WorldWideScience

Sample records for arginine catabolic mobile

  1. An Unexpected Location of the Arginine Catabolic Mobile Element (ACME) in a USA300-Related MRSA Strain

    DEFF Research Database (Denmark)

    Damkjær Bartels, Mette; Hansen, Lars H.; Boye, Kit;

    2011-01-01

    In methicillin resistant Staphylococcus aureus (MRSA), the arginine catabolic mobile element (ACME) was initially described in USA300 (t008-ST8) where it is located downstream of the staphylococcal cassette chromosome mec (SCCmec). A common health-care associated MRSA in Copenhagen, Denmark (t024...... composite island of S. epidermidis strain ATCC12228. Sequencing of an ACME negative t024-ST8 strain (M299) showed that DR1 and the sequence between DR1 and DR3 was missing. The finding of a mobile ACME II-like element inserted downstream of orfX and upstream of SCCmec indicates a novel recombination between...

  2. An unexpected location of the arginine catabolic mobile element (ACME in a USA300-related MRSA strain.

    Directory of Open Access Journals (Sweden)

    Mette Damkjær Bartels

    Full Text Available In methicillin resistant Staphylococcus aureus (MRSA, the arginine catabolic mobile element (ACME was initially described in USA300 (t008-ST8 where it is located downstream of the staphylococcal cassette chromosome mec (SCCmec. A common health-care associated MRSA in Copenhagen, Denmark (t024-ST8 is clonally related to USA300 and is frequently PCR positive for the ACME specific arcA-gene. This study is the first to describe an ACME element upstream of the SCCmec in MRSA. By traditional SCCmec typing schemes, the SCCmec of t024-ST8 strain M1 carries SCCmec IVa, but full sequencing of the cassette revealed that the entire J3 region had no homology to published SCCmec IVa. Within the J3 region of M1 was a 1705 bp sequence only similar to a sequence in S. haemolyticus strain JCSC1435 and 2941 bps with no homology found in GenBank. In addition to the usual direct repeats (DR at each extremity of SCCmec, M1 had two new DR between the orfX gene and the J3 region of the SCCmec. The region between the orfX DR (DR1 and DR2 contained the ccrAB4 genes. An ACME II-like element was located between DR2 and DR3. The entire 26,468 bp sequence between DR1 and DR3 was highly similar to parts of the ACME composite island of S. epidermidis strain ATCC12228. Sequencing of an ACME negative t024-ST8 strain (M299 showed that DR1 and the sequence between DR1 and DR3 was missing. The finding of a mobile ACME II-like element inserted downstream of orfX and upstream of SCCmec indicates a novel recombination between staphylococcal species.

  3. Arginine transport in catabolic disease states.

    Science.gov (United States)

    Pan, Ming; Choudry, Haroon A; Epler, Mark J; Meng, Qinghe; Karinch, Anne; Lin, Chengmao; Souba, Wiley

    2004-10-01

    Arginine appears to be a semiessential amino acid in humans during critical illness. Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which exceeds body production, leading to arginine depletion. This is aggravated by the reduced nutrient intake that is associated with critical illness. Arginine depletion may have negative consequences on tissue function under these circumstances. Nutritional regimens containing arginine have been shown to improve nitrogen balance and lymphocyte function, and stimulate arginine transport in the liver. We have studied the effects of stress mediators on arginine transport in vascular endothelium, liver, and gut epithelium. In vascular endothelium, endotoxin stimulates arginine uptake, an effect that is mediated by the cytokine tumor necrosis factor-alpha (TNF-alpha) and by the cyclo-oxygenase pathway. This TNF-alpha stimulation involves the activation of intracellular protein kinase C (PKC). A significant increase in hepatic arginine transport activity also occurs following burn injury and in rats with progressive malignant disease. Surgical removal of the growing tumor results in a normalization of the accelerated hepatic arginine transport within days. Chronic metabolic acidosis and sepsis individually augment intestinal arginine transport in rats and Caco-2 cell culture. PKC and mitogen-activated protein kinases are involved in mediating the sepsis/acidosis stimulation of arginine transport. Understanding the regulation of plasma membrane arginine transport will enhance our knowledge of nutrition and metabolism in seriously ill patients and may lead to the design of improved nutritional support formulas. PMID:15465794

