related particles are quickly coated by secondary aerosol material in Mexico City's atmosphere and may also be transformed by heterogeneous reactions.

  5. Determination of polycyclic aromatic hydrocarbons in urban street dust: implications for human health.

    Science.gov (United States)

    Lorenzi, Damien; Entwistle, Jane A; Cave, Mark; Dean, John R

    2011-05-01

    The determination of sixteen polycyclic aromatic hydrocarbons in urban street dust has been done. Samples were collected from 12 sampling locations in a city centre location (Newcastle upon Tyne, north east England) and extracted using in situ pressurised fluid extraction followed by gas chromatography mass spectrometry. From the results it was possible to identify three groups, with respect to PAH concentration, with PAH contents ranging between 0.6-2.3 mg kg(-1), 15.6-22.5 mg kg(-1) and 36.1-46.0 mg kg(-1). The total PAH content of samples from these sampling sites has been compared to 22 urban locations around the world; comparable levels were found in these samples compared to the other cities around the world. The potential source of PAHs has been investigated by investigating the proportion of pyrogenic and petrogenic material in urban street dust using specific individual PAH ratios. The results indicate that the PAH content of urban street dust from the chosen sites are more likely to be due to pyrogenic sources i.e. vehicle exhaust emissions. The particle size fractions (PAHs in three selected sampling sites was investigated. In two of the selected sites the PAH content was independent of particle size whereas in sampling site 10 elevated PAH levels are noted in the PAHs was assessed in terms of a mean daily intake (based on an ingestion rate of 100 mg d(-1)). It was found that all 4-6 membered ring PAHs had concentrations in excess of the mean daily intake thereby reflecting a potential health risk, particularly in the smallest size particle fractions.

  6. Runoff pollution impacts of polycyclic aromatic hydrocarbons in street dusts from a stream network town.

    Science.gov (United States)

    Zhao, Hongtao; Yin, Chengqing; Chen, Meixue; Wang, Weidong

    2008-01-01

    Runoff with contaminated street dusts has an environmental risk to the aquatic environment. An assessment of the diffuse pollution of polycyclic aromatic hydrocarbons (PAHs) from a small town and their risks to the township stream network was conducted at Yangtze River delta. This assessment is based on measurements of 16 PAHs from the US EPA priority list by GC-MS in stream water during rainy and dry season, street dusts with different particle sizes, river sediments and suspended solids of urban runoff. The maximum level of PAHs in the stream water (2,323-4,948 ng L(-1)) were found during rainy season, while significantly lower PAHs concentrations (242-998 ng L(-1)) were measured during dry season. The total PAHs ranged from 1,629 to 8,986 microg kg(-1) in the street dusts. Approximately 55% of the total PAHs were associated with street dust particles of diameters less than 250 microm and these accounted for 40% of the total. The town reaches sediments were rich in PAHs and it was suggested as the sink of street dusts. The research findings suggested that size of street dusts, the topographical and hydrological features of the landscape in the stream network were the important factors influencing PAH emitted to the receiving water. The contribution of urban surface runoff could significantly influence PAHs concentration in the stream water. To reduce the pollution of street dust into the stream network, the buffer zone along the hydrological pathway is suggested and the existing street cleaning methods should also be improved.

  7. Origin of polycyclic aromatic hydrocarbons in lake sediments of the Mackenzie Delta.

    Science.gov (United States)

    Headley, John V; Marsh, Philip; Akre, Christine J; Peru, Kerry M; Lesack, Lance

    2002-08-01

    The concentrations and distribution of polycyclic aromatic hydrocarbons (PAHs) were assessed in sediment cores from among 14 lakes from three regions comprising a transect across the central Mackenzie Delta. PAHs were consistently found in the lake sediments, with parent concentrations in the 20-200 ng/g range. Concentrations were generally independent of depth in the sediment cores and this pattern was similar among the 3 regions of the delta. Concentrations increased in a westerly direction among the regions. For some lakes, the concentration of PAHs decreased with decreasing flooding frequency, and decreasing sedimentation rates. For the latter, maximum concentrations occurred at shallower depths within the sediment cores as flooding frequency among the lakes decreased. The distributions of C0-C4 alkylated 2- and 3- ring PAHs were consistent with a petrogenic origin, while the corresponding distribution of 4-ring PAHs appears to be more consistent with a biogenic or pyrogenic origin. Based on relative contributions to the overall PAH budget, a petrogenic source appears to be dominant. However, the pyrene/fluoranthene ratio is more consistent with a source derived from peat. The alkylated PAH profiles are inconsistent with those in the Athabasca River system, and supports a previously published hypothesis that the contribution of PAHs from the Athabasca oil sands to the lower Mackenzie River is minimal. A double ratio plot of chrysene vs dibenzothiophene, diagnostic of weathering, suggests most weathering occurred before the sediments were deposited in the lakes, while a double ratio plot of dibenzothiophene vs phenanthrene suggests a common source of PAHs across the delta, despite differing water sources from east to west across the delta. PAH inputs to the delta appear to mirror sediment inputs documented in previous work, where high sediment input from the Mackenzie mainstem during high floods dominates the delta sediment influx and masks any influence of the

  8. Biodegradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments.

    Science.gov (United States)

    Shahriari Moghadam, Mohsen; Ebrahimipour, Gholamhossein; Abtahi, Behrooz; Ghassempour, Alireza; Hashtroudi, Mehri Seyed

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) biodegradation in contaminated sediment is an attractive remediation technique and its success depends on the optimal condition for the PAH-degrading isolates. The aims of the current study was to isolate and identify PAHs-degrading bacteria from surface sediments of Nayband Bay and to evaluate the efficiency of statistically based experimental design for the optimization of phenanthrene (Phe) and Fluorene (Flu) biodegradation performed by enriched consortium. PAHs degrading bacteria were isolated from surface sediments. Purified strains were then identified by 16S rDNA gene sequence analysis. Taguchi L16 (4(5)) was employed to evaluate the optimum biodegradation of Phe and Flu by the enriched consortium. Total of six gram-negative bacterial strains including Marinobacter hydrocarbonoclasticus, Roseovarius pacificus, Pseudidiomarina sediminum and 3 unidentified strains were isolated from enrichment consortium, using Fluorene (Flu) and phenanthrene (Phe) as the sole carbon and energy source. The enriched consortium showed highest degradation abilities (64.0% Flu and 58.4% Phe degraded in 7 days) in comparison to a single strain cultures or mixtures. Maximum biodegradation efficiency was occur at temperature = 35°C; pH = 8; inoculum size = 0. 4 OD600nm; salinity = 40 ppt; C/N ratio = 100:10. In conclusion our results showed that, indigenous bacteria from mangrove surface sediments of Nayband Bay have high potential to degrade Flu and Phe with the best results achieved when enriched consortium was used. PMID:25436114

  9. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeda

    Full Text Available We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1 the effects of crude oil (Louisiana light sweet oil on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs in mesozooplankton communities, (2 the lethal effects of dispersant (Corexit 9500A and dispersant-treated oil on mesozooplankton, (3 the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4 the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L(-1 in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20, dispersant (0.25 µl L(-1 and dispersant-treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L(-1 to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments.

  10. Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    L. C. Marr

    2006-01-01

    Full Text Available Understanding sources, concentrations, and transformations of polycyclic aromatic hydrocarbons (PAHs in the atmosphere is important because of their potent mutagenicity and carcinogenicity. The measurement of particle-bound PAHs by three different methods during the Mexico City Metropolitan Area field campaign in April 2003 presents a unique opportunity for characterization of these compounds and intercomparison of the methods. The three methods are (1 collection and analysis of bulk samples for time-integrated gas- and particle-phase speciation by gas chromatography/mass spectrometry; (2 aerosol photoionization for fast detection of PAHs on particles' surfaces; and (3 aerosol mass spectrometry for fast analysis of size and chemical composition. This research represents the first time aerosol mass spectrometry has been used to measure ambient PAH concentrations and the first time that fast, real-time methods have been used to quantify PAHs alongside traditional filter-based measurements in an extended field campaign. Speciated PAH measurements suggest that motor vehicles and garbage and wood burning are important sources in Mexico City. The diurnal concentration patterns captured by aerosol photoionization and aerosol mass spectrometry are generally consistent. Ambient concentrations of particle-phase PAHs typically peak at ~110 ng m-3 during the morning rush hour and rapidly decay due to changes in source activity patterns and dilution as the boundary layer rises, although surface-bound PAH concentrations decay faster. The more rapid decrease in surface versus bulk PAH concentrations during the late morning suggests that freshly emitted combustion-related particles are quickly coated by secondary aerosol material in Mexico City's atmosphere and may also be transformed by heterogeneous reactions.

  11. Aliphatic and polycyclic aromatic hydrocarbons in sediments of the Slovenian coastal area (Gulf of Trieste, northern Adriatic).

    Science.gov (United States)

    Bajt, Oliver

    2012-12-01

    The distribution and sources of aliphatic and polycyclic aromatic hydrocarbons (PAH) were determined in sediments at seven sites around the Slovenian coastal area. The potential toxicological significance was also assessed using biological thresholds. The results of the analyses showed higher concentrations of hydrocarbons in the Port of Koper and in the Marina of Portoroz. The influence of pollution was also evident in rather higher concentrations of hydrocarbons in the surrounding area in the Bays of Koper and Piran. Concentrations of hydrocarbons decrease toward the central part of the Gulf of Trieste. The major component of the aliphatic fraction was the unresolved complex mixture. Concentrations of the total resolved aliphatic hydrocarbons were in a range from 689 to 3,164 ng g(-1). Concentrations of the total PAHs were between 330 and 1,173 ng g(-1). Polycyclic aromatic hydrocarbons are primarily of pyrolytic origin with some smaller contributions of the petrogenic, while the aliphatic are mostly of petrogenic origin with significant amounts of biogenic derived compounds of terrestrial and marine origin. Strong evidence of the diagenetic origin of perylene in the investigated area was also found. Quite a good linear relationship between PAH concentration and TOC and between aliphatic hydrocarbon concentrations and TOC was observed. The principal component analysis showed differences between the nearshore and offshore sites. In general, the investigated area is moderately contaminated by hydrocarbons. Concentrations of PAHs, hydrocarbons of high concern, are below the levels (effects range low and the effects range median) associated with adverse biological effects. PMID:22270593

  12. Turn-On Fluorogenic and Chromogenic Detection of Small Aromatic Hydrocarbon Vapors by a Porous Supramolecular Host.

    Science.gov (United States)

    Hatanaka, Sou; Ono, Toshikazu; Hisaeda, Yoshiio

    2016-07-18

    Benzene, toluene, ethylbenzene, the isomers of xylene, and trimethylbenzene are harmful volatile organic compounds and pose risks to human health and the environment. However, there are currently no effective chemosensors for vapors of these compounds. A porous supramolecular host for turn-on fluorogenic and chromogenic detection of the vapors of small aromatic hydrocarbons is presented. The host was constructed from a naphthalenediimide derivative that was supramolecularly connected to tris(pentafluorophenyl)borane. The amorphous powder form of the host allowed for effective accommodation of vapors of small aromatic hydrocarbons, resulting in a guest-dependent fluorescence emission. Increases in the fluorescence yield of 76-, 46-, and 37-fold were observed with toluene, benzene, and m-xylene, respectively. Negligible responses were obtained with common organic solvents. This simple supramolecular host could be applied as a useful sensor of small aromatic hydrocarbon vapors. PMID:27224939

  13. Evaluation of methods for predicting the toxicity of polycyclic aromatic hydrocarbon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, W.; Barhoumi, R.; Burghardt, R.C. [and others] [Texas A & M University, College Station, TX (USA). Dept. of Veterinary Anatomy and Public Health and Department of Civil Engineering

    2001-04-15

    Risk assessments of polycyclic aromatic hydrocarbon mixtures are hindered by a lack of reliable information on the potency of both mixtures and their individual components. This paper examines methods for approximating the toxicity of polycyclic aromatic hydrocarbon (PAH) mixtures. PAHs were isolated from a coal tar and then separated by ring number using HPLC. Five fractions (A-E) were generated, each possessing a unique composition and expected potency. The toxicity of each fraction was measured in the Salmonella/mutagenicity assay and the Chick Embryo Screening Test (CHEST). Their abilities to induce ethoxyresorufin-O-deethylase and to inhibit gap junction intercellular communication in rat liver Clone 9 cells were also measured. In the Salmonella/mutagenicity assay, fractions were predicted to have potencies in the order C {gt} E {gt} B {gt} A. Toxic equivalency factors (TEFs) for fractions A-E were in the order E {ge} D {gt} C {gt} B {gt} A. TEF values were 20 652, 20 929, 441, 306 and 74.1 {mu}g of BaP equiv/g, respectively. A lack of agreement between assay-predicted potencies and chemical analysis-predicted potencies was observed with other assays and other methods of calculation. The results demonstrate the limitations of using a single method to predict the toxicity of a complex PAH mixture. 41 refs., 2 figs., 3 tabs.

  14. Polycyclic Aromatic Hydrocarbons (PAHs) in urban atmospheric particulate of NCR, Delhi, India

    Science.gov (United States)

    Sonwani, Saurabh; Amreen, Hassan; Khillare, P. S.

    2016-07-01

    The present study identifies the particulate Polycyclic Aromatic hydrocarbons (PAHs) and their sources in ambient atmosphere of Delhi, India. PM10 (aerodynamic diameter, ≤10 μm) samples were collected weekly at two residential areas from July 2013 to January 2014. First sampling site was located in centre of the city, while other was at city's background (located in South-East direction of the Delhi). PM10 was collected on Whatman GF/A (8"x10") glass fibre filters using High-Volume sampler having a constant flow rate of 1.10 m3/min. A total of 55 samples, 27 from city centre and 28 from background site were collected during sampling period, covering two different seasons. The samples were analysed for determination of 16 Polycyclic Aromatic Hydrocarbons by using High Performance Liquid Chromatography (HPLC) system (Waters, USA). A source apportionment study using Molecular Diagnostic Ratio (MDR) and Principal Component Analysis (PCA) were conducted for both sampling sites in order to identify the potential PAHs sources in Delhi. MDR was used for the preliminary identification of sources and PCA was used for further confirmation of the PAH sources at both the sites in Delhi. Results indicated towards traffic and coal combustion related sources as dominant contributors of urban atmospheric PAHs in Delhi.

  15. Combined effect of urinary monohydroxylated polycyclic aromatic hydrocarbons and impaired lung function on diabetes.

    Science.gov (United States)

    Hou, Jian; Sun, Huizhen; Xiao, Lili; Zhou, Yun; Yin, Wenjun; Xu, Tian; Cheng, Juan; Chen, Weihong; Yuan, Jing

    2016-07-01

    Associations of type 2 diabetes with exposure to polycyclic aromatic hydrocarbons and reduced lung function have been reported. The aim of the present study was to investigate effect of reduced lung function and exposure to background PAHs on diabetes. A total of 2730 individuals were drawn from the Wuhan-Zhuhai (WHZH) Cohort Study (n=3053). Participants completed physical examination, measurement of lung function and urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs). Risk factors for type 2 diabetes were identified by multiple logistic regression analysis, and the presence of additive interaction between levels of urinary OH-PAHs and lower lung function was evaluated by calculation of the relative excess risk due to interaction (RERI) and attributable proportion due to interaction (AP). Urinary OH-PAHs levels was positively associated with type 2 diabetes among individuals with impaired lung function (pFEV1, odd ratio (OR): 0.664, 95% confidence interval (CI): 0.491-0.900) and forced vital capacity (FVC, OR: 0.693, 95% CI: 0.537-0.893) were negatively associated with diabetes among individuals. Additive interaction of higher urinary levels of OH-PAHs and lower FVC (RERI: 0.679, 95% CI: 0.120-1.238); AP: 0.427, 95% CI: 0.072-0.782) was associated with diabetes. Exposure to background PAHs was related to diabetes among individuals with lower lung function. Urinary levels of OH-PAHs and reduced lung function had an additive effect on diabetes. PMID:27136672

  16. Sequential accelerated solvent extraction of polycyclic aromatic hydrocarbons with different solvents: performance and implication.

    Science.gov (United States)

    Ma, Xiaoxuan; Ran, Yong; Gong, Jian; Chen, Diyun

    2010-01-01

    Sixteen USEPA priority polycyclic aromatic hydrocarbons (PAHs) extracted by Soxhlet extraction (S-PAHs) with dichloromethane and routine accelerated solvent extraction (A-PAHs) with 1:1 toluene/methanol, respectively, were investigated in 24 soil samples from two cities in the center of the Pearl River Delta, South China. Polycyclic aromatic hydrocarbons, methylphenanthrene and perylene, in two soils, two sediments, and an immature oil shale were also sequentially extracted by accelerated solvent extraction (ASE) with each of four different organic solvents for three times. The A-PAHs' concentrations are 2.41 times the S-PAHs' concentrations. For sequential three ASEs, PAHs in the first extract account for 56 to 67% of their total concentrations in the sequential three extractions and toluene displays the best extraction performance among the four solvents. Diagnostic ratios of PAHs in Soxhlet extraction, routine ASE, and sequential ASE with each solvent for a given sample are very similar, suggesting their identical petrogenic and pyrogenic sources in the soils and sediments. But the PAH ratios for the shale have an obvious petrogenic origin. The perylene/5-ring PAH ratios indicate a diagenetic source, especially in the shale and sediments. The correlation analysis shows that A-PAHs/S-PAHs is better associated with the contents of total organic carbon (TOC) than those of black carbon (BC). The above results indicate the significant petrogenic origin of PAHs and the important effect of organic matter on their extraction and distribution in the investigated field soils/sediments. PMID:21284305

  17. Brine-induced advection of dissolved aromatic hydrocarbons to arctic bottom waters

    International Nuclear Information System (INIS)

    Extruded brine, generated during sea ice formation in nearshore arctic waters, will sink to the bottom and can form a stable bottom boundary layer. This layer can persist for periods of up to 4-6 months. Limited quantities of dissolved aromatic hydrocarbons resulting from a spill of crude oil or refined petroleum distillate products during periods of ice growth can be transported as conservative components to the benthos with sinking brine. Once incorporated into the stable bottom boundary layer, these aromatic components are no longer subject to loss by evaporative processes, and they only can be diluted by ultimately mixing with uncontaminated water masses, a process that proceeds slowly throughout the ice-covered period. This mechanism for the transport of dissolved hydrocarbons has been demonstrated through a laboratory test-tank simulation and a chemical/physical oceanographic field program conducted in the Chukchi Sea near Pt. Frankline, AK (March 1985). The results are pertinent to shallow nearshore oil and gas exploration, development, production, and transportation activities in high latitude marine systems

  18. Oxidation of polycyclic aromatic hydrocarbons using partially purified laccase from residual compost of agaricus bisporus

    Energy Technology Data Exchange (ETDEWEB)

    Mayolo-Deloisa, K. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Center for Biotechnology-FEMSA, Monterrey Institute of Technology, Campus Monterrey, Monterrey (Mexico); Machin-Ramirez, C. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Faculty of Chemical Sciences and Engineering, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Rito-Palomares, M. [Center for Biotechnology-FEMSA, Monterrey Institute of Technology, Campus Monterrey, Monterrey (Mexico); Trejo-Hernandez, M.R. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico)

    2011-08-15

    Laccase partially purified from residual compost of Agaricus bisporus by an aqueous two-phase system (Lac ATPS) was used in degrading polycyclic aromatic hydrocarbons: fluorene (Flu), phenanthrene (Phe), anthracene (Ant), benzo[a]pyrene (BaP), and benzo[a]anthracene (BaA). The capacity of the enzyme to oxidize polyaromatic compounds was compared to that of the crude laccase extract (CE). After treatment of 72 h, Lac ATPS and CE were not capable of oxidizing Flu and Phe, while Ant, BaP, and BaA were oxidized, resulting in percentages of oxidation of 11.2 {+-} 1, 26 {+-} 2, and 11.7 {+-} 4 % with CE, respectively. When Lac ATPS was used, the following percentages of oxidation were obtained: 11.4 {+-} 3 % for Ant, 34 {+-} 0.1 % for BaP, and 13.6 {+-} 2 % for BaA. The results reported here demonstrate the potential application of Lac ATPS for the oxidation of polycyclic aromatic hydrocarbons. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Assessment of atmospheric distribution of polychlorinated biphenyls and polycyclic aromatic hydrocarbons using polyparameter model

    Directory of Open Access Journals (Sweden)

    Turk-Sekulić Maja M.

    2011-01-01

    Full Text Available Results of partial or total destruction of industrial plants, military targets, infrastructure, uncontrolled fires and explosions during the conflict period from 1991 to 1999, at the area of Western Balkans, were large amounts of hazardous organic matter that have been generated and emitted in the environment. In order to assess gas/particle partition of seven EPA polychlorinated biphenyls and sixteen EPA polycyclic aromatic hydrocarbons, twenty air samples have been collected at six urban, industrial and highly contaminated localities in Vojvodina. Hi-Vol methodology has been used for collecting ambiental air samples, that simultaneously collects gaseous and particulate phase with polyurethane foam filters (PUF and glass fiber filters (GFF. PUF and GFF filters have been analyzed, and concentration levels of gaseous PCBs and PAHs molecules in gaseous and particulate phase were obtained, converted and expressed through fraction of individual compounds sorbed onto particulate phase of the sample, in total detected quantity. Experimentally gained gas/particle partitioning values of PCBs and PAHs molecules have been compared with PP-LFER model estimated values. Significant deviation has been noticed during comparative analysis of estimated polyparameter model values for complete set of seven PCBs congeners. Much better agreement of experimental and estimated values is for polycyclic aromatic hydrocarbons, especially for molecules with four rings. These results are in a good correlation with literature data where polyparameter model has been used for predicting gas/particle partition of studied group of organic molecules.

  20. Differential scanning calorimetry method for purity determination: A case study on polycyclic aromatic hydrocarbons and chloramphenicol

    Energy Technology Data Exchange (ETDEWEB)

    Kestens, V., E-mail: vikram.KESTENS@ec.europa.eu [European Commission - Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, 2440 Geel (Belgium); Zeleny, R.; Auclair, G.; Held, A.; Roebben, G.; Linsinger, T.P.J. [European Commission - Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, 2440 Geel (Belgium)

    2011-09-20

    Highlights: {yields} Purity assessment of polycyclic aromatic hydrocarbons and chloramphenicol by DSC. {yields} DSC results compared with traditional purity methods. {yields} Different methods give different results, multiple method approach recommended. {yields} DSC sensitive to impurities that have similar structures as main component. - Abstract: In this study the validity and suitability of differential scanning calorimetry (DSC) to determine the purity of selected polycyclic aromatic hydrocarbons and chloramphenicol has been investigated. The study materials were two candidate certified reference materials (CRMs), 6-methylchrysene and benzo[a]pyrene, and two different batches of commercially available highly pure chloramphenicol. The DSC results were compared with those obtained by other methods, namely gas and liquid chromatography with mass spectrometric detection, liquid chromatography with diode array detection, and quantitative nuclear magnetic resonance. The purity results obtained by these different analytical methods confirm the well-known challenges of comparing results of different method-defined measurands. In comparison with other methods, DSC has a much narrower working range. This limits the applicability of DSC as purity determination method, for instance during the assignment of the purity value of a CRM. Nevertheless, this study showed that DSC can be a powerful technique to detect impurities that are structurally very similar to the main purity component. From this point of view, and because of its good repeatability, DSC can be considered as a valuable technique to investigate the homogeneity and stability of candidate purity CRMs.

  1. Questioning the existence of superconducting potassium doped phases for aromatic hydrocarbons

    Science.gov (United States)

    Heguri, Satoshi; Kobayashi, Mototada; Tanigaki, Katsumi

    2015-07-01

    Superconductivity in aromatic hydrocarbons doped with potassium (K) such as K3 [picene (PCN)] and K3 [phenanthrene (PHN)] is found for only armchair-type polycyclic aromatic hydrocarbon. In this paper the thermodynamics of the reaction processes of PHN or anthracene (AN, zigzag type) with K was studied using differential scanning calorimetry and x-ray diffraction. We show that PHN decomposes during the reaction, triggered by hydrogen abstraction, to give metal hydride KH and unknown amorphous. No stable doped phases exist in Kx(PHN ) with stoichiometries of x =1 -3 . However, in the case of AN, a stable doped phase forms. We claim that PHN, which has been reported to be energetically more stable in the ground state than AN by first principle calculations, is unstable upon doping. We also suggest that the superconductivity in K3(PCN ) is due to the misinterpretation of experimental data, which actually arises from ferromagnetic impurities. We have never detected the superconductivity above 2 K in these compounds. The superconductivity in both Kx(PHN ) and Kx(PCN ) is concluded to be highly questionable.

