WorldWideScience

Sample records for arid mine-impacted catchments

  1. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities

    Science.gov (United States)

    Clapcott, Joanne E.; Goodwin, Eric O.; Harding, Jon S.

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.

  2. Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments near Church Rock, NM

    OpenAIRE

    deLemos, Jamie L; Bostick, Benjamin C.; QUICKSALL, ANDREW N.; Landis, Joshua D.; GEORGE, CHRISTINE C.; Naomi L Slagowski; ROCK, TOMMY; Brugge, Doug; LEWIS, JOHNNYE; Durant, John L

    2008-01-01

    We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated abo...

  3. Synoptic monitoring as an approach to discriminating between point and diffuse source contributions to zinc loads in mining impacted catchments

    OpenAIRE

    Banks, V.J.; B. Palumbo-Roe

    2010-01-01

    One of the global legacies of industrialisation is the environmental impacts of historic 9 mineral exploitation. Recent national initiatives to manage the impacts on ground and 10 surface waters have driven the need to develop better techniques for assessing 11 understanding of the catchment-scale distribution and characterisation of the relative 12 contribution of point and diffuse contaminant sources. The benefits of a detailed, 13 multidisciplinary investigation are highlighted through a c...

  4. Long-term integrated river basin planning and management of water quantity and water quality in mining impacted catchments

    Science.gov (United States)

    Pohle, Ina; Zimmermann, Kai; Claus, Thomas; Koch, Hagen; Gädeke, Anne; Uhlmann, Wilfried; Kaltofen, Michael; Müller, Fabian; Redetzky, Michael; Schramm, Martina; Schoenheinz, Dagmar; Grünewald, Uwe

    2015-04-01

    During the last decades, socioeconomic change in the catchment of the Spree River, a tributary of the Elbe, has been to a large extent associated with lignite mining activities and the rapid decrease of these activities in the 1990s. There are multiple interconnections between lignite mining and water management both in terms of water quantity and quality. During the active mining period a large-scale groundwater depression cone has been formed while river discharges have been artificially increased. Now, the decommissioned opencast mines are being transformed into Europe's largest man-made lake district. However, acid mine drainage causes low pH in post mining lakes and high concentrations of iron and sulphate in post mining lakes and the river system. Next to potential changes in mining activities, also the potential impacts of climate change (increasing temperature and decreasing precipitation) on water resources of the region are of major interest. The fundamental question is to what extent problems in terms of water quantity and water quality are exacerbated and whether they can be mitigated by adaptation measures. In consequence, long term water resource planning in the region has to formulate adaptation measures to climate change and socioeconomic change in terms of mining activities which consider both, water quantity and water quality aspects. To assess potential impacts of climate and socioeconomic change on water quantity and water quality of the Spree River catchment up to the Spremberg reservoir in the scenario period up to 2052, we used a model chain which consists of (i) the regional climate model STAR (scenarios with a further increase in temperature of 0 and 2 K), (ii) mining scenarios (mining discharges, cooling water consumption of thermal power plants), (iii) the ecohydrological model SWIM (natural water balance), (iv) the long term water management model WBalMo (managed discharges, withdrawal of water users, reservoir operation) and (v) the

  5. Long-term water balance and conceptual model of a semi-arid mountainous catchment

    Science.gov (United States)

    Long-term water balance investigations are needed to better understand hydrologic systems, especially semi-arid mountainous catchments. These systems exhibit considerable interannual variability in precipitation as well as spatial variation in snow accumulation, soils, and vegetation. This study e...

  6. Determining erosion and sedimentation chronology on semi-arid catchments using radioisotopes.

    Science.gov (United States)

    Polyakov, Viktor; Nichols, Mary; Nearing, Mark

    2015-04-01

    Semi-arid environment is defined by high magnitude, low frequency rainfalls that produce highly variable soil erosion rates. This study attempted to establish erosion dynamic of past 70 years on three small semi-arid catchments with history of grazing and vegetation change. Activity of Cs-137 and excess Pb-210 from 18 cores collected from sedimentation ponds were measured using gamma spectrometer. The sediment was dated using constant initial concentration (CIC) and constant rate of supply (CRS) models. These estimates were compared with direct measurement of aggradation from historic topographic surveys. Sedimentation in the ponds ranged between 3.1 and 5.4 cm/year and the long term average erosion rates on catchments varied between 0.8 and 1.4 t/ha/year. The distribution of excess Pb-210 in the cores was better described by CRS model. Estimated erosion rates were in agreement with those established by other methods for similar catchments in the region. Past variation in sedimentation rates were identified and correlated with recorded history of grazing, vegetation management, and anthropogenic disturbance. Cs-137 and Pb-210 methods are suitable for use in arid environment and can complement each other to increase reliability of sedimentation rate estimates under highly variable hydrologic regimes.

  7. Statistical downscaling of climate data to estimate streamflow in a semi-arid catchment

    Directory of Open Access Journals (Sweden)

    S. Samadi

    2012-04-01

    Full Text Available Linear and non-linear statistical 'downscaling' study is done to relate large-scale climate information from a general circulation model (GCM to local-scale river flows in west Iran. This study aims to investigate and evaluate the more promising downscaling techniques, and provides a through inter comparison study using the Karkheh catchment as an experimental site in a semi arid region for the years of 2040 to 2069. A hybrid conceptual hydrological model was used in conjunction with modeled outcomes from a General Circulation Model (GCM, HadCM3, along with two downscaling techniques, Statistical Downscaling Model (SDSM and Artificial Neural Network (ANN, to determine how future streamflow may change in a semi arid catchment. The results show that the choice of a downscaling algorithm having a significant impact on the streamflow estimations for a semi-arid catchment, which are mainly, influenced, respectively, by atmospheric precipitation and temperature projections. According to the SDSM and ANN projections, daily temperature will increase up to +0.58° (+3.90% and +0.48° (+3.48% and daily precipitation will decrease up to −0.1mm (−2.56% and −0.4 mm (−2.82% respectively. Moreover streamflow changes corresponding to downscaled future projections presented a reduction in mean annual flow of −3.7 m3 s−1 and −9.47 m3 s−1 using SDSM and ANN outputs respectively. The results suggest a significant decrease of streamflow in both downscaling projections, particularly in winter. The discussion considers the performance of each statistical method for downscaling future flow at catchment scale as well as the relationship between atmospheric processes and flow variability and changes.

  8. What happens after the catchment caught the storm? Hydrological processes at the small, semi-arid Weatherley catchment, South-Africa

    OpenAIRE

    Uhlenbrook, S.; Wenninger, J.; Lorentz, S.

    2005-01-01

    International audience The knowledge of water flow pathways and residence times in a catchment are essential for predicting the hydrological response to a rain storm event. Different experimental techniques are available to study these processes, which are briefly reviewed in this paper. To illustrate this, recent findings from the Weatherley catchment a 1.5 km2 semi-arid headwater in South-Africa, are reported in this paper. Beside classical hydrometric measurements of precipitation and r...

  9. Effects of impervious pavements on reducing runoff in an arid urban catchment

    Science.gov (United States)

    Epshtein, O.; Turnbull, L.; Earl, S.

    2011-12-01

    The progressive urbanization of US arid and semi-arid southwestern territories has transformed undeveloped aridlands into dynamic, radially expanding metropolitan centers. As these mature, infill development further reduces undeveloped area, inversely coupling surface imperviousness to infiltration rates, with a subsequent increase in runoff generation. Intensified runoff carries undesirable environmental consequences, magnifying urban flooding events and concentrations, transport, and propagation of contaminants. Pervious pavements offer one potential solution for decreased urban infiltration. At present, the application potential of pervious pavements as an effective urban infiltration management tool exceeds its exploitation. While entirely eliminating urban Total Impervious Area is not a feasible solution, pervious pavements significantly reduce Effective Impervious Area at costs competitive with traditional Best Management Practices. Previous research into pervious pavements has largely consisted of laboratory prototypes or small-scale field experiments, with a heavy bias towards parking lots. In this study we explore the effectiveness of pervious pavements in increasing infiltration, thus decreasing runoff volume during summer monsoonal and winter convective rainfall events in an 8 ha residential catchment in Scottsdale, Arizona. Analysis focuses on the interaction dynamics between surface area of pervious pavement application and its net effect on runoff response at the catchment level. Hydrological response was modeled using MAHLERAN (Model for Assessing Hillslope-Landscape Erosion, Runoff and Nutrients), a spatially explicit, event-based model, parameterized at a spatial resolution of 0.25 sq m. Data for model parameterization was obtained from analysis of aerial imagery and field-based monitoring of surface properties. The model was tested against measurements of flow at the catchment outlet for multiple rainfall events with total event rainfall ranging

  10. Modelling runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivity

    OpenAIRE

    Lesschen, J.P.; Schoorl, J.M.; Cammeraat, L.H.

    2009-01-01

    Runoff and erosion processes are often non-linear and scale dependent, which complicate runoff and erosion modelling at the catchment scale. One of the reasons for scale dependency is the influence of sinks, i.e. areas of infiltration and sedimentation, which lower hydrological connectivity and decrease the area-specific runoff and sediment yield. The objective of our study was to model runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivit...

  11. What happens after the catchment caught the storm? Hydrological processes at the small, semi-arid Weatherley catchment, South-Africa

    Directory of Open Access Journals (Sweden)

    S. Uhlenbrook

    2005-01-01

    Full Text Available The knowledge of water flow pathways and residence times in a catchment are essential for predicting the hydrological response to a rain storm event. Different experimental techniques are available to study these processes, which are briefly reviewed in this paper. To illustrate this, recent findings from the Weatherley catchment a 1.5 km2 semi-arid headwater in South-Africa, are reported in this paper. Beside classical hydrometric measurements of precipitation and runoff different experimental techniques were applied to explore flow paths (i.e. soil moisture and groundwater measurements, natural tracers, and 2-D electrical resistivity tomographies (ERT.

  12. Predicting forested catchment evapotranspiration and streamflow from stand sapwood area and Aridity Index

    Science.gov (United States)

    Lane, Patrick

    2016-04-01

    Estimating the water balance of ungauged catchments has been the subject of decades of research. An extension of the fundamental problem of estimating the hydrology is then understanding how do changes in catchment attributes affect the water balance component? This is a particular issue in forest hydrology where vegetation exerts such a strong influence on evapotranspiration (ET), and consequent streamflow (Q). Given the primacy of trees in the water balance, and the potential for change to species and density through logging, fire, pests and diseases and drought, methods that directly relate ET/Q to vegetation structure, species, and stand density are very powerful. Plot studies on tree water use routinely use sapwood area (SA) to calculate transpiration and upscale to the stand/catchment scale. Recent work in south eastern Australian forests have found stand-wide SA to be linearly correlated (R2 = 0.89) with long term mean annual loss (P-Q), and hence, long term mean annual catchment streamflow. Robust relationships can be built between basal area (BA), tree density and stand SA. BA and density are common forest inventory measurements. Until now, no research has related the fundamental stand attribute of SA to streamflow. The data sets include catchments that have been thinned and with varying age classes. Thus far these analyses have been for energy limited systems in wetter forest types. SA has proven to be a more robust biometric than leaf area index which varies seasonally. That long term ET/Q is correlated with vegetation conforms to the Budyko framework. Use of a downscaled (20 m) Aridity Index (AI) has shown distinct correlations with stand SA, and therefore T. Structural patterns at a the hillslope scale not only correlate with SA and T, but also with interception (I) and forest floor evaporation (Es). These correlations between AI and I and Es have given R2 > 0.8. The result of these studies suggest an ability to estimate mean annual ET fluxes at sub

  13. Impacts of intensive agricultural irrigation and livestock farming on a semi-arid Mediterranean catchment.

    Science.gov (United States)

    Martín-Queller, Emi; Moreno-Mateos, David; Pedrocchi, César; Cervantes, Juan; Martínez, Gonzalo

    2010-08-01

    Irrigation return flows (IRF) are a major contributor of non-point source pollution to surface and groundwater. We evaluated the effects of irrigation on stream hydrochemistry in a Mediterranean semi-arid catchment (Flumen River, NE Spain). The Flumen River was separated into two zones based on the intensity of irrigation activities in the watershed. General linear models were used to compare the two zones. Relevant covariables (urban sewage, pig farming, and gypsum deposits in the basin) were quantified with the help of geographic information system techniques, accompanied by ground-truthing. High variability of the water quality parameters and temporal dynamics caused by irrigation were used to distinguish the two river reaches. Urban activity and livestock farming had a significant effect on water chemistry. An increase in the concentration of salts (240-541 microS.cm(-1) more in winter) and nitrate (average concentrations increased from 8.5 to 20.8 mg.l(-1) during irrigation months) was associated with a higher level of IRF. Those river reaches more strongly influenced by urban areas tended to have higher phosphorus (0.19-0.42 mg.l(-1) more in winter) concentrations. These results support earlier research about the significant consequences to water quality of both urban expansion and intensive agricultural production in arid and semi-arid regions. Data also indicate that salinization of soils, subsoils, surface water, and groundwater can be an unwelcome result of the application of pig manure for fertilization (increase in sodium concentration in 77.9 to 138.6 mg.l(-1)). PMID:19585246

  14. Concentration-Discharge relationships in a mine-impacted catchment, New River, Tennessee: Comparison across spatial and temporal scales using time-series analysis

    Science.gov (United States)

    Murphy, J.; Hornberger, G. M.

    2009-12-01

    Concentration-discharge (c-Q) relationships are useful in indentifying physical and chemical processes affecting stream water chemistry. Frequently used as a diagnostic tool, c-Q relationships can be used to infer particular mixing patterns that may occur in a catchment. However, much work has shown c-Q relationships are highly variable and often inconclusive, suggesting the catchment behavior they indicate cannot be readily recognized without supporting knowledge of system dynamics. For example, drainage area and location, in addition to changes in land use over time, affect many processes in catchments including flow routing and solute concentrations. The effect of spatial and temporal scales on c-Q relationships are explored using recursive time-series analysis of historic and recent water quality data. The New River encompasses 400 square miles of remote land on the Cumberland Plateau in middle Tennessee and is a major component of the headwaters of the Cumberland River. Current and historic coal mining, oil and gas extraction, and timber harvesting have impaired water quality in the watershed. Historically, the highest magnitude of degradation probably occurred during the mid-1900s with severe acid mine drainage throughout the watershed. In 1975, 56% of all coal mined in Tennessee was derived from the New River watershed. Over the past three decades most of the New River system has rebounded though some small tributaries still experience acid mine drainage and elevated metal loads. Sediment, in terms of quantity and sorption of metals, is currently considered the largest pollutant by many. Water pH is circum-neutral in the system and coal-mining pollution is best identified by elevated specific conductance and sulfate concentration. A combination of historic and recently collected water quality data were obtained for the Indian Fork, a small 4 square mile upland catchment in the New River watershed, and the New River main-stem, approximately 25 miles

  15. Application of a hydrological model in a data-poor arid region catchment: a case study of Wadi Ham, United Arab Emirates

    OpenAIRE

    Al Mulla , Mohamed Mustafa

    2005-01-01

    Many arid region Wadi catchments are facing increasing water scarcity due to the unsustainable human practises such as the over expansion of irrigated agriculture and over exploitation of their groundwater aquifers. The “Soil and Water Assessment Tool” (SWAT) model, which is a comprehensive conceptual, semi-distributed watershed scale model, was selected after a review of the hydrological processes occurring in arid region catchments to simulate the hydrological processes of...

  16. Establishing the Ecological Status of Mining-Impacted Freshwaters from Abrud River Catchment Area Using Benthic Diatom Communities (Ros, ia MontanÄă, Romania)

    Science.gov (United States)

    Olenici, Adriana; Baciu, Calin; Momeu, Laura; Cozma, Alexandra; Brahaita, Dorian; Pop, Cristian; Lazar, Laura; Popita, Gabriela; Teodosiu, Gabriela

    2015-04-01

    Keywords: diatom communities, indicator species, mine waters, water quality, Romania. Diatoms are a very distinct group of algae, identifiable under the light microscope by their yellow - brown coloration and by the presence of a thick silica cell wall. The potential for freshwater organisms to reflect changes in environmental conditions was first noted by Kolenati (1848) and Cohn (1853), who observed that biota in polluted waters were different from those in non-polluted situations. Diatoms are widely used to monitor river pollution because they are sensitive to water chemistry, especially to ionic content, pH, dissolved organic matter and nutrients. Wide geographic distribution and well-studied ecology of most diatom species are mentioned as major advantages of using diatoms as indicator organisms. At the same time water quality has begun to deteriorate increasingly, mainly as a result of the physical, chemical and bacteriological alterations, and the aquatic ecosystems are evermore affected by various types of pollution, the anthropic one being almost always included. A good example is Abrud River and its main tributaries (Roșia Montană and surrounding areas, Romania), which has suffered along the years because of the mining waters discharge. In this context, this study presents data on benthic diatom communities from the Abrud River catchment area. Sixteen sites have been sampled seasonal and the best represented diatom genera were Navicula, Nitzschia, Cymbella, Gomphonema, Achnantes, Surirella and Fragilaria. Qualitatively, the number of diatom species exhibited significant variation among sampling sites, also suggesting seasonal dynamics. For instance, in some sampling sites, algal assemblages were absent, as diatom communities were strongly affected by acid mine waters, released from old mining works and waste rocks depots. Some dominant taxa have been observed as well, suggesting critical saprobic levels of the Abrud River and some of its tributaries. The

  17. Field assessment of flood event suspended sediment transport from ephemeral streams in the tropical semi-arid catchments.

    Science.gov (United States)

    Ondieki, C M

    1995-03-01

    An assessment of suspended sediment transport was carried out in a number of semiarid catchments during flood events in order to quantify the degradation rates. In order to quantify these, a systematic sampling procedure of the episodic flood events was proposed for representative catchments. The procedure allows for an integration over the whole run-off episode using both the rising and falling limbs of the run-off hydrograph to compute the sediment quantities for each individual flood event.Higher sediment concentrations occurred in the rising limb than those at the recession for any stage of flow. The maximum suspended sediment concentration was observed at the peak of the flood hydrograph. An integration of the sediment concentration over its duration gave the total sediment yield from the flood event. For the ephemeral channels, only a small number of flood events were observed over a three-year experimental period each with a duration of the order of 3-6 h. It is notable that high sediment loads were associated with high flow volumes which were effectively the result of the catchment characteristics and incident rainfall causing the flood events in the respective catchments. A large percentage of the annual sediment yield from a catchment is transported by the ephemeral streams during a small number of flood events. The correct determination of the total sediment yield from any of the flood events depends entirely on the accuracy of the measurements.The understanding of run-off and sediment loss for the representative catchments aims at assisting planning, management and control of water and land resources for sustainable development in the semi-arid parts of the tropics. The sediment rates reveal the degradation of catchments which have repercussions on the crop and pasture production and this has a bearing on the soil and water conservation programmes in the delicate ecological balance of the semi-arid areas. Further, these rates will determine the lifespan

  18. Rainfall estimation over the Wadi Dhuliel arid catchment, Jordan from GSMaP_MVK+

    Directory of Open Access Journals (Sweden)

    E. Abushandi

    2011-02-01

    Full Text Available The GSMaP_MVK+ (Global Satellite Mapping of Precipitation dataset was used to evaluate the precipitation rates over the Wadi Dhuliel arid catchment in Northeast Jordan for the period of January 2003 to March 2008. The scarcity of the ground rain gauge network alone did not adequately show the detailed structure of the rainfall distribution, independent form interpolation techniques used. This study combines GSMaP_MVK+ and ground rain gauges to produce accurate, high-resolution datasets. Three meteorological stations and six rain gauges were used to adjust and compare GSMaP_MVK+ estimates. Comparisons between GSMaP_MVK+ measurements and ground rain gauges records showed distinct regions where they correlate, as well as areas where GSMaP_MVK+ systematically over- and underestimated ground rain gauge records. A multiple linear regression (MLR model was used to derive the relationship between rainfall and GSMaP_MVK+ in conjunction with temperature, relative humidity, and wind speed. The MLR equations were defined for the three meteorological stations. The "best" fit of MLR model for each station was chosen and used to interpolate a multiscale temporal and spatial distribution. Results show that the rainfall distribution over the Wadi Dhuliel is characterized by clear west-east and north-south gradients. Estimates from the monthly MLR model were more reasonable than estimates obtained using daily data. The adjusted GSMaP_MVK+ performed well in capturing the spatial patterns of the rainfall at monthly and annual time scales while daily estimation showed some weakness in light and moderate storms.

  19. On the value of combined event runoff and tracer analysis to improve understanding of catchment functioning in a data-scarce semi-arid area

    OpenAIRE

    M. Hrachowitz; Bohte, R.; Mul, M.L.; Bogaard, T.A.; Savenije, H. H. G.; S. Uhlenbrook

    2011-01-01

    Hydrological processes in small catchments are not quite understood yet, which is true in particular for catchments in data scarce, semi-arid regions. This is in contrast with the need for a better understanding of water fluxes and the interactions between surface- and groundwater in order to facilitate sustainable water resources management in such environments, where both floods and droughts can result in severe crop loss. In this study, event runoff coefficient analysis and limited tracer ...

  20. Soil carbon storage in a small arid catchment in the Negev desert (Israel)

    Science.gov (United States)

    Hoffmann, Ulrike; Kuhn, Nikolaus

    2010-05-01

    The mineral soil represents a major pool in the global carbon cycle. The behavior of mineral soil as a carbon reservoir in global climate and environmental issues is far from fully understood and causes a serious lack of comparable data on mineral soil organic carbon (SOC) at regional scale. To improve our understanding of soil carbon sequestration, it is necessary to acquire regional estimates of soil carbon pools in different ecosystem types. So far, little attention has been given to Dryland ecosystems, but they are often considered as highly sensitive to environmental change, with large and rapid responses to even smallest changes of climate conditions. Due to this fact, Drylands, as an ecosystem with extensive surface area across the globe (6.15 billion ha), have been suggested as a potential component for major carbon storage. A priori reasoning suggests that regional spatial patterns of SOC density (kg/m²) in Drylands are mostly affected by vegetation, soil texture, landscape position, soil truncation, wind erosion/deposition and the effect of water supply. Particularly unassigned is the interaction between soil volume, geomorphic processes and SOC density on regional scale. This study aims to enhance our understanding of regional spatial variability in dependence on soil volume, topography and surface parameters in areas susceptible to environmental change. Soil samples were taken in small transects at different representative slope positions across a range of elevations, soil texture, vegetation types, and terrain positions in a small catchment (600 ha) in the Negev desert. Topographic variables were extracted from a high resolution (0.5m) digital elevation model. Subsequently, we estimated the soil volume by excavating the entire soil at the representative sampling position. The volume was then estimated by laser scanning before and after soil excavation. SOC concentration of the soil samples was determined by CHN-analyser. For each sample, carbon

  1. Groundwater-surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – A synthesis

    OpenAIRE

    S. Uhlenbrook; Wang, X.; Zhang, D.; J. Huang; Hou, L.; Yin, L; Yang, Z.; Y. Zhou; Wenninger, J.

    2012-01-01

    During the last decades, large scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at...

  2. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis

    OpenAIRE

    Y. Zhou; Wenninger, J.; Yang, Z.; Yin, L; J. Huang; Hou, L.; Wang, X.; Zhang, D.; S. Uhlenbrook

    2013-01-01

    During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at...

  3. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis

    OpenAIRE

    Y. Zhou; Wenninger, J.; Yang, Z.; Yin, L; J. Huang; Hou, L.; Wang, X.; Zhang, D.; S. Uhlenbrook

    2013-01-01

    During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the...

  4. Erosion measurements at various scales in a semi arid mountainous catchment - case of the Rheraya watershed, High Atlas, Morocco

    Science.gov (United States)

    Cheggour, A.; Simonneaux, V.; Roose, E.

    2009-04-01

    Erosion is a critical phenomenon in North Africa, under the combined effects of aggressive rainfall and soil fragility, increased by the grazing pressure on rangelands. However measurements of actual erosion rates are rare, especially in mountainous areas. Siltation of dams is estimated at more than 60 million m3 annually in Morocco, which corresponds to a decrease of 0.5% of the storage capacity. The Rheraya watershed (225 km2) is located in a semi-arid climat, in the High Atlas of Morocco. In order to assess erosion processes at various scales, three types of measurements were achieved on this area, namely rainfall simulation tests one square meter, erosion plots on 150 m2, and catchment's discharge and associated sediments measurements. Rainfall simulation experiments were achieved on 27 sites, measuring runoff and sediment charge. The turbidity was correctly measured thanks to the development of a new runoff collector which doesn't disturb the soil. In the scope of spatial extrapolation, we searched for indicators obtained from ground description variables and/or by laboratory tests on soil samples, which were well correlated with infiltration and turbidity of the simulations. For the various soils present in the study area, the results show a large variability of infiltration (from 1 to 70 mm h-1) and turbidity (from 3 to 325 g.l-1). Analysis showed that infiltration is correlated mainly with texture and soil surface opening, and that turbidity is related to the surface of bare soil exposed to runoff. Six erosion plots of about 150 m2, located on various soil and land cover conditions, were measured during four years. The observations showed very rare runoff events in the main part of the watershed, producing a low sediment load (between 0.015 and 2.5 t.ha1.year1). Conversely, runoff was much more frequent on silty badlands, producing about 95% of the watershed sediment (350 t.ha-1.year-1) despite their area was only 1% of the watershed. There was a

  5. Reconstruction of the sediment flow regime in a semi-arid Mediterranean catchment using check dam sediment information.

    Science.gov (United States)

    Bussi, G.; Rodríguez, X.; Francés, F.; Benito, G.; Sánchez-Moya, Y.; Sopeña, A.

    2012-04-01

    When using hydrological and sedimentological models, lack of historical records is often one of the main problems to face, since observed data are essential for model validation. If gauged data are poor or absent, a source of additional proxy data may be the slack-water deposits accumulated in check dams. The aim of this work is to present the result of the reconstruction of the recent hydrological and sediment yield regime of a semi-arid Mediterranean catchment (Rambla del Poyo, Spain, 184 square km) by coupling palaeoflood techniques with a distributed hydrological and sediment cycle model, using as proxy data the sandy slack-water deposits accumulated upstream a small check dam (reservoir volume 2,500 square m) located in the headwater basin (drainage area 13 square km). The solid volume trapped into the reservoir has been estimated using differential GPS data and an interpolation technique. Afterwards, the total solid volume has been disaggregated into various layers (flood units), by means of a stratigraphical description of a depositional sequence in a 3.5 m trench made across the reservoir sediment deposit, taking care of identifying all flood units; the separation between flood units is indicated by a break in deposition. The sedimentary sequence shows evidence of 15 flood events that occurred after the dam construction (early '90). Not all events until the present are included; for the last ones, the stream velocity and energy conditions for generating slack-water deposits were not fulfilled due to the reservoir filling. The volume of each flood unit has been estimated making the hypothesis that layers have a simple pyramidal shape (or wedge); every volume represents an estimation of the sediments trapped into the reservoir corresponding to each flood event. The obtained results have been compared with the results of modeling a 20 year time series (1990 - 2009) with the distributed conceptual hydrological and sediment yield model TETIS-SED, in order to

  6. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    Directory of Open Access Journals (Sweden)

    W. A. Timms

    2012-04-01

    Full Text Available The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr−1 rainfall, potential evapotranspiration >2000 mm yr−1 such as parts of Australia's Murray-Darling Basin (MDB. In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8–1.2 m depth under perennial vegetation and at 2.0–2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91–229 t ha−1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥ 10 m depth that was not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m−1 at 21 to 37 m depth (N = 5, whereas deeper groundwater was less saline (290 mS m−1 with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM software package predicted deep drainage of 3.3–9.5 mm yr−1 (0.7–2.1% rainfall based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent soil water content, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total, and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge appears to be negligible due to low

  7. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    Science.gov (United States)

    Timms, W. A.; Young, R. R.; Huth, N.

    2012-04-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (evapotranspiration >2000 mm yr-1) such as parts of Australia's Murray-Darling Basin (MDB). In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8-1.2 m depth under perennial vegetation and at 2.0-2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91-229 t ha-1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥ 10 m depth that was not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m-1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m-1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3-9.5 mm yr-1 (0.7-2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent soil water content, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge appears to be negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditions after changes in land use and a thick clay dominated vadose zone

  8. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    Directory of Open Access Journals (Sweden)

    W. A. Timms

    2011-11-01

    Full Text Available The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr−1 rainfall, such as parts of Australia's Murray-Darling Basin (MDB. In this unique study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8–1.2 m depth under perennial vegetation and at 2.0–2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91–229 t ha−1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥10 m depth that is not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m−1 at 21 to 37 m depth (N = 5, whereas deeper groundwater was less saline (290 mS m−1 with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM software package predicted deep drainage of 3.3–9.5 mm yr−1 (0.7–2.1% rainfall based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total, and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditionsafter changes

  9. Assessment of vulnerability in karst aquifers using a quantitative integrated numerical model: catchment characterization and high resolution monitoring - Application to semi-arid regions- Lebanon.

    Science.gov (United States)

    Doummar, Joanna; Aoun, Michel; Andari, Fouad

    2016-04-01

    Karst aquifers are highly heterogeneous and characterized by a duality of recharge (concentrated; fast versus diffuse; slow) and a duality of flow which directly influences groundwater flow and spring responses. Given this heterogeneity in flow and infiltration, karst aquifers do not always obey standard hydraulic laws. Therefore the assessment of their vulnerability reveals to be challenging. Studies have shown that vulnerability of aquifers is highly governed by recharge to groundwater. On the other hand specific parameters appear to play a major role in the spatial and temporal distribution of infiltration on a karst system, thus greatly influencing the discharge rates observed at a karst spring, and consequently the vulnerability of a spring. This heterogeneity can only be depicted using an integrated numerical model to quantify recharge spatially and assess the spatial and temporal vulnerability of a catchment for contamination. In the framework of a three-year PEER NSF/USAID funded project, the vulnerability of a karst catchment in Lebanon is assessed quantitatively using a numerical approach. The aim of the project is also to refine actual evapotranspiration rates and spatial recharge distribution in a semi arid environment. For this purpose, a monitoring network was installed since July 2014 on two different pilot karst catchment (drained by Qachqouch Spring and Assal Spring) to collect high resolution data to be used in an integrated catchment numerical model with MIKE SHE, DHI including climate, unsaturated zone, and saturated zone. Catchment characterization essential for the model included geological mapping and karst features (e.g., dolines) survey as they contribute to fast flow. Tracer experiments were performed under different flow conditions (snow melt and low flow) to delineate the catchment area, reveal groundwater velocities and response to snowmelt events. An assessment of spring response after precipitation events allowed the estimation of the

  10. Simulating the hydrological response of a closed catchment-lake system to recent climate and land-use changes in semi-arid Mediterranean environment

    Science.gov (United States)

    Niedda, Marcello; Pirastru, Mario; Castellini, Mirko; Giadrossich, Filippo

    2014-09-01

    Lake water levels are sensitive sentinels of changes in the climate and landscape of the broader lake catchment. This means that lakes can be useful for quantifying the effects of these changes on the water yield of a catchment. This study presents a water balance model of a closed catchment-lake system in the semi-arid Mediterranean climate over the last 85 years, with the objective to understand the influence of precipitation change and the conversion from Mediterranean maquis to pasture. Deforestation alters the balance between evapotranspiration and canopy interception, and causes the rapid decay of soil hydrological properties, thus changing the mechanisms of runoff generation. The overall impact of these changes on the water yield has been evaluated for the catchment of the lake. A physically based rainfall-runoff model, combined with the energy budget method for estimating lake evaporation, were used for the lake water balance model. The calibration was carried out with the continuous measurements taken during the period 2008-2013. The reliability was evaluated with the historical lake levels between 1929 and 2008. Simulation errors were small despite the high sensitivity of the water balance model to precipitation, which in the historical period was that of a non-local station. The simulation results show that the balance was influenced by a combination of climate and land-use changes. The 23% decrease in precipitation observed in the last 50-years has resulted in a 72% decrease in average streamflow. The contemporaneous deforestation in 18% of the catchment area resulted in a 13% decrease in streamflow. The main mechanism of runoff generation under the maquis cover was saturated subsurface-flow. At hillslope scale this can eliminate the surface runoff, giving the impression that the water yield is lower than that of deforested hillslopes. However, at the basin scale the effect can also be reversed. The reduction in soil hydraulic conductivity and porosity

  11. Arid land irrigation in the United States Pacific Northwest for 2001 summarized for NHDPlus v2 catchments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This spatial data set was created by the U.S. Geological Survey (USGS) to represent the area of arid land irrigation in the Pacific Northwest region of the United...

  12. Afforestation using micro-catchment water harvesting system with microphytic crust treatment on semi-arid Loess Plateau: A preliminary result

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-hui; WANG Ke-qin; WANG Bin-rui; YU Chun-tang

    2005-01-01

    Water harvesting is one of main measures to solve water shortage resulting from less precipitation and erratically seasonal distribution in arid and semi-arid areas. Different types of anti-infiltration treatments including mechanical and chemical to micro-catchment and their runoff efficiencies had been reported. This paper, through 5 years experiment from 1992 to 1996, is aimed at studying the impacts of microcatchment water-harvesting system (MCWHS) with microphytic crust treatment on afforestation on semi-arid Loess Plateau. The results showed that after 3 years of crust inoculation, crust had covered majority of MCWHS and the function of water harvesting had also been demonstrated partially, there were significant difference in soil moisture of shallow soil layer in three typical spring stages between crust cover and control treatments (0.05 level), and about 0.9%-6.04% increase of monthly mean soil moisture within 1m soil layer in spring of late 3 years. The impact of severe spring drought can be alleviated effectively. In the meanwhile, as crust developed on the treated surface, there are significant differences (0.05 level) for tree height (H), diameter at breast height (DBH) and diameter at ground level (DGL) at the end of the study period (1996) with the increases by 22.38%, 17.34%, and 20.49% respectively compared with the control treatment. Microphytic crust, as one of biological infiltration-proof materials, may become the optimized option for revegetation in Chinese Great West Development Strategy due to its self-propagation, non-pollution to water qualities, long use duration and relatively cost effective. Further work should be focused on the selection of endemic crust species and their batch-culture in arid environment.

  13. Groundwater-surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – A synthesis

    Directory of Open Access Journals (Sweden)

    S. Uhlenbrook

    2012-11-01

    Full Text Available During the last decades, large scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 88% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analyzed from the relationship between the Normalized Difference Vegetation Index (NDVI and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana and poplar (Populus simonii, bushes (salix (Salix psammophila and agricultural crops (maize (Zea mays, depend on groundwater as the dominant water source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying water demand for socio-economical development and to prevent desertification, more water use efficient crops such as sorghum, barley and millet should be promoted to reduce the consumptive water use for irrigation. Willow trees should be used as wind-breaks in croplands and along roads, and dry resistant and less water use intensive plants (for instance native bushes should be used to vegetate sand dunes.

  14. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-07-01

    Full Text Available During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and water temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 90% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analysed from the relationship between the Normalized Difference Vegetation Index (NDVI and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana and poplar (Populus simonii, bushes (salix – Salix psammophila, and agricultural crops (maize – Zea mays, depend largely on groundwater as the source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying the water demand for socio-economical development and to prevent desertification and ecological impacts on streams, more water-use-efficient crops such as sorghum, barley or millet should be promoted to reduce the consumptive water use. Willow trees should be used as wind-breaks in croplands and along roads, and drought-resistant and less water-use intensive plants (for instance native bushes should be used to vegetate sand dunes.

  15. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    OpenAIRE

    W. A. Timms; Young, R. R.; N. Huth

    2012-01-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr−1 rainfall, potential evapotranspiration >2000 mm yr−1) such as parts of Australia's Murray-Darling Basin (MDB). In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribu...

  16. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    OpenAIRE

    W. A. Timms; Young, R. R.; N. Huth

    2011-01-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr−1 rainfall), such as parts of Australia's Murray-Darling Basin (MDB). In this unique study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization...

  17. Reliability of lumped hydrological modeling in a semi-arid mountainous catchment facing water-use changes

    Science.gov (United States)

    Hublart, P.; Ruelland, D.; García de Cortázar-Atauri, I.; Gascoin, S.; Lhermitte, S.; Ibacache, A.

    2015-11-01

    This paper explores the reliability of a hydrological modeling framework in a mesoscale (1515 km2) catchment of the dry Andes (30° S) where irrigation water-use and snow sublimation represent a significant part of the annual water balance. To this end, a 20 year simulation period encompassing a wide range of climate and water-use conditions was selected to evaluate three types of integrated Models referred to as A, B and C. These Models share the same runoff generation and routing module but differ in their approach to snowmelt modeling and irrigation water-use. Model A relies on a simple degree-day approach to estimate snowmelt rates and assumes that irrigation impacts can be neglected at the catchment scale. Model B ignores irrigation impacts just as Model A but uses an enhanced degree-day approach to account for the effects of net radiation and sublimation on melt rates. Model C relies on the same snowmelt routine as Model B but incorporates irrigation impacts on natural streamflow using a conceptual irrigation module. Overall, the reliability of probabilistic streamflow predictions was greatly improved with Model C, resulting in narrow uncertainty bands and reduced structural errors, notably during dry years. This model-based analysis also stressed the importance of considering sublimation in empirical snowmelt models used in the subtropics, and provided evidence that water abstractions from the unregulated river is impacting on the hydrological response of the system. This work also highlighted areas requiring additional research, including the need for a better conceptualization of runoff generation processes in the dry Andes.

  18. Comparison of EPM and PSIAC models in GIS for erosion and sediment yield assessment in a semi-arid environment: Afzar Catchment, Fars Province, Iran

    Science.gov (United States)

    Tangestani, Majid H.

    2006-09-01

    This research was conducted in the Afzar sub-catchment area of Ghara-Aghaj River, a semi-arid region in SW Iran, using a Geographic Information System (GIS) to compare the Erosion Potential Method (EPM) and Pacific Southwest Interagency Committee (PSIAC) models in erosion-potential mapping and sediment-yield assessment. Data layers used in this study were generated from topographic maps, Landsat ETM + imagery, aerial photographs, field surveys and barometric and pluviometric data; factor-class evaluation was used to determine EPM and PSIAC parameters. A raster-based Geographic Information System (GIS) was applied to generate the erosion-severity and sediment-yield maps. Output data was verified by field observation and by comparison with a Global Assessment of Soil Degradation (GLASOD) map. Comparison of the EPM and PSIAC results with field observations and the GLASOD map showed that although the results of the two erosion potential maps correspond in most areas, the results of EPM model were not as reliable as the PSIAC in identifying areas with very high erosion potential. It is suggested the EPM model should be used for rapid mapping of erosion-potential in regions with limited data layers, but field verifications indicated that PSIAC results were the more reliable.

  19. Effects of Urban Stormwater Infrastructure and Spatial Scale on Nutrient Export and Runoff from Semi-Arid Urban Catchments

    Science.gov (United States)

    Hale, R. L.; Turnbull, L.; Earl, S.; Grimm, N. B.

    2011-12-01

    There has been an abundance of literature on the effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs as well as hydrology. Less is known, however, about nutrient transport processes and processing in urban watersheds. Engineered drainage systems are likely to play a significant role in controlling the transport of water and nutrients downstream, and variability in these systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 12 watersheds ranging in scale from 5 to 17000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (pipes, natural or modified washes, and retention basins. At the outlet of each of these catchments we monitored rainfall and discharge, and sampled stormwater throughout runoff events for dissolved nitrogen (N), phosphorus (P), and organic carbon (oC). Urban stormwater infrastructure is characterized by a range of hydrologic connectivity. Piped watersheds are highly connected and runoff responds linearly to rainfall events, in contrast to watersheds drained with retention basins and washes, where runoff exhibits a nonlinear threshold response to rainfall events. Nutrient loads from piped watersheds scale linearly with total storm rainfall. Because of frequent flushing, nutrient concentrations from these sites are lower than from wash and retention basin drained sites and total nutrient loads exhibit supply limitation, e.g., nutrient loads are poorly predicted by storm rainfall and are strongly controlled by factors that determine the amount of nutrients stored within the watershed, such as antecedent dry days. In contrast, wash and retention basin-drained watersheds exhibit transport limitation. These watersheds flow less frequently than pipe-drained sites and therefore stormwater has higher concentrations of nutrients, although total loads are significantly

  20. Comparison of meteorological forcing (WFDEI, AGRI4CAST) to in-situ observations in a semi arid catchment. The case of Merguellil in Tunisia.

    Science.gov (United States)

    Le Page, Michel; Gosset, Cindy; Oueslati, Ines; Calvez, Roger; Zribi, Mehrez; Lilli Chabaane, Zohra

    2015-04-01

    Meteorological forcing is essential to hydrological and hydro-geological modeling. In the case of the semi-arid catchment of Merguellil in Tunisia, long term time series are only available in the plain for a SYNOP station. Other meteorological stations have been installed since 2010. Therefore, this study aims at qualifying the reliability of the meteorological forcing necessary for an integrated model conception. We compare the meteorological data from 7 stations (sources: WMO and our own station), inside and around the Merguellil catchment, with daily gridded data at 25*25 km from AGRI4CAST and 50*50km from WFDEI. AGRI4CAST (Biaveti et al, 2008) is an interpolated dataset based on actual weather stations produced by the Joint Research Centre (JRC) for the Monitoring Agricultural Resources Unit (MARS). The WFDEI second version dataset (Weedon et al, 2014) has been generated using the same methodology as the widely used WATCH Forcing Data (WFD) by making use of the ERA-Interim reanalysis data. The studied meteorological variables are Rs, Tmoy, U2, P, RH and ET0, with the scores RMSE, bias and R pearson. Regarding the AGRI4CAST dataset, the scores are established over different periods according to variables based on stepping between the observed and interpolated data. The scores show good correlations between the observed temperatures, but with a spatial variability bound to the stations elevations. The moderate and interpolated radiations also show a good concordance indicating a good reliability. The R pearson score obtained for the values of relative humidity show a good correlation between the observations and the interpolations, however, the short periods of comparisons do not allow obtaining significant information and the RMSE and bias are important. Wind speed has an important negative bias for a majority of stations (positively for only one). Only one station shows concordances between the data. The study of the data indicates that we shall have to adjust

  1. Interannual variability of a precipitation gradient along the semi-arid catchment areas for the metropolitan region of Lima- Peru in relation to atmospheric circulation at the mesoscale

    Science.gov (United States)

    Otto, Marco; Seidel, Jochen; Trachte, Katja

    2013-04-01

    The main moisture source for precipitation on the western slopes of the Central Andes is located east of the mountain range known as the Amazon basin. However, the Andean mountains, which reach up to 6000 m a.s.l., strongly influence climatic conditions along the Pacific coastline of South America as a climatic barrier for the low-level tropospheric flow and associated moisture transport from the Amazon basin. Additional, large scale subsidence caused by the South Pacific High inhabits convective rainfall at the Pacific coast where large metropolitan areas such as the Peruvian capital Lima are located. Two contrasts in precipitation can be found while crossing the Andean mountains from West to East. On the Pacific coast, at the location of the metropolitan area of Lima, no more than 10 mm mean annual rainfall occurs. In contrast, up to 1000 mm mean annual rainfall occur only 100 km east of Lima within the upper region (4000 m .a.s.l.) of the Western Cordillera. The transition takes place along the western slopes of the Western Cordillera and is characterised by a strong precipitation gradient. Here, catchment areas are located that provide most of the water resources needed to sustain an urban area of approximately 10 million people. This study investigates the interannual variability of the precipitation gradient between 1998 and 2012. The analysis is based on daily precipitation data of 22 rain gauge station, daily rainfall data of the Tropical Rainfall Mission (TRMM 3B42) at 0.25 degrees and reanalysis data at 36 km spatial resolution at the mesoscale. The reanalysis data was produced using the Weather Research and Forecasting Model. Station data was provided by the Peruvian weather service during the project "Sustainable Water and Wastewater Management in Urban Growth Centres Coping with Climate Change - Concepts for Lima Metropolitana (Peru) (LiWa)", which is financed by the German Federal Ministry of Education and Research (BMBF). We are interested in the

  2. Impact and sustainability of low-head drip irrigation kits, in the semi-arid Gwanda and Beitbridge Districts, Mzingwane Catchment, Limpopo Basin, Zimbabwe

    Science.gov (United States)

    Moyo, Richard; Love, David; Mul, Marloes; Mupangwa, Walter; Twomlow, Steve

    Resource-poor smallholder farmers in the semi-arid Gwanda and Beitbridge districts face food insecurity on an annual basis due to a combination of poor and erratic rainfall (average 500 mm/a and 345 mm/a, respectively, for the period 1970-2003) and technologies inappropriate to their resource status. This impacts on both household livelihoods and food security. In an attempt to improve food security in the catchment a number of drip kit distribution programmes have been initiated since 2003 as part of an on-going global initiative aimed at 2 million poor households per year. A number of recent studies have assessed the technical performance of the drip kits in-lab and in-field. In early 2005 a study was undertaken to assess the impacts and sustainability of the drip kit programme. Representatives of the NGOs, local government, traditional leadership and agricultural extension officers were interviewed. Focus group discussions with beneficiaries and other villagers were held at village level. A survey of 114 households was then conducted in two districts, using a questionnaire developed from the output of the interviews and focus group discussions. The results from the study showed that the NGOs did not specifically target the distribution of the drip kits to poor members of the community (defined for the purpose of the study as those not owning cattle). Poor households made up 54% of the beneficiaries. This poor targeting of vulnerable households could have been a result of conditions set by some implementing NGOs that beneficiaries must have an assured water source. On the other hand, only 2% of the beneficiaries had used the kit to produce the expected 5 harvests over the 2 years, owing to problems related to water shortage, access to water and also pests and diseases. About 51% of the respondents had produced at least 3 harvests and 86% produced at least 2 harvests. Due to water shortages during the dry season 61% of production with the drip kit occurred during

  3. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape

    Science.gov (United States)

    Zhu, T. X.

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of 20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km2 in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km2 in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km2 on the cultivated slopeland, in comparison to 27.7 t/km2 on the woodland plot, 213 t/km2 on the grassland plot, 467 t/km2 on the alfalfa plot, 236 t/km2 on the terraceland plot, and 642 t/km2 on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  4. Imaging of hill-slope soil moisture wetting patterns in a semi-arid oak savanna catchment using time-lapse electromagnetic induction

    OpenAIRE

    Robinson, David A.; Abdu, Hiruy; Lebron, Inma; Jones, Scott B.

    2012-01-01

    Soil moisture (θ) is a fundamental hydrological state variable and its spatial pattern is important for understanding hydrological processes. Determination of small catchment-scale soil moisture status and distribution at intermediate scales (0.01–1 km2) is challenging. Primarily because multi-point measurements using sensors are often impractical, while remote sensing resolution is often too coarse. Geophysical methods, e.g. electromagnetic induction (EMI), offer potential for bridging this ...

  5. Rainfall-runoff modeling in arid areas

    OpenAIRE

    Abushandi, Eyad

    2011-01-01

    The Wadi Dhuliel catchment/ North east Jordan, as any other arid area has distinctive hydrological features with limited water resources. The hydrological regime is characterized by high variability of temporal and spatial rainfall distributions, flash floods, absence of base flow, and high rates of evapotranspiration. The aim of this Ph.D. thesis was to apply lumped and distributed models to simulate stream flow in the Wadi Dhuliel arid catchment. Intensive research was done to estimate the ...

  6. Spatial rainfall variability and runoff response during an extreme event in a semi-arid catchment in the South Pare Mountains, Tanzania

    Directory of Open Access Journals (Sweden)

    M. L. Mul

    2008-09-01

    Full Text Available This paper describes an extreme flood event that occurred in the South Pare Mountains in northern Tanzania. A high spatial and temporal resolution data set was gathered in a previously ungauged catchment. This data was analysed using a multi-method approach, to gather information about the processes that resulted in the flood event. On 1 March 2006, extreme rainfall occurred in the Makanya catchment, (300 km2, where up to 100 mm were recorded in Bangalala village in only 3 h. Runoff was devastating, inundating large parts of the flood plain. The spatial variability of the rainfall during the event was very large, even in areas with the same altitude. The Vudee sub-catchment (25.8 km2 was in the centre of the rainfall event, receiving about 75 mm in 3 h divided over the two upstream tributaries: the Upper-Vudee and Ndolwa. The peak flow at the weir site has been determined using the slope-area method and gradually varied flow calculations, indicating a peak discharge of 32 m3 s−1. Rise and fall of the flood was very sharp, with the peak flow occurring just one hour after the peak of the rainfall. The flow receded to 1% of the maximum flow within 24 h. Hydrograph separation using hydrochemical parameters indicates that at the peak of the flow 50% was generated by direct surface runoff (also indicated by the large amount of sediments in the samples, whereas the recession originated from displaced groundwater (>90 %. The subsequent base flow in the river remained at 75 l s−1 for the rest of the season, which is substantially higher than the normal base flow observed during the previous rainy seasons (15 l s−1 indicating significant groundwater recharge during this extreme event.

  7. Spatial rainfall variability and runoff response during an extreme event in a semi-arid catchment in the South Pare Mountains, Tanzania

    Directory of Open Access Journals (Sweden)

    M. L. Mul

    2009-09-01

    Full Text Available This paper describes an extreme flood event that occurred in the South Pare Mountains in northern Tanzania. A high spatial and temporal resolution data set has been gathered in a previously ungauged catchment. This data was analysed using a multi-method approach, to gather information about the processes that generated the flood event. On 1 March 2006, extreme rainfall occurred in the Makanya catchment, (300 km2, where up to 100 mm were recorded in Bangalala village in only 3 h. The flood was devastating, inundating large parts of the flood plain. The spatial variability of the rainfall during the event was very large, even in areas with the same altitude. The Vudee sub-catchment (25.8 km2 was in the centre of the rainfall event, receiving about 75 mm in 3 h divided over the two upstream tributaries: the Upper-Vudee and Ndolwa. The peak flow at the weir site has been determined using the slope-area method and gradually varied flow calculations, indicating a peak discharge of 32 m3 s−1. Rise and fall of the flood was very sharp, with the peak flow occurring just one hour after the peak of the rainfall. The flow receded to 1% of the maximum flow within 24 h. Hydrograph separation using hydrochemical parameters indicates that at the floodpeak 50% of the flow was generated by direct surface runoff (also indicated by the large amount of sediments in the samples, whereas the recession originated from displaced groundwater (>90%. The subsequent base flow in the river remained at 75 l s−1 for the rest of the season, which is substantially higher than the normal base flow observed during the previous rainy seasons (15 l s−1 indicating significant groundwater recharge during this extreme event.

  8. Evaluation of the SAFRAN-ISBA-RAPID hydrometeorological chain on a mountainous catchment in a semi-arid region. Case of the Rheraya (Marrakech, Morocco)

    Science.gov (United States)

    Szczypta, Camille; Gascoin, Simon; Habets, Florence; Saaidi, Amina; Berjamy, Brahim; Marchane, Ahmed; Boulet, Gilles; Hanich, Lahoucine; Jarlan, Lionel

    2015-04-01

    The water content of snow pack is an important resource for many watershed in semi-arid areas where downstream plains are dominated by irrigated agriculture. As part of the ANR Amethyst, this work is to develop, adapt and evaluate a hydro-meteorological forecasting chain for quantifying streamflows at the outlet of a mountainous watershed (Rheraya wadi, Marrakech region, Morocco), a pilot basin instrumented since 2003 as part of SudMed project. Two sets of atmospheric forcing were used: (1) The first was generated by spatializing meteorological data observed on 6 stations (Asni, Aremdt, Tachedert, Oukaimeden, Imskerbour and Neltner) using the semi-physical module Micromet (Liston and Elder, 2006) on the hydrological period September 2003 - August 2012; (2) the second is provided by the SAFRAN re-analysis, implemented by the Metoffice of Morocco (Casablanca, Morocco), during the period August 2004 - July 2008. These two sets were then used as inputs for the ISBA surface model, within the modeling platform SURFEX. Finally, runoff and drainage simulations derived from ISBA were forced into the hydrological model RAPID to predict streamflows. The flows predictions and the snow covered area (SCA) were compared respectively to the observations available for the 2003-2009 period and to the daily MODIS products of SCA. Despite time unsystematic lags and low biases on flow values, the initial results are encouraging due to topographical and hydro-complexity of the studied area. Despite a slight tendency to underestimate the SCA for the "Micromet" run and to over-estimate for the "Safran" run, SCA is well reproduced with a determination coefficient of r²=0.76 and r²=0.79, respectively. Given the complex topography of the basin, a sensitivity analysis to the size of the grid point (from 8 km to 250 m) was conducted. If the different simulated series of SCA are close from a resolution to another, streamflows simulations are, by contrast, highly sensitive to the resolution

  9. Coevolution of volcanic catchments in Japan

    Science.gov (United States)

    Yoshida, Takeo; Troch, Peter A.

    2016-03-01

    Present-day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment coevolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.225 to 82.2 Ma) in Japan. We derived indices of landscape properties (drainage density and slope-area relationship) as well as hydrological response (annual water balance, baseflow index, and flow-duration curves) and examined their relation with catchment age and climate (through the aridity index). We found a significant correlation between drainage density and baseflow index with age, but not with climate. The intra-annual flow variability was also significantly related to catchments age. Younger catchments tended to have lower peak flows and higher low flows, while older catchments exhibited more flashy runoff. The decrease in baseflow with catchment age is consistent with the existing hypothesis that in volcanic landscapes the major flow pathways change over time from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in a set of similar, but younger volcanic catchments in the Oregon Cascades, in which drainage density increased with age. In that case, older catchments were thought to show more landscape incision due to increasing near-surface lateral flow paths. Our results suggests two competing hypotheses on the evolution of drainage density in mature catchments. One is that as catchments continue to age, the hydrologically active channels retreat

  10. Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment"

    OpenAIRE

    R. J. Thayyen; J. T. Gergan

    2010-01-01

    A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April) and south-west monsoon in summer (June–September) dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of th...

  11. Co-evolution of volcanic catchments in Japan

    Science.gov (United States)

    Yoshida, T.; Troch, P. A.

    2015-09-01

    Present day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment co-evolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.225 to 82.2 Ma) in Japan. We derived indices of landscape properties (drainage density) as well as hydrological response (annual water balance, baseflow index, and flow duration curves) and examined their relation with catchment age and climate (through the aridity index). We found significant correlation between drainage density and baseflow index with age, but not with climate. The age of the catchments was also significantly related to intra-annual flow variability. Younger catchments tend to have lower peak flows and higher low flows, while older catchments exhibit more flashy runoff. The decrease of baseflow with catchment age confirms previous studies that hypothesized that in volcanic landscapes the major flow pathways have changed over time, from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in similar volcanic catchments but of significant younger age than the ones explored here. In these younger catchments, an increase in drainage density with age was observed, and it was hypothesized that this was because of more landscape incision due to increasing near-surface lateral flow paths in more mature catchments. Our results suggests two hypotheses on the evolution of drainage density in matured catchments. One is that as catchments further evolve

  12. Uranium mining impacts on water resources in Brazil

    International Nuclear Information System (INIS)

    Uranium mining and milling activities started operations in Brazil during the 80's. The first production Center was deployed in Pocos de Caldas (CIPC) State of Minas Gerais. The mine was exhausted in 1997, after has produced only 1200 t of U3O8. The second uranium plant began the operations in Caetite (URA), Bahia State, since 1999 and keeps operations until now with an annual U3O8 production of up to 400 t. The company plans to double this mark in Caetite production center with the exploration of another uranium deposits and initiate underground operations of current open-pit mine. Simultaneously, they are seeking a license for a third plant in the State of Ceara that could produce the double of foreseen capacity in URA. This scenery drives to some issues related to the impact of uranium production on water resources of the respective watersheds. The CIPC plant is a closing mine site, which requires permanent treatment of the company due to the fact their sources of pollutants are subject to the occurrence of Acid Mine Drainage. The URA plant is located in a semi-arid region of Brazil. The extraction of uranium from the ore is achieved by means of a Heap-Leach process, which has low water demand supplied by a network of wells and from a dam, but can contribute to change the groundwater quality and in some cases the extinguishing of wells was observed. An overall assessment of these impacts in national level could produce some lessons that we must take advantage for the ongoing project of Santa Quiteria or even in future sites. (author)

  13. Rainwater harvesting in arid and semi-arid zones (repr. 1997)

    OpenAIRE

    Boers, Th.M.

    1994-01-01

    In arid and semi-arid regions, the scarcity of water can be alleviated by rainwater harvesting, which is defined as a method of inducing, collecting, storing, and conserving local surface runoff for agriculture. Rainwater harvesting can be applied with different systems, and this dissertation deals with the system of micro-catchments. A microcatchment consists of a runoff area and a basin area in which a tree is planted. The purpose of this study was to develop a design procedure for micro-ca...

  14. Assessment of arsenic speciation and bioaccessibility in mine-impacted materials

    Science.gov (United States)

    Mine-impacted materials were collected from Victoria, Australia and categorized into three source materials; tailings (n = 35), calcinated (n = 10) and grey slimes (n = 5). Arsenic (As) concentrations in these materials varied over several orders of magnitude (30-47,000 mg kg

  15. Hydrological impact of water and soil conservation works in the Merguellil catchment of central Tunisia

    OpenAIRE

    Lacombe, Guillaume; Cappelaere, Bernard; Leduc, Christian

    2008-01-01

    The Merguellil catchment (1183 km(2)), whose runoff is a major water resource for the Kairouan area in semi-arid Tunisia, was equipped with water and soil conservation works (WSCW) during the 1990s, mainly to reduce soil erosion and sitting of the downstream El Haouareb dam. The spatial configuration of the hydro-meteorological station network makes it possible to characterize the catchment-scale hydrological impact of the WSCW. The catchment is subdivided into two parts, the upper subcatchme...

  16. Co-evolution of volcanic catchments in Japan

    Science.gov (United States)

    Yoshida, T.; Troch, P. A. A.

    2015-12-01

    Present day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment co-evolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.22 to 82Ma) in Japan. We derived indices of landscape properties (drainage density) as well as hydrological response (annual water balance, baseow index, and flow duration curves) and examined their relation with catchment age and climate (through the aridity index). We found signicant correlation between drainage density and baseow index with age, but not with climate. The age of the catchments was also signicantly related to intra-annual flow variability. Younger catchments tend to have lower peak flows and higher low flows, while older catchments exhibit more flashy runoff. The decrease of baseflow with catchment age confirms previous studies that hypothesized that in volcanic landscapes the major flow pathways have changed over time, from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in similar volcanic catchments but of signicant younger age than the ones explored here. In these younger catchments, an increase in drainage density with age was observed, and it was hypothesized that this was because of more landscape incision due to increasing near-surface lateral flow paths in more mature catchments. Our results suggest that as catchments further evolve, hydrologically active channels retreat as less recharge leads to lower average aquifer levels

  17. GIS-Based KW-GIUH hydrological model of semiarid catchments: The case of Faria Catchment, Palestine

    International Nuclear Information System (INIS)

    Among the most basic challenges of hydrology are the quantitative understanding of the processes of runoff generation and prediction of flow hydrographs. Traditional techniques have been widely applied for the estimation of runoff hydrographs of gauged catchments using historical rainfall-runoff data and unit hydrographs. Such procedures are questioned as to their reliability and their application to ungauged, arid and semiarid catchments. To overcome such difficulties, the use of physically based rainfall-runoff process of Faria Catchment using the lately developed KW-GIUH. Faria catchment, located in the northeastern part of the West Bank, Palestine, is characterized as a semiarid region with annual rainfall depths ranging on average from 150 to 640 mm at both ends of the catchment. The Geographical Information System (GIS) techniques were used to shape the geomorphological features of the catchment. A GIS based KW-GIUH hydrological model was used to stimulate the rainfall-runoff process in the three sub-catchments of Faria, namely: Al-Badan, Al-Faria and Al-Malaqi. The simulated runoff hydrographs proved that the GIS-based KW-GIUH model is applicable to semiarid regions and can be used to estimate the unit hydrographs in the West Bank catchments. (author)

  18. Assessment of arsenic speciation and bioaccessibility in mine-impacted materials.

    Science.gov (United States)

    Ollson, Cameron J; Smith, Euan; Scheckel, Kirk G; Betts, Aaron R; Juhasz, Albert L

    2016-08-01

    Mine-impacted materials were collected from Victoria, Australia and categorized into three source materials; tailings (n=35), calcinated (n=10) and grey slimes (n=5). Arsenic (As) concentrations in these materials varied over several orders of magnitude (30-47,000mgkg(-1)), with median concentrations of 500, 10,800 and 1500mgkg(-1), respectively. When As bioaccessibility was assessed using the Solubility Bioaccessibility Research Consortium (SBRC) assay, As bioaccessibility ranged between 4 and 90%, with mean gastric phase values of 30%, 49% and 82% for tailings, calcinated and grey slimes, respectively. An analysis of variance (ANOVA) determined that As bioaccessibility was significantly different (P<0.05) between source materials. This was due to differences in As mineralogy, soil particle size as well as the concentration and nature of Fe present. X-ray Absorption Near Edge Structure (XANES) analysis identified arseniosiderite, yukonite, realgar, loellingite and mineral sorbed arsenate species in mine-impacted materials. Despite differences in physicochemical properties, 'mine wastes' are often reported under a generic descriptor. Outcomes from this research highlight that variability in As bioaccessibility can be prescribed to As mineralogy and matrix physicochemical properties, while categorizing samples into sub-groups can provide some notional indication of potential exposure. PMID:27060218

  19. Metagenomic signatures of a tropical mining-impacted stream reveal complex microbial and metabolic networks.

    Science.gov (United States)

    Reis, Mariana P; Dias, Marcela F; Costa, Patrícia S; Ávila, Marcelo P; Leite, Laura R; de Araújo, Flávio M G; Salim, Anna C M; Bucciarelli-Rodriguez, Mônica; Oliveira, Guilherme; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2016-10-01

    Bacteria from aquatic ecosystems significantly contribute to biogeochemical cycles, but details of their community structure in tropical mining-impacted environments remain unexplored. In this study, we analyzed a bacterial community from circumneutral-pH tropical stream sediment by 16S rRNA and shotgun deep sequencing. Carrapatos stream sediment, which has been exposed to metal stress due to gold and iron mining (21 [g Fe]/kg), revealed a diverse community, with predominance of Proteobacteria (39.4%), Bacteroidetes (12.2%), and Parcubacteria (11.4%). Among Proteobacteria, the most abundant reads were assigned to neutrophilic iron-oxidizing taxa, such as Gallionella, Sideroxydans, and Mariprofundus, which are involved in Fe cycling and harbor several metal resistance genes. Functional analysis revealed a large number of genes participating in nitrogen and methane metabolic pathways despite the low concentrations of inorganic nitrogen in the Carrapatos stream. Our findings provide important insights into bacterial community interactions in a mining-impacted environment. PMID:27441985

  20. Co-evolution of volcanic catchments in Japan

    Directory of Open Access Journals (Sweden)

    T. Yoshida

    2015-09-01

    Full Text Available Present day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment co-evolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.225 to 82.2 Ma in Japan. We derived indices of landscape properties (drainage density as well as hydrological response (annual water balance, baseflow index, and flow duration curves and examined their relation with catchment age and climate (through the aridity index. We found significant correlation between drainage density and baseflow index with age, but not with climate. The age of the catchments was also significantly related to intra-annual flow variability. Younger catchments tend to have lower peak flows and higher low flows, while older catchments exhibit more flashy runoff. The decrease of baseflow with catchment age confirms previous studies that hypothesized that in volcanic landscapes the major flow pathways have changed over time, from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in similar volcanic catchments but of significant younger age than the ones explored here. In these younger catchments, an increase in drainage density with age was observed, and it was hypothesized that this was because of more landscape incision due to increasing near-surface lateral flow paths in more mature catchments. Our results suggests two hypotheses on the evolution of drainage density in matured catchments. One is that as

  1. Groundwater resources in the Kouris catchment (Cyprus) : data analysis and numerical modelling

    OpenAIRE

    Boronina, Anastasia; Renard, Philippe; Balderer, Werner; Christodoulides, Andreas

    2006-01-01

    The Kouris catchment in Cyprus is currently experiencing a scarcity of water resources due to the semi-arid climate across the southern part of the region, a series of dry years, and recent surface/subsurface water over-extraction. The catchment consists of the upper part of an ophiolitic complex in the North, which is considered a very significant aquifer for Cyprus, and an overlying sedimentary complex in the South, which has low water storage capacity. Water balance calculations are condu...

  2. Understanding Hydrological Processes in an Ungauged Catchment in sub-Saharan Africa

    OpenAIRE

    Mul, M.L.

    2009-01-01

    Ungauged catchments can be found in many parts of the world, but particularly in sub-Saharan Africa. Information collected in a gauged catchment and its regionalisation to ungauged areas is crucial for water resources assessment. Especially farmers in semi-arid areas are in need of such information. Inter and intra-seasonal rainfall variability is large in these areas, and farmers depend more and more on additional surface and groundwater resources for their crop production. As a result, unde...