  4. Determination of arginine catabolism by salivary pellet

    NARCIS (Netherlands)

    M.A. Hoogenkamp; J.M. ten Cate

    2014-01-01

    To determine the formation of ammonium from arginine by oral bacteria residing in saliva and dental plaque, an arginolytic activity assay based on the work described by Nascimento et al. [2] was developed. Following the original methodology, insufficient ammonium production could be determined. To i

  5. Catabolism and safety of supplemental L-arginine in animals.

    Science.gov (United States)

    Wu, Zhenlong; Hou, Yongqing; Hu, Shengdi; Bazer, Fuller W; Meininger, Cynthia J; McNeal, Catherine J; Wu, Guoyao

    2016-07-01

    L-arginine (Arg) is utilized via multiple pathways to synthesize protein and low-molecular-weight bioactive substances (e.g., nitric oxide, creatine, and polyamines) with enormous physiological importance. Furthermore, Arg regulates cell signaling pathways and gene expression to improve cardiovascular function, augment insulin sensitivity, enhance lean tissue mass, and reduce obesity in humans. Despite its versatile roles, the use of Arg as a dietary supplement is limited due to the lack of data to address concerns over its safety in humans. Data from animal studies are reviewed to assess arginine catabolism and the safety of long-term Arg supplementation. The arginase pathway was responsible for catabolism of 76-85 and 81-96 % Arg in extraintestinal tissues of pigs and rats, respectively. Dietary supplementation with Arg-HCl or the Arg base [315- and 630-mg Arg/(kg BW d) for 91 d] had no adverse effects on male or female pigs. Similarly, no safety issues were observed for male or female rats receiving supplementation with 1.8- and 3.6-g Arg/(kg BW d) for at least 91 d. Intravenous administration of Arg-HCl to gestating sheep at 81 and 180 mg Arg/(kg BW d) is safe for at least 82 and 40 d, respectively. Animals fed conventional diets can well tolerate large amounts of supplemental Arg [up to 630-mg Arg/(kg BW d) in pigs or 3.6-g Arg/(kg BW d) in rats] for 91 d, which are equivalent to 573-mg Arg/(kg BW d) for humans. Collectively, these results can help guide studies to determine the safety of long-term oral administration of Arg in humans. PMID:27156062

  6. Characterization of a Novel Arginine Catabolic Mobile Element (ACME) and Staphylococcal Chromosomal Cassette mec Composite Island with Significant Homology to Staphylococcus epidermidis ACME type II in Methicillin-Resistant Staphylococcus aureus Genotype ST22-MRSA-IV.

    LENUS (Irish Health Repository)

    Shore, Anna C

    2011-02-22

    The arginine catabolic mobile element (ACME) is prevalent among ST8-MRSA-IVa (USA300) isolates and evidence suggests that ACME enhances the ability of ST8-MRSA-IVa to grow and survive on its host. ACME has been identified in a small number of isolates belonging to other MRSA clones but is widespread among coagulase-negative staphylococci (CoNS). This study reports the first description of ACME in two distinct strains of the pandemic ST22-MRSA-IV clone. A total of 238 MRSA isolates recovered in Ireland between 1971 and 2008 were investigated for ACME using a DNA microarray. Twenty-three isolates (9.7%) were ACME-positive, all were either MRSA genotype ST8-MRSA-IVa (7\\/23, 30%) or ST22-MRSA-IV (16\\/23, 70%). Whole-genome sequencing and comprehensive molecular characterization revealed the presence of a novel 46-kb ACME and SCCmec composite island (ACME\\/SCCmec-CI) in ST22-MRSA-IVh isolates (n = 15). This ACME\\/SCCmec-CI consists of a 12-kb DNA region previously identified in ACME type II in S. epidermidis ATCC 12228, a truncated copy of the J1 region of SCCmec I and a complete SCCmec IVh element. The composite island has a novel genetic organization with ACME located within orfX and SCCmec located downstream of ACME. One pvl-positive ST22-MRSA-IVa isolate carried ACME located downstream of SCCmec IVa as previously described in ST8-MRSA-IVa. These results suggest that ACME has been acquired by ST22-MRSA-IV on two independent occasions. At least one of these instances may have involved horizontal transfer and recombination events between MRSA and CoNS. The presence of ACME may enhance dissemination of ST22-MRSA-IV, an already successful MRSA clone.