  2. Characteristics of polycyclic aromatic hydrocarbon emissions of particles of various sizes from smoldering incense.

    Science.gov (United States)

    Yang, T T; Lin, T S; Wu, J J; Jhuang, F J

    2012-02-01

    Release of polycyclic aromatic hydrocarbons (PAHs) in particles of various sizes from smoldering incenses was determined. Among the three types of incense investigated, yielding the total PAH emission rate and factor ranges for PM0.25 were 2,139.7-6,595.6 ng/h and 1,762.2-8,094.9 ng/g, respectively. The PM0.25/PM2.5 ratio of total PAH emission factors and rates from smoldering three incenses was greater than 0.92. This study shows that total particle PAH emission rates and factors were mainly incenses. The benzo[a]pyrene accounted for 65.2%-68.0% of the total toxic equivalency emission factor of PM2.5 for the three incenses. Experimental results clearly indicate that the PAH emission rates and factors were influenced significantly by incense composition, including carbon and hydrogen content. The study concludes that smoldering incense with low atomic hydrogen/carbon ratios minimized the production of total polycyclic aromatic hydrocarbons of both PM2.5 and PM0.25.

  3. Risk of human exposure to polycyclic aromatic hydrocarbons: A case study in Beijing, China

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) can cause adverse effects on human health. The relative contributions of their two major intake routes (diet and inhalation) to population PAH exposure are still unclear. We modeled the contributions of diet and inhalation to the overall PAH exposure of the population of Beijing in China, and assessed their human incremental lifetime cancer risks (ILCR) using a Mont Carlo simulation approach. The results showed that diet accounted for about 85% of low-molecular-weight PAH (L-PAH) exposure, while inhalation accounted for approximately 57% of high-molecular-weight PAH (H-PAH) exposure of the Beijing population. Meat and cereals were the main contributors to dietary PAH exposure. Both gaseous- and particulate-phase PAHs contributed to L-PAH exposure through inhalation, whereas exposure to H-PAHs was mostly from the particulate-phase. To reduce the cancer incidence of the Beijing population, more attention should be given to inhaled particulate-phase PAHs with considerable carcinogenic potential. - Highlights: • We modeled the contributions of diet and inhalation to population PAH exposure. • Diet contributed 85% of population exposure to low molecular-weight PAHs. • Inhalation contributed 57% of population exposure to high molecular-weight PAHs. • The PAH exposure level with body-weight adjustment decreased with age increasing. • The population cancer risk of PAH exposure is lower than the serious risk level. - The exposure of the Beijing population to carcinogenic polycyclic aromatic hydrocarbons was mainly from inhaled particulate matter

  4. Polycyclic aromatic hydrocarbons in Recent lake sediments—I. Compounds having anthropogenic origins

    Science.gov (United States)

    Wakeham, Stuart G.; Schaffner, Christian; Giger, Walter

    1980-03-01

    Polycyclic aromatic hydrocarbons (PAH) in sediment cores from Lake Lucerne, Lake Zürich, and Greifensee, Switzerland, and Lake Washington, northwest U.S.A., have been isolated, identified and quantified by glass capillary gas chromatography and gas chromatography/mass spectrometry. Surface sediment layers are greatly enriched in PAH—up to 40 times—compared to deeper layers. In addition, concentration increases in upper sediments generally correspond to increasing industrialization and urbanization in the catchment basins of the lakes. Few PAH could be detected in pre-industrial revolution sediments, indicating that background levels for most PAH in aquatic sediments are extremely low. These results are consistent with an anthropogenic source for most of the aromatic hydrocarbons present in the modern sediments. A comparison of PAH distributions in the sediments and in possible source materials shows that urban runoff of street dust may be the most important PAH input to these lacustrine sediments. There is evidence that a significant contribution to the PAH content of street dust comes from material associated with asphalt.

  5. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects

    DEFF Research Database (Denmark)

    Nielsen, T.; Ejsing Jørgensen, Hans; Larsen, J.C.;

    1996-01-01

    The presence of polycyclic aromatic hydrocarbons (PAH), mutagens and other air pollutants was investigated in a busy street in central Copenhagen and in a park area adjacent to the street. The winter concentration of benzo(a)pyrene was 4.4+/-1.2 ng/m(3) in the street air and 1.4+/-0.6 ng/m(3) in ...... was estimated to be 40%. Four different approaches to evaluate the health effects are discussed. The direct effect of PAH air pollution, and other mutagens, is considered to be a maximum of five lung cancer cases each year out of one million people.......The presence of polycyclic aromatic hydrocarbons (PAH), mutagens and other air pollutants was investigated in a busy street in central Copenhagen and in a park area adjacent to the street. The winter concentration of benzo(a)pyrene was 4.4+/-1.2 ng/m(3) in the street air and 1.4+/-0.6 ng/m(3...

  6. Evaluating the Effects of Bioremediation on Genotoxicity of Polycyclic Aromatic Hydrocarbon-Contaminated Soil Using Genetically Engineered, Higher Eukaryotic Cell Lines

    OpenAIRE

    Jing HU; Nakamura, Jun; Richardson, Stephen D.; Aitken, Michael D.

    2012-01-01

    Bioremediation is one of the commonly applied remediation strategies at sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, remediation goals are typically based on removal of the target contaminants rather than on broader measures related to health risks. We investigated changes in the toxicity and genotoxicity of PAH-contaminated soil from a former manufactured-gas plant site before and after two simulated bioremediation processes: a sequencing batch bioreactor system ...

  7. Contamination of Runoff Water at Gdańsk Airport (Poland) by Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs)

    OpenAIRE

    Jacek Namieśnik; Anna Maria Sulej; Żaneta Polkowska

    2011-01-01

    Airport runoff can contain high concentrations of various pollutants, in particular polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), the environmental levels of which have to be monitored. Airport runoff water samples, collected at the Gdańsk-Rębiechowo Airport from 2008 to 2009, were analysed for PAHs and PCBs by gas chromatography. The aromatic fractions were separated by liquid-liquid extraction and analysed by GC/MS. Total PAH concentrations were 295–6,758 ng/...

  8. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review.

    Science.gov (United States)

    Zafra, German; Cortés-Espinosa, Diana V

    2015-12-01

    Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils.

  9. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review.

    Science.gov (United States)

    Zafra, German; Cortés-Espinosa, Diana V

    2015-12-01

    Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils. PMID:26498812

  10. Exposure to polycyclic aromatic hydrocarbons (PAHs) and bladder cancer: evaluation from a gene-environment perspective in a hospital-based case-control study in the Canary Islands (Spain)

    Science.gov (United States)

    Boada, Luis D; Henríquez-Hernández, Luis A; Navarro, Patricio; Zumbado, Manuel; Almeida-González, Maira; Camacho, María; Álvarez-León, Eva E; Valencia-Santana, Jorge A; Luzardo, Octavio P

    2015-01-01

    Background: Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to bladder cancer. Objective: To evaluate the role of PAHs in bladder cancer, PAHs serum levels were measured in patients and controls from a case-control study. Methods: A total of 140 bladder cancer patients and 206 healthy controls were included in the study. Sixteen PAHs were analyzed from the serum of subjects by gas chromatography–mass spectrometry. Results: Serum PAHs did not appear to be related to bladder cancer risk, although the profile of contamination by PAHs was different between patients and controls: pyrene (Pyr) was solely detected in controls and chrysene (Chry) was exclusively detected in the cases. Phenanthrene (Phe) serum levels were inversely associated with bladder cancer (OR = 0·79, 95%CI = 0·64–0·99, P = 0·030), although this effect disappeared when the allelic distribution of glutathione-S-transferase polymorphisms of the population was introduced into the model (multinomial logistic regression test, P = 0·933). Smoking (OR = 3·62, 95%CI = 1·93–6·79, P<0·0001) and coffee consumption (OR = 1·73, 95%CI = 1·04–2·86, P = 0·033) were relevant risk factors for bladder cancer. Conclusions: Specific PAH mixtures may play a relevant role in bladder cancer, although such effect seems to be highly modulated by polymorphisms in genes encoding xenobiotic-metabolizing enzymes. PMID:25291984

  11. Comparison of three different in vitro mutation assays used for the investigation of cytochrome P450-mediated mutagenicity of nitro-polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Kappers, W.A.; Och, F.M.M. van; Groene, E.M. de; Horbach, G.J.

    2000-01-01

    Three different in vitro mutation assays were used to investigate the involvement of cytochrome P450 enzymes in the activation of the nitro- polycyclic aromatic hydrocarbons (nitroPAHs) 1-nitropyrene and 2- nitrofluorene and their reduced metabolites amino-polycyclic aromatic hydrocarbons (aminoPAHs

  12. Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua

    DEFF Research Database (Denmark)

    Scheibye, Katrine; Weisser, Johan; Borggaard, Ole K.;

    2014-01-01

    Selected metals and polycyclic aromatic hydrocarbons (PAHs) were analyzed in sediment samples from 24 sites in Lake Nicaragua sampled May 2010 to provide a baseline of pollution levels. Cu exceeded the Consensus-Based Sediment Quality Guideline (CBSQG) Threshold Effect Concentrations (TECs) at 21...... showed that the CBSQG TECs were exceeded by naphthalene at five sites. The sum concentrations of the 16 US EPA priority PAHs (∑PAH16) ranged from 0.01mgkg(-1)dw to 0.64mgkg(-1)dw. The highest ∑PAH16 concentration was found upstream in River Mayales and the PAH composition revealed a heavy PAH fraction (e....... This study concluded that areas of Lake Nicaragua represent an important pollution baseline for future studies in this lake and other tropical lakes....

  13. Application of the triolein-embedded cellulose acetate membrane passive sampler for monitoring of polycyclic aromatic hydrocarbons in water.

    Science.gov (United States)

    Tang, Jianfeng; He, Guiying; Li, Gang

    2014-01-01

    Triolein-embedded cellulose acetate membrane (TECAM) can be used as a passive sampler to measure hydrophobic organic contaminants in water. Uptake constant rates (k u ) for polycyclic aromatic hydrocarbons (PAHs) by TECAM sampling were measured under different hydrodynamic conditions. The measured k u values were modeled to enable the quantification of time weighed average (TWA) concentrations of PAHs in the field. An empirical relationship that enables the calculation of in situ k u values of chemicals using performance reference compounds (PRCs) was derived and its application was demonstrated in a field study. The results showed that freely dissolved concentrations of hydrophobic organic compounds (HOCs) can be accurately measured in the field using TECAM method based on empirical uptake models calibrated with PRCs.

  14. Parameters describing nonequilibrium transport of polycyclic aromatic hydrocarbons through contaminated soil columns: Estimability analysis, correlation, and optimization

    Science.gov (United States)

    Ngo, Viet V.; Michel, Julien; Gujisaite, Valérie; Latifi, Abderrazak; Simonnot, Marie-Odile

    2014-03-01

    The soil and groundwater at former industrial sites polluted by polycyclic aromatic hydrocarbons (PAHs) produce a very challenging environmental issue. The description of PAH transport by means of mathematical models is therefore needed for risk assessment and remediation strategies at these sites. Due to the complexity of release kinetics and transport behavior of the PAHs in the aged contaminated soils, their transport is usually evaluated at the laboratory scale. Transport parameters are then estimated from the experimental data via the inverse method. To better assess the uncertainty of optimized parameters, an estimability method was applied to firstly investigate the information content of experimental data and the possible correlations among parameters in the two-site sorption model. These works were based on the concentrations of three PAHs, Acenaphthene (ACE), Fluoranthene (FLA) and Pyrene (PYR), in the leaching solutions of the experiments under saturated and unsaturated flow conditions.

  15. A quantitative PCR approach for quantification of functional genes involved in the degradation of polycyclic aromatic hydrocarbons in contaminated soils

    Science.gov (United States)

    Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Ball, Andrew S.

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are major pollutants globally and due to their carcinogenic and mutagenic properties their clean-up is paramount. Bioremediation or using PAH degrading microorganisms (mainly bacteria) to degrade the pollutants represents cheap, effective methods. These PAH degraders harbor functional genes which help microorganisms use PAHs as source of food and energy. Most probable number (MPN) and plate counting methods are widely used for counting PAHs degraders; however, as culture based methods only count a small fraction (soil samples.•This protocol enables us to screen a vast number of PAH contaminated soil samples in few hours.•This protocol provides valuable information about the natural attenuation potential of contaminated soil and can be used to monitor the bioremediation process. PMID:27054096

  16. Does glucose enhance the formation of nitrogen containing polycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis of proline?

    Energy Technology Data Exchange (ETDEWEB)

    Phillip F. Britt; A.C. Buchanan; Clyde V. Owens, Jr.; J. Todd Skeen [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Chemical and Analytical Sciences Division

    2004-08-01

    The gas-phase pyrolysis of proline, glucose, 1-((2{prime}-carboxy)pyrrolidinyl)-1-deoxy-D-fructose (the proline Amadori compound), and a 1:1 mixture by weight of proline and glucose was investigated at high temperatures (600-840{sup o}C) and short residence time (i.e. 1.0 s) in an inert atmosphere to determine if glucose or Maillard reaction products enhance the formation of nitrogen containing polycyclic aromatic compounds (N-PACs) and polycyclic aromatic hydrocarbons (PAHs) in the pyrolysis of proline. To study the gas-phase formation of N-PACs and PAHs, the substrates were sublimed into the pyrolysis furnace at 460{sup o}C. Thermogravimetric analysis showed that glucose, the proline/glucose mixture, and the proline Amadori compound undergo solid-state decomposition reactions before subliming. Thus, the substrates were pyrolyzed in two stages: at 460{sup o}C during the sublimation and at 600-840{sup o}C. At 800{sup o}C with a residence time of 1.0 s, proline produced low yields of N-PACs, such as quinoline, isoquinoline, indole, acridine, and carbazole, and PAHs, such as phenanthrene, pyrene, benz(a)anthracene, benzofluoranthene isomers, and benzo(a)pyrene. Increasing the temperature and residence time increased the yield of these products. Under similar pyrolysis conditions, the proline Amadori compound produced 2-8 fold more N-PACs and PAHs than proline. A 1:1 mixture of proline and glucose produced a similar slate of pyrolysis products as the proline Amadori compound, but it is unclear whether the proline Amadori compound was an intermediate in the reaction. In general, the proline Amadori compound produced a higher yield of N-PACs and PAHs than the proline/glucose mixture, but glucose clearly enhances the low temperature gas-phase formation of N-PACs and PAHs from the pyrolysis of proline. 56 refs., 10 figs., 3 tabs.

  17. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in a Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4

  18. Study of the interaction between water and hydrogen sulfide with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Cabaleiro-Lago, Enrique M; Carrazana-García, Jorge A; Rodríguez-Otero, Jesús

    2009-06-21

    A computational study has been carried out for determining the characteristics of the interaction between one water and hydrogen sulfide molecule with a series of polycyclic aromatic hydrocarbons of increasing size, namely, benzene, anthracene, triphenylene, coronene, circumcoronene, and dicircumcoronene. Potential energy curves were calculated for structures where H(2)X (X=O,S) molecule is located over the central six-membered ring with its hydrogen atoms pointing toward to (mode A) or away from (mode B) the hydrocarbon. The accuracy of different methods has been tested against the results of coupled cluster calculations extrapolated to basis set limit for the smaller hydrocarbons. The spin component scaled MP2 (SCS-MP2) method and a density functional theory method empirically corrected for dispersion (DFT-D) reproduce fairly well the results of high level calculations and therefore were employed for studying the larger systems, though DFT-D seems to underestimate the interaction in hydrogen sulfide clusters. Water complexes in mode A have interaction energies that hardly change with the size of the hydrocarbon due to compensation between the increase in the correlation contribution to the interaction energy and the increase in the repulsive character of the Hartree-Fock energy. For all the other clusters studied, there is a continuous increase in the intensity of the interaction as the size of the hydrocarbon increases, suggesting already converged values for circumcoronene. The interaction energy for water clusters extrapolated to an infinite number of carbon atoms amounts to -13.0 and -15.8 kJ/mol with SCS-MP2 and DFT-D, respectively. Hydrogen sulfide interacts more strongly than water with the hydrocarbons studied, leading to a limiting value of -21.7 kJ/mol with the SCS-MP2 method. Also, complexes in mode B are less stable than the corresponding A structures, with interaction energies amounting to -8.2 and -18.2 kJ/mol for water and hydrogen sulfide

  19. Distribution of Polycyclic aromatic hydrocarbons between water, sediment and common eels (Anguilla angillae) in the urban stretch of Tevere River

    International Nuclear Information System (INIS)

    The research has focused the attention on the occurrence of polycyclic aromatic hydrocarbons (PAHs) in water, sediment and common eels (Angilla anguillae) in the urban area of Tevere River. These compounds can derived from point (E.g.oil spill) or non-point (e.g. atmospheric deposition) sources and are one of the most widespread organic pollutants. (Author)

  20. Analysis of polycyclic aromatic hydrocarbons. I. Determination by gas chromatography with glass and fused solica capillary columns

    International Nuclear Information System (INIS)

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons is presented. The separation has been carried out by glass and fused silice capillary column. The limitations and the advantages of the procedure are discussed in terms of separation efficiency, sensitivity and precision. (author). 3 figs., 17 refs

  1. Analysis of polycyclic aromatic hydrocarbons I. Determination by gas chromatography with glass and fused silica capillary columns

    International Nuclear Information System (INIS)

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column. The limitations and the advantages of the procedure are discussed in terms of separation efficiency, sensitivity and precision. (Author) 17 refs

  2. Repair of DNA damage induced by anthanthrene, a polycyclic aromatic hydrocarbon (PAH) without bay or fjord regions

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Johannessen, Christian; Rasmussen, Lene Juel

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants, formed during incomplete burning of coal, oil and gas. Several PAHs have carcinogenic and mutagenic potencies, but these compounds must be activated in order to exert their mutagenic effects. One of the principal pathways...

  3. Breast cancer and urinary biomarkers of polycyclic aromatic hydrocarbon and oxidative stress in the Shanghai Women’s Health Study

    OpenAIRE

    Lee, Kyoung-Ho; Shu, Xiao-Ou; Gao, Yu-Tang; Ji, Bu-Tian; YANG, Gong; Blair, Aaron; Rothman, Nathaniel; Zheng, Wei; Chow, Wong-Ho; Kang, Daehee

    2010-01-01

    Polycyclic aromatic hydrocarbon (PAH) exposures and oxidative stress from such and other exposures have been associated with breast cancer in some studies. To further evaluate the role of PAH metabolites and oxidative stress on the development of breast cancer, we conducted a nested case-control study in the Shanghai Women’s Health Study (SWHS).

  4. Monitoring of polycyclic aromatic hydrocarbons (PAH) in food supplements containing botanicals and other ingredients on the Dutch market

    NARCIS (Netherlands)

    Martena, M.J.; Grutters, M.; Groot, de H.N.; Konings, E.J.M.; Rietjens, I.

    2011-01-01

    Food supplements can contain polycyclic aromatic hydrocarbons (PAH). The European Food Safety Authority (EFSA) has defined 16 priority PAH that are both genotoxic and carcinogenic and identified eight priority PAH (PAH8) or four of these (PAH4) as good indicators of the toxicity and occurrence of PA

  5. Novel magnetic nanoparticles coated by benzene- and β-cyclodextrin-bearing dextran, and the sorption of polycyclic aromatic hydrocarbon

    DEFF Research Database (Denmark)

    Cho, Eunae; Tahir, Muhammad Nazir; Min Choi, Jae;

    2015-01-01

    , the potential for removing polycyclic aromatic hydrocarbons such as phenanthrene and pyrene by sorption onto the nanomaterials was assessed. In the sorption, pi-stacking interactions of the benzene-derivatized dextran and host–guest chemistry of the β-cyclodextrin-derivatized dextran were considered...

  6. The occupational exposure of dermatology nurses to polycyclic aromatic hydrocarbons - evaluating the effectiveness of better skin protection.

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Houtum, J.L.M. van; Anzion, R.B.M.; Champmartin, C.; Hertsenberg, S.; Bos, R.P.; Valk, P. van der

    2009-01-01

    OBJECTIVES: We studied the uptake of polycyclic aromatic hydrocarbons (PAH) in nurses who apply ointments containing coal tar to patients and investigated the effectiveness of skin protection methods. METHODS: We determined gas-phase PAH on XAD-2 and particle-associated PAH on filters. We also used

  7. Theory and application of landfarming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments: beneficial reuse

    NARCIS (Netherlands)

    Harmsen, J.; Rulkens, W.H.; Sims, R.C.; Rijtema, P.E.; Zweers, A.J.

    2007-01-01

    When applying landfarming for the remediation of contaminated soil and sediment, a fraction of the soil-bound contaminant is rapidly degraded; however, a residual concentration may remain, which slowly degrades. Degradation of polycyclic aromatic hydrocarbons (PAHs) and mineral oil can be described

  8. Impact of polychlorinated biphenyl and polycyclic aromatic hydrocarbon sequestration in sediment on bioaccumulation in aquatic food webs

    NARCIS (Netherlands)

    Moermond, C.T.A.; Roessink, I.; Jonker, M.T.O.; Meijer, T.; Koelmans, A.A.

    2007-01-01

    It is not clear whether sequestration or aging of organic chemicals like polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) limits accumulation in higher levels of aquatic food chains. Therefore, the effect of aging on accumulation was studied in 1-m3 model ecosystems that

  9. THE PENALIZED OPTIMAL EXPERIMENTAL DESIGN: THE PRECISE ESTIMATION OF AN INTERACTION THRESHOLD IN A MIXTURE OF EIGHTEEN POLYHALOGENATED AROMATIC HYDROCARBONS.

    Science.gov (United States)

    Crofton et al. (EHP, 2005) conducted a study of 18 polyhalogenated aromatic hydrocarbons (PHAHs) on serum total thyroxine (T4). Young female Long-Evans rats were dosed with the 18 single agents or a fixed-ratio mixture, and serum total T4 was measured via radioimmunoassay. The i...

  10. Influence of smoking parameters on the concentration of polycyclic aromatic hydrocarbons (PAHs) in Danish smoked fish

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Christensen, J. H.; Højgård, A.;

    2010-01-01

    smoking, and for other fish species direct smoking leads to higher sigma PAH25 than indirect smoking. Also, the usage of common alder increases the PAH contamination compared with beech. The effects of smoking time, combustion temperatures, and two types of smoke-generating material on the Sigma PAH25......A new method for the analysis of 25 polycyclic aromatic hydrocarbon (PAH) compounds in fish was developed, validated, and used for the quantification of PAHs in 180 industrially smoked fish products. The method included pressurized liquid extraction, gel-permeation chromatography (Bio-beads S-X3...... concentrations were obtained for indirectly smoked trout (26 mu g kg-1). Principal component analysis was used to correlate processing parameters to PAH concentrations and to identify the effects of these parameters. The analysis showed that for salmon hot-smoking conditions lead to higher sigma PAH25 than cold...

  11. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil

    DEFF Research Database (Denmark)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J;

    2006-01-01

    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63......) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several...... levels: by slowly diminishing PAH-concentrations, increased mineralization of 14C-PAHs, increasing numbers of PAH degraders and increased prevalence of nah and pdo1 PAH degradation genes, i.e. the microbial communities quickly adapted to PAH degradation. Three- and 4-ring PAHs from the street dust were...

  12. Overview of established and emerging treatment technologies for polycyclic aromatic hydrocarbons at wood preserving facilities

    International Nuclear Information System (INIS)

    The contamination of soil and groundwater by polycyclic aromatic hydrocarbons (PAHs) is common to wood preserving facilities and manufactured gas plants. Since the inception of RCRA and CERCLA, much attention has been focused upon the remediation of both active and defunct wood preserving facilities. The experiences gleaned from the use of proven technologies, and more importantly, the lessons being learned in the trials of emerging technologies on creosote-derived PAH clean-ups at wood preserving sites, should have direct bearing on the clean-up of similar contaminants at MGP sites. In this paper, a review of several remedial actions using waste removal/disposal, on-site incineration, and bioremediation will be presented. Additionally, emerging technologies for the treatment of PAH-contaminated soil and water will be reviewed. Lastly, recent information on risk assessment results for creosote sites and treated PAH waste will be discussed

  13. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments from Khuzestan province, Iran

    DEFF Research Database (Denmark)

    Lübeck, Josephine; Poulsen, Kristoffer Gulmark; Knudsen, Sofie B.;

    2016-01-01

    Khuzestan, Iran is heavily industrialised with petrochemical and refinery companies. Herein, sediment and soil samples were collected from Hendijan coast, Khore Mosa and Arvandroud River. The CHEMSIC (CHEmometric analysis of Selected Ion Chromatograms) method was used to assign the main sources...... of polycyclic aromatic hydrocarbon (PAH) pollution. A four-component principal component analysis (PCA) model was obtained. While principal component 1 (PC1) was related to the total concentration of PAHs, the remaining PCs described three distinct sources: PC2 and PC3 collectively differentiate between...... weathered petrogenic and pyrogenic, and PC4 is indicative for a diagenetic input. The sources of PAHs in the Arvandroud River were mainly relatively fresh oil with some samples corresponding to a weathered oil input. Further, perylene (indicator for diagenetic source) was identified. Samples from Khore Mosa...