  3. Lessons learned from integrated hydrological modeling of ephemeral catchments with different land uses

    Science.gov (United States)

    Camporese, Matteo; Dean, Joshua; Daly, Edoardo

    2016-04-01

    Land use, in particular tree cover, has a strong influence on evapotranspiration (ET) and thus a large effect on the water budget of ephemeral catchments in arid and semi-arid climates. Unfortunately, the dearth of medium to long-term experimental observations in such areas limits the understanding of the interplay between catchment geology, land use, and climate in driving catchment water balance. Here we use four years (2011-2014) of rainfall, streamflow, and groundwater level measurements to estimate the water balance components in two small, adjacent, ephemeral catchments in a semi-arid region of south-eastern Australia; one catchment was predominantly covered with a eucalypt plantation established in July 2008 and the other was dedicated to grazing pasture. The integrated hydrological model CATHY (CATchment HYdrology) was calibrated against the data in the two catchments using streamflow and groundwater level observations in 2011; the data in the following years (2012-2014) were used for the model validation. The model was able to adequately reproduce the periods of flow in both catchments in all years, although streamflow and groundwater levels were better reproduced in the pasture than in the plantation. This can partly be attributed to the root growth of the trees, which is difficult to estimate; the declining water storage in the eucalypt catchment could only be obtained when including a simple model of root growth dynamics. Other sources of uncertainty could be due to an imperfect description of the surface topography and bedrock geology, which prevent us from accurately reproducing the effects of the tree furrows and subsurface wetness connectivity. The water balances estimated from both data and model showed a significant increase in ET in the eucalypt plantation catchment at the expense of groundwater storage: ET accounted for 95-104% of rainfall in the pasture catchment and 104-119% in the eucalypt catchment across the four years studied. However, the

  4. Hydrograph separation using hydrochemical tracers in the Makanya catchment, Tanzania

    Science.gov (United States)

    Mul, Marloes L.; Mutiibwa, Robert K.; Uhlenbrook, Stefan; Savenije, Hubert H. G.

    Hydrochemical tracers were used to separate and quantify different runoff components in the semi-arid Makanya catchment in the South Pare Mountains of Tanzania. One flood event was investigated during the rainy season of October-December 2005 and analysed for electrical conductivity, dissolved silica and major anions and cations. The event on 9 November 2005 showed two peaks, each originating from one of two sub-catchments, upper-Vudee and Ndolwa, each with a distinct water quality signature. Hydrograph separation indicated that the two peaks in the hydrograph originated from a delay in response between the two catchments. The hydrograph separation indicated that, for this event, over 95% of the discharge could be attributed to sub-surface runoff, while the remainder was due to faster surface runoff processes. The dominance of sub-surface processes was also indicated by the lack of suspended sediments in the samples, which is a clear indication that no surface runoff took place.

  5. Waste biorefinery in arid/semi-arid regions.

    Science.gov (United States)

    Bastidas-Oyanedel, Juan-Rodrigo; Fang, Chuanji; Almardeai, Saleha; Javid, Usama; Yousuf, Ahasa; Schmidt, Jens Ejbye

    2016-09-01

    The utilization of waste biorefineries in arid/semi-arid regions is advisable due to the reduced sustainable resources in arid/semi-arid regions, e.g. fresh water and biomass. This review focuses on biomass residues available in arid/semi-arid regions, palm trees residues, seawater biomass based residues (coastal arid/semi-arid regions), and the organic fraction of municipal solid waste. The present review aims to describe and discuss the availability of these waste biomasses, their conversion to value chemicals by waste biorefinery processes. For the case of seawater biomass based residues it was reviewed and advise the use of seawater in the biorefinery processes, in order to decrease the use of fresh water. PMID:27072789

  6. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    Directory of Open Access Journals (Sweden)

    David Barrie Johnson

    2012-09-01

    Full Text Available Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC. Glycolic acid was identified as a significant component (12- 14% of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within three days. Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella, and mannitol and glucose (Euglena. These were rapidly metabolised by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp. though only fructose was utilised by the more fastidious heterotroph Acidocella aromatica. The significance of algae in promoting the growth of iron- (and sulfate- reducing heterotrophic acidophiles that are important in remediating mine-impacted waters is discussed.

  7. Mechanisms controlling arsenic uptake in rice grown in mining impacted regions in South China.

    Directory of Open Access Journals (Sweden)

    Junhui Li

    Full Text Available Foods produced on soils impacted by Pb-Zn mining activities are a potential health risk due to plant uptake of the arsenic (As associated with such mining. A field survey was undertaken in two Pb-Zn mining-impacted paddy fields in Guangdong Province, China to assess As accumulation and translocation, as well as other factors influencing As in twelve commonly grown rice cultivars. The results showed that grain As concentrations in all the surveyed rice failed national food standards, irrespective of As speciation. Among the 12 rice cultivars, "SY-89" and "DY-162" had the least As in rice grain. No significant difference for As concentration in grain was observed between the rice grown in the two areas that differed significantly for soil As levels, suggesting that the amount of As contamination in the soil is not necessarily the overriding factor controlling the As content in the rice grain. The iron and manganese plaque on the root surface curtailed As accumulation in rice roots. Based on our results, the accumulation of As within rice plants was strongly associated with such soil properties such as silicon, phosphorus, organic matter, pH, and clay content. Understanding the factors and mechanisms controlling As uptake is important to develop mitigation measures that can reduce the amount of As accumulated in rice grains produced on contaminated soils.

  8. 77 FR 33213 - An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska-Peer Review...

    Science.gov (United States)

    2012-06-05

    ...EPA is announcing the peer review panel members assembled by an independent contractor to evaluate the draft document titled, ``An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska'' (EPA-910-R-12-004a-c). EPA is also announcing a three week public comment period for the draft charge questions to be provided to the peer review panel. The assessment was prepared......

  9. Catchment conceptualisation for examining applicability of chloride mass balance method in an area of historical forest clearance

    OpenAIRE

    H. Guan; Love, A.; C. T. Simmons; Ding, Z; Hutson, J

    2009-01-01

    Among various approaches for estimating groundwater recharge, chloride mass balance (CMB) method is one of the most frequently used, in particular, for arid and semiarid regions. Widespread native vegetation clearance, common history in many areas globally, has changed land surface boundary condition, posing a question whether the current system has reached new chloride equilibrium for CMB application. To examine CMB applicability for catchments, conceptual catchment types of various chloride...

  10. Geochemical control processes and potential sediment toxicity in a mine-impacted lake.

    Science.gov (United States)

    Adeleke, Solomon Babatunde; Svensson, Bo H; Yekta, Sepehr Shakeri; Adeleye, Michael Mayowa

    2016-03-01

    Geochemical parameters and major ion concentrations from sediments of a freshwater lake in the town of Åtvidaberg, southeastern, Sweden, were used to identify the geochemical processes that control the water chemistry. The lake sediments are anoxic, characterized by reduced sulfur and sulfidic minerals. The hypothesis tested is that in sulfidic-anaerobic contaminated sediments, the presence of redox potential changes creates a favorable condition for sulfide oxidation, resulting in the release of potentially toxic metals. The acid volatile sulfide (AVS) contents ranged from 5.5 μmol/g to 16 μmol/g of dry sediment. Comparison of total mine tailing metals (∑mine tailing metals) with simultaneously extracted metals (SEM) in sediments indicates that up to 20% of the ∑mine tailing metals are bound to the solid phase as AVS. Consequently, the AVS and SEM analysis classified all sediment samples as potentially toxic in terms of heavy metal concentrations (i.e., SEM to AVS ratio distribution > 1). Evaluation of hydrogeochemical data suggests that calcite dissolution, iron (III) oxyhydroxysulfate mineral jarosite (H-jarosite) precipitation, hematite precipitation, and siderite precipitation are the most prevailing geochemical processes that control the geochemical interactions between the water column and sediment in a mine-impacted lake. The geochemical processes were verified and quantified using a chemical equilibrium modeling program, Visual MINTEQ, Ver 3.1, beta. The identified geochemical processes create an environment in which the characteristics of sulfate-rich waters and acidic-iron produce the geochemical conditions for acid mine drainage and mobilization of toxic metals. PMID:26313659

  11. An innovative carbonate coprecipitation process for the removal of zinc and manganese from mining impacted waters

    Science.gov (United States)

    Sibrell, P.L.; Chambers, M.A.; Deaguero, A.L.; Wildeman, T.R.; Reisman, D.J.

    2007-01-01

    Although mine drainage is usually thought of as acidic, there are many cases where the water is of neutral pH, but still contains metal species that can be harmful to human or aquatic animal health, such as manganese (Mn) and zinc (Zn). Typical treatment of mine drainage waters involves pH adjustment, but this often results in excessive sludge formation and removal of nontoxic species such as magnesium and calcium. Theoretical consideration of the stability of metal carbonate species suggests that the target metals could be removed from solution by coprecipitation with calcium carbonate. The U.S. Geological Survey has developed a limestone-based process for remediation of acid mine drainage that increases calcium carbonate saturation. This treatment could then be coupled with carbonate coprecipitation as an innovative method for removal of toxic metals from circumneutral mine drainage waters. The new process was termed the carbonate coprecipitation (CCP) process. The CCP process was tested at the laboratory scale using a synthetic mine water containing 50 mg/L each of Mn and Zn. Best results showed over 95% removal of both Mn and Zn in less than 2 h of contact in a limestone channel. The process was then tested on a sample of water from the Palmerton zinc superfund site, near Palmerton, Pennsylvania, containing over 300 mg/L Zn and 60 mg/L Mn. Treatment of this water resulted in removal of over 95% of the Zn and 40% of the Mn in the limestone channel configuration. Because of the potential economic advantages of the CCP process, further research is recommended for refinement of the process for the Palmerton water and for application to other mining impacted waters as well. ?? Mary Ann Liebert, Inc.

  12. Hydrological Impacts of Urbanization of Two Catchments in Harare, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Webster Gumindoga

    2014-12-01

    Full Text Available By increased rural-urban migration in many African countries, the assessment of changes in catchment hydrologic responses due to urbanization is critical for water resource planning and management. This paper assesses hydrological impacts of urbanization on two medium-sized Zimbabwean catchments (Mukuvisi and Marimba for which changes in land cover by urbanization were determined through Landsat Thematic Mapper (TM images for the years 1986, 1994 and 2008. Impact assessments were done through hydrological modeling by a topographically driven rainfall-runoff model (TOPMODEL. A satellite remote sensing based ASTER 30 metre Digital Elevation Model (DEM was used to compute the Topographic Index distribution, which is a key input to the model. Results of land cover classification indicated that urban areas increased by more than 600 % in the Mukuvisi catchment and by more than 200 % in the Marimba catchment between 1986 and 2008. Woodlands decreased by more than 40% with a greater decrease in Marimba than Mukuvisi catchment. Simulations using TOPMODEL in Marimba and Mukuvisi catchments indicated streamflow increases of 84.8 % and 73.6 %, respectively, from 1980 to 2010. These increases coincided with decreases in woodlands and increases in urban areas for the same period. The use of satellite remote sensing data to observe urbanization trends in semi-arid catchments and to represent catchment land surface characteristics proved to be effective for rainfall-runoff modeling. Findings of this study are of relevance for many African cities, which are experiencing rapid urbanization but often lack planning and design.

  13. Rainwater harvesting to alleviate water scarcity in dry conditions: A case study in Faria Catchment, Palestine

    Institute of Scientific and Technical Information of China (English)

    Sameer SHADEED; Jens LANGE

    2010-01-01

    In arid and semi-arid regions, the availability of adequate water of appropriate quality has become a limiting factor for development.This paper aims to evaluate the potential for rainwater harvesting in the arid to semi-arid Faria Catchment, in the West Bank, Palestine.Under current conditions, the supply-demand gap is increasing due to the increasing water demands of a growing population with hydrologically limited and uncertain supplies.By 2015, the gap is estimated to reach 4.5×106 m3.This study used the process-oriented and physically-based TRAIN-ZIN model to evaluate two different rainwater harvesting techniques during two rainfall events.The analysis shows that there is a theoretical potential for harvesting an additional 4 × 106 m3 of surface water over the entire catchment.Thus, it is essential to manage the potential available surface water supplies in the catchment to save water for dry periods when the supply-demand gap is comparatively high.Then a valuable contribution to bridging the supply-demand gap can be made.

  14. Rainwater harvesting to alleviate water scarcity in dry conditions: A case study in Faria Catchment, Palestine

    Directory of Open Access Journals (Sweden)

    Sameer SHADEED

    2010-06-01

    Full Text Available In arid and semi-arid regions, the availability of adequate water of appropriate quality has become a limiting factor for development. This paper aims to evaluate the potential for rainwater harvesting in the arid to semi-arid Faria Catchment, in the West Bank, Palestine. Under current conditions, the supply-demand gap is increasing due to the increasing water demands of a growing population with hydrologically limited and uncertain supplies. By 2015, the gap is estimated to reach 4.5 × 106 m3. This study used the process-oriented and physically-based TRAIN-ZIN model to evaluate two different rainwater harvesting techniques during two rainfall events. The analysis shows that there is a theoretical potential for harvesting an additional 4 × 106 m3 of surface water over the entire catchment. Thus, it is essential to manage the potential available surface water supplies in the catchment to save water for dry periods when the supply-demand gap is comparatively high. Then a valuable contribution to bridging the supply-demand gap can be made.

  15. Interaction of water components in the semi-arid Huasco and Limarí river basins, North Central Chile

    Directory of Open Access Journals (Sweden)

    G. Strauch

    2009-10-01

    Full Text Available For sustainable water resource management in semi-arid regions, sound information is required about interactions between the different components of the water system: rain/snow precipitation, surface/subsurface run-off, groundwater recharge. Exemplarily, the Huasco and Limarí river basins as water stressed river catchments have been studied by isotope and hydrochemical methods for (i the origin of water, (ii water quality, (iii relations of surface and groundwater.

    Applying the complex multi-isotopic and hydrochemical methodology to the water components of the Huasco and Limarí basins, a differentiation of water components concerning subsurface flow and river water along the catchment area and by anthropogenic impacts are detected. Sulphate and nitrate concentrations indicate remarkable input from mining and agricultural activities along the river catchment.

    The 2H-18O relations of river water and groundwater of both catchments point to the behaviour of river waters originated in an arid to semi-arid environment.

    Consequently, the groundwater from several production wells in the lower parts of the catchments is related to the rivers where the wells located, however, it can be distinguished from the river water. Using the hydrological water balance and the isotope mixing model, the interaction between surface and subsurface flows and river flow is estimated.

  16. Mechanisms affecting stormflow generation and solute behaviour in a Sahelian headwater catchment

    OpenAIRE

    Ribolzi, Olivier; Karambiri, H.; Bariac, T.; Benedetti, M; Caquineau, Sandrine; Descloitres, Marc; Aventurier, A. (préf.)

    2007-01-01

    The aim of this study was to analyse stormflow processes and the behaviour of solutes therein (Ca2+, Mg2+, Na+, K+, alkalinity, NO3-, So(4)(2-), Cl-, Si), during flood events in tropical semi-arid conditions. The study site was a small Sahelian catchment (1.4 ha) located in northern Burkina Faso. Runoff and rain water was sampled over a 2-year period (1999 and 2000). In addition to dissolved load, suspended load was measured in the stream water collected at the outlet of the catchment. Isotop...

  17. A methodological comparison of catchment storages in mountainous catchments

    Science.gov (United States)

    Weiler, Markus; Staudinger, Maria; Stölzle, Michael; Seeger, Stefan; Seibert, Jan; Stahl, Kerstin

    2015-04-01

    One of the most important functions of catchments is the temporary storage of water, which directly influences runoff dynamics, rainfall-runoff transformation, partitioning of evaporation and runoff fluxes, and accessibility of water to plants. Generally, a large catchment storage is considered beneficial and in particular increases the transit times and hence the buffer functioning related to water quality. Many different methods have been developed to assess catchment storage, however, there are hardly any direct comparisons of several of these methods. One challenge is the definition of water storage, while some methods allow estimation of the entire water storage in a catchment, other methods quantify only the dynamic storage. In addition, most studies focused more on lowland catchments with rain-dominated runoff regimes and observed groundwater fluctuations. Furthermore, these studies often focus on one or two catchments, but do not consider the influence of different climates on the relevance of water storage in the catchment. We applied a range of different methods to assess catchment storage characteristics in 18 catchments in the Swiss Alps, ranging from 500 to 2000m of mean elevation and hence from rainfall- to snowmelt dominated runoff regimes. The first method use only discharge information during recession periods and with varying approaches to extract discharge and storage changes between high flow and low flow, the dynamic catchment storage can be derived. In the next methods the conceptual hydrological model HBV is calibrated to the runoff dynamics and the dynamic and total catchment storages of the different compartments are being evaluated. The last methods are based on stable water isotope data analysis. We use the model TRANSEP to derive the dynamic storage as well as the total water storage of the catchment based on the transit times using several years of fortnightly isotope data in streamflow. The results show that the derived catchment

  18. Geochemical Processes Controlling the Generation and Environmental Impacts of Acid Mine Drainage in Semi Arid Conditions

    OpenAIRE

    Magombedze, Chris

    2006-01-01

    This study evaluates the geochemical processes that control the geochemistry of acid mine drainage in semi arid conditions. The central objective is to characterise and understand the evolution of acid mine drainage and its potential environmental impacts on the Mazowe River sub-catchment, in north east Zimbabwe. The work is based on a case study at three neighbouring metal sulphide mines, namely Trojan Nickel Mine, Mazowe Gold Mine and Iron Duke Pyrites.The methodology used in this research ...

  19. Runoff from soils on marls under semi-arid mediterranean conditions

    OpenAIRE

    D. Garnet; Blum, W. E. H.

    1996-01-01

    In semi-arid Mediterranean regions the pressure on natural resources such as water and soil is increasing. In the Maghreb, soil degradation and reservoir sedimentation are serious problems, particularly in catchment areas with a high proportion of marls. As part of an Algerian-German project of scientific-technical cooperation, the runoff from soils on marls was studied, using modern rain simulators. A description of the rainfall experiments is followed by the presentation of a simple and app...

  20. Catchment controls on solute export

    Science.gov (United States)

    Musolff, Andreas; Schmidt, Christian; Selle, Benny; Fleckenstein, Jan H.

    2015-12-01

    Dynamics of solute export from catchments can be classified in terms of chemostatic and chemodynamic export regimes by an analysis of concentration-discharge relationships. Previous studies hypothesized that distinct export regimes emerge from the presence of solute mass stores within the catchment and their connectivity to the stream. However, so far a direct link of solute export to identifiable catchment characteristics is missing. Here we investigate long-term time series of stream water quality and quantity of nine neighboring catchments in Central Germany ranging from relatively pristine mountain catchments to agriculturally dominated lowland catchments, spanning large gradients in land use, geology, and climatic conditions. Given the strong collinearity of catchment characteristics we used partial least square regression analysis to quantify the predictive power of these characteristics for median concentrations and the metrics of export regime. We can show that median concentrations and metrics of the export regimes of major ions and nutrients can indeed be inferred from catchment characteristics. Strongest predictors for median concentrations were the share of arable land, discharge per area, runoff coefficient and available water capacity in the root zone of the catchments. The available water capacity in the root zone, the share of arable land being artificially drained and the topographic gradient were found to be the most relevant predictors for the metrics of export regime. These catchment characteristics can represent the size of solute mass store such as the fraction of arable land being a measure for the store of nitrate. On the other hand, catchment characteristics can be a measure for the connectivity of these solute stores to the stream such as the fraction of tile drained land in the catchments. This study demonstrates the potential of data-driven, top down analyses using simple metrics to classify and better understand dominant controls of

  1. Climate change and catchment hydrology

    OpenAIRE

    Murphy, Conor

    2013-01-01

    Climate change is expected to alter catchment hydrology through changes in extremes of flooding and drought. River catchments are complex, dynamic systems and it is important to develop our understanding of how these systems are likely to respond to changes in climate. Work is ongoing in using EC-Earth simulations to further our understanding of how climate change will affect catchment hydrology and flood risk. In Ireland, the importance of this task is emphasised ...

  2. Water balance complexities in ephemeral catchments with different land uses: Insights from monitoring and distributed hydrologic modeling

    Science.gov (United States)

    Dean, J. F.; Camporese, M.; Webb, J. A.; Grover, S. P.; Dresel, P. E.; Daly, E.

    2016-06-01

    Although ephemeral catchments are widespread in arid and semiarid climates, the relationship of their water balance with climate, geology, topography, and land cover is poorly known. Here we use 4 years (2011-2014) of rainfall, streamflow, and groundwater level measurements to estimate the water balance components in two adjacent ephemeral catchments in south-eastern Australia, with one catchment planted with young eucalypts and the other dedicated to grazing pasture. To corroborate the interpretation of the observations, the physically based hydrological model CATHY was calibrated and validated against the data in the two catchments. The estimated water balances showed that despite a significant decline in groundwater level and greater evapotranspiration in the eucalypt catchment (104-119% of rainfall) compared with the pasture catchment (95-104% of rainfall), streamflow consistently accounted for 1-4% of rainfall in both catchments for the entire study period. Streamflow in the two catchments was mostly driven by the rainfall regime, particularly rainfall frequency (i.e., the number of rain days per year), while the downslope orientation of the plantation furrows also promoted runoff. With minimum calibration, the model was able to adequately reproduce the periods of flow in both catchments in all years. Although streamflow and groundwater levels were better reproduced in the pasture than in the plantation, model-computed water balance terms confirmed the estimates from the observations in both catchments. Overall, the interplay of climate, topography, and geology seems to overshadow the effect of land use in the study catchments, indicating that the management of ephemeral catchments remains highly challenging.

  3. Catchment-scale environmental controls of sediment-associated contaminant dispersal

    Science.gov (United States)

    Macklin, Mark

    2010-05-01

    Globally river sediment associated contaminants, most notably heavy metals, radionuclides, Polychlorinated Biphenyls (PCBs), Organochlorine pesticides (OCs) and phosphorous, constitute one the most significant long-term risks to ecosystems and human health. These can impact both urban and rural areas and, because of their prolonged environmental residence times, are major sources of secondary pollution if contaminated soil and sediment are disturbed by human activity or by natural processes such as water or wind erosion. River catchments are also the primary source of sediment-associated contaminants to the coastal zone, and to the ocean, and an understanding of the factors that control contaminated sediment fluxes and delivery in river systems is essential for effective environmental management and protection. In this paper the catchment-scale controls of sediment-associated contaminant dispersal are reviewed, including climate-related variations in flooding regime, land-use change, channel engineering, restoration and flood defence. Drawing on case studies from metal mining impacted catchments in Bolivia (Río Pilcomayo), Spain (Río Guadiamar), Romania (River Tisa) and the UK (River Swale) some improved methodologies for identifying, tracing, modelling and managing contaminated river sediments are proposed that could have more general application in similarly affected river systems worldwide.

  4. A Synoptic Climatology of Heavy Rain Events in the Lake Eyre and Lake Frome Catchments

    OpenAIRE

    Michael John Pook; James eRisbey; Caroline eUmmenhofer; Timothy eCohen; Peter eBriggs

    2014-01-01

    The rare occasions when Lake Eyre in central, southern Australia fills with water excite great interest and produce major ecological responses. The filling of other smaller lakes such as Lake Frome, have less impact but can contribute important information about the current and past climates of these arid regions. Here, the dominant synoptic systems responsible for heavy rainfall over the catchments of Lake Eyre and Lake Frome since 1950 are identified and compared. Heavy rain events are defi...

  5. A synoptic climatology of heavy rain events in the Lake Eyre and Lake Frome catchments

    OpenAIRE

    Pook, Michael J.; Risbey, James S.; Ummenhofer, Caroline C.; BRIGGS Peter R.; Cohen, Timothy J.

    2014-01-01

    The rare occasions when Lake Eyre in central, southern Australia fills with water excite great interest and produce major ecological responses. The filling of other smaller lakes such as Lake Frome have less impact but can contribute important information about the current and past climates of these arid regions. Here, the dominant synoptic systems responsible for heavy rainfall over the catchments of Lake Eyre and Lake Frome since 1950 are identified and compared. Heavy rain events are defin...

  6. Microbial ecology of arid environments

    OpenAIRE

    夏江瀛; Ha, Kong-ying

    2013-01-01

    Deserts comprise the largest terrestrial biome, making up approximately one third of the Earth’s land mass. They are defined in terms of moisture deficit using the Aridity Index with values 18°C), cold (

  7. Hydrological Catchment Similarity Assessment in Geum River Catchments, Korea

    Science.gov (United States)

    Ko, Ara; Park, Kisoon; Lee, Hyosang

    2013-04-01

    Similarity measure of catchments is essential for regionalization studies, which provide in depth analysis in hydrological response and flood estimations at ungauged catchments. However, this similarity measure is often biased to the selected catchments and is notclearly explained in hydrological sense. This study applied a type of hydrological similarity distance measure-Flood Estimation Handbook to 25 Geum river catchments, Korea. Three Catchment Characteristics, Area (A)-Annual precipitation (SAAR)-SCS Curve Number (CN), are used in Euclidian distance measures. Furthermore, six index of Flow Duration Curve (ILow:Q275/Q185, IDrought:Q355/Q185, IFlood:Qmax/Q185, IAbundant:Q95/Q185, IFloodDuration:Q10/Q355 and IRiverRegime:Qmax/Qmin) are applied to clustering analysis of SPSS. The catchments' grouping of hydrological similarity measures suggests three groups: H1 (Cheongseong, Gidae, Bukil, Oksan, Seockhwa, Habgang and Sangyeogyo), H2 (Cheongju, Guryong, Ugon, Boksu, Useong and Seokdong) and H3 (Muju, Yangganggyo and YongdamDam). The four catchments (Cheoncheon, Donghyang, DaecheongDam and Indong) are not grouped in this study. The clustering analysis of FDC provides four Groups; CFDC1 (Muju, YongdamDam, Yangganggyo, DaecheongDam, Cheongseong, Gidae, Seokhwa, Bukil, Habgang, Cheongju, Oksan, Yuseong and Guryong), CFDC2 (Cheoncheon, Donghyang, Boksu, Indong, Nonsan, Seokdong, Ugon, Simcheon, Useong and Sangyeogyo), CFDC3 (Songcheon) and CFDC4 (Tanbu). The six catchments (out of seven) of H1 are grouped in CFDC1, while Sangyeogyo is grouped in CFDC2. The four catchments (out of six) of H2 are also grouped in CFDC2, while Cheongju and Guryong are grouped in CFDC1. The catchments of H3 are categorized in CFDC1. The authors examine the results (H1, H2 and H3) of similarity measure based on catchment physical descriptors with results (CFDC1 and CFDC2) of clustering based on catchment hydrological response. The results of hydrological similarity measures are supported by

  8. Geomorphic control of persistent mine impacts in a Yellowstone Park stream and implications for the recovery of fluvial systems

    Science.gov (United States)

    Marcus, W. Andrew; Meyer, Grant A.; Nimmo, Delwayne R.

    2001-04-01

    A half-century after mine closure, metal contamination from sulfide ore mining in the headwaters continues to impair riparian vegetation and aquatic macroinvertebrates along Soda Butte Creek, Yellowstone National Park. A tailings dam failure in 1950 emplaced metal-rich sediment at high flood-plain levels, above 50 yr to 100 yr flood stages in 1996 and 1997. These large natural floods removed only a small part of the contaminated sediment through bank erosion; they also failed to lower in-channel Cu concentrations, because increased erosion of mine waste during high flows balances increased inputs of uncontaminated sediments, generating no net change in concentrations. Geomorphic processes controlling movement of contaminated sediments indicate that mine impacts will persist for centuries in Soda Butte Creek and imply long-lasting impacts in similarly affected streams worldwide.

  9. The role of climatic and terrain attributes in estimating baseflow recession in tropical catchments

    Directory of Open Access Journals (Sweden)

    J. L. Peña-Arancibia

    2010-07-01

    Full Text Available The understanding of low flows in rivers is paramount more than ever as demand for water increases on a global scale. At the same time, limited streamflow data to investigate this phenomenon, particularly in the tropics, makes the provision of accurate estimations in ungauged areas an ongoing research need. This paper analysed the potential of climatic and terrain attributes of 167 tropical and sub-tropical unregulated catchments to predict baseflow recession rates. Climatic attributes included annual and seasonal indicators of rainfall and potential evapotranspiration. Terrain attributes included indicators of catchment shape, morphology, land cover, soils and geology. Stepwise regression was used to identify the best predictors for baseflow recession coefficients (kbf. Mean annual rainfall (MAR and aridity index (AI were found to explain 49% of the spatial variation of kbf. The rest of climatic indices plus average catchment slope (SLO and tree cover were also good predictors, but co-correlated with MAR. Catchment elongation (CE, a measure of catchment shape, was also found to be statistically significant, although weakly correlated. An analysis of clusters of catchments of smaller size, showed that in these areas, presumably with some similarity of soils and geology due to proximity, residuals of the regression could be explained by SLO and CE. The approach used provides a~potential alternative for kbf parameterisation in ungauged areas.

  10. Rainwater catchment system design using simulated future climate data

    Science.gov (United States)

    Wallace, Corey D.; Bailey, Ryan T.; Arabi, Mazdak

    2015-10-01

    Rainwater harvesting techniques are used worldwide to augment potable water supply, provide water for small-scale irrigation practices, increase rainwater-use efficiency for sustained crop growth in arid and semi-arid regions, decrease urban stormwater flow volumes, and in general to relieve dependency on urban water resources cycles. A number of methods have been established in recent years to estimate reliability of rainwater catchment systems (RWCS) and thereby properly size the components (roof catchment area, storage tank size) of the system for a given climatic region. These methods typically use historical or stochastically-generated rainfall patterns to quantify system performance and optimally size the system, with the latter accounting for possible rainfall scenarios based on statistical relationships of historical rainfall patterns. To design RWCS systems that can sustainably meet water demand under future climate conditions, this paper introduces a method that employs climatic data from general circulation models (GCMs) to develop a suite of catchment area vs. storage size design curves that capture uncertainty in future climate scenarios. Monthly rainfall data for the 2010-2050 time period is statistically downscaled to daily values using a Markov chain algorithm, with results used only from GCMs that yield rainfall patterns that are statistically consistent with historical rainfall patterns. The process is demonstrated through application to two climatic regions of the Federated States of Micronesia (FSM) in the western Pacific, wherein the majority of the population relies on rainwater harvesting for potable water supply. Through the use of design curves, communities can provide household RWCS that achieve a certain degree of storage reliability. The method described herein can be applied generally to any geographic region. It can be used to first, assess the future performance of existing household systems; and second, to design or modify systems

  11. Application of hydrochemical and tritium content measurements as well as stable isotope ratios for assessment of strip mine impact on environment

    International Nuclear Information System (INIS)

    The hydrochemical measurements, tritium content and stable isotope ration 34S/32S and 18O/16O have been used for Belchatow strip mine impact assessment on environmental waters. The sources of pollution can be localized on this base. (author)

  12. Mitigating Climate Change in the Arid Lands of Namibia

    Science.gov (United States)

    Schneider, Martin B.; Sorensen, Marten

    2014-05-01

    Mitigating Climate Change in the Arid Lands of Namibia Namibia is the most arid country south of the Sahara, with scarce rainfall and perennial rivers only at its borders, > 80% of the area relies solely on groundwater. This has had devastating economic effects limiting opportunities for sustainable rural livelihoods that keep the population majority living below the World Bank poverty line (IFAD, 2013). A primary example of climatic variability which affects agrarian productivity is increased bush encroachment of Namibia's arid grazing land. The result has been a severe biodiversity loss, increased desertification and diminished water-use efficiency and underground water tables. Given these factors, Namibia's arid lands provide a unique opportunity to assess and test innovative / appropriate adaptation and mitigation strategies. Working toward sustainable management, restoration, and maintenance of balanced, resilient arid ecosystems in Namibia will also be a means to support and expand economic sectors incl. opportunities for job creation and potentially provide a model for similar arid regions. Main vegetation zones are: desert (46%), savannah (37%), and dry woodlands and forests (17%), i.e. dimensions of management strategies within stakeholder groups using participatory approaches. 3. Determine science-based alternatives for adaptive land management strategies and test their acceptability to local communities and within the current policy framework. 4. Integrate identified indigenous knowledge with appropriate science and new emerging technologies to develop a training toolkit of effective strategies relevant to all stakeholders. 5. Utilize training sessions, education workshops, curriculum revisions, and appropriate information and communication technologies (ICTs) including social media outlets to disseminate the toolkit strategies. 6. Apply a modified logic model approach within a value chain analysis process to evaluate program effectiveness and impacts at

  13. Environmental care in agricultural catchments: Toward the communicative catchment

    Science.gov (United States)

    Martin, Peter

    1991-11-01

    Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.

  14. Evidence of Historical Mining Impacts on Saltmarshes from east Cornwall, UK

    Science.gov (United States)

    Iurian, Andra-Rada; Taylor, Alex; Millward, Geoff; Blake, William

    2016-04-01

    In landscapes with extensive mining history, saltmarshes can become sinks for contaminants that are vulnerable to release with sea-level rise and increased storminess. Given the prolonged residence time of heavy metals in the environment, data is urgently required to contextualise the impacts of past and present mining and pollution events and provide a baseline against which to assess Water Framework Directive (WFD) (2000/60/EC) compliance within an integrated catchment management framework. The geology of east Cornwall, UK (with intrusions of granite into the surrounding sedimentary rocks) was favourable for a prosperous mining industry, although large scale operations did not start until about 1830. Tin, cooper, lead and tungsten were the most important ores in the region. In order to quantify the spatial and temporal extent of contamination from past mining, sediment cores were collected from three saltmarshes, namely: Antony Marsh and Treluggan Marsh on the Lower Basin of River Lynher, and Port Eliot Marsh on the Lower Basin of River Tiddy. Core sections at 1 cm intervals were analysed by gamma-ray spectrometry for Pb-210, Ra-226, Cs-137 and Am-241, and the well-established Constant Rate of Supply (CRS) model was employed to derive Pb-210 geochronology with bomb-derived Cs-137 and Am-241 as independent chronological markers. The geochronological data provided the sedimentary accumulation and temporal context for the study. In terms of sediment quality with respect to mining pollution, core sections were analysed using Q-ICP-MS techniques and, additionally, WD-XRF instrumentation at Plymouth University. Measurements were performed for target elements that are normally associated with mining and smelting activities (e.g. Pb, Cu, Sn, Zn, Cr, Cd, etc.), and lithogenic elements (e.g. Fe, Al, Ti) that allow enrichment factors for the anthropogenically-derived elements to be determined. The grain size distribution was determined to identify storminess events and to

  15. Ground water input to a rare flood event in an arid zone ephemeral river identified with isotopes and chemistry

    International Nuclear Information System (INIS)

    Various isotope studies in temperate climates have shown that the shallow groundwater component feeding perennial rivers during rainfall events can be more important than surface runoff. We report, here on possibly unique isotopic and chemical evidence of groundwater contributions to a rare Hood event of the ephemeral Auob River during the exceptional rains of 1999/2000 in the arid/semi-arid Kalahari of southeastern Namibia. The recognition of this process was enabled by a detailed knowledge of the isotope hydrology of groundwater in the area and provided insights into aspects of the palaeo-hydrology of the Auob River catchment. (author)

  16. Study on the change rule of groundwater level and its impacts on vegetation at arid mining area

    Institute of Scientific and Technical Information of China (English)

    LEI Shao-gang; BIAN Zheng-fu; ZHANG Ri-chen; LI Lin

    2007-01-01

    The shallow groundwater in Shendong mining area was broken because of large-scale underground mining activities. Selecting 32201 working-face as research area,analyzed the change rule of groundwater level and aquifer thickness under mining impact with a large number of water level observation data. Then, the impacts of groundwater level change on vegetation were analyzed by the relationship theory of arid area groundwater and vegetation. The results show that the aquifer structure and the water condition of supply flow and drainage are changed by the water proof mining. The groundwater level recovere only a little compared with the original groundwater level in two years. But the great change of groundwater level do not have notable influences on vegetation of this mining area, and further study indicates that there are certain conditions where groundwater level change impacted on vegetation. When the influence of groundwater level change was evaluated, the plant ecological water level, warning water level and spatial distribution character of original groundwater and mining-impacted groundwater-level change should be integrated.

  17. The role of climatic and terrain attributes in estimating baseflow recession in tropical catchments

    Directory of Open Access Journals (Sweden)

    J. L. Peña-Arancibia

    2010-11-01

    Full Text Available The understanding of low flows in rivers is paramount more than ever as demand for water increases on a global scale. At the same time, limited streamflow data to investigate this phenomenon, particularly in the tropics, makes the provision of accurate estimations in ungauged areas an ongoing research need. This paper analysed the potential of climatic and terrain attributes of 167 tropical and sub-tropical unregulated catchments to predict baseflow recession rates. Daily streamflow data (m3 s–1 from the Global River Discharge Center (GRDC and a linear reservoir model were used to obtain baseflow recession coefficients (kbf for these catchments. Climatic attributes included annual and seasonal indicators of rainfall and potential evapotranspiration. Terrain attributes included indicators of catchment shape, morphology, land cover, soils and geology. Stepwise regression was used to identify the best predictors for baseflow recession coefficients. Mean annual rainfall (MAR and aridity index (AI were found to explain 49% of the spatial variation of kbf. The rest of climatic indices and the terrain indices average catchment slope (SLO and tree cover were also good predictors, but co-correlated with MAR. Catchment elongation (CE, a measure of catchment shape, was also found to be statistically significant, although weakly correlated. An analysis of clusters of catchments of smaller size, showed that in these areas, presumably with some similarity of soils and geology due to proximity, residuals of the regression could be explained by SLO and CE. The approach used provides a potential alternative for kbf parameterisation in ungauged catchments.

  18. The catchment based approach using catchment system engineering

    Science.gov (United States)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  19. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    Science.gov (United States)

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium. PMID:27207229

  20. Catchment conceptualisation for examining applicability of chloride mass balance method in an area with historical forest clearance

    Directory of Open Access Journals (Sweden)

    H. Guan

    2010-07-01

    Full Text Available Of the various approaches for estimating groundwater recharge, the chloride mass balance (CMB method is one of the most frequently used, especially for arid and semiarid regions. Widespread native vegetation clearance, common in many areas globally, has changed the land surface boundary condition, posing the question as to whether the current system has reached new chloride equilibrium, required for a CMB application. Although a one-dimensional CMB can be applied at a point where the water and chloride fluxes are locally in steady state, the CMB method is usually applied at a catchment scale owing to significant lateral flows in mountains. The applicability of the CMB method to several conceptual catchment types of various chloride equilibrium conditions is examined. The conceptualisation, combined with some local climate conditions, is shown to be useful in assessing whether or not a catchment has reached new chloride equilibrium. The six conceptual catchment types are tested with eleven selected catchments in the Mount Lofty Ranges (MLR, a coastal hilly area in South Australia having experienced widespread historical forest clearance. The results show that six of the eleven catchments match a type VI chloride balance condition (chloride non-equilibrium with a gaining stream, with the ratios of stream chloride output (O over atmospheric chloride input (I, or catchment chloride O/I ratios, ranging from 2 to 4. Two catchments match a type V chloride balance condition (chloride non-equilibrium with a losing stream, with catchment chloride O/I ratios about 0.5. For these type V and type VI catchments, the CMB method is not applicable. The results also suggest that neither a chloride O/I ratio less than one nor a low seasonal fluctuation of streamflow chloride concentration (a factor below 4 guarantees a chloride equilibrium condition in the study area. A large chloride O/I value (above one and a large fluctuation of streamflow chloride

  1. Catchment conceptualisation for examining applicability of chloride mass balance method in an area of historical forest clearance

    Directory of Open Access Journals (Sweden)

    H. Guan

    2009-11-01

    Full Text Available Among various approaches for estimating groundwater recharge, chloride mass balance (CMB method is one of the most frequently used, in particular, for arid and semiarid regions. Widespread native vegetation clearance, common history in many areas globally, has changed land surface boundary condition, posing a question whether the current system has reached new chloride equilibrium for CMB application. To examine CMB applicability for catchments, conceptual catchment types of various chloride equilibrium conditions are defined. The conceptualization, combined with some local climate conditions, is demonstrated to be useful in examining whether a catchment has reached new chloride equilibrium. The six conceptual catchment types are tested with eleven selected catchments in the Mount Lofty Ranges (MLR, a coastal hilly area in South Australia having experienced historical widespread forest clearance. The results show that six of the eleven catchments match type VI chloride balance condition (chloride non-equilibrium with a gaining stream, with the ratio of stream chloride output over atmospheric chloride input (catchment chloride O/I ranging from 2 to 4. Two catchments match type V chloride balance condition (chloride non-equilibrium with a losing stream, with catchment chloride O/I values about 0.5. For these catchments, the CMB method is not appropriate to apply. The results also suggest that neither a below-one chloride O/I value nor a low seasonal fluctuation of streamflow chloride concentration (a factor below 4 guarantees a chloride equilibrium condition in the study area. But a large chloride O/I value (above one and a large fluctuation of streamflow chloride concentration (a factor of 10 and above generally indicates either a chloride disequilibrium, or cross-catchment water transfer, or both, for which CMB is not applicable. Based on the regression between chloride O/I values and annual precipitation for type VI catchments, a catchment with

  2. 半干旱雨养农业区集雨补灌对马铃薯田水分运移的影响%Effects of Supplemental Irrigation Using Catchment Rainfall on Water Movement of Potato Field in Semi-arid Rainfed Areas

    Institute of Scientific and Technical Information of China (English)

    秦舒浩; 张俊莲; 王蒂; 刘震; 申鹏

    2011-01-01

    采用大田试验方法,研究集雨补灌对旱作马铃薯田水分运移规律和产量的影响。结果表明,对马铃薯有效的土壤水分主要分布在80 cm以上土层,苗期补灌45 mm处理水分利用效率(WUE)最高,且收获后不同土层中滞留的水分较少;在此基础上再增加补灌量,马铃薯产量增加不显著,WUE显著降低。集雨补灌增加了马铃薯棵间蒸发量(E)和植株蒸腾量(T),90 mm高额补灌处理在前、中期棵间蒸发量较高,收获后80 cm以下深层贮水量显著高于45 mm及45 mm以下补灌处理。45 mm与90 mm补灌处理植株蒸腾量差异不显著,马铃薯生长后期,苗期补灌与薯块膨大期补灌植株蒸腾量差异亦不显著;苗期45 mm补灌处理蒸腾量与蒸发量比率(T/E)比较高,其综合用水效率较高。%The effects of supplemental irrigation using catchment rainfall on water movement and production of rain-fed potato were studied by field experiments.The results showed that WUE of potato was higher in the supplemental irrigation treatment of 45 mm than other treatments at the seedling stage,and the storage of water in different soil depth was more least.With the increasing of irrigation amount,the production of potato was not increased significantly and WUE decreased significantly.The soil evaporation and transpiration among plants were increased by supplemental irrigation using catchment rainfall.The soil evaporation at prophase and metaphase state was higher in the supplemental irrigation treatment of 90 mm than 45 mm and under 45 mm treatment,at the same time,after harvest the water storage under 80 cm was higher significantly at the treatment of 90 mm.There was no difference of plant transpiration between 45 mm and 90 mm treatment,the same between the seedling and tuber expanding stage.WUE and IWUE were the highest under the 45 mm of irrigation at the seedling stage,because of the highest transpiration and evaporation rate.

  3. Hydrodynamic investigation and numerical simulation of intermittent and ephemeral flows in semi-arid regions: Wadi Mekerra, Algeria

    OpenAIRE

    Korichi, Khaled; Hazzab, Abdelkrim

    2012-01-01

    Semi-arid regions are characterized by important infrequent rainfall. They often occur in early autumn and give rise to devastating floods. Flooding problems at Wadi Mekerra, located in the Sidi Bel Abbes town (Northwest Algeria), was traditionally the main concern of researchers and government officials. In this work, the magnitude of raging flood wave in the studied catchment and the principal causes are discussed. After this, we present the main hydromorphometric features and the results o...

  4. Interaction of water components in the semi-arid Huasco and Limarí river basins, North Central Chile

    OpenAIRE

    Strauch, G; R. Oyarzún; F. Reinstorf; J. Oyarzún; M. Schirmer; K. Knöller

    2009-01-01

    For sustainable water resource management in semi-arid regions, sound information is required about interactions between the different components of the water system: rain/snow precipitation, surface/subsurface run-off, groundwater recharge. Exemplarily, the Huasco and Limarí river basins as water stressed river catchments have been studied by isotope and hydrochemical methods for (i) the origin of water, (ii) water quality, (iii) relations of surface and groundwater.

    App...

  5. Element mobility during pyrite weathering: implications for acid and heavy metal pollution at mining-impacted sites

    Science.gov (United States)

    Lu, Long; Wang, Rucheng; Chen, Fanrong; Xue, Jiyue; Zhang, Peihua; Lu, Jianjun

    2005-11-01

    Based on back scattered electron images and electron micro-probe analysis results, four alteration layers, including a transition layer, a reticulated ferric oxide layer, a nubby ferric oxide layer and a cellular ferric oxide layer, were identified in the naturally weathering products of pyrite. These layers represent a progressive alteration sequence of pyrite under weathering conditions. The cellular ferric oxide layer correlates with the strongest weathering phase and results from the dissolution of nubby ferric oxide by acidic porewater. Leaching coefficient was introduced to better express the response of element mobility to the degree of pyrite weathering. Its variation shows that the mobility of S, Co and Bi is stronger than As, Cu and Zn. Sulfur in pyrite is oxidized to sulfuric acid and sulfate that are basically released into to porewater, and heavy metals Co and Bi are evidently released by acid dissolution. As, Cu and Zn are enriched in ferric oxide by adsorption and by co-precipitation, but they would re-release to the environment via desorption or dissolution when porewater pH becomes low enough. Consequently, Co, Bi, As, Cu and Zn may pose a substantial impact on water quality. Considering that metal mobility and its concentration in mine waste are two important factors influencing heavy metal pollution at mining-impacted sites, Bi and Co are more important pollutants in this case.

  6. An appraisal of biological responses and network of environmental interactions in non-mining and mining impacted coastal waters.

    Science.gov (United States)

    Fernandes, Christabelle E G; Malik, Ashish; Jineesh, V K; Fernandes, Sheryl O; Das, Anindita; Pandey, Sunita S; Kanolkar, Geeta; Sujith, P P; Velip, Dhillan M; Shaikh, Shagufta; Helekar, Samita; Gonsalves, Maria Judith; Nair, Shanta; LokaBharathi, P A

    2015-08-01

    The coastal waters of Goa and Ratnagiri lying on the West coast of India are influenced by terrestrial influx. However, Goa is influenced anthropogenically by iron-ore mining, while Ratnagiri is influenced by deposition of heavy minerals containing iron brought from the hinterlands. We hypothesize that there could be a shift in biological response along with changes in network of interactions between environmental and biological variables in these mining and non-mining impacted regions, lying 160 nmi apart. Biological and environmental parameters were analyzed during pre-monsoon season. Except silicates, the measured parameters were higher at Goa and related significantly, suggesting bacteria centric, detritus-driven region. At Ratnagiri, phytoplankton biomass related positively with silicate suggesting a region dominated by primary producers. This dominance perhaps got reflected as a higher tertiary yield. Thus, even though the regions are geographically proximate, the different biological response could be attributed to the differences in the web of interactions between the measured variables. PMID:25907627

  7. Phylogenetic Diversity of Archaea and the Archaeal Ammonia Monooxygenase Gene in Uranium Mining-Impacted Locations in Bulgaria

    Directory of Open Access Journals (Sweden)

    Galina Radeva

    2014-01-01

    Full Text Available Uranium mining and milling activities adversely affect the microbial populations of impacted sites. The negative effects of uranium on soil bacteria and fungi are well studied, but little is known about the effects of radionuclides and heavy metals on archaea. The composition and diversity of archaeal communities inhabiting the waste pile of the Sliven uranium mine and the soil of the Buhovo uranium mine were investigated using 16S rRNA gene retrieval. A total of 355 archaeal clones were selected, and their 16S rDNA inserts were analysed by restriction fragment length polymorphism (RFLP discriminating 14 different RFLP types. All evaluated archaeal 16S rRNA gene sequences belong to the 1.1b/Nitrososphaera cluster of Crenarchaeota. The composition of the archaeal community is distinct for each site of interest and dependent on environmental characteristics, including pollution levels. Since the members of 1.1b/Nitrososphaera cluster have been implicated in the nitrogen cycle, the archaeal communities from these sites were probed for the presence of the ammonia monooxygenase gene (amoA. Our data indicate that amoA gene sequences are distributed in a similar manner as in Crenarchaeota, suggesting that archaeal nitrification processes in uranium mining-impacted locations are under the control of the same key factors controlling archaeal diversity.

  8. Technical Note: A comparison of model and empirical measures of catchment-scale effective energy and mass transfer

    Directory of Open Access Journals (Sweden)

    C. Rasmussen

    2013-09-01

    Full Text Available Recent work suggests that a coupled effective energy and mass transfer (EEMT term, which includes the energy associated with effective precipitation and primary production, may serve as a robust prediction parameter of critical zone structure and function. However, the models used to estimate EEMT have been solely based on long-term climatological data with little validation using direct empirical measures of energy, water, and carbon balances. Here we compare catchment-scale EEMT estimates generated using two distinct approaches: (1 EEMT modeled using the established methodology based on estimates of monthly effective precipitation and net primary production derived from climatological data, and (2 empirical catchment-scale EEMT estimated using data from 86 catchments of the Model Parameter Estimation Experiment (MOPEX and MOD17A3 annual net primary production (NPP product derived from Moderate Resolution Imaging Spectroradiometer (MODIS. Results indicated positive and significant linear correspondence (R2 = 0.75; P −2 yr−1. Modeled EEMT values were consistently greater than empirical measures of EEMT. Empirical catchment estimates of the energy associated with effective precipitation (EPPT were calculated using a mass balance approach that accounts for water losses to quick surface runoff not accounted for in the climatologically modeled EPPT. Similarly, local controls on primary production such as solar radiation and nutrient limitation were not explicitly included in the climatologically based estimates of energy associated with primary production (EBIO, whereas these were captured in the remotely sensed MODIS NPP data. These differences likely explain the greater estimate of modeled EEMT relative to the empirical measures. There was significant positive correlation between catchment aridity and the fraction of EEMT partitioned into EBIO (FBIO, with an increase in FBIO as a fraction of the total as aridity increases and percentage of

  9. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments

    Science.gov (United States)

    Potter, N.J.; Zhang, L.; Milly, P.C.D.; McMahon, T.A.; Jakeman, A.J.

    2005-01-01

    An important factor controlling catchment-scale water balance is the seasonal variation of climate. The aim of this study is to investigate the effect of the seasonal distributions of water and energy, and their interactions with the soil moisture store, on mean annual water balance in Australia at catchment scales using a stochastic model of soil moisture balance with seasonally varying forcing. The rainfall regime at 262 catchments around Australia was modeled as a Poisson process with the mean storm arrival rate and the mean storm depth varying throughout the year as cosine curves with annual periods. The soil moisture dynamics were represented by use of a single, finite water store having infinite infiltration capacity, and the potential evapotranspiration rate was modeled as an annual cosine curve. The mean annual water budget was calculated numerically using a Monte Carlo simulation. The model predicted that for a given level of climatic aridity the ratio of mean annual evapotranspiration to rainfall was larger where the potential evapotranspiration and rainfall were in phase, that is, in summer-dominant rainfall catchments, than where they were out of phase. The observed mean annual evapotranspiration ratios have opposite results. As a result, estimates of mean annual evapotranspiration from the model compared poorly with observational data. Because the inclusion of seasonally varying forcing alone was not sufficient to explain variability in the mean annual water balance, other catchment properties may play a role. Further analysis showed that the water balance was highly sensitive to the catchment-scale soil moisture capacity. Calibrations of this parameter indicated that infiltration-excess runoff might be an important process, especially for the summer-dominant rainfall catchments; most similar studies have shown that modeling of infiltration-excess runoff is not required at the mean annual timescale. Copyright 2005 by the American Geophysical Union.

  10. A Synoptic Climatology of Heavy Rain Events in the Lake Eyre and Lake Frome Catchments

    Directory of Open Access Journals (Sweden)

    Michael John Pook

    2014-11-01

    Full Text Available The rare occasions when Lake Eyre in central, southern Australia fills with water excite great interest and produce major ecological responses. The filling of other smaller lakes such as Lake Frome, have less impact but can contribute important information about the current and past climates of these arid regions. Here, the dominant synoptic systems responsible for heavy rainfall over the catchments of Lake Eyre and Lake Frome since 1950 are identified and compared. Heavy rain events are defined as those where the mean catchment rainfall for 24 hours reaches a prescribed threshold. There were 25 such daily events at Lake Eyre and 28 in the Lake Frome catchment. The combination of a monsoon trough at mean sea level and a geopotential trough in the mid-troposphere was found to be the synoptic system responsible for the majority of the heavy rain events affecting Lake Eyre and one in five of the events at Lake Frome. Complex fronts where subtropical interactions occurred with Southern Ocean fronts also contributed over 20% of the heavy rainfall events in the Frome catchment. Surface troughs without upper air support were found to be associated with 10% or fewer of events in each catchment, indicating that mean sea level pressure analyses alone do not adequately capture the complexity of the heavy rainfall events. At least 80% of the heavy rain events across both catchments occurred when the Southern Oscillation Index (SOI was in its positive phase, and for Lake Frome, the SOI exceeded +10 on 60% of occasions, suggesting that the background atmospheric state in the Pacific Ocean was tilted towards La Niña. Hydrological modeling of the catchments suggests that the 12-month running mean of the soil moisture in a sub-surface layer provides a low frequency filter of the precipitation and matches measured lake levels relatively well.

  11. Soil carbon in the arid and semi-arid tropics

    International Nuclear Information System (INIS)

    Soils in the arid and semi-arid tropics are often poor in soil organic matter (SOM) contents. On the other hand, calcretes and soils with calcic or petrocalcic horizons have a world-wide distribution and are regarded as important carbon reservoirs. For this reason, knowledge on their formation processes and the carbon source-sink relationship is necessary. An evaluation is made of the major models of calcrete formation using stable isotope techniques, especially on Tunisian soils. Normally, calcretes do not act as carbon sinks unless at least part of the calcium originates from weathering. However, in some cases they can change to carbon sources under anthropogenically altered environmental conditions when acids are precipitated. Desert losses are quite rich in carbonates and can form fertile soils, but good management practices and conservation efforts are required. These soils are usually poor in SOM contents and their carbon source-sink relationship depends on the way in which the soil is managed. Vertisols play an important role in soils of the semi-arid tropics. Despite their dark colour, they generally contain little organic carbon. Using stable isotope and radiocarbon methods it has been shown that carbon fixation takes place even over a few decades. Research experiments carried out on Vertisols in India have shown that the SOM decomposition rates can be influenced by the soil management practices. (author). 3 figs

  12. Water balance modeling of Upper Blue Nile catchments using a top-down approach

    Directory of Open Access Journals (Sweden)

    S. Tekleab

    2011-07-01

    Full Text Available The water balances of twenty catchments in the Upper Blue Nile basin have been analyzed using a top-down modeling approach based on Budyko's hypotheses. The objective of this study is to obtain better understanding of water balance dynamics of upper Blue Nile catchments on annual and monthly time scales and on a spatial scale of meso scale to large scale. The water balance analysis using a Budyko-type curve at annual scale reveals that the aridity index does not exert a first order control in most of the catchments. This implies the need to increase model complexity to monthly time scale to include the effects of seasonal soil moisture dynamics. The dynamic water balance model used in this study predicts the direct runoff and other processes based on the limit concept; i.e. for dry environments since rainfall amount is small, the aridity index approaches to infinity or equivalently evaporation approaches rainfall and for wet environments where the rainfall amount is large, the aridity index approaches to zero and actual evaporation approaches the potential evaporation. The uncertainty of model parameters has been assessed using the GLUE (Generalized Likelihood Uncertainty Estimation methodology. The results show that the majority of the parameters are reasonably well identifiable. However, the baseflow recession constant was poorly identifiable. Parameter uncertainty and model structural errors could be the reason for the poorly identifiable parameter. Moreover, a multi-objective model calibration strategy has been employed to emphasize the different aspects of the hydrographs on low and high flows.

    The model has been calibrated and validated against observed streamflow time series and it shows good performance for the twenty study catchments in the upper Blue Nile. During the calibration period (1995–2000 the Nash and Sutcliffe efficiency (E NS for monthly flow prediction varied between 0.52 to 0.93 (dominated by

  13. Hydrological modeling of the semi-arid Andarax river basin in southern Spain

    DEFF Research Database (Denmark)

    Andersen, Flemming Hauge; Jensen, Karsten Høgh; Sandholt, Inge;

    and apply remote sensing derived variables as input data. Specifically surface temperature, global radiation, albedo and leaf area index (LAI) are derived from remote sensing images. We compare the two model simulations and focus in particular on the temporal and spatial distribution of...... the Andarax river. When the river reaches the medium and lower-laying areas most of the water infiltrates into the highly permeable Detritic aquifer. River discharge into the Mediterranean Sea only occurs at rare occasions and for high rainfalls. The total recharge within the catchment determines the...... water availability in the delta region. Due to the high evapotranspiration in semi-arid or arid regions groundwater recharge can be as low as 1 % of the precipitation. Thus it is essential to accurately predict the seasonal and regional distribution of actual evapotranspiration (ET) within the river...

  14. The case of arid and semi-arid zones; Le cas des zones arides et semi-arides

    Energy Technology Data Exchange (ETDEWEB)

    Agoumi, A. [Ecole Hassania, Casablanca (Morocco); Stour, L. [Hassan Univ., Mohammedia (Morocco). Faculty of Sciences

    2009-07-15

    This article addressed issues regarding the conservation and sustainable use of biomass resources in arid and semi-arid zone ecosystems. Conservation strategies for climatic zones threatened by increased pressure from intensified land use, drought, and land degradation were discussed along with sustainable land use management practices. The strategies range from strict regulations for environmental protection to various forms of conservation easements, such as carbon credits. The article also supported the initiative to reduce emissions caused by deforestation and degradation (REDD). The REDD initiative proposes that future global climate agreements should first aim to reduce the total forested area lost in the tropics and then to eventually cease global deforestation. It was concluded that sustainable forestry at a global level is needed in order to achieve mitigation targets and to avoid the risk that forests may becomes a net carbon source rather than carbon sinks. 3 figs.

  15. CHARACTERISTICS OF ARIDITY CONDITIONS IN SOUTH DOBRUDJA

    OpenAIRE

    A. TISCOVSCHI; GABRIELA MANEA; O. COCOS; IULIANA VIJULIE; ROXANA CUCULICI

    2013-01-01

    Characteristics of Aridity Conditions in South Dobrudja. For most people, the arid and semi-arid lands are those where precipitation is low (less than 200 mm per year), and yet enough for supplying streams capable of temporarily carrying the debris resulted from weathering, but insufficient for encouraging the development of a vegetal cover meant to protect the soil blanket against eroding agents. The drought is a major and permanent climatic risk for the Dobrudja territory as a whole and for...

  16. Do weirs affect the physical and geochemical mobility of toxic metals in mining-impacted floodplain sediments?

    Science.gov (United States)

    Bulcock, Amelia; Coleman, Alexandra; Whitfield, Elizabeth; Andres Lopez-Tarazon, Jose; Byrne, Patrick; Whitfield, Greg

    2015-04-01

    Weirs are common river structures designed to modify river channel hydraulics and hydrology for purposes of navigation, flood defence, irrigation and hydrometry. By design, weirs constrain natural flow processes and affect sediment flux and river channel forms leading to homogenous river habitats and reduced biodiversity. The recent movement towards catchment-wide river restoration, driven by the EU Water Framework Directive, has recognised weirs as a barrier to good ecological status. However, the removal of weirs to achieve more 'natural' river channels and flow processes is inevitably followed by a period of adjustment to the new flow regime and sediment flux. This period of adjustment can have knock-on effects that may increase flood risk, sedimentation and erosion until the river reaches a state of geomorphological equilibrium. Many catchments in the UK contain a legacy of toxic metals in floodplain sediments due to historic metal mining activities. The consequences of weir removal in these catchments may be to introduce 'stored' mine wastes into the river system with severe implications for water quality and biodiversity. The purpose of this study is to investigate the potential impact of a weir on the physical and geochemical mobilisation of mine wastes in the formerly mined River Twymyn catchment, Wales. Our initial investigations have shown floodplain and riverbed sediments to be grossly contaminated (up to 15,500 mg/kg Pb) compared to soil from a pre-mining Holocene terrace (180 mg/kg Pb). Geomorphological investigations also suggest that weir removal will re-establish more dynamic river channel processes resulting in lateral migration of the channel and erosion of contaminated floodplain sediments. These data will be used as a baseline for more detailed investigations of the potential impact of weirs on the physical and geochemical mobilisation of contaminated sediments. We have two specific objectives. (1) Geomorphological assessments will use unmanned

  17. Water balance modeling of Upper Blue Nile catchments using a top-down approach

    Directory of Open Access Journals (Sweden)

    S. Tekleab

    2010-09-01

    Full Text Available The hydrological behavior and functioning of twenty catchments in the Upper Blue Nile basin have been analyzed using a top-down modeling approach that is based on Budyko's hypotheses. The objective is to obtain better understanding of catchment response for prediction in ungauged catchments. The water balance analysis using Budyko-type curve at annual scale reveals that the aridity index does not exert a first order control in most of the catchments. This implies the need to increase model complexity to a monthly time scale to include the effects of seasonal soil moisture dynamics. The dynamic water balance model used in this study predicts the direct runoff and other processes based on limit concept. The uncertainty of model parameters has been assessed using the GLUE (Generalized Likelihood Uncertainty Estimation. The results show that the majority of the parameters are reasonably well identifiable. Moreover, a multi-objective model calibration strategy has been employed within the GLUE framework to emphasize the different aspects of the hydrographs on low and high flows. The model has been calibrated and validated against observed streamflow time series and it shows good performance for the twenty catchments of the upper Blue Nile. During the calibration period (1995–2000 the Nash and Sutcliffe coefficient of efficiency for monthly flow prediction varied between 0.52 to 0.93 during high flows, while it varied between 0.32 to 0.90 during low flows (logarithms of flow series. The model is parsimonious and it is suggested that the resulting parameters can be used to predict monthly stream flows in the ungauged catchments of the Upper Blue Nile basin, which accounts about 60% of total Nile basin flow.

  18. Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment"

    Directory of Open Access Journals (Sweden)

    R. J. Thayyen

    2010-02-01

    Full Text Available A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April and south-west monsoon in summer (June–September dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007 is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is

  19. Role of glaciers in watershed hydrology: ''Himalayan catchment'' perspective

    Directory of Open Access Journals (Sweden)

    R. J. Thayyen

    2009-07-01

    Full Text Available A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April and South-West monsoon in summer (June–September dominating the regional hydrology. Such catchments are defined as ''Himalayan catchment'', where the glacier melt water contributes to the river flow during the period of annual high flows produced by the monsoon. Other two major glacio-hydrological regimes of the Himalaya are winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range. Factors influencing the river flow variations in a ''Himalayan catchment'' were studied in a micro scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Discharge data generated from three hydrometric stations established at different altitudes of the Din Gad stream during the summer ablation period of 1998, 1999, 2000, 2001, 2003 and 2004. These data has been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of the glacier and precipitation in determining the runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. Study shows that the inter-annual runoff variations in a ''Himalayan glacier catchment'' is directly linked with the precipitation rather than mass balance changes of the glacier. Study suggest that warming induced initial increase of glacier degraded runoff and subsequent decline is a glaciers mass balance response and cannot be translated as river flow response in a ''Himalayan catchment'' as suggested by the IPCC, 2007. Study also suggest that the glacier runoff critically influence the headwater river flows during the years of low summer discharge and proposes that the Himalayan catchment could experience higher river flows and positive

  20. Mitigating Climate Change in the Arid Lands of Namibia

    Science.gov (United States)

    Schneider, Martin B.; Sorensen, Marten

    2014-05-01

    Mitigating Climate Change in the Arid Lands of Namibia Namibia is the most arid country south of the Sahara, with scarce rainfall and perennial rivers only at its borders, > 80% of the area relies solely on groundwater. This has had devastating economic effects limiting opportunities for sustainable rural livelihoods that keep the population majority living below the World Bank poverty line (IFAD, 2013). A primary example of climatic variability which affects agrarian productivity is increased bush encroachment of Namibia's arid grazing land. The result has been a severe biodiversity loss, increased desertification and diminished water-use efficiency and underground water tables. Given these factors, Namibia's arid lands provide a unique opportunity to assess and test innovative / appropriate adaptation and mitigation strategies. Working toward sustainable management, restoration, and maintenance of balanced, resilient arid ecosystems in Namibia will also be a means to support and expand economic sectors incl. opportunities for job creation and potentially provide a model for similar arid regions. Main vegetation zones are: desert (46%), savannah (37%), and dry woodlands and forests (17%), i.e. management strategies currently used by rural communities. 2. Capture and assess cultural and gender dimensions of management strategies within stakeholder groups using participatory approaches. 3. Determine science-based alternatives for adaptive land management strategies and test their acceptability to local communities and within the current policy framework. 4. Integrate identified indigenous knowledge with appropriate science and new emerging technologies to develop a training toolkit of effective strategies relevant to all stakeholders. 5. Utilize training sessions, education workshops, curriculum revisions, and appropriate information and communication technologies (ICTs) including social media outlets to disseminate the toolkit strategies. 6. Apply a modified logic

  1. Precipitation and nitrogen interactions in arid ecosystems

    Science.gov (United States)

    Arid and semi-arid ecosystems are among the most impoverished terrestrial systems in terms of water and nitrogen (N) availability. Productivity (NPP) is generally low, soil N pools are small and N loss through percolation is assumed to be negligible. Increased water availability can stimulate both N...