  7. Characterization of a novel arginine catabolic mobile element (ACME) and staphylococcal chromosomal cassette mec composite island with significant homology to Staphylococcus epidermidis ACME type II in methicillin-resistant Staphylococcus aureus genotype ST22-MRSA-IV.

    LENUS (Irish Health Repository)

    Shore, Anna C

    2011-05-01

    The arginine catabolic mobile element (ACME) is prevalent among methicillin-resistant Staphylococcus aureus (MRSA) isolates of sequence type 8 (ST8) and staphylococcal chromosomal cassette mec (SCCmec) type IVa (USA300) (ST8-MRSA-IVa isolates), and evidence suggests that ACME enhances the ability of ST8-MRSA-IVa to grow and survive on its host. ACME has been identified in a small number of isolates belonging to other MRSA clones but is widespread among coagulase-negative staphylococci (CoNS). This study reports the first description of ACME in two distinct strains of the pandemic ST22-MRSA-IV clone. A total of 238 MRSA isolates recovered in Ireland between 1971 and 2008 were investigated for ACME using a DNA microarray. Twenty-three isolates (9.7%) were ACME positive, and all were either MRSA genotype ST8-MRSA-IVa (7\\/23, 30%) or MRSA genotype ST22-MRSA-IV (16\\/23, 70%). Whole-genome sequencing and comprehensive molecular characterization revealed the presence of a novel 46-kb ACME and staphylococcal chromosomal cassette mec (SCCmec) composite island (ACME\\/SCCmec-CI) in ST22-MRSA-IVh isolates (n=15). This ACME\\/SCCmec-CI consists of a 12-kb DNA region previously identified in ACME type II in S. epidermidis ATCC 12228, a truncated copy of the J1 region of SCCmec type I, and a complete SCCmec type IVh element. The composite island has a novel genetic organization, with ACME located within orfX and SCCmec located downstream of ACME. One PVL locus-positive ST22-MRSA-IVa isolate carried ACME located downstream of SCCmec type IVa, as previously described in ST8-MRSA-IVa. These results suggest that ACME has been acquired by ST22-MRSA-IV on two independent occasions. At least one of these instances may have involved horizontal transfer and recombination events between MRSA and CoNS. The presence of ACME may enhance dissemination of ST22-MRSA-IV, an already successful MRSA clone.

  8. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Pistorius Elfriede K

    2007-11-01

    Full Text Available Abstract Background So far very limited knowledge exists on L-arginine catabolism in cyanobacteria, although six major L-arginine-degrading pathways have been described for prokaryotes. Thus, we have performed a bioinformatic analysis of possible L-arginine-degrading pathways in cyanobacteria. Further, we chose Synechocystis sp. PCC 6803 for a more detailed bioinformatic analysis and for validation of the bioinformatic predictions on L-arginine catabolism with a transcript analysis. Results We have evaluated 24 cyanobacterial genomes of freshwater or marine strains for the presence of putative L-arginine-degrading enzymes. We identified an L-arginine decarboxylase pathway in all 24 strains. In addition, cyanobacteria have one or two further pathways representing either an arginase pathway or L-arginine deiminase pathway or an L-arginine oxidase/dehydrogenase pathway. An L-arginine amidinotransferase pathway as a major L-arginine-degrading pathway is not likely but can not be entirely excluded. A rather unusual finding was that the cyanobacterial L-arginine deiminases are substantially larger than the enzymes in non-photosynthetic bacteria and that they are membrane-bound. A more detailed bioinformatic analysis of Synechocystis sp. PCC 6803 revealed that three different L-arginine-degrading pathways may in principle be functional in this cyanobacterium. These are (i an L-arginine decarboxylase pathway, (ii an L-arginine deiminase pathway, and (iii an L-arginine oxidase/dehydrogenase pathway. A transcript analysis of cells grown either with nitrate or L-arginine as sole N-source and with an illumination of 50 μmol photons m-2 s-1 showed that the transcripts for the first enzyme(s of all three pathways were present, but that the transcript levels for the L-arginine deiminase and the L-arginine oxidase/dehydrogenase were substantially higher than that of the three isoenzymes of L-arginine decarboxylase. Conclusion The evaluation of 24