  14. Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are present in both gaseous and particulate phases. These compounds are considered to be atmospheric contaminants and are human carcinogens. Many studies have monitored atmospheric particulate and gaseous phases of PAH in Asia over the past 5 years. This work compares and discusses different sample collection, pretreatment and analytical methods. The main PAH sources are traffic exhausts (AcPy, FL, Flu, PA, Pyr, CHR, BeP) and industrial emissions (BaP, BaA, PER, BeP, COR, CYC). PAH concentrations are highest in areas of traffic, followed by the urban sites, and lowest in rural sites. Meteorological conditions, such as temperature, wind speed and humidity, strongly affect PAH concentrations at all sampling sites. This work elucidates the characteristics, sources and distribution, and the healthy impacts of atmospheric PAH species in Asia. - This work summarizes the characteristics, sources and distribution, and the healthy impacts of atmospheric PAH species in Asia

  15. Role of volcanic dust in the atmospheric transport and deposition of polycyclic aromatic hydrocarbons and mercury.

    Science.gov (United States)

    Stracquadanio, Milena; Dinelli, Enrico; Trombini, Claudio

    2003-12-01

    The role of volcanic ash as scavenger of atmospheric pollutants, in their transport and final deposition to the ground is examined. Attention is focused on polycyclic aromatic hydrocarbons (PAHs) and on particulate mercury (Hgp). The ash-fall deposits studied belong to the 2001 and 2002 eruptive activity of Mount Etna, Southern Italy, and were investigated at three (2001) and four (2002) sites downwind of the major tephra dispersal pattern. The dry deposition of mercury and PAHs was determined, and, in particular, a downward flux to the ground of PAHs (approximately 7.29 microg m(-2) per day) and mercury (750 ng m(-2) per day) was estimated in Catania from October 26 to October 28, 2002. Finally, evidence on the anthropogenic origin of PAHs scavenged from the troposphere by volcanic ash is supported by the analysis of PAH compositions in granulometrically homogeneous fractions.

  16. Biotransformation of the polycyclic aromatic hydrocarbon pyrene in the marine polychaete Nereis virens

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Glessing, Anders M B; Rasmussen, Lene Juel;

    2005-01-01

    In vivo and in vitro biotransformation of the polycyclic aromatic hydrocarbon (PAH) pyrene was investigated in the marine polychaete Nereis virens. Assays were designed to characterize phase I and II enzymes isolated from gut tissue. High-pressure liquid chromatography measurement of 1......-hydroxypyrene, pyrene-1-glucuronide, pyrene-1-sulfate, and pyrene-1-glucoside appeared to be a sensitive method for estimating the activity of pyrene hydroxylase, glucuronosyl transferase, and sulfotransferase. Total pyrene in gut tissue after a 5-d exposure to 10 microg/g dry weight pyrene constituted 65....... Apparent kinetic parameters for pyrene hydroxylase activity were changed after induction with pyrene. Induced worms showed increased Vmax(a)) and decreased Km(a) compared to noninduced worms, indicating that the relative amount of the cytochrome P450 enzyme(s) responsible for pyrene hydroxylation...

  17. Polycyclic aromatic hydrocarbons alter the structure of oceanic and oligotrophic microbial food webs

    KAUST Repository

    Cerezo, Maria Isabel

    2015-11-01

    One way organic pollutants reach remote oceanic regions is by atmospheric transport. During the Malaspina-2010 expedition, across the Atlantic, Indian, and Pacific Oceans, we analyzed the polycyclic aromatic hydrocarbon (PAH) effects on oceanic microbial food webs. We performed perturbation experiments adding PAHs to classic dilution experiments. The phytoplankton growth rates were reduced by more than 5 times, being Prochlorococcus spp. the most affected. 62% of the experiments showed a reduction in the grazing rates due to the presence of PAHs. For the remaining experiments, grazing usually increased likely due to cascading effects. We identified changes in the slope of the relation between the growth rate and the dilution fraction induced by the pollutants, moving from no grazing to V-shape, or to negative slope, indicative of grazing increase by cascade effects and alterations of the grazers\\' activity structure. Our perturbation experiments indicate that PAHs could influence the structure oceanic food-webs structure.

  18. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  19. Estimation and characterization of polycyclic aromatic hydrocarbons from magnesium metallurgy facilities in China.

    Science.gov (United States)

    Nie, Zhiqiang; Yang, Yufei; Tang, Zhenwu; Liu, Feng; Wang, Qi; Huang, Qifei

    2014-11-01

    Field monitoring was conducted to develop a polycyclic aromatic hydrocarbon (PAH) emission inventory for the magnesium (Mg) metallurgy industry in China. PAH emissions in stack gas and fly/bottom ash samples from different smelting units of a typical Mg smelter were measured and compared. Large variations of concentrations, congener patterns, and emission factors of PAHs during the oxidation and reduction stages in the Mg smelter were observed. The measured average emission factor (166,487 μg/t Mg) was significantly higher than those of other industrial sources. Annual emission from Mg metallurgy in 2012 in China was estimated at 116 kg (514 g BaPeq) for PAHs. The results of this study suggest that PAH emission from Mg industries should be considered by local government agencies. These data may be helpful for understanding PAH levels produced by the Mg industry and in developing a PAH inventory.

  20. [Assessment of exposure to cancerogenic aromatic hydrocarbon during controlled-access highways management activities].

    Science.gov (United States)

    Martinotti, I; Cirla, A M; Cottica, D; Cirla, P E

    2011-01-01

    The purpose of this study was an integrated assessment of exposure to benzene and Polycyclic Aromatic Hydrocarbons (PAH) in 29 workers employed to manage a controlled-access highways. A campaign was performed in summertime by environmental monitoring (active and passive airborne personal sampler), as well as by biological monitoring (urine samples of the beginning and of the end of daily shift, baseline after two days of vacation). The measured environmental levels did not differ from background environmental concentrations found in a metropolitan area (i.e. benzo[a]pyrene < 1 ng/m3; benzene < 5 mcg/m3), and the results of biological monitoring were in agreement and were compatible with extra-professional habits of the investigated subjects (1-hydroxipyrene 50-990 ng/g creatinine; unmetabolized benzene 15-2010 ng/I; t-t muconic acid < 4-222 mcg/g creatinine).

  1. Trapping of polycyclic aromatic hydrocarbons by amphiphilic cyclodextrin functionalized polypropylene nonwovens

    DEFF Research Database (Denmark)

    Lumholdt, Ludmilla; Nielsen, Ronnie Bo Højstrup; Larsen, Kim Lambertsen

    Recently, there has been an augmented focus on the increasing amount of pesticides, drug residues and endocrine disruptors present in waste and drinking water1. These pollutants represent a challenge in water purification since they may be hazardous to human health even in low doses2. Cyclodextrins...... of the textile fibers. In this study we present the ability of amphiphilic CD coated polypropylene nonwovens to trap 8 different polycyclic aromatic hydrocarbons/endocrine disruptors from aqueous solutions thus demonstrating the potential of using the amphiphilic cyclodextrins for water purification....... (CDs) are known to be able to form inclusion complexes with a large range of the unwanted pollutantse.g. 3 but in order to utilise this ability to purify water, the CDs must be immobilised on a surface, for instance, a membrane filter. We have developed a simple and fast method...

  2. Distribution and origin sources of Polycyclic Aromatic Hydrocarbons (PAHs) pollution in sediment of Sarawak coastal area

    International Nuclear Information System (INIS)

    Alkyl and parent Polycyclic Aromatic Hydrocarbons (PAHs) compounds in marine sediment sample collected from ten locations along Sarawak coastal areas were extracted and analyzed by using gas chromatography-mass spectrometry. The source identification of PAH pollution in marine sediment of Sarawak coastal areas were identify by ratios technique of An/ An+phen, Fl/ Fl +Py, B[a]A/ (B[a]A+Chry) and total Methyl Phen/ Phen. The total alkyl and parent PAHs concentration varies from 36.5 - 277.4 ng/ g dry weight (d.w.) with a mean concentration of 138.2 ng/ g d.w. The ratio values of PAHs pollution in marine sediment of Sarawak coastal areas are clearly indicating the PAHs pollutions are originated from petroleum (petrogenic) and petroleum combustion (pyrolytic). However, the origin sources of PAHs pollution in a few stations were uncertain due to mixing sources of PAHs. (author)

  3. Use of antioxidant enzymes of clam Ruditapes philippinarum as biomarker to polycyclic aromatic hydrocarbon pollution

    Science.gov (United States)

    Zhu, Lin; Tang, Xuexi; Wang, Ying; Sui, Yadong; Xiao, Hui

    2016-03-01

    The typical organic pollutant polycyclic aromatic hydrocarbon (PAH) anthracene was selected as a contaminant to investigate its effects on the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the clam Ruditapes philippinarum. The results show that SOD, CAT and GSH-Px had diff erent induction and inhibition reactions to anthracene stress, and that three diff erent organs in R. philippinarum (visceral mass, muscle tissue and mantle) had diff erent sensitivities to anthracene stress. This study suggest that SOD activities of the visceral mass, CAT activitities of the mantle and the visceral mass, and GSH-Px activity of the muscle tissue could be used as sensitive indicators of anthracene stress in R. philippinarum.

  4. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies.

    Science.gov (United States)

    Lau, Ee Von; Gan, Suyin; Ng, Hoon Kiat; Poh, Phaik Eong

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent. Past field-scale soil washing treatments for PAH-contaminated soil have mainly employed organic solvents or water which is either toxic and costly or inefficient in removing higher molecular weight PAHs. Thus, the present article aims to provide a review and discussion of the alternative extraction agents that have been studied, including surfactants, biosurfactants, microemulsions, natural surfactants, cyclodextrins, vegetable oil and solution with solid phase particles. These extraction agents have been found to remove PAHs from soil at percentages ranging from 47 to 100% for various PAHs. PMID:24100092

  5. Study on Removing Trace Olefins in Aromatic Hydrocarbons with HPMo-loaded Y Zeolites

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhenghong; Zeng Haiping; Shi Li

    2008-01-01

    HPMo-loaded Y-zeolites were prepared for the removal of trace olefins from aromatic hydrocarbons.The temperature of calcination and the proportion of phospho-molybdic acid in the catalyst were studied. The catalytic activity for olefins removal and the service life of the catalyst were tested in a fixed bed microreactor. The results showed that the catalyst containing 3% phospho-molybdic acid, which was calcined at 550℃,demonstrated the best activity for olefins removal. The catalyst could be regenerated and could perform still very well. Catalyst characterization was performed by XRD and measured by pyridine-FTIR spectrometry. The test results indicated that the activity of the catalyst was related with the effect of acid concentration and acid strength. Besides, the deactivation of the catalyst was associated with the formation of coke deposits and the deactivated catalyst could recover its activity by oxidation with air under a proper temperature.

  6. Qualitative TLC determination of some polycyclic aromatic hydrocarbons in sugar-beet

    Directory of Open Access Journals (Sweden)

    BILJANA D. SKRBIC

    2005-10-01

    Full Text Available The presence of polycyclic or polynuclear aromatic hydrocarbons (PAHs were investigated in sugar-beet from a local sugar factory in the district of Vojvodina. The sugar-beet was cultivated on areas near roads with intensive traffic. The procedure for the preparation and determination of these compounds included saponification of the sample, several liquid–liquid extraction systems and a silica gel column clean-up. The purified sample solution was analysed by thin layer chromatography (TLC on silica gel with cyclohexane as the developing solvent. Benzo(bfluoranthene and benzo(aanthracene and/or benzo(apyrene were detected at concentrations greater than the allowed limits in food.

  7. Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions

    DEFF Research Database (Denmark)

    Mayer, Philipp; Fernqvist, M.M.; Christensen, P.S.;

    2007-01-01

    Uptake of hydrophobic organic compounds into organisms is often limited by the diffusive transport through a thin boundary layer. Therefore, a microscale diffusion technique was applied to determine the diffusive mass transfer of 12 polycyclic aromatic hydrocarbons through water, air, surfactant...... solutions, humic acid solutions, aqueous soil and horse manure extracts, digestive fluid of a deposit-feeding worm, and root exudates from willow plants. In most cases the diffusive mass transfer of PAHs was much higher through the tested media than through water, and the enhancement factors increased...... with increasing hydrophobicity of the PAHs. The diffusive flux of benzo[a]pyrene was for instance enhanced 74 times through gut fluid of a deposit-feeding worm when compared to water. These findings demonstrate that a wide variety of dissolved organic carbon (DOC) at environmental levels can enhance diffusive...

  8. On-line database of the spectral properties of polycyclic aromatic hydrocarbons

    CERN Document Server

    Malloci, G; Mulas, G; 10.1016/j.chemphys.2007.01.001

    2009-01-01

    We present an on-line database of computed molecular properties for a large sample of polycyclic aromatic hydrocarbons (PAHs) in four charge states: -1, 0, +1, and +2. At present our database includes 40 molecules ranging in size from naphthalene and azulene (C10H8) up to circumovalene (C66H20). We performed our calculations in the framework of the density functional theory (DFT) and the time-dependent DFT to obtain the most relevant molecular parameters needed for astrophysical applications. For each molecule in the sample, our database presents in a uniform way the energetic, rotational, vibrational, and electronic properties. It is freely accessible on the web at http://astrochemistry.ca.astro.it/database/ and http://www.cesr.fr/~joblin/database/.

  9. Polycyclic aromatic hydrocarbons in blood related to lower body mass in common loons.

    Science.gov (United States)

    Paruk, James D; Adams, Evan M; Uher-Koch, Hannah; Kovach, Kristin A; Long, Darwin; Perkins, Christopher; Schoch, Nina; Evers, David C

    2016-09-15

    We captured 93 wintering adult and subadult Common Loons (Gavia immer) in coastal Louisiana from 2011 to 2015 following the Deepwater Horizon oil spill. We tested blood samples for exposure to polycyclic aromatic hydrocarbons (PAHs) and measured physiological variables including hematocrit, hemoglobin and total blood protein. PAH concentrations in loon blood differed from year to year and by age class. High PAH concentrations were significantly related to lower body masses in both adult and subadult birds and higher serum protein levels in adults only. PAH concentrations had marginal relations with both hematocrit and hemoglobin levels. The types of PAHs detected also underwent a major shift over time. The PAHs detected in 2011, 2012, and 2015 were primarily low molecular weight (three carbon rings); however, in 2013, most detected PAHs were high molecular weight (four carbon rings). It is unclear what events led to the increase in PAH concentrations and the shift in type of PAHs over time. PMID:27177142

  10. Polycyclic aromatic hydrocarbons and total extractable particulate organic matter in the Arctic aerosol

    International Nuclear Information System (INIS)

    Samples of total suspended particulate matter were collected in March and August 1979 at Barrow, Alaska, a remote site in the Arctic. Ambient concentrations of extractable particulate organic matter (POM), of polycyclic aromatic hydrocarbons (PAH) and of 210Pb were determined. The samples were also examined by optical and scanning electron microscopy. Average concentrations of POM and PAH were similar to those reported for other remote sites in the northern hemisphere, but the concentrations were considerably higher in March than in August. The presence of fly ash in the samples collected during the March sampling period, as well as seasonal differences in the concentrations of the organic species and 210Pb and in meteorology indicate that the principal source of POM and PAH was fossil fuel combustion in the mid-latitudes during the March sampling period. (author)

  11. Compost-mediated removal of polycyclic aromatic hydrocarbons from contaminated soil.

    Science.gov (United States)

    Sasek, V; Bhatt, M; Cajthaml, T; Malachová, K; Lednická, D

    2003-04-01

    Compost-assisted remediation of a manufactured-gas plant soil contaminated with polycyclic aromatic hydrocarbons (PAHs) was performed in thermally insulated composting chamber using mushroom compost consisting wheat straw, chicken manure, and gypsum. The degradation of individual PAHs was in range of 20-60% at the end of 54 days of composting followed by further increase of PAH removal (37-80%) after another 100 days of maturation. Both chemical analysis of the contaminated soil for PAHs and ecotoxicity tests on bioluminescent bacteria, earthworms, and plant seeds were performed before and after the composting. After the composting, inhibition of bioluminescence decreased, whereas no significant change in toxicity was observed for earthworm survival and seed germination. Using bacterial culture of Escherichia coli K12 genotoxicity tests were performed on samples taken from different parts of the composting pile; after the composting the decrease in genotoxicity was observed only in the sample taken from upper part of the composted pile.

  12. Correlation of levels of volatile versus carcinogenic particulate polycyclic aromatic hydrocarbons in air samples from smokehouses

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Poulsen, O M; Christensen, J M

    1991-01-01

    In the present study, data on the concentration of polycyclic aromatic hydrocarbons (PAH) in air samples from fish smokehouses (Nordholm et al. 1986) and meat smokehouses (Hansen et al. submitted for publication) were used to analyze the extent to which six different volatile PAH compounds could...... carcinogenic PAH compounds in air samples from smokehouses, whereas fluoranthene and pyrene displayed the highest specificity. However, when the applicability of the six markers was tested on air samples from iron foundries, only naphthalene and pyrene were useful as markers for the carcinogenic compounds...... function as markers for the total concentration of six different carcinogenic particulate PAH compounds. Although a significant positive correlation was observed between the concentration of each of six volatile compounds and the total concentration of carcinogenic PAH compounds, a particularly good...

  13. Epigenetic modulation of Chlorella (Chlorella vulgaris) on exposure to polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Yang, Mihi; Youn, Je-In; Kim, Seung Joon; Park, Jong Y

    2015-11-01

    DNA methylation in promoter region can be a new chemopreventive marker against polycyclic aromatic hydrocarbons (PAHs). We performed a randomized, double blind and cross-over trial (N=12 healthy females) to evaluate chlorella (Chlorella vulgaris)-induced epigenetic modulation on exposure to PAHs. The subjects consumed 4 tablets of placebo or chlorella supplement (total chlorophyll ≈ 8.3mg/tablet) three times a day before meals for 2 weeks. When the subjects consumed chlorella, status of global hypermethylation (5-methylcytosine) was reduced, compared to placebo (p=0.04). However, DNA methylation at the DNMT1 or NQO1 was not modified by chlorella. We observed the reduced levels of urinary 1-hydroxypyrene (1-OHP), a typical metabolite of PAHs, by chlorella intake (pchlorella-induced changes in global hypermethylation and urinary 1-OHP (pchlorella works for PAH-detoxification through the epigenetic modulation, the interference of ADME of PAHs and the interaction of mechanisms.

  14. Heavy metals and polycyclic aromatic hydrocarbons in surface sediments of Karoon River, Khuzestan Province, Iran.

    Science.gov (United States)

    Keshavarzi, Behnam; Mokhtarzadeh, Zeinab; Moore, Farid; Rastegari Mehr, Meisam; Lahijanzadeh, Ahmadreza; Rostami, Soqra; Kaabi, Helena

    2015-12-01

    Karoon is the longest river in Iran and provides water for industries located along its banks, such as metal, petrochemical, and oil industries. It is also the source of drinking water for cities such as Ahwas, Abadan, and Khorramshahr. In this study, 34 and 18 surface sediment samples were collected and analyzed for heavy metals (Al, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and polycyclic aromatic hydrocarbons (PAHs). The measured concentrations of heavy metals were compared with US EPA sediment quality guidelines, and the results showed that Cu concentration was above the threshold effect level (TEL) in 65.67% of the samples and Hg concentration was above the effect range median (ERM) in some samples. The results revealed that Hg was severely enriched (5 factory and Abadan petrochemical complex. Principal component analysis and cluster analysis also revealed the relationships between the studied parameters and identified their probable sources. PMID:26233736

  15. Extraction of polycyclic aromatic hydrocarbons from smoked fish using pressurized liquid extraction with integrated fat removal

    DEFF Research Database (Denmark)

    Lund, Mette; Duedahl-Olesen, Lene; Christensen, Jan H.

    2009-01-01

    extraction with fat retention in one single analytical step. The PLE parameters: type of fat retainer, flush volume, solvent composition, fat-to-fat retainer ratio (FFR), and the dimensions of the extraction cells were the most important factors for obtaining fat-free extracts with high recoveries of PAHs. A...... 100 mL extraction cell filled with 18 g activated silica gel, dichloromethane:hexane (15:85, v/v) as extraction solvent, FFR of 0.025 and 100% flush volume was the best analytical setup for integrated extraction and fat retention. The one-step procedure provided a more rapid and cost......Quantification of polycyclic aromatic hydrocarbons (PAHs) in smoked fish products often requires multiple clean-up steps to remove fat and other compounds that may interfere with the chemical analysis. We present a novel pressurized liquid extraction (PLE) method that integrates exhaustive...

  16. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    Energy Technology Data Exchange (ETDEWEB)

    Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ricca, Alessandra, E-mail: Charles.W.Bauschlicher@nasa.gov, E-mail: Alessandra.Ricca-1@nasa.gov [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States)

    2013-10-20

    The loss of one hydrogen from C{sub 96}H{sub 24} does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare.

  17. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in street dust from the Tokyo Metropolitan area.

    Science.gov (United States)

    Takada, H; Onda, T; Harada, M; Ogura, N

    1991-09-01

    Molecular distributions of polycyclic aromatic hydrocarbons (PAHs) in street dust samples collected from the Tokyo Metropolitan area were determined by capillary gas chromatography following HPLC fractionation. Three- to six-ring PAHs and sulfur-heterocyclics were detected. PAHs in the dusts were dominated by three and four unsubstituted ring systems with significant amounts of their alkyl homologues. PAHs were widely distributed in the streets, with concentrations (sigma COMB) of a few microgram/g dust. Automobile exhaust, asphalt, gasoline fuel, diesel fuel, tyre particles, automobile crankcase oils, and atmospheric fallout were also analysed. The PAH profile, especially the relative abundance of alkyl-PAHs and sulfur-containing heterocyclics, indicated that PAHs in the street dusts from roads carrying heavy traffic are mainly derived from automobile exhausts; dusts from residential areas have a more significant contribution from atmospheric fallout.

  18. A 25-year record of polycyclic aromatic hydrocarbons in soils amended with sewage sludges

    DEFF Research Database (Denmark)

    Lichtfouse, Eric; Sappin-Didier, Valérie; Denaix, Laurence;

    2005-01-01

    We studied polycyclic aromatic hydrocarbons (PAHs) in crop soils amended with 1000 tonnes dry weight of sewage sludges per 10,000 m(2) from 1974 to 1992, then after sludges addition from 1993 to 1999. The absence of variations of total PAHs levels of control soils, averaging at 123 mu g/Kg, shows...... the absence of horizontal contamination. During sludges addition, the total PAHs levels in amended soils increased from 232 to 402 mu g/Kg. Seven years after sludges addition, it decreased to 275 mu g/Kg, which is still more than twice the levels of control soils. This finding shows that sludges PAHs...... are preserved in crop soils for long periods of time, on a human scale....

  19. Analysis of carcinogenic Polycyclic Aromatic Hydrocarbons (PAHS): an overview of modern electroanalytical techniques and their applications.

    Science.gov (United States)

    Şentürk, Zühre

    2013-02-01

    A number of Polycyclic Aromatic Hydrocarbons (PAHs) have been shown to be toxicants, and induce carcinogenic and immunotoxic effects. Since PAHs are often present in low concentrations and it may be difficult to determine them in complex matrices, it is therefore essential to use powerful analytical tools to separate and identify the analyses in the samples. In this paper, initially, a short description of the principles, instrumentation, and use of common extraction and analytical techniques for PAH pollutants and their metabolites will be made in light of the previously reported works and major reviews. Special attention will be given to the use of modern polarographic and voltammetric techniques on the mercury and different types of solid electrodes, together with their some practical applications. The main drawbacks and limitations of these methods will also be discussed.

  20. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in street dust from the Tokyo Metropolitan area.

    Science.gov (United States)

    Takada, H; Onda, T; Harada, M; Ogura, N

    1991-09-01

    Molecular distributions of polycyclic aromatic hydrocarbons (PAHs) in street dust samples collected from the Tokyo Metropolitan area were determined by capillary gas chromatography following HPLC fractionation. Three- to six-ring PAHs and sulfur-heterocyclics were detected. PAHs in the dusts were dominated by three and four unsubstituted ring systems with significant amounts of their alkyl homologues. PAHs were widely distributed in the streets, with concentrations (sigma COMB) of a few microgram/g dust. Automobile exhaust, asphalt, gasoline fuel, diesel fuel, tyre particles, automobile crankcase oils, and atmospheric fallout were also analysed. The PAH profile, especially the relative abundance of alkyl-PAHs and sulfur-containing heterocyclics, indicated that PAHs in the street dusts from roads carrying heavy traffic are mainly derived from automobile exhausts; dusts from residential areas have a more significant contribution from atmospheric fallout. PMID:1785054

  1. Cyclodextrin-promoted Diels Alder reactions of a polycyclic aromatic hydrocarbon under mild reaction conditions

    Science.gov (United States)

    Chaudhuri, Sauradip; Phelan, Tyler; Levine, Mindy

    2015-01-01

    Reported herein is the effect of cyclodextrins on the rates of aqueous Diels Alder reactions of 9-anthracenemethanol with a variety of N-substituted maleimides. These reactions occurred under mild reaction conditions (aqueous solvent, 40 °C), and were most efficient for the reaction of N-cyclohexylmaleimide with a methyl-β-cyclodextrin additive (94% conversion in 24 hours). These results can be explained on the basis of a model wherein the cyclodextrins bind the hydrophobic substituents on the maleimides and activate the dienophile via electronic modulation of the maleimide double bond. The results reported herein represent a new mechanism for cyclodextrin-promoted Diels Alder reactions, and have significant potential applications in the development of other cyclodextrin-promoted organic transformations. Moreover, the ability to deplanarize polycyclic aromatic hydrocarbons (PAHs) under mild conditions, as demonstrated herein, has significant applications for PAH detoxification. PMID:26692588

  2. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons: the realm of anharmonicity

    CERN Document Server

    Maltseva, Elena; Candian, Alessandra; Mackie, Cameron J; Huang, Xinchuan; Lee, Timothy J; Tielens, Alexander G G M; Oomens, Jos; Buma, Wybren Jan

    2015-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micron CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (~4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilises intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination ...