  2. Effects of aridity in controlling the magnitude of runoff and erosion after wildfire

    Science.gov (United States)

    Noske, Philip J.; Nyman, Petter; Lane, Patrick N. J.; Sheridan, Gary J.

    2016-06-01

    This study represents a uniquely high-resolution observation of postwildfire runoff and erosion from dry forested uplands of SE Australia. We monitored runoff and sediment load, and temporal changes in soil surface properties from two (0.2-0.3 ha) dry forested catchments burned during the 2009 Black Saturday wildfire. Event-based surface runoff to rainfall ratios approached 0.45 during the first year postwildfire, compared to reported values soil water repellency and inherently low hydraulic conductivity. Mean ponded hydraulic conductivity ranged from 3 to 29 mm h-1, much lower than values commonly reported for wetter forest. Annual sediment yields peaked at 10 t ha-1 during the first year before declining dramatically to background levels, suggesting high-magnitude erosion processes may become limited by sediment availability on hillslopes. Small differences in aridity between equatorial and polar-facing catchments produced substantial differences in surface runoff and erosion, most likely due to higher infiltration and surface roughness on polar-facing slopes. In summary, the results show that postwildfire erosion processes in Eucalypt forests in south-east Australia are highly variable and that distinctive response domains within the region exist between different forest types, therefore regional generalizations are problematic. The large differences in erosion processes with relatively small changes in aridity have large implications for predicting hydrologic-driven geomorphic changes, land degradation, and water contamination through erosion after wildfire across the landscape.

  3. Estimation of spatial-temporal rainfall distribution using remote sensing techniques: A case study of Makanya catchment, Tanzania

    Science.gov (United States)

    Jeniffer, Kinoti; Su, Zhongbo; Woldai, Tsahaei; Maathuis, Ben

    Rainfall-runoff modeling provides an opportunity to easily simulate the response of a watershed, thus providing an option for sustainable water resources management particularly in dry regions of Sub-Saharan Africa (SSA). Analysis of rainfall-runoff relationships in a catchment forms the basis of hydrological modeling. However, rainfall is a highly dynamic process, constantly changing in form and intensity as it passes over a given area. Traditionally, rainfall is measured using limited rain gauges at ground stations and often, the dynamics are not captured and yet it is the main input variable in any hydrological modeling. Without improved rainfall estimation, flow discharge estimates from rainfall-runoff relationship in both gauged and ungauged catchments particularly in arid and semi-arid regions remain a major challenge. Application of remote sensing information becomes crucial in the process of estimating rainfall patterns of these areas. The estimation of rainfall in this study was based on the blending of the geostationary MeteoSat Second Generation (MSG), infrared channel with the low-earth orbiting passive Tropical Rainfall Measuring Mission (TRMM), and microwave channel satellite data. To combine these two satellite data, a regression function associated with a threshold as an upper cloud temperature limit where rain occurs was determined. In this way, Makanya catchment rainfall maps (daily, monthly, and seasonal) with 3 km pixel size from 2004 to 2006 were generated by aggregating the 15 min rainfall values. Comparison of the results obtained from the blended TRMM-MSG with the available ground gauge data for 2004 and 2005 periods, gave a good correlation of about 80%. In conclusion, the developed TRMM-MSG blending procedure was found to be a reliable and robust way of obtaining spatial-temporal rainfall distribution of a given area and particularly so for arid and semi-arid lands (ASALs) such as Makanya with sparse data acquisition networks.

  4. Modeling the distributed effects of forest thinning on the long-term water balance and streamflow extremes for a semi-arid basin in the southwestern US

    OpenAIRE

    Moreno, Hernan A.; Gupta, Hoshin V.; Dave D. White; Sampson, David A.

    2016-01-01

    To achieve water resource sustainability in the water-limited southwestern US, it is critical to understand the potential effects of proposed forest thinning on the hydrology of semi-arid basins, where disturbances to headwater catchments can cause significant changes in the local water balance components and basinwise streamflows. In Arizona, the Four Forest Restoration Initiative (4FRI) is being developed with the goal of restoring 2.4 million acres of ponderosa pine along...

  5. Runoff generation processes during the wet-up phase in a semi-arid basin in Iran

    Directory of Open Access Journals (Sweden)

    H. Zarei

    2014-04-01

    Full Text Available Understanding the hydrological processes in catchments is important for water resources management, particularly in semi-arid regions of the world. To contribute to this field, dominant runoff generation processes in a semi-arid basin (283 km2 in Southwestern Iran were investigated using analysis of hydrometric data in combination with natural isotopic tracers through the wet-up phase of a rainy season. The analysis of seven rainfall–runoff events during the rainfall dominated period illustrated the role of antecedent base flow and cumulative rainfall for explaining the hydrological response. Three distinct storm events and the corresponding discharge were collected and analyzed for oxygen-18 and deuterium isotope composition. The results show that during the wetting-up cycle, the runoff ratio during storm events increased progressively from 1 to 10%. Higher event runoff ratios following catchment wet-up were shown to be directly linked to changes in soil moisture, which in turn controlled the runoff generation processes. In line with the hydrometric results, the two-component hydrograph separation using δ18O and δ2H demonstrated a clear connection to the antecedent wetness conditions. The results suggest that the runoff ratios during storms and the partitioning of event and pre-event water fractions are sensitive to the amount of catchment wet-up and could hence be strongly impacted by changes in the timing, duration and amount of precipitation in the future.

  6. Runoff generation processes during the wet-up phase in a semi-arid basin in Iran

    Science.gov (United States)

    Zarei, H.; Akhondali, A. M.; Mohammadzadeh, H.; Radmanesh, F.; Laudon, H.

    2014-04-01

    Understanding the hydrological processes in catchments is important for water resources management, particularly in semi-arid regions of the world. To contribute to this field, dominant runoff generation processes in a semi-arid basin (283 km2) in Southwestern Iran were investigated using analysis of hydrometric data in combination with natural isotopic tracers through the wet-up phase of a rainy season. The analysis of seven rainfall-runoff events during the rainfall dominated period illustrated the role of antecedent base flow and cumulative rainfall for explaining the hydrological response. Three distinct storm events and the corresponding discharge were collected and analyzed for oxygen-18 and deuterium isotope composition. The results show that during the wetting-up cycle, the runoff ratio during storm events increased progressively from 1 to 10%. Higher event runoff ratios following catchment wet-up were shown to be directly linked to changes in soil moisture, which in turn controlled the runoff generation processes. In line with the hydrometric results, the two-component hydrograph separation using δ18O and δ2H demonstrated a clear connection to the antecedent wetness conditions. The results suggest that the runoff ratios during storms and the partitioning of event and pre-event water fractions are sensitive to the amount of catchment wet-up and could hence be strongly impacted by changes in the timing, duration and amount of precipitation in the future.

  7. Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK

    International Nuclear Information System (INIS)

    Quantifying diffuse sources of pollution is becoming increasingly important when characterising river catchments in entirety - a prerequisite for environmental management. This study examines both low and high flow events, as well as spatial variability, in order to assess point and diffuse components of zinc pollution within the River West Allen catchment, which lies within the northern England lead-zinc Orefield. Zinc levels in the river are elevated under all flow regimes, and are of environmental concern. Diffuse components are of little importance at low flow, with point source mine water discharges dominating instream zinc concentration and load. During higher river flows 90% of the instream zinc load is attributed to diffuse sources, where inputs from resuspension of metal-rich sediments, and groundwater influx are likely to be more dominant. Remediating point mine water discharges should significantly improve water quality at lower flows, but contribution from diffuse sources will continue to elevate zinc flux at higher flows. - Highlights: → Zinc concentrations breach EU quality thresholds under all river flow conditions. → Contributions from point sources dominate instream zinc dynamics in low flow. → Contributions from diffuse sources dominate instream zinc dynamics in high flow. → Important diffuse sources include river-bed sediment resuspension and groundwater influx. → Diffuse sources would still create significant instream pollution, even with point source treatment. - Diffuse zinc sources are an important source of instream contamination to mine-impacted rivers under varying flow conditions.

  8. On predicting debris flows in arid mountain belts

    Science.gov (United States)

    Stolle, Amelie; Langer, Maria; Blöthe, Jan Henrik; Korup, Oliver

    2015-03-01

    The use of topographic metrics for estimating the susceptibility to, and reconstructing the characteristics of, debris flows has a long research tradition, although largely devoted to humid mountainous terrain. The exceptional 2010 monsoonal rainstorms in the high-altitude mountain desert of Ladakh and Zanskar, NW India, were a painful reminder of how susceptible arid regions are to rainfall-triggered flash floods, landslides, and debris flows. The rainstorms of August 4-6 triggered numerous debris flows, killing 182 people, devastating 607 houses, and more than 10 bridges around Ladakh's capital of Leh. The lessons from this disaster motivated us to revisit methods of predicting (a) flow parameters such as peak discharge and maximum velocity from field and remote sensing data, and (b) the susceptibility to debris flows from catchment morphometry. We focus on quantifying uncertainties tied to these approaches. Comparison of high-resolution satellite images pre- and post-dating the 2010 rainstorm reveals the extent of damage and catastrophic channel widening. Computations based on these geomorphic markers indicate maximum flow velocities of 1.6-6.7 m s- 1 with runout of up to ~ 10 km on several alluvial fans that sustain most of the region's settlements. We estimate median peak discharges of 310-610 m3 s- 1, which are largely consistent with previous estimates. Monte Carlo-based error propagation for a single given flow-reconstruction method returns a variance in discharge similar to one derived from juxtaposing several different flow reconstruction methods. We further compare discriminant analysis, classification tree modelling, and Bayesian logistic regression to predict debris-flow susceptibility from morphometric variables of 171 catchments in the Ladakh Range. These methods distinguish between fluvial and debris flow-prone catchments at similar success rates, but Bayesian logistic regression allows quantifying uncertainties and relationships between potential

  9. Predicting the Affects of Climate Change on Evapotranspiration and Agricultural Productivity of Semi-arid Basins

    Science.gov (United States)

    Peri, L.; Tyler, S. W.; Zheng, C.; Pohll, G. M.; Yao, Y.

    2013-12-01

    Many arid and semi-arid regions around the world are experiencing water shortages that have become increasingly problematic. Since the late 1800s, upstream diversions in Nevada's Walker River have delivered irrigation supply to the surrounding agricultural fields resulting in a dramatic water level decline of the terminal Walker Lake. Salinity has also increased because the only outflow from the lake is evaporation from the lake surface. The Heihe River basin of northwestern China, a similar semi-arid catchment, is also facing losses from evaporation of terminal locations, agricultural diversions and evapotranspiration (ET) of crops. Irrigated agriculture is now experiencing increased competition for use of diminishing water resources while a demand for ecological conservation continues to grow. It is important to understand how the existing agriculture in these regions will respond as climate changes. Predicting the affects of climate change on groundwater flow, surface water flow, ET and agricultural productivity of the Walker and Heihe River basins is essential for future conservation of water resources. ET estimates from remote sensing techniques can provide estimates of crop water consumption. By determining similarities of both hydrologic cycles, critical components missing in both systems can be determined and predictions of impacts of climate change and human management strategies can be assessed.

  10. A Methodology to Assess and Evaluate Rainwater Harvesting Techniques in (Semi-)Arid Regions

    Science.gov (United States)

    Ali, Ammar; Riksen, Michel; Ouessar, Mohamed; Ritsema, Coen

    2015-04-01

    Arid and semi-arid regions around the world are generally facing water scarcity problems due to lack of precipitation and unpredictable rainfall patterns. For thousands of years rainwater harvesting (RWH) techniques have been applied to cope with water scarcity. Many researchers have presented and applied different methodologies for determining suitable sites and techniques for RWH. However, there is still little attention given to evaluation of the performance of RWH structures. The aim of this research was to design a scientifically-based and generally applicable methodology to evaluate and assess the performance of existing RWH techniques in (semi-) arid regions. The methodology takes engineering, biophysical, and socio-economic criteria into account to assess the performance of RWH using the Analytical Hierarchy Process (AHP) supported by Geographic Information System (GIS). The Oum Zessar watershed in south-eastern Tunisia is used as a case study site to test this evaluation tool. The performance of 58 RWH locations (14 jessour and 44 tabias) in three main sub-catchments of Oum Zessar watershed were assessed and evaluated. Based on the criteria selected, 60performance, 36received good performance scores. The results very accurately represent the real performance of each site. This integrated methodology, which is highly flexible, saves time and costs, and is easy to adapt in different regions, provides a scientifically based analytical tool to support designers and decision makers aiming to improve the performance of existing and new RWH sites.

  11. Spatial and temporal variability of water salinity in an ephemeral, arid-zone river, central Australia

    Science.gov (United States)

    Costelloe, Justin F.; Grayson, Rodger B.; McMahon, Thomas A.; Argent, Robert M.

    2005-10-01

    This study describes the spatial and temporal variability of water salinity of the Neales-Peake, an ephemeral river system in the arid Lake Eyre basin of central Australia. Saline to hypersaline waterholes occur in the lower reaches of the Neales-Peake catchment and lie downstream of subcatchments containing artesian mound springs. Flood pulses are fresh in the upper reaches of the rivers (deposits salt at the surface. This salt is then transported by infrequent runoff events into the main river system over long periods of time. The bank/floodplain store downstream of salt-affected catchments contains high salt concentrations, and this salt is mobilized during the flow recession when bank/floodplain storage discharges into the channel. The salinity of the recession increases as the percentage of flow derived from this storage increases. A simple conceptual model was developed for investigating the salt movement processes during flow events. The model structure for transport of water and salt in the Neales-Peake catchment generated similar spatial and temporal patterns of salt distribution in the floodplain/bank storage and water flow as observed during flow events in 2000-02. However, more field-data collection and modelling are required for improved calibration and description of salt transport and storage processes, particularly with regard to the number of stores required to represent the salt distribution in the upper zone of the soil profile.

  12. Thresholds for runoff and sediment transport in Semi-arid areas; implications for connectivity

    Science.gov (United States)

    Bracken, L. J.; Kirkby, M. J.

    2007-05-01

    The concept of connectivity is increasingly being applied within a range of disciplines in the Earth and Environmental sciences as researchers recognize the need to move beyond the traditional view that runoff is generated by either Hortonian infiltration excess or by the variable source area model. In studies which focus on connectivity two key assumptions tend to be made. Firstly, that runoff thresholds must be exceeded for runoff to be produced and secondly, that all factors that influence runoff thresholds are important for hydrological connectivity. It follows that hillslope hydrological connectivity can be initiated by shorter duration, or lower intensity events, whereas catchment-scale hydrological connectivity and flooding, requires prolonged, high intensity storms. Each catchment thus has a base spatial pattern in terms of connectivity, depending on key runoff generating areas, and a response curve as the catchments wets up. In this paper we explore how this base spatial pattern changes according to thresholds in the landscape for runoff generation and sediment transport. By examining a range of events at different spatial scales it is hoped that an understanding can be developed of key thresholds in semi-arid landscapes which will assist in understanding long term landscape development.

  13. Modeling Episodic Surface Runoff in an Arid Environment

    Science.gov (United States)

    Waichler, S. R.; Wigmosta, M. S.

    2003-12-01

    Methods were developed for estimating episodic surface runoff in arid eastern Washington, USA. Small (1--10 km2) catchments in this region with mean annual precipitation around 180 mm produce runoff in about half the years, and such events usually occur during winter when a widespread cold snap and possible snow accumulation is followed by warmer temperatures and rainfall. Existence of frozen soil appears to be a key factor, and a moving average of air temperature is an effective predictor of soil temperature. The watershed model DHSVM simulates snow accumulation and ablation reasonably well at a monitoring location, but the same model applied in distributed mode across a 850 km2 basin overpredicts runoff. Inadequate definition of local meteorology appears to limit the accuracy of runoff predictions. However, runoff estimates of sufficient quality to support modeling of long-term groundwater recharge and sediment transport may be found in focusing on recurrence intervals and volumes rather than hydrographs. Usefulness of upland watershed modeling to environmental management of the Hanford Site and an adjacent military reservation will likely improve through sensitivity analysis of basic assumptions about upland water balance.

  14. Desertification of arid Rangelands in Morocco

    OpenAIRE

    Mahyou, Hamid; Tychon, Bernard; Paul, Roger; Balaghi, Riad; Mimouni, Jamal

    2011-01-01

    Rangeland or natural arid pastures of Morocco are ecosystems where there is a natural or seminatural vegetation composed of steppes, shrubs and grassland. They cover about 82% of the Moroccan arid lands. These areas represent livelihoods for thousands of people and protect the country from desertification. Despite the importance of the rangelands and the threat of desertification, it is surprising that up to date there is no comprehensive assessment of their condition ...

  15. SCIENCES IN COLD AND ARID REGIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Aims and Scope Sciences in Cold and Arid Regions, an international Engiish-language journal, is devoted to publishing the latest research achievements on the process and the pattern of Earth surface system in cold and arid regions. Researches in cold regions 1) emphasize particularly on the cold-region-characterized physical, chemical and biological processes and their interactions, and on the response of Cryosphere to Global change and Human activities as well as its effect to environment and the acclimatizable

  16. Hydropedological insights when considering catchment classification

    Directory of Open Access Journals (Sweden)

    J. Bouma

    2011-06-01

    Full Text Available Soil classification systems are analysed to explore the potential of developing classification systems for catchments. Soil classifications are useful to create systematic order in the overwhelming quantity of different soils in the world and to extrapolate data available for a given soil type to soils elsewhere with identical classifications. This principle also applies to catchments. However, to be useful, soil classifications have to be based on permanent characteristics as formed by the soil forming factors over often very long periods of time. When defining permanent catchment characteristics, discharge data would therefore appear to be less suitable. But permanent soil characteristics do not necessarily match with characteristics and parameters needed for functional soil characterization focusing, for example, on catchment hydrology. Hydropedology has made contributions towards the required functional characterization of soils as is illustrated for three recent hydrological catchment studies. However, much still needs to be learned about the physical behaviour of anisotropic, heterogeneous soils with varying soil structures during the year and about spatial and temporal variability. The suggestion is made therefore to first focus on improving simulation of catchment hydrology, possibly incorporating hydropedological expertise, before embarking on a catchment classification effort which involves major input of time and involves the risk of distraction. In doing so, we suggest to also define other characteristics for catchment performance than the traditionally measured discharge rates. Such characteristics may well be derived from societal issues being studied, as is illustrated for the Green Water Credits program.

  17. Ground water input to a rare flood event in an arid zone ephemeral river identified with isotopes and chemistry

    International Nuclear Information System (INIS)

    Various isotope studies in temperate climates have shown that the shallow groundwater component feeding perennial rivers during rainfall events can be more important than surface runoff, We report here on possibly unique isotopic and chemical evidence of groundwater contributions to a rare flood event of the ephemeral Auob River during the exceptional rains of 1999/2000 in the arid/semiarid Kalahari of south-eastern Namibia. The recognition of this process was enabled by a detailed knowledge of the isotope hydrology of groundwater in the area and provided insights into aspects of the palaeo-hydrology of the Auob River catchment. (author)

  18. Using high resolution aridity and drainage position data to better predict rainfall-runoff relationships in complex upland topography

    Science.gov (United States)

    Metzen, D.; Sheridan, G. J.; Benyon, R. G.; Lane, P. N. J.

    2015-12-01

    In topographically complex terrain, the interaction of aspect-dependent solar exposure and drainage-position-dependent flow accumulation results in energy and water partitioning that is highly spatially variable. Catchment scale rainfall-runoff relationships are dependent on these smaller scale spatial patterns. However, there remains considerable uncertainty as to how to represent this smaller scale variability within lumped parameter, catchment scale rainfall-runoff models. In this study we aim to measure and represent the key interactions between aridity and drainage position in complex terrain to inform the development of simple catchment-scale hydrologic model parameters. Six measurement plots were setup on opposing slopes in an east-west facing eucalypt forest headwater catchment. The field sites are spanning three drainage positions with two contrasting aridity indices each, while minimizing variations in other factors, e.g. geology and weather patterns. Sapflow, soil water content (SWC) and throughfall were continuously monitored on two convergent hillslopes with similar size (1.3 and 1.6ha) but contrasting aspects (north and south). Soil depth varied from 0.6m at the topslope to >2m at the bottomslope positions. Maximum tree heights ranged from 16.2m to 36.9m on the equator-facing slope and from 30.1m to 45.5m on the pole-facing slope, with height decreasing upslope on both aspects. Two evapotranspiration (ET) patterns emerged in relation to aridity and drainage position. On the equator-facing slope (AI~ 2.1), seasonal understorey and overstorey ET patterns were in sync, whereas on the pole-facing slope (AI~1.5) understorey ET showed larger seasonal fluctuations than overstorey ET. Seasonal ET patterns and competition between soil evaporation and root water uptake lead to distinct differences in profile SWC across the sites, likely caused by depletion from different depths. Topsoil water content on equator-facing slopes was generally lower and responded

  19. Collaborative knowledge in catchment research networks

    Science.gov (United States)

    Macleod, Christopher Kit

    2015-04-01

    There is a need to improve the production, sharing and use of collaborative knowledge of catchment systems through networks of researchers, policy makers and practitioners. This requires greater levels of systems based integrative research. In parallel to the growing realization that greater levels of collaborative knowledge in scientific research networks are required, a digital revolution has been taking place. This has been driven primarily by the emergence of distributed networks of computers and standards-based interoperability. The objective of this paper is to present the status and research needs for greater levels of systems based integrative research for the production, sharing and use of collaborative knowledge in catchment research networks. To enable increased levels of integrative research depends on development and application of digital technologies to improve collection, use and sharing of data and devise new knowledge infrastructures. This paper focuses on the requirements for catchment observatories that integrate existing and novel physical, social and digital networks of knowledge infrastructures. To support this focus, I present three leading international examples of collaborative networks of catchment researchers and their development of catchment observatories. In particular, the digital infrastructures they have developed to support collaborative knowledge in catchment research networks. These examples are from North America (NSF funded CUAHSI HIS) and from Europe (UK NERC funded EVOp and the German Helmholtz Association Centers funded TERENO/TEODOOR). These exemplars all supported advancing collaborative knowledge in catchment research networks through the development of catchment observatories. I will conclude by discussing the future research directions required for greater levels of production, sharing and use of collaborative knowledge in catchment research networks based on catchment systems science.

  20. Excess erosion and deposition in the catchments of Kamenichka and Radanjska river, Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Milevski Ivica

    2009-01-01

    Full Text Available One of the greatest environmental problems in the Republic of Macedonia is accelerated soil erosion caused by high human impact during last centuries on to the susceptible landscape. Natural factors itself are very suitable for development of such erosion: from mostly erodible rocks and soils on the mountainous slopes around the depressions, to the generally continental, semi-arid climate and slight vegetation cover. Because of that, there are sites with severe erosion and deposition like those in the catchments of Kamenichka River and Radanjska River, two torrential tributaries of Bregalnica. In these catchments there are varieties of erosion-related landforms: rills, gullies, badlands, landslides, as well as valley-type alluvial fans and huge alluvial plains. Such devastating accelerated erosion and deposition largely transformed original landscape, and represent significant environmental, social, and economic problem in local areas. Because of that, some measures of protection and conservation were taken from 1950-ties in both catchments. But it is obvious that the final effect of these measures is far of enough, so new efforts must be implemented to revitalizing these abandoned lands.

  1. Rainwater harvesting in arid and semi-arid zones (repr. 1997)

    NARCIS (Netherlands)

    Boers, Th.M.

    1994-01-01

    In arid and semi-arid regions, the scarcity of water can be alleviated by rainwater harvesting, which is defined as a method of inducing, collecting, storing, and conserving local surface runoff for agriculture. Rainwater harvesting can be applied with different systems, and this dissertation deals

  2. Doing hydrology backwards in tropical humid catchments

    Science.gov (United States)

    Real Rangel, R.; Brena-Naranjo, J. A.; Pedrozo-Acuña, A.

    2015-12-01

    Top-down approaches in hydrology offer the possibility to predict water fluxes at the catchment scale based on the interpretation of the observed hydrological response at the catchment itself. Doing hydrology backwards (inferring precipitation and evapotranspiration rates at the catchment scale from streamflow measurements, see Kirchner (2009)) can be a useful methodology for estimating water fluxes at the catchment and regional scales. Previous studies using this inverse modeling approach have been performed in regions (UK, Switzerland, France, Eastern US) where energy-limited (in winter and early spring) and water-limited conditions (in summer) prevail during a large period of the year. However, such approach has not been tested in regions characterized by a quasi-constant supply of water and energy (e.g. humid tropics). The objective of this work is to infer annual rates of precipitation and evapotranspiration over the last decade in 10 catchments located in Mexico's tropical humid regions. Hourly discharge measurements during recession periods were analyzed and parameters for the nonlinear storage-discharge relationship of each catchment were derived. Results showed large variability in both catchment-scale precipitation and evapotranspiration rates among the selected study sites. Finally, a comparison was done between such estimates and those obtained from remotely-sensed data (TRMM for precipitation and MOD16 for evapotranspiration).

  3. Using Isotope Methods to Assess Groundwater Recharge in Some Hydraulic Catchments in a Semiarid Region in Central Tunisia

    International Nuclear Information System (INIS)

    Water resource issues constitute a major concern in arid and semiarid areas in Tunisia. To meet rising demand for different human activities considerable importance is being given to improving the natural groundwater recharge by the installation of hydraulic catchments. In central Tunisia, numerous retention sites and dams have been built since 1990, for example, the el Ogla dam in the Nadhour-Saouaf basin. In order to determine the implication of these hill reservoirs on the hydrodynamic functioning and water quality of the aquifer system, hydrochemical (major elements) and isotopic methods have been employed. The interpretation of these results showed that the shallow aquifer is recharged mainly by surface water and water dam infiltration from the el Ogla and Sahel catchments. A tentative isotopic mass balance based on stable isotope contents leads to the quantification of the artificial recharge rate, which ranges between 42% and 86% of precipitation in the humid period. (author)

  4. Water Catchment and Storage Monitoring

    Science.gov (United States)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for

  5. Exploring the physical controls of regional patterns of flow duration curves - Part 3: A catchment classification system based on regime curve indicators

    Science.gov (United States)

    Coopersmith, E.; Yaeger, M. A.; Ye, S.; Cheng, L.; Sivapalan, M.

    2012-11-01

    Predictions of hydrological responses in ungauged catchments can benefit from a classification scheme that can organize and pool together catchments that exhibit a level of hydrologic similarity, especially similarity in some key variable or signature of interest. Since catchments are complex systems with a level of self-organization arising from co-evolution of climate and landscape properties, including vegetation, there is much to be gained from developing a classification system based on a comparative study of a population of catchments across climatic and landscape gradients. The focus of this paper is on climate seasonality and seasonal runoff regime, as characterized by the ensemble mean of within-year variation of climate and runoff. The work on regime behavior is part of an overall study of the physical controls on regional patterns of flow duration curves (FDCs), motivated by the fact that regime behavior leaves a major imprint upon the shape of FDCs, especially the slope of the FDCs. As an exercise in comparative hydrology, the paper seeks to assess the regime behavior of 428 catchments from the MOPEX database simultaneously, classifying and regionalizing them into homogeneous or hydrologically similar groups. A decision tree is developed on the basis of a metric chosen to characterize similarity of regime behavior, using a variant of the Iterative Dichotomiser 3 (ID3) algorithm to form a classification tree and associated catchment classes. In this way, several classes of catchments are distinguished, in which the connection between the five catchments' regime behavior and climate and catchment properties becomes clearer. Only four similarity indices are entered into the algorithm, all of which are obtained from smoothed daily regime curves of climatic variables and runoff. Results demonstrate that climate seasonality plays the most significant role in the classification of US catchments, with rainfall timing and climatic aridity index playing somewhat

  6. Exploring the physical controls of regional patterns of flow duration curves - Part 3: A catchment classification system based on seasonality and runoff regime

    Science.gov (United States)

    Coopersmith, E.; Yaeger, M.; Ye, S.; Cheng, L.; Sivapalan, M.

    2012-06-01

    Predictions of hydrological responses in ungauged catchments can benefit from a classification scheme that can organize and pool together catchments that exhibit a level of hydrologic similarity, especially similarity in some key variable or signature of interest. Since catchments are complex systems with a level of self-organization arising from co-evolution of climate and landscape properties, including vegetation, there is much to be gained from developing a classification system based on a comparative study of a population of catchments across climatic and landscape gradients. The focus of this paper is on climate seasonality and seasonal runoff regime, as characterized by the ensemble mean of within-year variation of climate and runoff. The work on regime behavior is part of an overall study of the physical controls on regional patterns of Flow Duration Curves (FDCs), motivated by the fact that regime behavior leaves a major imprint upon the shape of FDCs, especially the slope of the FDCs. As an exercise in comparative hydrology, the paper seeks to assess the regime behavior of 428 catchments from the MOPEX database simultaneously, classifying and regionalizing them into homogeneous or hydrologically similar groups. A decision tree is developed on the basis of a metric chosen to characterize similarity of regime behavior, using a variant of the Iterative Dichotomiser (ID3) algorithm to form a classification tree and associated catchment classes. In this way, several classes of catchments are distinguished, in which the connection between the catchments' regime behavior and climate and catchment properties becomes self-evident. Only four similarity indices are entered into the algorithm, all of which are obtained from smoothed daily regime curves of climatic variables and runoff. Results demonstrate that climate seasonality plays the most significant role in the classification of US catchments, with rainfall timing and climatic aridity index playing somewhat

  7. Exploring the physical controls of regional patterns of flow duration curves – Part 3: A catchment classification system based on regime curve indicators

    Directory of Open Access Journals (Sweden)

    M. Sivapalan

    2012-11-01

    Full Text Available Predictions of hydrological responses in ungauged catchments can benefit from a classification scheme that can organize and pool together catchments that exhibit a level of hydrologic similarity, especially similarity in some key variable or signature of interest. Since catchments are complex systems with a level of self-organization arising from co-evolution of climate and landscape properties, including vegetation, there is much to be gained from developing a classification system based on a comparative study of a population of catchments across climatic and landscape gradients. The focus of this paper is on climate seasonality and seasonal runoff regime, as characterized by the ensemble mean of within-year variation of climate and runoff. The work on regime behavior is part of an overall study of the physical controls on regional patterns of flow duration curves (FDCs, motivated by the fact that regime behavior leaves a major imprint upon the shape of FDCs, especially the slope of the FDCs. As an exercise in comparative hydrology, the paper seeks to assess the regime behavior of 428 catchments from the MOPEX database simultaneously, classifying and regionalizing them into homogeneous or hydrologically similar groups. A decision tree is developed on the basis of a metric chosen to characterize similarity of regime behavior, using a variant of the Iterative Dichotomiser 3 (ID3 algorithm to form a classification tree and associated catchment classes. In this way, several classes of catchments are distinguished, in which the connection between the five catchments' regime behavior and climate and catchment properties becomes clearer. Only four similarity indices are entered into the algorithm, all of which are obtained from smoothed daily regime curves of climatic variables and runoff. Results demonstrate that climate seasonality plays the most significant role in the classification of US catchments, with rainfall timing and climatic aridity index

  8. Exploring the physical controls of regional patterns of flow duration curves – Part 3: A catchment classification system based on seasonality and runoff regime

    Directory of Open Access Journals (Sweden)

    M. Sivapalan

    2012-06-01

    Full Text Available Predictions of hydrological responses in ungauged catchments can benefit from a classification scheme that can organize and pool together catchments that exhibit a level of hydrologic similarity, especially similarity in some key variable or signature of interest. Since catchments are complex systems with a level of self-organization arising from co-evolution of climate and landscape properties, including vegetation, there is much to be gained from developing a classification system based on a comparative study of a population of catchments across climatic and landscape gradients. The focus of this paper is on climate seasonality and seasonal runoff regime, as characterized by the ensemble mean of within-year variation of climate and runoff. The work on regime behavior is part of an overall study of the physical controls on regional patterns of Flow Duration Curves (FDCs, motivated by the fact that regime behavior leaves a major imprint upon the shape of FDCs, especially the slope of the FDCs. As an exercise in comparative hydrology, the paper seeks to assess the regime behavior of 428 catchments from the MOPEX database simultaneously, classifying and regionalizing them into homogeneous or hydrologically similar groups. A decision tree is developed on the basis of a metric chosen to characterize similarity of regime behavior, using a variant of the Iterative Dichotomiser (ID3 algorithm to form a classification tree and associated catchment classes. In this way, several classes of catchments are distinguished, in which the connection between the catchments' regime behavior and climate and catchment properties becomes self-evident. Only four similarity indices are entered into the algorithm, all of which are obtained from smoothed daily regime curves of climatic variables and runoff. Results demonstrate that climate seasonality plays the most significant role in the classification of US catchments, with rainfall timing and climatic aridity index

  9. Identifying Groundwater Recharge in Arid Regions

    Science.gov (United States)

    Thomas, B. F.; Famiglietti, J. S.

    2015-12-01

    Recharge epodicity in arid regions provides a method to estimate annual groundwater recharge given a relationship expressed as the recharge to precipitation ratio. Traditionally, in-situ observations are required to identify aquifer recharge events, while more advanced approaches such as the water-table fluctuation method or the episodic master recession method are necessary to delineate the recharge event. Our study uses the Gravity Recovery and Climate Experiment (GRACE) observations to estimate monthly changes in groundwater storage which are attributed to the combination of groundwater abstraction and episodic recharge in the arid southwestern United States. Our results illustrate the ability of remote sensing technologies to identify episodic groundwater recharge in arid regions which can be used within sustainable groundwater management frameworks to effectively manage groundwater resources.

  10. Hydrogeological framework of the northern Draa-Catchment, Morocco: Results of local and regional scale investigations

    International Nuclear Information System (INIS)

    In the framework of the BMBF (Federal Ministry of Education and Research) project: 'Global change of the water cycle', IMPETUS West Africa focuses on water as a scarce resource. IMPETUS is an interdisciplinary and application-orientated approach from a research group of the universities Bonn and Cologne. As one of the investigation areas the Draa-Catchment in Morocco has been selected. Within the overall goal of IMPETUS: 'An integrated approach to the efficient management of scarce water resources' groundwater is of significant importance. In order to develop a conceptional hydrogeological model of the Draa-Catchment different scale approaches have been applied. Together with other disciplines investigations have been carried out in local test sites representative for geological and hydrological catchment areas and situated along a gradient of aridity and elevation. Based on natural labeling combined with classical hydrogeological and hydrological investigations for those testsites storage and discharge behavior of the various geological units have been defined. Besides local scale (IMPETUS test sites) regional scale approach was selected to understand the hydrogeological framework. The purpose of local scale investigation is to define the hydrogeological characteristics of each IMPETUS's test site commonly selected as a representative for the specific geological areas of the Draa catchment. In a further step this side specific information will be applied to a hydrogeological regional scale model. Basic requirements for a reliable hydrogeologic characterization are information on the geological structure as well as on the groundwater quantity/quality including hydrodynamics. Based on detailed geological mapping in the framework of master thesis geological and structural map, geological profiles and lithological description are available for four testsites

  11. Spectral Analysis in Catchment Hydrology and Geochemistry

    Science.gov (United States)

    Kirchner, J. W.; Feng, X.; Renshaw, C. E.; Neal, C.

    2001-12-01

    Spectral analysis of chemical tracer time series can be used to probe the internal workings of catchments. It has recently been shown that catchments act as fractal filters for inert chemical tracers like chloride, converting "white noise" rainfall chemistry inputs into fractal "1/f noise" runoff chemistry time series (Kirchner et al., 2000). This implies that catchments have long-tailed travel time distributions, and thus retain soluble contaminants for unexpectedly long timespans. Long-term monitoring data from North America, Britain, and Scandinavia show that this fractal behavior characterizes a wide array of catchments. How can this fractal scaling arise in such diverse settings? One can show that advection and dispersion of spatially distributed rainfall tracer inputs will generate fractal tracer time series, as long as the flow system is highly dispersive (Kirchner et al., in press). This implies that subsurface flow in small catchments is dominated by large conductivity contrasts, such as arise from macropores, fracture networks, and similar large-scale heterogeneities in subsurface conductivity. One can also use spectral methods to analyze long-term time series of water fluxes in rainfall and streamflow. Spectral analysis of hydrologic time series measures the downslope propagation of the hydraulic potential waves that mobilize runoff, whereas spectral analysis of tracer time series clocks the propagation of water itself through the catchment. Water fluxes in streamflow exhibit non-fractal scaling, instead of the fractal 1/f scaling shown by chemical tracers. These observations imply that hydrologic signals are transmitted downslope more rapidly, and with much less dispersion, than chemical tracer signals are. Thus small upland catchments transmit hydraulic potentials (which drive runoff) much less dispersively than they transport water itself. These observations provide important constraints for theoretical models of subsurface flow and transport in

  12. Relative importance of evapotranspiration variability in a semi-arid urban environment

    Science.gov (United States)

    Shields, C. A.; Tage, C. L.; Beighley, R. E.

    2008-12-01

    In semi-arid ecosystems, evapotranspiration (ET) is a significant portion of the water balance, sometimes accounting for over 70 percent of the annual water balance. In these water limited systems, spatial and temporal patterns of ET have large impacts on streamflow variability and storm response. In the western U.S., increasing human populations are resulting in an expansion of urban land uses in semi-arid areas. Urbanization may affect the local water balance in several ways. Replacing vegetation with impervious surface may decrease ET, as well as increasing storm runoff and annual streamflow. At the same time, importation of water from outside a drainage basin may increase opportunities for ET within the drainage area if this water is used to water lawns or other outdoor vegetation. Given the highly heterogeneous and fragmented nature of urban environments, these changes in ET are expected to show a high level of both spatial and temporal variability. We use the Regional Hydrologic Simulation System (RHESSys) to simulate ET and streamflow in the Mission Creek catchment in Santa Barbara, CA. This modeling relied heavily on input data collected through the Santa Barbara Coastal (SBC) LTER site. We consider a range of different urban development and climate scenarios to estimate how urbanization may alter ET and its impacts on streamflow. Results show that ET is highly variable on both an interannual and seasonal basis and its influence on storm flow response varies on both these scales. Results also show that urbanization is likely to significantly alter ET, with consequences for streamflow. The effect of urbanization is spatially variable and emphasizes the relative importance of different regions of the catchment, such as the riparian zone.

  13. Hydrological model parameters identification in a coastal nested catchment in Mersin province (SE Turkey)

    Science.gov (United States)

    Yıldırım, Ümit; Jomaa, Seifeddine; Güler, Cüneyt; Rode, Michael

    2016-04-01

    It is known that the coastal Mediterranean region is facing a serious problem of water resources exploitation due to the rapid demographic, socio-economic, land use and climate changes. The hydrological modeling has proven to be an efficient tool for better water resources prediction and management. In this study, the HYdrological Predictions for the Environment (HYPE) model was setup on the nested coastal Sorgun catchment in Turkey (449 km2). This catchment is located in the east part of the Mersin province and is characterized by extremely varied topography, land use, and population density in semi-arid Mediterranean climate conditions. First, the model was calibrated at the catchment outlet (Sarilar) for the period 2003-2006. Second, the model was validated temporally for the period 2009-2013 at daily and monthly time intervals. In addition, the model performance was tested spatially using an internal station (B. Sorgun, 269 km2) located in the headwater region. Results showed that the HYPE model could reproduce the measured daily discharge significantly well (Nash Sutcliffe Efficiency (NSE) were 0.78 and 0.68 for calibration and validation periods, respectively). For monthly time step, the model performs better compared with daily time interval (NSE were 0.92 and 0.83 for calibration and validation periods, respectively). The model could represent the water balance relatively good at daily and monthly time steps, where the lowest PBIAS (percentage bias) were - 4.19% and - 3.53% for daily and monthly time intervals, respectively (considering the whole period). Results revealed, however, the agreement between the predicted and measured discharge was reduced, when the same best optimized model-parameters at Sarilar gauging station (catchment outlet) were used at B. Sorgun station (internal station). This model transferability less performance at internal station can be explained by the clear changes in terms of land use, soil type and precipitation rate in the

  14. Catchment controls and human disturbances on the geomorphology of small Mediterranean estuarine systems

    Science.gov (United States)

    Estrany, Joan; Grimalt, Miquel

    2014-10-01

    Geographic signatures are physical and human-induced characteristics or processes that identify comparable or unique features of estuaries along latitudinal gradients. In Mediterranean areas, the microtidal regime and the strong seasonal and inter-annual contrasts cause an alternation between relatively high runoff and arid conditions. Furthermore, the long history of human settlement also increases the complexity in the study of these estuarine systems. This study investigates these signatures of the estuaries located within the Mallorcan eastern coast, which are geomorphologically homogeneous because of a similar bedrock geology and Holocene history. A multi-method approach focused on the integration of geomorphometry, hydraulics, historical sources and statistics was used. We explore the role played by catchment morphometric parameters, severe flash flood events and human disturbances in controlling the geomorphology of 10 beach-barrier enclosed, fluvial incised lagoons. Most of the lagoons discharge into 'calas', ranging in size from 1345 to 17,537 m2 and their related catchments are representative of the Mediterranean hydrological systems. Multiple regression models illustrate that the size, slope and drainage network development of the catchments explain the variance in length (r2 = 0.67), volume (r2 = 0.49), area (r2 = 0.64), circularity (r2 = 0.72) and average width (r2 = 0.81) of the lagoons. Depending on these catchment morphometric variables, the shape of the lagoons is also determined by the occurrence of catastrophic flash floods, which cause scouring and dredging, whereas the ordinary flood events and sea storms promote refilling and sedimentation. A historical analysis since 1850 documented 18 flood events, 5 of which were catastrophic with destructive effects along the catchments and large morphological changes in coastal lagoons. High intensity rainfall (up to 200 mm in 2 h), the geomorphometry of the catchments and the massive construction of

  15. Catchment Dispersion Mechanisms in an Urban Context

    Science.gov (United States)

    Gironas, J. A.; Mejia, A.; Rossel, F.; Rinaldo, A.; Rodriguez, F.

    2014-12-01

    Dispersion mechanisms have been examined in-depth in natural catchments in previous studies. However, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. Thus, these features can modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. This model computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment (France) as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further studies with other catchments are needed to assess whether the latter is a general feature of urban drainage networks.

  16. Isotope techniques in water resource investigations in arid and semi-arid regions

    International Nuclear Information System (INIS)

    The Co-ordinated Research Project (CRP) on the Use of Isotope Techniques in Water Resources Investigations in Arid and Semi-arid Regions was initiated with the aim od contributing to the assessment of groundwater resources in arid areas through the use of environmental isotope techniques, and thereby to help in better management of these valuable fresh groundwater resources. The main emphases identified were in three key areas: (i) the evaluation of water balance components such as recharge rate estimation and recharge and discharge cycles at different spatial scales, (ii) paleohydrology and hydroclimatic change and, (iii) anthropogenic impacts and the assessment of the vulnerability of arid zone ground waters to salinisation and pollution impacts. This publication presents individual projects carried out within the frameworks of the CRP. Each paper has been indexed separately

  17. Conservation and restoration of degraded ecosystems in arid and semi-arid areas of northwest China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In "West Development" of China, one of the most important activities is the Natural Forest Protection Program, designed to swiftly convert the focus of management and utilization of the natural forests from a timber orientation towards forest conservation, sustainable management and environmental protection. The project covered almost all the arid and semi-arid regions in Northwest region. Accompanying this great campaign this paper studied the conservation and restoration model of degraded ecosystems in arid and semi-arid lands in Northwest China. The past practices have resulted in considerably natural forest degradation and loss through land conversion (primarily for agriculture), over-harvesting, inadequate reforestation and lack of protection. The consequences have been the loss of soil and water resources, diminished timber production capacity on a sustainable basis, and environmental losses. This paper applied Aronson's restoration model and proposed the conservation, restoration, re-allocation and preservation program for the implementation of environmental improvement and natural forest conservation.

  18. Spatial interactions and resilience in arid ecosystems

    NARCIS (Netherlands)

    Koppel, van de J.; Rietkerk, M.

    2004-01-01

    We present a mathematical analysis of the consequences of spatial interactions between vegetation patches by means of water flow for the functioning of arid systems. Our model results suggest that spatial exchange of water improved the resilience to disturbances and increased the resistance to human

  19. Aridity and decomposition processes in complex landscapes

    Science.gov (United States)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally

  20. Accumulation of pharmaceuticals in groundwater under arid climate conditions - Results from unsaturated column experiments.

    Science.gov (United States)

    Zemann, M; Majewsky, M; Wolf, L

    2016-07-01

    Intense reuse of treated wastewater in agriculture is practiced all over the world, especially in arid and water-scarce regions. In doing so, pharmaceutical residues in the water are irrigated to the soil and subsequently can percolate into the local aquifers. Since evaporation rates in these areas are typically high, persistent substances might enrich in the groundwater recharge of closed catchments like the Jordan Valley. Against this background, unsaturated column tests were conducted to investigate the potential for evaporative accumulation of the two pharmaceuticals bezafibrate and carbamazepine under simulated arid climate conditions. Parallel tests were conducted with inhibited microbiological activity where both substances showed an increase in the effluent concentrations proportional to the evaporation loss of the inflow solution. The mean accumulation factors of the pharmaceuticals correspond to the evaporated water loss. The experiments indicate the accumulation potential for pharmaceuticals with high persistence against biodegradation. For the first time, the overall potential for evaporative enrichment could be demonstrated for pharmaceuticals. Under the given experimental conditions, the two investigated pharmaceuticals did not enrich faster than chloride, which might result in soil salting prior to reaching harmful pharmaceutical concentrations in soil water. The findings are relevant to future assessments of environmental impacts of persistent trace substances, which need to take into account that concentrations in the aquatic cycle might increase further due to evaporative enrichment. PMID:27085060

  1. A late Holocene record of arid events from the Cuzco region, Peru

    Science.gov (United States)

    Chepstow-Lusty, Alex; Frogley, Michael R.; Bauer, Brian S.; Bush, Mark. B.; Tupayachi Herrera, Alfredo

    2003-09-01

    The small recently infilled lake basin of Marcacocha (13°13S, 72°12W, 3355 m) in the Cuzco region of Peru has a morphology and location that renders it extremely sensitive to environmental change. A record of vegetation, human impact and climatic change during the past 4200 yr has been obtained from a highly organic core taken from the centre of the basin. Sustained arid episodes that affected the Peruvian Andes may be detectable using the proxy indicator of sedge (Cyperaceae) pollen abundances. As the lake-level was lowered during sustained drier conditions, the local catchment was colonised by Cyperaceae, whereas during lake floods, they retreated or were submerged and pollen production was correspondingly reduced. Drier episodes during prehistoric times occurred around 900 bc, 500 bc, ad 100 and ad 550, with a longer dry episode occurring from ad 900 to 1800. Evidence from the independently derived Quelccaya ice-core record and the archaeological chronology for the Cuzco region appears to support the climatic inferences derived from the sedge data. Many of these aridity episodes appear to correspond with important cultural changes in the Cuzco region and elsewhere in the Central Andes. Copyright

  2. Contribution of Afforestation Practices to Changing Hydrology in Arid and Semi-arid Regions

    Science.gov (United States)

    Xie, X.; Meng, S.; Li, J.

    2014-12-01

    Arid and semi-arid regions are generally susceptible to land degeneration due to limited precipitation and high potential evapotranspiration (ET). Afforestation has been assumed to be a feasible strategy to conserve water and to improve ecological environment. For example, the Northern China, as a typical arid and semi-arid region has experienced large-scale and long-term afforestation practices since the early 1980s. The land cover has been altered to some degree as tree planting with increasing greenness. However, the effectiveness of afforestation might not be as expected due to the interference of climate change. In this study, we attempted to quantify the contribution of afforestation practices to the hydrological system in the Northern China. A macro-scale hydrological model, i.e., the Variable Infiltration Capacity (VIC), was employed to simulate ET, soil moisture and runoff for the period 1959 - 2009. Fractional simulation scenarios were designed regarding different conditions of land cover and climate changes. The results indicate that the land cover has minor impact on the variability of hydrological variables at regional scale, comparing with the climate change. Particularly, the decreasing precipitation plays a dominant role in shaping the trends of ET, soil moisture and runoff. The findings have significant implications for the implementation of the afforestation practices and for the management of water resources in arid and semi-arid regions.

  3. CHARACTERISTICS OF ARIDITY CONDITIONS IN SOUTH DOBRUDJA

    Directory of Open Access Journals (Sweden)

    A. TISCOVSCHI

    2013-04-01

    Full Text Available Characteristics of Aridity Conditions in South Dobrudja. For most people, the arid and semi-arid lands are those where precipitation is low (less than 200 mm per year, and yet enough for supplying streams capable of temporarily carrying the debris resulted from weathering, but insufficient for encouraging the development of a vegetal cover meant to protect the soil blanket against eroding agents. The drought is a major and permanent climatic risk for the Dobrudja territory as a whole and for South Dobrudja in particular, a territory where hydrographic network is underdeveloped, streams are ephemeral, and semi-endorheic areas are well developed. When the period of moisture deficiency lasts longer, it can bring about a significant water imbalance, which results in crop losses or restrictions in water consumption, thus leading to a number of economic problems. Under the circumstances, the risk of aridity expansion is significant, this being the reason why a better water management system in Romania is urgently needed. In the last decades, the numerous specialty studies undertaken in the area have emphasized an intensification of the process of dryness, because atmospheric and pedological droughts have become more and more serious. Romania is a member of the United Nations Convention to Combat Desertification (UNCCD and the World Meteorological Organization (WMO. It actively participates within the drought management network and the Drought Management Center for Southeastern Europe, which comprises 11 countries. The scope is to work together and exchange experience with the neighboring countries that have recorded positive results and acquired a rich experience in terms of drought management. The employment of appropriate pluvial indices in identifying the areas prone to aridity may prove to be convenient tool for finding practical solutions meant to mitigate the impact of this phenomenon on the local communities living in South Dobrudja.

  4. Aridity under conditions of increased CO2

    Science.gov (United States)

    Greve, Peter; Roderick, Micheal L.; Seneviratne, Sonia I.

    2016-04-01

    A string of recent of studies led to the wide-held assumption that aridity will increase under conditions of increasing atmospheric CO2 concentrations and associated global warming. Such results generally build upon analyses of changes in the 'aridity index' (the ratio of potential evaporation to precipitation) and can be described as a direct thermodynamic effect on atmospheric water demand due to increasing temperatures. However, there is widespread evidence that contradicts the 'warmer is more arid' interpretation, leading to the 'global aridity paradox' (Roderick et al. 2015, WRR). Here we provide a comprehensive assessment of modeled changes in a broad set of dryness metrics (primarily based on a range of measures of water availability) over a large range of realistic atmospheric CO2 concentrations. We use an ensemble of simulations from of state-of-the-art climate models to analyse both equilibrium climate experiments and transient historical simulations and future projections. Our results show that dryness is, under conditions of increasing atmospheric CO2 concentrations and related global warming, generally decreasing at global scales. At regional scales we do, however, identify areas that undergo changes towards drier conditions, located primarily in subtropical climate regions and the Amazon Basin. Nonetheless, the majority of regions, especially in tropical and mid- to northern high latitudes areas, display wetting conditions in a warming world. Our results contradict previous findings and highlight the need to comprehensively assess all aspects of changes in hydroclimatological conditions at the land surface. Roderick, M. L., P. Greve, and G. D. Farquhar (2015), On the assessment of aridity with changes in atmospheric CO2, Water Resour. Res., 51, 5450-5463

  5. Vertical profiles of soil water content as influenced by environmental factors in a small catchment on the hilly-gully Loess Plateau.

    Directory of Open Access Journals (Sweden)

    Bing Wang

    Full Text Available Characterization of soil water content (SWC profiles at catchment scale has profound implications for understanding hydrological processes of the terrestrial water cycle, thereby contributing to sustainable water management and ecological restoration in arid and semi-arid regions. This study described the vertical profiles of SWC at the small catchment scale on the hilly and gully Loess Plateau in Northeast China, and evaluated the influences of selected environmental factors (land-use type, topography and landform on average SWC within 300 cm depth. Soils were sampled from 101 points across a small catchment before and after the rainy season. Cluster analysis showed that soil profiles with high-level SWC in a stable trend (from top to bottom were most commonly present in the catchment, especially in the gully related to terrace. Woodland soil profiles had low-level SWC with vertical variations in a descending or stable trend. Most abandoned farmland and grassland soil profiles had medium-level SWC with vertical variations in varying trends. No soil profiles had low-level SWC with vertical variations in an ascending trend. Multi-regression analysis showed that average SWC was significantly affected by land-use type in different soil layers (0-20, 20-160, and 160-300 cm, generally in descending order of terrace, abandoned farmland, grassland, and woodland. There was a significant negative correlation between average SWC and gradient along the whole profile (P<0.05. Landform significantly affected SWC in the surface soil layer (0-20 cm before the rainy season but throughout the whole profile after the rainy season, with lower levels on the ridge than in the gully. Altitude only strongly affected SWC after the rainy season. The results indicated that land-use type, gradient, landform, and altitude should be considered in spatial SWC estimation and sustainable water management in these small catchments on the Loess Plateau as well as in other

  6. Vertical profiles of soil water content as influenced by environmental factors in a small catchment on the hilly-gully Loess Plateau.

    Science.gov (United States)

    Wang, Bing; Wen, Fenxiang; Wu, Jiangtao; Wang, Xiaojun; Hu, Yani

    2014-01-01

    Characterization of soil water content (SWC) profiles at catchment scale has profound implications for understanding hydrological processes of the terrestrial water cycle, thereby contributing to sustainable water management and ecological restoration in arid and semi-arid regions. This study described the vertical profiles of SWC at the small catchment scale on the hilly and gully Loess Plateau in Northeast China, and evaluated the influences of selected environmental factors (land-use type, topography and landform) on average SWC within 300 cm depth. Soils were sampled from 101 points across a small catchment before and after the rainy season. Cluster analysis showed that soil profiles with high-level SWC in a stable trend (from top to bottom) were most commonly present in the catchment, especially in the gully related to terrace. Woodland soil profiles had low-level SWC with vertical variations in a descending or stable trend. Most abandoned farmland and grassland soil profiles had medium-level SWC with vertical variations in varying trends. No soil profiles had low-level SWC with vertical variations in an ascending trend. Multi-regression analysis showed that average SWC was significantly affected by land-use type in different soil layers (0-20, 20-160, and 160-300 cm), generally in descending order of terrace, abandoned farmland, grassland, and woodland. There was a significant negative correlation between average SWC and gradient along the whole profile (Psustainable water management in these small catchments on the Loess Plateau as well as in other complex terrains with similar settings. PMID:25313829

  7. Hydrological Modelling in a semi-arid region using remote sensing data

    Science.gov (United States)

    Andersen, F.; Jensen, K. H.; Sandholt, I.; Stisen, S.; Jorreto, S.; Pulido-Bosch, A.

    2006-12-01

    The 2,265 km2 Andarax river basin is located in Southern Spain. It is one of the most arid regions in Europe with a mean annual precipitation of 250-350 mm, which mainly falls (70%) in autumn and winter. The terrain changes from sea level at the coast to more than 2,500 m in the Sierra Nevada Mountains. Most of the net precipitation falling in the mountains is either converted into overland flow, which runs directly to the rivers or infiltrated and then subsequently routed through fractures before discharging into the main river. All the water in the river infiltrate into the highly permeable Detritic aquifer. The total recharge within the catchment determines the water availability in the delta region. In semi-arid or arid areas groundwater recharge can be as low as 1 % of the precipitation, mainly because the rate of evapotranspiration is very high. It is essential to improve the estimation of actual evapotranspiration (ET), because it will result in a better estimate of the groundwater recharge. The hydrological behaviour of the Andarax river basin is simulated by the MIKE SHE code, which is a physically based, distributed and integrated hydrological model. The traditional hydrological data is rather sparse for the Andarax river basin especially the data for estimating ET. To improve the estimate of ET a SVAT (Soil Vegetation Atmosphere Transfer) model, which is implemented in the MIKE SHE code, is used. The MIKE SHE SVAT model is an energy-based two-layer land-surface model. The SVAT model enables the use of remote sensing data. The advantage of using remote sensing data to estimate ET is the high spatial and temporal resolution of data. Important variables that will be derived from remote sensing images are: Surface temperature, Global radiation, Albedo and LAI (Leaf Area Index).

  8. Forests and water - Friends or foes?. Hydrological implications of deforestation and land degradation in semi-arid Tanzania

    International Nuclear Information System (INIS)

    In the study area in Babati District in Tanzania a multi-component research approach was attempted. Two catchments, one forested and one deforested-degraded, were studied regarding soil properties, runoff and groundwater recharge. This was done both in the field and with the use of two computer models: one simulating groundwater recharge as a function of rainfall variability, and one simulating hydrological implications of massive land cover conversion on the flooding of nearby Lake Babati. Three major findings came out of the study. The first is that most forested catchments (in various hydroclimates and landscapes) will increase the runoff following deforestation (due to less evapotranspiration). This is well-established knowledge, but it also depends on the actual conditions at hand. These conditions are defined as hydroclimate, soil texture and slope. In humid-temperate climates with coarse soils on flat land, the conditions strongly favor increased runoff following deforestation. However, in dry regions with fine textured soils on hilly ground, and where deforestation also implies land degradation, less dry season flow is likely to develop after a considerable adjustment period has been allowed. Secondly, the prevalence of preferential flow in a forest soil, as compared to a compacted and eroded soil, must be a key component in an explanation of why more dry season flow can emerge from a forested as compared to a deforested catchment in the dry tropics. Thirdly, there are several aspects of semi-arid and arid tropical hydrology which make comparisons with humid-temperate regions difficult and require special attention in the management of water resources in the dry tropics. 14 refs, 18 figs, 1 tab

  9. Organic amendments impact the availability of heavy metal(loid)s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor.

    Science.gov (United States)

    Nawab, Javed; Khan, Sardar; Aamir, Muhammad; Shamshad, Isha; Qamar, Zahir; Din, Islamud; Huang, Qing

    2016-02-01

    The amendment of contaminated soil with organic materials is considered to be an environmentally friendly technique to immobilize heavy metal(loid)s and minimize their subsequent bioaccumulation in plants. This study focuses on the effects of different amendment techniques, such as the use of activated carbons (granulated or powder) and farmyard manure at various application rates (2 and 5 %). These techniques were applied on heavy metal(loid)s such as Ni, Cr, Cd, Pb, Mn, Cu, Zn, Fe, Co, and Al that were present in mine-impacted soil and caused bioaccumulation in cultivated plants. The results showed that, compared with the control, almost all the techniques significantly (P ≤ 0.01) reduced the bioavailability of heavy metal(loid)s in the amended soil. The bioaccumulation of heavy metal(loid)s in Penisitum americanum and Sorghum bicolor was significantly (P ≤ 0.01) reduced with all techniques, while Zn and Cd concentrations increased with the use of farmyard manure. Also compared with the control, plant growth was significantly decreased with the use of activated carbons, particularly with powder activated carbons, while farmyard manure (at 5 %) significantly (P ≤ 0.01) increased plant growth. Among the amendment techniques, powdered activated carbons (at 5 %) were best at reducing the bioavailability of heavy metal(loid)s in soil and plant accumulation. However, it negatively affected the growth of selected plant species. PMID:26411451

  10. Influence of plankton mercury dynamics and trophic pathways on mercury concentrations of top predator fish of a mining-impacted reservoir

    Science.gov (United States)

    Stewart, A.R.; Saiki, M.K.; Kuwabara, J.S.; Alpers, C.N.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.

    2008-01-01

    Physical and biogeochemical characteristics of the aquatic environment that affect growth dynamics of phytoplankton and the zooplankton communities that depend on them may also affect uptake of methylmercury (MeHg) into the pelagic food web of oligotrophic reservoirs. We evaluated changes in the quality and quantity of suspended particulate material, zooplankton taxonomy, and MeHg concentrations coincident with seasonal changes in water storage of a mining-impacted reservoir in northern California, USA. MeHg concentrations in bulk zooplankton increased from 4 ng??g-1 at low water to 77 ?? 6.1 ng??g-1 at high water and were positively correlated with cladoceran biomass (r = 0.66) and negatively correlated with rotifer biomass (r = -0.65). Stable isotope analysis revealed overall higher MeHg concentrations in the pelagic-based food web relative to the benthic-based food web. Statistically similar patterns of trophic enrichment of MeHg (slopes) for the pelagic and benthic food webs and slightly higher MeHg concentrations in zooplankton than in benthic invertebrates suggest that the difference in MeHg bioaccumulation among trophic pathways is set at the base of the food webs. These results suggest an important role for plankton dynamics in driving the MeHg content of zooplankton and ultimately MeHg bioaccumulation in top predators in pelagic-based food webs. ?? 2008 NRC.

  11. Hydropedological insights when considering catchment classification

    Directory of Open Access Journals (Sweden)

    J. Bouma

    2011-02-01

    Full Text Available Soil classification systems are analysed in relation to the functioning and characterisation of catchments. Soil classifications are useful to create systematic order in the overwhelming quantity of different soils in the world and to extrapolate data available for a given soil type to soils elsewhere with identical classifications. However, such classifications are based on permanent characteristics as formed by the soil forming factors over often very long periods of time and this does not necessarily match with characteristics and parameters needed for functional soil characterization focusing, for example, on catchment hydrology. Hydropedology has made contributions towards functional characterization of soils as is illustrated for recent hydrological catchment studies. However, much still needs to be learned about the physical behaviour of anisotropic, heterogeneous field soils with varying soil structures during the year and the suggestion is made to first focus on improving simulation of catchment hydrology, incorporating hydropedological expertise, before embarking on a classification effort which involves major input of time and involves the risk of distraction. In doing so, we advise to also define other characteristics for catchment performance than the traditionally measured discharge rates.

  12. Exceptional hydrological phenomena in the Gemenea catchment

    Directory of Open Access Journals (Sweden)

    Florentina LIVARCIUC

    2015-10-01

    Full Text Available Flash floods, accompanied by high waters and regular floods, represent the most dangerous natural hazards in the Gemenea catchment, inducing other risks such as geomorphologic, environmental, social and economical risks. Flash floods occurred during the 1969 to 2014 monitoring interval are characterized by extremely high discharge values, of 68.9 m3/s in 2006 and 95.3 m3/s in 2008 and a magnitude 2.5 times higher than the average discharge recorded until that timeframe. With an area of 77.7 km2, the Gemenea catchment falls into the category of small catchments, where the peak discharge during exceptional hydrological phenomena is caused by torrential rainfall. Flash floods of particularly high intensities caused serious damages through: total destruction or damage of the torrent correction works, clogging of culverts on catchment forest roads, failure of river banks and deterioration of the bridges that affected roads and homes in Gemenea, Slătioara and Stulpicani villages. These floods have also caused damage to the forest/agriculture fund through deep and lateral erosion, failure of river banks and landslides. Within this study we aim to emphasize the magnitude, frequency, duration and area of manifestation of such phenomena in the Gemenea catchment. Furthermore, we aim to advance our knowledge of the genesis and specific mechanisms of flash flood occurrence for reducing their negative impacts on the local environment and communities

  13. New interpretation of the role of water balance in an extended Budyko hypothesis in arid regions

    Science.gov (United States)

    Du, C.; Sun, F.; Yu, J.; Liu, X.; Chen, Y.