  9. Lysozyme affects the microbial catabolism of free arginine in raw-milk hard cheeses.

    Science.gov (United States)

    D'Incecco, P; Gatti, M; Hogenboom, J A; Bottari, B; Rosi, V; Neviani, E; Pellegrino, L

    2016-08-01

    Lysozyme (LZ) is used in several cheese varieties to prevent late blowing which results from fermentation of lactate by Clostridium tyrobutyricum. Side effects of LZ on lactic acid bacteria population and free amino acid pattern were studied in 16 raw-milk hard cheeses produced in eight parallel cheese makings conducted at four different dairies using the same milk with (LZ+) or without (LZ-) addition of LZ. The LZ-cheeses were characterized by higher numbers of cultivable microbial population and lower amount of DNA arising from lysed bacterial cells with respect to LZ + cheeses. At both 9 and 16 months of ripening, Lactobacillus delbrueckii and Lactobacillus fermentum proved to be the species mostly affected by LZ. The total content of free amino acids indicated the proteolysis extent to be characteristic of the dairy, regardless to the presence of LZ. In contrast, the relative patterns showed the microbial degradation of arginine to be promoted in LZ + cheeses. The data demonstrated that the arginine-deiminase pathway was only partially adopted since citrulline represented the main product and only trace levels of ornithine were found. Differences in arginine degradation were considered for starter and non-starter lactic acid bacteria, at different cheese ripening stages. PMID:27052697

  10. ARCD, THE 1ST GENE OF THE ARC OPERON FOR ANAEROBIC ARGININE CATABOLISM IN PSEUDOMONAS-AERUGINOSA, ENCODES AN ARGININE-ORNITHINE EXCHANGER

    NARCIS (Netherlands)

    VERHOOGT, HJC; SMIT, H; ABEE, T; GAMPER, M; DRIESSEN, AJM; KONINGS, WN

    1992-01-01

    In the absence of oxygen and nitrate, Pseudomonas aeruginosa metabolizes arginine via the arginine deiminase pathway, which allows slow growth on rich media. The conversion of arginine to ornithine, CO2, and NH3 is coupled to the production of ATP from ADP. The enzymes of the arginine deiminase path

  11. Increased erythrocytes by-products of arginine catabolism are associated with hyperglycemia and could be involved in the pathogenesis of type 2 diabetes mellitus.

    Science.gov (United States)

    Ramírez-Zamora, Serafín; Méndez-Rodríguez, Miguel L; Olguín-Martínez, Marisela; Sánchez-Sevilla, Lourdes; Quintana-Quintana, Miguel; García-García, Norberto; Hernández-Muñoz, Rolando

    2013-01-01

    Diabetes mellitus (DM) is a worldwide disease characterized by metabolic disturbances, frequently associated with high risk of atherosclerosis and renal and nervous system damage. Here, we assessed whether metabolites reflecting oxidative redox state, arginine and nitric oxide metabolism, are differentially distributed between serum and red blood cells (RBC), and whether significant metabolism of arginine exists in RBC. In 90 patients with type 2 DM without regular treatment for diabetes and 90 healthy controls, paired by age and gender, we measured serum and RBC levels of malondialdehyde (MDA), nitrites, ornithine, citrulline, and urea. In isolated RBC, metabolism of L-[(14)C]-arginine was also determined. In both groups, nitrites were equally distributed in serum and RBC; citrulline predominated in serum, whereas urea, arginine, and ornithine were found mainly in RBC. DM patients showed hyperglycemia and increased blood HbA1C, and increased levels of these metabolites, except for arginine, significantly correlating with blood glucose levels. RBC were observed to be capable of catabolizing arginine to ornithine, citrulline and urea, which was increased in RBC from DM patients, and correlated with an increased affinity for arginine in the activities of putative RBC arginase (Km = 0.23±0.06 vs. 0.50±0.13 mM, in controls) and nitric oxide synthase (Km = 0.28±0.06 vs. 0.43±0.09 mM, in controls). In conclusion, our results suggest that DM alters metabolite distribution between serum and RBC, demonstrating that RBC regulate serum levels of metabolites which affect nitrogen metabolism, not only by transporting them but also by metabolizing amino acids such as arginine. Moreover, we confirmed that urea can be produced also by human RBC besides hepatocytes, being much more evident in RBC from patients with type 2 DM. These events are probably involved in the specific physiopathology of this disease, i.e., endothelial damage and dysfunction.