  3. Development and certification of a coal fly ash certified reference material for selected polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Cao, X; Xu, X; Cui, W; Xi, Z

    2001-08-01

    The development and certification of a coal fly ash certified reference material (CRM) for polycyclic aromatic hydrocarbons (PAH) is described; this is the first natural matrix CRM for organic environmental analysis in China. The homogeneity and stability of this material have been tested by HPLC. The concentrations of several PAH were determined by use of two independent, different methods--solvent extraction-HPLC analysis with UV detection coupled with fluorescence detection (FLD) and solvent extraction, isolation with a silica column, and GC analysis with flame ionization detection (FID). Five certified values were determined: phenanthrene 7.1 +/- 2.6 microg g(-1), anthracene 2.0 +/- 0.8 microg g(-1), fluoranthene 7.4 +/- 1.9 microg g(-1), pyrene 7 +/- 2 microg g(-1), and benzo[a]pyrene 1.3 +/- 0.3 microg g(-1). Reference values for several other PAH are also suggested. PMID:11583083

  4. Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by analytical pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Daniele; Vassura, Ivano [Laboratory of Chemistry, C.I.R.S.A., University of Bologna, via S. Alberto 163, I-48100 Ravenna (Italy)

    2006-03-01

    A procedure in off-line analytical pyrolysis was investigated for the rapid determination of polycyclic aromatic hydrocarbons (PAHs) evolved from thermal degradation of organic materials. Samples spiked with perdeuterated PAHs were pyrolysed at 1000{sup o}C for 60s by means of a resistively heated filament pyrolyser inserted into a glass chamber connected to a cartridge with a sorbent (XAD-2 resin). PAHs trapped onto the resin were extracted with dichloromethane and analysed by gas chromatography-mass spectrometry (GC-MS). The analytical performance of the overall procedure (precision, recovery, effect of experimental parameters) was evaluated by pyrolysing a bituminous coal certified reference material (CRM). Emission levels of naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphtylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene were determined for bituminous and anthracite coals, tyre, and cellulose. Despite some limitations, the method was adequate to the purpose of quantitatively measuring the tendency of various materials to release volatile PAHs upon heating. (author)

  5. Diterpanes, triterpanes, steranes, and aromatic hydrocarbons in natural bitumens and pyrolysates from different humic coals

    Science.gov (United States)

    Lu, Shan-Tan; Kaplan, Isaac R.

    1992-07-01

    Data are presented on the distribution of diterpanes, triterpanes, steranes, and aromatic hydrocarbons in the natural bitumens extracted from unheated coals identified as Rocky Mountain coal (RMC), Australian Gippsland Latrobe Eocene coal (GEC), Australian Gippsland Latrobe Cretaceous coal (GCC), and Texas Wilcox lignite (WL), as well as from pyrolysates obtained from heating of these coals. It was found that pentacyclic triterpanes are dominant in GEC, GCC, and WL, whereas diterpanes strongly predominate in the bitumen of RMC, indicating that resin is a more important constituent of RMC than of the other coals and that it releases the diterpenoids at an early stage of diagenesis. It was also found that the composition of diterpanes is different among these coals and that the distributions of sterane and triterpane in the natural bitumen of coals are very different from those of pyrolysates.

  6. Toxicity assessment of polycyclic aromatic hydrocarbons in sediments from European high mountain lakes.

    Science.gov (United States)

    Quiroz, Roberto; Grimalt, Joan O; Fernández, Pilar

    2010-05-01

    Sediment quality guidelines and toxic equivalent factors have been used for assessment of the toxicity of sedimentary long-range atmospherically transported polycyclic aromatic hydrocarbons (PAHs) to the organisms living in high mountain European lakes. This method has provided indices that are consistent with experimental studies evaluating in situ sedimentary estrogenic activity or physiological response to AhR binding in fish from the same lakes. All examined lakes in north, central, west, northeast and southeast European mountains have shown sedimentary PAH concentrations that are above thresholds of no effect but only those situated in the southeast lakes district exhibited concentrations above the indices of probable effects. These mountains, Tatras, are also those having PAH concentrations of highest activity for AhR binding. Chrysene+triphenylene, dibenz[a]anthracene, benzo[k]fluoranthene and indeno[1,2,3-cd]pyrene are the main compounds responsible for the observed toxic effects.

  7. Inclusion of poly-aromatic hydrocarbon (PAH) molecules in a functionalized layered double hydroxide

    Indian Academy of Sciences (India)

    L Mohanambe; S Vasudevan

    2006-01-01

    The internal surface of an Mg-Al layered double hydroxide has been functionalized by anchoring carboxy-methyl derivatized -cyclodextrin cavities to the gallery walls. Neutral polyaromatic hydrocarbon (PAH) molecules have been included within the functionalized solid by driving the hydrophobic aromatic molecules from a polar solvent into the less polar interior of the anchored cyclodextrin cavities by a partitioning process. The optical (absorption and emission) properties of the PAH molecules included within the functionalized Mg-Al layered double hydroxide solid are similar to that of dilute solutions of the PAH in non-polar solvents. The unique feature of these hybrid materials is that they are thermally stable over a wide temperature range with their emission properties practically unaltered.

  8. A novel cloud-point extraction process for preconcentrating selected polycyclic aromatic hydrocarbons in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Bai, D.; Li, J.; Chen, S.B.; Chen, B.-H. [National University of Singapore (Singapore). Dept. of Chemical and Environmental Engineering

    2001-10-01

    Polycyclic aromatic hydrocarbons (PAHs) released in such processes as incomplete coal combustion and during the disposal of coal tar, are subject to strict emission controls in which the determination of PAHs has to be addressed. PAHs have low aqueous solubility which necessitates preconcentration prior to the analytical determination of PAHs. A novel but simple cloud-point extraction (CPE) process is developed to preconcentrate the trace of selected polycyclic aromatic hydrocarbons (PAHs) with the use of the readily biodegradable nonionic surfactant of secondary ethyoxylated alcohol Tergitol 15-S-7 as extractant. The concentrations of PAHs, mixtures of naphthalene and phenanthrene as well as pyrene in the spiked samples were determined with the new CPE process at ambient temperature (23{degree}C) followed by high performance liquid chromatography (HPLC) with fluorescence detection. More than 80% of phenanthrene and pyrene, respectively, and 96% of naphthalene initially present in the aqueous solutions with concentrations near or below their aqueous solubilities were recovered using this new CPE process. Importantly Tergitol 15-S-7 does not give any fluorometric signal to interfere with fluorescence detection of PAHs in the UV range. No special washing step is, thus, required to remove surfactant before HPLC analyses. Different experimental conditions were studied. The optimum conditions for the preconcentration and determination of these selected PAHs at ambient temperature have been established as the following: (1) 3 wt% surfactant; (2) addition of 0.5 M Na{sub 2}SO{sub 4}; (3) 10 min for equilibration time; and (4) 3000 rpm for centrifugal speed with duration of 10 min. 50 refs., 7 figs.

  9. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    Science.gov (United States)

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  10. Enhanced dissipation of polycyclic aromatic hydrocarbons in the presence of fresh plant residues and their extracts

    International Nuclear Information System (INIS)

    The feasibility of using fresh plant residues and their extracts to stimulate the bio-dissipation of polycyclic aromatic hydrocarbons (PAHs) were highlighted. Wood chip, bamboo leave, orange peel and their water-extractable organic matter (WEOM) were chosen as amendment materials. Effect of WEOM on bio-dissipation (bioaccumulation and biodegradation) of phenanthrene and pyrene from water by two bacteria were investigated. Orange peel extract demonstrated the highest efficiency for stimulating PAHs removal by bacterium B1 (Pseudomonas putida), while bamboo leave extract was the best one to enhance PAHs bio-dissipation by bacterium B2 (unidentified bacterium isolated from PAHs-contaminated soil). Amended the actual contaminated soil with 1% plant residues, PAHs dissipation were increased by 15–20%, 20–39%, 14–24%, 12–23% and 17–26%, respectively, for 2-, 3-, 4-, 5- and 6-ring PAHs via stimulating indigenous microbial degradation activity. Bamboo leave exhibited the most effective one to stimulate dissipation of PAHs in contaminated soil. - Graphical abstract: Enhanced bio-dissipation of 15 PAHs in soil amended with fresh plant residues of wood chip (WC), orange peel (OP), and bamboo leave (BL). The individual symbol of AC, EC and BC is the abiotic sterile control, evaporation control and blank control. Highlights: ► The addition of fresh plant extracts significantly enhance PAHs bio-dissipation from water. ► Bioaccumulation and biodegradation contribute to the bio-dissipation of PAHs in solution. ► The added fresh plant residues promotes 15 PAHs dissipation in PAHs-contaminated soil. ► Stimulating indigenous microbial degradation activity contributes to PAHs dissipation. ► Bamboo leave exhibits the most effective one to stimulate dissipation of PAHs in soil. - It is feasible to amend fresh plant residues and their extracts to stimulate the bio-dissipation of polycyclic aromatic hydrocarbons in the contaminated environment.

  11. Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater

    Science.gov (United States)

    Ramos, Débora Toledo; Lazzarin, Helen Simone Chiaranda; Alvarez, Pedro J. J.; Vogel, Timothy M.; Fernandes, Marilda; do Rosário, Mário; Corseuil, Henry Xavier

    2016-10-01

    The behavior of biodiesel blend spills have received limited attention in spite of the increasing and widespread introduction of biodiesel to the transportation fuel matrix. In this work, a controlled field release of biodiesel B20 (100 L of 20:80 v/v soybean biodiesel and diesel) was monitored over 6.2 years to assess the behavior and natural attenuation of constituents of major concern (e.g., BTEX (benzene, toluene, ethyl-benzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons)) in a sandy aquifer material. Biodiesel was preferentially biodegraded compared to diesel aromatic compounds with a concomitant increase in acetate, methane (near saturation limit (≈ 22 mg L- 1)) and dissolved BTEX and PAH concentrations in the source zone during the first 1.5 to 2.0 years after the release. Benzene and benzo(a)pyrene concentrations remained above regulatory limits in the source zone until the end of the experiment (6.2 years after the release). Compared to a previous adjacent 100-L release of ethanol-amended gasoline, biodiesel/diesel blend release resulted in a shorter BTEX plume, but with higher residual dissolved hydrocarbon concentrations near the source zone. This was attributed to greater persistence of viscous (and less mobile) biodiesel than the highly-soluble and mobile ethanol in the source zone. This persistence of biodiesel/diesel NAPL at the source zone slowed BTEX and PAH biodegradation (by the establishment of an anaerobic zone) but reduced the plume length by reducing mobility. This is the first field study to assess biodiesel/diesel blend (B20) behavior in groundwater and its effects on the biodegradation and plume length of priority groundwater pollutants.

  12. Evaluation of ambient air concentrations of polycyclic aromatic hydrocarbons in Germany from 1990 to 1998.

    Science.gov (United States)

    Fertmann, Regina; Tesseraux, Irene; Schümann, Michael; Neus, Hermann

    2002-03-01

    All available polycyclic aromatic hydrocarbon (PAH) concentration data in ambient air obtained over the past 10 years in Germany were evaluated to clarify whether it is justified to use benzo(a)pyrene (BaP) as a marker compound for the total PAH exposure. The data basis comprises annual mean concentrations from 1990 to 1998 supplied by the emission protection authorities of the federal states with additional information on the region, year and site of measurement. The data are very heterogeneous with respect to sample size, the number of individual PAHs analyzed, place of origin and year. Nine of 25 individual compounds with sufficient sample size (74German reunion and time characterize the distributive patterns, e.g., from 1991 to 1997, a significant decrease in BaP could be determined based on the data from North Rhine-Westphalia (1991, N=51, median 1.6 ng/m(3); 1997, N=45, median 0.7 ng/m(3); P

  13. Contamination of agricultural lands by polycyclic aromatic hydrocarbons (Tver region, Russia)

    Science.gov (United States)

    Zhidkin, Andrey; Koshovskii, Timur; Gennadiev, Alexander

    2016-04-01

    It is important to study sources and concentrations of polycyclic aromatic hydrocarbons (PAHs) in the agriculture soils within areas without intensive contaminations. Our studied object was soil and snow cover in the taiga zone (Tver region, Russia). A total of 52 surface (0-30 cm) and 31 subsurface (30-50 cm) soil samples, and 13 snow samples were collected in 35 soil pits, located in forest, crop and layland soils. Studied concentrations of the following 11 individual compounds: two-ring compounds (diphenyl and naphthalene homologues); three-ring compounds (fluorene, phenanthrene, anthracene); four-ring compounds (chrysene, pyrene, tetraphene); five-ring compounds (perylene, benzo[a]pyrene); and six-ring compounds (benzo[ghi]perylene). Analyses made by specrtofluorometry method at the temperature of liquid nitrogen. The total concentrations of all PAHs in soil samples ranged from 9 to 770 ng*g‑1 with a median of 96 ng*g‑1. The sum of high molecular weight PAHs was significantly lower than the sum of low molecular weight PAHs in the studied soils. The phenanthrene concentration was highest and ranged from 1.2 to 720 ng*g‑1 (medium 72 ng*g‑1). Compared PAHs reserves in snow cover (μg*m-2) with the reserves in topsoil layer (μg*m-2 in the upper 30 cm). Low molecular weight PAHs (fluorene, phenanthrene, diphenyl, naphthalene) reserves in snow was less than 20% from the reserves in the soil surface layer. High molecular weight PAHs (benzo[a]pyrene, chrysene, perylene, pyrene and tetraphene) reserves in snow was about 50-70% from the reserves in soil surface layer. High molecular weight PAHs (benzo[ghi]perylene and anthracene) reserves in snow was more than in topsoil. PAHs vertical distribution in soil profiles was statistically examined. The total concentration of all PAHs decreased with depth in all studied forest soils. In the arable soils was no significant trend in domination of PAHs total concentrations in the plowing and subsoil layers. The ratio of

  14. Removal of polycyclic aromatic hydrocarbons from organic solvents by ashes wastes

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) can be formed during the refinery processes of crude petroleum. Their removal is of great importance. The same happens with other organic solvents used for the extraction of PAHs (hexane, acetonitrile...), which can be polluted with PAHs. Kinetic and equilibrium batch sorption tests were used to investigate the effect of wood ashes wastes as compared to activated carbon on the sorption of three representative PAHs from n-hexane and acetonitrile. Mussel shell ashes were discarded for batch sorption experiments because they were the only ashes containing PAHs. The equilibrium time was reached at 16 h. Physical sorption caused by the aromatic nature of the compounds was the main mechanism that governed the PAHs removal process. Our investigation revealed that wood ashes obtained at lower temperature (300 deg. C) did not show any PAHs sorption, while ashes obtained at higher temperature (>500 deg. C) have adsorbent sites readily available for the PAH molecules. An increase in the molecular weight of PAHs has a strong effect on sorption wood ashes wastes. As low the wood ashes particle size as high the sorption of PAHs, as a result of differences in adsorbent sites. The performance of wood ash wastes vs. activated carbon to remove 10 PAHs from organic solvents is competitive in price, and a good way for waste disposal.

  15. Physico-chemical properties and toxicity of alkylated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Kang, Hyun-Joong; Lee, So-Young; Kwon, Jung-Hwan

    2016-07-15

    Crude oil and refined petroleum products contain many polycyclic and heterocyclic aromatic hydrocarbons, in particular, alkylated PAHs. Although alkylated PAHs are found in significantly higher quantities than their corresponding unsubstituted PAHs, the most studies on the physico-chemical properties and toxicities of these compounds have been conducted on unsubstituted PAHs. In this study, we measured crucial physico-chemical properties (i.e., water solubility, partition coefficients between polydimethylsiloxane and water (KPDMSw), and partition coefficient between liposomes and water (Klipw)) of selected alkylated PAHs, and evaluated their toxicity using the luminescence inhibition of Aliivibrio fischeri and growth inhibition of Raphidocelis subcapitata. In general, the logarithms of these properties for alkylated PAHs showed good linear correlations with log Kow, as did those for unsubstituted PAHs. Changes in molecular symmetry on the introduction of alkyl groups on aromatic ring structure significantly altered water solubility. The inhibition of bacterial luminescence and algal growth by alkylated PAHs can be explained well by the baseline toxicity hypothesis, and good linear relationships between log Kow or log Klipw and log (1/EC50) were found.

  16. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives.

    Science.gov (United States)

    Misaki, Kentaro; Takamura-Enya, Takeji; Ogawa, Hideoki; Takamori, Kenji; Yanagida, Mitsuaki

    2016-03-01

    Various types of polycyclic aromatic compounds (PACs) in diesel exhaust particles are thought to contribute to carcinogenesis in mammals. Although the carcinogenicity, mutagenicity and tumour-initiating activity of these compounds have been evaluated, their tumour-promoting activity is unclear. In the present study, to determine the tumour-inducing activity of PACs, including previously known mutagenic compounds in atmospheric environments, a transformation assay for promoting activity mediated by the release of contact inhibition was conducted for six polycyclic aromatic hydrocarbons (PAHs), seven oxygenated PAHs (oxy-PAHs) and seven nitrated PAHs (nitro-PAHs) using mouse embryonic fibroblast cells transfected with the v-Ha-ras gene (Bhas 42 cells). Of these, two PAHs [benzo[k]fluoranthene (B[k]FA) and benzo[b]fluoranthene (B[b]FA)], one oxy-PAH [6H-benzo[cd]pyren-6-one (BPO)] and two nitro-PAHs (3-nitro-7H-benz[de]anthracen-7-one and 6-nitrochrysene) were found to exhibit particularly powerful tumour-promoting activity (≥10 foci following exposure to BPO). Further, an HO-1 antioxidant response activation was observed following exposure to B[k]FA, B[b]FA and BPO, suggesting that the induction of tumour-promoting activity in these compounds is correlated with the dysfunction of signal transduction via AhR-mediated responses and/or oxidative stress responses.

  17. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    Science.gov (United States)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  18. Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea

    Energy Technology Data Exchange (ETDEWEB)

    Baumard, P.; Budzinski, H.; Garrigues, P. [Univ. Bordeaux I, Talence (France)

    1998-05-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) has been investigated in superficial sediments and mussels (Mytilus galloprovincialis) of the western Mediterranean sea. The analyses were performed by gas chromatography coupled to mass spectrometry (GC-MS). The PAH concentrations ranged from 1 to 20,500 ng/g in the sediments. Different molecular indices allowed differentiation between the different pollutant sources. On the French coast, PAHs originated mainly from incomplete combustion of organic matter (pyrolytic origin), whereas for some sites in Corsica and Sardinia an overimposition of petrogenic PAHs occurred. The mussel PAH concentrations ranged from 25 to 390 ng/g. The total and individual PAH bioaccumulation factors were calculated. The correlation between sediment and mussel PAH content was discussed in terms of bioavailability. It was possible to distinguish different absorption routes for the xenobiotics according to their physicochemical properties. Because the mussel distribution of phenanthrene and anthracene seems to be governed by their water solubility, these compounds were probably mainly absorbed as the water-dissolved form, whereas the heavier molecular weight PAHs (more than four aromatic rings), whose sediment and mussel concentrations are correlated with higher correlation coefficients than for phenanthrene and anthracene, were probably mainly absorbed as adsorbed on particles. Furthermore, a possible preferential biotransformation of benzo[a]pyrene over benzo[e]pyrene is discussed.

  19. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hui [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Wu, Chunfei, E-mail: c.wu@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Onwudili, Jude A. [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Meng, Aihong [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Yanguo, E-mail: zhangyg@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  20. Random mixtures of polycyclic aromatic hydrocarbon spectra match interstellar infrared emission

    CERN Document Server

    Rosenberg, Marissa J F; Boersma, Christiaan

    2014-01-01

    The mid-infrared (IR; 5-15~$\\mu$m) spectrum of a wide variety of astronomical objects exhibits a set of broad emission features at 6.2, 7.7, 8.6, 11.3 and 12.7 $\\mu$m. About 30 years ago it was proposed that these signatures are due to emission from a family of UV heated nanometer-sized carbonaceous molecules known as polycyclic aromatic hydrocarbons (PAHs), causing them to be referred to as aromatic IR bands (AIBs). Today, the acceptance of the PAH model is far from settled, as the identification of a single PAH in space has not yet been successful and physically relevant theoretical models involving ``true'' PAH cross sections do not reproduce the AIBs in detail. In this paper, we use the NASA Ames PAH IR Spectroscopic Database, which contains over 500 quantum-computed spectra, in conjunction with a simple emission model, to show that the spectrum produced by any random mixture of at least 30 PAHs converges to the same 'kernel'-spectrum. This kernel-spectrum captures the essence of the PAH emission spectrum...

  1. Physico-chemical properties and toxicity of alkylated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Kang, Hyun-Joong; Lee, So-Young; Kwon, Jung-Hwan

    2016-07-15

    Crude oil and refined petroleum products contain many polycyclic and heterocyclic aromatic hydrocarbons, in particular, alkylated PAHs. Although alkylated PAHs are found in significantly higher quantities than their corresponding unsubstituted PAHs, the most studies on the physico-chemical properties and toxicities of these compounds have been conducted on unsubstituted PAHs. In this study, we measured crucial physico-chemical properties (i.e., water solubility, partition coefficients between polydimethylsiloxane and water (KPDMSw), and partition coefficient between liposomes and water (Klipw)) of selected alkylated PAHs, and evaluated their toxicity using the luminescence inhibition of Aliivibrio fischeri and growth inhibition of Raphidocelis subcapitata. In general, the logarithms of these properties for alkylated PAHs showed good linear correlations with log Kow, as did those for unsubstituted PAHs. Changes in molecular symmetry on the introduction of alkyl groups on aromatic ring structure significantly altered water solubility. The inhibition of bacterial luminescence and algal growth by alkylated PAHs can be explained well by the baseline toxicity hypothesis, and good linear relationships between log Kow or log Klipw and log (1/EC50) were found. PMID:27037474

  2. Phototoxicity of individual polycyclic aromatic hydrocarbons and petroleum to marine invertebrate larvae and juveniles

    International Nuclear Information System (INIS)

    Phototoxicity resulting from photoactivated polycyclic aromatic hydrocarbons (PAHs) has been reported in the literature for a variety of freshwater organisms. The magnitude of increase in PAH toxicity often exceeds a factor of 100. In the marine environment phototoxicity to marine organisms has not been reported for individual or complex mixtures of PAHs. In this study, larvae and juveniles of the bivalve, Mulinia lateralis, and juveniles of the mysid shrimp, Mysidopsis bahia, were exposed to individual known phototoxic PAHs (anthracene, fluoranthene, pyrene), as well as the water-accommodated fractions of several petroleum products (Fuel Oil number-sign 2, Arabian Light Crude, Prudhoe Bay Crude, Fuel Oil number-sign 6) containing PAHs. Phototoxicity of individual PAHs was 12 to >50,000 times that of conventional toxicity. Three of the petroleum products demonstrated phototoxicity while the lightest product, Fuel Oil number-sign 2, was not phototoxic at the concentrations tested. The phototoxicity of petroleum products appears to be dependent on the composition and concentrations of phototoxic PAHs present: lighter oils have fewer multiple aromatic ring, phototoxic compounds while heavier oils have higher levels of these types of molecules. This study shows that phototoxicity can occur in marine waters to marine species. Further, the occurrence of oil in marine waters presents the additional risk of phototoxicity not routinely assessed for during oil spills

  3. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis.