    2016-01-01

    The Budyko hypothesis (BH) is an effective approach to investigating long-term water balance at large basin scale under steady state. The assumption of steady state prevents applications of the BH to basins, which is unclosed, or with significant variations in root zone water storage, i.e., under unsteady state, such as in extremely arid regions. In this study, we choose the Heihe River basin (HRB) in China, an extremely arid inland basin, as the study area. We firstly use a calibrated and then validated monthly water balance model, i.e., the abcd model, to quantitatively determine annual and monthly variations of water balance for the sub-basins and the whole catchment of the HRB, and find that the roles of root zone water storage change and that of inflow from upper sub-basins in monthly water balance are significant. With the recognition of the inflow water from other regions and the root zone water storage change as additional possible water sources to evapotranspiration in unclosed basins, we further define the equivalent precipitation (Pe) to include local precipitation, inflow water and root zone water storage change as the water supply in the Budyko framework. With the newly defined water supply, the Budyko curve can successfully describe the relationship between the evapotranspiration ratio and the aridity index at both annual and monthly timescales, whilst it fails when only the local precipitation being considered. Adding to that, we develop a new Fu-type Budyko equation with two non-dimensional parameters (ω and λ) based on the deviation of Fu's equation. Over the annual timescale, the new Fu-type Budyko equation developed here has more or less identical performance to Fu's original equation for the sub-basins and the whole catchment. However, over the monthly timescale, due to large seasonality of root zone water storage and inflow water, the new Fu-type Budyko equation generally performs better than Fu's original equation. The new Fu-type Budyko

  14. New interpretation of the role of water balance in an extended Budyko hypothesis in arid regions

    Directory of Open Access Journals (Sweden)

    C. Du

    2015-10-01

    Full Text Available The Budyko hypothesis (BH is an effective approach to investigating long-term water balance at large basin scale under steady state. The assumption of steady state prevents applications of the BH to basins, which is unclosed, or with significant variations in soil water storage, i.e., under unsteady state, such as in extremely arid regions. In this study, we choose the Heihe River Basin (HRB in China, an extremely arid inland basin, as the study area. We firstly use a calibrated and then validated monthly water balance model, i.e., the abcd model to quantitatively determine annual and monthly variations of water balance for the sub-basins and the whole catchment of the HRB and find that the role of soil water storage change and that of inflow from upper sub-basins in monthly water balance are significant. With the recognition of the inflow water from other regions and the soil water storage change as additional possible water sources to evapotranspiration in unclosed basins, we further define the equivalent precipitation (Pe to include local precipitation, inflow water and soil water storage change as the water supply in the Budyko framework. With the newly defined water supply, the Budyko curve can successfully describe the relationship between the evapotranspiration ratio and the aridity index at both annual and monthly timescales, whilst it fails when only the local precipitation being considered. Adding to that, we develop a new Fu-type Budyko equation with two non-dimensional parameters (ω and λ based on the deviation of Fu's equation. Over the annual time scale, the new Fu-type Budyko equation developed here has more or less identical performance to Fu's original equation for the sub-basins and the whole catchment. However, over the monthly time scale, due to large seasonality of soil water storage and inflow, the new Fu-type Budyko equation generally performs better than Fu's original equation. The new Fu-type Budyko equation (ω and

  15. GLDAS Land Surface Models based Aridity Indices

    Science.gov (United States)

    Pande, S.; Ghazanfari, S.

    2011-12-01

    Identification of dryland areas is crucial to guide policy aimed at intervening in water stressed areas and addressing its perennial livelihood or food insecurity. Aridity indices based on spatially relative soil moisture conditions such as NCEP aridity index allow cross comparison of dry conditions between sites. NCEP aridity index is based on the ratio of annual precipitation (supply) to annual potential evaporation (demand). Such an index ignores subannual scale competition between evaporation and drainage functions well as rainfall and temperature regimes. This determines partitioning of annual supply of precipitation into two competing (but met) evaporation and runoff demands. We here introduce aridity indices based on these additional considerations by using soil moisture time series for the past 3 decades from three Land Surface Models (LSM) models and compare it with NCEP index. We analyze global monthly soil moisture time series (385 months) at 1 x 1 degree spatial resolution as modeled by three GLDAS LSMs - VIC, MOSAIC and NOAH. The first eigen vector from Empirical Orthogonal Function (EOF) analysis, as it is the most dominant spatial template of global soil moisture conditions, is extracted. Frequency of nonexceedences of this dominant soil moisture mode for a location by other locations is calculated and is used as our proposed aridity index. An area is indexed drier (relative to other areas in the world) if its frequency of nonexceedence is lower. The EOF analysis reveals that their first eigen vector explains approximately 32%, 43% and 47% of variance explained by first 385 eigen vectors for VIC, MOSAIC and NOAH respectively. The temporal coefficients associated with it for all three LSMS show seasonality with a jump in trend around the year 1999 for NOAH and MOSAIC. The VIC aridity index displays a pattern most closely resembling that of NCEP though all LSM based indices isolate dominant dryland areas. However, all three LSMs identify some parts of

  16. Catchment scale multi-objective flood management

    Science.gov (United States)

    Rose, Steve; Worrall, Peter; Rosolova, Zdenka; Hammond, Gene

    2010-05-01

    Rural land management is known to affect both the generation and propagation of flooding at the local scale, but there is still a general lack of good evidence that this impact is still significant at the larger catchment scale given the complexity of physical interactions and climatic variability taking place at this level. The National Trust, in partnership with the Environment Agency, are managing an innovative project on the Holnicote Estate in south west England to demonstrate the benefits of using good rural land management practices to reduce flood risk at the both the catchment and sub-catchment scales. The Holnicote Estate is owned by the National Trust and comprises about 5,000 hectares of land, from the uplands of Exmoor to the sea, incorporating most of the catchments of the river Horner and Aller Water. There are nearly 100 houses across three villages that are at risk from flooding which could potentially benefit from changes in land management practices in the surrounding catchment providing a more sustainable flood attenuation function. In addition to the contribution being made to flood risk management there are a range of other ecosystems services that will be enhanced through these targeted land management changes. Alterations in land management will create new opportunities for wildlife and habitats and help to improve the local surface water quality. Such improvements will not only create additional wildlife resources locally but also serve the landscape response to climate change effects by creating and enhancing wildlife networks within the region. Land management changes will also restore and sustain landscape heritage resources and provide opportunities for amenity, recreation and tourism. The project delivery team is working with the National Trust from source to sea across the entire Holnicote Estate, to identify and subsequently implement suitable land management techniques to manage local flood risk within the catchments. These

  17. Improving Flood Prediction By the Assimilation of Satellite Soil Moisture in Poorly Monitored Catchments.

    Science.gov (United States)

    Alvarez-Garreton, C. D.; Ryu, D.; Western, A. W.; Crow, W. T.; Su, C. H.; Robertson, D. E.

    2014-12-01

    Flood prediction in poorly monitored catchments is among the greatest challenges faced by hydrologists. To address this challenge, an increasing number of studies in the last decade have explored methods to integrate various existing observations from ground and satellites. One approach in particular, is the assimilation of satellite soil moisture (SM-DA) into rainfall-runoff models. The rationale is that satellite soil moisture (SSM) can be used to correct model soil water states, enabling more accurate prediction of catchment response to precipitation and thus better streamflow. However, there is still no consensus on the most effective SM-DA scheme and how this might depend on catchment scale, climate characteristics, runoff mechanisms, model and SSM products used, etc. In this work, an operational SM-DA scheme was set up in the poorly monitored, large (>40,000 km2), semi-arid Warrego catchment situated in eastern Australia. We assimilated passive and active SSM products into the probability distributed model (PDM) using an ensemble Kalman filter. We explored factors influencing the SM-DA framework, including relatively new techniques to remove model-observation bias, estimate observation errors and represent model errors. Furthermore, we explored the advantages of accounting for the spatial distribution of forcing and channel routing processes within the catchment by implementing and comparing lumped and semi-distributed model setups. Flood prediction is improved by SM-DA (Figure), with a 30% reduction of the average root-mean-squared difference of the ensemble prediction, a 20% reduction of the false alarm ratio and a 40% increase of the ensemble mean Nash-Sutcliffe efficiency. SM-DA skill does not significantly change with different observation error assumptions, but the skill strongly depends on the observational bias correction technique used, and more importantly, on the performance of the open-loop model before assimilation. Our findings imply that proper

  18. Hydrological behaviour of a small catchment in the dehesa landuse system (Extremadura, SW Spain)

    Science.gov (United States)

    Ceballos, Antonio; Schnabel, Susanne

    1998-09-01

    Investigations of the hydrological processes operating in a small experimental catchment representative of the dehesa ecosystem were carried out. The dehesa constitutes a system of agro-silvo-pastoral landuse, which is characterized by a Mediterranean, semi-arid climate. The study includes an analysis of the relationships between rainfall, soil water content and discharge, as well as the establishment of the annual water budget. The results demonstrate a complex hydrological response. The relationships between the factors involved and the operating processes are difficult to explain because of the decisive role played by the valley bottoms. These areas typically possess a sediment fill, and contrast with the shallow soils developed on the hillslopes. Genesis and quantity of runoff (Hortonian or saturation) measured at the outlet depend on the antecedent moisture conditions of the valley bottoms because of their water-retention capacity. Annual runoff coefficients are similar to those reported from other semi-arid areas. The analysis of the annual water budget shows that rainfall is positively related with both actual evapotranspiration and discharge.

  19. Understanding Water and Solute Fluxes in Diverse Catchments

    OpenAIRE

    Godsey, Sarah

    2009-01-01

    Catchments integrate incoming hydrological and geochemical fluxes via the mixing and reaction processes occurring within their boundaries. The catchment science community still seeks realistic and internally consistent models which explain integrated catchment behavior. It is known that the amount of streamflow responds quickly to rainfall, that stream water is predominantly "old" water which has been stored for long periods within the catchment, and that streamflow chemistry varies with flow...

  20. Juvenile salmon investigations River Wenning catchment 1981-86

    OpenAIRE

    Ingersent, B.

    1987-01-01

    As part of the River Lune juvenile salmonid investigation, a number of sites on the River Wenning catchment were electrofished annually from 1981 - 1985. Particularly low Salmon parr populations were evident for much of the Wenning catchment which has caused some concern. All the Wenning catchment electrofishing results are reported in this paper and comparisons are made with designated groups of sites on the remainder of the Lune catchment. These groups of sites are: River Lune and t...

  1. The role of catchment classification in rainfall-runoff modeling

    OpenAIRE

    He, Y.; A. Bárdossy; E. Zehe

    2011-01-01

    A sound catchment classification scheme is a fundamental step towards improved catchment hydrology science and prediction in ungauged basins. Two categories of catchment classification methods are presented in the paper. The first one is based directly on physiographic properties and climatic conditions over a catchment and regarded as a Linnaean type or natural classification scheme. The second one is based on numerical clustering and regionalization methods and considered as a statistical o...

  2. Picturing and modelling catchments by representative hillslopes

    Science.gov (United States)

    Loritz, Ralf; Hassler, Sibylle; Jackisch, Conrad; Zehe, Erwin

    2016-04-01

    Hydrological modelling studies often start with a qualitative sketch of the hydrological processes of a catchment. These so-called perceptual models are often pictured as hillslopes and are generalizations displaying only the dominant and relevant processes of a catchment or hillslope. The problem with these models is that they are prone to become too much predetermined by the designer's background and experience. Moreover it is difficult to know if that picture is correct and contains enough complexity to represent the system under study. Nevertheless, because of their qualitative form, perceptual models are easy to understand and can be an excellent tool for multidisciplinary exchange between researchers with different backgrounds, helping to identify the dominant structures and processes in a catchment. In our study we explore whether a perceptual model built upon an intensive field campaign may serve as a blueprint for setting up representative hillslopes in a hydrological model to reproduce the functioning of two distinctly different catchments. We use a physically-based 2D hillslope model which has proven capable to be driven by measured soil-hydrological parameters. A key asset of our approach is that the model structure itself remains a picture of the perceptual model, which is benchmarked against a) geo-physical images of the subsurface and b) observed dynamics of discharge, distributed state variables and fluxes (soil moisture, matric potential and sap flow). Within this approach we are able to set up two behavioral model structures which allow the simulation of the most important hydrological fluxes and state variables in good accordance with available observations within the 19.4 km2 large Colpach catchment and the 4.5 km2 large Wollefsbach catchment in Luxembourg without the necessity of calibration. This corroborates, contrary to the widespread opinion, that a) lower mesoscale catchments may be modelled by representative hillslopes and b) physically

  3. Rainfall Characterization In An Arid Area

    OpenAIRE

    Bazaraa, A. S.; Ahmed, Shamim

    1991-01-01

    The objective of this work is to characterize the rainfall in Doha which lies in an arid region. The rainfall data included daily rainfall depth since 1962 and the hyetographs of the individual storms since 1976. The rainfall is characterized by high variability and severe thunderstorms which are of limited geographical extent. Four probability distributions were used to fit the maximum rainfall in 24 hours and the annual rainfall depth. The extreme value distribution was found to have the be...

  4. VOCs in Arid soils: Technology summary

    International Nuclear Information System (INIS)

    The Volatile Organic Compounds In Arid Soils Integrated Demonstration (VOC-Arid ID) focuses on technologies to clean up volatile organic compounds and associated contaminants in soil and groundwater at arid sites. The initial host site is the 200 West Area at DOE's Hanford site in southeastern Washington state. The primary VOC contaminant is carbon tetrachloride, in association with heavy metals and radionuclides. An estimated 580--920 metric tons of carbon tetrachloride were disposed of between 1955 and 1973, resulting in extensive soil and groundwater contamination. The VOC-Arid ID schedule has been divided into three phases of implementation. The phased approach provides for: rapid transfer of technologies to the Environmental Restoration (EM-40) programs once demonstrated; logical progression in the complexity of demonstrations based on improved understanding of the VOC problem; and leveraging of the host site EM-40 activities to reduce the overall cost of the demonstrations. During FY92 and FY93, the primary technology demonstrations within the ID were leveraged with an ongoing expedited response action at the Hanford 200 West Area, which is directed at vapor extraction of VOCs from the vadose (unsaturated) zone. Demonstration efforts are underway in the areas of subsurface characterization including: drilling and access improvements, off-gas and borehole monitoring of vadose zone VOC concentrations to aid in soil vapor extraction performance evaluation, and treatment of VOC-contaminated off-gas. These current demonstration efforts constitute Phase 1 of the ID and, because of the ongoing vadose zone ERA, can result in immediate transfer of successful technologies to EM-40

  5. Water balance modelling in a semi-arid environment with limited in-situ data: remote sensing coupled with satellite gravimetry, Lake Manyara, East African Rift, Tanzania

    OpenAIRE

    D. Deus; R. Gloaguen; Krause, P.

    2011-01-01

    Accurate and up to date information on the status and trends of water balance is needed to develop strategies for conservation and the sustainable management of water resources. The purpose of this research is to estimate water balance in a semi-arid environment with limited in-situ data by using a remote sensing approach. We focus on the Lake Manyara catchment, located within the East African Rift of northern Tanzania. We use remote sensing and a semi-distributed hydrological model to study ...

  6. Cereals for the semi-arid tropics

    International Nuclear Information System (INIS)

    The region of semi-arid tropics is the most famine prone area of the world. This region with nearly one billion people extends across some 20 million square kilometres. Major domesticated cereals adapted to semi-arid regions are sorghum (Sorghum bicolor (L.) Moench), foxtail millet (Setaria italica (L.) P. Beauv.) and pearl millet (Pennisetum glaucum (L.) R. Br.). Several minor cereals are grown as speciality crops, or harvested in the wild in times of severe drought and scarcity. Important in the African Sahel are the fonios Digitaria iburua Stapf, D. exilis (Kapist) Stapf and Brachiaria deflexa (Schumach). C.E. Hubbard. These species are aggressive colonizers and are commonly encouraged as weeds in cultivated fields. Sown genotypes differ from their close wild relatives primarily in the lack of efficient natural seed dispersal. The fonios lend themselves to rapid domestication. Several wild cereals extend well beyond the limits of agriculture into the Sahara. Commonly harvested are the perennial Stipagrostis pungens and Panicum turgidum, and the annual Cenchrus biflorus (kram-kram). Kram-kram yields well under extreme heat and drought stress, and holds promise as a domesticated cereal. Sauwi millet (Panicum sonorum) is promising cereal in arid northwestern Mexico. (author). 31 refs

  7. Water Use and Management in Semiarid Regions - A Distributed Modelling Approach in the Verlorenvlei Catchment, South Africa

    Science.gov (United States)

    Fleischer, Melanie; Kralisch, Sven; Fink, Manfred; Pfennig, Björn; Butchart-Kuhlmann, Daniel; Meinhardt, Markus; de Clercq, Willem

    2016-04-01

    Hydrological modelling is a useful method to predict water availability and environmental impacts in a range of climate and land use change scenarios. One of the major challenges to accurate predictions using hydrological modelling in semi-arid areas is the high temporal and spatial variability of rainfall events and the associated uncertainty of related process parameters. Limited and often unreliable climate observations can cause additional problems. These particular circumstances are well documented for many catchments in the world, including semi-arid parts of South Africa. An accurate assessment of water quality and quantity is however crucial for sustainable water resource management, which is often difficult under changing environmental conditions such as climate and land use change. This situation can be found in the Verlorenvlei catchment, a part of the Sandveld area located in the Western Cape region of South Africa. Extensive dry periods in combination with an increasing domestic water demand, expanding irrigation agriculture and expected reducing rainfall due to climate change present a challenging setup for water management in this region. The catchment is a highly sensitive area with one of the most important estuary systems in the Western Cape region, containing significant natural wetlands with high biodiversity and numerous endemic species. With very limited surface water resources, most settlements and irrigation systems in the region are mainly dependent on groundwater. As a result of the particular conditions, the use of improved management techniques, such as centre pivot irrigation and contour-bank farming, are necessary. The distributed, process-oriented hydrological modelling system JAMS/J2000 is used and evaluated to assess water availability within the catchment under different climate and land-use change scenarios. The first phase has involved configuring the model to accurately represent the specific natural conditions of the

  8. Biogeochemical redox cycling of arsenic in mine-impacted lake sediments and co-existing pore waters near Giant Mine, Yellowknife Bay, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.F. [Queen' s University, Department of Geological Sciences and Geological Engineering, Kingston, K7L 3N6 (Canada); Jamieson, H.E., E-mail: jamieson@geol.queensu.ca [Queen' s University, Department of Geological Sciences and Geological Engineering, Kingston, K7L 3N6 (Canada); Kyser, T.K. [Queen' s University, Department of Geological Sciences and Geological Engineering, Kingston, K7L 3N6 (Canada); Praharaj, T.; Fortin, D. [University of Ottawa, Department of Earth Sciences, Ottawa, K1A 3N5 (Canada)

    2010-02-15

    Lacustrine sediments, submerged tailings, and their pore waters have been collected at several sites in Yellowknife Bay, Great Slave Lake, Canada, in order to investigate the biogeochemical controls on the remobilization of As from mining-impacted materials under different depositional conditions. Radiometric dating confirms that a mid-core enrichment of Pb, Zn, Cu and Sb corresponds to the opening of a large Au mine 60 a ago. This was evident even in a relatively remote site. Arsenic was enriched at mid-core, coincident with mining activity, but clearly exhibited post-depositional mobility, migrating upwards towards the sediment water interface (SWI) as well as down-core. Deep-water (15 m) Yellowknife Bay sediments that contain buried mine waste are suboxic, relatively organic-rich and abundant in microbes with As in pore waters and sediments reaching 585 {mu}g/L and 1310 mg/kg, respectively. Late summer pore waters show equal proportions of As(III) and As(V) (16-415 {mu}g/L) whereas late winter pore waters are dominated by As(III) (284-947 {mu}g/L). This can be explained by As(III) desorption mechanisms associated with the conversion of FeS to FeS{sub 2} and the reduction of As(V) to As(III) through the oxidation of dissolved sulfide, both microbially-mediated processes. Processes affecting As cycling involve the attenuating efficiency of the oxic zone at the SWI, sediment redox heterogeneity and the reductive dissolution of Fe(hydr)oxides by labile organic matter, temporarily and spatially variable.

  9. Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, D.E.; March, A.W.; Bostick, B.; Spring, S.; Caccavo, F. Jr.; Fendorf, S.; Rosenzweig, R.F.

    2000-01-01

    Mining-impacted sediments of Lake Coeur d'Alene, Idaho, contain more than 10% metals on a dry weight basis, approximately 80% of which is iron. Since iron (hydr)oxides adsorb toxic, ore-associated elements, such as arsenic, iron (hydr)oxide reduction may in part control the mobility and bioavailability of these elements. Geochemical and microbiological data were collected to examine the ecological role of dissimilatory Fe(III)-reducing bacteria in this habitat. The concentration of mild-acid-extractable Fe(II) increased with sediment depth up to 50 g kg{sup {minus}1}, suggesting that iron reduction has occurred recently. The maximum concentrations of dissolved Fe(II) in interstitial water (41 mg liter{sup {minus}1}) occurred 10 to 15 cm beneath the sediment-water interface, suggesting that sulfidogenesis may not be the predominant terminal electron-accepting process in this environment and that dissolved Fe(II) arises from biological reductive dissolution of iron (hydr)oxides. The concentration of sedimentary magnetite (Fe{sub 3}O{sub 4}), a common product of bacterial Fe(III) hydroxide reduction, was as much as 15.5 g kg{sup {minus}1}. Most-probable-number enrichment cultures revealed that the mean density of Fe(III)-reducing bacteria was 8.3 x 10{sup 5} cells g (dry weight) of sediment{sup {minus}1}. Two new strains of dissimilatory Fe(III)-reducing bacteria were isolated from surface sediments. Collectively, the results of this study support the hypothesis that dissimilatory reduction of iron has been and continues to be an important biogeochemical process in the environment examined.

  10. Rational Utilization of Salt Affected Soils and Saline Waters for Crop Production and the Protection of Soil and Water in Agricultural Catchments

    International Nuclear Information System (INIS)

    Sustainable management of land and water resources in arid and semi-arid regions is of concern as a result of increased population pressure and the need for more food and fibre. Soil and water salinity is widespread across the arid and semiarid regions of Australia, the Arabian Peninsula, Central Asia, North Africa, North America and South Asia, where it is a major constraint for agricultural productivity and the livelihoods of the rural population. Globally, salinity spreads across at least 75 countries and about 20% of irrigated land is affected by salinity. Recent estimates suggest that up to 50% of irrigated land has become saline in some of these regions. While both natural processes (primary) and anthropogenic activities (secondary) cause soil and water salinity, the latter contributes more to loss of agricultural productivity in these regions. In addition to anthropogenic activities global climate change also accelerates soil and water salinity through the following processes: - Unpredictable evaporation and transpiration: Climate change alters the evapotranspiration and water balance at the land surface, and changes the groundwater recharge. In shallow aquifers, the groundwater responds to these changes quickly and moves towards the surface bringing salt with it and accelerating soil salinization (Yu et al., 2002). - Reduction in rainfall: Current best estimates suggest that in arid and semi-arid catchments, a reduction in rainfall due to climate change will result in up to double the reduction in run-off from catchments and river flow. Under such conditions, river salinity will increase as a result of reduced river dilution (CSIRO, 2008). - Influence of tidal waves: In coastal areas, the risk of soil and water salinization under climate change is even higher because the increased sea level and frequency of tidal waves brings salt water into inland freshwaters and is lost then to groundwater, making it saline. In low-lying areas, salty river water moves to

  11. Hydropedological insights when considering catchment classification

    NARCIS (Netherlands)

    Bouma, J.; Droogers, P.; Sonneveld, M.P.W.; Ritsema, C.J.; Hunink, J.E.; Immerzeel, W.W.; Kauffman, S.

    2011-01-01

    Soil classification systems are analysed to explore the potential of developing classification systems for catchments. Soil classifications are useful to create systematic order in the overwhelming quantity of different soils in the world and to extrapolate data available for a given soil type to so

  12. Hydropedological insights when considering catchment classification

    NARCIS (Netherlands)

    Bouma, J.; Droogers, P.; Sonneveld, M.P.W.; Ritsema, C.J.; Hunink, J.E.; Immerzeel, W.W.; Kauffman, S.

    2011-01-01

    Soil classification systems are analysed in relation to the functioning and characterisation of catchments. Soil classifications are useful to create systematic order in the overwhelming quantity of different soils in the world and to extrapolate data available for a given soil type to soils elsewhe

  13. Catchment management and the Great Barrier Reef.

    Science.gov (United States)

    Brodie, J; Christie, C; Devlin, M; Haynes, D; Morris, S; Ramsay, M; Waterhouse, J; Yorkston, H

    2001-01-01

    Pollution of coastal regions of the Great Barrier Reef is dominated by runoff from the adjacent catchment. Catchment land-use is dominated by beef grazing and cropping, largely sugarcane cultivation, with relatively minor urban development. Runoff of sediment, nutrients and pesticides is increasing and for nitrogen is now four times the natural amount discharged 150 years ago. Significant effects and potential threats are now evident on inshore reefs, seagrasses and marine animals. There is no effective legislation or processes in place to manage agricultural pollution. The Great Barrier Reef Marine Park Act does not provide effective jurisdiction on the catchment. Queensland legislation relies on voluntary codes and there is no assessment of the effectiveness of the codes. Integrated catchment management strategies, also voluntary, provide some positive outcomes but are of limited success. Pollutant loads are predicted to continue to increase and it is unlikely that current management regimes will prevent this. New mechanisms to prevent continued degradation of inshore ecosystems of the Great Barrier Reef World Heritage Area are urgently needed. PMID:11419129

  14. Assessment of water availability in Chindwinn catchment

    International Nuclear Information System (INIS)

    A study of water balance over Chindwinn Catchment has been carried out by using three decades of available climatological and hydrological data (i.e. from 1967). The study was based on the monthly, annual and normal values. Actual evapotranspiration (AET) computed by as well as on the using Penman (1963) as well as Hargreaves (1985) methods. Some of the reliable data of evaporation at the stations were also used to estimate actual evaporation with the pancoefficient value 0.7. The values of actual evapotranspiration estimated by Hargreaves method was lower than the values estimated by Penman, but most followed the same significant trend. The soil moisture deficiency generally occurs during November and April. A few cases of soil moisture deficiency do occur in August, September and October. However, on the overall availability of water in the catchment is quite promising. The residual resulted from the water balance estimation may be assumed as soil moisture in the catchment by neglecting some losses from the catchment. (author)

  15. Use of Multiple Stable Isotopes to Quantify Nitrogen Deposition in Arid-Urban Ecosystems

    Science.gov (United States)

    Riha, K. M.; Michalski, G. M.; Hale, R. L.; Earl, S.; Turnbull, L.; Grimm, N. B.

    2011-12-01

    Atmospheric nitrogen (N) input to soils and surfaces in arid environments is of growing concern due to increased N emissions and N use associated with urbanization. Atmospheric N that falls as wet (rain or snow) or dry (dust or aerosols) deposition can lead to eutrophication, soil acidification, and groundwater contamination through leaching of excess nitrate. Other nitrate sources include anthropogenic fertilizer from agriculture practices or lawn application, septic systems, and animal waste. Urbanization increases imperviousness and alters natural flowpaths through construction of stormwater infrastructure, which alters hydrological connectivity. Following a rain pulse, nitrate deposited on impervious surfaces during dry periods may be mobilized and, depending on the type of stormwater infrastructure, has the potential to reach aquifers. In this study, we investigate the sources of nitrate found in urban stormwater by undertaking multiple-isotope analysis (δ15N, δ18O and Δ17O) on water samples collected from several sub-catchments within the Indian Bend Wash catchment in Scottsdale, Arizona, that represent different types of stormwater infrastructure, including pipes, engineered washes, retention basins and mixed infrastructure at larger spatial scales. We use δ15N of nitrate to distinguish among nitrate sources; pairing δ15N and δ18O provides more precise separation due to distinct signatures (e.g., fertilizer is unique from septic sources). Because atmospheric nitrate is anomalously enriched in 17O (denoted Δ17O) and nitrate produced from nitrification, denitrification and assimilation have a Δ17O = 0, we are able to use the Δ17O measurement to determine the proportion of nitrate in runoff that is derived from atmospheric sources. Multiple isotopic analyses were performed using the denitrifier method on runoff samples collected during summer (monsoonal) and winter storms that occurred between 2010 and 2011. Typical ranges of atmospheric nitrate inputs

  16. Catchment scale afforestation for mitigating flooding

    Science.gov (United States)

    Barnes, Mhari; Quinn, Paul; Bathurst, James; Birkinshaw, Stephen

    2016-04-01

    After the 2013-14 floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. At present, 1 in 6 homes in Britain are at risk of flooding and current EU legislation demands a sustainable, 'nature-based solution'. However, the role of forests as a natural flood management technique remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. SHETRAN, physically-based spatially-distributed hydrological models of the Irthing catchment and Wark forest sub-catchments (northern England) have been developed in order to test the hypothesis of the effect trees have on flood magnitude. The advanced physically-based models have been designed to model scale-related responses from 1, through 10, to 100km2, a first study of the extent to which afforestation and woody debris runoff attenuation features (RAFs) may help to mitigate floods at the full catchment scale (100-1000 km2) and on a national basis. Furthermore, there is a need to analyse the extent to which land management practices, and the installation of nature-based RAFs, such as woody debris dams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. The impacts of riparian planting and the benefits of adding large woody debris of several designs and on differing sizes of channels has also been simulated using advanced hydrodynamic (HiPIMS) and hydrological modelling (SHETRAN). With the aim of determining the effect forestry may have on flood frequency, 1000 years of generated rainfall data representative of current conditions has been used to determine the difference between current land-cover, different distributions of forest cover and the defining scenarios - complete forest removal and complete afforestation of the catchment. The simulations show the percentage of forestry required to have a significant impact on mitigating

  17. Analysis list: ARID1A [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ARID1A Liver + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ARID1A.1.tsv http://dbar...chive.biosciencedbc.jp/kyushu-u/hg19/target/ARID1A.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/AR...ID1A.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ARID1A.Liver.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Liver.gml ...

  18. Analysis list: ARID1B [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ARID1B Liver + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ARID1B.1.tsv http://dbar...chive.biosciencedbc.jp/kyushu-u/hg19/target/ARID1B.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/AR...ID1B.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ARID1B.Liver.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Liver.gml ...

  19. Analysis list: ARID3B [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ARID3B Others + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ARID3B.1.tsv http://dbar...chive.biosciencedbc.jp/kyushu-u/hg19/target/ARID3B.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/AR...ID3B.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ARID3B.Others.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Others.gml ...

  20. Analysis list: ARID2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ARID2 Liver + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ARID2.1.tsv http://dbar...chive.biosciencedbc.jp/kyushu-u/hg19/target/ARID2.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/AR...ID2.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ARID2.Liver.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Liver.gml ...

  1. Coupling stable isotope and satellite to inform a snow accumulation and melt model for data poor, semi-arid watersheds

    Science.gov (United States)

    Hublart, Paul; Sproles, Eric; Soulsby, Chris; Tetzlaff, Doerthe; Hevía, Andres

    2016-04-01

    At the most basic level watersheds catch, store, and release water. In semi-arid northern central Chile (29°-32°) snow and glacier melt dominate these basic hydrological stages. In this region precipitation is typically limited to three to five events per year that falls as snow in the High Cordillera at elevations above 3000 m a.s.l. The rugged topography and steep gradient makes snowfall rates highly variable in space and time. Despite its critical importance for water supply, high elevation meteorological data and measurements of snowpack are scarce due to limited winter access above 3000 m a.s.l. Due to the critically limited understanding of catch, store, and release processes most conceptual watershed models for this region remain speculative, are prone to over-parameterization, and greatly inhibits hydrological prediction in the region. Focused on two headwater watersheds of the Elqui River basin (1615-6040 m a.s.l., 429-566 km2) this study couples stable isotope and Moderate Resolution Imaging Spectrometer (MODIS) data to develop an improved conceptual model of how semi-arid mountain watersheds catch, store, and release water. MODIS snow-cover and land surface temperature data are used to inform an enhanced temperature-index Snow Accumulation and Melt (SAM) model. The use of remotely-sensed temperature data as input to this model is evaluated by comparison with an interpolated dataset derived from a few available meteorological stations. The outputs from the SAM model are used as inputs to a conceptual catchment model including two water stores (one standing for surface/subsurface processes and the other for deeper groundwater storage). The model is calibrated and evaluated from a Bayesian perspective using discharge data measured at the catchment outlets over a 15-year period (2000-2015). Stable isotope data collected during 2015-2016 is applied to better constrain model outputs. The combination of MODIS-based and isotope-based information proves very

  2. Hydrodynamics of mine impact burial

    OpenAIRE

    Evans, Ashley D.

    2002-01-01

    A general physics based hydrodynamic flow model is developed that predicts the three-dimensional six degrees of freedom free fall time history of a circular cylinder through the water column to impact with an unspecified bottom. Accurate vertical impact velocity and impact angle parameters are required inputs to subsequent portions of any Impact Mine Burial Model. The model vertical impact velocity and impact angle are compared with experimental data, vertical impact velocities and impact ang...

  3. A PROPOSED NEW VEGETATION INDEX, THE TOTAL RATIO VEGETATION INDEX (TRVI), FOR ARID AND SEMI-ARID REGIONS

    OpenAIRE

    H. Fadaei; Suzuki, R.; Sakai, T; Torii, K.

    2012-01-01

    Vegetation indices that provide important key to predict amount vegetation in forest such as percentage vegetation cover, aboveground biomass, and leaf-area index. Arid and semi-arid areas are not exempt of this rule. Arid and semi-arid areas of northeast Iran cover about 3.4 million ha and are populated by two main tree species, the broadleaf Pistacia vera (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environ...

  4. Thermal and water management in irrigating lands in the arid and semi-arid regions

    International Nuclear Information System (INIS)

    Excess heat and scarcity of water are the two major problems, which are usually encountered in irrigating lands especially in the arid and semi-arid regions. This paper introduces a technical approach of managing agricultural lands in the arid and semi arid regions through determination of daily water requirement and amount of heat the land is being exposed at various meteorological conditions. Through setting up a mathematical model consisting of basic heat and mass transfer equations and fluid properties, daily rate of water evaporation, different modes of heat transfer such as radiation, convection and heat transfer by evaporation at a wide range relative humidities are determined. Furthermore, the analyses are performed at two different scenarios at average air velocities of 1 and 5 m/s. Our findings showed that the volume of water evaporation at relative humidity and air temperature of phi=50% and T∞=20 deg. C is 22% higher than at phi=100% and T∞=20 deg. C. Moreover, at a specified phi and T∞, the total rate of heat transfer at air velocity of 5 m/s is at least 25% higher than the total rate of heat transfer at air velocity of 1 m/s

  5. Simulation of Groundwater-Surface Water Interactions under Different Land Use Scenarios in the Bulang Catchment, Northwest China

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    2015-10-01

    Full Text Available Groundwater is the most important resource for local society and the ecosystem in the semi-arid Hailiutu River catchment. The catchment water balance was analyzed by considering vegetation types with the Normalized Difference Vegetation Index (NDVI, determining evapotranspiration rates by combining sap flow measurements and NDVI values, recorded precipitation, measured river discharge and groundwater levels from November 2010 to October 2011. A simple water balance computation, a steady state groundwater flow model, and a transient groundwater flow model were used to assess water balance changes under different land use scenarios. It was shown that 91% of the precipitation is consumed by the crops, bushes and trees; only 9% of the annual precipitation becomes net groundwater recharge which maintains a stable stream discharge in observed year. Four land use scenarios were formulated for assessing the impacts of land use changes on the catchment water balance, the river discharge, and groundwater storage in the Bulang catchment. The scenarios are: (1 the quasi natural state of the vegetation covered by desert grasses; (2 the current land use/vegetation types; (3 the change of crop types to dry resistant crops; and (4 the ideal land use covered by dry resistant crops and desert grasses, These four scenarios were simulated and compared with measured data from 2011, which was a dry year. Furthermore, the scenarios (2 and (4 were evaluated under normal and wet conditions for years in 2009 and 2014, respectively. The simulation results show that replacing current vegetation and crop types with dry resistant types can significantly increase net groundwater recharge which leads to the increase of groundwater storage and river discharges. The depleted groundwater storage during the dry year could be restored during the normal and wet years so that groundwater provides a reliable resource to sustain river discharge and the dependent vegetations in the area.

  6. Development of catchment research, with particular attention to Plynlimon and its forerunner, the East African catchments

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Dr J.S.G. McCulloch was deeply involved in the establishment of research catchments in East Africa and subsequently in the UK to investigate the hydrological consequences of changes in land use. Comparison of these studies provides an insight into how influential his inputs and direction have been in the progressive development of the philosophy, the instrumentation and the analytical techniques now employed in catchment research. There were great contrasts in the environments: tropical highland (high radiation, intense rainfall vs. temperate maritime (low radiation and frontal storms, contrasting soils and vegetation types, as well as the differing social and economic pressures in developing and developed nations. Nevertheless, the underlying scientific philosophy was common to both, although techniques had to be modified according to local conditions. As specialised instrumentation and analytical techniques were developed for the UK catchments many were also integrated into the East African studies. Many lessons were learned in the course of these studies and from the experiences of other studies around the world. Overall, a rigorous scientific approach was developed with widespread applicability. Beyond the basics of catchment selection and the quantification of the main components of the catchment water balance, this involved initiating parallel process studies to provide information on specific aspects of catchment behaviour. This information could then form the basis for models capable of extrapolation from the observed time series to other periods/hydrological events and, ultimately, the capability of predicting the consequences of changes in catchment land management to other areas in a range of climates.

  7. Inverse distributed hydrological modelling of Alpine catchments

    Directory of Open Access Journals (Sweden)

    H. Kunstmann

    2006-01-01

    Full Text Available Even in physically based distributed hydrological models, various remaining parameters must be estimated for each sub-catchment. This can involve tremendous effort, especially when the number of sub-catchments is large and the applied hydrological model is computationally expensive. Automatic parameter estimation tools can significantly facilitate the calibration process. Hence, we combined the nonlinear parameter estimation tool PEST with the distributed hydrological model WaSiM. PEST is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. WaSiM is a fully distributed hydrological model using physically based algorithms for most of the process descriptions. WaSiM was applied to the alpine/prealpine Ammer River catchment (southern Germany, 710 km2 in a 100×100 m2 horizontal resolution. The catchment is heterogeneous in terms of geology, pedology and land use and shows a complex orography (the difference of elevation is around 1600 m. Using the developed PEST-WaSiM interface, the hydrological model was calibrated by comparing simulated and observed runoff at eight gauges for the hydrologic year 1997 and validated for the hydrologic year 1993. For each sub-catchment four parameters had to be calibrated: the recession constants of direct runoff and interflow, the drainage density, and the hydraulic conductivity of the uppermost aquifer. Additionally, five snowmelt specific parameters were adjusted for the entire catchment. Altogether, 37 parameters had to be calibrated. Additional a priori information (e.g. from flood hydrograph analysis narrowed the parameter space of the solutions and improved the non-uniqueness of the fitted values. A reasonable quality of fit was achieved. Discrepancies between modelled and observed runoff were also due to the small number of meteorological stations and corresponding interpolation artefacts in the orographically complex terrain. Application of a 2

  8. Inverse distributed hydrological modelling of alpine catchments

    Directory of Open Access Journals (Sweden)

    H. Kunstmann

    2005-12-01

    Full Text Available Even in physically based distributed hydrological models, various remaining parameters must be estimated for each sub-catchment. This can involve tremendous effort, especially when the number of sub-catchments is large and the applied hydrological model is computationally expensive. Automatic parameter estimation tools can significantly facilitate the calibration process. Hence, we combined the nonlinear parameter estimation tool PEST with the distributed hydrological model WaSiM. PEST is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. WaSiM is a fully distributed hydrological model using physically based algorithms for most of the process descriptions.

    WaSiM was applied to the alpine/prealpine Ammer River catchment (southern Germany, 710 km2 in a 100×100 m2 horizontal resolution. The catchment is heterogeneous in terms of geology, pedology and land use and shows a complex orography (the difference of elevation is around 1600 m. Using the developed PEST-WaSiM interface, the hydrological model was calibrated by comparing simulated and observed runoff at eight gauges for the hydrologic year 1997 and validated for the hydrologic year 1993. For each sub-catchment four parameters had to be calibrated: the recession constants of direct runoff and interflow, the drainage density, and the hydraulic conductivity of the uppermost aquifer. Additionally, five snowmelt specific parameters were adjusted for the entire catchment. Altogether, 37 parameters had to be calibrated. Additional a priori information (e.g. from flood hydrograph analysis narrowed the parameter space of the solutions and improved the non-uniqueness of the fitted values. A reasonable quality of fit was achieved. Discrepancies between modelled and observed runoff were also due to the small number of meteorological stations and corresponding interpolation artefacts in the orographically complex

  9. Tritium balance modeling in a macroscale catchment

    International Nuclear Information System (INIS)

    Full text: The Institute of Hydrology at the Freiburg University (IHF) is working in cooperation with the German Federal Institute of Hydrology (BfG) on a project implementing tritium data into modeling concepts of large river systems. Tritium concentrations that are measured in precipitation (Global Network of Isotopes in Precipitation - GNIP) and discharge (BfG - HYDABA data base) are combined with information on water balance components on monthly basis over a period of 50 years. In a first step the Fulda and Werra catchments (6.890 km2 and 5.410 km2) in Germany were used to test the model approach, to study residence times, groundwater storage behaviour and water balance components. Environmental tritium in precipitation that was mainly introduced into the water cycle by nuclear weapon tests in the 60s is the source of tritium input in this catchments. Precipitation and potential evapotranspiration were calculated from the German Weather Authority (DWD). The TRIBIL software was developed to process a large amount of data sets. It allows to consider tritium input from precipitation, nuclear power plants and channel systems. Evapotranspiration from land and water surface as well as snow cover are considered for calculations of infiltrating water. Beneath a direct runoff component the amount of infiltrating water is distinguished into fast and slow groundwater reservoirs were each consists of a mobile and immobile fraction. The amount of tritium stored in these groundwater fractions is calculated using discharge recession curve analyses. An outline of the model structure as well as results for the river systems Fulda and Werra will be presented. A comparison of measured and modeled tritium concentrations in discharge showed considerable fits. Modeling efficiencies are around 0.8. The results allow an interpretation of storage volumes and residence times of the supposed groundwater reservoirs. Because there is no influence through nuclear power plants, tritium

  10. Large landslides lie low: Vertical domains of denudation processes in the arid Himalaya-Karakoram orogen

    Science.gov (United States)

    Blöthe, Jan Henrik

    2014-05-01

    Large bedrock landslides (defined here as affecting >0.1 km2 in planform area) are thought to substantially contribute to denuding active mountain belts, and limiting the growth of topographic relief produced by concurrent tectonic uplift and fluvial or glacial incision. While most research on large landslides has focused on tectonically active, humid mountain belts with varying degrees of rainstorm and earthquake activity, lesser attention has been devoted to arid mountain belts. Especially in the Himalaya, where high denudation rates are commonly associated with high landslide activity, previous work has largely ignored landslide processes in the arid compartments of the orogen. This was motivation for us to compile a landslide inventory covering the arid Himalaya-Karakoram of NW India and N Pakistan within the Indus catchment. Our data set contains 493 rock-slope failures that we compiled from published studies and mapping from remote sensing imagery. Using an empirical volume-area scaling approach we estimate the total landslide volume at >250 km3. This is more than thousand times the contemporary annual sediment load in the Indus River. We analyse the distribution of these volumetrically significant landslides with respect to the regional hypsometry, contemporary glacier cover, and the distribution of rock glaciers. We find that large bedrock landslides in the arid Himalaya-Karakoram region preferentially detach near or from below the study area's median elevation, while glaciers and rock glaciers occupy higher elevations almost exclusively. This trend holds true for both the study area and parts thereof. The largest and highest-lying landslides occur in the Karakoram mountains, where local relief exceeds 6 km, and >90% of the landslide areas lie below the region's median elevation. Our analysis reveals a hitherto unrecognized vertical layering of denudation processes, with landslides chiefly operating below the median elevation, whereas mass transport by

  11. Establishing a connection between hydrologic model parameters and physical catchment signatures for improved hierarchical Bayesian modeling in ungauged catchments

    Science.gov (United States)

    Marshall, L. A.; Weber, K.; Smith, T. J.; Greenwood, M. C.; Sharma, A.

    2012-12-01

    In an effort to improve hydrologic analysis in areas with limited data, hydrologists often seek to link catchments where little to no data collection occurs to catchments that are gauged. Various metrics and methods have been proposed to identify such relationships, in the hope that "surrogate" catchments might provide information for those catchments that are hydrologically similar. In this study we present a statistical analysis of over 150 catchments located in southeast Australia to examine the relationship between a hydrological model and certain catchment metrics. A conceptual rainfall-runoff model is optimized for each of the catchments and hierarchical clustering is performed to link catchments based on their calibrated model parameters. Clustering has been used in recent hydrologic studies but catchments are often clustered based on physical characteristics alone. Usually there is little evidence to suggest that such "surrogate" data approaches provide sufficiently similar model predictions. Beginning with model parameters and working backwards, we hope to establish if there is a relationship between the model parameters and physical characteristics for improved model predictions in the ungauged catchment. To analyze relationships, permutational multivariate analysis of variance tests are used that suggest which hydrologic metrics are most appropriate for discriminating between calibrated catchment clusters. Additional analysis is performed to determine which cluster pairs show significant differences for various metrics. We further examine the extent to which these results may be insightful for a hierarchical Bayesian modeling approach that is aimed at generating model predictions at an ungauged site. The method, known as Bayes Empirical Bayes (BEB) works to pool information from similar catchments to generate informed probability distributions for each model parameter at a data-limited catchment of interest. We demonstrate the effect of selecting

  12. Catchment Engineering: A New Paradigm in Water Management

    Science.gov (United States)

    Quinn, P. F.; Burke, S.; O'Donnell, G. M.; Wilkinson, M.; Jonczyk, J.; Barber, N.; Nicholson, A.; Proactive Team

    2011-12-01

    Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Here, a catchment engineering approach seeks to describe catchment 'function' (or role) as the principal driver for evaluating how it should be managed in the future. Catchment engineering does not seek to re-establish a natural system but seeks to work with natural processes in order to engineer landscapes so that multiple benefits accrue. This approach involves quantifying and assessing catchment change and impacts but most importantly suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders, namely the general public and policy makers. This inclusive concept under a catchment engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of catchment engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management whilst maintaining economic food production. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Catchment engineering is a concept that relies on all relevant parties within a catchment to take responsibility for the water quantity and quality that arises from the catchment. Further, any holistic solution requires a bottom up, problem solving

  13. Demographic processes limiting seedling recruitment in arid grassland restoration

    Science.gov (United States)

    Seeding is commonly used in plant community restoration to overcome recruitment limitations. In arid systems, seeding is a particularly important management tool because plant community recovery following disturbance is slow and often inhibited by invasive species. While important in arid systems,...

  14. Uses of tree legumes in semi-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.

    1980-01-01

    Uses of tree legumes in semi-arid and arid regions are reviewed. This review is divided into sections according to the following general use categories: fuels; human food; livestock food; to increase yields of crops grown beneath their canopies;and control of desertification. (MHR)

  15. Herbivore-plant interactions and desertification in arid lands

    Science.gov (United States)

    Arid lands around the world have experienced or are currently experiencing degradation that is known as desertification. Animal-plant interactions that have an effect on desertification are among the most important function of animals in arid ecosystems. Desertification has been defined as land de...

  16. Examination of catchment areas for public transport

    DEFF Research Database (Denmark)

    Landex, Alex; Hansen, Stephen; Andersen, Jonas Lohmann Elkjær

    2006-01-01

    The paper presents a method to examine the catchment areas for stops in high quality public transport systems based on the street network in the examined area. This is achieved by implementing the Service Area functions from the ArcGIS extension Network Analyst. The method is compared to a more...... simple method using only the Euclidean distance from the examined stop and the paper describes the differences in detail-level of the results. Furthermore, the paper describes how the Service Area method can be used to examine increments in the catchment areas by adding extra entrances to stations or by...... improvements are well suited for examinations of changes in station entrances and/or street network....

  17. Design of a Rainwater Catchment System

    Directory of Open Access Journals (Sweden)

    Neil Cammardella

    2011-01-01

    Full Text Available Certain dimensions of a rainwater catchment and storage system were optimized using climatological and sociological data. Using only daily demand and average daily rain fall data, the following dimensions were optimized: 1 The horizontal roof area needed to collect the daily demand of water, 2 The tank size needed to store all the water collected during a heavy rain event, 3 When full, how long the tank will be able to provide water without rain, and 4 The diameter of the outlet flow orifice. With these calculations, we can design a rainwater catchment system that can capture the daily demand and store excess water for use during periods of low rain.

  18. Creating a catchment perspective for river restoration

    Directory of Open Access Journals (Sweden)

    L. Benda

    2011-03-01

    Full Text Available One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2, in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we coupled general principles of hydro-geomorphic processes with computer tools to characterize the fluvial landscape. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to topography, valley morphology, river network structure, and fan and terrace landforms. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  19. Creating a catchment perspective for river restoration

    OpenAIRE

    L. Benda; MILLER, D; J. Barquín

    2011-01-01

    One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tribu...

  20. Tritium balance modeling in a macroscale catchment

    International Nuclear Information System (INIS)

    The Institute of Hydrology at the Freiburg University (IHF) is working in cooperation with the German Federal Institute of Hydrology (BfG) on a project implementing tritium data into modeling concepts of large river systems. Tritium concentrations that are measured in precipitation (Global Network of Isotopes in Precipitation - GNIP) and discharge (BfG - HYDABA data base) are combined with information on water balance components on monthly basis over a period of 50 years. Precipitation and potential evapotranspiration were calculated from the German Weather Authority (DWD). The TRIBIL software was developed to process a large amount of data sets. It allows considering tritium input from precipitation, nuclear power plants and channel systems. Evapotranspiration from land and water surface as well as snow cover are considered for calculations of infiltrating water. Beneath a direct runoff component the amount of infiltrating water is distinguished into fast and slow groundwater reservoirs were each consists of a mobile and immobile fraction. The amount of tritium stored in these groundwater fractions is calculated using discharge recession curve analyses. An outline of the model structure as well as results for the river systems Fulda, Werra and Weser-1 is presented. A comparison of measured and modeled tritium concentrations in discharge showed considerable fits. Modeling efficiencies are around 0.8. The results allow an interpretation of storage volumes and residence times of the supposed groundwater reservoirs. Because there is no influence through nuclear power plants, tritium processing industries and channels the Fulda and Werra catchments serve as a reference for continuing studies in the Weser catchment (48.300 km2). An implementation of tritium emission by nuclear power plants will be considered with extending catchment site. Including the conservative tracer tritium into large scale modeling is a rather new approach. Feasibilities and possibilities are

  1. Influence of topography and forestry on catchments

    OpenAIRE

    Sørensen, Rasmus,

    2009-01-01

    The dynamic development of terrestrial and aquatic environments in boreal catchments is controlled by the factors of parent material, climate, topography, biota, time, and anthropogenic activity. This thesis explores two of these factors, topography and the anthropogenic activity of forestry, as well as their control on the redistribution of solutes in the landscape. On a local scale for two undisturbed sites, the calculation of the topographical wetness index, TWI, was varied to better corre...

  2. Improving Runoff Estimation at Ungauged Catchments

    OpenAIRE

    Zelelew, Mulugeta

    2012-01-01

    Water infrastructures have been implemented to support the vital activities of human society. The infrastructure developments at the same time have interrupted the natural catchment response characteristics, challenging society to implement effective water resources planning and management strategies. The Telemark area in southern Norway has seen a large number of water infrastructure developments, particularly hydropower, over more than a century. Recent developments in decision support tool...

  3. Groundwater : site scale, catchment scale, basin scale

    OpenAIRE

    Bricker, Stephanie; Bloomfield, John; Gooddy, Daren; MacDonald, David; Ward, Rob

    2011-01-01

    There are significant groundwater resources in the Thames Basin (Figure 1) supporting approximately 40 per cent of public water supply. Additionally many of the rivers in the catchment are supported by groundwater from the underlying aquifers. Effective management of both groundwater resources and groundwater-dependent ecosystems requires a good understanding of how our aquifers behave. We must also consider how these systems will respond to future changes, in particular climat...

  4. Nitrogen leaching in small agricultural catchments

    OpenAIRE

    Kyllmar, Katarina

    2004-01-01

    Nitrogen (N) leaching from arable land to the aquatic environment is considered a serious problem. Small agricultural monitoring catchments in Sweden were used for the application and testing of model-based methods for quantification of N leaching from arable fields, and for analysis of measured data. The physically-based modelling system SOILNDB was used in two different approaches for quantification of N leaching; by direct simulations using monitored field data and by producing field N lea...

  5. Analysis list: ARID3A [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ARID3A Blood,Liver + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/AR...ID3A.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ARID3A.5.tsv http://dbarchive.biosciencedb...c.jp/kyushu-u/hg19/target/ARID3A.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ARID3A.Blood.tsv,http://dbarchive.biosci...encedbc.jp/kyushu-u/hg19/colo/ARID3A.Liver.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/hg19/colo/Blood.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Liver.gml ...

  6. CHARACTERISTICS AND CONSTRUCTION OF LANDSCAPE???ECOLOGY IN ARID REGIONS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper analyzes the characteristics of the landscape structures and landacape ecological processes in arid regions of China. Landscape structure is simplicity and homogeneity with the pattern of desert-oasis-river and canal corridor. The spatial distribution of landscape heterogeneity mosaics is relatively dependent on water resources. In arid regions,the landscape changes rapidly and extensively because of the sensitive landscape ecosystems and fragile regional ecosystems.For the sustainable development of arid regions, the theories and methods for the eco-environmental construction and the strategies of ecological construction in the arid regions were proposed in the view of landscape ecology. Keynote subjects of landscape ecology were also discussed. The paper points out that protecting and increasing landscape diversity and heterogeneity are critical to control ecological safety in arid regions.

  7. Developing inorganic carbon-based radiocarbon chronologies for Holocene lake sediments in arid NW China

    Science.gov (United States)

    Zhang, Jiawu; Ma, Xueyang; Qiang, Mingrui; Huang, Xiaozhong; Li, Shuang; Guo, Xiaoyan; Henderson, Andrew C. G.; Holmes, Jonathan A.; Chen, Fahu

    2016-07-01

    Inorganic carbonates are often used to establish radiocarbon (14C) chronologies for lake sediments when terrestrial plant remains (TPR) are rare or when bulk organic matter is insufficient for dating, a problem that is common for many lakes in arid regions. However, the reservoir effect (RE), as well as old carbon contributed from the lakes catchment make it difficult to establish reliable chronologies. Here we present a systematic study of inorganic 14C ages of two lake-sediment sequences, one from a small-enclosed saline lake - Lake Gahai in Qaidam Basin, and the other from a large freshwater lake - Lake Bosten in Xinjiang. Modern dissolved inorganic carbon (DIC) of the lakes, paleo-lake sediments exposed in the catchment, and mollusk shells in core sediments from Lake Gahai were dated to assess the RE and the contribution of pre-aged carbon to the old ages in the cores. We propose a statistical regression to assess more than one RE for the 14C carbonate ages within our sedimentary sequences. Old radiocarbon ages contributed by detrital carbonates were assessed by comparing the ages of mollusk shells with those of carbonates at the same sediment depths. We established the RE of the authigenic component and assessed detrital old carbon contributions to our two sites, and this was used to correct the 14C ages. Based on this approach, we developed age models for both cores, and tested them using 210Pb ages in both cores and TPR-based 14C-ages recovered from Lake Bosten. We further tested our age models by comparing carbonate-based oxygen isotope (δ18O) records from both lakes to an independently-dated regional speleothem δ18O record. Our results suggest if sedimentary sequences are densely dated and the RE and the contribution of old carbon from detrital carbonates can be ascertained, robust chronological frameworks based on carbonate-based 14C determinations can be established.

  8. Exploring the use of WRF-3DVar for Estimating reference evapotranspiration in semi arid regions

    Science.gov (United States)

    Bray, Michaela; Liu, Jia; Abdulhamza, Ali; Bocklemann-Evans, Bettina

    2013-04-01

    Evapotranspiration is an important process in hydrology and is central to the analysis of water balances and water resource management. Significant water losses can occur in large drainage basins under semi arid climate conditions, moreover with the lack of measured data, the exact losses are hard to quantify. Since direct measurements for evapotranspiration are difficult to obtain it is common to estimate the process by using evapotranspiration models such as the Priestley-Taylor model, Shuttleworth -Wallace model and the FAO Penmann-Monteith. However these models depend on several atmospheric variables such as atmospheric pressure, wind speed, air temperature, net radiation and relative humidity. Some of these variables are also difficult to acquire from in-situ measurements; in addition these measurements provide local information which need to be interpolated to cover larger catchment areas over long time scales. Mesoscale Numerical Weather Prediction (NWP) modelling has become more accessible to the hydrometeorological community in recent years and is frequently used for modelling precipitation at the catchment scale. However these NWPs can also provide the atmospheric variables needed for evapotranspiration estimation at finer resolutions than can be attained from in situ measurements, offering a practical water resource tool. Moreover there is evidence that assimilation of real time observations can help improve the accuracy of mesoscale weather modelling which in turn would improve the overall evapotranspiration estimate. This study explores the effect of data assimilation in the Weather Research and Forecasting (WRF) model to derive evapotranspiration estimates for the Tigris water basin, Iraq. Two types of traditional observations, SYNOP and SOUND are assimilated by WRF-3DVAR.which contain surface and upper-level measurements of pressure, temperature, humidity and wind. The downscaled weather variables are used to determine evapostranspiration estimates

  9. Hyporheic flow pattern based on the coupling of regional and stream scales: Case of Krycklan Catchment area

    Science.gov (United States)

    Mojarrad, Morteza; Wörman, Anders; Riml, Joakim

    2016-04-01

    Water resources intense development within the past century has had an enormous impact on hydrological systems especially on rivers and groundwater resources. A river basin is a flow system involving the interaction between surface water and groundwater. This interaction occurs in terrestrial and coastal zone and even in arid and semi-arid areas, where surface water overlie on a permeable sediment. A key zone for the interaction between surface water and groundwater is the hyporheic zone, which forms by stream water that in- and exfiltrating in the permeable sediments surrounding the river corridor. Groundwater and hyporheic flows arise due to different range of topographical scales and their relative importance is investigated in this study. Krycklan is a well-monitored research catchment in which the data collection for more than 90 years has comprised hydrology, biochemistry, and aquatic ecology. The catchment is located in a boreal area of northern Sweden. The head-water streams begin in mountainous area and fall to the Baltic Sea near the city of Umea. In this paper, COMSOL Multi-physics simulation software has been used to model the subsurface flow of the whole Krycklan catchment in order to reach a comprehensive understanding of large-scale groundwater circulation and its impact of the stream hyporheic flows. The model statement is based on the 3D Laplace equation, which has been applied independently on two ranges of topographical scales to obtain a superimposed solution. Steady state simulation has been done based on the simplified assumption of constant boundary conditions of the groundwater surface and otherwise non-flow boundaries. The hydraulic head of the groundwater surface was taken as the topography, which apply as an approximation in wet climate with shallow soil layers. The results demonstrated how the ratio of the topographical amplitudes on different scales affect the size (depth) and fragmentation of the hyporheic zone. "Fragmentation" was

  10. The dominance of loess weathering on water and sediment chemistry within the Daihai Lake catchment, northeastern Chinese Loess Plateau

    International Nuclear Information System (INIS)

    Highlights: • Firstly highlight the importance of loess weathering in a semi-arid lake. • Loess weathering controls sediment compositions in loess-covered area. • Loess weathering results in similar water chemistry of rivers and groundwater. • Water draining loess areas has distinct Mg/Ca and 87Sr/86Sr from global rivers. - Abstract: This study investigated modern loess weathering and its control on the chemistry of surface water and sediment within the Daihai Lake catchment. The mineral types and the abundances of major and trace elements in loess, sediments and bedrocks were determined to ascertain the provenance of river sediment. The major cation compositions and Sr isotopic ratios of surface and subsurface waters were measured to distinguish the contributions of dissolved loads from various parent materials. The data show that mineralogical characteristics and elemental abundances of the river sediments are almost identical with those of the loess, but are different from the bedrocks, indicating that river sediments are predominantly derived from loess. River waters feeding Daihai Lake show a similar range in 87Sr/86Sr ratios as those of HOAc-soluble carbonate minerals in loess from the Chinese Loess Plateau. The slightly lower 87Sr/86Sr of river waters in the southern catchment relative to other rivers reflect potential weathering of large areas of outcropping basalt. These results imply that (1) surface processes are dominated by weathering of loess which only accounts for 18% of the total catchment area, and (2) loess weathering but not basalt controls the river Sr isotopic signature, although the latter covers a larger catchment area. For groundwater, 87Sr/86Sr ratios indicate that subsurface processes might be controlled by interactions with ambient lithology and hydrological flowpaths. Comparing the rivers draining the Chinese Loess Plateau with global rivers, both Mg/Ca and 87Sr/86Sr in the Daihai surprisingly agree well with those in the upper

  11. Acid rain project biosurveys of streams in the Wastwater catchment

    OpenAIRE

    Prigg, R.F.

    1985-01-01

    This is the Acid rain project biosurveys of streams in the Wastwater catchment produced by the North West Water Authority in 1985. This report forms part of a series on component biological investigations, identified by location or topic, within the acid rain project. Reporting of the Wastwater catchment data would not have been given priority ordinarily, but it has been brought forward to coincide with J. Robinson's reporting of his investigations of land use and liming in the catchment. Thi...

  12. Transferring model uncertainty estimates from gauged to ungauged catchments

    OpenAIRE

    Bourgin, F.; V. Andréassian; Perrin, C.; L. Oudin

    2014-01-01

    Predicting streamflow hydrographs in ungauged catchments is a challenging issue, and accompanying the estimates with realistic uncertainty bounds is an even more complex task. In this paper, we present a method to transfer model uncertainty estimates from gauged to ungauged catchments and we test it over a set of 907 catchments located in France. We evaluate the quality of the uncertainty estimates based on three expected qualities: reliab...

  13. Transferring global uncertainty estimates from gauged to ungauged catchments

    OpenAIRE

    Bourgin, F.; V. Andréassian; Perrin, C.; L. Oudin

    2015-01-01

    Predicting streamflow hydrographs in ungauged catchments is challenging, and accompanying the estimates with realistic uncertainty bounds is an even more complex task. In this paper, we present a method to transfer global uncertainty estimates from gauged to ungauged catchments and we test it over a set of 907 catchments located in France, using two rainfall–runoff models. We evaluate the quality of the uncertainty estimates based on three...

  14. The LOCAR hydrogeological infrastructure in the tern catchment

    OpenAIRE

    Adams, Brian; Peach, Denis; Bloomfield, John

    2003-01-01

    This report describes the hydrogeological infrastructure that was installed in the Tern catchment in Shropshire to support the Lowland Catchment Research (LOCAR) Thematic Research Programme. The objectives of the LOCAR Programme are briefly described as are the management structure that was used to achieve those objectives. This is followed by a description of the Tern catchment and a brief overview of the financial support for the whole LOCAR programme. A discussion of the des...

  15. Influence of vegetation on the water balance of catchments

    OpenAIRE

    Kozakiv, Dejan

    2013-01-01

    It is a well known fact that amount and type of catchment vegetation will affect its water balance. Through process of precipitation interception, vegetation coverage plays an important role in regulating processes as evapotranspiration and runoff. Many studies have shown significant increase of water surface runoff, discharge and water yield after forest cover was removed. A clear conclusion can be drawn from this: grassed catchments decrease catchment evapotranspiration, while the opposi...

  16. Recognizing hydroclimate of Khotbeh Sara catchment area via GIS

    OpenAIRE

    AZAD, Mohammad Reza Afshari

    2015-01-01

    Abstract. Objective of studying hydroclimatology is studying effects of climate in water balance of the catchment. Current research has been conducted to study climatic and hydroclimatic characteristics of catchment area of Khotbeh Sara via hydrological modeling of the catchment. The main purpose of this research is recognition of climatic parameters dominant in this area and its effect on surface flows and required activities were done to gain this purpose. Physical characteristics of catchm...

  17. A catchment scale water balance model for FIFE

    OpenAIRE

    Famiglietti, J.S.; E. F. Wood; Sivapalan, M.; Thongs, D. J

    1992-01-01

    A catchment scale water balance model is presented and used to predict evaporation from the King's Creek catchment at the First ISLSCP Field Experiment site on the Konza Prairie, Kansas. The model incorporates spatial variability in topography, soils, and precipitation to compute the land surface hydrologie fluxes. A network of 20 rain gages was employed to measure rainfall across the catchment in the summer of 1987. These data were spatially interpolated and used to drive the model during st...

  18. Predicting Surface Runoff from Catchment to Large Region

    OpenAIRE

    Hongxia Li; Yongqiang Zhang; Xinyao Zhou

    2015-01-01

    Predicting surface runoff from catchment to large region is a fundamental and challenging task in hydrology. This paper presents a comprehensive review for various studies conducted for improving runoff predictions from catchment to large region in the last several decades. This review summarizes the well-established methods and discusses some promising approaches from the following four research fields: (1) modeling catchment, regional and global runoff using lumped conceptual rainfall-runof...

  19. Exploring the physical controls of regional patterns of flow duration curves - Part 4: A synthesis of empirical analysis, process modeling and catchment classification

    Science.gov (United States)

    Yaeger, M.; Coopersmith, E.; Ye, S.; Cheng, L.; Viglione, A.; Sivapalan, M.