  12. Arginine Catabolism by Sourdough Lactic Acid Bacteria: Purification and Characterization of the Arginine Deiminase Pathway Enzymes from Lactobacillus sanfranciscensis CB1

    OpenAIRE

    De Angelis, Maria; Mariotti, Liberato; Rossi, Jone; Servili, Maurizio; Fox, Patrick F.; Rollán, Graciela; Gobbetti, Marco

    2002-01-01

    The cytoplasmic extracts of 70 strains of the most frequently isolated sourdough lactic acid bacteria were screened initially for arginine deiminase (ADI), ornithine transcarbamoylase (OTC), and carbamate kinase (CK) activities, which comprise the ADI (or arginine dihydrolase) pathway. Only obligately heterofermentative strains such as Lactobacillus sanfranciscensis CB1; Lactobacillus brevis AM1, AM8, and 10A; Lactobacillus hilgardii 51B; and Lactobacillus fructivorans DD3 and DA106 showed al...

  13. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena.

    Science.gov (United States)

    Burnat, Mireia; Flores, Enrique

    2014-10-01

    Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [(14) C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The ∆alr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [(14) C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the ∆alr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium.

  14. The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and -catabolizing enzymes

    Directory of Open Access Journals (Sweden)

    Ruijter Jan M

    2008-11-01

    Full Text Available Abstract Background Milk contains too little arginine for normal growth, but its precursors proline and glutamine are abundant; the small intestine of rodents and piglets produces arginine from proline during the suckling period; and parenterally fed premature human neonates frequently suffer from hypoargininemia. These findings raise the question whether the neonatal human small intestine also expresses the enzymes that enable the synthesis of arginine from proline and/or glutamine. Carbamoylphosphate synthetase (CPS, ornithine aminotransferase (OAT, argininosuccinate synthetase (ASS, arginase-1 (ARG1, arginase-2 (ARG2, and nitric-oxide synthase (NOS were visualized by semiquantitative immunohistochemistry in 89 small-intestinal specimens. Results Between 23 weeks of gestation and 3 years after birth, CPS- and ASS-protein content in enterocytes was high and then declined to reach adult levels at 5 years. OAT levels declined more gradually, whereas ARG-1 was not expressed. ARG-2 expression increased neonatally to adult levels. Neurons in the enteric plexus strongly expressed ASS, OAT, NOS1 and ARG2, while varicose nerve fibers in the circular layer of the muscularis propria stained for ASS and NOS1 only. The endothelium of small arterioles expressed ASS and NOS3, while their smooth-muscle layer expressed OAT and ARG2. Conclusion The human small intestine acquires the potential to produce arginine well before fetuses become viable outside the uterus. The perinatal human intestine therefore resembles that of rodents and pigs. Enteral ASS behaves as a typical suckling enzyme because its expression all but disappears in the putative weaning period of human infants.

  15. Effect of L-arginine, dimercaptosuccinic acid (DMSA and the association of L-arginine and DMSA on tissue lead mobilization and blood pressure level in plumbism

    Directory of Open Access Journals (Sweden)

    Malvezzi C.K.