    Science.gov (United States)

    Gao, Meiqi; Wang, Yulong; Dong, Jie; Li, Fan; Xie, Kechang

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants. They have attracted considerable attention due to their severe potential carcinogenic, mutagenic and genotoxic effects on human health. In this study, five different rank coals from China were pyrolyzed using pyro-probe CDS 5250 and the release behavior of 16 PAHs under different pyrolysis conditions were studied by Gas Chromatography-Mass Spectrometer (GC-MS). The structural characteristics of the five coals were determined by Cross-Polarization/Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS (13)C NMR) spectroscopy, and then the factors influencing the formation of PAHs during coal pyrolysis were discussed together with the coal structural data. It was shown that the amount of PAHs generated during coal pyrolysis was largely related to coal rank and followed the order of medium metamorphic coal > low metamorphic coal > high metamorphic coal. The amount of total PAHs varied as the temperature was increased from 400 °C to 1200 °C, which showed a trend of first increasing and then decreasing, with the maximum value at 800 °C. Moreover, the species of PAHs released varied with pyrolysis temperatures. When the temperature was lower than 800 °C, the small ring PAHs were the most abundant, while the proportion of heavy rings increased at higher temperature. The results indicate that the formation of PAHs during coal pyrolysis depends on the structure of the coal. The species and amounts of PAHs generated during coal pyrolysis are closely related to the contents of protonated aromatic carbons and bridging ring junction aromatic carbons present in the coal structure. PMID:27239965

  4. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis.

    Science.gov (United States)

    Gao, Meiqi; Wang, Yulong; Dong, Jie; Li, Fan; Xie, Kechang

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants. They have attracted considerable attention due to their severe potential carcinogenic, mutagenic and genotoxic effects on human health. In this study, five different rank coals from China were pyrolyzed using pyro-probe CDS 5250 and the release behavior of 16 PAHs under different pyrolysis conditions were studied by Gas Chromatography-Mass Spectrometer (GC-MS). The structural characteristics of the five coals were determined by Cross-Polarization/Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS (13)C NMR) spectroscopy, and then the factors influencing the formation of PAHs during coal pyrolysis were discussed together with the coal structural data. It was shown that the amount of PAHs generated during coal pyrolysis was largely related to coal rank and followed the order of medium metamorphic coal > low metamorphic coal > high metamorphic coal. The amount of total PAHs varied as the temperature was increased from 400 °C to 1200 °C, which showed a trend of first increasing and then decreasing, with the maximum value at 800 °C. Moreover, the species of PAHs released varied with pyrolysis temperatures. When the temperature was lower than 800 °C, the small ring PAHs were the most abundant, while the proportion of heavy rings increased at higher temperature. The results indicate that the formation of PAHs during coal pyrolysis depends on the structure of the coal. The species and amounts of PAHs generated during coal pyrolysis are closely related to the contents of protonated aromatic carbons and bridging ring junction aromatic carbons present in the coal structure.

  5. CHARACTERIZING THE INFRARED SPECTRA OF SMALL, NEUTRAL, FULLY DEHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, C. J.; Peeters, E.; Cami, J. [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Bauschlicher, C. W. Jr., E-mail: mackie@strw.leidenuniv.nl [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States)

    2015-02-01

    We present the results of a computational study to investigate the infrared spectroscopic properties of a large number of polycyclic aromatic hydrocarbon (PAH) molecules and their fully dehydrogenated counterparts. We constructed a database of fully optimized geometries for PAHs that is complete for eight or fewer fused benzene rings, thus containing 1550 PAHs and 805 fully dehydrogenated aromatics. A large fraction of the species in our database have clearly non-planar or curved geometries. For each species, we determined the frequencies and intensities of their normal modes using density functional theory calculations. Whereas most PAH spectra are fairly similar, the spectra of fully dehydrogenated aromatics are much more diverse. Nevertheless, these fully dehydrogenated species show characteristic emission features at 5.2 μm, 5.5 μm, and 10.6 μm; at longer wavelengths, there is a forest of emission features in the 16-30 μm range that appears as a structured continuum, but with a clear peak centered around 19 μm. We searched for these features in Spitzer-IRS spectra of various positions in the reflection nebula NGC 7023. We find a weak emission feature at 10.68 μm in all positions except that closest to the central star. We also find evidence for a weak 19 μm feature at all positions that is not likely due to C{sub 60}. We interpret these features as tentative evidence for the presence of a small population of fully dehydrogenated PAHs, and discuss our results in the framework of PAH photolysis and the formation of fullerenes.

  6. Determining produced water originating polycyclic aromatic hydrocarbons in North Sea waters: comparison of sampling techniques

    International Nuclear Information System (INIS)

    A field study was carried out in the Norwegian sector of the North Sea during May and June 1997. The purpose was to measure the concentration of produced water originating polycyclic aromatic hydrocarbons (PAH) in seawater and to compare different sampling techniques for use in future monitoring programs. Three methods were used for direct water sampling: (1) in situ large volume sampling of particulate and dissolved hydrocarbons onto filters and XAD resins, (2) solid phase extraction (SPE) using polystyrene-divinylbenzene disks, (3) whole bulk water sampling. In addition, sampling by semi-permeable membrane devices (SPMDs) and blue mussels (Mytilus edulis) was used to obtain a 4 weeks average of the concentration of the target compounds in seawater. The samples were processed and analysed by GC-MS for determination of PAH concentrations. The measured concentrations were generally found to be low, and in many cases below the limits of detection. The comparison of sampling techniques showed that blue mussels and SPMDs are suitable for measuring PAH in both near-and far-field seawater. In situ large volume water sampling was also suitable for a wide range of PAH concentrations, but this technique was limited by high break-through of the low-molecular weight compounds, such as naphthalenes. The small sampling volumes limited the SPE and whole water sampling techniques, resulting in potential detection limit problems These grab-sampling techniques may, however, be suitable for monitoring in the near-field areas around the platforms. (Author)

  7. LABORATORY INVESTIGATIONS OF POLYCYCLIC AROMATIC HYDROCARBON FORMATION AND DESTRUCTION IN THE CIRCUMSTELLAR OUTFLOWS OF CARBON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Cesar S.; Salama, Farid, E-mail: cesar.contreras@nasa.gov, E-mail: Farid.Salama@nasa.gov [Space Science and Astrobiology Division, NASA-Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-09-15

    The formation and destruction mechanisms of interstellar dust analogs formed from a variety of polycyclic aromatic hydrocarbon (PAH) and hydrocarbon molecular precursors are studied in the laboratory. We used the newly developed facility COSmIC, which simulates interstellar and circumstellar environments, to investigate both PAHs and species that include the cosmically abundant atoms O, N, and S. The species generated in a discharge plasma are detected, monitored, and characterized in situ using highly sensitive techniques that provide both spectral and ion mass information. We report here the first series of measurements obtained in these experiments which focus on the characterization of the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars. We compare and discuss the relative efficiencies of the various molecular precursors that lead to the formation of the building blocks of carbon grains. We discuss the most probable molecular precursors in terms of size and structure and the implications for the expected growth and destruction processes of interstellar carbonaceous dust.

  8. Does chemically dispersing crude oil increase the exposure of fish to polynuclear aromatic hydrocarbons (PAH)?

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, S.D.; Khan, C.W.; Hodson, P.V. [Queen' s Univ., Kingston, ON (Canada). Dept. of Biology; Lee, K. [Department of Fisheries and Oceans, Dartmouth, NS (Canada). Bedford Inst. of Oceanography

    2002-07-01

    Dispersants or surfactants are often used to clean up oil spills on water to minimize the impact of oil pollution. Their use as an oil spill countermeasure, however, is controversial because the risk of ecological effects depends on whether the dispersant increases or decreases the exposure of aquatic species to the toxic components of oil. This study involved the measurement of CYP1A induction and bile metabolites of polycyclic aromatic hydrocarbons (PAH) in trout exposed to Corexit 9500 dispersant, water accommodated fractions, and chemically enhanced water accommodated fractions of 3 crude oils. The objective was to see if fish are exposed to more PAH in dispersed oil compared to equivalent amounts of water accommodated fraction. Preliminary results indicated 10 times higher induction in fish exposed to chemically enhanced water accommodated fraction compared to water accommodated fractions. The dispersed oil in water had higher concentrations of alkylated PAH compared to the water accommodated fraction. As hydrocarbon concentrations increased, the trend for medaka embryos was first to hatch earlier, then have mild edema, followed by severe edema and finally mortality.

  9. Assessing the Ecological Risk of Polycyclic Aromatic Hydrocarbons in Sediments at Langkawi Island, Malaysia

    Directory of Open Access Journals (Sweden)

    Essam Nasher

    2013-01-01

    Full Text Available Tourism-related activities such as the heavy use of boats for transportation are a significant source of petroleum hydrocarbons that may harm the ecosystem of Langkawi Island. The contamination and toxicity levels of polycyclic aromatic hydrocarbon (PAH in the sediments of Langkawi were evaluated using sediment quality guidelines (SQGs and toxic equivalent factors. Ten samples were collected from jetties and fish farms around the island in December 2010. A gas chromatography/flame ionization detector (GC/FID was used to analyse the 18 PAHs. The concentration of total PAHs was found to range from 869 ± 00 to 1637 ± 20 ng g−1 with a mean concentration of 1167.00 ± 24 ng g−1, lower than the SQG effects range-low (3442 ng g−1. The results indicated that PAHs may not cause acute biological damage. Diagnostic ratios and principal component analysis suggested that the PAHs were likely to originate from pyrogenic and petrogenic sources. The toxic equivalent concentrations of the PAHs ranged from 76.3 to 177 ng TEQ/g d.w., which is lower compared to similar studies. The results of mean effects range-median quotient of the PAHs were lower than 0.1, which indicate an 11% probability of toxicity effect. Hence, the sampling sites were determined to be the low-priority sites.

  10. Assessing the ecological risk of polycyclic aromatic hydrocarbons in sediments at Langkawi Island, Malaysia.

    Science.gov (United States)

    Nasher, Essam; Heng, Lee Yook; Zakaria, Zuriati; Surif, Salmijah

    2013-01-01

    Tourism-related activities such as the heavy use of boats for transportation are a significant source of petroleum hydrocarbons that may harm the ecosystem of Langkawi Island. The contamination and toxicity levels of polycyclic aromatic hydrocarbon (PAH) in the sediments of Langkawi were evaluated using sediment quality guidelines (SQGs) and toxic equivalent factors. Ten samples were collected from jetties and fish farms around the island in December 2010. A gas chromatography/flame ionization detector (GC/FID) was used to analyse the 18 PAHs. The concentration of total PAHs was found to range from 869 ± 00 to 1637 ± 20 ng g⁻¹ with a mean concentration of 1167.00 ± 24 ng g⁻¹, lower than the SQG effects range-low (3442 ng g⁻¹). The results indicated that PAHs may not cause acute biological damage. Diagnostic ratios and principal component analysis suggested that the PAHs were likely to originate from pyrogenic and petrogenic sources. The toxic equivalent concentrations of the PAHs ranged from 76.3 to 177 ng TEQ/g d.w., which is lower compared to similar studies. The results of mean effects range-median quotient of the PAHs were lower than 0.1, which indicate an 11% probability of toxicity effect. Hence, the sampling sites were determined to be the low-priority sites. PMID:24163633

  11. LABORATORY INVESTIGATIONS OF POLYCYCLIC AROMATIC HYDROCARBON FORMATION AND DESTRUCTION IN THE CIRCUMSTELLAR OUTFLOWS OF CARBON STARS

    International Nuclear Information System (INIS)

    The formation and destruction mechanisms of interstellar dust analogs formed from a variety of polycyclic aromatic hydrocarbon (PAH) and hydrocarbon molecular precursors are studied in the laboratory. We used the newly developed facility COSmIC, which simulates interstellar and circumstellar environments, to investigate both PAHs and species that include the cosmically abundant atoms O, N, and S. The species generated in a discharge plasma are detected, monitored, and characterized in situ using highly sensitive techniques that provide both spectral and ion mass information. We report here the first series of measurements obtained in these experiments which focus on the characterization of the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars. We compare and discuss the relative efficiencies of the various molecular precursors that lead to the formation of the building blocks of carbon grains. We discuss the most probable molecular precursors in terms of size and structure and the implications for the expected growth and destruction processes of interstellar carbonaceous dust

  12. Polycyclic aromatic hydrocarbons (PAHs) in surface sediment and oysters (Crassostrea rhizophorae) from mangrove of Guadeloupe: levels, bioavailability, and effects.

    Science.gov (United States)

    Ramdine, Gaëlle; Fichet, Denis; Louis, Max; Lemoine, Soazig

    2012-05-01

    Surface sediment and oysters (Crassostrea rhizophorae) from the coastlines of Guadeloupe were analysed for polycyclic aromatic hydrocarbons (PAHs) using GC/MS. Biomarkers of oxidative stress were used to assess the response of these oysters to hydrocarbons exposure. The total concentration of PAHs in the sediment ranged from 49 to 1065 ng/g dw, while concentrations in oyster ranged from 66 to 961 ng/g dw. Molecular indices based on isomeric PAHs ratios characterize the pollution sources and show that most of the contaminations in sediment originate from pyrolytic inputs. Bioaccumulation factors (BAFs) have been related to isomeric ratio calculated for oysters in order to refine PAHs sources. The variations of BAFs observed in the different compounds resulted from different uptake pathways in the mangrove oysters according to the type of inputs. Response of biomarkers showed inhibition of catalase and an increase of lipid peroxidation at the station where PAHs concentrations were the highest. Taken together, data obtained point to the relevance of considering environmental conditions as factors influencing biomarker responses in environmental monitoring programs. These data also indicate the need for regular environmental follow-up studies in Guadeloupe. PMID:22209019

  13. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peña, Gerardo D.J.

    2016-07-23

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  14. Source Identification of Polycyclic Aromatic Hydrocarbons by Diagnostic Ratios and Positive Matrix Factorization

    Science.gov (United States)

    Dvorska, A.; Jarkovsky, J.; Lammel, G.; Klanova, J.

    2009-04-01

    Although polycyclic aromatic hydrocarbons (PAHs) are also of natural origin, in many regions their environmental concentrations have strongly increased due to human activities. These semivolatile organic compounds are generally formed during incomplete combustion. Other sources include volatilization from unburned petroleum or tire abrasion in road traffic. Among all pollutants PAHs pose the highest human health hazard in Europe (WHO, 2003). A multivariate statistical method, positive matrix factorization (PMF; Paatero, 1997), and diagnostic ratios of individual PAHs (e.g. Yunker et al., 2002) are used for PAH source identification in central Europe. To minimise confounding factors such as differences in volatility, water solubility, adsorption etc., diagnostic ratios should be restricted to PAHs of similar molecular mass (Readman et al., 1987). Furthermore, different reactivities are limiting. Nevertheless, the application of PAH diagnostic ratios is often inconclusive, because substance patterns (profiles) have not been reported for all sources and ranges for various sources overlap. The complete profiles are made use of by statistical methods such as factor analysis, UNMIX and PMF (Tauler et al., 2006). However, these methods can be unreliable, because of incomplete knowledge of source profiles and the analysis' sensitivity to the data distribution. A unique 12-year data set of concentrations of PAHs (16 individual substances, 2 phases, weekly) in air, measured at the regional observatory Košetice, Czech Republic, is examined, together with shorter time series from Leipzig (urban background) and Schwartenberg (subalpine mountain background), Germany. Also, retene and coronene as specific source markers measured in Košetice from 2006 on are included into the analysis. An extensive literature search on PAH emission profiles was conducted. This data set was accomplished by measurements at sites in the Zlínsko region, Czech Republic, which are strongly dominated

  15. From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to the Origin of Life

    Science.gov (United States)

    Allamandola, Louis

    2004-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, abundances, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the presolar nebula, the materials frozen into the interstellar/precometary ices are photoprocessed by ultraviolet light and produce more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex materials on the early

  16. Bioaccumulation of polycyclic aromatic hydrocarbons and survival of earthworms (Eisenia andrei) exposed to biochar amended soils.

    Science.gov (United States)

    Malev, O; Contin, M; Licen, S; Barbieri, P; De Nobili, M

    2016-02-01

    Biochar has a charcoal polycyclic aromatic structure which allows its long half-life in soil, making it an ideal tool for C sequestration and for adsorption of organic pollutants, but at the same time raises concerns about possible adverse impacts on soil biota. Two biochars were tested under laboratory-controlled conditions on Eisenia andrei earthworms: a biochar produced at low temperature from wine tree cuttings (WTB) and a commercial low tar hardwood lump charcoal (HLB). The avoidance test (48-h exposure) showed that earthworms avoid biochar-treated soil with rates higher than 16 t ha(-1) for HLB and 64 t ha(-1) for WTB. After 42 days, toxic effects on earthworms were observed even at application rates (100 t ha(-1)) that are generally considered beneficial for most crops. The concentration of HLB and WTB required to kill half of earthworms' population (LC50; 95% confidence limits) in the synthetic OECD soil was 338 and 580 t ha(-1), respectively. Accumulation of polycyclic aromatic hydrocarbons (PAH) in earthworms exposed to the two biochar types at 100 t ha(-1) was tested in two soils of different texture. In biochar-treated soils, the average earthworm survival rates were about 64% in the sandy and 78% clay-loam soils. PAH accumulation was larger in the sandy soil and largest in soils amended with HLB. PAH with less than four rings were preferentially scavenged from the soil by biochars, and this behaviour may mask that of the more dangerous components (i.e. four to five rings), which are preferentially accumulated. Earthworms can accumulate PAH as a consequence of exposure to biochar-treated soils and transfer them along the food chain. Soil type and biochar quality are both relevant in determining PAH transfer. PMID:26490928

  17. Effects of climatic modalities on polycyclic aromatic hydrocarbons (PAHs) availability and attenuation in historically contaminated Technosol

    Science.gov (United States)

    Dagois, Robin; Schwartz, Christophe; Faure, Pierre

    2014-05-01

    Since the decline of industrial activities in France, large areas of polycyclic aromatic hydrocarbon (PAHs)-contaminated soils have remained derelict. Thus, the fate of PAHs in such soils through natural attenuation process needs to be assessed. On the long-term scale (10-100 years), climate will greatly contribute to the evolution of soil physico-chemical properties and by consequences PAHs availability. In our study, we examined the effect of three contrasted climatic conditions (freeze-thawing, wetting-drying and high temperature) on soil aging processes of 11 historically contaminated soils and consequences on the availability of polycyclic aromatic compounds (including the 16 priority pollutants PAHs). Batch experiments were set-up for each modality; freeze-dried soil underwent variation of humidity and/or temperature. In a first step, PACs availability was roughly evaluated, with a water-extraction method using a H2O2 + CaCl2 solution. Dissolved organic carbon (DOC) content was measured in these extracts before and after applying the climatic modalities. Difference in DOC indicated an effect of the climatic modality on PACs availability. If an effect was noticed, available PACs was then accurately measured using (i) an hydrogen-peroxide oxidation on the soils followed (ii) a dichloromethane (DCM) extraction and a Gas Chromatography - Mass Spectrometer (GC-MS) quantification of the remaining PACs (i.e. unavailable). Variation of PACs availability will greatly help to understand the mechanisms associated between PACs desorption/sequestration and the abiotic influence of climate. Results of this work will further help understanding and predict the rate of natural attenuation of PACs in contaminated soils for the incoming decades.

  18. Grating light reflection spectroelectrochemistry for detection of trace amounts of aromatic hydrocarbons in water

    Energy Technology Data Exchange (ETDEWEB)

    KELLY,MICHAEL J.; SWEATT,WILLIAM C.; KEMME,SHANALYN A.; KASUNIC,K.J.; BLAIR,DIANNA S.; ZAIDI,S.H.; MCNEIL,J.R.; BURGESS,L.W.; BRODSKY,A.M.; SMITH,S.A.

    2000-04-01

    Grating light reflection spectroscopy (GLRS) is an emerging technique for spectroscopic analysis and sensing. A transmission diffraction grating is placed in contact with the sample to be analyzed, and an incident light beam is directed onto the grating. At certain angles of incidence, some of the diffracted orders are transformed from traveling waves to evanescent waves. This occurs at a specific wavelength that is a function of the grating period and the complex index of refraction of the sample. The intensities of diffracted orders are also dependent on the sample's complex index of refraction. The authors describe the use of GLRS, in combination with electrochemical modulation of the grating, for the detection of trace amounts of aromatic hydrocarbons. The diffraction grating consisted of chromium lines on a fused silica substrate. The depth of the grating lines was 1 {micro}m, the grating period was 1 {micro}m, and the duty cycle was 50%. Since chromium was not suitable for electrochemical modulation of the analyte concentration, a 200 nm gold layer was deposited over the entire grating. This gold layer slightly degraded the transmission of the grating, but provided satisfactory optical transparency for the spectroelectrochemical experiments. The grating was configured as the working electrode in an electrochemical cell containing water plus trace amounts of the aromatic hydrocarbon analytes. The grating was then electrochemically modulated via cyclic voltammetry waveforms, and the normalized intensity of the zero order reflection was simultaneously measured. The authors discuss the lower limits of detection (LLD) for two analytes, 7-dimethylamino-1,2-benzophenoxazine (Meldola's Blue dye) and 2,4,6-trinitrotoluene (TNT), probed with an incident HeNe laser beam ({lambda} = 543.5 nm) at an incident angle of 52.5{degree}. The LLD for 7-dimethylamino-1,2-benzophenoxazine is approximately 50 parts per billion (ppb), while the LLD for TNT is approximately

  19. Characterization of polycyclic aromatic hydrocarbons and metals in ashes released from a forest fire

    Science.gov (United States)

    Campos, I.; Abrantes, N.; Pereira, P.; Vale, C.; Ferreira, A.; Keizer, J. J.

    2012-04-01

    Wildfires have become a permanent source of environmental and societal concerns. Whilst the impacts of wildfire on hydrological and erosion processes are well documented, the stocks and export of polycyclic aromatic hydrocarbons (PAHs) and heavy metals have received considerably less research attention. The ashes produced by wildfires, which include polluting substances such as PAHs and metals, are subject to transport processes by wind and especially by overland flow and water infiltrating into the soil and possibly reaching ground water bodies. In the framework of the FIRECNUTS project, we are studying the stocks of PAHs and selected metals in recently burnt forest stands in north-central Portugal, and their subsequent export by overland flow. The present work, however, will focus on the stocks in the ashes, both immediately after wildfire and three months later. These ashes were collected at two burnt slopes with contrasting forest types, i.e. a eucalypt and a maritime pine stand, the two pre-dominant forest types in the study region. The sixteen PAHs identified by US EPA as priority contaminants were analysed by gas chromatograph, after extraction and column clean up. The contents of vanadium (V), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) were analysed by inductively coupled plasma- mass spectrometry (ICP-MS), after an acid digestion, while mercury (Hg) was analysed by pyrolysis atomic absorption spectrometry with gold amalgamation. The total concentration of PAHs immediately after the wildfire ranged from 314 ng/g dry weight in the maritime pine stand to 597 ng/g dry weight in the eucalypt stand. Three months later, the total concentration has decreased with 33% in the pine stand but only half (16%) in the eucalypt stand. The composition the PAHs by ring size was dominated by three-rings PAHs. This was true for all samples. The concentrations of various metals differed for the two sampling

  20. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Østberg, M.;

    2004-01-01

    Conversion of methane to higher hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and soot was investigated under fuel-rich conditions in a laminar flow reactor. The effects of stoichiometry, dilution, and water vapor addition were studied at temperatures between 1073 and 1823 K. A chemical......, and the model predicts inception of soot to occur approximately 100 K below experimental observations. Addition of water vapor has a considerable effect on the measured acetylene concentration and on soot formation at 1500 K and above. In this temperature regime, concentrations of both acetylene and soot...

  1. Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons. 2: An empirical model for the toxicity of 16 polycyclic aromatic hydrocarbons to the duckweed Lemna gibba L. G-3

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.D.; Krylov, S.N.; Ren, L.; McConkey, B.J.; Dixon, D.G.; Greenberg, B.M. [Univ. of Waterloo, Ontario (Canada). Dept. of Biology

    1997-11-01

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) occurs via photosensitization reactions (e.g., generation of singlet-state oxygen) and by photomodification (photooxidation and/or photolysis) of the chemicals to more toxic species. The quantitative structure-activity relationship (QSAR) described in the companion paper predicted, in theory, that photosensitization and photomodification additively contribute to toxicity. To substantiate this QSAR modeling exercise it was necessary to show that toxicity can be described by empirically derived parameters. The toxicity of 16 PAHs to the duckweed Lemna gibba was measured as inhibition of leaf production in simulated solar radiation (a light source with a spectrum similar to that of sunlight). A predictive model for toxicity was generated based on the theoretical model developed in the companion paper. The photophysical descriptors required of each PAH for modeling were efficiency of photon absorbance, relative uptake, quantum yield for triplet-state formation, and the rate of photomodification. The photomodification rates of the PAHs showed a moderate correlation to toxicity, whereas a derived photosensitization factor (PSF; based on absorbance, triplet-state quantum yield, and uptake) for each PAH showed only a weak, complex correlation to toxicity. However, summing the rate of photomodification and the PSF resulted in a strong correlation to toxicity that had predictive value. When the PSF and a derived photomodification factor (PMF; based on the photomodification rate and toxicity of the photomodified PAHs) were summed, an excellent explanatory model of toxicity was produced, substantiating the additive contributions of the two factors.