    2012-11-01

    The paper reports on a four-pronged study of the physical controls on regional patterns of the flow duration curve (FDC). This involved a comparative analysis of long-term continuous data from nearly 200 catchments around the US, encompassing a wide range of climates, geology, and ecology. The analysis was done from three different perspectives - statistical analysis, process-based modeling, and data-based classification - followed by a synthesis, which is the focus of this paper. Streamflow data were separated into fast and slow flow responses, and associated signatures, and both total flow and its components were analyzed to generate patterns. Regional patterns emerged in all aspects of the study. The mixed gamma distribution described well the shape of the FDC; regression analysis indicated that certain climate and catchment properties were first-order controls on the shape of the FDC. In order to understand the spatial patterns revealed by the statistical study, and guided by the hypothesis that the middle portion of the FDC is a function of the regime curve (RC, mean within-year variation of flow), we set out to classify these catchments, both empirically and through process-based modeling, in terms of their regime behavior. The classification analysis showed that climate seasonality and aridity, either directly (empirical classes) or through phenology (vegetation processes), were the dominant controls on the RC. Quantitative synthesis of these results determined that these classes were indeed related to the FDC through its slope and related statistical parameters. Qualitative synthesis revealed much diversity in the shapes of the FDCs even within each climate-based homogeneous class, especially in the low-flow tails, suggesting that catchment properties may have become the dominant controls. Thus, while the middle portion of the FDC contains the average response of the catchment, and is mainly controlled by climate, the tails of the FDC, notably the low

  20. Exploring the physical controls of regional patterns of flow duration curves – Part 4: A synthesis of empirical analysis, process modeling and catchment classification

    Directory of Open Access Journals (Sweden)

    M. Sivapalan

    2012-06-01

    Full Text Available The paper reports on a four-pronged study of the physical controls on regional patterns of the Flow Duration Curve (FDC. This involved a comparative analysis of long-term continuous data from nearly 200 catchments around the US, encompassing a wide range of climates, geology and ecology. The analysis was done from three different perspectives – statistical analysis, process-based modeling, and data-based classification, followed by a synthesis, which is the focus of this paper. Streamflow data was separated into fast and slow flow responses, and associated signatures, and both total flow and its components were analyzed to generate patterns. Regional patterns emerged in all aspects of the study. The mixed gamma distribution described well the shape of the FDC; regression analysis indicated that certain climate and catchment properties were first order controls on the shape of the FDC. In order to understand the spatial patterns revealed by the statistical study, and guided by the hypothesis that the middle portion of the FDC is a function of the regime curve (RC, mean within year variation of flow, we set out to classify these catchments, both empirically and through process-based modeling, in terms of their regime behavior. The classification analysis showed that climate seasonality and aridity, either directly (empirical classes or through phenology (vegetation processes, were the dominant controls on the RC. Quantitative synthesis of these results determined that these classes were indeed related to the FDC through its slope and related statistical parameters. Qualitative synthesis revealed much diversity in the shapes of the FDCs even within each climate-based homogeneous class, especially in the low-flow tails, suggesting that catchment properties may have become the dominant controls. Thus, while the middle portion of the FDC contains the average response of the catchment, and is mainly controlled by climate, the tails of the FDC

  1. Exploring the physical controls of regional patterns of flow duration curves – Part 4: A synthesis of empirical analysis, process modeling and catchment classification

    Directory of Open Access Journals (Sweden)

    M. Sivapalan

    2012-11-01

    Full Text Available The paper reports on a four-pronged study of the physical controls on regional patterns of the flow duration curve (FDC. This involved a comparative analysis of long-term continuous data from nearly 200 catchments around the US, encompassing a wide range of climates, geology, and ecology. The analysis was done from three different perspectives – statistical analysis, process-based modeling, and data-based classification – followed by a synthesis, which is the focus of this paper. Streamflow data were separated into fast and slow flow responses, and associated signatures, and both total flow and its components were analyzed to generate patterns. Regional patterns emerged in all aspects of the study. The mixed gamma distribution described well the shape of the FDC; regression analysis indicated that certain climate and catchment properties were first-order controls on the shape of the FDC. In order to understand the spatial patterns revealed by the statistical study, and guided by the hypothesis that the middle portion of the FDC is a function of the regime curve (RC, mean within-year variation of flow, we set out to classify these catchments, both empirically and through process-based modeling, in terms of their regime behavior. The classification analysis showed that climate seasonality and aridity, either directly (empirical classes or through phenology (vegetation processes, were the dominant controls on the RC. Quantitative synthesis of these results determined that these classes were indeed related to the FDC through its slope and related statistical parameters. Qualitative synthesis revealed much diversity in the shapes of the FDCs even within each climate-based homogeneous class, especially in the low-flow tails, suggesting that catchment properties may have become the dominant controls. Thus, while the middle portion of the FDC contains the average response of the catchment, and is mainly controlled by climate, the tails of the FDC

  2. Determine the optimum spectral reflectance of juniper and pistachio in arid and semi-arid region

    Science.gov (United States)

    Fadaei, Hadi; Suzuki, Rikie

    2012-11-01

    Arid and semi-arid areas of northeast Iran cover about 3.4 million ha are populated by two main tree species, the broadleaf Pistacia vera. L (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environmentally important but genetically essential as seed sources for pistachio production in orchards. In this study, we estimated the optimum spectral reflectance of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. In this research spectral reflectance are able to specify of multispectral from Advanced Land Observing Satellite (ALOS) that provided by JAXA. These data included PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, has one band with a wavelength of 0.52-0.77 μm and AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, has four multispectral bands: blue (0.42-0.50 μm), green (0.52-0.60 μm), red (0.61-0.69 μm), and near infrared (0.76-0.89 μm). Total ratio vegetation index (TRVI) of optimum spectral reflectance of juniper and pistachio have been evaluated. The result of TRVI for Pistachio and juniper were (R2= 0.71 and 0.55). I hope this research can provide decision of managers to helping sustainable management for arid and semi-arid regions in Iran.

  3. Development of an arid site closure plan

    International Nuclear Information System (INIS)

    This document describes the development of a prototype plan for the effective closure and stabilization of an arid low-level waste disposal site. This plan will provide demonstrated closure techniques for a trench in a disposal site at Los Alamos. The accuracy of modeling soil water storage by two hydrologic models, CREAMS and HELP, was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that CREAMS generally represented soil moisture more accurately than HELP simulations. Precautions for determining parameter values for model input and for interpreting simulation results are discussed. A specific example is presented showing how the field-validated hydrologic models can be used to develop a final prototype closure plan. 15 refs., 13 figs., 3 tabs

  4. Hydrogeological framework of the northern Draa-catchment, Morocco: Results of local and regional scale investigations

    International Nuclear Information System (INIS)

    Full text: In the framework of the BMBF (Federal Ministry of Education and Research) project 'Global change of the water cycle', IMPETUS West Africa focuses on water as a scarce resource. IMPETUS is an interdisciplinary and application-orientated approach from a research group of the universities Bonn and Cologne. As one of the investigation areas the Draa-Catchment in Morocco has been selected. Within the overall goal of IMPETUS: 'An integrated approach to the efficient management of scarce water resources' groundwater is of significant importance. In order to develop a conceptional hydrogeological model of the Draa-Catchment different scale approaches have been applied. Together with other disciplines investigations have been carried out in local test sites representative for geological and hydrological catchment areas and situated along a gradient of aridity and elevation. Based on natural labeling combined with classical hydrogeological and hydrological investigations for those testsites storage and discharge behavior of the various geological units have been defined. Besides local scale (IMPETUS test sites) regional scale approach was selected to understand the hydrogeological framework. The purpose of local scale investigation is to define the hydrogeological characteristics of each IMPETUS's test site commonly selected as a representative for the specific geological areas of the Draa catchment. In a further step this side specific information will be applied to a hydrogeological regional scale model. Basic requirements for a reliable hydrogeologic characterization are information on the geological structure as well as on the groundwater quantity/quality including hydrodynamics. Based on detailed geological mapping in the framework of master thesis geological and structural maps (1 : 25,000), geological profiles and lithological description are available for four testsites. Accompanied by chemical and environmental isotope measurements, carried out during

  5. The role of macropore flow from plot to catchment scale : a study in a semi-arid area

    OpenAIRE

    van Schaik, N.L.M.B.

    2010-01-01

    Desertification and landscape degradation is a worldwide problem, which is expected to grow in time due to unsustainable land use and climate change. In view of these problems, knowledge of the interaction between vegetation, soil moisture and surface runoff, with subsequent erosion risk is essential. This requires mapping of the spatial and temporal variability of infiltration and runoff production. The influence of preferential flow thereupon is nowadays widely recognized. Therefore the rol...

  6. The impacts of assimilating satellite soil moisture into a rainfall-runoff model in a semi-arid catchment

    Science.gov (United States)

    Alvarez-Garreton, C.; Ryu, D.; Western, A. W.; Crow, W. T.; Robertson, D. E.

    2014-11-01

    Soil moisture plays a key role in runoff generation processes, and the assimilation of soil moisture observations into rainfall-runoff models is regarded as a way to improve their prediction accuracy. Given the scarcity of in situ measurements, satellite soil moisture observations offer a valuable dataset that can be assimilated into models; however, very few studies have used these coarse resolution products to improve rainfall-runoff model prediction. In this work we evaluate the assimilation of satellite soil moisture into the probability distributed model (PDM) for the purpose of reducing flood prediction uncertainty in an operational context. The surface soil moisture (SSM) and the soil wetness index (SWI) derived from the Advanced Microwave Scanning Radiometer (AMSR-E) are assimilated using an ensemble Kalman filter. Two options for the observed data are considered to remove the systematic differences between SSM/SWI and the model soil moisture prediction: linear regression (LR) and anomaly-based cumulative distribution function (aCDF) matching. In addition to a complete period rescaling scheme (CP), an operationally feasible real-time rescaling scheme (RT) is tested. On average, the discharge prediction uncertainty, expressed as the ensemble mean of the root mean squared difference (MRMSD), is reduced by 25% after assimilation and little overall difference is found between the various approaches. However, when specific flood events are analysed, the level of improvement varies. Our results reveal that efficacy of the soil moisture assimilation for flood prediction is robust with respect to different assumptions regarding the observation error variance. The assimilation performs similarly between the operational RT and the CP schemes, which suggests that short-term training is sufficient to effectively remove observation biases. Regarding the different rescaling techniques used, aCDF matching consistently leads to better assimilation results than LR. Differences between the assimilation of SSM and SWI, however, are not significant. Even though there is improvement in streamflow prediction, the assimilation of soil moisture shows limited capability in error correction when there exists a large bias in the peak flow prediction. Findings of this work imply that proper pre-processing of observed soil moisture is critical for the efficacy of the data assimilation and its performance is affected by the quality of model calibration.

  7. Climate change impact on future water resources availability for a semi-arid area (Ferghana Valley, Central Asia)

    Science.gov (United States)

    Radchenko, Iuliia; Breuer, Lutz; Mannig, Birgit; Frede, Hans-Georg

    2014-05-01

    Considering increasing temperatures and glacier recession during the last decades, it is of high interest to study the climate change impact on water resources availability in semi-arid regions of Central Asia. The Ferghana Valley is surrounded by the Tien-Shan and Pamiro-Alay mountain systems that store big amounts of water in snowpacks and glaciers. In the valley the agricultural activity of local people strongly depends on available water from the Syrdarya River. The river is formed by the confluence of the Naryn and Karadarya Rivers, which are mainly fed by the glacier and snow melt from the Akshiirak and Ferghana ridges of the aforementioned mountain systems. The small upper river basins of the valley also contribute with runoff (~34 %) to the Syrdarya River. These small rivers are mainly fed by precipitation and seasonal snow melt. Thus, because of climate change and glacier decline, it is necessary to investigate the comparative contribution of the small catchments versus two big river basins to the Syrdarya River system, as these small upper catchments could become more important for future water consumption. In this study the conceptual hydrological HBV-light model has been calibrated and validated for the period 1980-1985 over 18 upper catchments that feed the Syrdarya River from the surrounding mountain ridges. Dynamically downscaled climate change scenarios were then applied up to the year 2100 for these basins. The scenarios were generated by means of Global Circulation Model (ECHAM5) and Regional Climate Model (REMO) with a baseline period from 1971 till 2000. We will present modelling results of water resources, the contribution of small rivers to the Syrdarya River and to what extent this contribution is likely to change in the future. Moreover, the results of simulated potential runoff will be used to develop future climate change adaptation strategies regarding socio-economic and environmental sustainable water use.

  8. Geothermal technoecosystems and water cycles in arid lands. Information paper

    Energy Technology Data Exchange (ETDEWEB)

    Duffield, C.

    1976-01-01

    Arid lands resource information paper No. 2, 'Exploration and Exploitation of Geothermal Resources in Arid and Semiarid Lands,' first issued in 1973, is now out-of-print. The intent of the present paper was to revise that earlier literature review with its annotated bibliography, by recognizing the unusual developments in this field in the interim, with new geothermal fields discovered, new demands for geothermal energy as an alternative source to more conventional sources, and a number of new publications reflecting accelerated research. The extensive bibliography accompanying this paper was produced by ALIS, and includes over one hundred references prepared by the Office of Arid Lands Studies.

  9. [Spatial heterogeneity of soil moisture and its relationships with environmental factors at small catchment level].

    Science.gov (United States)

    Shi, Zhi-Hua; Zhu, Hua-De; Chen, Jia; Fang, Nu-Fang; Ai, Lei

    2012-04-01

    Taking the Wulongchi catchment of Danjiangkou in central China as a case, the soil moisture regime in the observation period from April to October, 2008 was divided into different dry-wet time periods by two way indicator species analysis (TWINSPAN), and the environmental factors that had significant effects on the spatial pattern of soil moisture in different dry-wet time periods were selected by forward selection and Monte Carlo tests. The redundancy analysis (RDA) was adopted to identify the relationships between the distribution pattern of soil moisture and the environmental factors in different time periods, and the partial RDA was applied to quantitatively analyze the effects of environmental factors, spatial variables, and their interactions on the variation pattern of the soil moisture. The soil moisture regime in the observation period was divided into 7 types, and grouped into 4 time periods, i. e. , dry, semi-arid, semi-humid, and humid. In dry period, land use type was the dominant factor affecting the spatial pattern of soil moisture, and the soil thickness, relative elevation, profile curvature, soil bulk density, and soil organic matter content also had significant effects. In semi-arid period, soil thickness played dominant role, and land use type, topographic wetness index, soil bulk density, and profile curvature had significant effects. In semi-humid period, topographic wetness index was the most important affecting factor, and the land use type and the sine value of aspect played significant roles. In humid period, the topographic compound index and the sine value of aspect were the dominant factors, whereas the relative elevation and catchment area were the important factors. In the four time periods, there was a better consistency between the spatial distribution pattern of soil moisture and the environmental ecological gradient. From dry period to humid period, the independent effects of environmental factors on soil moisture pattern

  10. Lithogenic and cosmogenic tracers in catchment hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G.J.

    1995-01-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water, which is one of the primary concerns in hydrology. Many groundwater solutes are derived as a result of interaction between the water and the rock and/or soil within the system. These are termed {open_quotes}lithogenic{close_quotes} solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both internally and externally to the catchment system. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing {open_quotes}cosmogenic{close_quotes} nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing {open_quotes}thermonuclear{close_quotes} nuclides), or radioactive and fission decay of naturally-occurring elements, such as U and Th (producing {open_quotes}in-situ{close_quotes} lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading {open_quotes}cosmogenic nuclides{close_quotes}, and for simplicity we will often follow that usage, although always clearly indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute compositions in groundwater, and how these compositions can therefore be used in integrative ways to understand the physical history of groundwater within a catchment system.

  11. Lithogenic and cosmogenic tracers in catchment hydrology

    International Nuclear Information System (INIS)

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water, which is one of the primary concerns in hydrology. Many groundwater solutes are derived as a result of interaction between the water and the rock and/or soil within the system. These are termed open-quotes lithogenicclose quotes solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both internally and externally to the catchment system. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing open-quotes cosmogenicclose quotes nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing open-quotes thermonuclearclose quotes nuclides), or radioactive and fission decay of naturally-occurring elements, such as U and Th (producing open-quotes in-situclose quotes lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading open-quotes cosmogenic nuclidesclose quotes, and for simplicity we will often follow that usage, although always clearly indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute compositions in groundwater, and how these compositions can therefore be used in integrative ways to understand the physical history of groundwater within a catchment system

  12. Describing Ecosystem Complexity through Integrated Catchment Modeling

    Science.gov (United States)

    Shope, C. L.; Tenhunen, J. D.; Peiffer, S.

    2011-12-01

    Land use and climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, and agricultural yield. The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. A variety of models are being used to simulate plot and field scale experiments within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. We used the spatially distributed SWAT model to synthesize the experimental field data throughout the catchment. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. Further, this example shows how research can be structured for scientific results describing complex ecosystems and landscapes where cross-disciplinary linkages benefit the end result. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources to all shareholders.

  13. Evaluation of TOPLATS on three Mediterranean catchments

    Science.gov (United States)

    Loizu, Javier; Álvarez-Mozos, Jesús; Casalí, Javier; Goñi, Mikel

    2016-08-01

    Physically based hydrological models are complex tools that provide a complete description of the different processes occurring on a catchment. The TOPMODEL-based Land-Atmosphere Transfer Scheme (TOPLATS) simulates water and energy balances at different time steps, in both lumped and distributed modes. In order to gain insight on the behavior of TOPLATS and its applicability in different conditions a detailed evaluation needs to be carried out. This study aimed to develop a complete evaluation of TOPLATS including: (1) a detailed review of previous research works using this model; (2) a sensitivity analysis (SA) of the model with two contrasted methods (Morris and Sobol) of different complexity; (3) a 4-step calibration strategy based on a multi-start Powell optimization algorithm; and (4) an analysis of the influence of simulation time step (hourly vs. daily). The model was applied on three catchments of varying size (La Tejeria, Cidacos and Arga), located in Navarre (Northern Spain), and characterized by different levels of Mediterranean climate influence. Both Morris and Sobol methods showed very similar results that identified Brooks-Corey Pore Size distribution Index (B), Bubbling pressure (ψc) and Hydraulic conductivity decay (f) as the three overall most influential parameters in TOPLATS. After calibration and validation, adequate streamflow simulations were obtained in the two wettest catchments, but the driest (Cidacos) gave poor results in validation, due to the large climatic variability between calibration and validation periods. To overcome this issue, an alternative random and discontinuous method of cal/val period selection was implemented, improving model results.

  14. Equitable water allocation in a heavily committed international catchment area: the case of the Komati Catchment

    Science.gov (United States)

    Nkomo, Sakhiwe; van der Zaag, Pieter

    This paper investigates water availability and use in the Komati catchment. The Komati catchment is shared by Swaziland and South Africa and forms part of the Incomati basin, with Mozambique as the third riparian country. In 2002 the three countries reached agreement about how the scarce water should be allocated, based on the principle of equitable and sustainable utilization, as stipulated by the SADC Protocol. The Komati catchment has five main water uses: afforestation, irrigation, the environment, urban/industrial/mining (UIM), and interbasin water transfers (for industrial use). In addition, South Africa and Swaziland have committed themselves to satisfy a certain cross border flow to downstream Mozambique. Frequently, debate has arisen between users and riparian countries on the direction that water resources development has taken in the catchment. Downstream farmers have often complained about interbasin transfers taking place in the upstream portions of the catchment. There has also been animosity about effecting environmental flow releases. A relatively simple, spreadsheet-based water resources model (Waflex) was developed to analyse water availability and use under current and future scenarios. The results were then compared to results obtained from another model that was used in a joint study by Mozambique, South Africa and Swaziland. The Waflex model showed a high degree of consistency with the one used for comparison, especially in terms of trends. It was found that the recent completion of two new dams has improved water supply to irrigation in the two countries. Future water demands will result in appreciable shortages for irrigation and domestic use. The agreed maximum development levels will soon outstrip the ability of the catchment’s supply. The paper shows that a combination of measures will be required to ensure equitable and sustainable water utilisation in the Komati catchment. These will have to be agreed by the riparian countries

  15. Water productivity analysis for smallholder rainfed systems: A case study of Makanya catchment, Tanzania

    Science.gov (United States)

    Mutiro, J.; Makurira, H.; Senzanje, A.; Mul, M. L.

    Decreasing food security as a result of ever-increasing population, less water availability and soil degradation is common in countries in sub-Saharan Africa. While most of the developed fresh water resources are heavily committed to irrigation, about 90% of sub-Saharan populations rely solely on rainfed agriculture for their livelihoods. The majority of the population is therefore not directly benefiting from developed water resources but are, in fact, subsistence rainfed farmers. Thus, in sub-Saharan Africa, techniques which help to improve water productivity (WP) can assist in alleviating the impacts of water scarcity especially for crop production purposes. A study was conducted in the semi-arid Makanya catchment in northern Tanzania where farmers depend on rainfed subsistence farming for their livelihoods. The objective of the study was to assess the effect of improved conservation agriculture techniques on WP of a maize crop. An assessment of the current WP in rainfed and partially supplementary irrigated agriculture was made. The crop water requirement for maize in the study area was found to be 508 mm/season by using the CROPWAT model compared to total received rainfall of up to 383.86 mm per study plot during the same period. An attempt was made to separate transpiration from evapotranspiration using a transpiration meter. Results indicate that, currently, WP for maize in the catchment is low (0.18-1.33 kg m -3). Introduction of improved techniques increased WP by between 90% and 110%. Infiltration rates also increased from 6 to 26 cm/h. The conclusion from the research is that, from a purely scientific view, there is room to significantly improve the water use techniques being applied for crop productivity through improving current smallholder farming practices A clear understanding and quantification of the water partitioning processes is required to maximise productive water use by the plant as transpiration and this is directly related to biomass

  16. Integrated glacier and snow hydrological modelling in the Urumqi No.1 Glacier catchment

    Science.gov (United States)

    Gao, Hongkai; Hrachowitz, Markus; Savenije, Hubert

    2015-04-01

    The glacier and snow melt water from mountainous area is an essential water resource in Northwest China, where the climate is arid. Therefore a hydrologic model including glacier and snow melt simulation is in an urgent need for water resources management and prediction under climate change in this region. In this study, the Urumqi No.1 Glacier catchment in Northwest China, with 51% area covered by glacier, was selected as the study site. An integrated daily hydrological model was developed to systematically simulate the hydrograph, runoff separation (glacier and non-glacier runoff), the glacier mass balance (GMB), the equilibrium line altitude (ELA), and the snow water equivalent (SWE). Only precipitation, temperature and sunshine hour data is required as forcing input. A combination method, which applies degree-day approach during dry periods and empirical energy balance formulation during wet seasons, was implemented to simulate snow and glacier melt. Detailed snow melt processes were included in the model, including the water holding capacity of snow pack, the liquid water refreezing process in snow pack, and the change of albedo with time. A traditional rainfall-runoff model (Xinanjiang) was applied to simulate the rainfall(snowmelt)-runoff process in non-glacierized area. Additionally, the influence of elevation on temperature and precipitation distribution, and the impact of different aspect on snow and glacier melting were considered. The model was validated, not only by long-term observed daily runoff data, but also by measured snow (SWE) and glacier data (GMB, ELA) of over 50 years. Furthermore, the calibrated model can be upscaled into a larger catchment, which further supports our proposed model and optimized parameter sets.

  17. Design of a Rainwater Catchment System

    OpenAIRE

    Neil Cammardella

    2011-01-01

    Certain dimensions of a rainwater catchment and storage system were optimized using climatological and sociological data. Using only daily demand and average daily rain fall data, the following dimensions were optimized: 1) The horizontal roof area needed to collect the daily demand of water, 2) The tank size needed to store all the water collected during a heavy rain event, 3) When full, how long the tank will be able to provide water without rain, and 4) The diameter of the outlet flow orif...

  18. Standardised survey method for identifying catchment risks to water quality.

    Science.gov (United States)

    Baker, D L; Ferguson, C M; Chier, P; Warnecke, M; Watkinson, A

    2016-06-01

    This paper describes the development and application of a systematic methodology to identify and quantify risks in drinking water and recreational catchments. The methodology assesses microbial and chemical contaminants from both diffuse and point sources within a catchment using Escherichia coli, protozoan pathogens and chemicals (including fuel and pesticides) as index contaminants. Hazard source information is gathered by a defined sanitary survey process involving use of a software tool which groups hazards into six types: sewage infrastructure, on-site sewage systems, industrial, stormwater, agriculture and recreational sites. The survey estimates the likelihood of the site affecting catchment water quality, and the potential consequences, enabling the calculation of risk for individual sites. These risks are integrated to calculate a cumulative risk for each sub-catchment and the whole catchment. The cumulative risks process accounts for the proportion of potential input sources surveyed and for transfer of contaminants from upstream to downstream sub-catchments. The output risk matrices show the relative risk sources for each of the index contaminants, highlighting those with the greatest impact on water quality at a sub-catchment and catchment level. Verification of the sanitary survey assessments and prioritisation is achieved by comparison with water quality data and microbial source tracking. PMID:27280603

  19. Analysis of groundwater flow in mountainous, headwater catchments with permafrost

    Science.gov (United States)

    Evans, Sarah G.; Ge, Shemin; Liang, Sihai

    2015-12-01

    Headwater catchments have a direct impact on the water resources of downstream lowland regions as they supply freshwater in the form of surface runoff and discharging groundwater. Often, these mountainous catchments contain expansive permafrost that may alter the natural topographically controlled groundwater flow system. As permafrost could degrade with climate change, it is imperative to understand the effect of permafrost on groundwater flow in headwater catchments. This study characterizes groundwater flow in mountainous headwater catchments and evaluates the effect of permafrost in the context of climate change on groundwater movement using a three-dimensional, finite element, hydrogeologic model. The model is applied to a representative headwater catchment on the Qinghai-Tibet Plateau, China. Results from the model simulations indicate that groundwater contributes significantly to streams in the form of baseflow and the majority of groundwater flow is from the shallow aquifer above the permafrost, disrupting the typical topographically controlled flow pattern observed in most permafrost-free headwater catchments. Under a warming scenario where mean annual surface temperature is increased by 2°C, reducing the areal extent of permafrost in the catchment, groundwater contribution to streamflow may increase three-fold. These findings suggest that, in headwater catchments, permafrost has a large influence on groundwater flow and stream discharge. Increased annual air temperatures may increase groundwater discharge to streams, which has implications for ecosystem health and the long-term availability of water resources to downstream regions.

  20. Ebeling: Handbook of Indian Foods and Fibers of Arid America

    OpenAIRE

    Sutton, Mark Q

    1987-01-01

    Handbook of Indian Foods and Fibers of Arid America Walter Ebeling. Berkeley: University of California Press, 1986, 971 pp., 73 figures, 50 plates, 12 tables. Appendix, Glossary, Index, References, $65.00 (hardcover).

  1. Arid Lands--A Study in Ecological Disaster

    Science.gov (United States)

    Eckholm, Erik

    1977-01-01

    Reports that over-grazing and unsound agricultural practices are increasing the world-wide amount of uninhabitable land. Cites some practices which have been used to successfully reclaim arid land areas. (CP)

  2. Biomarker evidence for increasing aridity in south-central India over the Holocene

    Science.gov (United States)

    Sarkar, S.; Wilkes, H.; Prasad, S.; Brauer, A.; Basavaiah, N.; Strecker, M. R.; Sachse, D.

    2012-12-01

    Summer monsoonal rainfall has played an important role in the development and sustenance of the largely agro-based economy in the Indian subcontinent in the recent past. A better understanding of past variations in monsoonal rainfall can therefore lead to an assessment of its potential impact on early human societies. However, our knowledge of spatiotemporal patterns of past monsoon strength, as inferred from proxy records, is limited due to the lack of high-resolution paleo-hydrological records from continental archives. Here, we reconstruct centennial-scale hydrological variability associated with changes in the intensity of the Indian Summer Monsoon based on a record of lipid biomarker abundances and compound-specific stable isotopic composition of a 10-m-long sediment core from saline-alkaline Lonar Lake, situated in the core 'monsoon zone' of south-central India. We identified three periods of distinct hydrology over the Holocene in south-central India. The period between 10.4 and 6.5 ka BP was characterized by a relatively high abundance of land-plant biomarkers, such as long-chain n-alkanes. The composition of these leaf-wax n-alkanes (weighted average of concentration of different chain-length n-alkanes, expressed as the ACL index) and their negative δ13C (-30‰ to -33 ‰) indicate the dominance of woody C3 vegetation in the catchment, and negative δD (-170‰ to -175‰) values argue for a wet period due to an intensified monsoon. Rapid fluctuations in abundance of both terrestrial and aquatic biomarkers between 6.5 and 4 ka BP indicate an unstable lake ecosystem, culminating in a transition to arid conditions. Higher ACL values and a pronounced shift to more positive δ13C values (up to -22‰) of leaf-wax n-alkanes over this period indicate a change of dominant vegetation to C4 grasses. Along with a 40‰ increase in leaf wax n-alkane δD values, which likely resulted from less rainfall and/or higher plant evapotranspiration, we interpret this period

  3. Catchment Systems Engineering: A New Paradigm in Water Management

    Science.gov (United States)

    Quinn, P. F.; Wilkinson, M. E.; Burke, S.; O'Donnell, G. M.; Jonczyk, J.; Barber, N.; Nicholson, A.

    2012-04-01

    Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Catchment Systems Engineering seeks to describe catchment the function (or role) as the principal driver for evaluating how it should be managed in the future. Catchment Systems Engineering does not seek to re-establish a natural system but rather works with natural processes in order to engineer landscapes to accrue multiple benefits. The approach involves quantifying and assessing catchment change, impacts and most importantly, suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders. This inclusive concept under a Catchment Systems Engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of Catchment Systems Engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management, whilst maintaining economic food production. Examples using soft engineered features such as wetlands, ponds, woody debris dams and infiltration zones will be shown. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Evidence that impacts can be achieved at local catchment scale will be introduced. Catchment Systems Engineering is a concept that relies on all relevant parties

  4. Use of Isotopes in Assessing the Response of Groundwater to Cross-Catchments Water Diversion in the Tarim Basin

    International Nuclear Information System (INIS)

    Since 2000, more than 2 billion m3 of water has been diverted from the Peacock River to the neighbouring Lower Tarim River in NW China via a 900 km canal for ecosystem rescue by cross-catchment water diversion. Isotope techniques have been used in the riparian groundwater- river interactions along the 350 km long river channel through sampling of monitoring wells and river stream as well as soil profiles. Stable isotopes (δ2H, δ 18O) show that groundwater is enriched in heavy isotopes, attributed to evaporation during recharge. Tritium data show that the extent of modern recharge is limited to 600-1500 m from the riverbank in the middle reaches and 200-600 m in the lower reaches. The salinity of groundwater is affected by river recharge, residence time and evapotranspiration. The zone of appropriate water table for arid plants is confined to a narrow scope. The assessment calls for a more favourable water allocation and management scheme catchment wide. (author)

  5. Aridity changes in the Tibetan Plateau in a warming climate

    Science.gov (United States)

    Gao, Yanhong; Li, Xia; Leung, L. Ruby; Chen, Deliang; Xu, Jianwei

    2015-03-01

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of increasing climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of precipitation to potential evapotranspiration (P/PET) as an aridity index, we used observed meteorological records at 83 stations in the TP to calculate PET using the Penman-Monteith algorithm and the ratio. Spatial and temporal changes of P/PET in 1979-2011 were analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter, and half of the stations in the semi-humid eastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with the change patterns of precipitation, sunshine duration and diurnal temperature range. Temporal correlations between the annual P/PET ratio and other meteorological variables confirm the significant correlation between aridity and the three variables, with precipitation being the dominant driver of P/PET changes at the interannual time scale. Annual PET are insignificantly but negatively correlated with P/PET in the cold season. In the warm season, however, the correlation between PET and P/PET is significant at the confidence level of 99.9% when the cryosphere near the surface melts. Significant correlation between annual wind speed and aridity occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.

  6. Aridity changes in the Tibetan Plateau in a warming climate

    International Nuclear Information System (INIS)

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of increasing climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of precipitation to potential evapotranspiration (P/PET) as an aridity index, we used observed meteorological records at 83 stations in the TP to calculate PET using the Penman–Monteith algorithm and the ratio. Spatial and temporal changes of P/PET in 1979–2011 were analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter, and half of the stations in the semi-humid eastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with the change patterns of precipitation, sunshine duration and diurnal temperature range. Temporal correlations between the annual P/PET ratio and other meteorological variables confirm the significant correlation between aridity and the three variables, with precipitation being the dominant driver of P/PET changes at the interannual time scale. Annual PET are insignificantly but negatively correlated with P/PET in the cold season. In the warm season, however, the correlation between PET and P/PET is significant at the confidence level of 99.9% when the cryosphere near the surface melts. Significant correlation between annual wind speed and aridity occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring. (letter)

  7. Oxygen-18 studies of catchment runoff generation

    International Nuclear Information System (INIS)

    Understanding how runnoff is generated in catchments is important for landuse management. The authors used the response of streams to inputs of rainfall and oxygen-18 to give insight into the process of generating runoff. At Maimai, a West Coast pine forest catchment converted from native beech, streams rise to high levels very quickly after rainfall. Oxygen-18 studies have shown that most of the water discharged during a rainfall event is actually from displaced soil water not current rainfall. The authors have identified the size of this large soil water store as well as the amounts of water flowing from the macropores (with rapid release) and micropores (slow release) within the soil. In contrast, at Glendhu in tussock grassland of upland Otago, streams continue to flow strongly even when there is no rain. The authors found that more baseflow is sources from the soil B-horizon (a compact loess layer) of the surrounding hillslopes and less from the extensive headwater wetlands than was previously thought. This suggests there may be adverse effects on the baseflow if the area is forested and B-horizon water is access by trees

  8. Analysis of aridity indicators in the Deliblato Sands

    Directory of Open Access Journals (Sweden)

    Kadović Ratko

    2014-01-01

    Full Text Available Deliblato Sands are located in the southern part of Banat region in Vojvodina province. According to the estimated changes of basic climate parameters in this part of the Republic of Serbia during past decades very strong rise in annual air temperatures (T was registered, an average of 0.52°C per decade. This rise in temperature increased the potential evapotranspiration (PET, which together with precipitation can increase the degree of aridity of climate in the study area. However, in the same period an increase in annual precipitation sum (P was observed, an average of about 35 mm per decade, which may somewhat slow the aridisation of desert sands. Considering the nature, origin and significance of Deliblato Sands ecosystem, the main goal of this paper is to analyse the drought and aridity index (AI = P / PET, analyse the trend of aridisation process and its possible impact on ecosystems of this special nature reserve. Aridity index analyses were performed in meteorological stations Banatski Karlovac, Vrsac and Bela Crkva for the period 1981 - 2010 at the annual values and for the growing season. Results showed that Deliblato desert sands (Banatski Karlovac stand at a higher frequency of arid years (AI < 0.65 compared to locations of Vrsac and Bela Crkva. On the other hand, the level of aridity has considerably increased during the vegetation period in desert sands as well in its surroundings. This intensified aridity is the result of considerable increase of potential evapotranspiration (PET connected to season precipitation.

  9. Preliminary assessment of aridity conditions in the Iberian Peninsula

    Science.gov (United States)

    Andrade, C.; Corte-Real, J. A.

    2016-06-01

    Aridity is one of the key elements characterizing the climate of a region, having a severe impact on human activities. Aiming at assessing aridity conditions in the Iberian Peninsula, the spatial distribution of the UNEP aridity index is analyzed during the period 1901-2012. Gridded precipitation and potential evapotranspiration datasets are used on a monthly basis. Results show that the southern half of Iberia is particularly vulnerable to water stress and hence to desertification processes. In particular, the UNEP aridity index reveals an increase and northward extension of the semi-arid regime in the Iberian Peninsula between 1901 and 2012. More than 50% of the north and western territory have experienced humid/sub-humid conditions, while the other regions underwent semi-arid settings. Results also reveal that climate was subjected to spatial and temporal variabilities with an overall statistically significant (at a 95% confidence level) trend to aridification in the south-easternmost and central regions. The remaining territory of the Iberian Peninsula does not reveal statistically significant trends.

  10. Using Runoff Collectors to Understand Surface Runoff Characteristics in Remote Nevada Catchments

    Science.gov (United States)

    Kruse, K. E.; Saito, L.; Fenstermaker, L.; Devitt, D.; Strachan, S.; Morris, C.; Weltz, M.

    2012-12-01

    Population growth in Nevada and climate change are placing greater demands on water resources in an already arid region. Nevada is considered one of the most endangered ecoregions in the United States and most vulnerable to climate change in the contiguous United States because of its dependence on water resources. Future water demands in the western U.S. will increasingly need to be satisfied by groundwater, yet data to estimate groundwater recharge are extremely limited in most areas of the region. Surface water contributions to groundwater recharge from ephemeral, remote catchments are difficult and expensive to measure, and are often estimated using modeling techniques based on limited or no actual runoff data. Understanding surface runoff is important because if runoff exists, it can move the location of recharge, affect the distribution of plant and wildlife communities, as well as impact the water balance of surface water resources. In this study, 16 runoff collectors were installed on hillslopes in remote catchments across Nevada in the Snake, Sheep and Desatoya mountain ranges. Each runoff collector is composed of a 1-square-meter sheet metal frame that is placed on a hillslope (5-10% slope), with a subsurface 19-liter (5-gallon) bucket beneath it to collect surface flows within the plot. A pressure transducer is suspended from the surface into the bucket to measure runoff volume. Ten collectors were deployed at monitoring transect sites in the Snake Range and four were deployed within the Sheep Range as a part of the Nevada NSF EPSCoR Climate Change Project. Temperature, precipitation, soil moisture, and other data collected by the NV NSF EPSCoR Project in the vicinity of the runoff collectors will be used to assess the relationship between precipitation events and runoff. In addition, nine rainfall simulation experiments were completed at one of the Sheep Range sites to simulate different sizes of storms and their contributions to surface runoff. The

  11. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: An integrated modeling approach

    Science.gov (United States)

    Hassan, S. M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Su, Zhongbo

    2014-09-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface-groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface-groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y-1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y-1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  12. Anatomy of a catchment: the relation of physical attributes of the Plynlimon catchments to variations in hydrology and water status

    Directory of Open Access Journals (Sweden)

    C. Brandt

    2004-01-01

    Full Text Available The Plynlimon headwater catchments in mid-Wales have been a landmark study of water resources in the UK uplands for over 30 years. The main physical features of the catchments have been digitised as the basis for linking new model developments and process understanding. Examples are given of how the main physical attributes are related to land management, hydrology and water quality. These data are also being used to provide insights into catchment processes that may underpin the development of new research. This work is particularly relevant given the need for the assessment of water status under the Water Framework Directive. The paper presents hypothetical management scenarios for the catchments, to show how ecological status may be improved, for example, by selectively restructuring areas of commercial forest. Keywords: Plynlimon, GIS, catchment study, forestry, hydrology, WFD

  13. Late glacial aridity in southern Rocky Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Davis, O.K.; Pitblado, B.L. [Univ. of Arizona, Tucson, AZ (United States)

    1995-09-01

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lake (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.

  14. Salinization mechanisms in semi-arid regions

    International Nuclear Information System (INIS)

    During a period of three years the basins of the Pereira de Miranda and Caxitore dams, located in the crystalline rock area of Ceara, Brazil, were studied in order to determine the mechanisms of salinization of their waters. Isotope methods (18O/16O) and hidrochemistry (determination of the of the maior ions) were applied to surface, underground and rain water in this study. An isotope model was designed and applied to the determination of evaporation and percolation of dams in semi-arid zones during the dry season. The results are compared to those from a conventional chemical model. As causes of salinization of the water in the dams, the contributions of the rain itself and the lixiviation of the soil are quantified. An interaction between the dams and the underground water is imperceptible. The salinization of the underground water is attributed to recharge of the aquifer with rain water from the surface runoff followed by evaporation of the water rising, due to capilarity, in a one-directional flow to the surface. (Author)

  15. Entomological studies for surveillance and prevention of dengue in arid and semi-arid districts of Rajasthan, India

    Directory of Open Access Journals (Sweden)

    Anil Purohit

    2008-05-01

    Full Text Available Background & objectives: Rajasthan is one of the dengue endemic states of India. Very few studies have been published on entomological aspects of dengue in this state. Owing to water scarcity, inhabitants in desert areas overstore domestic water which leads to the persistence of dengue vectors within the domestic premises. Area specific knowledge on breeding, key containers and seasonal rhythms of vector population is essential for preparing an effective prevention plan against dengue. Present paper reports results of entomological investigations on dengue vectors in arid and semi-arid districts of Rajasthan. Methods: Longitudinal studies were undertaken during 2004–06 in one arid and two semi-arid dengue endemic districts of Rajasthan. Adult and larval Aedes were collected from the randomly selected houses in representative towns and villages with associated details of container types and water storage practices of inhabitants. Results: In urban areas during all the seasons adult house index (AHI of Aedes aegypti was maximum in desert zone (25 and least in semi-arid area with saline river III (1. The difference of AHI during three seasons was statistically significant (c2 = 16.1, p <0.01 for urban; and c2 = 50.71, p < 0.001 for rural. Breeding of Ae. aegypti among urban settings was maximum in desert zone. During all the seasons cement tanks were the key breeding habitats for Ae. aegypti in desert as well as semi-arid areas. Interpretation & conclusion: Water storage habits during summer season emerged to be the risk factor of vector abundance in urban areas of arid and semi-arid settings. A carefully designed study of key containers targeting cement tanks as the primary habitats of mosquito control may lead to commendable results for dengue prevention.

  16. Keeping Sediment and Nutrients out of Streams in Arid/Semi-Arid Regions: Application of Low Impact Development/Green Infrastructure Practices

    Science.gov (United States)

    Yongping, Yuan

    2015-04-01

    Climatic and hydrological characteristics in the arid/semi-arid areas create unique challenges to soil, water and biodiversity conservation. These areas are environmentally sensitive, but very valuable for the ecosystems services they provide to society. Some of these areas are experiencing the fastest urbanization and now face multiple water resource challenges. Low Impact Development (LID)/Green Infrastructure (GI) practices are increasingly popular for reducing stormwater and nonpoint source pollution in many regions around the world. However, streamflow in the arid/semi-arid regions is largely dependent on seasonal, short term, and high intensity rainfall events. LID has not been very common in the arid/semi-arid regions due to a lack of performance evaluation, as well as the perception that LID may not be very useful for regions with little annual precipitation. This study focused on investigating the hydrologic and pollutant removal performance of LID/GI systems in arid/semi-arid climates. Ten types of practices were found in use in the Western/Southwestern U.S.: rainwater harvest systems, detention ponds, retention ponds, bioretention, media filters, porous pavements, vegetated swales/buffer/strips, green roofs, infiltration trenches, and integrated LIDs. This study compared the performance of these practices in terms of their effectiveness at pollutant removal and cost-effectiveness. This analysis provides insight into the future implementation of LID/GI in the arid/semi-arid areas. Key words: LID/GI, arid/semi-arid, effectiveness of pollutant removal, cost-effectiveness analysis

  17. Climate change adaptation via targeted ecosystem service provision: a sustainable land management strategy for the Segura catchment (SE Spain)

    Science.gov (United States)

    Zagaria, Cecilia; de Vente, Joris; Perez-Cutillas, Pedro

    2014-05-01

    Topical research investigating climate, land-use and management scenarios in the Segura catchment (SE Spain), depicts a landscape at high-risk of, quite literally, deserting agriculture. Land degradation in the semi-arid region of SE Spain is characterized by water shortage, high erosion rates and salinization, increasingly exacerbated by climatic changes, scarce vegetation cover and detrimental farming practices. Future climate scenarios predict increases in aridity, variability and intensity of rainfall events, leading to increasing pressure on scarce soil and water resources. This study conceptualized the impending crisis of agro-ecological systems of the Segura basin (18800 km2) as a crisis of ecosystem service deterioration. In light of existing land degradation drivers and future climate scenarios, the potential of Sustainable Land Management (SLM) strategies was evaluated to target three priority ecosystem services (water provision, sediment retention and carbon sequestration) as a means to achieve climate change adaptation and mitigation. A preceding thorough process of stakeholder engagement (as part of the EU funded DESIRE project) indicated five SLM technologies for potential implementation, all with a focus upon reducing soil erosion, increasing soil water holding capacity and soil organic matter content. These technologies have been tested for over four years in local experimental field plots, and have provided results on the local effects upon individual environmental parameters. Despite the growing emphasis witnessed in literature upon the context-specificity which characterizes adaptation solutions, the frequent analysis at the field scale is limited in both scope and utility. There is a need to investigate the effects of adaptive SLM solutions at wider, regional scales. Thus, this study modeled the cumulative effect of each of the five selected SLM technologies with InVEST, a spatial analyst tool designed for ecosystem service quantification and

  18. Diagnosis of GLDAS LSM based aridity index and dryland identification.

    Science.gov (United States)

    Ghazanfari, Sadegh; Pande, Saket; Hashemy, Mehdy; Sonneveld, Ben

    2013-04-15

    The identification of dryland areas is crucial for guiding policy aimed at intervening in water-stressed areas and addressing the perennial livelihood or food insecurity of these areas. However, the prevailing aridity indices (such as UNEP aridity index) have methodological limitations that restrict their use in delineating drylands and may be insufficient for decision-making frameworks. In this study, we propose a new aridity index based on based on 3 decades of soil moisture time series by accounting for site-specific soil and vegetation that partitions precipitation into the competing demands of evaporation and runoff. Our proposed aridity index is the frequency at which the dominant soil moisture value at a location is not exceeded by the dominant soil moisture values in all of the other locations. To represent the dominant spatial template of the soil moisture conditions, we extract the first eigenfunction from the empirical orthogonal function (EOF) analysis from 3 GLDAS land surface models (LSMs): VIC, MOSAIC and NOAH at 1 × 1 degree spatial resolution. The EOF analysis reveals that the first eigenfunction explains 33%, 43% and 47% of the VIC, NOAH and MOSAIC models, respectively. We compare each LSM aridity indices with the UNEP aridity index, which is created based on LSM data forcings. The VIC aridity index displays a pattern most closely resembling that of UNEP, although all of the LSM-based indices accurately isolate the dominant dryland areas. The UNEP classification identifies portions of south-central Africa, southeastern United States and eastern India as drier than predicted by all of the LSMs. The NOAH and MOSAIC LSMs categorize portions of southwestern Africa as drier than the other two classifications, while all of the LSMs classify portions of central India as wetter than the UNEP classification. We compare all aridity maps with the long-term average NDVI values. Results show that vegetation cover in areas that the UNEP index classifies as

  19. Use of High Spatial Resolution Remote Sensing for Hydro-Geomorphologic Analysis of Medium-sized Arid Basins

    Science.gov (United States)

    Sadeh, Yuval; Blumberg, Dan G.; Cohen, Hai; Morin, Efrat; Maman, Shimrit

    2016-04-01

    Arid environments are often remote, expansive, difficult to access and especially vulnerable to flash flood hazards due to the poor understanding of the phenomenon and the lack of meteorological, geomorphological, and hydrological data. For many years, catchment characteristics have been observed using point-based measurements such as rain gauges and soil sample analysis; on the other hand, use of remote sensing technologies can provide spatially continuous hydrological parameters and variables. The advances in remote sensing technologies can provide new geo-spatial data using high spatial and temporal resolution for basin-scale geomorphological analysis and hydrological models. This study used high spatial resolution remote sensing for hydro-geomorphologic analysis of the arid medium size Rahaf watershed (76 km2), located in the Judean Desert, Israel. During the research a high resolution geomorphological map of Rahaf basin was created using WorldView-2 multispectral satellite imageries; surface roughness was estimated using SIR-C and COSMO-SkyMed Synthetic Aperture Radar (SAR) spaceborne sensors; and rainstorm characteristics were extracted using ground-based meteorological radar. The geomorphological mapping of Rahaf into 17 classes with good accuracy. The surface roughness extraction using SAR over the basin showed that the correlation between the COSMO-SkyMed backscatter coefficient and the surface roughness was very strong with an R2 of 0.97. This study showed that using x-band spaceborne sensors with high spatial resolution, such as COSMO-SkyMed, are more suitable for surface roughness evaluation in flat arid environments and should be in favor with longer wavelength operating sensors such as the SIR-C. The current study presents an innovative method to evaluate Manning's hydraulic roughness coefficient (n) in arid environments using radar backscattering. The weather radar rainfall data was calibrated using rain gauges located in the watershed. The

  20. The Effect of Converting Combined Sewer Catchments to Separate Sewer Catchments

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Kjeld; Rasmussen, Michael R.; Thorndahl, Søren Liedtke

    2011-01-01

    separate sewer catchments decreases the amounts of storm water and pollutants diverted to the waste water treatment plant (WWTP) or as combined sewer overflows (CSO). But this happens at the expense of an increase in amounts of storm water and pollutants diverted to local receiving waters when detention......The overall objective of this paper is to contribute to the standing debate concerning the advantages of separate sewer systems compared to traditional combined sewers. By a case study this investigation reveals that a transformation of one fourth of a given total area from being combined to become...... ponds are not built-in the new separate sewer systems. If a total catchment area transformation – instead of only one fourth – is put through, the consequences could be fatal for receiving waters if no retention of pollutants is integrated in such a transformation....

  1. Characteristics of chemistry and stable isotopes in groundwater of the Chaobai River catchment, Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, J.; Wang, X. [Hydrogeology and Engineering Geology Team of Beijing, Beijing 100037 (China); Pang, Z. [Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2013-07-01

    Environmental isotopes and chemical compositions are useful tools for the study of groundwater flow systems. Groundwater of the Chaobai River catchment, Beijing was sampled for chemical and stable isotopes analyses in 2005. Geochemical signatures evolve progressively from CaMg-HCO{sub 3} to NaK-HCO{sub 3}, and then to Na-HCO{sub 3} compositions as groundwater flows from the mountain to discharge areas. Groundwater can be divided into two groups on the basis of stable isotope compositions: ancient groundwater and modern groundwater. Modern groundwater (-9.90/00 to -6.60/00 for δ{sup 18}O) plots along a line with a slope of 4.0 on a δ{sup 2}H versus δ{sup 18}O diagram, reflecting evaporation during the process of recharge, whereas ancient groundwater samples (30 to 12 Ka.) are different in isotopic composition (-11.00/00 and -68.20/00 for δ{sup 18}O and δ{sup 2}H, respectively), reflecting the cold and arid climate in the last glacial period. The results have important implications for groundwater management in Beijing City. (authors)

  2. Characteristics of chemistry and stable isotopes in groundwater of the Chaobai River catchment, Beijing

    International Nuclear Information System (INIS)

    Environmental isotopes and chemical compositions are useful tools for the study of groundwater flow systems. Groundwater of the Chaobai River catchment, Beijing was sampled for chemical and stable isotopes analyses in 2005. Geochemical signatures evolve progressively from CaMg-HCO3 to NaK-HCO3, and then to Na-HCO3 compositions as groundwater flows from the mountain to discharge areas. Groundwater can be divided into two groups on the basis of stable isotope compositions: ancient groundwater and modern groundwater. Modern groundwater (-9.90/00 to -6.60/00 for δ18O) plots along a line with a slope of 4.0 on a δ2H versus δ18O diagram, reflecting evaporation during the process of recharge, whereas ancient groundwater samples (30 to 12 Ka.) are different in isotopic composition (-11.00/00 and -68.20/00 for δ18O and δ2H, respectively), reflecting the cold and arid climate in the last glacial period. The results have important implications for groundwater management in Beijing City. (authors)

  3. A Budyko approach to assessing catchment deforestation impacts on the water yield to global wetlands

    Science.gov (United States)

    Larsen, Joshua; Woodward, Craig; Shulmeister, James

    2015-04-01

    Reduced evapotranspiration (ET) through the conversion of forest to grass and the resultant increase in streamflow water yields are well established, however the consequences for the water balance of standing bodies of water within catchments have received comparatively less attention. Evaluating these impacts at the annual time scale, and across the globe is difficult to parametrise using conventional water balance models, however the relative simplicity of the Budyko hypothesis enables such a first order analysis. One widely used Budyko approach allows ET to be differentiated according to a single parameter, and existing data suggests ET can be reduced by ~1/3 following the conversion from forest to grass across a wide range of precipitation inputs. Using global databases of wetlands, aridity index, and current vs original forest cover, we find the water available to wetlands can increase by up to 15% of precipitation in relatively humid climates where complete deforestation has occurred. This is significant since it may convert previously ephemeral systems to permanent wetlands, or create entirely new wetlands. Moreover, a conservative estimate based on our datasets suggests 9-12% of global wetlands are significantly affected by this change in hydrology due to deforestation. Human impact studies in lake and wetland systems rarely test for changes in hydrology, and thus this effect is largely unrecognised. The latitudinal structure of these impacts, sensitivity to degree of deforestation, and sensitivity to the assumption of the 1/3 ET reduction are also explored.

  4. Adaptation of the Integrated Nitrogen Model for Catchments (INCA to seasonally snow-covered catchments

    Directory of Open Access Journals (Sweden)

    K. Rankinen

    2004-01-01

    Full Text Available Testing of the Integrated Nitrogen model for Catchments (INCA in a wide range of ecosystem types across Europe has shown that the model underestimates N transformation processes to a large extent in northern catchments of Finland and Norway in winter and spring. It is found, and generally assumed, that microbial activity in soils proceeds at low rates at northern latitudes during winter, even at sub-zero temperatures. The INCA model was modified to improve the simulation of N transformation rates in northern catchments, characterised by cold climates and extensive snow accumulation and insulation in winter, by introducing an empirical function to simulate soil temperatures below the seasonal snow pack, and a degree-day model to calculate the depth of the snow pack. The proposed snow-correction factor improved the simulation of soil temperatures at Finnish and Norwegian field sites in winter, although soil temperature was still underestimated during periods with a thin snow cover. Finally, a comparison between the modified INCA version (v.1.7 and the former version (v.1.6 was made at the Simojoki river basin in northern Finland and at Dalelva Brook in northern Norway. The new modules did not imply any significant changes in simulated NO3- concentration levels in the streams but improved the timing of simulated higher concentrations. The inclusion of a modified temperature response function and an empirical snow-correction factor improved the flexibility and applicability of the model for climate effect studies. Keywords: inorganic N leaching, degree-day snow model, snow pack, catchment scale model

  5. Catchments as simple dynamical systems: Experience from a Swiss prealpine catchment

    OpenAIRE

    Teuling, A.J.; Lehner, I.; J. W. Kirchner; Seneviratne, S. I.

    2010-01-01

    Heterogeneity in small-scale subsurface flow processes does not necessarily lead to complex system behavior at larger scales. Here we use the simple dynamical systems approach recently proposed by Kirchner (WRR, 2009) to analyze, characterize, and simulate streamflow dynamics in the Swiss Rietholzbach catchment. The Rietholzbach data set used here provides 32 years of continuous and high-quality observations, which include a soil moisture profile and unique observations of storage changes and...

  6. Aquaculture and mangrove ecosys of temproductivity in arid and semi-arid Balochistan coastal environments

    International Nuclear Information System (INIS)

    A survey of coastal shrimp-pond operations, and the structure and functioning of coastal mangrove forest ecosystems with particular reference to Ecuador, indicates that certain physical parameters may be good predictors of key biological processes. The most important factors are those associated with the regional water balance, tidal and surface water circulation patterns, and the physicochemical properties of the underlying soils. One important conclusion to emerge from the analyses is that at both regional and local levels, well-developed and productive mangrove forest areas often represent the least desirable sites for the construction and operation of commercial shrimp ponds. In certain regards semi-arid and arid coastal environments where mangroves are poorly developed, shrimp ponds that are constructed on barren mud flats and inland salt pans appear to have the potential to produce higher yields of shrimp with fewer management problems and at a relatively lower production cost. The data and research results from coast of Baluchistan and elsewhere are briefly summarized to suggest why productive mangrove ecosystems to not make the best areas in which to obtain maximum shrimp-pond yields. (author)

  7. Predicted performance of clay-barrier landfill covers in arid and semi-arid environments.

    Science.gov (United States)

    Sadek, S; Ghanimeh, S; El-Fadel, M

    2007-01-01

    Conventional landfill cover systems for municipal solid waste include low-permeability compacted clay barriers to minimize infiltration into the landfilled waste. Such layers are vulnerable in climates where arid to semi-arid conditions prevail, whereby the clay cover tends to desiccate and crack, resulting in drastically higher infiltration, i.e., lower cover efficiency. To date, this phenomenon, which has been reported in field observations, has not been adequately assessed. In this paper, the performance of a cover system solely relying on a clay barrier was simulated using a numerical finite element formulation to capture changes in the clay layer and the corresponding modified hydraulic characteristics. The cover system was guided by USEPA Subtitle-D minimum requirements and consisted of a clay layer underlying a protective vegetated soil. The intrinsic characteristics of the clay barrier and vegetative soil cover, including their saturated hydraulic conductivities and their soil-water characteristic curves, were varied as warranted to simulate intact or "cracked" conditions as determined through the numerical analyses within the proposed methodology. The results indicate that the levels of percolation through the compromised or cracked cover were up to two times greater than those obtained for intact covers, starting with an intact clay hydraulic conductivity of 10(-5)cm/s. PMID:16987648

  8. Adaptation to drought in arid and semi-arid environments: Case of the Zambezi Valley, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Emmanuel Mavhura

    2015-02-01

    Full Text Available Small-scale rain-fed agriculture is the main livelihood in arid to semi-arid regions of subSaharan Africa. The area is characterised by erratic rainfall and frequent droughts, making the capacity for coping with temporal water shortages essential for smallholder farmers. Focusing on the Zambezi Valley, Zimbabwe, this study investigates the impact of drought on food security and the strategies used by smallholder farmers to cope with drought. We used meteorological data and interviews to examine the rainfall variability in the study area and the drought-coping mechanisms employed by smallholder famers respectively. The results show that there are various strategies used by smallholder farmers to cope with the impact of drought. These strategies include drought-tolerant crop production, crop variety diversification, purchasing cereals through asset sales, non-governmental organisations’ food aid and gathering wild fruit. However, consecutive droughts have resulted in high food insecurity and depletion of household assets during droughts. Smallholder farmers in the valley have also resorted to a number of measures taken before, during and after the drought. Still, these strategies are not robust enough to cope with this uncertainty

  9. Non-isothermal water flow in the vadose zone of arid and semi-arid environments

    Science.gov (United States)

    Mallants, Dirk; Gerke, Kirill; Cook, Peter

    2013-04-01

    In desert environments thermally-driven vapour flow can be an important component of the total water flux in soils. As such, vapour flow can have considerable impact on recharge estimation, with small errors in soil water flow rates resulting in relatively larger errors in the recharge estimates since recharge is a very small fraction of rainfall. The additional effects of vegetation and temperature contributions may also impact soil water movement and thus calculated recharge rates in arid and semi-arid vadose zones. Currently most methods for estimating large-scale recharge rates do not consider these various processes, which adds an unknown degree of uncertainty to recharge estimation. The HYDRUS-1D numerical simulator was used to simulate coupled isothermal liquid, isothermal vapour, non-isothermal liquid and vapour flow, and heat flow in deep variably saturated vadose zones. The considered climatic conditions are characteristic of central Australia with approximate mean annual precipitation and potential evapotranspiration rates of 300 and 3000 mm, respectively. A time series of 130 years of daily climate data provides the upper boundary conditions. Groundwater recharge under highly erratic rainfall conditions is hypothesized to be primarily episodic and linked to flood events which may be significant only once every few years. The combined effect of vegetation and temperature on water flow and soil water redistribution is discussed for both vegetated and bare soils.

  10. The application of GEOtop for catchment scale hydrology in Ireland

    Science.gov (United States)

    Lewis, C.; Xu, X.; Albertson, J.; Kiely, G.

    2009-04-01

    GEOtop represents the new generation of distributed hydrological model driven by geospatial data (e.g. topography, soils, vegetation, land cover). It estimates rainfall-runoff, evapotranspiration and provides spatially distributed outputs as well as routing water and sediment flows through stream and river networks. The original version of GEOtop designed in Italy, includes a rigorous treatment of the core hydrological processes (e.g. unsaturated and saturated flow and transport, surface energy balances, and streamflow generation/routing). Recently GEOtop was extended to include treatment of shallow landslides. The GEOtop model is built on an open-source programming framework, which makes it well suited for adaptation and extension. GEOtop has been run very successfully in a number of alpine catchments (such as Brenta) but has not been used on Irish catchments before. The cell size used for the spatially distributed inputs varies from catchment to catchment. In smaller catchments (less than 2000ha) 50 by 50m cells have been used and 200 by 200 for larger catchments. Smaller cell sizes have been found to significantly increase the computational time so a larger cell size is used providing it does not significantly affect the performance of the model. Digital elevation model, drainage direction, landuse and soil type maps are the minimum spatial requirements with precipitation, radiation, temperature, atmospheric pressure and wind speed been the minimum meteorological requirements for a successful run. The soil type maps must also contain information regarding texture and hydraulic conductivity. The first trial of GEOtop in Ireland was on a small 1524 ha catchment in the south of Ireland. The catchment ranges from 50 to just over 200m, the land use is predominately agricultural grassland and it receives on average 1400mm of rain per year. Within this catchment there is a meteorological tower which provides the meteorological inputs, soil moisture is also recorded at

  11. Comparison of drought occurrence in selected Slovak and Czech catchments

    Science.gov (United States)

    Fendekova, Miriam; Fendek, Marian; Porubska, Diana; Hanel, Martin; Horacek, Stanislav; Martinkova, Marta; Vizina, Adam

    2014-05-01

    The presented study is focused on the analysis and comparison of hydrological drought occurrence, development and duration in six small to middle sized catchments in the Czech Republic (CZ) and Slovakia. The main questions to be answered are: (1) are there correlations between the physical conditions in the catchments and drought occurrence, and (2) does the spatial trend of drought occurrence exist. The Žitava catchment is located in the central western part of Slovakia having runoff dominated by rainfall with the contribution of snow melting during the spring period. The Belá River catchment is located on the contact of Západné and Vysoké Tatry Mts. in the north of Slovakia. The runoff is snow to snow-rain combined type. The Ľupčianka catchment is located on the northern slopes of the Nízke Tatry Mts. in the northern part of the central Slovakia. The runoff regime is snow-rain combined in the upper part of the catchment, and of rain-snow type in the rest of catchment. The Rakovnický potok brook (CZ) has its spring in Rakovnická pahorkatina hilly land. Runoff is dominated by rainfall, quite heavily influenced by water uptakes in the catchment. The Teplá River (CZ) originates in peat meadows in the western part of the Czech Republic. Runoff is dominated by rainfall. The Metuje catchment (CZ) is formed by Adršsbach-Teplické stěny Upland. The headwater part is typical by deeply incest valleys, table mountains and pseudokarst caves. The discharge is fed dominantly by groundwater. The streamflow drought was characterized using discharge data, the groundwater drought using the base flow values. The local minimum method was used for base flow separation. The threshold level method (Q80, BF80) and the sequent peak algorithm were used for calculation of drought duration in discharge and base flow time series. The data of the same three decades of the common period (1971 - 1980, 1981 - 1990 and 1991 - 2000) were used. The resulting base flow values along with

  12. Spatial characterization of catchment dispersion mechanisms in an urban context

    Science.gov (United States)

    Rossel, Florian; Gironás, Jorge; Mejía, Alfonso; Rinaldo, Andrea; Rodriguez, Fabrice

    2014-12-01

    Previous studies have examined in-depth the dispersion mechanisms in natural catchments. In contrast, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. This has the ability to modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. The U-McIUH computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment in France as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion in the catchment, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further study with other catchments is needed to asses if the latter is a general feature of urban drainage networks.

  13. Shallow Horizontal GCHP Effectiveness in Arid Climate Soils

    Science.gov (United States)

    North, Timothy James

    Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer, GCHPs are difficult to install and operate. This is because the nature of soils in arid climate regions, in that they are both dry and hot, renders them particularly ineffective at dissipating heat. The first part of this thesis addresses applying the SVHeat finite element modeling soft-ware to create a model of a GCHP system. Using real-world data from a prototype solar-water heating system coupled with a ground-source heat exchanger installed in Menlo Park, California, a relatively accurate model was created to represent a novel GCHP panel system installed in a shallow vertical trench. A sensitivity analysis was performed to evaluate the accuracy of the calibrated model. The second part of the thesis involved adapting the calibrated model to represent an ap-proximation of soil conditions in arid climate regions, using a range of thermal properties for dry soils. The effectiveness of the GCHP in the arid climate region model was then evaluated by comparing the thermal flux from the panel into the subsurface profile to that of the prototype GCHP. It was shown that soils in arid climate regions are particularly inefficient at heat dissipation, but that it is highly dependent on the thermal conductivity inputted into the model. This demonstrates the importance of proper site characterization in arid climate regions. Finally, several soil improvement methods were researched to evaluate their potential for use in improving the effectiveness of shallow horizontal GCHP systems in arid climate regions.

  14. Nitrate reduction in geologically heterogeneous catchments

    DEFF Research Database (Denmark)

    Refsgaard, Jens Christian; Auken, Esben; Bamberg, Charlotte A.; Christensen, Britt Stenhøj Baun; Clausen, Thomas; Dalgaard, Esben; Effersø, Flemming; Ernstsen, Vibeke; Gertz, Flemming; Hansen, Anne Lausten; He, Xin; Jacobsen, Brian H.; Jensen, Karsten Høgh; Jørgensen, Flemming; Jørgensen, Lisbeth Flindt; Koch, Julian; Nilsson, Bertel; Petersen, Christian; De Schepper, Guillaume; Schamper, Cyril; Sørensen, Kurt I.; Therrien, Rene; Thirup, Christian; Viezzoli, Andrea

    zone is reduced in the saturated zone before reaching the streams, and vulnerable areas, where no subsurface reduction takes place, and then only impose regulations/restrictions on the vulnerable areas. Distributed hydrological models can make predictions at grid scale, i.e. at much smaller scale than...... the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface and for...... assessing at which spatial scales modelling tools have predictive capabilities. A new instrument has been developed for airborne geophysical measurements, Mini-SkyTEM, dedicated to identifying geological structures and heterogeneities with horizontal and lateral resolutions of 30–50 m and 2 m, respectively...

  15. Distributed catchment simulation using a raster GIS

    Science.gov (United States)

    Saghafian, Bahram; van Lieshout, Arno M.; Rajaei, Hossein M.

    Hydrologic simulation models can greatly benefit from geographic information system (GIS) capabilities for manipulation of input/output spatial data. This paper describes GIS-based pre-processing algorithms operating on elevation data that are applied in order to obtain flow direction and flow accumulation maps. Using the derived maps and other physical input data, kinematic travel-time maps, time-area histograms, and partial and total runoff hydrographs can be generated in a distributed modelling framework. The model was tested on a small watershed with satisfactory results. In its present state, the proposed model appears to work best for steep ungauged watersheds. Further validation for larger catchments requires more research. Some enhancements to the model are also recommended.

  16. Uncertainty in hydrological signatures for gauged and ungauged catchments

    Science.gov (United States)

    Westerberg, Ida K.; Wagener, Thorsten; Coxon, Gemma; McMillan, Hilary K.; Castellarin, Attilio; Montanari, Alberto; Freer, Jim

    2016-03-01

    Reliable information about hydrological behavior is needed for water-resource management and scientific investigations. Hydrological signatures quantify catchment behavior as index values, and can be predicted for ungauged catchments using a regionalization procedure. The prediction reliability is affected by data uncertainties for the gauged catchments used in prediction and by uncertainties in the regionalization procedure. We quantified signature uncertainty stemming from discharge data uncertainty for 43 UK catchments and propagated these uncertainties in signature regionalization, while accounting for regionalization uncertainty with a weighted-pooling-group approach. Discharge uncertainty was estimated using Monte Carlo sampling of multiple feasible rating curves. For each sampled rating curve, a discharge time series was calculated and used in deriving the gauged signature uncertainty distribution. We found that the gauged uncertainty varied with signature type, local measurement conditions and catchment behavior, with the highest uncertainties (median relative uncertainty ±30-40% across all catchments) for signatures measuring high- and low-flow magnitude and dynamics. Our regionalization method allowed assessing the role and relative magnitudes of the gauged and regionalized uncertainty sources in shaping the signature uncertainty distributions predicted for catchments treated as ungauged. We found that (1) if the gauged uncertainties were neglected there was a clear risk of overconditioning the regionalization inference, e.g., by attributing catchment differences resulting from gauged uncertainty to differences in catchment behavior, and (2) uncertainty in the regionalization results was lower for signatures measuring flow distribution (e.g., mean flow) than flow dynamics (e.g., autocorrelation), and for average flows (and then high flows) compared to low flows.

  17. A 500-year history of floods in the semi arid basins of south-eastern Spain

    Science.gov (United States)

    Sánchez García, Carlos; Schulte, Lothar; Peña, Juan Carlos; Carvalho, Filpe; Brembilla, Carla

    2016-04-01

    Floods are one of the natural hazards with higher incidence in the south-eastern Spain, the driest region in Europe, causing fatalities, damage of infrastructure and economic losses. Flash-floods in semi arid environments are related to intensive rainfall which can last from few hours to days. These floods are violent and destructive because of their high discharges, sediment transport and aggradation processes in the flood plain. Also during historical times floods affected the population in the south-eastern Spain causing sever damage or in some cases the complete destruction of towns. Our studies focus on the flood reconstruction from historical sources of the Almanzora, Aguas and Antas river basins, which have a surface between 260-2600 km2. We have also compiled information from the Andarax river and compared the flood series with the Guadalentín and Segura basins from previous studies (Benito et. al., 2010 y Machado et al., 2011). Flood intensities have been classified in four levels according to the type of damage: 1) ordinary floods that only affect agriculture plots; 2) extraordinary floods which produce some damage to buildings and hydraulic infrastructure; 3) catastrophic floods which caused sever damage, fatalities and partial or complete destruction of towns. A higher damage intensity of +1 magnitude was assigned when the event is recorded from more than one major sub-basin (stretches and tributaries such as Huércal-Overa basin) or catchment (e.g. Antas River). In total 102 incidences of damages and 89 floods were reconstructed in the Almanzora (2.611 km2), Aguas (539 km2), Antas (261 km2) and Andarax (2.100 km2) catchments. The Almanzora River was affected by 36 floods (1550-2012). The highest events for the Almanzora River were in 1580, 1879, 1973 and 2012 producing many fatalities and destruction of several towns. In addition, we identified four flood-clusters 1750-1780, 1870-1900, 1960-1977 and 1989-2012 which coincides with the periods of

  18. Transferring model uncertainty estimates from gauged to ungauged catchments

    Directory of Open Access Journals (Sweden)

    F. Bourgin

    2014-07-01

    Full Text Available Predicting streamflow hydrographs in ungauged catchments is a challenging issue, and accompanying the estimates with realistic uncertainty bounds is an even more complex task. In this paper, we present a method to transfer model uncertainty estimates from gauged to ungauged catchments and we test it over a set of 907 catchments located in France. We evaluate the quality of the uncertainty estimates based on three expected qualities: reliability, sharpness, and overall skill. Our results show that the method holds interesting perspectives, providing in most cases reliable and sharp uncertainty bounds at ungauged locations.

  19. Soilwater dynamics related to waterlogging in a sloping catchment

    Science.gov (United States)

    Atputhanathan, C. S.; Gunawardena, E. R. N.; Rushton, K. R.

    1991-03-01

    A study to understand the factors contributing to waterlogging was conducted in a small catchment of 5.4 ha in an irrigation scheme in the Eastern Dry Zone of Sri Lanka. An analysis, based on climatological data, extensive measurements of inflows and outflows, groundwater head fluctuations, soil moisture content variations and soil properties, indicated that a single catchment water balance and the SEW index are of limited value due to the spatial nature of the waterlogging problem in this sloping catchment with surface irregularities. A distributed mathematical model was developed to represent the lateral and vertical components of flow; the agreement between the simulated and field results is satisfactory.

  20. Assessment of runoff contributing catchment areas in rainfall runoff modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Johansen, C.; Schaarup-Jensen, Kjeld

    2006-01-01

    In numerical modelling of rainfall caused runoff in urban sewer systems an essential parameter is the hydrological reduction factor which defines the percentage of the impervious area contributing to the surface flow towards the sewer. As the hydrological processes during a rainfall are difficult...... residential areas with mainly detached houses is recommended-contrary to the literature recommended values of 0.7-0.9....... now recommended literature values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literature values of the hydrological reduction factor are over-estimated for this type of catchment. In addition, different catchment...

  1. Modelling catchment areas for secondary care providers: a case study.

    Science.gov (United States)

    Jones, Simon; Wardlaw, Jessica; Crouch, Susan; Carolan, Michelle

    2011-09-01

    Hospitals need to understand patient flows in an increasingly competitive health economy. New initiatives like Patient Choice and the Darzi Review further increase this demand. Essential to understanding patient flows are demographic and geographic profiles of health care service providers, known as 'catchment areas' and 'catchment populations'. This information helps Primary Care Trusts (PCTs) to review how their populations are accessing services, measure inequalities and commission services; likewise it assists Secondary Care Providers (SCPs) to measure and assess potential gains in market share, redesign services, evaluate admission thresholds and plan financial budgets. Unlike PCTs, SCPs do not operate within fixed geographic boundaries. Traditionally, SCPs have used administrative boundaries or arbitrary drive times to model catchment areas. Neither approach satisfactorily represents current patient flows. Furthermore, these techniques are time-consuming and can be challenging for healthcare managers to exploit. This paper presents three different approaches to define catchment areas, each more detailed than the previous method. The first approach 'First Past the Post' defines catchment areas by allocating a dominant SCP to each Census Output Area (OA). The SCP with the highest proportion of activity within each OA is considered the dominant SCP. The second approach 'Proportional Flow' allocates activity proportionally to each OA. This approach allows for cross-boundary flows to be captured in a catchment area. The third and final approach uses a gravity model to define a catchment area, which incorporates drive or travel time into the analysis. Comparing approaches helps healthcare providers to understand whether using more traditional and simplistic approaches to define catchment areas and populations achieves the same or similar results as complex mathematical modelling. This paper has demonstrated, using a case study of Manchester, that when estimating

  2. River Styles, a Geomorphic Approach to Catchment Characterization: Implications for River Rehabilitation in Bega Catchment, New South Wales, Australia.

    Science.gov (United States)

    Brierley; Fryirs

    2000-06-01

    / Geomorphologically derived river styles provide an integrative framework for examining the interactions of biophysical processes in rivers throughout a drainage basin. Nine styles of river character and behavior are identified in Bega catchment, on the south coast of New South Wales, Australia. Headwater streams above the escarpment drain into gorges in the escarpment zone. In different subcatchments at the base of the escarpment, there are three different river styles, namely cut-and-fill, vertically accreted floodplains, and fans. Downstream of these river styles, in the rounded foothills of the catchment, throughput and transfer river styles convey sediments to the lowland plain. In one mid-catchment setting, a floodout traps sediment. Finally, along the lowland plain of Bega River, there is a floodplain accumulation river style. Downstream patterns of river styles in differing subcatchments of the Bega River basin are differentiated into three types, reflecting river adjustments to valley width, slope, and responses to human disturbance. Analysis of the character and condition of each river style in Bega catchment, and their downstream patterns, are used to provide a biophysical basis to prioritorize river management strategies. These reach-scale strategies are prioritorized within an integrative catchment framework. Conserving near-intact sections of the catchment is the first priority. Second, those parts of the catchment that have natural recovery potential are targeted. Finally, rehabilitation priorities are considered for highly degraded reaches. At these sites, erosion and sedimentation problems may reflect irreversible changes to river structure. PMID:10790530

  3. Integrated Nitrogen CAtchment model (INCA) applied to a tropical catchment in the Atlantic Forest, São Paulo, Brazil

    OpenAIRE

    Ranzini, M.; Forti, M. C.; Whitehead, P. G.; Arcova, F. C. S.; De Cicco, V.; Wade, A. J.

    2007-01-01

    Stream-water flows and in-stream nitrate and ammonium concentrations in a small (36.7 ha) Atlantic Forest catchment were simulated using the Integrated Nitrogen in CAtchments (INCA) model version 1.9.4. The catchment, at Cunha, is in the Serra do Mar State Park, SE Brazil and is nearly pristine because the nearest major conurbations, São Paulo and Rio, are some 450 km distant. However, intensive farming may increase nitrogen (N) deposition and there are growing pressures for urbanisation. The...

  4. Soil degradation in semi-arid grasslands due to intensive grazing in Northern China

    Science.gov (United States)

    Wiesmeier, M.; Steffens, M.; Kölbl, A.; Kögel-Knabner, I.

    2012-04-01

    Degradation of semi-arid grasslands is a global environmental problem, particularly in Inner Mongolia, Northern China, where up to 70% of the total area is classified as degraded steppe. The main cause of grassland degradation in Northern China is overgrazing as a result of increasing stocking rates and a static grazing management during the last 50 years. The aim of this study was to investigate the impact of intensive grazing on the stabilization processes, the amount and the spatial distribution of soil organic matter (SOM) in the grasslands of Inner Mongolia. Within the Xilin River Catchment, intensively grazed sites were compared with ungrazed experimental sites at different spatial and temporal scales. In order to determine short-term effects of intensive grazing, a controlled grazing experiment was established in 2005. Topsoil samples were taken in 2005 and again in 2008 from ungrazed (UG05), moderately grazed (MG) and heavily grazed plots (HG) and analyzed for chemical and physical soil properties. The effects of long-term grazing were investigated in detail at continuously grazed sites (CG) and compared to adjacent ungrazed sites that were fenced in 1979 (UG79). To elucidate the spatial structure of selected topsoil parameters at the field scale, 100 grid points with spacings of 5 m and 15 m were sampled. For detection of small-scale variability at the plant scale, 40 randomly selected points were sampled inside areas of 2 m × 2 m at each plot. Semivariances were calculated for the determined soil properties. To quantify the contribution of single soil fractions to total SOC stocks, a combined density and particle size fractionation was applied. Carbon mineralization was determined in an incubation experiment for a period of one month for UG79 and CG sites. Grazing exclusion led to a significant decrease of SOC in the topsoil already three years after grazing exclusion and resulted in 25-30% lower amounts after 30 years. This decrease was related to lower

  5. Transferring global uncertainty estimates from gauged to ungauged catchments

    Directory of Open Access Journals (Sweden)

    F. Bourgin

    2015-05-01

    Full Text Available Predicting streamflow hydrographs in ungauged catchments is challenging, and accompanying the estimates with realistic uncertainty bounds is an even more complex task. In this paper, we present a method to transfer global uncertainty estimates from gauged to ungauged catchments and we test it over a set of 907 catchments located in France, using two rainfall–runoff models. We evaluate the quality of the uncertainty estimates based on three expected qualities: reliability, sharpness, and overall skill. The robustness of the method to the availability of information on gauged catchments was also evaluated using a hydrometrical desert approach. Our results show that the method presents advantageous perspectives, providing reliable and sharp uncertainty bounds at ungauged locations in a majority of cases.

  6. A catchment scale water balance model for FIFE

    Science.gov (United States)

    Famiglietti, J. S.; Wood, E. F.; Sivapalan, M.; Thongs, D. J.

    1992-01-01

    A catchment scale water balance model is presented and used to predict evaporation from the King's Creek catchment at the First ISLSCP Field Experiment site on the Konza Prairie, Kansas. The model incorporates spatial variability in topography, soils, and precipitation to compute the land surface hydrologic fluxes. A network of 20 rain gages was employed to measure rainfall across the catchment in the summer of 1987. These data were spatially interpolated and used to drive the model during storm periods. During interstorm periods the model was driven by the estimated potential evaporation, which was calculated using net radiation data collected at site 2. Model-computed evaporation is compared to that observed, both at site 2 (grid location 1916-BRS) and the catchment scale, for the simulation period from June 1 to October 9, 1987.

  7. Extreme inflow events and synoptic forcing in Sydney catchments

    Energy Technology Data Exchange (ETDEWEB)

    Pepler, Acacia S; Rakich, Clinton S, E-mail: a.pepler@bom.gov.a [NSW Climate Services Section, Bureau of Meteorology PO Box 413, Darlinghurst, NSW 1300 (Australia)

    2010-08-15

    The Sydney catchment region encompasses over 16,000km{sup 2}, supplying water to over 4 million inhabitants. However, few studies have investigated the synoptic and climatic influences on inflow in this region, which are crucial for understanding the vulnerability of water supply in a changing climate. This study identifies extremely high and low inflow events between 1960 and 2008 based on catchment averages. The focus of the study is an analysis of the synoptic cause/s of each extreme inflow event. The events are evaluated to identify any trends and also to determine the concurrent significant climatic influences on rainfall over the catchments. Relationships between catchment inflow, rainfall, tropical SST indices, and other influencing factors such as observed wind and temperatures are investigated. Our results show that East Coast Lows and anomalously easterly flow are the drivers of high inflow events, with low inflow events dominated by westerly wind patterns and the El Nino-Southern Oscillation.

  8. Quantifying human impacts on catchment sediment yield: A continental approach

    Science.gov (United States)

    Vanmaercke, Matthias; Poesen, Jean; Govers, Gerard; Verstraeten, Gert

    2015-07-01

    Both from a scientific and environmental management perspective, there is a large need to assess the magnitude and controlling factors of human impacts on catchment sediment yield. Quantifying this impact is difficult, since it requires knowing both the actual sediment yield (SYa, [t km- 2 y- 1]) as well as the corresponding "pristine" value of a catchment (SYp, [t km- 2 y- 1]; i.e. the sediment yield that can be expected if the catchment was not affected by humans). Here we address this problem by comparing measured SYa values for 165 European catchments that were unaffected by dams or reservoirs with their corresponding SYp, which were predicted using a recently developed regression model. The ratio between these two values is expected to reflect the degree of human impact on catchment sediment yield (HIF). Correlation and partial correlation analyses showed that spatial variability in HIF is mainly explained by differences in land use (i.e. the fraction of arable land) and catchment area. The effect of these two factors was clearly linked in western and central Europe: whereas SYa can be easily 40 times higher than SYp in intensively cultivated small (≤ 1 km2) catchments, the difference is negligible for large (> 1000 km2) catchments with the same land use. While, this concurs with our knowledge that the effects of land use (change) on erosion rates can be buffered at the catchment scale, this study provides a first robust quantification of this effect. Apart from a potential climatic effect (i.e. a correlation between HIF and the average annual air temperature) no other factors could be identified that are significant in explaining observed differences in HIF. This indicates that HIF is mainly controlled by catchment scale and land use, while other factors may be only of secondary importance at an intra-continental scale. Nonetheless, more accurate quantifications of these HIF values and more refined characterizations of the catchments in terms of (historical

  9. The hydrological regime of a forested tropical Andean catchment

    OpenAIRE

    Clark, K. E.; Torres, M. A.; West, A.J.; R. G. Hilton; New, M; Horwath, A. B.; J. B. Fisher; Rapp, J. M.; A. Robles Caceres; Y. Malhi

    2014-01-01

    The hydrology of tropical mountain catchments plays a central role in ecological function, geochemical and biogeochemical cycles, erosion and sediment production, and water supply in globally important environments. There have been few studies quantifying the seasonal and annual water budgets in the montane tropics, particularly in cloud forests. We investigated the water balance and hydrologic regime of the Kosñipata catchment (basin area: 164.4 km2) over the period 2010–20...

  10. Groundwater and surface water interaction for integrated catchment planning

    OpenAIRE

    Aradas, Rodolfo D.

    2005-01-01

    Integrated Catchment Management (ICM), defined as the design of intervention strategies encompassing and integrating the fields of hydrology, environmental, social and economic science, is vital in order to reach sustainable solutions on a catchment basis. Modelling lies at the core of the ICM process as it supports baseline studies and enables analysis of proposed intervention measures both for present day conditions and under future scenarios. Its core role in ICM leads to the need to devel...

  11. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    Science.gov (United States)

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important

  12. Hydrological response of a small catchment burned by experimental fire

    OpenAIRE

    Stoof, C.R.; R. W. Vervoort; Iwema, J.; Elsen, E.; Ferreira, A. J. D.; Ritsema, C.J.

    2011-01-01

    Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire are scarce, and nested approaches are rarely used. Taking a unique approach, we performed a catchment-scale experimental fire to improve insight into the drivers of fire impact on hydrology. In north-central Portugal, rainfall, canopy interception, streamflow an...

  13. Susceptibility of Shallow Landslide in Fraser Hill Catchment, Pahang Malaysia

    OpenAIRE

    Wan Nor Azmin Sulaiman

    2010-01-01

    In tropical areas especially during monsoon seasons intense precipitation is the main caused that trigger the natural shallow landslide phenomena. This phenomenon can be disastrous and widespread in occurrence even in undisturbed forested catchment. In this paper, an attempt has been made to evaluate the susceptibility of natural hill slopes to failure for a popular hill resort area, the Fraser Hill Catchment under different rainfall regimes and soil thickness. A Digital Elevation Model (DEM)...

  14. ASSESSMENT OF THE FLOODS POTENTIAL IN JIU RIVER CATCHMENT

    OpenAIRE

    TELTEU CAMELIA ELIZA; BRĂNESCU EMILIA; BERGHEZAN AURELIA

    2014-01-01

    The floods are extreme hydrological events that require rigorous analysis to achieve structural and non – structural measures to mitigate their risk. This paper aims to analyze the floods’ potential in the Jiu River Catchment (the catchment area has 10131 km²). The main geographical factors which are favoring the floods production are the climatic conditions and the morphometric factors. The monthly and annual maximum discharge recorded at 18 hydrometric stations, have been analyzed for the i...

  15. Empirical relations between catchment characteristics and discharge patterns in Sweden

    Science.gov (United States)

    Lindström, G.; Dahné, J.; Arheimer, B.

    2012-04-01

    In hydrological modelling it is often assumed that catchment characteristics, such as soil type, vegetation, land-use, slope, altitude and climate influence both the magnitude and dynamics of the water discharge characteristics. This presentation demonstrates an inter-site comparison on similarities and dissimilarities in hydrological response from Swedish unregulated catchments with an area less than 2000 km2. Observed daily time-series for about 20 years from 198 sites were analysed to search for and quantify statistical relationships between catchment characteristics and flow characteristics. A number of flow characteristics were calculated, such as the mean, mean annual maximum, peakiness, skewness and percentiles. The catchments were grouped dependent on catchment characteristics (for example >80% forest). The differences between the discharges from different catchment types were analysed both graphically and statistically. A T-test was performed to see if the mean value for the flow characteristics was significantly different from the rest of the catchments. Following the t-test, a set of box-whisker diagrams were made for visual inspection of the results. The results showed that lake percentage is the most important catchment characteristic for most of the flow characteristics. The effect of lakes was therefore treated separately. For lake-free basins soil type was in general more important than land-use. For instance, coarse soils exhibit a sustained base flow, whereas thin soils and bare rock are characterised by peak flows with short duration. Finally, the presentation will give some examples on how the retrieved empirical information was included in a national modelling approach to simulate spatial variability in Swedish water discharge patterns.

  16. Integrated Water Resources Planning and Management in Arid/Semi-arid Regions: Data, Modeling, and Assessment

    Science.gov (United States)

    Gupta, H.; Liu, Y.; Wagener, T.; Durcik, M.; Duffy, C.; Springer, E.

    2005-12-01

    Water resources in arid and semi-arid regions are highly sensitive to climate variability and change. As the demand for water continues to increase due to economic and population growth, planning and management of available water resources under climate uncertainties becomes increasingly critical in order to achieve basin-scale water sustainability (i.e., to ensure a long-term balance between supply and demand of water).The tremendous complexity of the interactions between the natural hydrologic system and the human environment means that modeling is the only available mechanism for properly integrating new knowledge into the decision-making process. Basin-scale integrated models have the potential to allow us to study the feedback processes between the physical and human systems (including institutional, engineering, and behavioral components); and an integrated assessment of the potential second- and higher-order effects of political and management decisions can aid in the selection of a rational water-resources policy. Data and information, especially hydrological and water-use data, are critical to the integrated modeling and assessment for water resources management of any region. To this end we are in the process of developing a multi-resolution integrated modeling and assessment framework for the south-western USA, which can be used to generate simulations of the probable effects of human actions while taking into account the uncertainties brought about by future climatic variability and change. Data are being collected (including the development of a hydro-geospatial database) and used in support of the modeling and assessment activities. This paper will present a blueprint of the modeling framework, describe achievements so far and discuss the science questions which still require answers with a particular emphasis on issues related to dry regions.

  17. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    Science.gov (United States)

    Francés, Alain P.; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. M.; Mahmoudzadeh Ardekani, Mohammad R.

    2014-11-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2) located west of Salamanca (Spain). The area was selected because of hard-rock hydrogeology, semi-arid climate and scarcity of groundwater resources. The proposed methodology consisted of three main steps. First, we detected the main hydrogeological features at the catchment scale by processing: (i) a high resolution digital terrain model to map lineaments and to outline fault zones; and (ii) high-resolution, multispectral satellite QuickBird and WorldView-2 images to map the outcropping granite. Second, we characterized at the local scale the hydrogeological features identified at step one with: i) ground penetrating radar (GPR) to assess groundwater table depth complementing the available monitoring network data; ii) 2D electric resistivity tomography (ERT) and frequency domain electromagnetic (FDEM) to retrieve the hydrostratigraphy along selected survey transects; iii) magnetic resonance soundings (MRS) to retrieve the hydrostratigraphy and aquifer parameters at the selected survey sites. In the third step, we drilled 5 boreholes (25 to 48 m deep) and performed slug tests to verify the hydrogeophysical interpretation and to calibrate the MRS parameters. Finally, we compiled and integrated all acquired data to define the geometry and parameters of the Sardón aquifer at the catchment scale. In line with a general conceptual model of hard rock aquifers, we identified two main hydrostratigraphic layers: a saprolite layer and a fissured layer. Both layers were intersected and drained by

  18. Predicting aquifer response time for application in catchment modeling.

    Science.gov (United States)

    Walker, Glen R; Gilfedder, Mat; Dawes, Warrick R; Rassam, David W

    2015-01-01

    It is well established that changes in catchment land use can lead to significant impacts on water resources. Where land-use changes increase evapotranspiration there is a resultant decrease in groundwater recharge, which in turn decreases groundwater discharge to streams. The response time of changes in groundwater discharge to a change in recharge is a key aspect of predicting impacts of land-use change on catchment water yield. Predicting these impacts across the large catchments relevant to water resource planning can require the estimation of groundwater response times from hundreds of aquifers. At this scale, detailed site-specific measured data are often absent, and available spatial data are limited. While numerical models can be applied, there is little advantage if there are no detailed data to parameterize them. Simple analytical methods are useful in this situation, as they allow the variability in groundwater response to be incorporated into catchment hydrological models, with minimal modeling overhead. This paper describes an analytical model which has been developed to capture some of the features of real, sloping aquifer systems. The derived groundwater response timescale can be used to parameterize a groundwater discharge function, allowing groundwater response to be predicted in relation to different broad catchment characteristics at a level of complexity which matches the available data. The results from the analytical model are compared to published field data and numerical model results, and provide an approach with broad application to inform water resource planning in other large, data-scarce catchments. PMID:24842053

  19. Study of Beijiang catchment flash-flood forecasting model

    Science.gov (United States)

    Chen, Y.; Li, J.; Huang, S.; Dong, Y.

    2015-05-01

    Beijiang catchment is a small catchment in southern China locating in the centre of the storm areas of the Pearl River Basin. Flash flooding in Beijiang catchment is a frequently observed disaster that caused direct damages to human beings and their properties. Flood forecasting is the most effective method for mitigating flash floods, the goal of this paper is to develop the flash flood forecasting model for Beijiang catchment. The catchment property data, including DEM, land cover types and soil types, which will be used for model construction and parameter determination, are downloaded from the website freely. Based on the Liuxihe Model, a physically based distributed hydrological model, a model for flash flood forecasting of Beijiang catchment is set up. The model derives the model parameters from the terrain properties, and further optimized with the observed flooding process, which improves the model performance. The model is validated with a few observed floods occurred in recent years, and the results show that the model is reliable and is promising for flash flood forecasting.

  20. Workshop on environmental changes of arid regions convenes in Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Hosted by the CAS Institute of Geology and Geophysics and the local government, the International Workshop on Environmental Changes and Sustainable Development in Arid and Semi-arid Regions was held recently in Alashan Left Banner, Inner Mongolia.

  1. Potential of arid zone vegetation as a source of substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, J.A.

    1977-11-01

    Three aspects of the potential of vegetation in arid zones as a source of substrates are discussed. The first includes the limitations on efficiency of conversion of solar energy to the stored chemical energy of biomass in green plants, and the subsequent biochemical pathways of carbon dioxide fixation and biosynthesis. Second is the potential of plants endogenous to arid zones. Finally, the use of covered agriculture or controlled environmental agriculture (CEA) is considered both in its present form and in terms of possible extenion to the large scale production of stable crops. (JGB)

  2. New crops for arid lands. [Jojoba; Buffalo gourd; Bladderpod; Gumweed

    Energy Technology Data Exchange (ETDEWEB)

    Hinman, C.W.

    1984-09-28

    Five plants are described that could be grown commercially under arid conditions. Once the most valuable component has been obtained from each plant (rubber from guayule; seed oil from jojoba, buffalo gourd, and bladderpod; and resin from gumweed), the remaining material holds potential for useful products as well as fuel. It is difficult to realize the full potential of arid land plants, however, because of the complexities of developing the necessary agricultural and industrial infrastructure simultaneously. To do so, multicompany efforts or cooperative efforts between government and the private sector will be required.

  3. Mediterranean semi-arid systems-sensitivity and adaptation

    International Nuclear Information System (INIS)

    The semi-arid areas of the Mediterranean are sensitive to climate change as they are located. In many cases, between two different systems, the arid system and the Mediterranean sub-humid system. A number of quick response ecogeomorphological variables were monitored along a climatic transect in Israel, running from west to east, covering an annual rainfall range of 700-100mm. The relationships of climatic conditions-available water soil properties overland flow erosion, were investigates. Soil samples were taken from open areas between shrubs and overland flow was monitored in posts of 7, 14 and 21 m in length (3m width). (Author)

  4. Temporal and Spatial Patterns of Preferential Flow Occurrence in the Shale Hills Catchment: From the Hillslope to the Catchment Scales

    Science.gov (United States)

    Liu, H.; Lin, H.

    2013-12-01

    Understanding temporal and spatial patterns of preferential flow (PF) occurrence is important in revealing hillslope and catchment hydrologic and biogeochemical processes. Quantitative assessment of the frequency and control of PF occurrence in the field, however, has been limited, especially at the landscape scale of hillslope and catchment. By using 5.5-years' (2007-2012) real-time soil moisture at 10 sites response to 323 precipitation events, we tested the temporal consistency of PF occurrence at the hillslope scale in the forested Shale Hills Catchment; and by using 25 additional sites with at least 1-year data (2011-2012), we evaluated the spatial patterns of PF occurrence across the catchment. To explore the potential effects of PF occurrence on catchment hydrology, wavelet analysis was performed on the recorded time series of hydrological signals (i.e., precipitation, soil moisture, catchment discharge). Considerable temporal consistence was observed in both the frequency and the main controls of PF occurrence at the hillslope scale, which was attributed largely to the statistical stability of precipitation pattern over the monitoring period and the relatively stable subsurface preferential pathways. Preferential flow tended to occur more often in response to intense rainfall events, and favored the conditions at dry hilltop or wet valley floor sites. When upscaling to the entire catchment, topographic control on the PF occurrence was amplified remarkably, leading to the identification of a subsurface PF network in the catchment. Higher frequency of PF occurrence was observed at the valley floor (average 48%), hilltop (average 46%), and swales/hillslopes near the stream (average 40%), while the hillslopes in the eastern part of the catchment were least likely to experience PF (0-20%). No clear relationship, however, was observed between terrain attributes and PF occurrence, because the initiation and persistency of PF in this catchment was controlled

  5. Monitoring small reservoirs in semi-arid region by satellite SAR data

    Science.gov (United States)

    Nicolina Papa, Maria; Mitidieri, Francesco; Amitrano, Donato; Ruello, Giuseppe; Di Martino, Gerardo; Iodice, Antonio; Riccio, Daniele

    2016-04-01

    The work presents a novel tool for the monitoring of small reservoirs in semi-arid regions. The pilot project was developed in the Yatenga region, a Sahelian area in northern Burkina Faso. In semi-arid regions, small reservoirs are widely employed for facing seasonal variability in water availability due to the alternation of a rainy (3 months) and a dry (9 months) season. Beside their crucial importance, the small reservoirs are not appropriately monitored, they are often built for the initiative of small local communities and even basic data as their location and capacity are not available. Another major problem is linked to soil erosion due to water and consequent reservoirs' sedimentation that reduces the amount of available water and the life span of reservoirs. This lack of data prevents the implementation of strategies for the optimization of water resources management. It is therefore necessary to improve the data availability through the development of cost-effective monitoring techniques and to adapt the hydrological modeling to the limited available data. In this context the use if satellite data can highly contribute to the achievement of crucial information at low costs, high resolution in time and wide areas. In the present work, we used COSMO-SkyMed Stripmap (3m resolution) and Spotligth (1m resolution) Synthetic Aperture Radar (SAR) data acquired under the aegis of the 2007 Italian Space Agency Announcement of Opportunity and of the HydroCIDOT project. The shorelines of the reservoirs were extracted from the series of SAR images by employing an innovative change-detection framework. A digital elevation model (DEM) of the study area was obtained via standard interferometry processing of images acquired at the end of the dry season, when small reservoirs are completely empty, and information about the surface usually covered by water can be retrieved. The obtained DEM and shorelines were used for bathymetry extraction of reservoirs. For the

  6. Calibration, validation, parameter indentifiability and uncertainty analysis of a 2 - parameter parsimonious monthly rainfall-runoff model in two catchments in Zimbabwe

    Science.gov (United States)

    Rwasoka, D. T.; Madamombe, C. E.; Gumindoga, W.; Kabobah, A. T.

    Hydrologic modelling lies at the core of hydrology and water resources management. Attempts at gaining a holistic grasp on model robustness, hydrologic theory and processes have inadvertently led to models that are not-well structured or too complex to apply in arid and semi-arid catchments and in Africa, in particular. In view of this, this paper reports on the application of a monthly parsimonious hydrologic model in two catchments in Zimbabwe, the Nyatsime and Upper Save river catchments. The two (2) parameter monthly parsimonious GR2M model was applied. The inputs were rainfall and potential evapotranspiration. Measured discharge was used for calibration and validation. Calibration and uncertainty analysis were done using the Differential Evolution Adaptive Metropolis (DREAM) algorithm. The performance of the GR2M model was evaluated using ten (10) model performance metrics. Parameter indentifiability was analysed on the basis of the shape of the posterior distribution of parameters. Parameter and total uncertainty were analysed in the context of the formal Bayesian DREAM approach. The 10 performance evaluation metrics showed that the model performed satisfactorily during calibration and validation in terms of the overall fit of observed and simulated stream flows, low flows and the runoff volumes. The Nash-Sutcliffe efficiency (NSE) was >0.85, the Kling-Gupta Efficiency (KGE) was >80% and Volume Efficiency was >59% during calibration. Slight performance drops were noted during validation except for the NSE in Nyatsime catchment whilst the KGE remained relatively high. The validation NSE was >0.65, the Kling-Gupta Efficiency (KGE) was >71% and Volume Efficiency was >55%. Calibrated parameters values showed good time-stability and were well identifiable with posterior parameter distributions having Gaussian shapes. Parameter uncertainty, in relation to total uncertainty was low. Parameter uncertainty constituted about 7% of the total uncertainty region. It was

  7. a Proposed New Vegetation Index, the Total Ratio Vegetation Index (trvi), for Arid and Semi-Arid Regions

    Science.gov (United States)

    Fadaei, H.; Suzuki, R.; Sakai, T.; Torii, K.

    2012-07-01

    Vegetation indices that provide important key to predict amount vegetation in forest such as percentage vegetation cover, aboveground biomass, and leaf-area index. Arid and semi-arid areas are not exempt of this rule. Arid and semi-arid areas of northeast Iran cover about 3.4 million ha and are populated by two main tree species, the broadleaf Pistacia vera (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environmentally important but also genetically essential as seed sources for pistachio production in orchards. We investigated the relationships between tree density and vegetation indices in the arid and semi-arid regions in the northeast of Iran by analysing Advanced Land Observing Satellite (ALOS) data PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, and has one band with a wavelength of 0.52-0.77 μm (JAXA EORC). AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, and has four multispectral bands: blue (0.42-0.50 μm), green (0.52-0.60 μm), red (0.61-0.69 μm), and near infrared (0.76-0.89 μm) (JAXA EORC). In this study, we estimated various vegetation indices using maximum filtering algorithm (5×5) and examined. This study carried out of juniper forests and natural pistachio stand using Advanced Land Observing Satellite (ALOS) and field inventories. Have been compared linear regression model of vegetation indices and proposed new vegetation index for arid and semi-arid regions. Also, we estimated the densities of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. We present a new vegetation index for arid and semi-arid regions with sparse forest cover, the Total Ratio Vegetation Index (TRVI), and we investigate the relationship of the new index to tree density by analysing data from the

  8. A PROPOSED NEW VEGETATION INDEX, THE TOTAL RATIO VEGETATION INDEX (TRVI, FOR ARID AND SEMI-ARID REGIONS

    Directory of Open Access Journals (Sweden)

    H. Fadaei

    2012-07-01

    Full Text Available Vegetation indices that provide important key to predict amount vegetation in forest such as percentage vegetation cover, aboveground biomass, and leaf-area index. Arid and semi-arid areas are not exempt of this rule. Arid and semi-arid areas of northeast Iran cover about 3.4 million ha and are populated by two main tree species, the broadleaf Pistacia vera (pistachio and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper. Natural stands of pistachio in Iran are not only environmentally important but also genetically essential as seed sources for pistachio production in orchards. We investigated the relationships between tree density and vegetation indices in the arid and semi-arid regions in the northeast of Iran by analysing Advanced Land Observing Satellite (ALOS data PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, and has one band with a wavelength of 0.52–0.77 μm (JAXA EORC. AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, and has four multispectral bands: blue (0.42–0.50 μm, green (0.52–0.60 μm, red (0.61–0.69 μm, and near infrared (0.76–0.89 μm (JAXA EORC. In this study, we estimated various vegetation indices using maximum filtering algorithm (5×5 and examined. This study carried out of juniper forests and natural pistachio stand using Advanced Land Observing Satellite (ALOS and field inventories. Have been compared linear regression model of vegetation indices and proposed new vegetation index for arid and semi-arid regions. Also, we estimated the densities of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. We present a new vegetation index for arid and semi-arid regions with sparse forest cover, the Total Ratio Vegetation Index (TRVI, and we investigate the relationship of the new index to tree density by

  9. Characterization of catchment behaviour and rainfall selection for flash flood hydrological model calibration: catchments of the eastern Pyrenees

    OpenAIRE

    Garambois, Pierre-André; Roux, Hélène; Larnier, Kévin; Labat, David; Dartus, Denis

    2015-01-01

    International audience Accurate flash flood prediction depends heavily on rainfall data quality and knowledge of catchment behaviour. A methodology based on global sensitivity analysis and hydrological similarity is proposed to analyse flash storm-flood events with a mechanistic model. The behaviour of medium-sized catchments is identified in terms of rainfall-runoff conservation. On the basis of this shared behaviour, rainfall products with questionable quantitative precipitation estimati...

  10. Spatial and temporal variability in the Quality of Surface water in a semi-arid mediterranean region (river orontes- Lebanon)

    International Nuclear Information System (INIS)

    The Orontes River is an international river, with its headwaters in Lebanon, its middle section in Syria and its mouth in Turkey. Fresh surface waters were sampled monthly during the year 2000 and analyzed for major ions and for trace metals. Sea-salt aerosols in rainwater partially influence the major ion composition in the river. The concentration of major cations and anions fall within the range of the most common natural Concentration of major ion assemblages established for world river(MCNC), with a cation and anion dominance in the order of Ca > Mg > Na> K and HCO3 > SO4 > Cl, which tend to be predominantly influenced by chemical weathering of rocks and minerals in a semi-arid region. Ca and HCO3 are mostly derived from the dissolution of carbonate rocks. The sources of SO4 could be attributed to anhydrite minerals and to anthropogenic impact from fertilizers. Increases in nutrient concentrations are attributed mainly to the increasing influence of agricultural runoff. δ18 0/ δH plots shows that the data either fits the Mediterranean Meteoric Water Line(MMWL) or have elevated values that indicate evaporative isotope enrichment in a semi-arid climate. The correlation matrix for trace elements shows a high coefficient of correlation for Fe, Zn and Cu indicating that these elements could be controlled by the same chemistry in water. The bicarbonate-alkaline type of Orontes surface water contribute to the formation of trace metals-carbonate complexes such as FeCO3(aq) and ZnCO3 (aq). The good correlation between Pb, Cd and Cr reflects the effect of increasing urbanization in the catchments. (author)

  11. Stream quality in a small urbanised catchment

    International Nuclear Information System (INIS)

    River-length patterns in the chemistry and biology of the Charlton Brook, an unclassified watercourse in Sheffield, England, have been examined. Five sampling sites for macroinvertebrates and pollutant analysis were used, in conjunction with Environment Agency's General Quality Assessment (GQA) methodologies and hydraulic analysis of the catchment. Sites were strategically located to account for the tributaries and the brook downstream of their confluence, to assess the potential impact from surface water outfalls (SWOs). Variations in GQA parameters indicate a significant drop in quality downstream of the SWOs that discharge to the study watercourse, with a marked drop in biological diversity noted at the onset of urbanisation. The decline in biological quality however is greater than that suggested by physicochemical analysis alone. There was a significant inverse relationship between impermeable area and biological diversity. Analysis of polycyclic aromatic hydrocarbons (PAHs) and trace metals in sediment from the watercourse showed significant yet irregular variations between sites. The potential toxicity of instream metal concentrations was determined using cumulative criterion unit (CCU) scores, which highlighted cadmium, copper and lead as the major sources of potential chronic instream toxicity. The threshold for likely harm to aquatic life is exceeded at all sites. In the absence of different physical characteristics, comparisons of the chemical and biological data indicate that the benthic macroinvertebrate population of such watercourses are adversely affected by the stormwater inputs

  12. Catchment-scale biogeography of riverine bacterioplankton.

    Science.gov (United States)

    Read, Daniel S; Gweon, Hyun S; Bowes, Michael J; Newbold, Lindsay K; Field, Dawn; Bailey, Mark J; Griffiths, Robert I

    2015-02-01

    Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river. PMID:25238398

  13. Hypothesis testing in the Maimai Catchments, Westland

    International Nuclear Information System (INIS)

    Seven experiments were carried out on the Maimai Catchments, Westland, to test assumptions about the nature of unsaturated zone waters flows in this humid environment. Hypotheses tested were: 1) that the deuterium (D) content of base flow water sources in small streams are constant at any given time, 2) that different soil moisture sampling methods give the same D contents, 3) that throughfall has the same D content as rainfall, 4) that saturation overland flow is mainly composed of current event rainfall, 5) that macropores are not connected into pipe networks, 6) that the underlying substrate (Old Man Gravel conglomerate) does not deliver water to the stream during rainfall events, and 7) that different near-stream water sources have the same D contents at a given time. Over 570 samples were collected of which 300 were analysed for deuterium in 1992-1993. This report gives the background, rationale, methods and brief results of the experiments. The results will be integrated with other measurements and written up in one or more papers for journal publication. (author). 18 refs.; 4 figs.; 1 tab

  14. Modelling streamflow in a large anastomosing river of the arid zone, Diamantina River, Australia

    Science.gov (United States)

    Costelloe, J. F.; Grayson, R. B.; McMahon, T. A.

    2006-05-01

    Anastomosing rivers form a subset of the anabranching family of river types and provide considerable challenges to modelling of their streamflow because of complex flow patterns across greatly varying floodplain widths. Estimates of distributed flow data are required for catchment management purposes and ecological studies of these rivers but are hindered by a paucity of measured discharge data. A grid-based, semi-distributed, conceptual model structure is applied to a 330 km reach of the arid zone Diamantina River of central Australia. Model complexity is constrained by data availability with only a single gauging station located at the downstream end of the reach to provide discharge data for model calibration. The model uses a simple conceptual bucket structure and accounts for exceptionally high transmission losses as well as flow patterns and wave speeds that vary with discharge within the reach. The intricate flow patterns across the floodplains widths of up to 50 km are simulated using a grid-based structure that required the following features: (i) cell connections that are explicitly defined using a code that allows for multi-directional flow from a cell; and (ii) each cell having a binary flow pattern, with the second connection pattern being triggered when the surface storage of the cell exceeds a calibrated level for a given land-type. Satellite images were used to define the flow paths, and hence cell connection patterns, utilised by various sized floods. The model was able to provide acceptable simulation of large floods but with decreasing model performance in the simulation of small to medium sized floods. Simulation suggested that incorrectly defined flow paths for the smaller floods were a major factor in this decreased performance. The capability of the model would be improved by further detailed mapping, using satellite imagery, of spatial patterns of inundation as discharge varies.

  15. Impacts of groundwater extraction on salinization risk in a semi-arid floodplain

    Science.gov (United States)

    Alaghmand, S.; Beecham, S.; Hassanli, A.

    2013-12-01

    In the lower River Murray in Australia, a combination of a reduction in the frequency, duration and magnitude of natural floods, rising saline water tables in floodplains, and excessive evapotranspiration have led to an irrigation-induced groundwater mound forcing the naturally saline groundwater onto the floodplain. It is during the attenuation phase of floods that these large salt accumulations are likely to be mobilised and discharged into the river. This has been highlighted as the most significant risk in the Murray-Darling Basin and the South Australian Government and catchment management authorities have subsequently developed salt interception schemes (SIS). The aim of these schemes is to reduce the hydraulic gradient that drives the regional saline groundwater towards the River Murray. This paper investigates the interactions between a river (River Murray in South Australia) and a saline semi-arid floodplain (Clark's floodplain) that is significantly influenced by groundwater lowering due to a particular SIS. The results confirm that groundwater extraction maintains a lower water table and a higher amount of fresh river water flux to the saline floodplain aquifer. In terms of salinity, this may lead to less solute stored in the floodplain aquifer. This occurs through three mechanisms, namely extraction of the solute mass from the system, reducing the saline groundwater flux from the highland to the floodplain and changing the floodplain groundwater regime from a losing to a gaining one. It is shown that groundwater extraction is able to remove some of the solute stored in the unsaturated zone and this can mitigate the floodplain salinity risk. A conceptual model of the impact of groundwater extraction on floodplain salinization has been developed.

  16. The role of upland wetlands in modulating snowmelt runoff in the semi-arid Andes

    Science.gov (United States)

    Hevia, Andres; Sproles, Eric; Soulsby, Chris; Tetzlaff, Doerthe

    2016-04-01

    The wetlands, or bofedales, of semi-arid northern central Chile (29°-32°S) provide a critical store of water that modulate spring snowmelt runoff. Water released from bofedales helps sustain flows throughout the dry portions of the year, providing fresh water to downstream residents and a robust tourist, agricultural, and mining economy. In the Río Claro watershed (30°S, 1515 km2, 800m to 5500 m a.s.l.) a series fourteen bofedales have formed at natural choke points in the valley bottoms of the headwater reaches. The highly erosive dynamic of this watershed provides ample sediment, and some of these bofedales are up to 30 m deep. Annual precipitation in the region is limited to 4-6 events annually that fall primarily as snow at elevations above 3500 m. The subsurface storage of the headwaters is limited by the steep terrain of the headwater catchments that are devoid of soils and primarily underlain by granite bedrock. Downstream, irrigated area has increased by 200% between 1985 and 2005, driven by the cultivation of table grapes for export. For over 70 years local water managers have flooded the bodfedales during spring runoff to augment late season flow when irrigation demand peaks. While this low-tech strategy has worked in the past, a recent 8-year drought has raised concerns over long-term water security. We apply geophysical and geographic measurements, water quality, and stable isotopic tracers to calculate the volume of water storage and residence times in the bofedales of Río Claro. This information will be used to evaluate the reliability of the bofedale system as compared to a proposed reservoir in the headwaters of the Río Claro. Additionally, estimating the storage and residence times of the will help reduce uncertainty for modeling efforts currently underway in Río Claro.

  17. Coupled modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas

    Science.gov (United States)

    Hashemi, H.; Uvo, C. B.; Berndtsson, R.

    2015-10-01

    The effect of future climate scenarios on surface and groundwater resources was simulated using a modeling approach for an artificial recharge area in arid southern Iran. Future climate data for the periods of 2010-2030 and 2030-2050 were acquired from the Canadian Global Coupled Model (CGCM 3.1) for scenarios A1B, A2, and B1. These scenarios were adapted to the studied region using the delta-change method. A conceptual rainfall-runoff model (Qbox) was used to simulate runoff in a flash flood prone catchment. The model was calibrated and validated for the period 2002-2011 using daily discharge data. The projected climate variables were used to simulate future runoff. The rainfall-runoff model was then coupled to a calibrated groundwater flow and recharge model (MODFLOW) to simulate future recharge and groundwater hydraulic heads. As a result of the rainfall-runoff modeling, under the B1 scenario the number of floods is projected to slightly increase in the area. This in turn calls for proper management, as this is the only source of fresh water supply in the studied region. The results of the groundwater recharge modeling showed no significant difference between present and future recharge for all scenarios. Owing to that, four abstraction and recharge scenarios were assumed to simulate the groundwater level and recharge amount in the studied aquifer. The results showed that the abstraction scenarios have the most substantial effect on the groundwater level and the continuation of current pumping rate would lead to a groundwater decline by 18 m up to 2050.

  18. Comparison of subsurface connectivity in Alpine headwater catchments

    Science.gov (United States)

    Zuecco, Giulia; Rinderer, Michael; van Meerveld, Ilja; Penna, Daniele; Borga, Marco

    2016-04-01

    Saturation at the soil-bedrock interface or the rise of shallow groundwater into more permeable soil layers results in subsurface stormflow and can lead to hillslope-stream connectivity. Despite the importance of subsurface connectivity for streamflow and streamwater chemistry, the factors controlling its spatial and temporal variability are still poorly understood. This study takes advantage of networks of spatially-distributed piezometers in five small (piezometers in the 14 and 3.3 ha catchments in the Italian Dolomites, and for four years from spring to fall in 7-8 piezometers in three piezometers (nodes). A node was considered to be connected to the stream when shallow groundwater was observed in the piezometer and it was connected by the edges to the stream. Weights were given to each piezometer based on Thiessen polygons to determine the area of the catchment that was connected to the stream. For the Swiss pre-alpine catchments the duration that nodes were connected to the stream was significantly correlated to the local and upslope site characteristics, such as the topographic wetness index, local slope and curvature. For the dolomitic catchment with the largest riparian zone, the time that nodes were connected to the stream was correlated with downslope site characteristics, such as the vertical distance to the nearest stream. The temporal changes in the area of the catchment that was connected to the stream reflected the streamflow dynamics for all catchments. Subsurface connectivity increased during rainfall events but there was a short delay compared to streamflow, suggesting that other processes (e.g. direct channel precipitation, runoff from near stream saturated areas) contributed to streamflow at the beginning of the event. Groundwater levels declined later and slower than streamflow, resulting in complex but mainly anti-clockwise hysteretic relations between streamflow and the area that was connected to the stream. Threshold-like relations between

  19. Guiding soil conservation strategy in headwater mediterranean catchments

    Science.gov (United States)

    Ben Slimane, Abir; Raclot, Damien; Evrard, Olivier; Sanaa, Mustapha; Lefèvre, Irène; Le Bissonnais, Yves

    2016-04-01

    Reservoir siltation due to water erosion is an important environmental issue in Mediterranean countries where storage of clear surface water is crucial for their economic and agricultural development. In order to reduce water erosion, this study aimed to design a methodology for guiding the implementation of efficient conservation strategies by identifying the dominant sediment sources in Mediterranean context. To this end, a fingerprinting method was combined with long-term field monitoring of catchment sediment yield in five headwater catchments (0.1-10 km2) equipped with a small reservoir between 1990 and 1995. The five catchments were chosen to cover the large diversity of environmental conditions found along the Tunisian Ridge and in the Cape Bon region. The fingerprinting techniques based on measurements of cesium-137 and Total Organic Carbon within the catchments and in reservoir sediment deposits successfully identified the contribution of rill/interrill and gully/channel erosion to sediment yield at the outlet of five small headwater catchments during the last 15-20 years. Results showed the very large variability of erosion processes among the selected catchments, with rill/interrill erosion contributions to sediment accumulated in outlet reservoirs ranging from 20 to 80%. Overall, rill/interrill erosion was the dominant process controlling reservoir siltation in three catchments whereas gully/channel erosion dominated in the other two catchments. This demonstrates that the dominant erosion process in the Mediterranean regions highly depends on the local environmental context. The lowest rill/interrill erosion contribution (2.2 Mg ha-1 yr-1) in the five catchments remained significantly higher than the tolerable soil loss indicating the severe levels reached by soil erosion along the Tunisian Ridge and in the Cape Bon region. This study also showed that although the implementation of improved topsoil management measures greatly reduced rill

  20. Effects of environmental conditions on soil salinity and arid region in Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-07-01

    The shortage of water resources of good water quality is becoming an issue in the arid and semi arid regions. for this reason, the use of water resources of marginal quality such as treated wastewater and saline groundwater has become and important consideration, particularly in arid region in Tunisia, where large quantities of saline water are used for irrigation. (Author)

  1. Utilisation Of Micro-Finance Institutions’ Funds By Borrowers In Arid And Semi-Arid Lands In Kenya

    OpenAIRE

    Nzioki, Paul M.; Taragon, Geoffrey; Kalio, A. M.

    2013-01-01

    Despite a lot of efforts in terms of resource mobilisation in Arid and Semi-Arid Lands (ASAL) , the poverty levels are still very high and the defaulted loans from the four Micro-Finance Institutions (MFIs) in Maralal town amounts KES 15 million. The study sought to establish whether economic characteristics of entrepreneurs and whether literacy levels affect application and usage of borrowed funds in the ASAL regions of Africa. The study was limited to Maralal Town, one of the main towns in ...

  2. Temporal limits to the archaeological record in arid western NSW, Australia : lessons from OSL and radiocarbon dating of hearths and sediments

    International Nuclear Information System (INIS)

    The Western NSW Archaeology Program (WNSWAP) has been investigating surface scatters of Aboriginal stone artefacts and associated heat-retainer hearths in arid northwestern NSW, Australia, since 1995. The research combines new methods for documenting and analysing stone artefact scatters with an understanding of geomorphic landscape dynamics to seek insights into spatial and temporal patterns of Aboriginal occupation of the arid margin of Australia during the Late Holocene. The temporal dimension is dealt with in two ways: by radiocarbon determinations on charcoal from the remains of heat-retainer hearths associated with the artefact scatters, and by using optically simulated luminescence (OSL) and radiocarbon determinations from valley fill sediments to develop a chronology of landscape evolution of the valleys in which the artefacts and hearths are found. The heat-retainer hearths produced a record of just less than 2000 years of activity within the valley of Stud Creek, a 30 square km catchment in Sturt National Park. However, the record is discontinuous, with a gap in heat-retainer hearth construction of 200-400 years occurring between about 800 and 1100 y BP. Examination of patterns of erosion and deposition at the places where the hearths were found, and Bayesian statistical analysis of the radiocarbon determinations, demonstrates that this gap is real and not an artefact of the survey protocol. A discontinuous record is also evident when the sediments that comprise the valley fill upon which the hearths and stone artefact scatters are currently lying are examined. Five major sedimentary units can be identified, providing a record of depositional episodes ranging from modern or post-European back to the Late Pleistocene (about 70,000 years). But, in contrast to the record from the remains of the heat-retainer hearths, erosion is the major determinant of the temporal pattern of landscape change that can be reconstructed from this record. Gaps of up to 10

  3. Hydrological drought severity explained by climate and catchment characteristics

    Science.gov (United States)

    Van Loon, A. F.; Laaha, G.

    2015-07-01

    Impacts of a drought are generally dependent on the severity of the hydrological drought event, which can be expressed by streamflow drought duration or deficit volume. For prediction and the selection of drought sensitive regions, it is crucial to know how streamflow drought severity relates to climate and catchment characteristics. In this study we investigated controls on drought severity based on a comprehensive Austrian dataset consisting of 44 catchments with long time series of hydrometeorological data (on average around 50 year) and information on a large number of physiographic catchment characteristics. Drought analysis was performed with the variable threshold level method and various statistical tools were applied, i.e. bivariate correlation analysis, heatmaps, linear models based on multiple regression, varying slope models, and automatic stepwise regression. Results indicate that streamflow drought duration is primarily controlled by storage, quantified by the Base Flow Index or by a combination of catchment characteristics related to catchment storage and release, e.g. geology and land use. Additionally, the duration of dry spells in precipitation is important for streamflow drought duration. Hydrological drought deficit, however, is governed by average catchment wetness (represented by mean annual precipitation) and elevation (reflecting seasonal storage in the snow pack and glaciers). Our conclusion is that both drought duration and deficit are governed by a combination of climate and catchment control, but not in a similar way. Besides meteorological forcing, storage is important; storage in soils, aquifers, lakes, etc. influences drought duration and seasonal storage in snow and glaciers influences drought deficit. Consequently, the spatial variation of hydrological drought severity is highly dependent on terrestrial hydrological processes.

  4. The Storage Dynamics of a Subarctic Canadian Shield Catchment

    Science.gov (United States)

    Spence, C.; Hedstrom, N.; Granger, R.; Reid, B.

    2008-12-01

    Several previous studies have identified the importance of exceeding storage thresholds for generating runoff from components of the Canadian Shield landscape. A water budget study was initiated in the 150 square kilometer Baker Creek research catchment in the subarctic Canadian Shield to evaluate the significance of storage, its dynamic and potential influence on runoff generation at a catchment scale. Water budget measurements taken from April - September 2007 included precipitation, snowmelt, terrestrial evapotranspiration, lake evaporation, streamflow, lake detention storage and soil water storage. Most of the snowmelt is directed to storage early in the study period, with much of the remainder directed to streamflow. Contrary to expectations, the largest storage receptacle was not the lakes, but the soils. Losses to the atmosphere from storage dominated the fluxes from the catchment by the end of June. A geophysically based investigative framework shows that streamflow at the catchment outlet displays a hysteretic relationship with storage. The efficiency with which storage is converted to streamflow during individual runoff events increased non-linearly with the ratio of precipitation inputs to a weighted basin scale storage deficit. The non linear pattern can be explained by differences in the locations and nature of the areas hydrologically connected to the outlet among events. When the catchment is dry, only a series of large lakes contribute to runoff to the basin outlet. When the catchment is wet, much more of the watershed can direct water to the outlet, and the basin becomes more efficient in generating runoff. Furthermore, low water levels associated with dry conditions reduce the efficiency with which water can be transferred downstream by the lakes. The results imply that the probability distribution of distance to the outlet from locations where storage thresholds have been exceeded may be useful in discerning the runoff ratio in heterogeneous

  5. Documentation of Arid Land Soilscapes in Southwestern Europe

    Science.gov (United States)

    José Ibáñez, Juan; Pérez-Gómez, Rufino; Oyonarte, Cecilio; Brevik, Eric C.

    2016-04-01

    There have been no studies to date that have proven the existence of soil assemblages typical of arid lands in Europe. This study was carried out in Almería province, a representative territory of the SE part of the Iberian Peninsula which is the driest part of Europe, to determine if soils characteristic of arid lands were present. The study made use of mathematical tools previously developed in biodiversity and pedodiversity analysis, such as richness, entropy indices, abundance distribution models, diversity-area relationships and nested subset analysis to analyse the spatial distribution of soils. The study demonstrated that the soil types or pedotaxa are typical of mountainous arid lands. Shallow and weakly developed soils (e.g. Leptosols, Regosols, Arenosols), Calcisols, Gypsisols and Solonchaks cover most of the study area, and pedodiversity analysis demonstrates that the pedotaxa spatial patterns follow the same regularities as in other areas, environments and scales. In view of the fact that the class of landscapes identified in this study are unique in Europe, the Tarbernas desert and other arid lands sites of the study area merit preservation as part of the European geological, geomorphological, and pedological heritage.

  6. Trends and responses to global change of China's arid regions

    Institute of Scientific and Technical Information of China (English)

    Weixi YANG

    2009-01-01

    Ⅰ analyzed and elaborated the trends in and responses to global change in arid regions of China, from the perspective of nine variables, i.e., temperature, precipitation, river runoff, melting glaciers, water level of lakes, wind power and evaporation, vegetation, oases, and desertification. The climate and hydrology data Ⅰ citedrepresent many years of observations. Ⅰ conclude that, since the 1980s, the climate in arid regions of China has clearly changed with rising temperatures and precipitation in most areas. Wind power and the number of galestorm days have continuously decreased, which resulted in an improvement of humid conditions and increases in river discharge and water levels of lakes. Simultaneously, vegetation also has improved and the process of deserti-fication has essentially been arrested. Although there are some unfavorable developments, such as decreased river flows or flow interruptions and downstream oases have suffered from degradation, these incidental cases should not distract our attention from the generally favorable trends during the middle and late 20th century. These discordant phenomena are not consequences of climate change but rather of unsuitable human activities. Despitea substantial increase in precipitation, the level of the original precipitation was so small that any increase in precipitation was still small. As a result, none of the fundamental conditions such as a scarcity of water resources and precipitation nor the landscape of drought-ridden deserts in the arid regions will change. The vulnerability of the eco-environmental system in the arid regions will not change fundamentally either in the near future.

  7. Agave Lechuguilla as a Potential Biomass Source in Arid Areas

    Directory of Open Access Journals (Sweden)

    Ahmad Houri

    2016-03-01

    Full Text Available Biomass productivity presents a challenging problem in arid and semi-arid areas.  Despite a large need for energy in the form of solid biomass, liquid fuel or needs for animal feed, these regions remain largely unproductive.  A convenient way to overcome this challenge is to utilize plants with high water-use efficiency.  Agave lechuguilla is an example of a highly productive (3.8 tons ha-1 yr-1 desert plant that holds the potential for producing biomass with minimal water resources.  For this purpose, a global suitability map has been developed showing areas where this plant can be planted, and its productivity was assessed.  A Maxent model was used and was further refined by excluding protected areas and used lands (urban, agriculture, etc...  Productivity assessment provides a good way forward for prioritizing the regional utilization of this plant.   This study provides an initial analysis for the use of arid and semi-arid regions for biomass production.  Results indicate the potential generation of 93.8 million tons per year of dry biomass if the suitable areas were fully utilized.  The analytical method can be readily applied to other potential plant species to optimize the use of certain areas.

  8. Evaporation as the transport mechanism of metals in arid regions

    KAUST Repository

    Lima, Ana T.

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust. © 2014 Elsevier Ltd.

  9. Local facilitation, bistability and transitions in arid ecosystems

    NARCIS (Netherlands)

    Kefi, S.; Rietkerk, M.; Baalen, van M.; Loreau, M.

    2007-01-01

    Arid ecosystems are liable to undergo sudden discontinuous transitions from a vegetated to a desert state as a result of human pressure and climate change. A predictive framework about the conditions under which such transitions occur is lacking. Here, we derive and analyze a general model describin

  10. Extreme climatic events shape arid and semiarid ecosystems

    NARCIS (Netherlands)

    Holmgren, M.; Stapp, P.; Dickman, C.; Gracia, C.; Graham, S.

    2006-01-01

    Climatic changes associated with the El Nino Southern Oscillation (ENSO) can have a dramatic impact on terrestrial ecosystems worldwide, but especially on arid and semiarid systems, where productivity is strongly limited by precipitation. Nearly two decades of research, including both short-term exp

  11. Simulation of water use and herbage growth in arid regions

    NARCIS (Netherlands)

    Keulen, van H.

    1975-01-01

    The and and semi-arid regions of the world, totalling about 30% of the land surface of the earth, are predominantly used for extensive grazing, as low and erratic rainfall presents too high a risk for arable farming. The population that can be sustained by the animal products -meat, milk or wool- is

  12. Evaporation as the transport mechanism of metals in arid regions

    NARCIS (Netherlands)

    Lima, A.T.; Safar, Z.; Loch, J.P.G.

    2014-01-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evapora

  13. Survey on the construction of realization scenario of large-scale revegetation of arid regions; Daikibo ryokuka no jitsugenka scenario sakusei ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    In order to fix carbon dioxide as a measure to mitigate global warming, research of large-scale revegetation of arid regions has been conducted toward the ultimate goals of systematizing revegetation technologies centered on securing and using water resources, evaluating the feasibility of arid revegetation by extending the viewpoint to examine even rainfall increase by artificial means, and establishing a strategic program for large-scale revegetation. A trial revegetation feasibility map was made for a selected target region in Western Australia, and rough revegetation steps were formulated. Selection of proper region, introduction of technology, and planning were conducted by grasping environment of the target revegetation region. As a result, it was found that growth of plants is vigorous at the catchment areas due to the surface water transfer along the topography of surface in spite of poor rainfall. Obstruction of plant growth is partly caused by the corrosion of soil and accumulation of salt, but mainly caused by the shortage of water. Based on these data, ranking of proper regions was evaluated. When the technology is introduced in the region with A-rank, several times of water can be collected. 60 refs., 61 figs., 30 tabs.

  14. Evaporation and concentration gradients created by episodic river recharge in a semi-arid zone aquifer: Insights from Cl-, δ18O, δ2H, and 3H

    Science.gov (United States)

    Meredith, K. T.; Hollins, S. E.; Hughes, C. E.; Cendón, D. I.; Chisari, R.; Griffiths, A.; Crawford, J.

    2015-10-01

    This study has significantly advanced our understanding of the origin of groundwater recharge in a semi-arid zone region of the Darling River catchment, Australia. The generally accepted hypothesis in arid zone environments in Australia that river water forms the primary groundwater recharge source has proven difficult to monitor. This is due to the time lags between large floods, the remoteness and expense of studying these hydrologically complex systems in detail. In addition, the highly episodic nature of dryland rivers complicates the interpretation of the groundwater signal. A range of hydrochemical tracers (chloride, oxygen-18, deuterium and tritium) measured in rain, river water, soil water and groundwater were used in this multi-year study to trace the pathways of groundwater recharge under wet and dry climatic conditions. The evaporation and Cl concentrations observed in the unsaturated zone confirmed that small volumetric inputs from periodic rainfall were not the major recharge mechanism. Sampling which included an overbank flooding event in March 2012 provided firm evidence for groundwater originating from high flow episodic river recharge. The use of long-term environmental data to understand how economically important water resources respond to climate change with increasing temperatures is considered essential for future sustainability.