  2. Rush-hour aromatic and chlorinated hydrocarbons in selected subway stations of Shanghai, China

    Institute of Scientific and Technical Information of China (English)

    Yanli Zhang; Chunlei Li; Xinming Wang; Hai Guo; Yanli Feng; Jianmin Chen

    2012-01-01

    Air samples were collected simultaneously at platform,mezzanine and outdoor in five typical stations of subway system in Shanghai,China using stainless steel canisters and analyzed by gas chromatography-mass selective detector (GC-MSD) after cryogenic preconcentration.Benzene,toluene,ethylbenzene and xylenes (BTEX) at the platforms and mezzanines inside the stations averaged (10.3± 2.1),(38.7 ± 9.0),(19.4 ± 10.1) and (30.0 ± 11.1) μg/m3,respectively; while trichloroethylene (TrCE),tetrachloroethylene (TeCE)and para-dichlorobenzene (pDCB),vinyl chloride and carbon tetrachloride were the most abundant chlorinated hydrocarbons inside the stations with average levels of (3.6 ± 1.3),(1.3 ± 0.5),(4.1 ± 1.1),(2.2 ± 1.1) and (1.2 ± 0.3) μg/m3,respectively.Mean levels of major aromatic and chlorinated hydrocarbons were higher indoor (platforms and mezzanines) than outdoor with average indoor/outdoor (I/O)ratios of 1.1-9.5,whereas no significant indoor/outdoor differences were found except for benzene and TrCE.The highly significant mutual correlations (p < 0.01) for BTEX between indoor and outdoor and their significant correlation (p < 0.05) with methyl tert-butyl ether (MTBE),a marker of traffic-related emission without other indoor and outdoor sources,indicated that BTEX were introduced into the subway stations from indoor/outdoor air exchange and traffic emission should be their dominant source.TrCE and pDCB were mainly from indoor emission and TeCE might have both indoor emission sources and contribution from outdoor air,especially in the mezzanines.

  3. Rush-hour aromatic and chlorinated hydrocarbons in selected subway stations of Shanghai, China.

    Science.gov (United States)

    Zhang, Yanli; Li, Chunlei; Wang, Xinming; Guo, Hai; Feng, Yanli; Chen, Jianmin

    2012-01-01

    Air samples were collected simultaneously at platform, mezzanine and outdoor in five typical stations of subway system in Shanghai, China using stainless steel canisters and analyzed by gas chromatography-mass selective detector (GC-MSD) after cryogenic preconcentration. Benzene, toluene, ethylbenzene and xylenes (BTEX) at the platforms and mezzanines inside the stations averaged (10.3 +/- 2.1), (38.7 +/- 9.0), (19.4 +/- 10.1) and (30.0 +/- 11.1) microg/m3, respectively; while trichloroethylene (TrCE), tetrachloroethylene (TeCE) and para-dichlorobenzene (pDCB), vinyl chloride and carbon tetrachloride were the most abundant chlorinated hydrocarbons inside the stations with average levels of (3.6 +/- 1.3), (1.3 +/- 0.5), (4.1 +/- 1.1), (2.2 +/- 1.1) and (1.2 +/- 0.3) microg/m3, respectively. Mean levels of major aromatic and chlorinated hydrocarbons were higher indoor (platforms and mezzanines) than outdoor with average indoor/outdoor (I/O) ratios of 1.1-9.5, whereas no significant indoor/outdoor differences were found except for benzene and TrCE. The highly significant mutual correlations (p tert-butyl ether (MTBE), a marker of traffic-related emission without other indoor and outdoor sources, indicated that BTEX were introduced into the subway stations from indoor/outdoor air exchange and traffic emission should be their dominant source. TrCE and pDCB were mainly from indoor emission and TeCE might have both indoor emission sources and contribution from outdoor air, especially in the mezzanines. PMID:22783624

  4. Application of a biofilm formed by a mixture of yeasts isolated in Vietnam to degrade aromatic hydrocarbon polluted wastewater collected from petroleum storage.

    Science.gov (United States)

    Nhi Cong, Le Thi; Ngoc Mai, Cung Thi; Thanh, Vu Thi; Nga, Le Phi; Minh, Nghiem Ngoc

    2014-01-01

    In this study, three good biofilm-forming yeast strains, including Candida viswanathii TH1, Candida tropicalis TH4 and Trichosporon asahii B1, were isolated from oil-contaminated water and sediment samples collected in coastal zones of Vietnam. These strains were registered in the GenBank database with the accession numbers JX129175, JX129176 and KC139404 for strain TH1, TH4 and B1, respectively. The biofilm formed by a mixture of these organisms degraded 90, 85, 82 and 67% of phenol, naphthalene, anthracene and pyrene, respectively, after a 7-day incubation period using an initial concentration of 600 ppm phenol and 200 ppm of each of the other compounds. In addition, this biofilm completely degraded these aromatic compounds, which were from wastewater collected from petroleum tanks in Do Xa, Hanoi after 14 days of incubation based on gas chromatography mass spectrometry analysis. To the best of our knowledge, reports on polycyclic aromatic hydrocarbon and phenol degradation by biofilm-forming yeasts are limited. The results obtained indicate that the biofilm formed by multiple yeast strains may considerably increase the degradation efficiency of aromatic hydrocarbon compounds, and may lead to a new approach for eliminating petroleum oil-contaminated water in Vietnam.

  5. Global distribution and Gas-particle Partitioning of Polycyclic Aromatic Hydrocarbons - a Modelling Study

    Science.gov (United States)

    Lammel, G.; Sehili, A. M.

    2009-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are emitted in all combustion processes. Some undergo re-volatilisation (multi-hopping). Little is known about degradation pathways and the processes determining gas-particle partitioning (Lohmann & Lammel, 2004). Distribution and fate have no been studied on the global scale so far (except for emissions in Europe and Russia; Sehili & Lammel, 2007). Anthracene (ANT), fluoranthene (FLT) and benzo[a]pyrene (BAP) have been studied under present-day climate and each 3 scenarios of atmospheric degradation and gas-particle partitioning using an atmospheric general circulation model with embedded dynamic aerosol submodel, ECHAM-HAM (Stier et al., 2005) and re-volatilization from ground compartments (Semeena et al., 2006). 10 years were simulated with a time-step of 30 min and 2.8°x2.8° and 19 levels. Emissions were compiled based on emission factors in 27 major types of combustion technologies, scaled to 141 combustion technologies and their global distribution as of 1996 (1°x1°) according to fuel type and the PM1 emission factor (Bond et al., 2004). The emissions were entried uniformly throughout the entire simulation time. Scenarios tested: AD = adsorption (according to the Junge empirical relationship; Pankow, 1987), OB = absorption in organic matter and adsorption to soot (Lohmann & Lammel, 2004) without and DP = with degradation in the atmospheric particulate phase. Gas-particle partitioning in air influences drastically the atmospheric cycling, total environmental fate (e.g. compartmental distributions) and the long-range transport potential (LRTP) of the substances studied. The LRTP is mostly regional. Comparison with observed levels indicate that degradation in the particulate phase must be slower than in the gas-phase. Furthermore, the levels of semivolatile PAHs (ANT and FLT) at high latitudes and a European mid latitude site cannot be explained by partitioning due to adsorption alone, but point to both absorption into

  6. Potent inhibition of estrogen sulfotransferase by hydroxylated metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanism for estrogenic activity of endocrine disrupters

    NARCIS (Netherlands)

    M.H.A. Kester (Monique); T.J. Visser (Ton); S. Bulduk; H. van Toor (Hans); D. Tibboel (Dick); W. Meinl; H. Glatt; C.N. Falany; M.W. Coughtrie; A.G. Schuur; A. Brouwer (Abraham)

    2002-01-01

    textabstractPolyhalogenated aromatic hydrocarbons (PHAHs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans, polybrominated diphenylethers, and bisphenol A derivatives are persistent environmental pollutants, which are capable of interfering with reproductive and endocri

  7. Health effects of combustion-generated soot and polycyclic aromatic hydrocarbons. Progress report, May 1, 1979-April 30, 1980. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, W. G.

    1980-05-01

    Mutagen studies on soot and soot components are reported in aspects dealing from quantitative chemical analyses of samples and mutagenesis of cells and microorganisms exposed to mutagens, to bioassay developments and techniques. Several polycyclic aromatic hydrocarbons are characterized and discussed.

  8. The doping effect of fluorinated aromatic hydrocarbon solvents on the performance of common olefin metathesis catalysts: application in the preparation of biologically active compounds.

    Science.gov (United States)

    Samojłowicz, Cezary; Bieniek, Michał; Zarecki, Andrzej; Kadyrov, Renat; Grela, Karol

    2008-12-21

    Aromatic fluorinated hydrocarbons, used as solvents for olefin metathesis reactions, catalysed by standard commercially available Ru precatalysts, allow substantially higher yields to be obtained, especially of challenging substrates, including natural and biologically active compounds.

  9. Determination of Multinuclear Aromatic Hydrocarbons in Coke Oven Smoke%GC/MS法研究焦炉烟气中多环芳烃类污染物

    Institute of Scientific and Technical Information of China (English)

    尚庆坤; 祝红; 阎吉昌; 朱东霞; 向前

    2001-01-01

    The smoke sample from the Angang Iron-Steel Companys coke ovenhas been analysed by GC/MS. Thirty-two multinuclear aromatic hydrocarbon compounds have been detected and twenty of them are world accepted as focal poisonous.

  10. The effects of biodegradation on the compositions of aromatic hydrocarbons and maturity indicators in biodegraded oils from Liaohe Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By the aid of GC-MS technique,a series of sequentially biodegraded oils from Liaohe Basin have been analyzed. The results show that the concentrations and relative compositions of various aromatic compounds in the biodegraded crude oils will change with increasing biodegradation degree. The concentrations of alkyl naphthalenes,alkyl phenanthrenes,alkyl dibenzothiophene are decreased,and the concentration of triaromatic steroids will increase with increasing biodegradation degree in biodegraded oils. Those phenomena indicate that various aromatic compounds are more easily biodegraded by bacteria like other kinds of hydrocarbons such as alkanes,but different series of aromatic compounds have a varied ability to resistant to biodegradation. The ratios of dibenzothiophene to phenenthrene(DBTH/P) and methyl dibenzothiophene to methyl phenanthrene(MDBTH/MP) are related to the features of depositional environment for source rocks such as redox and ancient salinity. However,in biodegraded oils,the two ratios increase quickly with the increase of the biodegradation degree,indicating that they have lost their geochemical significance. In this case,they could not be used to evaluate the features of depositional environment. Methyl phenanthrene index,methyl phenanthrene ratio and methyl dibenzoyhiophene ratio are useful aromatic maturity indicators for the crude oils and the source rocks without vitrinite. But for biodegraded oils,those aromatic maturity indicators will be affected by biodegradation and decrease with the increase of the biodegradation degree. Therefore,those aromatic molecular maturity indicators could not be used for biodegraded oils.

  11. Biochar characterization for its environmental and agricultural utilization. Occurrence, distribution and fate of labile organic carbon and polycyclic aromatic hydrocarbons

    OpenAIRE

    Rombola', Alessandro Girolamo

    2015-01-01

    In this thesis the potential risks associated to the application of biochar in soil as well the stability of biochar were investigated. The study was focused on the potential risks arising from the occurrence of polycyclic aromatic hydrocarbons (PAHs) in biochar. An analytical method was developed for the determination of the 16 USEPA-PAHs in the original biochar and soil containing biochar. The method was successfully validated with a certified reference material for the soil matrix and comp...

  12. Monitoring of Polycyclic Aromatic Hydrocarbons (PAH) in food supplements with botanicals and other ingredients on the Dutch market

    OpenAIRE

    Martena, Martijn J.; Grutters, Michiel; De Groot, Henk; Konings, Erik; Rietjens, Ivonne M. C. M.

    2011-01-01

    Abstract Food supplements can contain polycyclic aromatic hydrocarbons (PAH). The European Food Safety Authority (EFSA) has defined 16 priority PAH that are both genotoxic and carcinogenic and identified 8 priority PAH (PAH8) or 4 of these (PAH4) as good indicators of the toxicity and occurrence of PAH in food. The current study aims to determine benzo[a]pyrene and other EFSA priority PAH in different categories of food supplements containing botanicals and other ingredients. In 20...

  13. Equilibrium passive sampling as a tool to study polycyclic aromatic hydrocarbons in Baltic Sea sediment pore-water systems

    DEFF Research Database (Denmark)

    Lang, Susann-Cathrin; Hursthouse, Andrew; Mayer, Philipp;

    2015-01-01

    Solid Phase Microextraction (SPME) was applied to provide the first large scale dataset of freely dissolved concentrations for 9 polycyclic aromatic hydrocarbons (PAHs) in Baltic Sea sediment cores. Polydimethylsiloxane (PDMS) coated glass fibers were used for ex-situ equilibrium sampling followe...... to cause narcosis to benthos organisms. The SPME method is a very sensitive tool that opens new possibilities for studying the PAHs at trace levels in marine environments....

  14. Determination of Polycyclic Aromatic Hydrocarbons in Automobile Exhaust by Means of High-Performance Liquid Chromatography with Fluorescence Detection

    DEFF Research Database (Denmark)

    Nielsen, Tom

    1979-01-01

    A chromatographic method has been developed and applied to the determination of polycyclic aromatic hydrocarbons (PAHs) in particulate matter in automobile exhaust, in petrols, and in crankcase oils. The PAHs were purified from other organic compounds by thin-layer chromatography, separated by high-performance...... liquid chromatography, and measured by means of on-line fluorescence detection. The identities of the PAHs were verified by comparing the emission spectra obtained by a stop-flow technique with those of standard PAHs...

  15. Health Risk Assessment for Trace Metals, Polycyclic Aromatic Hydrocarbons and Trihalomethanes in Drinking Water of Cankiri, Turkey

    OpenAIRE

    Caylak, Emrah

    2012-01-01

    Lifetime exposure to trace metals, pesticides, polycyclic aromatic hydrocarbons (PAHs), trihalomethanes (THMs), and the other chemicals in drinking water through ingestion, and dermal contact may pose risks to human health. In this study, drinking water samples were collected from 50 sampling sites from Cankiri and its towns during 2010. The concentrations of all pollutants were analyzed, and then compared with permissible limits set by Turkish and WHO. For health risk assessment of trace met...

  16. An in situ intercomparison exercise on passive samplers for monitoring metals, polycyclic aromatic hydrocarbons and pesticides in surface waters

    OpenAIRE

    Miège, C.; Mazzella, N.; Schiavone, S.; Dabrin, A.; Berho, C.; Ghestem, J.P.; Gonzalez, C.; Gonzalez, J L; Lalere, B.; Lardy Fontan, S.; Lepot, B.; Munaron, D.; Tixier, C.; Togola, A.; Coquery, M.

    2012-01-01

    An intercomparison exercise on passive samplers (PSs) was organized in summer 2010 for the measurement of selected metals, polycyclic aromatic hydrocarbons (PAHs) and pesticides in surface waters. Various PSs were used and compared at 2 rivers sites and one marine lagoon. A total of 24 laboratories participated. We present selected significant outputs from this exercise, including discussion on quality assurance and quality control for PSs, the interlaboratory variability of field blanks, tim...

  17. Vehicular Traffic–Related Polycyclic Aromatic Hydrocarbon Exposure and Breast Cancer Incidence: The Long Island Breast Cancer Study Project (LIBCSP)

    OpenAIRE

    Mordukhovich, Irina; Beyea, Jan; Herring, Amy H.; Hatch, Maureen; Stellman, Steven D.; Teitelbaum, Susan L.; Richardson, David B; Millikan, Robert C.; Engel, Lawrence S; Shantakumar, Sumitra; Steck, Susan E.; Neugut, Alfred I; Rossner, Pavel; Santella, Regina M.; Gammon, Marilie D.

    2015-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants, known human lung carcinogens, and potent mammary carcinogens in laboratory animals. However, the association between PAHs and breast cancer in women is unclear. Vehicular traffic is a major ambient source of PAH exposure. Objectives Our study aim was to evaluate the association between residential exposure to vehicular traffic and breast cancer incidence. Methods Residential histories of 1,508 particip...

  18. Thyroid hormone binding proteins as novel targets for hydroxylated polyhalogenated aromatic hydrocarbons (PHAHs): possible implications for toxicity.

    OpenAIRE

    Lans, M.C.

    1995-01-01

    Some toxic effects caused by polyhalogenated aromatic hydrocarbons (PHAHs) develop through alterations in the reproductive and thyroid hormone regulatory systems, thereby affecting (brain) development, reproduction and behaviour of several species (Stone, 1995, Birnbaum, 1994, for review: Brouwer et al. , 1995, Peterson et al. , 1993). In this thesis we have focused on the effects of different classes of PHAHs, eg. polychlorinated biphenyls (PCBs), dibenzofurans (PCDFs) and dibenzo- p -dioxin...

  19. Effects of polycyclic aromatic hydrocarbons on the proliferation of ectopic thyroid tissue in Poecilia formosa the Amazon molly

    Energy Technology Data Exchange (ETDEWEB)

    Woodhead, A.D.; Setlow, R.B.; Pond, V.

    1982-01-01

    A single intraperitoneal injection of any one of several polycyclic aromatic hydrocarbons given to young Amazon mollies induces massive enlargement of the spleen. This enlargement is the result of splenic tissue being partially or wholly replaced by proliferating thyroid tissue. The pharyngeal thyroid gland is stimulated but to a lesser degree. No exuberant thyroid tissue is found at any other extrapharyngeal site. We discuss the possible causes of this finding.

  20. Effect of Surface Chemistry and Physical Properties of Carbon Nanotubes on the Adsorption of Polycyclic Aromatic Hydrocarbons in Aqueous Solutions

    OpenAIRE

    Ramzan, Muhammad

    2013-01-01

    Adsorption behavior of seven different carbon nanotubes (CNTs) towards polycyclic aromatic hydrocarbons (PAHs) was studied in moderately hard reconstituted water (MHRW) with and without dissolved natural organic matter (NOM). At one concentration, adsorption of phenanthrene towards these CNTs was determined using negligible depletion solid phase micro extraction (nd-SPME) followed by GC-MS analysis. The single walled carbon nanotubes (SWCNTs) showed much higher adsorption than all other CNTs....

  1. Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China

    OpenAIRE

    Wang, Wentao; Massey Simonich, Staci L.; Xue, Miao; Zhao, Jingyu; Zhang, Na; Wang, Rong; Cao, Jun; Tao, Shu

    2010-01-01

    The concentrations, profiles, sources and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) were determined in 40 surface soil samples collected from Beijing, Tianjin and surrounding areas, North China in 2007, and all sampling sites were far from industrial areas, roadsides and other pollution sources, and across a range of soil types in remote, rural villages and urban areas. The total concentrations of 16 PAHs ranged from 31.6 to 1475.0 ng/g, with an arithmetic average of 336...

  2. Exploring the relationship between polycyclic aromatic hydrocarbons and sedimentary organic carbon in three Chinese lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengchang; Xu, Libin; Liao, Haiqing; Zhao, Xiaoli [Chinese Research Academy of Environmental Sciences, Beijing (China). State Key Lab. of Environmental Criteria and Risk Assessment; Sun, Yongge [Zhejiang Univ., Hangzhou (China). Inst. of Environmental and Biogeochemistry; Guo, Jianyang [Chinese Academy of Sciences, Guiyang (China). State Key Lab. of Environmental Geochemistry

    2012-05-15

    Purpose: Previous studies have shown a positive correlation between concentrations of polycyclic aromatic hydrocarbons (PAHs) and total organic carbon (TOC) in lake sediments. However, with respect to the complex organic matter in recent sediments, it is still unclear which part of TOC plays a key role in controlling PAHs distributions in natural sediments. The aim of this study was to examine the relationships between PAHs and TOC components of different origins in lake sediments. Materials and methods: Sediment cores from three Chinese lakes with different trophic conditions - Lakes Bosten, Dianchi, and Poyang - were collected using a piston core sampler. The cores were sectioned into 1- or 2-cm intervals immediately after collection and transported on ice to the laboratory where they were stored at -20 C. The subsamples were freeze-dried and ground with a mortar and pestle for analyses. PAHs were analyzed by GC-MS and TOC was determined with a PE elemental analyzer after the removal of carbonates. Rock-Eval 6 pyrolysis technique was used to deconvolute the TOC in the sediments into free and volatile hydrocarbons (S1), kerogen-derived hydrocarbons (S2), and residual carbon (RC); S2 was further separated into thermal less stable macromolecular organic matter (S2a) and high molecular weight kerogens (S2b). Results and discussion: Positive correlations between TOC and PAHs were observed in these lakes. Results show that the more labile, minor components of TOC (S1 and S2a) played a more important role in controlling PAH distributions than the major components of TOC (S2b and RC), probably due to the different accessibilities of the organic components. The algae-derived organic carbon had a greater influence on the distribution of low molecular weight PAHs than that of high molecular weight PAHs in sediments. This suggests that PAHs scavenging in the water column by algae is mainly targeted at low molecular weight PAHs, and that preferential scavenging of low

  3. 2D-QSAR Using MLR and 3D-QSAR Using CoMSIA Studies on the Toxicity of Aromatic Hydrocarbons on Larval Sinonvaculina Constricta

    Institute of Scientific and Technical Information of China (English)

    WANG Cui-Hua; JIANG Mei; LI Xiao-Lin; SHEN Xin-Qiang; YU Hong-Xia; WU Yang

    2012-01-01

    Aromatic hydrocarbons,one of the persistent organic pollutants(POPs),has been usually found in mussels,accumulated for their hard mobility and activities in harbours and estuaries.In this study,based on the 96 hr-LC50 of 12 aromatic hydrocarbons with larval sinonvaculina constricta,three-dimensional quantitative structure-activity relationship(3D-QSAR) technique:comparative molecular similarity indices analysis(CoMSIA) and 2D-QSAR technique:multiple linear regression(MLR) were described to obtain more detailed insight into the structure-activity relationships between the molecular structure and bio-activity.The results show the MLR model based on density functional theory(DFT) calculation carried out at the B3LYP/6-311** level with Gaussian 03 program yielded a very good correlation with a coefficient squared R2 of 0.716 and a cross-validated Q2 of 0.874.The dipole moment and enthalpy,as the thermodynamic parameters,were two important factors influencing pLC50.Correspondingly,CoMSIA based on the partial least-squares(PLS) methodology with steric,electrostatic,hydrophobic,H-bond donor and acceptor fields contributing simultaneously were employed and the values of R2 and the cross validation with leave-One-Out(LOO) Q2LOO were 0.585 and 0.990,respectively,which reveals the structure features,such as the electronegative substituent(nitro-group),hydrophobic groups(the benzene ring) and H-bond(nitro-group),related to the toxicity.The results of 2D-QSAR employing MLR model and 3D-QSAR employing CoMSIA model provide the useful information for predicting the toxicity of other aromatic hydrocarbons by comparing the molecular structures of similar compounds.

  4. Dietary vitamin A supplementation ameliorates the effects of poly-aromatic hydrocarbons in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Berntssen, Marc H G; Ørnsrud, Robin; Rasinger, Josef; Søfteland, Liv; Lock, Erik-Jan; Kolås, Kjersti; Moren, Mari; Hylland, Ketil; Silva, Joana; Johansen, Johan; Lie, Kai

    2016-06-01

    Several studies have reported on the interaction between vitamin A (VA) and aryl hydrocarbon receptor (AhR)-binding toxicants, including poly-aromatic hydrocarbons (PAHs). In aquaculture, the use of plant oils in novel aquafeeds can increase PAH levels while simultaneously lowering natural VA background levels, causing the need to supplement plant oil-based feeds with synthetic VA. To study dietary VA-PAH interactions, Atlantic salmon (initial weight 195±0.15g) were fed four identical plant-based diets that were supplemented with PAHs (100 and 10mgkg(-1) benzo[a]pyrene (BaP) and phenanthrene (Phe), respectively) or VA (retinyl acetate 8721IUkg(-1)) separately or combined for 2.5 months in a 2×2 factorial design, with triplicate net-pens per diet. Dietary PAH significantly reduced hepatic VA storage, and VA-enriched diets restored hepatic VA. There was a significant PAH-VA interaction effect on hepatic BaP, but not Phe, accumulation, with reduced hepatic BaP concentrations in fish fed VA+PAH compared to fish fed PAH alone. Concurrently, PAH and VA significantly interacted in their effects on CYP1A phase I biotransformation as observed from increased ethoxyresorufin-O-deethylase (EROD) activity, increased CYP1A protein concentration, and elevated transcription (cyp1a1 gene expression) in fish fed PAH+VA compared to PAH alone. Dietary VA supplementation alone had no significant effect on CYP1A phase I biotransformation. Metabolomic assessment showed that dietary VA caused a restoration of metabolic intermediates involved in energy metabolism that were affected by dietary PAH. Moreover, a PAH-induced growth inhibition was partially ameliorated by dietary VA supplementation. In conclusion, dietary VA interacted with PAH toxicity on the level of CYP1A-mediated detoxification, hepatic PAH accumulation, energy allocation, and growth.

  5. Rapid quantification of polycyclic aromatic hydrocarbons in hydroxypropyl-β-cyclodextrin (HPCD) soil extracts by synchronous fluorescence spectroscopy (SFS)

    International Nuclear Information System (INIS)

    Synchronous fluorescence spectroscopy (SFS) was directly applied to rapidly quantify selected polycyclic aromatic hydrocarbons (PAHs: benzo[a]pyrene and pyrene) in aqueous hydroxypropyl-β-cyclodextrin (HPCD) soil extract solutions from a variety of aged contaminated soils containing four different PAHs. The method was optimized and validated. The results show that SFS can be used to analyse benzo[a]pyrene and pyrene in HPCD based soil extracts with high sensitivity and selectivity. The linear calibration ranges were 4.0 x 10-6-1.0 x 10-3 mM for benzo[a]pyrene and 6.0 x 10-6-1.2 x 10-3 mM for pyrene in 10 mM HPCD aqueous solution alone. The detection limits according to the error propagation theory for benzo[a]pyrene and pyrene were 3.9 x 10-6 and 5.4 x 10-6 mM, respectively. A good agreement between SFS and HPLC was reached for both determinations of PAHs in HPCD alone and in soil HPCD extracts. Hence, SFS is a potential means to simplify the present non-exhaustive hydroxypropyl-β-cyclodextrin (HPCD)-based extraction technique for the evaluation of PAH bioavailability in soil. - SFS can be used to rapidly quantify selected PAHs in soil extracts and to simplify the non-exhaustive HPCD-based extraction technique for the evaluation of PAH bioavailability

  6. Polycyclic aromatic hydrocarbons at selected burning grounds at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B.W.; Minor, L.K.M.; Flucas, B.J.

    1998-02-01

    A commercial immunoassay field test (IFT) was used to rapidly assess the total concentrations of polycyclic aromatic hydrocarbons (PAHs) in the soil at selected burning grounds within the explosives corridor at Los Alamos National Laboratory (LANL). Results were compared with analyses obtained from LANL Analytical Laboratory and from a commercial laboratory. Both used the Environmental Protection Agency`s (EPA`s) Methods 8270 and 8310. EPA`s Method 8270 employs gas chromatography and mass spectral analyses, whereas EPA`s Method 8310 uses an ultraviolet detector in a high-performance liquid chromatography procedure. One crude oil sample and one diesel fuel sample, analyzed by EPA Method 8270, were included for references. On an average the IFT results were lower for standard samples and lower than the analytical laboratory results for the unknown samples. Sites were selected to determine whether the PAHs came from the material burned or the fuel used to ignite the burn, or whether they are produced by a high-temperature chemical reaction during the burn. Even though the crude oil and diesel fuel samples did contain measurable quantities of PAHs, there were no significant concentrations of PAHs detected in the ashes and soil at the burning grounds. Tests were made on fresh soil and ashes collected after a large burn and on aged soil and ashes known to have been at the site more than three years. Also analyzed were twelve-year-old samples from an inactive open burn cage.

  7. Part 2: Potencies and interactions of polybrominated aromatic hydrocarbons in rainbow trout early life stage mortality

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, M.W.; Zabel, E.W.; Peterson, R.E. [Univ. of Wisconsin, Madison, WI (United States); Bergman, A. [Stockholm Univ. (Sweden); Safe, S. [Texas A and M Univ., College Station, TX (United States)

    1994-12-31

    Polybrominated biphenyls (PBBs), dibenzo-p-dioxins (PBDDs), dibenzofurans (PBDFs), and diphenylethers (PBDPES) in aquatic environments may pose a risk to fish early life stage survival. Following rainbow trout egg microinjection, the potencies of these polybrominated aromatic hydrocarbons were determined using fish specific toxic equivalency factors (TEFs). TEFs are defined as the ratio of TCDD LD{sub 50} to brominated congener LD{sub 50}. Sac fry stage specific TCDD like toxicity included yolk sac edema, pericardial edema, multifocal hemorrhages and craniofacial malformations. TEFs of active congeners were: 2,3,7,8-TBDF = 0.23; 2,3,4,7,8-PBDF = 0.069; 1,2,3,4,7,8-HxBDD = 0.009. No signs of toxicity with 2,2{prime},4,4{prime}-TBDPE, 2,2{prime},3,4,4{prime}-PBDPE, or 2,2{prime},4,4{prime},5-PBDPE occurred at egg concentrations up to 126,37 {mu}g/g. Since these congeners occur as complex mixtures, the potential for additive, antagonistic, or synergistic interactions must also be determined for accurate risk assessment. Graded doses of 2,3,7,8-TBDD or 1,2,3,7,8-PBDD alone, or graded doses of fixed ratios of the two congeners were injected into newly fertilized rainbow trout eggs. Separate dose response curves were determined for each ratio and each individual congener. Isobolographic analysis supports the hypothesis that these congeners act additively.

  8. Polycyclic aromatic hydrocarbons (PAHs in traditional smoked dairy products from Campania (Italy

    Directory of Open Access Journals (Sweden)

    Teresa Cirillo

    2004-06-01

    Full Text Available The smoked mozzarella and caciocavallo cheeses occupy a significant area among the traditional products in the Campania region. Smoked and non-smoked mozzarella and caciocavallo cheeses were screened for the presence of polycyclic aromatic hydrocarbons (PAHs. Total PAH concentration in non-smoked mozzarella ranged from 59.11 to 160.05 ìg kg-1 wet weight (w.w. and in that smoked from 67.49 to 399.90 ìg kg-1 w.w.
    The total PAH content in non-smoked caciocavallo was between 36.70 and 248.59 ìg kg-1 w.w.; in the smoked cheese, it varied from 72.52 to 1643.18 ìg kg-1 w.w. The benzo(apyrene (BaP values in all cheeses smoked by liquid smoke were higher than the permissible limit for BaP of 0.03 ìg kg-1 for foods aromatised with liquid smoke.

  9. Modeling the changes in the concentration of aromatic hydrocarbons from an oil-coated gravel column

    Science.gov (United States)

    Jung, Jee-Hyun; Kang, Hyun-Joong; Kim, Moonkoo; Yim, Un Hyuk; An, Joon Geon; Shim, Won Joon; Kwon, Jung-Hwan

    2015-12-01

    The performance of a lab-scale flow-through exposure system designed for the evaluation of ecotoxicity due to oil spills was evaluated. The system simulates a spill event using an oil-coated gravel column through which filtered seawater is passed and flows into an aquarium containing fish embryos of olive flounder ( Paralichthys olivaceus) and spotted sea bass ( Lateolabrax maculates). The dissolved concentrations of individual polycyclic aromatic hydrocarbons (PAHs) in the column effluent were monitored and compared with theoretical solubilities predicted by Raoult's law. The effluent concentrations after 24 and 48 h were close to the theoretical predictions for the higher molecular weight PAHs, whereas the measured values for the lower molecular weight PAHs were lower than predicted. The ratios of the concentration of PAHs in flounder embryos to that in seawater were close to the lipid-water partition coefficients for the less hydrophobic PAHs, showing that equilibrium was attained between embryos and water. On the other hand, 48 h were insufficient to attain phase equilibrium for the more hydrophobic PAHs, indicating that the concentration in fish embryos may be lower than expected by equilibrium assumption. The results indicate that the equilibrium approach may be suitable for less hydrophobic PAHs, whereas it might overestimate the effects of more hydrophobic PAHs after oil spills because phase equilibrium in an oil-seawater-biota system is unlikely to be achieved. The ecotoxicological endpoints that were affected within a few days are likely to be influenced mainly by moderately hydrophobic components such as 3-ring PAHs.

  10. Evaluation of ginkgo as a biomonitor of airborne polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Murakami, Michio; Abe, Maho; Kakumoto, Yoriko; Kawano, Hiromi; Fukasawa, Hiroko; Saha, Mahua; Takada, Hideshige

    2012-07-01

    The utility of ginkgo leaves as biomonitors of airborne polycyclic aromatic hydrocarbons (PAHs) was evaluated. We investigated PAH concentrations among tree species, the effect of variations in leaf position in a tree, tissue distributions, correlations between ginkgo leaves and air, and seasonal variations. Among the five species examined (Ginkgo biloba L., Zelkova serrata Makino, Liriodendron tulipifera L., Prunus yedoensis Matsum, and Magnolia kobus DC.), ginkgo accumulated the greatest amount of PAHs from roadside air. Most PAHs (˜80%) were accumulated in the wax fraction, and most of the remainder (17%) penetrated the inner tissues of the leaves. PAH concentrations in ginkgo leaves decreased with increasing height and distance from the road, reflecting the derivation of PAHs from vehicle emissions. Seasonal time-series sampling showed that PAH concentrations in ginkgo leaves increased with time, attributable to the effects of temperature and accumulation through long-term exposure. Concentrations in ginkgo leaves collected from various roads showed a strong and significant correlation with those in air collected by a high-volume air sampler (r2 = 0.68, P Ginkgo leaf data clearly showed a dramatic decrease in the ratio of low-molecular-weight (LMW) PAHs to high-molecular-weight PAHs from 2001 or 2002 to 2006, indicating that on-road diesel emission regulations effectively reduced LMW PAH concentrations in air.

  11. Polycyclic aromatic hydrocarbons in surface sediments of the Zhelin Bay in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    DONG Qiaoxiang; HUANG Hong; HUANG Changjiang

    2007-01-01

    This study examined the concentrations of polycyclic aromatic hydrocarbons (PAHs) in surface sediments collected in July 2004 from eight stations in the Zhelin Bay, one of the most important bays for large-scale mariculture in Guangdong Province. Thirteen individual parent PAH compounds were identified using high performance liquid chromatography with UV detection. The overall average concentration of total PAHs was 477.0 ng/g, ranging from 146.1 to 928.8 ng/g. Low molecular mass PAHs with two to three rings (e.g., acenaphthene) were dominant in each sample. The PAH concentration varied among sampling stations, with the highest concentration observed at bay outlets and the lowest found at stations outside the bay. Ratios of low to high molecular mass PAHs and fluoranthene to pyrene were used to determine the origin of PAHs, and results indicated mainly petroleum-derived contamination. Compared with other bays and harbors around the world, the total concentrations of PAHs in surface sediments at the Zhelin Bay are moderate, but this does not exclude the possibility of potential impact on human consumers because some strong carcinogenic PAHs with high molecular mass were found at the station with a nearby caged-fish and oyster farm. Long-term monitoring of PAH contamination in the Zhelin Bay is recommended to reduce the potential toxicological effects on aquatic: organisms and humans.

  12. The Luminous Polycyclic Aromatic Hydrocarbon Emission Features: Applications to High Redshift Galaxies and Active Galactic Nuclei

    Science.gov (United States)

    Shipley, Heath V.

    2016-01-01

    For decades, significant work has been applied to calibrating emission from the ultra-violet, nebular emission lines, far-infrared, X-ray and radio as tracers of the star-formation rate (SFR) in distant galaxies. Understanding the exact rate of star-formation and how it evolves with time and galaxy mass has deep implications for how galaxies form. The co-evolution of star-formation and supermassive black hole (SMBH) accretion is one of the key problems in galaxy formation theory. But, many of these SFR indicators are influenced by SMBH accretion in galaxies and result in unreliable SFRs. Utilizing the luminous polycyclic aromatic hydrocarbon (PAH) emission features, I provide a new robust SFR calibration using the luminosity emitted from the PAHs at 6.2μm, 7.7μm and 11.3μm to solve this. The PAH features emit strongly in the mid-infrared (mid-IR; 5-25μm) mitigating dust extinction, containing on average 5-10% of the total IR luminosity in galaxies. I use a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 blackhole accretion contemporaneously in a galaxy.

  13. Biodegradation of polycyclic aromatic hydrocarbons in sediments from the Daliao River watershed, China

    Institute of Scientific and Technical Information of China (English)

    QUAN Xiangchun; TANG Qian; HE Mengchang; YANG Zhifeng; LIN Chunye; GUO Wei

    2009-01-01

    The Daliao River, as an important water system in Northeast China, was reported to be heavily polluted by polycyclic aromatic hydrocarbons (PAHs). Aerobic biodegradations of four selected PAHs (naphthalene, phenanthrene, fluorene and anthracene) alone or in their mixture in fiver sediments from the Daliao River water systems were studied in microcosm systems. Effects of additional carbon source, inorganic nitrogen and phosphorus, temperature variation on PAHs degradation were also investigated. Results showed that the degradation of phenanthrene in water alone system was faster than that in water-sediment combined system. Degradation of phenanthrene in sediment was enhanced by adding yeast extract and ammonium, but retarded by adding sodium acetate and not significantly influenced by adding phosphate. Although PAHs could also be biodegraded in sediment under low temperature (5℃), much lower degradation rate was observed. Sediments from the three main streams of the Daliao River water system (the Hun River, the Taizi River and the Daliao River) demonstrated different degradation capacities and patterns to four PAHs. Average removal rates (15 or 19 d) of naphthalene, phenanthrene, fluorene and anthracene by sediment were in the range of 0.062-0.087, 0.005-0.066, 0.008-one. In multiple PAHs systems, the interactions between PAHs influenced each PAH biodegradation.

  14. Polycyclic Aromatic Hydrocarbon Residues in Serum Samples of Autopsied Individuals from Tennessee

    Directory of Open Access Journals (Sweden)

    Aramandla Ramesh

    2014-12-01

    Full Text Available This study reports the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs in human blood sera samples (n = 650 obtained at autopsy from individuals who died of drug abuse, alcohol toxicity, homicide, suicide and other unknown causes. The analyzed samples from decedents revealed the presence of PAHs of which B(aP was the most predominant one, followed by benzo(bfluoranthene and benzo(kfluoranthene. The other PAHs detected sporadically and measured were benzo(g,h,iperylene, acenaphthene, anthracene, phenanthrene, and fluoranthene The mean concentrations of PAHs were greater in the twenties to fifties age groups compared to others. The PAH residue levels detected were high in African Americans compared to Caucasians, Asians, and Hispanics. It appears that environmental exposure, dietary intake and in some cases occupational exposure may have contributed to the PAH body burden. While the PAH residue concentrations measured fall within the range of those reported for healthy adults elsewhere, in isolated cases, the concentrations detected were high, calling the need for a reduction in PAH emissions and human biomonitoring studies for purposes of risk assessment.

  15. The Role of Polycyclic Aromatic Hydrocarbons in Ultraviolet Extinction. I. Probing small molecular PAHs

    CERN Document Server

    Clayton, G C; Witt, A N; Allamandola, L J; Martin, P G; Salama, F; Snow, T P; Whittet, D C B; Wolff, M J; Smith, T L; Clayton, Geoffrey C.; Gordon, Karl D.; Witt, Adolf N.; Martin, Peter G.; Wolff, Michael J.; Smith, Tracy L.

    2003-01-01

    We have obtained new STIS/HST spectra to search for structure in the ultraviolet interstellar extinction curve, with particular emphasis on a search for absorption features produced by polycyclic aromatic hydrocarbons (PAHs). The presence of these molecules in the interstellar medium has been postulated to explain the infrared emission features seen in the 3-13 $\\mu$m spectra of numerous sources. UV spectra are uniquely capable of identifying specific PAH molecules. We obtained high S/N UV spectra of stars which are significantly more reddened than those observed in previous studies. These data put limits on the role of small (30-50 carbon atoms) PAHs in UV extinction and call for further observations to probe the role of larger PAHs. PAHs are of importance because of their ubiquity and high abundance inferred from the infrared data and also because they may link the molecular and dust phases of the interstellar medium. A presence or absence of ultraviolet absorption bands due to PAHs could be a definitive te...

  16. High-resolution record of pyrogenic polycyclic aromatic hydrocarbon deposition during the 20th century.

    Science.gov (United States)

    Lima, Ana Lúcia C; Eglinton, Timothy I; Reddy, Christopher M

    2003-01-01

    A high-resolution record of polycyclic aromatic hydrocarbon (PAH) deposition in Rhode Island over the past approximately 180 years was constructed using a sediment core from the anoxic Pettaquamscutt River basin. The record showed significantly more structure than has hitherto been reported and revealed four distinct maxima in PAH flux. The characteristic increase in PAH flux at the turn of the 20th century was captured in detail, leading to an initial maximum prior to the Great Depression. The overall peak in PAH flux in the 1950s was followed by a maximum that immediately preceded the 1973 Organization of Petroleum Exporting Countries (OPEC) oil embargo. During the most recent portion of the record, an abrupt increase in PAH flux between 1996 and 1999 has been found to follow a period of near constant fluxes. Because source-diagnostic ratios indicate that petrogenic inputs are minor throughout the record, these trends are interpreted in terms of past variations in the magnitude and type of combustion processes. For the most recent PAH maximum, energy consumption data suggest that diesel fuel combustion, and hence traffic of heavier vehicles, is the most probable cause for the increase in PAH flux. Systematic variations in the relative abundance of individual PAHs in conjunction with the above changes in flux are interpreted in relation to the evolution of combustion processes. Coronene, retene, and perylene are notable exceptions, exhibiting unique down-core profiles. PMID:12542290

  17. Polystyrene plastic: a source and sink for polycyclic aromatic hydrocarbons in the marine environment

    Science.gov (United States)

    Rochman, Chelsea M.; Manzano, Carlos; Hentschel, Brian T.; Massey Simonich, Staci L.; Hoh, Eunha

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) on virgin polystyrene (PS) and PS marine debris led us to examine PS as a source and sink for PAHs in the marine environment. At two locations in San Diego Bay, we measured sorption of PAHs to PS pellets, sampling at 0, 1, 3, 6, 9 and 12 months. We detected 25 PAHs using a new analytical method with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Several congeners were detected on samples before deployment. After deployment, some concentrations decreased (1,3-dimethylnaphthalene and 2,6-methylnaphthalene) while most increased (2-methylanthracene and all parent PAHs (PPAHs) except fluorene and fluoranthene), suggesting PS debris is a source and sink for PAHs. When comparing sorbed concentrations of PPAHs on PS to the five most common polymers (polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP)), PS sorbed greater concentrations than PP, PET and PVC, similar to HDPE and LDPE. Most strikingly, at 0 months, PPAHs on PS ranged from 8-200 times greater than on PET, HDPE, PVC, LDPE, and PP. The combination of greater PAHs in virgin pellets and large sorption suggests that PS may pose a greater risk of exposure to PAHs upon ingestion. PMID:24341360

  18. Emission of polycyclic aromatic hydrocarbons and lead during Chinese mid-autumn festival.

    Science.gov (United States)

    Kuo, Chung-Yih; Lee, Hong-Shen; Lai, Jeang-Hung

    2006-07-31

    The emission factors of total particulate polycyclic aromatic hydrocarbons (PAHs), Benzo(a)pyrene (BaP), BaP-equivalent doses (BaP(eq)) and Pb for burning three kinds of charcoal were investigated in this study: fast-lighting charcoal, Taiwanese, and Indonesian charcoal (the latter two of which are not fast-lighting). Compared to the burning of Taiwanese and Indonesian charcoal, the burning of fast-lighting charcoal can emit much larger amounts of total PAHs, BaP(eq) and Pb into the atmosphere. The emission factors of total PAHs, BaP and BaP(eq) for broiling meat were noticeably higher than those for broiling vegetables and non-fish seafood. When using Indonesian charcoal to broil meat, the total emission factors of particulate PAHs and BaP were about 15.7 and 0.39 mg/kg, respectively. The total amounts of particulate PAHs and Pb emitted from cookouts during Mid-Autumn Festival were 2881 and 120 g, respectively. Total PAHs and BaP(eq) in PM(10) aerosols on Mid-Autumn Festival nights increased about 1.6 and 1.5 times, respectively, higher than those on non-festival nights. The mean concentration of Pb on the nights of Mid-Autumn Festival increases to about 2.8 times that of non-festival nights.

  19. Investigating unmetabolized polycyclic aromatic hydrocarbons in adolescents' urine as biomarkers of environmental exposure.

    Science.gov (United States)

    De Craemer, Sam; Croes, Kim; van Larebeke, Nicolas; Sioen, Isabelle; Schoeters, Greet; Loots, Ilse; Nawrot, Tim; Nelen, Vera; Campo, Laura; Fustinoni, Silvia; Baeyens, Willy

    2016-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are of interest to human biomonitoring studies due to their carcinogenic potential. Traditionally metabolites of these compounds, like 1-hydroxypyrene, are monitored in urine, but recent methods allow the determination of the parent compounds in urine, which give additional information regarding sources and toxicity of PAHs. In order to assess the feasibility of incorporating these methods in a human biomonitoring study, the 16 USEPA parent PAHs were determined in 20 urine samples. These samples were obtained from 10 boys and 10 girls aged 14-16 years, participating in the third Flemish Environment and Health Study (Flanders, Belgium). Of these 16 parent PAHs, nine could be determined in more than 95% of the samples and three (including benzo(a)pyrene) in more than 50%. Several correlations were found between different PAHs, but not between pyrene and its metabolite 1-hydroxypyrene. Diagnostic PAH ratios in urine and air samples pointed towards combustion sources and are in line with the ratios in environmental samples. Benzo(a)pyrene, naphthalene and fluorene have the highest carcinogenic potential in our cohort, when using toxic equivalency factors. Some associations between PAH congeners and determinants of exposure were found, while fluorene and acenaphthylene were positively associated with thyroid hormone levels and benzo(a)pyrene showed a positive correlation with DNA damage by comet assay. These results confirm that parent PAHs in urine are useful as biomarkers of exposure in biomonitoring studies. PMID:27105152

  20. Recent Advances in Laboratory Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons: PAHs in the Far Infrared

    Science.gov (United States)

    Mattioda, Andrew L.; Ricca, Alessandra; Tucker, Jonathan; Boersma, Christiaan; Bauschlicher, Charles, Jr.; Allamandola, Louis J.

    2010-01-01

    Over 25 years of observations and laboratory work have shown that the mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 microns, which originate in free polycyclic aromatic hydrocarbon (PAH) molecules. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (FIR) and emission from these FIR features should be present in astronomical sources showing the Mid-IR PAH bands. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview recent advances in the laboratory spectroscopy of PAHs, Highlighting the FIR spectroscopy along with some quantum calculations.

  1. Polycyclic aromatic hydrocarbons in urban green spaces of Beijing: concentration, spatial distribution and risk assessment.

    Science.gov (United States)

    Zhang, Juan; Wu, Jianzhi; Liu, Yan

    2016-09-01

    A comprehensive investigation of the levels, spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in urban green space soils of Beijing, China, was conducted, and the potential human health risks associated with the levels observed were addressed. The objective of this study was to determine concentration, spatial distribution, and health risk of 15 PAHs in 121 surface soil (0-5 cm) samples collected from four types of green space, such as park green space (PGS), roadside green space (RDS), residential green space (RGS), and attached green space (AGS). Results showed that the highest concentrations of 15 PAHs was in soils of RDS, followed by RGS, PGS, and AGS. The level of PAHs pollution was seriously and mainly distributed in the central and southwest of the city. Incremental lifetime cancer risks (ILCRs) associated with exposures to PAHs in soil was calculated separately for children and adults under normal and extreme conditions. The results showed that ILCRs for urban green space soil of Beijing were low under normal conditions. But individual samples are seriously polluted, and its potential health risks cannot be ignored. PMID:27502522

  2. Recalcitrance of polycyclic aromatic hydrocarbons in soil contributes to background pollution

    Energy Technology Data Exchange (ETDEWEB)

    Posada-Baquero, Rosa [Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS), C.S.I.C., Apartado 1052, E-41080 Seville (Spain); Ortega-Calvo, Jose-Julio, E-mail: jjortega@irnase.csic.es [Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS), C.S.I.C., Apartado 1052, E-41080 Seville (Spain)

    2011-12-15

    The microbial accessibility of native phenanthrene and pyrene was determined in soils representing background scenarios for pollution by polycyclic aromatic hydrocarbons (PAHs). The soils were selected to cover a wide range of concentrations of organic matter (1.7-10.0%) and total PAHs (85-952 {mu}g/kg). The experiments included radiorespirometry determinations of biodegradation with {sup 14}C-labeled phenanthrene and pyrene and chemical analyses to determine the residual concentrations of the native compounds. Part of the tests relied on the spontaneous biodegradation of the chemicals by native microorganisms; another part also involved inoculation with PAH-degrading bacteria. The results showed the recalcitrance of PAHs already present in the soils. Even after extensive mineralization of the added {sup 14}C-PAHs, the concentrations of native phenanthrene and pyrene did not significantly decrease. We suggest that aging processes operating at background concentrations may contribute to recalcitrance and, therefore, to ubiquitous pollution by PAHs in soils. - Highlights: > Background PAHs in soils are highly resistant to biodegradation. > Recalcitrance occurs even after inoculation with specialized microorganisms. > Recalcitrance is caused by a low bioaccessibility and aging. > Time (aging) seems a relevant factor causing recalcitrance. > Recalcitrance can explain ubiquitous PAH background pollution. - Background soil PAHs are highly resistant to biodegradation.