  15. Hydrological drought across the world: impact of climate and physical catchment structure

    Directory of Open Access Journals (Sweden)

    H. A. J. Van Lanen

    2013-05-01

    Full Text Available Large-scale hydrological drought studies have demonstrated spatial and temporal patterns in observed trends, and considerable difference exists among global hydrological models in their ability to reproduce these patterns. In this study a controlled modeling experiment has been set up to systematically explore the role of climate and physical catchment structure (soils and groundwater systems to better understand underlying drought-generating mechanisms. Daily climate data (1958–2001 of 1495 grid cells across the world were selected that represent Köppen–Geiger major climate types. These data were fed into a conceptual hydrological model. Nine realizations of physical catchment structure were defined for each grid cell, i.e., three soils with different soil moisture supply capacity and three groundwater systems (quickly, intermediately and slowly responding. Hydrological drought characteristics (number, duration and standardized deficit volume were identified from time series of daily discharge. Summary statistics showed that the equatorial and temperate climate types (A- and C-climates had about twice as many drought events as the arid and polar types (B- and E-climates, and the durations of more extreme droughts were about half the length. Selected soils under permanent grassland were found to have a minor effect on hydrological drought characteristics, whereas groundwater systems had major impact. Groundwater systems strongly controlled the hydrological drought characteristics of all climate types, but particularly those of the wetter A-, C- and D-climates because of higher recharge. The median number of droughts for quickly responding groundwater systems was about three times higher than for slowly responding systems. Groundwater systems substantially affected the duration, particularly of the more extreme drought events. Bivariate probability distributions of drought duration and standardized deficit for combinations of K

  16. Causes of early Holocene desertification in arid central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Liya [Lanzhou University, Key Laboratory of Western China' s Environmental System, Lanzhou, Gansu (China); University of Kiel, Institute of Geosciences, Kiel (Germany); Chen, Fahu [Lanzhou University, Key Laboratory of Western China' s Environmental System, Lanzhou, Gansu (China); Morrill, Carrie [University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States); NOAA' s National Climatic Data Center, Paleoclimatology Branch, Boulder, CO (United States); Otto-Bliesner, Bette L.; Rosenbloom, Nan [National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO (United States)

    2012-04-15

    Paleoclimate records of effective moisture (precipitation minus evaporation, or P-E) show a dry (low effective moisture) period in mid-latitude arid/semi-arid central Asia during the early Holocene (11,000-8,000 years ago) relative to the middle and late Holocene, in contrast to evidence for greater-than-present precipitation at the same time in the south and east Asian monsoonal areas. To investigate the spatial differences in climate response over mid-latitude central Asia and monsoonal Asia we conducted a series of simulations with the Community Climate System Model version 3 coupled climate model for the early, middle and late Holocene. The simulations test the climatic impact of all important forcings for the early Holocene, including changes in orbital parameters, the presence of the remnant Laurentide ice sheet and deglacial freshening of the North Atlantic. Model results clearly show the early Holocene patterns indicated by proxy records, including both the decreased effective moisture in arid central Asia, which occurs in the model primarily during the winter months, and the increase in summer monsoon precipitation in south and east Asia. The model results suggest that dry conditions in the early Holocene in central Asia are closely related to decreased water vapor advection due to reduced westerly wind speed and less evaporation upstream from the Mediterranean, Black, and Caspian Seas in boreal winter. As an extra forcing to the early Holocene climate system, the Laurentide ice sheet and meltwater fluxes have a substantial cooling effect over high latitudes, especially just over and downstream of the ice sheets, but contribute only to a small degree to the early Holocene aridity in central Asia. Instead, most of the effective moisture signal can be explained by orbital forcing decreasing the early Holocene latitudinal temperature gradient and wintertime surface temperature. We find little evidence for regional subsidence related to a stronger summer Asian

  17. Arid land plants: promising new tools for economic development and basic research

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.

    1980-01-01

    An overview is presented of arid land plant development stressing products and plant physiological and ecological concepts unique to arid land plants. Integration of new arid land crops into polyculture management systems is suggested utilizing specialized plant functions, e.g., drought resistance, resistance to salinity, ability to fix nitrogen, frost tolerance and capability to produce a cash crop. Impacts on arid land plant productivity on political systems of developing countries are discussed and recommendations are presented for overcoming institutional constraints facing arid land plant development. (MHR)

  18. Catchment systems science and management: from evidence to resilient landscapes

    Science.gov (United States)

    Quinn, Paul

    2014-05-01

    There is an urgent need to reassess both the scientific understanding and the policy making approaches taken to manage flooding, water scarcity and pollution in intensively utilised catchments. Many European catchments have been heavily modified and natural systems have largely disappeared. However, working with natural processes must still be at the core of any future management strategy. Many catchments have greatly reduced infiltration rates and buffering capacity and this process needs to be reversed. An interventionist and holistic approach to managing water quantity and quality at the catchment scale is urgently required through the active manipulation of natural flow processes. Both quantitative (field experiments and modelling) and qualitative evidence (local knowledge) is required to demonstrate that catchment have become 'unhealthy'. For example, dense networks of low cost instrumentation could provide this multiscale evidence and, coupled with stakeholder knowledge, build a comprehensive understanding of whole system function. Proactive Catchment System Management is an interventionist approach to altering the catchment scale runoff regime through the manipulation of landscape scale hydrological flow pathways. Many of the changes to hydrological processes cannot be detected at the catchment scale as the primary causes of flooding and pollution. Evidence shows it is the land cover and the soil that are paramount to any change. Local evidence shows us that intense agricultural practices reduce the infiltration capacity through soil degradation. The intrinsic buffering capacity has also been lost across the landscape. The emerging hydrological process is one in which the whole system responds too quickly (driven by near surface and overland flow processes). The bulk of the soil matrix is bypassed during storm events and there is little or no buffering capacity in the riparian areas or in headwater catchments. The prospect of lower intensity farming rates is

  19. Deriving N-year discharges in small catchments

    Science.gov (United States)

    Ledvinka, Ondrej; Bohac, Milon

    2016-04-01

    Maximum discharges with the return period of 100 years (Q100) belong to basic hydrological data that are derived and provided for any profile of the river network by the Czech Hydrometeorological Institute (CHMI). However, as regards small catchments, the determination of these characteristics is largely subjective and thus it is rather performed by comparing the results of several methods. The first approach is to extrapolate the three parameters of maximum peak discharges (average Qmax, coefficient of variation Cvmax, Q100) from water-gauging stations to selected unobserved profiles (using regression relationships and regularities at the confluence points). For this purpose, the so-called program Budsez is utilized. During this process, the physical-geographical (PG) features, rainfall data and other information about catchments are considered, based on which the parameters of theoretical distributions of N-year discharges are optimized. For smaller catchments the relationships between the 100-year specific runoff q100 and the catchment area and other PG characteristics are used that are determined in a GIS environment with the extension AGPosudek. In this innovative method, besides many other PG characteristics, especially the average value of CN and N-year maximum daily precipitation are taken into account when computing Q100. In the older methodologies, Q100 is based on the average slope of the stream and the average slope of the catchment. The values of Q100 are then corrected according to the percentage of forested areas and the catchment shape. Hydrologists compare the values of Q100 coming from different approaches in a logarithmic graph (q100 against area) for the particular catchment or its analogon. The final value is determined with respect to experience and previously issued values. The remaining N-year discharges are usually assessed through the ratio QN/Q100 from the nearest water-gauging station or the closest profile where these ratios were

  20. Carbon redistribution by erosion processes in an intensively disturbed catchment

    Science.gov (United States)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  1. Nitrogen attenuation along delivery pathways in agricultural catchments

    Science.gov (United States)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.

    2014-05-01

    Hillslope hydrologic systems and in particular near-stream saturated zones are active sites of nitrogen (N) biogeochemical dynamics. The efficiency of N removal and the ratio of reaction products (nitrous oxide and dinitrogen) in groundwater is highly variable and depends upon aquifer hydrology, mineralogy, dissolved oxygen, energy sources and redox chemistry. There are large uncertainties in the closing of N budgets in agricultural catchments. Spatial and temporal variability in groundwater physico-chemistry, catchment hydrology and land-use gives rise to hotspots and hot moments of N attenuation. In addition the production, consumption and movement of denitrification products remains poorly understood. The focus of this study is to develop a holistic understanding of N dynamics in groundwater as it moves from the top of the hillslope to the stream. This includes saturated groundwater flow, exchange at the groundwater-surface water interface and hyporheic zone flow. This project is being undertaken in two ca. 10km2 Irish catchments, characterised by permeable soils. One catchment is dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. Multi-level monitoring wells have been installed at the upslope, midslope and bottom of each hillslope. The piezometers are screened to intercept the subsoil, weathered bedrock and competent bedrock zones. Groundwater samples for nitrate (NO3-N) nitrite (NO2-N), ammonium (NH4-N) and total nitrogen are collected on a monthly basis while dissolved gas concentrations are collected seasonally. Groundwater NO3-N profiles from monitoring data to date in both catchments differ markedly. Although the two catchments had similar 3 year mean concentrations of 6.89 mg/L (arable) and 6.24 mg/L (grassland), the grassland catchment had higher spatial and temporal variation. The arable catchment showed relatively homogenous NO3-N concentrations in all layers and zones (range: 1.2 - 12.13 mg/L, SD = 1.60 mg

  2. Defining prior probabilities for hydrologic model structures in UK catchments

    Science.gov (United States)

    Clements, Michiel; Pianosi, Francesca; Wagener, Thorsten; Coxon, Gemma; Freer, Jim; Booij, Martijn

    2014-05-01

    The selection of a model structure is an essential part of the hydrological modelling process. Recently flexible modeling frameworks have been proposed where hybrid model structures can be obtained by mixing together components from a suite of existing hydrological models. When sufficient and reliable data are available, this framework can be successfully utilised to identify the most appropriate structure, and associated optimal parameters, for a given catchment by maximizing the different models ability to reproduce the desired range of flow behaviour. In this study, we use a flexible modelling framework to address a rather different question: can the most appropriate model structure be inferred a priori (i.e without using flow observations) from catchment characteristics like topography, geology, land use, and climate? Furthermore and more generally, can we define priori probabilities of different model structures as a function of catchment characteristics? To address these questions we propose a two-step methodology and demonstrate it by application to a national database of meteo-hydrological data and catchment characteristics for 89 catchments across the UK. In the first step, each catchment is associated with its most appropriate model structure. We consider six possible structures obtained by combining two soil moisture accounting components widely used in the UK (Penman and PDM) and three different flow routing modules (linear, parallel, leaky). We measure the suitability of a model structure by the probability of finding behavioural parameterizations for that model structure when applied to the catchment under study. In the second step, we use regression analysis to establish a relation between selected model structures and the catchment characteristics. Specifically, we apply Classification And Regression Trees (CART) and show that three catchment characteristics, the Base Flow Index, the Runoff Coefficient and the mean Drainage Path Slope, can be used

  3. Aggradation-incision transition in arid environments at the end of the Pleistocene: An example from the Negev Highlands, southern Israel

    Science.gov (United States)

    Faershtein, Galina; Porat, Naomi; Avni, Yoav; Matmon, Ari

    2016-01-01

    One of the most significant environmental processes that occurred at the transition from the last glacial phase into the present inter-glacial phase in arid regions was the shift from aggradation to incision in the drainage systems. This is evident by the sharp transition from a fluvial regime depositing fine-grained sediment within the wadis to intensive incision which formed gullies and narrow channels that dissected the late Pleistocene sediments. In order to investigate this transition, we studied three small-scale basins in the arid region of the Negev Highlands, southern Israel. Although the selected basins drain toward different base levels, their geomorphological parameters, particle size distribution of alluvial units and their OSL ages are similar. Sediments from the penultimate glacial cycle are found in patches in the bigger catchments. Fluvial loess was widely deposited since at least 67 ka until after 28 ka, covering valleys and slopes. Between ~ 28 and ~ 24 ka, loess was washed from the slopes into the channels, exposing the underlying colluvium. At ~ 24 ka erosion began with the transport of slope colluvium as gravels into the valleys that eroded the underlying loess sediments. Incision became dominant at ~ 12 ka and is still ongoing and intensifying. Dust and reworked loess continued to be deposited during the main incision stages. It is proposed that the transition from aggradation to incision was controlled by rates of loess supply and removal. Until ~ 24 ka dust choked the drainage system and only after reduction in dust supply was erosion and incision possible. It began first on the slopes and then in the channels. Our results show that an increase in precipitation is not a prerequisite for initiation of incision as is often assumed. Similar processes are described in other arid zones around the world.

  4. The Influence of temporal sampling regime on the WFD classification of catchments within the Eden Demonstration Test Catchment Project

    Science.gov (United States)

    Jonczyk, Jennine; Haygarth, Phil; Quinn, Paul; Reaney, Sim

    2014-05-01

    A high temporal resolution data set from the Eden Demonstration Test Catchment (DTC) project is used to investigate the processes causing pollution and the influence of temporal sampling regime on the WFD classification of three catchments. This data highlights WFD standards may not be fit for purpose. The Eden DTC project is part of a UK government-funded project designed to provide robust evidence regarding how diffuse pollution can be cost-effectively controlled to improve and maintain water quality in rural river catchments. The impact of multiple water quality parameters on ecosystems and sustainable food production are being studied at the catchment scale. Three focus catchments approximately 10 km2 each, have been selected to represent the different farming practices and geophysical characteristics across the Eden catchment, Northern England. A field experimental programme has been designed to monitor the dynamics of agricultural diffuse pollution at multiple scales using state of the art sensors providing continuous real time data. The data set, which includes Total Phosphorus and Total Reactive Phosphorus, Nitrate, Ammonium, pH, Conductivity, Turbidity and Chlorophyll a reveals the frequency and duration of nutrient concentration target exceedance which arises from the prevalence of storm events of increasing magnitude. This data set is sub-sampled at different time intervals to explore how different sampling regimes affects our understanding of nutrient dynamics and the ramification of the different regimes to WFD chemical status. This presentation seeks to identify an optimum temporal resolution of data for effective catchment management and to question the usefulness of the WFD status metric for determining health of a system. Criteria based on high frequency short duration events needs to be accounted for.

  5. Management of nutrients and water in rainfed arid and semi-arid areas. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    Sustainable food security is needed for the arid and semi-arid regions of the tropical, subtropical and warm-temperate climatic zones. In these regions the supply of locally grown food is unreliable because much of it is produced in conditions of highly variable rainfall. Even in favourable seasons, these regions re becoming increasingly dependent on imported food. The IAEA's involvement in field studies on soil-water use dates back several years. A five year Co-ordinated Research Project on ''The Use of Nuclear and Related Techniques in Assessment of Irrigation Schedules of Field Crops to Increase Effective Use of Water in Irrigation Projects''. That project, completed in 1995, laid a solid foundation for future research. Because of a scarcity of water in many developing countries and increasing needs for sustainable food security in the face of increasing populations and lack of funds for irrigation schemes of significant dimension, research must focus on improved management of (i) the modest quantities of fertilizers that are available to farmers, (ii) the natural resources that are available to farmers for increasing soil organic matter content, and (iii) rain water. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture held a Consultants Meeting on Management of Nutrients and Water in Rainfed Arid and Semi-Arid Areas for Increasing Crop Production, 26-29 May 1997

  6. The ethics of socio-ecohydrological catchment management: towards hydrosolidarity

    Directory of Open Access Journals (Sweden)

    M. Falkenmark

    2002-01-01

    Full Text Available This paper attempts to clarify key biophysical issues and the problems involved in the ethics of socio-ecohydrological catchment management. The issue in managing complex systems is to live with unavoidable change while securing the capacity of the ecohydrological system of the catchment to sustain vital ecological goods and services, aquatic as well as terrestrial, on which humanity depends ultimately. Catchment management oriented to sustainability has to be based on ethical principles: human rights, international conventions, sustaining crucial ecological goods and services, and protecting ecosystem resilience, all of which have water linkages. Many weaknesses have to be identified, assessed and mitigated to improve the tools by which the ethical issues can be addressed and solved: a heritage of constraining tunnel vision in both science and management; inadequate shortcuts made in modern scientific system analyses (e.g. science addressing sustainability issues; simplistic technical-fix approaches to water and ecosystems in land/water/ecosystem management; conventional tools for evaluation of scientific quality with its focus on “doing the thing right” rather than “doing the right thing”. The new ethics have to incorporate principles that, on a catchment basis, allow for proper attention to the hungry and poor, upstream and downstream, to descendants, and to sites and habitats that need to be protected. Keywords: catchment, hydrosolidarity, ecosystem, water determinants, resilience, green water, blue water, sustainability science

  7. Agricultural Catchments: Evaluating Policies and Monitoring Adaptive Management

    Science.gov (United States)

    Jordan, P.; Shortle, G.; Mellander, P. E.; Shore, M.; McDonald, N.; Buckley, C.

    2014-12-01

    Agricultural management in river catchments must combine the objectives of economic profit and environmental stewardship and, in many countries, mitigate the decline of water quality and/or maintain high water quality. Achieving these objectives is, amongst other activities, in the remit of 'sustainable intensification'. Of concern is the efficient use of crop nutrients, phosphorus and nitrogen, and minimising or offsetting the effects of transfers from land to water - corner-stone requirements of many agri-environmental regulations. This requires a robust monitoring programme that can audit the stages of nutrient inputs and outputs in river catchments and indicate where the likely points of successful policy interventions can be observed - or confounded. In this paper, a catchment, or watershed, experimental design and results are described for monitoring the nutrient transfer continuum in the Irish agricultural landscape against the backdrop of the European Union Nitrates and Water Framework Directives. This Agricultural Catchments Programme experimental design also serves to indicate water quality pressure-points that may be catchment specific as agricultural activities intensify to adapt to national efforts to build important parts of the post-recession economy.

  8. Impacts of climate change on nutrient cycling in semi-arid and arid ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Belnap, J. [National Biological Survey, Moab, UT (United States)

    1995-09-01

    Effective precipitation is a major factor in determining nutrient pathways in different ecosystems. Soil flora and fauna play a critical role in nutrient cycles of all ecosystems. Temperature, timing, and amounts of precipitation affect population composition, activity levels, biomass, and recovery rates from disturbance. Changes in these variables can result in very different inputs and outputs for different nutrients. As a result, areas with less effective precipitation have very different nutrient cycles than more mesic zones. Climate change, therefore, can profoundly affect the nutrient cycles of ecosystems. Nitrogen cycles may be especially sensitive to changes in temperature and to timing and amounts of precipitation. Rainfall contains varying amounts of nitrogen compounds. Changes in amounts of rainfall will change amounts of nitrogen available to these systems. Because rainfall is limited in semi-arid and regions, these systems tend to be more dependent on microbial populations for nitrogen input. Consequently, understanding the effects of climate change on these organisms is critical in understanding the overall effect on ecosystems.

  9. Agave: a biofuel feedstock for arid and semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  10. The implications of geology, soils, and vegetation on landscape morphology: Inferences from semi-arid basins with complex vegetation patterns in Central New Mexico, USA

    Science.gov (United States)

    Yetemen, Omer; Istanbulluoglu, Erkan; Vivoni, Enrique R.

    2010-04-01

    This paper examines the relationship between land surface properties (e.g. soil, vegetation, and lithology) and landscape morphology quantified by the catchment descriptors: the slope-area (S-A) relation, curvature-area (C-A) relation, and the cumulative area distribution (CAD), in two semi-arid basins in central New Mexico. The first site is composed of several basins located in today's desert elevations with mesic north-facing and xeric south-facing hillslopes underlain by different lithological formations. The second site is a mountainous basin exhibiting vegetation gradients from shrublands in the lower elevations to grasslands and forests at higher elevations. All three land surface properties were found to have significant influences on the S-A and C- A relations, while the power-law exponents of the CADs for these properties did not show any significant deviations from the narrow range of universal scaling exponents reported in the literature. Among the three different surface properties we investigated, vegetation had the most profound impact on the catchment descriptors. In the S-A diagrams of the aspect-controlled ecosystems, we found steeper slopes in north-facing aspects than south-facing aspects for a given drainage area. In elevation-controlled ecosystems, forested landscapes exhibited the steepest slopes for the range of drainage areas examined, followed by shrublands and grasslands in all soil textures and lithologies. In the C-A diagrams, steeper slopes led to a higher degree of divergence on hillslopes and a higher degree of convergence in the valleys than shallower slopes. The influence of functional types of vegetation detected on observed topography provided some initial understanding of the potential impacts of life on the organization of topography. This finding also emphasizes the critical role of climate in catchment development. We suggest that climatic fluctuations that are capable of replacing vegetation communities could lead to highly

  11. Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments

    Science.gov (United States)

    Jackson, W. Andrew; Böhlke, J. K.; Andraski, Brian J.; Fahlquist, Lynne; Bexfield, Laura; Eckardt, Frank D.; Gates, John B.; Davila, Alfonso F.; McKay, Christopher P.; Rao, Balaji; Sevanthi, Ritesh; Rajagopalan, Srinath; Estrada, Nubia; Sturchio, Neil; Hatzinger, Paul B.; Anderson, Todd A.; Orris, Greta; Betancourt, Julio; Stonestrom, David; Latorre, Claudio; Li, Yanhe; Harvey, Gregory J.

    2015-09-01

    Natural perchlorate (ClO4-) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4- compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4- in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4- to the more well-studied atmospherically deposited anions NO3- and Cl- as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4- is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10-1 to 106 μg/kg. Generally, the ClO4- concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3- and ClO4- co-occur at molar ratios (NO3-/ClO4-) that vary between ∼104 and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4- reduction, as indicated in part by NO3- isotope data. In contrast, much larger ranges of Cl-/ClO4- and Cl-/NO3- ratios indicate Cl- varies independently from both ClO4- and NO3-. The general lack of correlation between Cl- and ClO4- or NO3- implies that Cl- is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO3-/ClO4- molar ratio ∼103. The relative

  12. Modeling the Surface Water-Groundwater Interaction in Arid and Semi-Arid Regions Impacted by Agricultural Activities

    Science.gov (United States)

    Tian, Y.; Wu, B.; Zheng, Y.

    2013-12-01

    In many semi-arid and arid regions, interaction between surface water and groundwater plays an important role in the eco-hydrological system. The interaction is often complicated by agricultural activities such as surface water diversion, groundwater pumping, and irrigation. In existing surface water-groundwater integrated models, simulation of the interaction is often simplified, which could introduce significant simulation uncertainty under certain circumstance. In this study, GSFLOW, a USGS model coupling PRMS and MODFLOW, was improved to better characterize the surface water-groundwater interaction. The practices of water diversion from rivers, groundwater pumping and irrigation are explicitly simulated. In addition, the original kinematic wave routing method was replaced by a dynamic wave routing method. The improved model was then applied in Zhangye Basin (the midstream part of Heihe River Baisn), China, where the famous 'Silk Road' came through. It is a typical semi-arid region of the western China, with extensive agriculture in its oasis. The model was established and calibrated using the data in 2000-2008. A series of numerical experiments were conducted to evaluate the effect of those improvements. It has been demonstrated that with the improvements, the observed streamflow and groundwater level were better reproduced by the model. The improvements have a significant impact on the simulation of multiple fluxes associated with the interaction, such as groundwater discharge, riverbed seepage, infiltration, etc. Human activities were proved to be key elements of the water cycle in the study area. The study results have important implications to the water resources modeling and management in semi-arid and arid basins.

  13. Olive Mounds, Roman cisterns, erosion pins - potential to characterize erosion in a Mediterranean catchment in north Jordan.

    Science.gov (United States)

    Kraushaar, Sabine; Ollesch, Gregor; Siebert, Christian; Vogel, Hans-Jörg

    2013-04-01

    In the framework of a three years' time period of a PhD thesis it is luck to catch the "right" rain events for good general erosion approximations. Methods that (i) cover longer time periods, (ii) are not confined to constructed boundaries, and finally (iii) include all possible erosion processes are crucial for good average estimates of sediment yields from different landscapes. The aim of the study was to get a first understanding of erosion processes and sediment yields in a Mediterranean to semi-arid catchment in NW Jordan, wherefore different measurement methods were tested in the predominant landscape units: olive orchards (27%), fields (14%) and natural shrubs on steep slopes (~30%). One of the applied methods was the measurement of topographic olive mounds within 7 orchards with an average size of 800 m2 in synergy with tree-coring and age estimation of the orchards. Furthermore the OSL dating of deposited sediments in two roman cisterns adjacent to fields was conducted and the 9 erosion pin fields, each about 200m2 large, were installed on steep slopes with natural vegetation. The methods cover different time scales from 560 years for the fields, an average of 32 years for the olive orchards and up to two rainy seasons for the erosion pin fields. Results show that olive orchards on steep slopes (>10%) have the highest erosion potential in the region with 95±8 t ha-1year-1 followed by natural vegetated slopes with 37±4 t ha-1year-1 of dislocated material and fields with 1.22±0.06 t ha-1year-1 sediment yield. These spatially constrained outcomes are supported by geochemical sediment fingerprint results of lake sediments from the catchment and will be discussed in regard to the basic assumption that underlie the principle of measurement and the limitations of the methods.

  14. Understanding fine sediment and phosphorous delivery in upland catchments

    Science.gov (United States)

    Perks, M. T.; Reaney, S. M.

    2013-12-01

    The uplands of UK are heavily impacted by land management including; farming and forestry operations, moorland burning, peat extraction, metal mining, artificial drainage and channelisation. It has been demonstrated that such land management activity may modify hillslope processes, resulting in enhanced runoff generation and changing the spatial distribution and magnitude of erosion. Resultantly, few upland river systems of the UK are operating in a natural state, with land management activity often resulting in increased fluxes of suspended sediment (monitored water bodies within upland areas of the UK are currently at risk of failing the Water Framework Directive (WFD) due to poor ecological status. In order to prevent the continual degradation of many upland catchments, riverine systems and their diverse ecosystems, a range of measures to control diffuse pollution will need to be implemented. Future mitigation options and measures in the UK may be tested and targeted through the EA's catchment pilot scheme; DEFRA's Demonstration Test Catchment (DTC) programmes and through the catchment restoration fund. However, restoring the physical and biological processes of past conditions in inherently sensitive upland environments is extremely challenging requiring the development of a solid evidence base to determine the effectiveness of resource allocation and to enable reliable and transparent decisions to be made about future catchment operations. Such evidence is rarely collected, with post-implementation assessments often neglected. This paper presents research conducted in the Morland sub-catchment of the River Eden within Cumbria; UK. 80% of this headwater catchment is in upland areas and is dominated by improved grassland and rough grazing. The catchment is heavily instrumented with a range of hydro-meteorological equipment. A high-tech monitoring station at the 12.5 km2 outlet provides flow, turbidity, total phosphorous (TP), total reactive phosphorous (TRP

  15. Assessment of Runoff Contributing Catchment Areas in Rainfall Runoff Modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Johansen, C.; Schaarup-Jensen, Kjeld

    In numerical modelling of rainfall caused runoff in urban sewer systems an essential parameter is the hydrological reduction factor which defines the percentage of the impervious area contributing to the surface flow towards the sewer. As the hydrological processes during a rainfall are difficult...... to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till...... now recommended literary values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literary values of the hydrological reduction factor are over-estimated for this type of catchments. In addition, different catchment...

  16. Modelling a river catchment using an electrical circuit analogue

    Directory of Open Access Journals (Sweden)

    C. G. Collier

    1998-01-01

    Full Text Available An electrical circuit analogue of a river catchment is described from which is derived an hydrological model of river flow called the River Electrical Water Analogue Research and Development (REWARD model. The model is based upon an analytic solution to the equation governing the flow of electricity in an inductance-capacitance-resistance (LCR circuit. An interpretation of L, C and R in terms of catchment parameters and physical processes is proposed, and tested for the River Irwell catchment in northwest England. Hydrograph characteristics evaluated using the model are compared with observed hydrographs, confirming that the modelling approach does provide a reliable framework within which to investigate the impact of variations in model input data.

  17. Impact of Direct Soil Moisture and Revised Soil Moisture Index Methods on Hydrologic Predictions in an Arid Climate

    Directory of Open Access Journals (Sweden)

    Milad Jajarmizadeh

    2014-01-01

    Full Text Available The soil and water assessment tool (SWAT is a physically based model that is used extensively to simulate hydrologic processes in a wide range of climates around the world. SWAT uses spatial hydrometeorological data to simulate runoff through the computation of a retention curve number. The objective of the present study was to compare the performance of two approaches used for the calculation of curve numbers in SWAT, that is, the Revised Soil Moisture Index (SMI, which is based on previous meteorological conditions, and the Soil Moisture Condition II (SMCII, which is based on soil features for the prediction of flow. The results showed that the sensitive parameters for the SMI method are land-use and land-cover features. However, for the SMCII method, the soil and the channel are the sensitive parameters. The performances of the SMI and SMCII methods were analyzed using various indices. We concluded that the fair performance of the SMI method in an arid region may be due to the inherent characteristics of the method since it relies mostly on previous meteorological conditions and does not account for the soil features of the catchment.

  18. Research Note:Determination of soil hydraulic properties using pedotransfer functions in a semi-arid basin, Turkey

    Directory of Open Access Journals (Sweden)

    M. Tombul

    2004-01-01

    Full Text Available Spatial and temporal variations in soil hydraulic properties such as soil moisture q(h and hydraulic conductivity K(q or K(h, may affect the performance of hydrological models. Moreover, the cost of determining soil hydraulic properties by field or laboratory methods makes alternative indirect methods desirable. In this paper, various pedotransfer functions (PTFs are used to estimate soil hydraulic properties for a small semi-arid basin (Kurukavak in the north-west of Turkey. The field measurements were a good fit with the retention curve derived using Rosetta SSC-BD for a loamy soil. To predict parameters to describe soil hydraulic characteristics, continuous PTFs such as Rosetta SSC-BD (Model H3 and SSC-BD-q33q1500 (Model H5 have been applied. Using soil hydraulic properties that vary in time and space, the characteristic curves for three soil types, loam, sandy clay loam and sandy loam have been developed. Spatial and temporal variations in soil moisture have been demonstrated on a plot and catchment scale for loamy soil. It is concluded that accurate site-specific measurements of the soil hydraulic characteristics are the only and probably the most promising method to progress in the future. Keywords: soil hydraulic properties, soil characteristic curves, PTFs

  19. Hydrologic Analysis of Ungauged Catchments For The Supply of Water For Irrigation On Railway Embankment Batters

    Science.gov (United States)

    Gyasi-Agyei, Y.; Nissen, D.

    Water has been identified as a key component to the success of grass establishment on railway embankment batters (side slope) within Central Queensland, Australia, to control erosion. However, the region under study being semi-arid experiences less than 600 mm average annual rainfall occurring on about 60 days of the year. Culverts and bridges are integral part of railway embankments. They are used to cross water courses, be it an ephemeral creek or just a surface runoff path. Surface runoff through an ungauged railway embankment culvert is diverted to a temporary excavated pond located at the downstream side of the hydraulic structure. The temporary excavated pond water is used to feed an automated drip irrigation system, with solar as a source of energy to drive a pump. Railway embankment batter erosion remediation is timed in the wet season when irrigation is used to supplement natural rainfall. Hydrologic analysis of ungauged catchments for sizing the temporary excavated pond is presented. It is based on scenarios of runoff coefficient and curve number, and mass curve (Rippl diagram). Three years of continuous rainfall data (1997/1998 -1999/2000) were used to design a pond. The performance of the designed pond was evaluated in a field experiment during the next wet season (2000/2001). It supplied adequate water for irrigation as predicted by the hydrologic analysis during the grass establishment. This helped to achieve 100% grass cover on the railway embankment batter within 12 weeks. The proposed irrigation system has been demonstrated t o be feasible and cost effective.

  20. Climate Warming Threatens Semi-arid Forests in Inner Asia

    Science.gov (United States)

    WU, X.; Liu, H.; Qi, Z.; Li, X.

    2014-12-01

    A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes (such as fire and insect dynamics) in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected

  1. Organic carbon efflux from a deciduous forest catchment in Korea

    Directory of Open Access Journals (Sweden)

    S. J. Kim

    2010-04-01

    Full Text Available Soil infiltration and surface discharge of precipitation are critical processes that affect the efflux of Dissolved Organic Carbon (DOC and Particulate Organic Carbon (POC in forested catchments. Concentrations of DOC and POC can be very high in the soil surface in most forest ecosystems and their efflux may not be negligible particularly under the monsoon climate. In East Asia, however, there are little data available to evaluate the role of such processes in forest carbon budget. In this paper, we address two basic questions: (1 how does stream discharge respond to storm events in a forest catchment? and (2 how much DOC and POC are exported from the catchment particularly during the summer monsoon period? To answer these questions, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge, groundwater level and conducted hydrochemical analyses (including DOC, POC, and six tracers in a deciduous forest catchment in Gwangneung National Arboretum in west-central Korea. Based on the end-member mixing analysis of the six storm events during the summer monsoon in 2005, the surface discharge was estimated as 30 to 80% of the total runoff discharge. The stream discharge responded to precipitation within 12 h during these storm events. The annual efflux of DOC and POC from the catchment was estimated as 0.04 and 0.05 t C ha−1 yr−1, respectively. Approximately 70% of the annual organic carbon efflux occurred during the summer monsoon period. Overall, the annual efflux of organic carbon was estimated to be about 10% of the Net Ecosystem carbon Exchange (NEE obtained by eddy covariance measurement at the same site. Considering the current trends of increasing intensity and amount of summer rainfall and the large interannual variability in NEE, ignoring the organic carbon efflux from forest catchments would result in an inaccurate estimation of the carbon sink strength of forest ecosystems in the monsoon

  2. Contribution of alluvial groundwater to the outflow of mountainous catchments

    Science.gov (United States)

    Käser, Daniel; Hunkeler, Daniel

    2016-02-01

    Alluvial aquifers in mountainous regions cover typically a limited area. Their contribution to catchment storage and outflow is rarely isolated; alluvial groundwater discharge under gauging stations is generally assumed negligible; and hydrological models tend to lump alluvial storage with other units. The role of alluvial aquifers remains therefore unclear: can they contribute significantly to outflow when they cover a few percent of catchment area? Should they be considered a dynamic storage unit or merely a transmission zone? We address these issues based on the continuous monitoring of groundwater discharge, river discharge (one year), and aquifer storage (6 months) in the 6 km2 alluvial system of a 194 km2 catchment. River and groundwater outflow were measured jointly through "coupled gauging stations." The contribution of alluvial groundwater to outflow was highest at the outlet of a subcatchment (52 km2), where subsurface discharge amounted to 15% of mean annual outflow, and 85% of outflow during the last week of a drought. In this period, alluvial-aquifer depletion supported 75% of the subcatchment outflow and 35% of catchment outflow—thus 3% of the entire catchment supported a third of the outflow. Storage fluctuations occurred predominantly in the aquifer's upstream part, where heads varied over 6 m. Not only does this section act as a significant water source, but storage recovers also rapidly at the onset of precipitation. Storage dynamics were best conceptualized along the valley axis, rather than across the more conventional riparian-channel transect. Overall the contribution of alluvial aquifers to catchment outflow deserves more attention.

  3. Susceptibility of Shallow Landslide in Fraser Hill Catchment, Pahang Malaysia

    Directory of Open Access Journals (Sweden)

    Wan Nor Azmin Sulaiman

    2010-01-01

    Full Text Available In tropical areas especially during monsoon seasons intense precipitation is the main caused that trigger the natural shallow landslide phenomena. This phenomenon can be disastrous and widespread in occurrence even in undisturbed forested catchment. In this paper, an attempt has been made to evaluate the susceptibility of natural hill slopes to failure for a popular hill resort area, the Fraser Hill Catchment under different rainfall regimes and soil thickness. A Digital Elevation Model (DEM was prepared for the 8.2 km2 catchment. A GIS based deterministic model was then applied to predict the spatial landslide occurrence within catchment. Model input parameters include bulk density, friction angle, cohesion and hydraulic conductivity were gathered through in situ and lab analysis as well as from previous soil analysis records. Landslides locations were recorded using GPS as well as previous air photos and satellite imagery to establish landslide source areas inventory. The landslide susceptibility map was produced under different precipitation event’s simulation to see the effects of precipitation to stability of the hill slopes of the catchment. The results were categorized into naturally unstable (Defended, Upper Threshold, Lower Threshold, marginal instability (Quasi Stable and stable area (Moderately Stable and Stable. Results of the simulation indicated notable change in precipitation effect on Defended area is between 10mm to 40mm range in a single storm event. However, when storm event is exceeded 120mm, the result on Defended area produced by the model tends to be constant further on. For area categorized as naturally unstable (Factor of Safety, SF<1, with 110 mm of precipitation in a single storm event and soil depth at 2 meters and 4 meters could affect 69.51% and 69.88% respectively of the catchment area fall under that class. In addition, the model was able to detect 4% more of the landslide inventory under shallower soil depth of

  4. Transit times of water particles in the vadose zone across catchment states and catchments functional units

    Science.gov (United States)

    Sprenger, Matthias; Weiler, Markus

    2014-05-01

    Understanding the water movement in the vadose zone and its associated transport of solutes are of major interest to reduce nutrient leaching, pollution transport or other risks to water quality. Soil physical models are widely used to asses such transport processes, while the site specific parameterization of these models remains challenging. Inverse modeling is a common method to adjust the soil physical parameters in a way that the observed water movement or soil water dynamics are reproduced by the simulation. We have shown that the pore water stable isotope concentration can serve as an additional fitting target to simulate the solute transport and water balance in the unsaturated zone. In the presented study, the Mualem- van Genuchten parameters for the Richards equation and diffusivity parameter for the convection-dispersion equation have been parameterized using the inverse model approach with Hydrus-1D for 46 experimental sites of different land use, topography, pedology and geology in the Attert basin in Luxembourg. With the best parameter set we simulated the transport of a conservative solute that was introduced via a pulse input at different points in time. Thus, the transit times in the upper 2 m of the soil for different catchment states could be inferred for each location. It has been shown that the time a particle needs to pass the -2 m depth plane highly varies from the systems state and the systems forcing during and after infiltration of that particle. Differences in transit times among the study sites within the Attert basin were investigated with regards to its governing factors to test the concept of functional units. The study shows the potential of pore water stable isotope concentration for residence times and transport analyses in the unsaturated zone leading to a better understanding of the time variable subsurface processes across the catchment.

  5. Hydrological behaviour and water balance analysis for Xitiaoxi catchment of Taihu Basin

    OpenAIRE

    Li-juan XUE; Li-jiao LI; Zhang, Qi

    2008-01-01

    With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological mo...

  6. Impact of bushfire and climate variability on streamflow from forested catchments in southeast Australia

    OpenAIRE

    Zhou, Y.; Zhang, Y.; Vaze, J.; Lane, P; Xu, S.

    2013-01-01

    Most of the surface water for natural environmental and human water uses in southeast Australia is sourced from forested catchments located in the higher rainfall areas. Water yield of these catchments is mainly affected by climatic conditions, but it is also greatly affected by vegetation cover change. Bushfires are a major natural disturbance in forested catchments and potentially modify the water yield of the catchments through changes to evapotranspirat...

  7. Climate and terrain factors explaining streamflow response and recession in Australian catchments

    OpenAIRE

    A. I. J. M. van Dijk

    2010-01-01

    Daily streamflow data were analysed to assess which climate and terrain factors best explain streamflow response in 183 Australian catchments. Assessed descriptors of catchment response included the parameters of fitted baseflow models, and baseflow index (BFI), average quick flow and average baseflow derived by baseflow separation. The variation in response between catchments was compared with indicators of catchment climate, morphology, geology, soils and land use. Spatial coherence in the ...

  8. Controls on snowmelt water mean transit times in northern boreal catchments

    OpenAIRE

    Lyon, S. W.; H. Laudon; Seibert, Jan; Morth, M.; D. Tetzlaff; K. H. Bishop

    2010-01-01

    Catchment-scale transit times for water are increasingly being recognized as an important control on geochemical processes. In this study, snowmelt water mean transit times (MTTs) were estimated for the 15 Krycklan research catchments in northern boreal Sweden. The snowmelt water MTTs were assumed to be representative of the catchment-scale hydrologic response during the spring thaw period and, as such, may be considered to be a component of the catchment's overall MTT. These snowmelt water M...

  9. Chemical erosion intensity in the Nišava catchments

    OpenAIRE

    Manojlović Predrag A.

    2002-01-01

    The Nišava catchment comprehends the area of 4068 km2. There are differences in erosion intensity due to different physical-geographical characteristics of that area. Mechanical water erosion in the Nišava catchment is 302,4 m3/km2/yr and chemical erosion is 67,2 t/km2/yr. Space differences are large (47,1-115.5 t/km2/yr) and are mostly determined by hydrological and lithological characteristics of that area.

  10. A simple distributed sediment delivery approach for rural catchments

    Science.gov (United States)

    Reid, Lucas; Scherer, Ulrike

    2014-05-01

    The transfer of sediments from source areas to surface waters is a complex process. In process based erosion models sediment input is thus quantified by representing all relevant sub processes such as detachment, transport and deposition of sediment particles along the flow path to the river. A successful application of these models requires, however, a large amount of spatially highly resolved data on physical catchment characteristics, which is only available for a few, well examined small catchments. For the lack of appropriate models, the empirical Universal Soil Loss Equation (USLE) is widely applied to quantify the sediment production in meso to large scale basins. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). In these models, the SDR is related to data on morphological characteristics of the catchment such as average local relief, drainage density, proportion of depressions or soil texture. Some approaches include the relative distance between sediment source areas and the river channels. However, several studies showed that spatially lumped parameters describing the morphological characteristics are only of limited value to represent the factors of influence on sediment transport at the catchment scale. Sediment delivery is controlled by the location of the sediment source areas in the catchment and the morphology along the flow path to the surface water bodies. This complex interaction of spatially varied physiographic characteristics cannot be adequately represented by lumped morphological parameters. The objective of this study is to develop a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in a catchment. We selected a small catchment located in in an intensively cultivated loess region in Southwest Germany as study area for the development of the SDR approach. The

  11. Development and use of bioenergy feedstocks for semi-arid and arid lands.

    Science.gov (United States)

    Cushman, John C; Davis, Sarah C; Yang, Xiaohan; Borland, Anne M

    2015-07-01

    Global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave and Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C3 or C4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C3 and C4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient. PMID:25873672

  12. Arid lands plants as feedstocks for fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.J.

    1983-01-01

    The purpose of this paper is to review the recent research on arid-adapted plants that have potential as producers of fuels or chemicals. The major focus will be on plant species that appear to have commercial value. Research on guayule (Parthenium argentatum) and jojoba (Simmondsia chinensis) will be mentioned only briefly, since these plants have been discussed extensively in the literature, and excellent reviews are already in existence. In this review the literature on arid-adapted plants that have potential uses for solid fuels, liquid fuels, and chemical feedstocks is summarized, followed by an overview of the research directions and types of development that are needed in order for bio-energy production systems to reach the commercial stage. 127 references.

  13. Désertification des parcours arides au Maroc

    OpenAIRE

    Mahyou, H.; B. Tychon; Balaghi, R.; Mimouni, J.; Paul, R.

    2010-01-01

    Les terres de parcours naturels arides du Maroc sont des écosystèmes avec une végétation naturelle ou semi naturelle composée de steppes, d’arbustes et de prairies. Elles représentent 82% de la superficie des terres arides marocaines. Ces terres offrent des moyens de subsistance à des milliers de personnes et protègent le pays d’une désertification rapide. Malgré l’importance de ces zones fragiles, il est étonnant qu’il n’y ait, à ce jour, aucune évaluation globale de leur état et de leur ...

  14. How Sustainable are Engineered Rivers in Arid Lands?

    Directory of Open Access Journals (Sweden)

    Jurgen Schmandt

    2013-06-01

    Full Text Available Engineered rivers in arid lands play an important role in feeding the world’s growing population. Each continent has rivers that carry water from distant mountain sources to fertile soil downstream where rainfall is scarce. Over the course of the last century most rivers in arid lands have been equipped with large engineering structures that generate electric power and store water for agriculture and cities. This has changed the hydrology of the rivers. In this paper we discuss how climate variation, climate change, reservoir siltation, changes in land use and population growth will challenge the sustainability of engineered river systems over the course of the next few decades. We use the Rio Grande in North America, where we have worked with Mexican and American colleagues, to describe our methodology and results. Similar work is needed to study future water supply and demand in engineered rivers around the world.

  15. On coordinated development of oasis and environment in arid area

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based upon the formation and evolution of oasis and the factors restricting the coordinated development of oasis economy and environment, this paper presents a goal of the development in coordination. It suggests that the sustainable survival and development of oasis could be ensured only if the oasis-desert and water source ecology are managed in a combined way to form a macro system. In light with the above mentioned, the approach to the development of economy and environment of oasis in arid area should depend upon the establishment of an oasis ecological and economic system, which suits the arid environment and promotes the efficiency of resource configuration, stabilizes economic increment and benefits ecological development.

  16. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G. J., LLNL

    1998-06-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water. Many solutes in natural waters are derived from the interaction between the water and the rock and/or soil within the system - these are termed `lithogenic` solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both within and outside of the catchment - i.e., in addition to being derived from catchment rock and soil, they are solutes that are also transported into the catchment. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing `cosmogenic` nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing `thermonuclear` nuclides), or radioactive and fission decay of naturally-occurring elements, principally {sup 238}U (producing `in-situ` lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading `cosmogenic nuclides`, and for simplicity we will often follow that usage here, although always indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute concentrations in catchment waters, and how the isotopic compositions of the solutes can be used in integrative ways to identify these processes, thereby revealing the physical history of the water within a catchment system. The concept of a `system` is important in catchment hydrology. A catchment is the smallest landscape unit that can both participate in all of the aspects of the hydrologic cycle and

  17. Estimating large-scale evapotranspiration in arid and semi-arid systems: A multi-site study linking MODIS and Ameriflux data

    Science.gov (United States)

    A common goal for water resource managers is to ensure long-term water sustainability for increasing human populations in the arid and semi-arid southwestern United States. In these areas, estimating evapotranspiration (ET) at watershed or river-reach scales is critical in determining an amount of w...

  18. SPATIAL VARIABILITY OF DRY SPELLS A spatial and temporal rainfall analysis of the Pangani basin and Makanya catchment, Tanzania

    Science.gov (United States)

    Fischer, B. M. C.; Savenije, H. H. G. H. H. G.

    2009-04-01

    Rainfall and soil moisture are key parameters for food production and which are spatial and temporal variable. In a ever growing world the stress on water for food production increases. Farmers especially in semi arid regions with rain fed agriculture are more often forced to make away from "A" locations where water is available to water scares "B" or worse locations. Obliged by availability of arable land, tradition, customs, natural 6th sense or farmers cleverness. To improve agricultural yields a better water resource planning ,supported by system knowledge, is needed. This study describes a Markov bases dry spell tool which can fulfil in this need. By making use of Markov properties of rainfall, the temporal variability has been analysed. Plotting the derived seasonal transition probabilities vs. the rainfall amount a spatial variable power function could be derived. The spatial and temporal knowledge of rainfall was combined in the Markov based dry spell tool. For a given probability the tool provides a dry spell map. The dry spell tool is a powerful tool to assess vulnerability of dry spells based on meteorological data. The meteorological dry spell in combination with the agricultural dry spell length or critical dry spell length, which is determined by soil and vegetation characteristics, risk maps of an area to the vulnerability of dry spells could be made. The tool was applied in a case study in the Makanya catchment and showed: Compared to the lower middle part of the catchment, high altitude parts of the catchment receive higher amounts of rainfall, have shorter meteorological dry spells and are more resilient to dry spells due to their soil and vegetation characteristics. As a result one can state that farmers living in mountainous areas are blessed by their location. They receive more rain and have lower probability of long dry spells, higher probability of crop success and a higher probability of high yields, in contrast to the farmers in the valley

  19. Climate risk management for water in semi–arid regions

    OpenAIRE

    Robertson, Andrew W.; Baethgen, Walter; Block, Paul; Lall, Upmanu; Sankarasubramanian, Arumugam; de Assis de Souza Filho, Francisco; Verbist, Koen

    2014-01-01

    Background: New sources of hydroclimate information based on forecast models and observational data have the potential to greatly improve the management of water resources in semi-arid regions prone to drought. Better management of climate-related risks and opportunities requires both new methods to develop forecasts of drought indicators and river flow, as well as better strategies to incorporate these forecasts into drought, river or reservoir management systems. In each case the existing i...

  20. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm3), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  1. Semi-arid development: competitiveness factors in biodiesel productive chain

    OpenAIRE

    Breno Barros Telles do Carmo; Dmontier Pinheiro Aragão; Heráclito Lopes Jaguaribe Pontes; Bruno Magalhães Ribeiro; Marcos Ronaldo Albertin

    2009-01-01

    The new global market competitiveness considerer the competition between productive chains (PC) or supply chains, not just between enterprises. In this case, it can be observed collaboration and cooperation enterprises that dispute with others productives chain. The PC competitiveness can be impaired if is subject by inhibitors factors, that can impairer the performance. This paper analyses these competitiveness factors inhibitors in biodiesel productive chain (CPB) in semi-arid area: exporte...

  2. Adaptive wetland management in an uncertain and changing arid environment

    OpenAIRE

    Rebekah Downard; Joanna Endter-Wada; Kettenring, Karin M.

    2014-01-01

    Wetlands in the arid western United States provide rare and critical migratory bird habitat and constitute a critical nexus within larger social-ecological systems (SES) where multiple changing land-use and water-use patterns meet. The Bear River Migratory Bird Refuge in Utah, USA, presents a case study of the ways that wetland managers have created adaptive management strategies that are responsive to the social and hydrological conditions of the agriculture-dominated SES within which they a...

  3. Protocol for VOC-Arid ID remediation performance characterization

    International Nuclear Information System (INIS)

    The Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID) is a technology development program sponsored by the US Department of Energy's Office of Technology Development that is targeted to acquire, develop, demonstrate, and deploy new technologies for the remediation of VOC contaminants in the soils and groundwaters of arid DOE sites. Technologies cannot be adequately evaluated unless sufficient site characterization and technology performance data have been collection and analyzed. The responsibility for identifying these data needs has been placed largely on the Principal Investigators (PIs) developing the remediation technology, who usually are not experts in site characterization or in identification of appropriate sampling, analysis, and monitoring techniques to support the field testing. This document provides a protocol for planning the collection of data before, during, and after a test of a new technology. This generic protocol provides the PIs and project managers with a set of steps to follow. The protocol is based on a data collection planning process called the Data Quality Objectives (DQO) process, which was originally developed by the US Environmental Protection Agency and has been expanded by DOE to support site cleanup decisions. The DQO process focuses on the quality and quantity of data required to make decision. Stakeholders to the decisions must negotiate such key inputs to the process as the decision rules that will be used and the acceptable probabilities of making decision errors

  4. Désertification des parcours arides au Maroc

    Directory of Open Access Journals (Sweden)

    Mahyou, H.

    2010-01-01

    Full Text Available Desertification of Arid Rangelands in Morocco. Rangeland or natural arid pastures of Morocco are ecosystems where there is a natural or seminatural vegetation composed of steppes, shrubs and grassland. They cover about 82% of the Moroccan arid lands. These areas represent livelihoods for thousands of people and protect the country from desertification. Despite the importance of the rangelands and the threat of desertification, it is surprising that up to date there is no comprehensive assessment of their condition and their evolution, hindering any plan for desertification alleviation. However, the available information on selected pilot areas shows that these rangelands are threatened by desertification. It's associated with biodiversity loss and contributes to climate change. The leading causes of land degradation are the human actions combined with climate. The establishment of a comprehensive surveillance system based on remote sensing, biophysics and socio-economic data must be envisaged to provide policymakers with an operational tool adapted to the spatio-temporal monitoring of desertification.

  5. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

    1991-10-01

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl{sub 4}) contamination located near the center of the Hanford Site. The movement of CCl{sub 4} and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies.

  6. Saline dust storms and their ecological impacts in arid regions

    Institute of Scientific and Technical Information of China (English)

    Jilili; Abuduwaili

    2010-01-01

    In many arid and semiarid regions,saline playas represent a significant source of unconsoli-dated sediments available for aeolian transport,and severe saline dust storms occur frequently due to human disturbance.In this study,saline dust storms are reviewed systematically from the aspects of con-cept,general characteristics,conditions of occurrence,distribution and ecological impact.Our researches showed that saline dust storms are a kind of chemical dust storm originating in dry lake beds in arid and semiarid regions;large areas of unconsolidated saline playa sediments and frequent strong winds are the basic factors to saline dust storm occurrence;there are differentiation characteristics in deposition flux and chemical composition with wind-blown distance during saline dust storm diffusion;and saline dust storm diffusion to some extent increases glacier melt and results in soil salinization in arid regions.An under-standing of saline dust storms is important to guide disaster prevention and ecological rehabilitation.

  7. Mutations in ARID2 are associated with intellectual disabilities.

    Science.gov (United States)

    Shang, Linshan; Cho, Megan T; Retterer, Kyle; Folk, Leandra; Humberson, Jennifer; Rohena, Luis; Sidhu, Alpa; Saliganan, Sheila; Iglesias, Alejandro; Vitazka, Patrik; Juusola, Jane; O'Donnell-Luria, Anne H; Shen, Yufeng; Chung, Wendy K

    2015-10-01

    The etiology of intellectual disabilities (ID) remains unknown for the majority of patients. Due to reduced reproductive fitness in many individuals with ID, de novo mutations account for a significant portion of severe ID. The ATP-dependent SWI/SNF chromatin modifier has been linked with neurodevelopmental disorders including ID and autism. ARID2 is an intrinsic component of polybromo-associated BAF (PBAF), the SWI/SNF subcomplex. In this study, we used clinical whole exome sequencing (WES) in proband-parent-trios to identify the etiology of ID. We identified four independent, novel, loss of function variants in ARID2 gene in four patients, three of which were confirmed to be de novo. The patients all have ID and share other clinical characteristics including attention deficit hyperactivity disorder, short stature, dysmorphic facial features, and Wormian bones. All four novel variants are predicted to lead to a premature termination with the loss of the two conservative zinc finger motifs. This is the first report of mutations in ARID2 associated with developmental delay and ID. PMID:26238514

  8. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    International Nuclear Information System (INIS)

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl4) contamination located near the center of the Hanford Site. The movement of CCl4 and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies

  9. Holocene paleovegetation reconstructed from a fluvial sediment-paleosol sequence along the upper Alazani River (Caucasus region) using leaf-wax biomarkers - local vs. catchment information

    Science.gov (United States)

    Bliedtner, Marcel; Zech, Roland; von Suchodoletz, Hans

    2015-04-01

    Due to its small-scale pattern of different climatic and ecologic regions and a long-lasting history of human land-use since ca. 8 ka, the Caucasus region is of particular interest with regard to Holocene climatic and paleoenvironmental changes. However, there only exists a limited number of paleoenvironmental reconstructions from that region yet. This study aims at reconstructing Holocene vegetational and paleoenvironmental changes using leaf-wax n-alkanes, n-carboxylic acids and compound specific δ13C and δD isotopes from a fluvial sediment-paleosol sequence along the upper Alazani River in eastern Georgia. Phases of sedimentation and pedogenesis between >8 until ca. 1.7 cal. ka BP reflect alternating periods of geomorphic stability (pedogenesis) with reduced flooding activity due to more arid conditions, and periods of geomorphic activity (sedimentation) with increased flooding and erosion in the humid catchment area due to enhanced precipitation. Thus, biomarkers derived from non-pedogenetic sediments should be mostly derived from the catchment area located in the southern Greater Caucasus Mountains, whereas due to pedogenetic accumulation of organic matter biomarkers derived from the (paleo-)soils should mostly show the local signal of the sampling site located in the piedmont area. Long-chain leaf wax-derived n-alkanes are present in all samples: Paleosols are mostly dominated by high contributions from grass vegetation (C31 and C33), indicating a local dominance of grass vegetation throughout the Holocene. This could be caused by relatively arid conditions and/or by agricultural use that is documented at this site by potsherds from ca. 8 cal. ka BP. Non-pedogenetic sediment layers show a higher abundance of grass-derived n-alkanes during the early Holocene and the Caucasian Holocene climate optimum around 5 cal. ka BP, whereas deciduous trees (C27 and C29) may have dominated after that period. However, it is not clear yet whether this vegetation change

  10. Land use change and carbon cycle in arid and semi-arid lands of East and Central Asia

    Institute of Scientific and Technical Information of China (English)

    Togtohyn; Chuluun; Dennis; Ojima

    2002-01-01

    Dramatic changes in land use have occurred in arid and semi-arid landsof Asia during the 20th century. Grassland conversion into croplands and ecosystem degradation is widespread due to the high growth rate of human population and political reforms of pastoral systems. Rangeland degradation made many parts of this region vulnerable to environmental and political changes. The collapse of the livestock sector in some states of central Asia, expansion of livestock inChina and intensive degradation of grasslands in China are examples of the responses of pastoral systems to these changes over the past decades. Carbon dynamics in this region is highly variable in space and time. Land use/cover changes with widespread reduction of forest and grasslands increased carbon emission from the region.

  11. Quantitative Prediction Study of Climate-sensitive Potassium with Hyperspectrum in Arid and Semi-arid Region of Northwestern China

    International Nuclear Information System (INIS)

    Soil potassium content in arid and semi-arid region can reflect the conditions of the paleoclimate and it can be inverted by soil spectra. The relationship between soil spectra and soil potassium content was discussed in this research. Based on four reflectance transformations, single-variance analysis and multi-variances inversion model were built to invert potassium content. The results of single-wavelength inversions were very significant except for the reflectance model. The multi-variances models were good and accurately (R2 (determination coefficient) >0.674 and RMSE (root-mean-square error) <0.09). Then, the sensitive wavelengths of the potassium were chosen by using the higher correlation coefficients. The results of this study showed that both methods have a great potential for predicting soil potassium content. The sensitive wavelengths of the potassium content were at 2200–2300 nm which could be illustrated by the potassium-bearing minerals spectral absorption features

  12. Sedimentation in the Lake Victoria catchment and the Winam Gulf.

    OpenAIRE

    Masongo, O.; Mwirigi, P.; Okungu, J.; Osio, J.; Abuodha, J.O.Z.; Hecky, R. E.

    2005-01-01

    The need to carry out sedimentation and sediment characteristics study at the river mouths and the lake was contingent upon the supposition that the rivers in the lake Victoria catchment including surface runoffs convey a great deal of assorted sediments, most of which are deposited in the lake thereby causing the lake to continue filling up and affecting the quality of water.

  13. Sediment dynamics in an overland flow-prone forest catchment

    Science.gov (United States)

    Zimmermann, Alexander; Elsenbeer, Helmut

    2010-05-01

    Vegetation controls erosion in many respects, and it is assumed that forest cover is an effective control. Currently, most literature on erosion processes in forest ecosystems support this impression and estimates of sediment export from forested catchments serve as benchmarks to evaluate erosion processes under different land uses. Where soil properties favor near-surface flow paths, however, vegetation may not mitigate surface erosion. In the forested portion of the Panama Canal watershed overland flow is widespread and occurs frequently, and indications of active sediment transport are hard to overlook. In this area we selected a 9.7 ha catchment for a high-resolution study of suspended sediment dynamics. We equipped five nested catchments to elucidate sources, drivers, magnitude and timing of suspended sediment export by continuous monitoring of overland flow and stream flow and by simultaneous, event-based sediment sampling. The support program included monitoring throughfall, splash erosion, overland-flow connectivity and a survey of infiltrability, permeability, and aggregate stability. This dataset allowed a comprehensive view on erosion processes. We found that overland flow controls the suspended-sediment dynamics in channels. Particularly, rainfalls of high intensity at the end of the rainy season have a superior impact on the overall sediment export. During these events, overland flow occurs catchment-wide up to the divide and so does erosion. With our contribution we seek to provide evidence that forest cover and large sediment yields are no contradiction in terms even in the absence of mass movements.

  14. Seasonal snow accumulation in the mid-latitude forested catchment

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Tesař, Miroslav

    2014-01-01

    Roč. 69, č. 11 (2014), s. 1562-1569. ISSN 0006-3088 R&D Projects: GA TA ČR TA02021451 Institutional support: RVO:67985874 Keywords : snow depth * snow water equivalent * forested catchment Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.827, year: 2014

  15. SOLVING A HIDDEN PROBLEM: RAINWATER CATCHMENT TO OFFSET GROUNDWATER DEPLETION

    Science.gov (United States)

    The University of Wisconsin-Madison is developing a rain water catchment system for the newest wing of the UW-Hospital, the IRC. The UW-Hospital currently imports its irrigation water, at a great cost to the hospital and, more severely, Madison’s water table. The city of...

  16. First Flush Effects in an Urban Catchment Area in Aalborg

    DEFF Research Database (Denmark)

    Larsen, Torben; Broch, Kirsten; Andersen, Margit Riis

    1997-01-01

    The paper describes the results of measurements from a 2 year period on a 95 hectare urban catchment in Aalborg, Denmark. The results of the rain/discharge measurements include 160 storm events corresponding to an accumulated rain depth of totally 753 mm. The water quality measurements include 15...

  17. Environmental impact and water management in a catchment area perspective

    International Nuclear Information System (INIS)

    The symposium 'Environmental Impact and Water Management in a catchment area perspective' reviews the results of research conducted in the past period, based on the principle of complex use and protection of the water body. In addition to Finnish specialists, Swedish, Russian, Latvian, and Lithuanian specialists have participated in the studies

  18. Discharge Water Quality Models of Storm Runoff in a Catchment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The relationships between the water qualities of nitrogen and phosphorous contents in the discharge water and the discharge of storm runoff of an experimental catchment including terraced paddy field are analyzed based on experiment results of the catchment. By summarizing the currently related research on water quality models, the water quality models of different components of storm runoff of the catchment are presented and verified with the experiment data of water quality analyses and the corresponding discharge of the storm runoffs during 3 storms. Through estimating the specific discharge of storm runoff, the specific load of different components of nitrogen and phosphorus in the discharge water of the catchment can be forecasted by the models. It is found that the mathematical methods of linear regression are very useful for analysis of the relationship between the concentrations of nitrogen and phosphorus and the water discharge of storm runoff. It is also found that the most content of the nitrogen (75%) in the discharge water is organic, while half of the content (49%) of phosphorus in the discharge water is inorganic.

  19. Manganese Biogeochemistry in a Central Czech Republic Catchment

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Shanley, J. B.; Krám, P.; Mihaljevič, M.; Drahota, Petr

    2007-01-01

    Roč. 186, 1-4 (2007), s. 149-165. ISSN 0049-6979 R&D Projects: GA ČR GA205/04/0060 Institutional research plan: CEZ:AV0Z30130516 Keywords : manganese * catchment * weathering * biogeochemistry * biotite weathering * forest ecosystem * mass balance Subject RIV: DD - Geochemistry Impact factor: 1.224, year: 2007

  20. Biogeochemistry of beryllium in a forested catchment, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Skřivan, Petr; Vach, Marek; Filippi, Michal

    Edinburg : University of Edinburg, 2003. s. 94. [International Symposium on Environmental Geochemistry.. 07.09.2003-11.09.2003, Edinburg] R&D Projects: GA AV ČR IAB3013203 Institutional research plan: CEZ:AV0Z3013912 Keywords : biogeochemistry * experimental catchment * beryllium Subject RIV: DD - Geochemistry

  1. Examining the Potential Travellers in Catchment Areas for Public Transport

    DEFF Research Database (Denmark)

    Landex, Alex; Hansen, Stephen

    2006-01-01

    The paper presents a method to examine the catchment areas for stops in high quality public transport systems based on the actual street network in the examined area. This is achieved by implementing the service area functions from the ArcGIS extension Network Analyst. The method is compared to a...

  2. High-resolution monitoring of catchment nutrient response to the end of the 2011-2012 drought in England, captured by the demonstration test catchments.

    OpenAIRE

    Outram, Faye N.; Lloyd, Charlotte; Jonczyk, Jennine; Benskin, Clare McW H; Grant, Fiona; Dorling, Stephen R.; Steele, Christopher J.; Collins, Adrian L.; FREER, Jim; Haygarth, Philip; Hiscock, Kevin M.; Johnes, Penny J.; Lovett, Andrew L.

    2013-01-01

    The Demonstration Test Catchments (DTC) project is a UK Government funded initiative to test the effectiveness of on-farm mitigation measures designed to reduce agricultural pollution without compromising farm productivity. Three distinct catchments in England have been chosen to test the efficacy of mitigation measures on working farms in small tributary sub-catchments equipped with continuous water quality monitoring stations. The Hampshire Avon in the south is a mixed livestock and arable ...

  3. The impact of inappropriate soil management on river water quality: a case study in the Kurundu Oya Sub-catchment of the Upper Mahaweli Catchment, Sri Lanka

    OpenAIRE

    Amarasekara, M. G. T. S.; Kumarihamy, R. M. K.; Dayawansa, N. D. K.; R.P. Silva

    2010-01-01

    The results of many studies have revealed that intensive farming on steep slopes, coupled with over application of fertilizers and accumulation of nutrients in downstream water bodies due to soil erosion, have contributed to environmental hazards in the Upper Mahaweli Catchment Area (UMCA) of Sri Lanka. The encroachment of riparian zones for exotic vegetable cultivation has aggravated this situation. In view of this, a study was conducted in the Kurundu Oya catchment, a micro-catchment of the...

  4. Hydrological Controls on Nutrient Concentrations and Fluxes in Agricultural Catchments

    Science.gov (United States)

    Petry, J.; Soulsby, C.

    2002-12-01

    This investigation into diffuse agricultural pollution and the hydrological controls that exert a strong influence on both nutrient concentrations and fluxes, was conducted in an intensively farmed lowland catchment in north-east Scotland. The study focuses on spatial and seasonal variations in nutrient concentrations and fluxes at the catchment scale, over a 15-month period. The water quality of the 14.5 km2 Newmills Burn catchment has relatively high nutrient levels with mean concentrations of NO3-N and NH3-N at 6.09 mg/l and 0.28 mg/l respectively. Average PO4-P concentrations are 0.06 mg/l. Over short timescales nutrient concentrations and fluxes are greatest during storm events when PO4-P and NH3-N are mobilised by overland flow in riparian areas, where soils have been compacted by livestock or machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, produces a marked increase in NO3-N (6.9 mg/l) concentrations on the hydrograph recession limb. A more detailed insight into the catchment response to storm events, and in particular the response of the hydrological pathways which provide the main sources of runoff during storm events, was gained by sampling stream water at 2-hourly intervals during 5 events. End Member Mixing Analysis (EMMA) was carried out using event specific end-member chemistries to differentiate three catchment-scale hydrological pathways (overland flow, subsurface storm flow, groundwater flow) on the basis of observed Si and NO3-N concentrations in sampled source waters. Results show that overland flow generally dominates the storm peak and provides the main flow path by which P is transferred to stream channels during storm events, whilst subsurface storm flows usually dominate the storm hydrograph volumetrically and route NO3-rich soil water to the stream. The study shows that altering hydrological pathways in a catchment can have implications for nutrient management. Whilst buffer

  5. Tritium-based age/streamflow relationships and catchment function

    Science.gov (United States)

    Stewart, M. K.; Morgenstern, U.

    2013-12-01

    Understanding runoff generation is important for management of freshwater systems. Determining transit time distributions (TTDs) of streamwaters and how they change with flow gives information on the flowpaths and water storages in catchments - fundamental for understanding the responses of streams to stressors such as pollution, land use change and climate change. This work uses tritium measurements on single samples to determine TTDs and how they change with flow. Such use of tritium is only practical so far in the Southern Hemisphere, because of its much-lower input of bomb-tritium in the 1960s. Another advantage of tritium is that it reveals the full spectrum of ages present in streams, whereas oxygen-18 or chloride variations only show younger ages (i.e. truncated TTDs). Case studies are presented for two New Zealand catchments, both with volcanic ash substrates. The first (Toenepi) is a dairy catchment near Hamilton, which shows well-constrained power law relationships between mean transit time (MTT) and flow, and between silica concentration and flow. Baseflow MTTs vary from 2.5 to 157 years. The second (Tutaeuaua) is a pastoral farming catchment near Taupo. Results for nested catchments along the stream also show power law relationships for both MTT and silica with flow. Baseflow MTTs vary from 1 to 11 years. Although the MTT data could be represented approximately by straight lines in log-log plots, hysteresis effects due to catchment wetness variations did disturb the relationships. Having TTDs from individual samples focusses attention on the nature of the water storages supplying the stream at the times of sampling. The flow record contains information on catchment function, which can enhance the value of the age data, provided such information can be satisfactorily interpreted. A new baseflow estimation method is used to determine the slow storage (aka groundwater) fraction in the stream. The age data is showing that slow storages have mean ages of

  6. Multivariate analysis of a small pleistocene catchment: tracing hydrological change

    Science.gov (United States)

    Boettcher, Steven; Merz, Christoph; Dannowski, Ralf

    2013-04-01

    The water budget of catchments in north-east Germany has decreased considerably over the last decades. Especially small catchments are affected due to the small amount of water stored within. Climate projections for the next decades hint to even more negative impacts on the water budgets of these catchments. Therefore, a new concept of water resource management for this region must be developed, including counter measures to extreme events such as low and high flow conditions. In order to manage a hydrological system one needs to know the typical behavior and be able to effectively counteract if needed. Within the network activity INKA-BB (Inovationsnetzwerk Klimaanpassung Brandenburg Berlin) dealing with possible adaptation measures to climate change in the Brandenburg and Berlin region, this study aims at identifying the typical hydraulic behavior of the Fredersdorfer Mühlenfließ catchment located north-east of Berlin as a basis for a sustainable water resource management concept. Established schemes are followed, including the application of numerical geochemical and hydraulic models as well as chemical graphical interpretation approaches. A common problem is the sparse spatial as well as temporal resolution of the data at hand. Here, these schemes are too inflexible and vague with respect to analyzing and parameterization of complex features used for identifying operative hydraulic-geochemical processes including intensive non-linear interactions. Hence, methods must be applied that are able to effectively utilize the limited information available. Ordination methods such as the Principle Component Analysis (PCA) or the non-linear Isometric Feature Mapping (Isomap) can provide such a tool. Ordination methods are used in order to derive a meaningful low-dimensional representation of a high-dimensional input data set. The approach is based on the hypothesis, that the amount of processes which explain the variance of the data is relative low although the

  7. Crossing thresholds: Analysis of hazardous tipping points in alpine catchments

    Science.gov (United States)

    Lutzmann, Silke; Sass, Oliver

    2016-04-01

    Steep mountain channels or torrents in small alpine catchments are characterized by high geomorphic activity with sediment dynamics being inherently nonlinear and threshold-mediated. Localized, high intensity rainstorms can drive torrential systems past a tipping point resulting in a sudden onset of hazardous events like (flash-) flooding, heavy bedload transport or debris flows. Such responses exhibit an abrupt switch in the fluvial system's mode (e.g. transport / supply limited). Changes in functional connectivity may persist beyond the tipping point. Torrential hazards cause costly damage in the densely populated Alpine Region. Thus, there is a rising interest in potential effects of climate change on torrential sediment dynamics. Understanding critical conditions close to tipping points is important to reduce uncertainty in predicting sediment fluxes. In this study we aim at (i) establishing threshold precipitation characteristics for the Eastern Alps of Austria. Precipitation is hypothesized to be the main forcing factor of torrential events. (ii) How do thresholds vary in space and time? (iii) The effect of external triggers is strongly mediated by the internal disposition of catchments to respond. Which internal conditions are critical for susceptibility? (iv) Is there a change in magnitude or frequency in the recent past and what can be expected for the future? The 71 km2 catchment of the river Schöttlbach in the East Alpine Region of Styria (Austria) is monitored since a heavy precipitation event resulted in a catastrophic flood in July 2011. Sediment mobilization from slopes as well as within-channel storage and bedload transport are regularly measured using photogrammetric methods and sediment impact sensors. Thus, detailed knowledge exists on magnitude and spatial propagation of sediment waves through the catchment. The associated hydro-meteorological (pre-) conditions can be inferred from a dense station network. Changing bedload transport rates and

  8. Impact of Small Hill Farm Ponds on Water Flow and Nitrogen Transfer in Mediterranean Agricultural Catchment (Kamech, Cap Bon, Tunisia)

    International Nuclear Information System (INIS)

    Wetland ecology and the downstream water quality and quantity depend on water dynamics. In arid/semiarid environments average annual rainfall is seasonal, highly variable and significantly less than evaporation. Groundwater discharge can be a major component of the water balance in these environments. Determination of the wetland water budget is therefore essential part of wetland characterization. Some elements, such as surface inflow, precipitation, evaporation, surface outflow, and variation of lake level, can be measured easily at the site. However, it is difficult to determine the groundwater inflow and outflow. In this paper, the stable isotope mass balance together with the conventional water budget are applied to the water storage of a small hill dam (capacity of 142 460 m3), the Lake Kamech, located in the peninsula of Cap Bon, north eastern Tunisia, in order to assess the interaction between ground and surface waters. The δ18O and δ2H isotopes allowed for assessing water cycle components over the catchment. Results indicated that upstream ground waters are disconnected from the lake even if they contribute to the stream base flow while runoff is the main flow that filled the lake. The water budget indicates that approximately 80 000 m3 had infiltrated into the underlying alluvial aquifer during the 2009-2010 water year while groundwater had supported the lake storage during high releases periods and during dry season by supplying about 10 000 m3 to the lake. (author)

  9. Identifying soil erosion sources to better anticipate in and off site degradations in a tropical highland catchment of central Mexico

    Science.gov (United States)

    Ayrault, S.; Bonté, P.; Duvert, C.; Esteves, M.; Evrard, O.; Gratiot, N.; Lefèvre, I.; Némery, J.; Poulenard, J.; Prat, C.; Saenz-Romero, C.

    2012-04-01

    Land degradation is intense in tropical regions where it causes for instance a decline in soil fertility and reservoir siltation. Two fingerprinting approaches (i.e., the conventional approach based on radionuclide and geochemical concentrations and the alternative DRIFT spectroscopy method) were conducted independently to outline the sources delivering sediment to the river network draining into the Cointzio reservoir, in Mexican tropical highlands. This study was conducted all throughout the rainy season in 2009 in three subcatchments representative of the different environments characterised by very altered soils and the dominance of Andisols and Acrisols. Both fingerprinting methods pointed out the dominant impact of gullies on sediment load at the outlet of the Huertita subcatchment. In contrast, in La Cortina subcatchment dominated by Andisols, the bulk of sediment was supplied by cropland. Sediment originating from Potrerillos subcatchment characterised by a mix of Acrisols and Andisols was supplied by both gullies and rangeland/cropland. In this latter subcatchment, results provided by both fingerprinting methods strongly differed. Our results outline the need to take the organic matter content of soils into account and the difficulty to use geochemical properties to fingerprint sediment in very altered volcanic catchments. However, combining our fingerprinting results with sediment export data provide a way to prioritise the implementation of erosion control measures to mitigate sediment supply to the Cointzio reservoir supplying drinking water to Morelia city. Such information will be particularly crucial in the coming years, as an increase of the aridity, combined with an increase of flood intensity are anticipated.

  10. Spatiotemporal analysis and trends of aridity of Iberian Peninsula (1960-2010)

    Science.gov (United States)

    Paniagua, Luis L.; García, Abelardo; Moral, Francisco J.; Rebollo, Francisco J.

    2016-04-01

    In this study the aridity of the Iberian Peninsula was analysed, taking into account 45 stations in Spain and Portugal from 1960 to 2010. The De Martonne Index was considered. The goal of this study was to explore the spatial distribution and to determine monotonic trends and shift changes in annual aridity by using the Mann-Kendall test and the Seńs estimator. The spatially interpolated maps of the aridity indice were generated using the ordinary kriging algorithm in a geographic information system (GIS) environment. A great variability for Martonne Index was found, gathering from semiarid climates to extremely humid, although the former being the dominant type. 41 temporal series showed decreasing tendencies, 15 of them significant, belonging to all climate types, which indicates a increase in aridity during the research period. A shift in the aridity tendency has been observed around 1979, and a period of greater aridity started since.

  11. VOC-Arid Integrated Demonstration guide to preparation of demonstration documents

    International Nuclear Information System (INIS)

    This guide has been prepared by Demonstration Operations of the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID). Its purpose is to describe demonstration documents, designate responsibilities for these documents, and guide the Principal Investigator (PI) and others in their preparation. The main emphasis of this guide is to describe the documentation required of the PI. However, it does cover some of the responsibilities of other members of the VOC-Arid ID team. The VOC-Arid ID is one of several US Department of Energy (DOE) integrated demonstrations designed to support the demonstration of emerging environmental management and restoration technologies. The principal objective of the VOC-Arid ID is to identify, develop, and demonstrate new and innovative technologies for environmental restoration at arid or semiarid sites containing volatile organic compounds with or without associated contamination (e.g., radionuclides and metals)

  12. Linkwater catchment groundwater residence time, flow pattern, and hydrochemistry trends

    International Nuclear Information System (INIS)

    Water demand in the Marlborough Sounds Linkwater catchment is increasing due to pasture irrigation by dairy farmers. Little is known about the geology and the hydrology of the area. Resource management decisions are being made without a sound understanding of sustainable limits. Groundwater is the main potential source for irrigation water at Linkwater. Marlborough District Council requires a baseline hydrological assessment of the flow characteristics of the Linkwater catchment to guide day-to-day allocation practice and advice to Council. While this may be regarded as a baseline study, according to Marlborough District Council consent records, a significant amount of water (around 10,000 m3/day) has already been allocated at Linkwater. It is assumed that Linkwater catchment water is derived predominantly from local rainfall, either directly onto the flats or as surface run-off from the adjacent ranges via Cullens Creek and other smaller creeks. The variation in well depth at Linkwater suggests that there are different water-bearing formations, ranging from shallow flow through the alluvial gravels recharged by seepage from Cullens Creek or recent rainfall, to medium and deep aquifers that may contain older water. The objective of this study is to establish the hydrogeology of the Linkwater area, and groundwater flow patterns from the isotopic and chemical signature of the water, including the sources of catchment recharge and mean residence times of the water in the catchment. Tritium, chloroflurocarbons (CFCs) and sulphur hexafluoride (SF6) are used for age dating, and δ18O, N2, Ar, CH4 and a full chemical assessment at all sites (including arsenic, nutrients and heavy metals) are used along with the age data to identify flow characteristics. (author). 26 refs., 18 figs., 5 tabs

  13. Peak Flow Responses and Recession Flow Characteristics After Thinning of Japanese Cypress Forest in a Headwater Catchment

    Science.gov (United States)

    We evaluated the effects of forest thinning on peak flow and recession characteristics of storm runoff in headwater catchments at Mie Prefecture, Japan. In catchment M5, 58.3% of stems were removed, whereas catchment M4 remained untreated as a control catchment. Storm precipitati...

  14. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    Science.gov (United States)

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  15. Outcrop Groundwater Prospecting, Drilling, and Well Construction in Hard Rocks in Semi-arid Regions

    OpenAIRE

    Chambel, António

    2014-01-01

    This chapter presents some recommendations for prospecting, drilling and well construction in hard rocks in semi-arid regions. Considering that these conditions are present in many countries where technology is not always available, the chapter concentrates on the most basic and simple methods to plan where best to drill and maximize success through the direct observation of rock types, weathering and fracturing. The advantage for the geologist and hydrogeologist in an arid or semi-arid envir...

  16. Analysis and evaluation of tillage on an alfisol ina semi-arid tropical region of India

    OpenAIRE

    Klaij, M C

    1983-01-01

    Tillage field experiments were conducted on Alfisols in a semi-arid tropical environment in India. The research was conducted within the framework of the Farming Systems Research Program of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).To put the experiments into perspective, a general review is given in chapter 2 on the environment of the semi-arid tropics, its problems and the research related to agricultural production. Rainfed agriculture has failed to pro...

  17. ARID1A immunohistochemistry improves outcome prediction in invasive urothelial carcinoma of urinary bladder.

    Science.gov (United States)

    Faraj, Sheila F; Chaux, Alcides; Gonzalez-Roibon, Nilda; Munari, Enrico; Ellis, Carla; Driscoll, Tina; Schoenberg, Mark P; Bivalacqua, Trinity J; Shih, Ie-Ming; Netto, George J

    2014-11-01

    AT-rich interactive domain 1A (ARID1A) is tumor suppressor gene that interacts with BRG1 adenosine triphosphatase to form a SWI/SNF chromatin remodeling protein complex. Inactivation of ARID1A has been described in several neoplasms, including epithelial ovarian and endometrial carcinomas, and has been correlated with prognosis. In the current study, ARID1A expression in urothelial carcinoma (UC) of the bladder and its association with clinicopathological parameters and outcome are addressed. Five tissue microarrays were constructed from 136 cystectomy specimens performed for UC at our institution. Nuclear ARID1A staining was evaluated using immunohistochemistry. An H-score was calculated as the sum of the products of intensity (0-3) multiplied by extent of expression (0%-100%). Average H-score per case was used for statistical analysis. ARID1A expression was categorized in low and high using Youden index to define the cut point. ARID1A expression significantly increased from normal to noninvasive UC to invasive UC. For both tumor progression and cancer death, Youden index yielded an H-score of 288 as the optimal cut point for ARID1A expression. Low ARID1A expression showed a tendency for lower risk of tumor progression and cancer mortality. Adding ARID1A expression to pathologic features offers a better model for predicting outcome than pathologic features alone. Low ARID1A expression was more frequently seen in earlier stage disease. There was a tendency for low ARID1A expression to predict better outcome. More importantly, the findings indicate that adding ARID1A expression to pathologic features increases the goodness of fit of the predictive model. PMID:25175170

  18. Spatial distribution and comparison of aridity indices in Extremadura, southwestern Spain

    Science.gov (United States)

    Moral, Francisco J.; Rebollo, Francisco J.; Paniagua, Luis L.; García-Martín, Abelardo; Honorio, Fulgencio

    2015-09-01

    In semi-arid lands with warm climates, aridity is a real hazard, with the threat of desertification because of greater precipitation variability and prolonged droughts. Aridity indices can be used to identify areas prone to desertification. The present study aimed to analyse the spatial distribution of aridity in Extremadura, southwestern Spain, using three indices: the De Martonne aridity index (I DM), the Pinna combinative index (I P), and the Food and Agriculture Organization (FAO) aridity index (I F). Temperature, precipitation, and evapotranspiration data from 90 weather stations located throughout Extremadura and 27 along boundaries with at least 30-year length (within the 1980-2011 period) were used to compute each index at each station. The statistical properties of each aridity index were assessed, and later, they were mapped by means of an integrated geographic information system (GIS) and a multivariate geostatistical (regression-kriging) algorithm in which exhaustive secondary information on elevation was incorporated. Annual and seasonal I DM and I F, and annual I P-kriged maps were generated. According to annual I DM, the semi-arid and Mediterranean conditions are predominant in the region, covering about 70 % of the territory, while about 94 % of the areas are classified as dry and semi-dry Mediterranean based on annual I P and about 86 % are classified as semi-arid and dry categories based on annual I F. The most vulnerable to aridity are the natural regions located to the west, the south, and the southeast of Extremadura, especially during summer, when arid conditions are found across the region. Although the three aridity indices were highly correlated, displaying similar spatial patterns, I DM was preferred because it can better discriminate different climate conditions in Extremadura.

  19. Organic Matter and Water Addition Enhance Soil Respiration in an Arid Region

    OpenAIRE

    Liming Lai; Jianjian Wang; Yuan Tian; Xuechun Zhao; Lianhe Jiang; Xi Chen; Yong Gao; Shaoming Wang; Yuanrun Zheng

    2013-01-01

    Climate change is generally predicted to increase net primary production, which could lead to additional C input to soil. In arid central Asia, precipitation has increased and is predicted to increase further. To assess the combined effects of these changes on soil CO2 efflux in arid land, a two factorial manipulation experiment in the shrubland of an arid region in northwest China was conducted. The experiment used a nested design with fresh organic matter and water as the two controlled par...

  20. Estimation of soil moisture-thermal infrared emissivity relation in arid and semi-arid environments using satellite observations

    Science.gov (United States)

    Grazia Blasi, Maria; Masiello, Guido; Serio, Carmine; Venafra, Sara; Liuzzi, Giuliano; Dini, Luigi

    2016-04-01

    The retrieval of surface parameters is very important for various aspects concerning the climatological and meteorological context. At this purpose surface emissivity represents one of the most important parameters useful for di fferent applications such as the estimation of climate changes and land cover features. It is known that thermal infrared (TIR) emissivity is aff ected by soil moisture, but there are very few works in literature on this issue. This study is aimed to analyze and fi nd a relation between satellite soil moisture data and TIR emissivity focusing on arid and semi-arid environments. These two parameters, together with the land surface temperature, are fundamental for a better understanding of the physical phenomena implied in the soil-atmosphere interactions and the surface energy balance. They are also important in several fi elds of study, such as climatology, meteorology, hydrology and agriculture. In particular, there are several studies stating a correlation between soil moisture and the emissivity at 8-9 μ m in desertic soils, which corresponds to the quartz Reststrahlen, a feature which is typical of sandy soils. We investigated several areas characterized by arid or semi-arid environments, focusing our attention on the Dahra desert (Senegal), and on the Negev desert (Israel). For the Dahra desert we considered both in situ, provided by the International Soil Moisture Network, and satellite soil moisture data, from ASCAT and AMSR-E sensors, for the whole year 2011. In the case of the Negev desert soil moisture data are derived from ASCAT observations and we computed a soil moisture index from a temporal series of SAR data acquired by the Cosmo-SkyMed constellation covering a period of six months, from June 2015 to November 2015. For both cases soil moisture data were related to the retrieved TIR emissivity from the geostationary satellite SEVIRI in three di erent spectral channels, at 8.7 μm, 10.8 μ m and 12 μ m. A Kalman lter

  1. Targeting EZH2 methyltransferase activity in ARID1A mutated cancer cells is synthetic lethal

    Science.gov (United States)

    Biter, Benjamin G.; Aird, Katherine M.; Garipov, Azat; Li, Hua; Amatangelo, Michael; Kossenkov, Andrew V.; Schultz, David C.; Liu, Qin; Shih, Ie-Ming; Conejo-Garcia, Jose R.; Speicher, David W.; Zhang, Rugang

    2015-01-01

    ARID1A, a chromatin remodeler, shows one of the highest mutation rates across many cancer types. Notably, ARID1A is mutated in over 50% of ovarian clear cell carcinomas, which currently has no effective therapy. To date, clinically applicable targeted cancer therapy based on ARID1A mutational status has not been described. Here we show that inhibition of the EZH2 methyltransferase acts in a synthetic lethal manner in ARID1A mutated ovarian cancer cells. ARID1A mutational status correlates with response to the EZH2 inhibitor. We identified PIK3IP1 as a direct ARID1A/EZH2 target, which is upregulated by EZH2 inhibition and contributes to the observed synthetic lethality by inhibiting PI3K/AKT signaling. Significantly, EZH2 inhibition causes regression of ARID1A mutated ovarian tumors in vivo. Together, these data demonstrate for the first time a synthetic lethality between ARID1A mutation and EZH2 inhibition. They indicate that pharmacological inhibition of EZH2 represents a novel treatment strategy for ARID1A mutated cancers. PMID:25686104

  2. Review of several problems on the study of eco-hydrological processes in arid zones

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ecosystem degradation is a common and cardinal environmental problem in arid zones. The change in the eco-hydrological processes is the basic cause responsible for such a problem. The study on the eco-hydrological processes in arid zones has become a forefront and focus of the eco-environmental research. Recent studies on eco-hydrological processes in arid zones show that the primary vegetation pattern and its eco-hydrological effect are of the most stable state of the ecosystem in arid zones. Special water absorption ways of plants in arid zones and the hydraulic lift and reverse hydraulic lift functions of some plants are the key mechanisms to maintain the stability of the ecosystem in arid zones. In the case of water shortage, ensuring ecological water requirement and maintaining proper ecological ground- water table are the prerequisite to keep healthful operation of the ecosystem in arid zones. The paper reviews some advances in the study of eco-hydrological processes in arid zones. It puts forward the concepts of critical ecological water requirement, optimal ecological water requirement and saturated ecological water requirement, and discusses their determination methods. It also emphasizes that the studies on natural vegetation pattern and eco-hydrological effect, on plants with hydraulic lift function, on water sources for plant absorption, on ecological water requirement and ecological groundwater table for different plant species should be strengthened to determine the species composition and pattern suitable for the restoration and reestablishment of vegetation in different arid zones in China.

  3. Resolving environmental signatures from a paleovalley sedimentary sequence from arid northwest Australia

    Science.gov (United States)

    Rouillard, Alexandra; Skrzypek, Grzegorz; Dogramaci, Shawan; Grierson, Pauline

    2014-05-01

    Sediments from paleolakes can retain invaluable archives of past environmental conditions. However, deciphering a depositional signal from digenetic processes can be challenging in arid environments owing to extremely variable rainfall and saline groundwaters, which result in aggressive chemical conditions that often limit the preservation of traditionally used proxies. We investigated the development of hydroclimatic proxies based on sediment geochemistry from the Fortescue Marsh, in the arid Pilbara region of northwest Australia. The Marsh lies in a paleovalley that acts as a terminal basin for the upper part of the Fortescue River and consists of a ~1000 km2 contiguous floodplain with freshwater pools episodically inundated during intense rainfall events. The paleovalley is bound by mountain ranges that contain some of the most Fe-ore rich and ancient deposits on Earth, which we expected to confer unique geochemical characteristics to the sediments. We used a sonic rig to retrieve a 25 m core from one of the deepest sedimentary sections of the Fortescue Marsh (86 m to bedrock). We combined δ34S and δ18O stable isotopes analyses with scanning μXRF and reflectance spectroscopy to quantitatively map the elemental and mineralogical composition of the sedimentary sequence and to identify underlying mechanisms relating to paleoclimate. We found that Fe, Ca and Sr were the most abundant elements identified by μXRF. Typically, layers of up to 1 m that were almost exclusively Fe-dominated alternated with layers of 0.3-2.4 m thickness dominated by Ca and/or Sr, with at least five intervals with distinct peaks in Sr. As expected, the hyperspectral characterization confirmed that Fe oxides were most abundant during the Fe-rich intervals. While clay minerals including kaolinite and montmorillonite were also indicated from the spectral data, this assessment is contradicted by the low relative abundance of Al and Si. Peaks in Sr don't appear to reflect carbonates nor Sr

  4. Sediment budget for Rediu reservoir catchment, North-Eastern Romania

    Science.gov (United States)

    Todosi, Cristian; Niculita, Mihai

    2016-04-01

    Sediment budgets are a useful tool for geomorphologic analysis, catchment management and environmental assessment, despite the uncertainties related to their assessment. We present the sediment budget construction and validation for a small catchment of 9.5319 kmp (953.19 ha) situated in the North-Eastern part of Romania. The Rediu reservoir was built between 1986 and 1988, on Rediu valley, a left tributary of Bahlui river, north-west from Iasi city. The catchment of the reservoir has 6.5 km in length and 2.5 km in maximum width, the altitudes decreasing from 170 m in the northern part, to 52 m in the southern part. The valley is symmetric, the altitude of the hillslopes going between 200 m to 75 m in one km length, in the transversal section with the maximum width. The floodplain is narrow having between 20 m to 210 m (in the area of confluence with Breazu tributary). The mean slope of the catchment is 6.4 degree, the maximum slope being 24.6 degrees. The length of channels which show banks of up to 2 m is 19.98 km. The land is used predominantly as crops (58.1 %), 16.7 % being covered by pastures (from which over half are eroded), 11.5 % percent of the catchment being covered by planted forests, 9.2 % by rural constructions and roads, 2.9 % by hayfields, 1.5 % by lakes and 0.1 % by orchards. Beside the Rediu reservoir, there are three ponds (15 771, 1761 and 751 sqm) in the catchment. We considered the trap efficiency for the reservoir and the ponds to be 95%. Aerial images from 1963, 1978 , 1984, 2005, 2008, 2010, 2012 and 2014 were used to assess the state of geomorphological processes before and after the reservoir construction. After 1970 a gully system situated in Breazu tributary sub-catchment and several active landslides along the main valley left side were forested. Beside these processes, soil erosion and human impact by constructions are the main processes generating sediment in the study area. The sediment yields were quantified by estimating the

  5. Hydrological characterization of twelve water catchments in Nigeria

    Directory of Open Access Journals (Sweden)

    Afolayan, S.O

    2016-07-01

    Full Text Available Twelve water catchments (WCs in Ogbomosho, south west of Nigeria were evaluated for their hydrological characterization with respect to domestic and irrigation activities. Both physiochemical and biological parameters (limnological properties were determined which include pH, total alkalinity (TA, CO32-,HCO3 -, NO3-N, SO42-, N, P, K, Na, Ca, Mg, dissolved oxygen (DO, electrical conductivity (ECw, biochemical oxygen demand (BOD, total solids (TS, total dissolved solids (TDS, chlorophyll a,b,c and phaeophytin. Temperature fluctuation of the water catchments was measured in-situ to avoid samples coming into contact with the surrounding air using mercury in glass thermometer. Soil samples collected from the bottom of the water catchments were determined for chemical properties such as N, P, K, Na, Ca, Mg, and SO4-2 following recommended procedures. These parameters were investigated based on the perceived research consent of their efficacy in characterizing water catchments hydrologically along safety and pollution divides. The limnological properties were configured into ranking compared with standards to evaluate the degree of contamination or suitability of the WCs for domestic and irrigation purposes. Results obtained indicated pH values of the catchments ranging from 5.8 to 7.4 with corresponding TA between 0 and 296 mgL-1 suggesting high level of dissolved carbon dioxide (DCO2 and traces of untreated wastewater in most of the catchments. Based on ranking of the limnological properties of the WCs, WC4, WC5, WC6 recorded indices between 65 and 95 signifying that cumulatively these three WCs were more prone to pollution and could affect human health at consumption while WC2, WC3, WC 7 and , WC 10, aligned between 95 and 120 indicating mild to medium pollution and WC1, WC 11, and WC 12 oscillated between 120 to 145 picturing WCs approaching standards (132 while WC8 ranged between 145 and 170 revealing WC 8 as catchment with little or no tendency

  6. 'Multiple 'old' water sources in an upland catchment'

    Science.gov (United States)

    Atkinson, Alex; Cartwright, Ian; Gilfedder, Ben; Hofmann, Harald; Unland, Nicolaas

    2013-04-01

    The upper catchments of river systems often represent a significant proportion of the total catchment area, and are therefore a source of large volumes of fresh water. Where flow regimes are perennial, during the dry season river flow is controlled by 'old' water sources; determining the residence time and spatial distribution of old water discharge in these areas is important for regulating river flow and water quality further downstream. Using environmental tracers such as major ions, stable isotopes (δ2H, δ18O), 222Rn and high precision 3H and 14C measurements, this study aims to characterise pathways and residence times of old water sources in the upper catchment of the Gellibrand River, located in the Otway Ranges of Victoria, Australia. Between March 2011 and June 2012, water samples were taken from the main river channel, an upper catchment tributary (Barramunga River) and soil water and groundwater sources at a bimonthly frequency. Results from chemical mass balances using Cl, 222Rn and 3H demonstrate that where the aquifer is present the river is a largely gaining system with between 30-60% of river water derived from older groundwater, revealed by 14C analysis to be between 1,500 - 10,000 years old. On the hillslopes of the upper catchment underlain by impermeable basement rock, the story is quite different. Old water here is stored in subsurface soil layers, draining through a network of diffuse surface and subsurface soil pipes toward the river. Using 3H data, river water draining from these hillslopes is calculated to have a mean age of 10 - 30 years, indicating that old soil water in these areas can have residence times on a decadal timescale. This study highlights the need to understand the mechanism of hillslope soil piping, a phenomena that is being increasingly observed in river catchments around the world. Many questions still remain unanswered as to how are they are formed, how they transmit 'old' and 'new' water during baseflow and stormflow

  7. Soil weathering rates in 21 catchments of the Canadian Shield

    Directory of Open Access Journals (Sweden)

    D. Houle

    2012-03-01

    Full Text Available Soil mineral weathering represents an essential source of nutrient base cation (Ca, Mg and K for forest growth in addition to provide a buffering power against precipitation acidity for soils and surface waters. Weathering rates of base cations were obtained for 21 catchments located within the temperate and the boreal forest of the Canadian Shield with the geochemical model PROFILE. Weathering rates ranged from 0.58 to 4.46 kmolc ha−1 yr−1 and their spatial variation within the studied area was mostly in agreement with spatial variations in soil mineralogy. Weathering rates of Ca and Mg were significantly correlated (r = 0.80 and 0.64 with their respective lake concentrations. Weathering rates of K and Na did not correlate with lake concentrations of K and Na. The modeled weathering rates for each catchment were also compared with estimations of net catchment exportations. The result show that modeled weathering rates of Ca were not significantly different than the net catchment exportations while modeled weathering rates of Mg were higher by 51%. Larger differences were observed for K and Na weathering rates that were significantly different than net catchment exportations being 6.9 and 2.2 times higher than net exportations, respectively. The results for K were expected given its high reactivity with biotic compartments and suggest that most of the K produced by weathering reactions was retained within soil catchments and/or above ground biomass. This explanation does not apply to Na, however, which is a conservative element in forest ecosystems because of the insignificant needs of Na for soil microorganisms and above ground vegetations. It raises concern about the liability of the PROFILE model to provide reliable values of Na weathering rates. Overall, we concluded that the PROFILE model is powerful enough to reproduce spatial geographical gradients in weathering rates for relatively large areas

  8. Assessing water quality trends in catchments with contrasting hydrological regimes

    Science.gov (United States)

    Sherriff, Sophie C.; Shore, Mairead; Mellander, Per-Erik

    2016-04-01

    Environmental resources are under increasing pressure to simultaneously achieve social, economic and ecological aims. Increasing demand for food production, for example, has expanded and intensified agricultural systems globally. In turn, greater risks of diffuse pollutant delivery (suspended sediment (SS) and Phosphorus (P)) from land to water due to higher stocking densities, fertilisation rates and soil erodibility has been attributed to deterioration of chemical and ecological quality of aquatic ecosystems. Development of sustainable and resilient management strategies for agro-ecosystems must detect and consider the impact of land use disturbance on water quality over time. However, assessment of multiple monitoring sites over a region is challenged by hydro-climatic fluctuations and the propagation of events through catchments with contrasting hydrological regimes. Simple water quality metrics, for example, flow-weighted pollutant exports have potential to normalise the impact of catchment hydrology and better identify water quality fluctuations due to land use and short-term climate fluctuations. This paper assesses the utility of flow-weighted water quality metrics to evaluate periods and causes of critical pollutant transfer. Sub-hourly water quality (SS and P) and discharge data were collected from hydrometric monitoring stations at the outlets of five small (~10 km2) agricultural catchments in Ireland. Catchments possess contrasting land uses (predominantly grassland or arable) and soil drainage (poorly, moderately or well drained) characteristics. Flow-weighted water quality metrics were calculated and evaluated according to fluctuations in source pressure and rainfall. Flow-weighted water quality metrics successfully identified fluctuations in pollutant export which could be attributed to land use changes through the agricultural calendar, i.e., groundcover fluctuations. In particular, catchments with predominantly poor or moderate soil drainage

  9. Novel ideas for maximising dew collection to aid plant establishment to combat desertification and restore degraded dry and arid lands

    Science.gov (United States)

    Kotzen, Benz

    2014-05-01

    This paper focuses on the potential of dew to provide water to plants and potentially to people as well in remote and difficult to reach areas where rainfall and underground water cannot be harvested. The combat of desertification and the restoration of degraded and desertified dry and arid lands has never been more urgent. A key practical component of this strategy is the restoration of habitat with planting. But for habitat and planting to survive there needs to be an adequate supply of water. In most cases providing water to the plant's roots is vital. In some areas where habitats have been destroyed, sufficient water is immediately available, for example through seasonal rainfall, or it can be harvested to concentrate adequate supplies of water to the roots. However, in arid and hyper arid areas, as well as in some dryland areas, a consistent and adequate supply of water cannot be provided by any conventional proven method. Thus, as the need to combat desertification and to restore desertified dry and arid land increases, so the need to find novel methods of establishing and maintaining planting and thus habitat increases. In more traditional land management scenarios this can be achieved through manipulating landform on a micro and macro scale, for example, by creating catchments, thereby collecting precipitation and directing it to the plants. Where this cannot be done, other means of water supply are usually required. Bainbridge (2007) and others have shown that supplying water to plants is possible through a number of traditional methods, for example, using clay pots. But most of these techniques require an introduced source of water, for example, obtained through water harvesting methods or by delivering water to site in tanks and by water bowser. This can work but requires continuous manpower. It is expensive and can be physically prohibitive in areas where access is difficult and/or remote. The concept of using dew to supply water in drylands is not new

  10. Meaningful traits for grouping plant species across arid ecosystems.

    Science.gov (United States)

    Bär Lamas, Marlene Ivonne; Carrera, A L; Bertiller, M B

    2016-05-01

    Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms. PMID:26897637

  11. Sustainable Small-Scale Agriculture in Semi-Arid Environments

    OpenAIRE

    Scott Ingram; Margaret Nelson; Katherine A. Spielmann; Peeples, Matthew A.

    2011-01-01

    For at least the past 8000 years, small-scale farmers in semi-arid environments have had to mitigate shortfalls in crop production due to variation in precipitation and stream flow. To reduce their vulnerability to a shortfall in their food supply, small-scale farmers developed short-term strategies, including storage and community-scale sharing, to mitigate inter-annual variation in crop production, and long-term strategies, such as migration, to mitigate the effects of sustained droughts. W...

  12. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    NARCIS (Netherlands)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.W.

    2014-01-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center – the Hydrologic Modell

  13. IDENTIFYING LANDSLIDE HAZARD IN THE CHECHIȘ CATCHMENT, BAIA MARE DEPRESSION

    Directory of Open Access Journals (Sweden)

    FLAVIA – LUANA MĂGUȚ

    2013-11-01

    Full Text Available Identifying Landslide Hazard in the Chechiș Catchment, Baia Mare Depression. One of the starting points when assessing landslide risk is hazard identification, represented by the description of the landslide process and the extent to which it has an impact on the human community. Different areas affected by sliding processes have been identified and mapped on the field in the 100 km2 of the Chechiș catchment, a territory situated to the south of Baia Mare municipality. Several other areas are considered to be susceptible to sliding processes, based on the factors which have influenced the occurrence of the ones already identified. Past and present effects of the existing landslides are illustrated and discussed together with the costs associated to the measures needed for their mitigation. In the view of these results, a landslide risk assessment is considered necessary in the area.

  14. Use of remote sensing for hydrological parameterisation of Alpine catchments

    Directory of Open Access Journals (Sweden)

    H. Bach

    2003-01-01

    Full Text Available Physically-based water balance models require a realistic parameterisation of land surface characteristics of a catchment. Alpine areas are very complex with strong topographically-induced gradients of environmental conditions, which makes the hydrological parameterisation of Alpine catchments difficult. Within a few kilometres the water balance of a region (mountain peak or valley can differ completely. Hence, remote sensing is invaluable for retrieving hydrologically relevant land surface parameters. The assimilation of the retrieved information into the water balance model PROMET is demonstrated for the Toce basin in Piemonte/Northern Italy. In addition to land use, albedos and leaf area indices were derived from LANDSAT-TM imagery. Runoff, modelled by a water balance approach, agreed well with observations without calibration of the hydrological model. Keywords: PROMET, fuzzy logic based land use classification, albedo, leaf area index

  15. Kresoxim methyl deposition, drift and runoff in a vineyard catchment.

    Science.gov (United States)

    Lefrancq, M; Imfeld, G; Payraudeau, S; Millet, M

    2013-01-01

    Surface runoff and spray drift represent a primary mode of pesticide mobilisation from agricultural land to ecosystem. Though pesticide drift has mainly been studied at small scale (inverse weighting distance and ordinary kriging) and ranged between 53 g and 61 g (5.8 and 6.6% of the total mass applied). The amount of KM drifted on roads was 50 times larger than that in runoff water collected at the outlet of the catchment. Although KM application was carried out under regular operational and climatic conditions, its deposition on non-target surfaces may be significant and lead to pesticide runoff. These results can be anticipated as a starting point for assessing pesticide deposition during spray application and corresponding pesticide runoff in agricultural catchments. PMID:23201604

  16. A conceptual glacio-hydrological model for high mountainous catchments

    Directory of Open Access Journals (Sweden)

    B. Schaefli

    2005-01-01

    Full Text Available In high mountainous catchments, the spatial precipitation and therefore the overall water balance is generally difficult to estimate. The present paper describes the structure and calibration of a semi-lumped conceptual glacio-hydrological model for the joint simulation of daily discharge and annual glacier mass balance that represents a better integrator of the water balance. The model has been developed for climate change impact studies and has therefore a parsimonious structure; it requires three input times series – precipitation, temperature and potential evapotranspiration – and has 7 parameters to calibrate. A multi-signal approach considering daily discharge and – if available – annual glacier mass balance has been developed for the calibration of these parameters. The model has been calibrated for three different catchments in the Swiss Alps having glaciation rates between 37% and 52%. It simulates well the observed daily discharge, the hydrological regime and some basic glaciological features, such as the annual mass balance.

  17. Aerosol radiative effects over global arid and semi-arid regions based on MODIS Deep Blue satellite observations

    Science.gov (United States)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Gkikas, Antonis; Matsoukas, Christos; Sayer, Andrew M.; Hsu, N. Christina; Vardavas, Ilias

    2014-05-01

    Aerosols are a key parameter for several atmospheric processes related to weather and climate of our planet. Specifically, the aerosol impact on Earth's climate is exerted and quantified through their radiative effects, which are induced by their direct, indirect and semi-direct interactions with radiation, in particular at short wavelengths (solar). It is acknowledged that the uncertainty of present and future climate assessments is mainly associated with aerosols and that a better understanding of their physico-chemical, optical and radiative effects is needed. The contribution of satellites to this aim is important as a complementary tool to climate and radiative transfer models, as well as to surface measurements, since space observations of aerosol properties offer an extended spatial coverage. However, such satellite based aerosol properties and associated model radiation computations have suffered from unavailability over highly reflecting surfaces, namely polar and desert areas. This is also the case for MODIS which, onboard the Terra and Aqua satellites, has been providing high quality aerosol data since 2000 and 2002, respectively. These data, more specifically the aerosol optical depth (AOD) which is the most important optical property used in radiative and climate models, are considered to be of best quality. In order to address this problem, the MODIS Deep Blue (DB) algorithm has been developed which enables the retrieval of AOD above arid and semi-arid areas of the globe, including the major deserts. In the present study we make use of the FORTH detailed spectral radiative transfer model (RTM) with MODIS DB AOD data, supplemented with single scattering albedo (SSA) and asymmetry parameter (AP) aerosol data from the Global Aerosol DataSet (GADS) to estimate the aerosol DREs over the arid and semi-arid regions of the globe. The RTM is run using surface and atmospheric data from the ISCCP-D2 dataset and the NCEP global reanalysis project and computes the

  18. Simulating future precipitation extremes in a complex Alpine catchment

    OpenAIRE

    C. Dobler; Bürger, G.; J. Stötter

    2013-01-01

    The objectives of the present investigation are (i) to study the effects of climate change on precipitation extremes and (ii) to assess the uncertainty in the climate projections. The investigation is performed on the Lech catchment, located in the Northern Limestone Alps. In order to estimate the uncertainty in the climate projections, two statistical downscaling models as well as a number of global and regional climate models were considered. The downscaling models applied are the Expanded ...

  19. Creating a catchment scale perspective for river restoration

    OpenAIRE

    L. Benda; MILLER, D; J. Barquín

    2011-01-01

    One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tribu...

  20. Creating a catchment scale perspective for river restoration

    Directory of Open Access Journals (Sweden)

    L. Benda

    2011-09-01

    Full Text Available One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2, in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we used computer tools to examine the spatial patterns of fluvial landscapes that are associated with five domains of hydro-geomorphic processes and landforms. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to hillslope and valley topography, river network structure, and channel elevation profiles. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  1. Application of Rainfall-runoff Models to Zard River Catchment's

    OpenAIRE

    M. B. Rahnama; G. A. Barani

    2005-01-01

    Rainfall-runoff models are nonlinear processes according to the sequential and spatial distribution of the rainfall. So, it is difficult to explain the response of catchments systems with the simple models. In the present work simulation of the rainfall-runoff processes have been carried out by the Artificial Neural Networks (ANN) and the HEC-HMS models. The ANN models of Multi Layer Perceptron (MLP) with two hidden layers and Radial Basis Function (RBF), were used to simulate this process. I...

  2. Soil Chemistry 1983-86 at the Rain Project Catchments

    OpenAIRE

    Lotse, E.G.; Wright, R.

    1989-01-01

    The aim of the rain project is to explain the effects of changed acid deposition on soils and waters. This report presents results from chemical and physical analyses of soil samples collected yearly 1984-1986 at the rain project catchments at Sogndal and Risdalsheia. Estimates of historical weathering rates based on total elemental analysis of soil and bedrock are 295 and 12 meq/m"/yr at Sogndal and Risdalsheia, respectively. Of the key chemical parameters measured only absorbed sulfate show...

  3. Understanding catchment behavior through stepwise model concept improvement

    OpenAIRE

    F. Fenicia; Savenije, H. H. G.; P. Matgen; Pfister, L.

    2008-01-01

    Lack of data is one of the main limitations for hydrological modeling. However, it is often used as a justification for over simplifying, poorly performing models. If we want to enhance our understanding of hydrological systems, it is important to fully exploit the information contained in the available data, and to learn from model deficiencies. In this paper, we propose a methodology where we systematically update the model structure, progressively incorporating new hypotheses of catchment ...

  4. Lowland forest butterflies of the Sankosh River catchment, Bhutan

    OpenAIRE

    Singh, A. P.

    2012-01-01

    This paper provides information on butterflies of the lowland forests of Bhutan for the first time. As a part of the biodiversity impact assessment for the proposed Sankosh hydroelectric power project, a survey was carried out along the Sankosh River catchment to study the butterfly diversity. The aim of the study was to identify species of conservation priority, their seasonality and to know the butterfly diversity potential of the area. Surveys were carried out during five different seas...

  5. Characteristics and drivers of baseflow response in 183 Australian catchments

    OpenAIRE

    A. I. J. M. van Dijk

    2009-01-01

    Daily streamflow data for 183 Australian catchments were used to assess the characteristics and main drivers of baseflow and quick flow behaviour, and to find an appropriate balance between simplicity and explanatory performance in modelling. Baseflow separation was performed following the Wittenberg algorithm. A linear reservoir model (one parameter) produced baseflow estimates as good as those obtained using a non-linear reservoir (two parameters) and was therefore considered the mor...

  6. The properties of route catchments in orbital - radial cities

    OpenAIRE

    Geoffrey Hyman; Les Mayhew

    2000-01-01

    In this paper we consider the analytical and geometric properties of route catchments in urban areas in which the transport network consists of a combination of radial routes converging on the city centre and one or more major orbital routes around the city. After defining the basic concepts, we examine in detail the analytical and geometric determination of quickest routes through the city centre versus orbital routing and how these vary with location, speed, and urban transport provision. T...

  7. Parsimonious hydrological modeling of urban sewer and river catchments

    OpenAIRE

    Coutu, Sylvain; Del Giudice, Dario; Rossi, Luca; Barry, David Andrew

    2012-01-01

    A parsimonious model of flow capable of simulating flow in natural/engineered catchments and at WWTP (Wastewater Treatment Plant) inlets was developed. The model considers three interacting, dynamic storages that account for transfer of water within the system. One storage describes the ``flashy'' response of impervious surfaces, another pervious areas and finally one storage describes subsurface flow. The sewerage pipe network is considered as an impervious surface and is thus included in th...

  8. Suspended sediment apportionment in a South-Korean mountain catchment

    Science.gov (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  9. Catchment Management Agencies for poverty eradication in South Africa

    Science.gov (United States)

    Schreiner, Barbara; Van Koppen, Barbara

    This paper discusses the changes in water law in South Africa since the new dispensation. The focus is on the poverty dimensions of the early experiences of implementation of one of the components of the National Water Act: the establishment of Catchment Management Agencies (CMAs). From a diversity of recent experiences in decentralizing integrated water resources management, key areas emerge where future actions by the government are crucial to establish pro-poor, developmental CMAs.

  10. Estimation of erosion and sediment export from an agricultural catchment

    OpenAIRE

    Evrard, Olivier; Nord, Guillaume; Cerdan, Olivier; Souchère, Véronique; Le Bissonnais, Yves; Bonté, Philippe

    2010-01-01

    Soil erosion leads to important environmental problems (e.g. muddy floods, reservoir sedimentation) in cultivated areas of the European loess belt. This study aimed to quantify erosion and to determine the impact of rainfall seasonality and land use change on soil erosion over the last 40 years in a 94-ha cultivated catchment of Normandy (France). To this end, scenarios representative of the different land use conditions were simulated using the STREAM expert-based erosion model. A 13-yrs lon...

  11. SOILS VULNERABILITY OF CATCHMENT ALMAŞ AT GEOMORPHOLOGIC CONTEMPORARY PROCESSES

    OpenAIRE

    MĂDĂLINA-IOANA RUS; I. A. IRIMUȘ

    2015-01-01

    Soils vulnerability of the Catchment Almas geomorphologic processes. Almas Basin, signed lower lithologic Miocene soils deposits, shows six classes: Cernisols, Cambisols, Luvisols, Hydrosols, Pelisols, Protosols (after SRTS, 2003). The largest share is attributed to Luvisols class (60%), followed by undeveloped soil represented by Protosols and Antrisols (15%), followed by the remaining classes with lower weights: Cambisols (13%), Cernisols (7%), Pelisols (4%), Hydrosols (1%). Contemporary ge...

  12. Characteristics and drivers of baseflow response in 183 Australian catchments

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2009-09-01

    Full Text Available Daily streamflow data for 183 Australian catchments were used to assess the characteristics and main drivers of baseflow and quick flow behaviour, and to find an appropriate balance between simplicity and explanatory performance in modelling. Baseflow separation was performed following the Wittenberg algorithm. A linear reservoir model (one parameter produced baseflow estimates as good as those obtained using a non-linear reservoir (two parameters and was therefore considered the more appropriate. The transition from storm flow dominated to baseflow dominated streamflow generally occurred 7 to 10 d after the storm event. The catchments investigated had baseflow half-times of about 12 d, with 80% of stations having half-times between 7 and 34 d. The shortest half-times occurred in the driest catchments and were attributed to intermittent occurrence of fast-draining (possibly perched groundwater. Median baseflow index (BFI was 0.45 with considerable variation between stations. Catchment humidity explained 27% of the variation in derived baseflow recession coefficients. Another 53% of variance in recession coefficients as well as in BFI showed spatial correlation lengths of 200 to 300 km, corresponding to terrain factors rather than climate or land use. The remaining 16 to 20% of variance remained unexplained. Most (84% of the variation between stations in average baseflow could be explained by monthly precipitation in excess of potential evapotranspiration. Most (70% of the variation in average quick flow could be explained by average rainfall. Another 20% of variation was spatially correlated over spatial scales of 400 km, possibly reflecting a combination of terrain and climate factors; the remaining 10 to 16% remained unexplained.

  13. A physically-based Distributed Hydrologic Model for Tropical Catchments

    Science.gov (United States)

    Abebe, N. A.; Ogden, F. L.

    2010-12-01

    Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.

  14. Hydrology of Lebanese catchments in the Mediterranean context

    OpenAIRE

    Mohammad, Merheb

    2015-01-01

    Lebanon is a small mountainous country with a typical Mediterranean climate and a high spatial variability of precipitation with a substantial amount occurring as snow. Moreover, the majority of Lebanese terrains are karstic. It is a heavily urbanized country with increasing anthropogenic pressure on water resources. Furthermore, the Lebanese catchments are poorly-gauged due mainly to a large gap of data (1975 - 2000) caused by the civil war (1975 - 1990). However, previous studies on regiona...

  15. Hydrological response of a small catchment burned by experimental fire

    Directory of Open Access Journals (Sweden)

    C. R. Stoof

    2011-04-01

    Full Text Available Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire are scarce, and nested approaches are rarely used. Taking a unique approach, we performed a catchment-scale experimental fire to improve insight into the drivers of fire impact on hydrology. In north-central Portugal, rainfall, canopy interception, streamflow and soil moisture were monitored in shrub-covered paired catchments pre- and post-fire. Post-fire runoff coefficients were higher than pre-fire, and fire changed the rainfall-streamflow relationship – although the increase in streamflow was only significant at the subcatchment-scale. Fire also increased the response of topsoil moisture to rainfall, and caused more rapid drying of topsoils after rain events. Since soil physical changes due to fire were not apparent, we suggest that changes resulting from vegetation removal played an important role in increasing streamflow after fire, namely: (1 increased effective rainfall and decreased transpiration – increasing the amount of water available for (subsurface runoff, (2 more rapid development of soil water repellency and decreased surface water storage – increasing overland flow risk, (3 more rapid breakdown of post-fire soil water repellency – increasing infiltration during extended rain events. Results stress that fire impact on hydrology is largely affected by scale, highlight the hydrological impact of fire on small scales, and emphasize the risk of overestimating fire impact when upscaling plot-scale studies to the catchment-scale. Finally, they increase understanding of the processes contributing to post-fire flooding and erosion events.

  16. Instability driven flow and runoff formation in a small catchment

    OpenAIRE

    Tesar, M.; Šír, M.; Prazák, J.; Lichner, L.

    2004-01-01

    Two anomalous phenomena were observed in a small catchment: 1) In some situations, the water supplied by rain caused a pronounced decrease in the soil water content. 2) In these periods, the soil water movement could be explained only by assuming an irregularly oscillating outflow of soil water into lower horizons. In these situations a large volume of water flows through the soil; therefore on the hydrological scale, this phenomenon forms a great part of the outflow from a watershed. These p...

  17. Water chemistry of small reservoir catchments in central Tunisia

    OpenAIRE

    Montoroi, Jean-Pierre; GRUNBERGER, OLIVIER; Nasri, S

    1999-01-01

    Numerous small hill reservoirs have been constructed in Tunisia since the early 1990's. The water chemistry of a representative small reservoir catchment was investigated to elucidate water-soil-rock interactions. The groundwater and surface water of the calcareous and marly watershed were characterizes by field chemical investigations and pedological observations. The reservoir water was alkaline, with a low concentration, highly oxygenated and weakly carbonated while the groundwater was neu...

  18. The status of persistent organic pollutants in Lake Victoria catchment

    OpenAIRE

    Madadi, O.V; Wandiga, S.O.; Jumba, I.O.

    2006-01-01

    The use of most organochlorine pesticides has been banned or restricted in the republic of Kenya under the Rotterdam and Stockholm convention due to high levels of persistence in the environment and toxicity to nontarget organisms. Studies conducted in some parts of the country have revealed that residue levels of these compounds are still in the environment. However, the residues of these compounds have not been exhaustively studied in the Lake Victoria catchment area. This study was set to ...

  19. Sediment sources in the Upper Severn catchment: a fingerprinting approach

    OpenAIRE

    Collins, A L; Walling, D. E.; Leeks, G. J. L.

    1997-01-01

    Suspended sediment sources in the Upper Severn catchment are quantified using a composite fingerprinting technique combining statistically-verified signatures with a multivariate mixing model. Composite fingerprints are developed from a suite of diagnostic properties comprising trace metal (Fe, Mn, AI), heavy metal (Cu, Zn, Pb, Cr, Co, Ni), base cation (Na, Mg, Ca, K), organic (C, N), radiometric (137Cs, 210Pb), and other (total P) de...

  20. The Lune catchment abstraction management strategy. Consultation document September 2003

    OpenAIRE

    2003-01-01

    This consultation document sets out the proposed future licensing strategy for the Lune Catchment Abstraction Management Strategy (CAMS) area. Following the three month consultation period, the Environment Agency will determine the final licensing strategy and publish it in the CAMS document. The strategy will provide an indication of whether new abstraction licences are likely to be available and the conditions that should be expected on licences. Water plays a vi...

  1. Downscaling of Precipitation in the Upper Danube Catchment Area

    OpenAIRE

    Schipper, Janus Willem

    2005-01-01

    This work has been carried out in the framework of the project GLOWA-Danube (GLObal WAter cycle) where a joint effort is made by several groups to model the interaction of the water cycle and society in the Upper Danube catchment area. In particular regional climate models are used to simulate and eventually predict precipitation in this research area, while other groups convert this information into river runoff estimates and groundwater fluxes. It has been agreed in the project that prec...

  2. Nutrient Transport in the Lower Seyhan Catchment Area

    OpenAIRE

    Aslan, Gamze

    1999-01-01

    The Lower Seyhan Catchment Area starts at the downstream of the Seyhan Dam on the Seyhan River. This fertile area is exposed to dense agricultural activities. Nutrient loads (nitrogen and phosphorus) from these activities create an important pollution potential for surface and groundwater resources in the area. In addition to the agricultural areas, these nutrient loads also originate from domestic and industrial discharges. In this study, the transport of the estimated nutrient lo...

  3. Restoring Landform Geodiversity in Modified Rivers and Catchments

    Science.gov (United States)

    Smith, Ben; Clifford, Nicholas

    2014-05-01

    Extensive human modification and exploitation has created degraded and simplified systems lacking many of the landforms which would characterise healthy, geodiverse rivers. As awareness of geodiversity grows we must look to ways not only to conserve geodiversity but to also restore or create landforms which contribute to geodiverse environments. River restoration, with lessons learned over the last 30 years and across multiple continents, has much to offer as an exemplar of how to understand, restore or create geodiversity. Although not mentioned explicitly, there is an implicit emphasis in the Water Framework Directive on the importance of landforms and geodiversity, with landform units and assemblages at the reach scale assumed to provide the physical template for a healthy aquatic ecosystem. The focus on hydromorphology has increased the importance of geomorphology within river restoration programmes. The dominant paradigm is to restore landforms in order to increase habitat heterogeneity and improve biodiversity within rivers. However, the process of landform restoration is also a goal in its own right in the context of geodiversity, and extensive compilations of restoration experiences allow an inventory and pattern of landform (re-) creation to be assembled, and an assessment of landform function as well as landform presence/absence to be made. Accordingly, this paper outlines three principal research questions: Which landforms are commonly reinstated in river restoration activities? How do these landforms function compared to natural equivalents and thus contribute to 'functional' geodiversity as compared to the 'aesthetic' geodiversity? How does landform diversity scale from reach to catchment and contribute to larger-scale geodiversity? Data from the UK National River Restoration Inventory and the RHS are combined to assess the frequency and spatial distribution of commonly created landforms in relation to catchment type and more local context. Analysis is

  4. Geographically Isolated Wetlands and Catchment Hydrology: A Modified Model Analyses

    Science.gov (United States)

    Evenson, G.; Golden, H. E.; Lane, C.; D'Amico, E.

    2014-12-01

    Geographically isolated wetlands (GIWs), typically defined as depressional wetlands surrounded by uplands, support an array of hydrological and ecological processes. However, key research questions concerning the hydrological connectivity of GIWs and their impacts on downgradient surface waters remain unanswered. This is particularly important for regulation and management of these systems. For example, in the past decade United States Supreme Court decisions suggest that GIWs can be afforded protection if significant connectivity exists between these waters and traditional navigable waters. Here we developed a simulation procedure to quantify the effects of various spatial distributions of GIWs across the landscape on the downgradient hydrograph using a refined version of the Soil and Water Assessment Tool (SWAT), a catchment-scale hydrological simulation model. We modified the SWAT FORTRAN source code and employed an alternative hydrologic response unit (HRU) definition to facilitate an improved representation of GIW hydrologic processes and connectivity relationships to other surface waters, and to quantify their downgradient hydrological effects. We applied the modified SWAT model to an ~ 202 km2 catchment in the Coastal Plain of North Carolina, USA, exhibiting a substantial population of mapped GIWs. Results from our series of GIW distribution scenarios suggest that: (1) Our representation of GIWs within SWAT conforms to field-based characterizations of regional GIWs in most respects; (2) GIWs exhibit substantial seasonally-dependent effects upon downgradient base flow; (3) GIWs mitigate peak flows, particularly following high rainfall events; and (4) The presence of GIWs on the landscape impacts the catchment water balance (e.g., by increasing groundwater outflows). Our outcomes support the hypothesis that GIWs have an important catchment-scale effect on downgradient streamflow.

  5. Environmental Effects of Irrigation in Arid and Semi-Arid Regions Efectos Ambientales del Riego en Regiones Áridas y Semi-Áridas en América Latina

    OpenAIRE

    Alicia Fernández Cirelli; José Luis Arumí; Diego Rivera; Peter  W Boochs

    2009-01-01

    This article reviews the state of the art with respect to the environmental effects of irrigated agriculture on water and soil quality in arid and semi-arid regions on a field scale. Information is scarce and fragmentary. Examples in selected areas of other arid and semi-arid regions in the world clearly show the importance of studying the environmental impact of irrigation practices on water and soil quality. Studies mainly refer to waterlogging and salinization. As regards agrochemicals, fe...

  6. Hydrogeochemistry of shallow groundwater in an upland Scottish catchment

    Science.gov (United States)

    Soulsby, C.; Chen, M.; Ferrier, R. C.; Helliwell, R. C.; Jenkins, A.; Harriman, R.

    1998-06-01

    The hydrogeochemistry of shallow groundwater has been characterized in the Allt a'Mharcaidh catchment in the Scottish Cairngorms in order to: (i) assess the spatial and temporal variation in groundwater chemistry; (ii) identify the hydrogeochemical processes regulating its evolution; and (iii) examine the influence of groundwater on the quality and quantity of stream flow. Shallow groundwater in superficial drift deposits is circumneutral (pH7·1) and base cation concentrations are enriched compared with precipitation and drainage water from overlying podzolic soils. Modelling with NETPATH suggests that the dominant geochemical processes that account for this are the dissolution of plagioclase, K-feldspar and biotite. Groundwater emerging as springs from weathered granite underlying high altitude (>900 m) alpine soils shows similar characteristics, though weathering rates are lower, probably as a result of reduced residence times and lower temperatures. Chemical hydrograph separation techniques using acid neutralizing capacity (ANC) and Si as tracers show that groundwater is the dominant source of baseflow in the catchment and also buffers the chemistry of stream water at high flows: groundwater may account for as much as 50-60% of annual runoff in the catchment. Climate and land use in the Cairngorms are vulnerable to future changes, which may have major implications for hydrogeological processes in the area.

  7. The role of lakes in carbon cycling in boreal catchments

    Energy Technology Data Exchange (ETDEWEB)

    Rantakari, M.

    2010-07-01

    Lakes are an important component of ecosystem carbon cycle through both organic carbon sequestration and carbon dioxide and methane emissions, although they cover only a small fraction of the Earth's surface area. Lake sediments are considered to be one of rather permanent sinks of carbon in boreal regions and furthermore, freshwater ecosystems process large amounts of carbon originating from terrestrial sources. These carbon fluxes are highly uncertain especially in the changing climate. The present study provides a large-scale view on carbon sources and fluxes in boreal lakes situated in different landscapes. We present carbon concentrations in water, pools in lake sediments, and carbon gas (CO{sub 2} and CH{sub 4}) fluxes from lakes. The study is based on spatially extensive and randomly selected Nordic Lake Survey (NLS) database with 874 lakes. The large database allows the identification of the various factors (lake size, climate, and catchment land use) determining lake water carbon concentrations, pools and gas fluxes in different types of lakes along a latitudinal gradient from 60 deg N to 69 deg N. Lakes in different landscapes vary in their carbon quantity and quality. Carbon (C) content (total organic and inorganic carbon) in lakes is highest in agriculture and peatland dominated areas. In peatland rich areas organic carbon dominated in lakes but in agricultural areas both organic and inorganic C concentrations were high. Total inorganic carbon in the lake water was strongly dependent on the bedrock and soil quality in the catchment, especially in areas where human influence in the catchment is low. In inhabited areas both agriculture and habitation in the catchment increase lake TIC concentrations, since in the disturbed soils both weathering and leaching are presumably more efficient than in pristine areas. TOC concentrations in lakes were related to either catchment sources, mainly peatlands, or to retention in the upper watercourses. Retention

  8. Sediment sources in the Upper Severn catchment: a fingerprinting approach

    Directory of Open Access Journals (Sweden)

    A. L. Collins

    1997-01-01

    Full Text Available Suspended sediment sources in the Upper Severn catchment are quantified using a composite fingerprinting technique combining statistically-verified signatures with a multivariate mixing model. Composite fingerprints are developed from a suite of diagnostic properties comprising trace metal (Fe, Mn, AI, heavy metal (Cu, Zn, Pb, Cr, Co, Ni, base cation (Na, Mg, Ca, K, organic (C, N, radiometric (137Cs, 210Pb, and other (total P determinands. A numerical mixing model, to compare the fingerprints of contemporary catchment source materials with those of fluvial suspended sediment in transit and those of recent overbank floodplain deposits, provides a means of quantifying present and past sediment sources respectively. Sources are classified in terms of eroding surface soils under different land uses and channel banks. Eroding surface soils are the most important source of the contemporary suspended sediment loads sampled at the Institute of Hydrology flow gauging stations at Plynlimon and at Abermule. The erosion of forest soils, associated with the autumn and winter commercial activities of the Forestry Commission, is particularly evident. Reconstruction of sediment provenance over the recent past using a sediment core from the active river floodpiain at Abermule, in conjunction with a 137Cs chronology, demonstrates the significance of recent phases of afforestation and deforestation for accelerated catchment soil erosion.

  9. Methodology for flood frequency estimations in small catchments

    Directory of Open Access Journals (Sweden)

    V. David

    2013-11-01

    Full Text Available Estimations of flood frequencies in small catchments are difficult due to a lack of measured discharge data. This problem is usually solved in the Czech Republic by hydrologic modelling when there is a reason not to use the data provided by the Czech hydrometeorological institute, which are quite expensive and have a very low level of accuracy. Another way is to use a simple method which provides sufficient estimates of flood frequency based on the available spatial data. Such a method is being developed at the Czech Technical University in Prague. The methodology is being developed with consideration of all important factors affecting flood formation in small catchments. The relationship between catchment descriptors and flood characteristics has been the subject of recent research which is presented in this paper. The results for different descriptors vary from a tight relationship of an expected shape to a relationship which is opposite to that expected, mainly the case of land use. The parameterisation of the methodology is also presented including the uncertainty analysis and the assessment of its performance. In its present form, the methodology achieves an R2 value of about 0.64 for both 10 and 100 yr return periods.

  10. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    Science.gov (United States)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.

    2014-12-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to