  3. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Viglianti, Christophe [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, 9, rue de la Physique - 69621 Villeurbanne Cedex (France); Centre Sciences, Information et Technologies pour l' Environnement (SITE) - ENS de Mines de Saint Etienne, 158 cours Fauriel - 42023 Saint Etienne Cedex 2 (France); Hanna, Khalil [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, 9, rue de la Physique - 69621 Villeurbanne Cedex (France)]. E-mail: khalilhanna@hotmail.com; Brauer, Christine de [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, 9, rue de la Physique - 69621 Villeurbanne Cedex (France); Germain, Patrick [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, 9, rue de la Physique - 69621 Villeurbanne Cedex (France)

    2006-04-15

    The removal of polycyclic aromatic hydrocarbons (PAHs) from soil using water as flushing agent is relatively ineffective due to their low aqueous solubility. However, addition of cyclodextrin (CD) in washing solutions has been shown to increase the removal efficiency several times. Herein are investigated the effectiveness of cyclodextrin to remove PAH occurring in industrially aged-contaminated soil. {beta}-Cyclodextrin (BCD), hydroxypropyl-{beta}-cyclodextrin (HPCD) and methyl-{beta}-cyclodextrin (MCD) solutions were used for soil flushing in column test to evaluate some influent parameters that can significantly increase the removal efficiency. The process parameters chosen were CD concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant and almost linear effect on PAH removal from the contaminated soil, except the temperature where no significant enhancement in PAH extraction was observed for temperature range from 5 to 35 {sup o}C. The PAHs extraction enhancement factor compared to water was about 200. - An innovative method using a biodegradable and non-toxic flushing agent for the depollution of industrially aged-contaminated soil.

  4. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Christophe Viglianti; Khalil Hanna; Christine de Brauer; Patrick Germain [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, Villeurbanne (France)

    2006-04-15

    The removal of polycyclic aromatic hydrocarbons (PAHs) from soil using water as flushing agent is relatively ineffective due to their low aqueous solubility. However, addition of cyclodextrin (CD) in washing solutions has been shown to increase the removal efficiency several times. Herein are investigated the effectiveness of cyclodextrin to remove PAH occurring in industrially aged-contaminated soil. {beta}-Cyclodextrin (BCD), hydroxypropyl-{beta}-cyclodextrin (HPCD) and methyl-{beta}-cyclodextrin (MCD) solutions were used for soil flushing in column test to evaluate some influent parameters that can significantly increase the removal efficiency. The process parameters chosen were CD concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant and almost linear effect on PAH removal from the contaminated soil, except the temperature where no significant enhancement in PAH extraction was observed for temperature range from 5 to 35{sup o}C. The PAHs extraction enhancement factor compared to water was about 200.

  5. Source identification of Malaysian atmosphere polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Tomoaki; Takada, Hideshige [Tokyo Univ. of Agriculture and Technology (Japan). Faculty of Agriculture; Kumata, Hidetoshi [Tokyo Univ. of Pharmacy and Life Sciences (Japan); Zakaria, M.P. [Universiti Putra Malaysia, Selangor (Malaysia). Dept. of Environmental Sciences; Naraoka, Hiroshi; Ishiwatari, Ryoshi [Tokyo Metropolitan Univ., Hachioji (Japan). Graduate School of Science

    2002-07-01

    We report measurements of molecular and carbon isotopic compositions of Malaysian atmospheric polycyclic aromatic hydrocarbons (PAHs) in smoke haze from the 1997 Indonesian forest fire. Comparison of the carbon isotopic compositions ({sup {delta}}1{sup 3C}) of individual PAHs from the smoke haze, with those from other PAHs sources (soot collected from gasoline and diesel vehicle muffler, woodburning smoke), enables us to discriminate among the diverse sources of atmospheric PAHs. Soot PAHs extracted from gasoline and diesel vehicles show heavy isotopic signatures with a large inter-species {sup {delta}}1{sup 3C} variation from {sup -}12.9 per mille to {sup -}26.6 per mille, compared to soot PAHs extracted from woodburning smoke which are isotopically light, and have a small inter-species {sup {delta}}{sup 13}C variation from {sup -}26.8 per mille to -31.6 per mille. Values from -17.7 per mille to -27.9 per mille were obtained for the corresponding PAHs extracted from the smoke haze, indicating that they are derived mainly from automotive exhaust. Molecular and isotopic compositions of PAHs extracted from smoke haze were similar to those extracted from non-haze aerosol. Quantitative estimation shows that woodburning contribution to Malaysian atmospheric PAHs ranges from 25% to 35% with no relation to haze intensity, while automotive contribution ranges from 65% to 75%. These results suggest that the major contributor of PAHs in Malaysian air is automotive exhaust whether smoke haze is observed or not. (Author)

  6. Polycyclic aromatic hydrocarbon in rain and street runoff in Amman, Jordan

    Institute of Scientific and Technical Information of China (English)

    Anwar. G. Jiries; Helmi. H. Hussein; Jutta Lintelmann

    2003-01-01

    Concentrations of polycyclic aromatic hydrocarbons(PAHs) were determined in the rain and street runoff samples from two sites in the vicinity of Amman City during the pluvial period 1999-2000. The results showed that elevated levels of PAHs were detected in the city center(site 1 ) than the residential area(site 2) and that the levels were higher in street runoff than rain samples of the same sites.The highest concentration of PAHs in both street runoff and rain samples were observed in the first rainy month( November 1999) which indicated a wash out effect of PAHs originating from vehicular emission accumulated during the long dry summer season before sampling. Within the investigated cold winter seasons, fluctuations in PAHs concentration were observed. The variation was attributed to the fossil combustion for heating purposes and to intervals between rainfalls: as the longer the intervals between rains were, the higher the PAH concentration were.Removal of PAHs from the atmosphere through precipitation over the investigated period varied with time and places depending on the amount of rainfall where higher rainfall removed higher amount of PAHs from the atmosphere. The amount of PAHs washed out through precipitation was estimated to be around 14.8 mg/m2 and 21.1 mg/m2 for sites 1 and 2 respectively.

  7. [Distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in urban rainfall runoff].

    Science.gov (United States)

    Wu, Zi-Lan; Yang, Yi; Liu, Min; Lu, Min; Yu, Ying-Peng; Wang, Qing; Zheng, Xin

    2014-11-01

    Runoff samples were collected from traffic roads, campus, residential road and roof in a typical rain event. Polycyclic aromatic hydrocarbons (PAHs) in both dissolved and particle phases were investigated at impervious surfaces. The PAHs wash-off process at different monitoring sites was analyzed. The scatters of first flush were conducted in a method of fitting power function to quantitatively assess the magnitude of first flush effect (FFE). The sources of PAHs were identified using factor analysis. The results showed that PAHs concentrations in runoff samples varied from 317.21 ng x L(-1) to 10364.3 ng x L(-1) with the maximal and minimal contents of PAHs found on Longwu Road and campus, respectively. The values of event mean concentration ( EMC) varied considerably at different sampling sites. The concentration of washed-off pollutant generally decreased with runoff duration, which showed an obvious attenuation trend. The runoff process indicated the occurrence of FFE at different levels. PAHs mainly came from the incomplete combustion of fossil fuels, oil leakage and coking, and the contribution of each source was different in accordance with various surfaces.

  8. Polycyclic aromatic hydrocarbon ionization as a tracer of gas flows through protoplanetary disk gaps

    CERN Document Server

    Maaskant, K M; Waters, L B F M; Tielens, A G G M

    2014-01-01

    Planet-forming disks of gas and dust around young stars contain polycyclic aromatic hydrocarbons (PAHs). We aim to characterize how the charge state of PAHs can be used as a probe of flows of gas through protoplanetary gaps. In this context, our goal is to understand the PAH spectra of four transitional disks. In addition, we want to explain the observed correlation between PAH ionization (traced by the 6.2/11.3 feature ratio) and the disk mass (traced by the 1.3 mm luminosity). We implement a model to calculate the charge state of PAHs in the radiative transfer code MCMax. The emission spectra and ionization balance are calculated. A benchmark modeling grid is presented that shows how PAH ionization and luminosity behave as a function of star and disk properties. The PAH ionization is most sensitive to ultraviolet (UV) radiation and the electron density. In optically thick disks, where the UV field is low and the electron density is high, PAHs are predominantly neutral. Ionized PAHs trace low-density optical...

  9. Epitaxial composite layers of electron donors and acceptors from very large polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Samorí, Paolo; Severin, Nikolai; Simpson, Christopher D; Müllen, Klaus; Rabe, Jürgen P

    2002-08-14

    Large polycyclic aromatic hydrocarbons (PAHs) can be considered as nanographenes, whose electron donating or accepting properties are controlled by their size and shape as well as functionalities in their periphery. Epitaxial thin films of them are targets for optoelectronic applications; however, large PAHs are increasingly difficult to process. Here we show that epitaxial layers of very large unsubstituted PAHs (C(42)H(18) and C(132)H(34)), as well as a mixed layer of C(42)H(18) with an electron acceptor, can be obtained by self-assembly from solution. The C(132)H(34) is by far the largest nanographene that up to now has been processed into ordered thin films; due to its size it cannot be sublimed in a vacuum. Scanning tunneling microscopy (STM) studies reveal that the interaction with the substrate induces a strong perturbation of the electronic structure of the pure donor in the first epitaxial monolayer. In a second epitaxial layer with a donor acceptor stoichiometry of 2:1 the molecules are unperturbed.

  10. Soil pollution by polycyclic aromatic hydrocarbons: A comparison of two Chinese cities

    Institute of Scientific and Technical Information of China (English)

    Jin Ma; Yongzhang Zhou

    2011-01-01

    Soil samples from Huizhou and Zhanjiang,China were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) with harmonized sampling,sample extraction and analysis quantification methods.The concentrations and sources of PAHs in soil samples of the two cities were compared.Almost all of the PAH components were detectable in 103 soil samples.The concentrations of ΣPAHs ranged from 35.40 to 534.5 μg/kg in soil samples from Huizhou,and ranged from 9.50 to 6618.00 μg/kg in samples from Zhanjiang.Evident differences of concentrations,compositions and sources of PAHs in soils were observed between the two cities.The average concentrations of individual component and the sum of a group of PAHs in soil samples from Zhanjiang were significantly higher than those in Huizhou (P < 0.05).Phe,Flu,Pyr,Bbf and Ban were the dominant PAH components both in soil samples from Huizhou and Zhanjiang.Except for these five components,Bap,Ilp,Daa and Bgp were also the dominant PAH components in soil samples from Zhanjiang.Coal combustion and liquid fossil fuel combustion were the same sources of PAHs in the two cities with different contributions,and petroleum played a key role in PAHs release in Zhanjiang.

  11. Soil pollution by polycyclic aromatic hydrocarbons: a comparison of two Chinese cities.

    Science.gov (United States)

    Ma, Jin; Zhou, Yongzhang

    2011-01-01

    Soil samples from Huizhou and Zhanjiang, China were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) with harmonized sampling, sample extraction and analysis quantification methods. The concentrations and sources of PAHs in soil samples of the two cities were compared. Almost all of the PAH components were detectable in 103 soil samples. The concentrations of sigmaPAHs ranged from 35.40 to 534.5 microg/kg in soil samples from Huizhou, and ranged from 9.50 to 6618.00 microg/kg in samples from Zhanjiang. Evident differences of concentrations, compositions and sources of PAHs in soils were observed between the two cities. The average concentrations of individual component and the sum of a group of PAHs in soil samples from Zhanjiang were significantly higher than those in Huizhou (P PAH components both in soil samples from Huizhou and Zhanjiang. Except for these five components, Bap, I1p, Daa and Bgp were also the dominant PAH components in soil samples from Zhanjiang. Coal combustion and liquid fossil fuel combustion were the same sources of PAHs in the two cities with different contributions, and petroleum played a key role in PAHs release in Zhanjiang. PMID:22432289

  12. Factors affecting spatial variation of polycyclic aromatic hydrocarbons in surface soils in North China Plain.

    Science.gov (United States)

    Wang, Xilong; Zuo, Qian; Duan, Yonghong; Liu, Wenxin; Cao, Jun; Tao, Shu

    2012-10-01

    The spatial variation in concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in surface soils in the North China Plain and the influential factors were examined in the present study. High concentrations of the sum of 16 PAHs (∑PAH(16) ) appeared in cities and their surrounding areas. Emissions and soil organic carbon (SOC) content significantly regulated spatial differentiation of PAH contamination in soils in the study area. Compared with emissions, concentrations of individual and total PAHs in soils were more closely controlled by the SOC content. Furthermore, concentrations of PAH species with lower molecular weight (e.g., two- or three-ring) in surface soils were more strongly correlated with the SOC content in comparison with those of higher molecular weight (e.g., five- or six-ring), mainly because of their higher saturated vapor pressure, thus higher mobility. The spatial variation of PAH species in soils in the North China Plain tended to be larger with increasing benzene ring numbers, and the difference in physicochemical properties of PAH species determined their distinct spatial distribution characteristics. The present study highlights the relative importance of emissions and SOC content in spatial variation of PAHs and the dependence of the spatial distribution characteristics of PAH species in surface soils on their physicochemical properties at a regional scale. Results of the present work are helpful for regional risk assessment of the contaminants tested. PMID:22847656

  13. Polycyclic aromatic hydrocarbons in urban air : concentration levels and patterns and source analysis in Nairobi, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Muthini, M.; Yoshimichi, H.; Yutaka, K.; Shigeki, M. [Yokohama National Univ., Yokohama (Japan). Graduate School of Environment and Information Sciences

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) present in the environment are often the result of incomplete combustion processes. This paper reported concentration levels and patterns of high molecular weight PAHs in Nairobi, Kenya. Daily air samples for 30 different PAHs were collected at residential, industrial and business sites within the city. Samples were then extracted using deuterated PAH with an automated Soxhlet device. Gas chromatography and mass spectrometry (GC-MS) with a capillary column was used to analyze the extracts using a selected ion monitoring (SIM) mode. Statistical analyses were then performed. PAH concentration levels were reported for average, median, standard deviation, range, and Pearson's correlation coefficients. Data were then analyzed for sources using a principal component analysis (PCA) technique and isomer ratio analysis. Nonparametric testing was then conducted to detect inherent differences in PAH concentration data obtained from the different sites. Results showed that pyrene was the most abundant PAH. Carcinogenic PAHs were higher in high-traffic areas. The correlation coefficient between coronene and benzo(ghi)pyrene was high. The PAH isomer ratio analysis demonstrated that PAHs in Nairobi are the product of traffic emissions and oil combustion. Results also showed that PAH profiles were not well separated. It was concluded that source distinction methods must be improved in order to better evaluate PAH emissions in the city. 9 refs., 2 tabs., 1 fig.

  14. Reconstruction of metabolic networks in a fluoranthene-degrading enrichments from polycyclic aromatic hydrocarbon polluted soil.

    Science.gov (United States)

    Zhao, Jian-Kang; Li, Xiao-Ming; Ai, Guo-Min; Deng, Ye; Liu, Shuang-Jiang; Jiang, Cheng-Ying

    2016-11-15

    Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) is the primary process of removing PAHs from environments. The metabolic pathway of PAHs in pure cultures has been intensively studied, but cooperative metabolisms at community-level remained to be explored. In this study, we determined the dynamic composition of a microbial community and its metabolic intermediates during fluoranthene degradation using high-throughput metagenomics and gas chromatography-mass spectrometry (GC-MS), respectively. Subsequently, a cooperative metabolic network for fluoranthene degradation was constructed. The network shows that Mycobacterium contributed the majority of ring-hydroxylating and -cleavage dioxygenases, while Diaphorobacter contributed most of the dehydrogenases. Hyphomicrobium, Agrobacterium, and Sphingopyxis contributed to genes encoding enzymes involved in downstream reactions of fluoranthene degradation. The contributions of various microbial groups were calculated with the PICRUSt program. The contributions of Hyphomicrobium to alcohol dehydrogenases were 62.4% in stage 1 (i.e., when fluoranthene was rapidly removed) and 76.8% in stage 3 (i.e., when fluoranthene was not detectable), respectively; the contribution of Pseudomonas were 6.6% in stage 1 and decreased to 1.2% in subsequent stages. To the best of the author's knowledge, this report describes the first cooperative metabolic network to predict the contributions of various microbial groups during PAH-degradation at community-level. PMID:27415596

  15. Assessing Photoinduced Toxicity of Polycyclic Aromatic Hydrocarbons in an Urbanized Estuary

    Directory of Open Access Journals (Sweden)

    S.P. Walker

    2004-12-01

    Full Text Available Increases in contaminants associated with urban sprawl are a particular concern in the rapidly developing coastal areas of the southeastern United States. Polycyclic aromatic hydrocarbons (PAHs are contaminants associated with vehicle emissions and runoff from impervious surfaces. Increased vehicular traffic and more impervious surfaces lead to an increased loading of PAHs into coastal estuarine systems. The phototoxic effect of PAH-contaminated sediments on a sediment-dwelling meiobenthic copepod, Amphiascus tenuiremis, was estimated in Murrells Inlet, a small, high-salinity estuary with moderate urbanization located in Georgetown and Horry Counties, South Carolina, USA. Field-determined solar ultraviolet radiation (UV and UV extinction coefficients were incorporated into laboratory toxicity experiments, and a model was developed to predict areas of specific hazard to A. tenuiremis in the estuary. The model incorporated laboratory toxicity data, UV extinction coefficients, and historical sediment chemistry and bathymetric data within a spatial model of sedimentary areas of the estuary. The model predicted that approximately 8–16% of the total creek habitat suitable for meiobenthic copepods is at risk to photoinduced PAH toxicity. This area is in the northern, more developed part of Murrells Inlet.

  16. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant

    International Nuclear Information System (INIS)

    The enhanced solubilization of polycyclic aromatic hydrocarbons (PAHs) by saponin, a plant-derived non-ionic biosurfactant, was investigated. The results indicated that the solubilization capabilities of saponin for PAHs were greater than some representative synthetic non-ionic surfactants and showed strong dependence on solution pH and ionic strength. The molar solubilization ratio (MSR) of saponin for phenanthrene was about 3-6 times of those of the synthetic non-ionic surfactants, and decreased by about 70% with the increase of solution pH from 4.0 to 8.0, but increased by approximately 1 times with NaCl concentration increased from 0.01 to 1.0 M. Heavy metal ions can enhance saponin solubilization for phenanthrene and the corresponding MSR values increased by about 25% with the presence of 0.01 M of Cd2+ or Zn2+. Saponin is more effective in enhancing PAHs solubilization than synthetic non-ionic surfactants and has potential application in removing organic pollutants from contaminated soils. - Highlights: → The enhanced solubilization of PAHs by saponin was investigated in this study. → Saponin showed great solubilization capability for PAHs. → Saponin is more effective in enhancing HOCs solubilization at lower solution pH. → Increasing ionic strength can enhance HOCs solubilization in saponin solution. → Heavy metal ions can also enhance phenanthrene solubilization in saponin solution. - Saponin showed different solubilization properties for PAHs from the synthetic non-ionic surfactants and anionic rhamnolipid biosurfactants.

  17. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Wenjun, E-mail: wenjunzhou@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310028 (China); Yang Juanjuan; Lou Linjie [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhu Lizhong [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310028 (China)

    2011-05-15

    The enhanced solubilization of polycyclic aromatic hydrocarbons (PAHs) by saponin, a plant-derived non-ionic biosurfactant, was investigated. The results indicated that the solubilization capabilities of saponin for PAHs were greater than some representative synthetic non-ionic surfactants and showed strong dependence on solution pH and ionic strength. The molar solubilization ratio (MSR) of saponin for phenanthrene was about 3-6 times of those of the synthetic non-ionic surfactants, and decreased by about 70% with the increase of solution pH from 4.0 to 8.0, but increased by approximately 1 times with NaCl concentration increased from 0.01 to 1.0 M. Heavy metal ions can enhance saponin solubilization for phenanthrene and the corresponding MSR values increased by about 25% with the presence of 0.01 M of Cd{sup 2+} or Zn{sup 2+}. Saponin is more effective in enhancing PAHs solubilization than synthetic non-ionic surfactants and has potential application in removing organic pollutants from contaminated soils. - Highlights: > The enhanced solubilization of PAHs by saponin was investigated in this study. > Saponin showed great solubilization capability for PAHs. > Saponin is more effective in enhancing HOCs solubilization at lower solution pH. > Increasing ionic strength can enhance HOCs solubilization in saponin solution. > Heavy metal ions can also enhance phenanthrene solubilization in saponin solution. - Saponin showed different solubilization properties for PAHs from the synthetic non-ionic surfactants and anionic rhamnolipid biosurfactants.

  18. Carcinogenic polycyclic aromatic hydrocarbons in umbilical cord blood of human neonates from Guiyu, China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongyong; Huo, Xia [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Wu, Kusheng [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Department of Preventive Medicine, Shantou University Medical College, Shantou (China); Liu, Junxiao; Zhang, Yuling [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Xu, Xijin, E-mail: xuxj@stu.edu.cn [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou (China)

    2012-06-15

    Unregulated electronic-waste recycling results in serious environmental pollution of polycyclic aromatic hydrocarbons (PAHs) in Guiyu, China. We evaluated the body burden of seven carcinogenic PAHs and potential health risks for neonates. Umbilical cord blood (UCB) samples were collected from Guiyu (n = 103), and the control area of Chaonan (n = 80), China. PAHs in UCB were determined by gas chromatography/mass spectrometry. The median N-Ary-Summation 7c-PAH concentration was 108.05 ppb in UCB samples from Guiyu, vs. 79.36 ppb in samples from Chaonan. Residence in Guiyu and longer cooking time of food during the gestation period were significant factors contributing to the N-Ary-Summation 7c-PAH level. Benzo[a]anthracene (BaA), chrysene (Chr), and benzo[a]pyrene (BaP) were found to correlate with reduced neonatal height and gestational age. Infants experiencing adverse birth outcomes, on the whole, displayed higher BaA, Chr, and BaP levels compared to those with normal outcomes. We conclude that maternal PAH exposure results in fetal accumulation of toxic PAHs, and that such prenatal exposure correlates with adverse effects on neonatal health.

  19. Mutagenicity and polycyclic aromatic hydrocarbon content of fumes from heated cooking oils produced in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Tai-An; Ko, Ying-Chin [Graduate Institute of Medicine, Kaohsiung Medical College, Kaohsiung (Taiwan, Province of China); Wu, Pei-Fen [Department of Industrial Safety and Hygiene, Tajen Junior College of Pharmacy, Ping-Tung (Taiwan, Province of China); Wang, Li-Fang [School of Chemistry, Kaohsiung Medical College, Kaohsiung (Taiwan, Province of China); Lee, Huei [Department of Biochemistry, Chung San Medical and Dental College, Taichung (Taiwan, Province of China); Lee, Chien-Hung [School of Public Health, Kaohsiung Medical College, Kaohsiung (Taiwan, Province of China)

    1997-11-28

    According to epidemiologic studies, exposure of women to fumes from cooking oils appears to be an important risk factor for lung cancer. Fume samples from three different commercial cooking oils frequently used in Taiwan were collected and analyzed for mutagenicity in the Salmonella/microsome assay. Polycyclic aromatic hydrocarbons were extracted from the samples and identified by HPLC chromatography. Extracts from three cooking oil fumes were found to be mutagenic in the presence of S9 mix. All samples contained dibenz(a,h)anthracene (DB(a,h)A) and benz(a)anthracene (B(a)A). Concentration of DB(a,h)A and B(a)A were 1.9 and 2.2 {mu}g/m{sup 3} in fumes from lard oil, 2.1 and 2.3 {mu}g/m{sup 3} in soybean oil, 1.8 and 1.3 {mu}g/m{sup 3} in peanut oil, respectively. Benzo(a)pyrene (B(a)P) was identified in fume samples of soybean and peanut oil, in concentrations of 19.6 and 18.3 {mu}g/m{sup 3}, in this order. These results provide experimental evidence and support the findings of epidemiologic observations, in which women exposed to the emitted fumes of cooking oils are at increased risk of contracting lung cancer

  20. Mycelia promote active transport and spatial dispersion of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Furuno, Shoko; Foss, Susan; Wild, Ed; Jones, Kevin C; Semple, Kirk T; Harms, Hauke; Wick, Lukas Y

    2012-05-15

    To cope with heterogeneous subsurface environments mycelial microorganisms have developed a unique ramified growth form. By extending hyphae, they can obtain nutrients from remote places and transport them even through air gaps and in small pore spaces, repectively. To date, studies have been focusing on the role that networks play in the distribution of nutrients. Here, we investigated the role of mycelia for the translocation of nonessential substances, using polycyclic aromatic hydrocarbons (PAHs) as model compounds. We show that the hyphae of the mycelial soil oomycete Pythium ultimum function as active translocation vectors for a wide range of PAHs. Visualization by two-photon excitation microscopy (TPEM) demonstrated the uptake and accumulation of phenanthrene (PHE) in lipid vesicles and its active transport by cytoplasmic streaming of the hyphae ('hyphal pipelines'). In mycelial networks, contaminants were translocated over larger distances than by diffusion. Given their transport capacity and ubiquity, hyphae may substantially distribute remote hydrophobic contaminants in soil, thereby improving their bioavailability to bacterial degradation. Hyphal contaminant dispersal may provide an untapped potential for future bioremediation approaches. PMID:22559873