    2001-01-01

    Full Text Available Lead (Pb-induced hypertension is characterized by an increase in reactive oxygen species (ROS and a decrease in nitric oxide (NO. In the present study we evaluated the effect of L-arginine (NO precursor, dimercaptosuccinic acid (DMSA, a chelating agent and ROS scavenger, and the association of L-arginine/DMSA on tissue Pb mobilization and blood pressure levels in plumbism. Tissue Pb levels and blood pressure evolution were evaluated in rats exposed to: 1 Pb (750 ppm, in drinking water, for 70 days, 2 Pb plus water for 30 more days, 3 Pb plus DMSA (50 mg kg-1 day-1, po, L-arginine (0.6%, in drinking water, and the combination of L-arginine/DMSA for 30 more days, and 4 their respective matching controls. Pb exposure increased Pb levels in the blood, liver, femur, kidney and aorta. Pb levels in tissues decreased after cessation of Pb administration, except in the aorta. These levels did not reach those observed in nonintoxicated rats. All treatments mobilized Pb from the kidney, femur and liver. Pb mobilization from the aorta was only effective with the L-arginine/DMSA treatment. Blood Pb concentrations in Pb-treated groups were not different from those of the Pb/water group. Pb increased blood pressure starting from the 5th week. L-arginine and DMSA treatments (4th week and the combination of L-arginine/DMSA (3rd and 4th weeks decreased blood pressure levels of intoxicated rats. These levels did not reach those of nonintoxicated rats. Treatment with L-arginine/DMSA was more effective than the isolated treatments in mobilizing Pb from tissues and in reducing the blood pressure of intoxicated rats.

  16. Physiological implications of arginine metabolism in plants

    Directory of Open Access Journals (Sweden)

    Gudrun eWinter

    2015-07-01

    Full Text Available Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO, although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions.

  17. Physiological implications of arginine metabolism in plants.

    Science.gov (United States)

    Winter, Gudrun; Todd, Christopher D; Trovato, Maurizio; Forlani, Giuseppe; Funck, Dietmar

    2015-01-01

    Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO), although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions. PMID:26284079

  18. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    International Nuclear Information System (INIS)

    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with [3H]arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of [3H]free fatty acids. These effects were attenuated in Ca2+-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca2+ with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of [3H]free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca2+ influx and that at least 80% of the [3H]free fatty acid accumulation required calcium

  19. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    Energy Technology Data Exchange (ETDEWEB)

    Damron, D.S.; Dorman, R.V. (Kent State Univ., OH (USA))

    1990-06-01

    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with ({sup 3}H)arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of ({sup 3}H)free fatty acids. These effects were attenuated in Ca{sup 2}{sup +}-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca{sup 2}{sup +} with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of ({sup 3}H)free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca{sup 2}{sup +} influx and that at least 80% of the ({sup 3}H)free fatty acid accumulation required calcium.

  20. The Ergogenic Potential of Arginine

    Directory of Open Access Journals (Sweden)

    La Bounty Paul M

    2004-12-01

    Full Text Available Abstract Arginine is a conditionally essential amino acid that is involved in protein synthesis, the detoxification of ammonia, and its conversion to glucose as well as being catabolized to produce energy. In addition to these physiological functions, arginine has been purported to have ergogenic potential. Athletes have taken arginine for three main reasons: 1 its role in the secretion of endogenous growth hormone; 2 its involvement in the synthesis of creatine; 3 its role in augmenting nitric oxide. These aspects of arginine supplementation will be discussed as well as a review of clinical investigations involving exercise performance and arginine ingestion.

  1. Determination of arginine catabolism by salivary pellet

    Directory of Open Access Journals (Sweden)

    M.A. Hoogenkamp

    2014-01-01

    Changing from the use of the toxic, environmentally hazardous, mercury containing Nessler's reagent to a colorimetric enzyme assay achieved a safer and greener determination of ammonium concentration.

  2. Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis

    Directory of Open Access Journals (Sweden)

    Schneider Anja

    2003-01-01

    Full Text Available Abstract Background Arginine and citrulline serve as nitrogen storage forms, but are also involved in biosynthetic and catabolic pathways. Metabolism of arginine, citrulline and ornithine is distributed between mitochondria and cytosol. For the shuttle of intermediates between cytosol and mitochondria transporters present on the inner mitochondrial membrane are required. Yeast contains a mitochondrial translocator for ornithine and arginine, Ort1p/Arg11p. Ort1p/Arg11p is a member of the mitochondrial carrier family (MCF essential for ornithine export from mitochondria. The yeast arg11 mutant, which is deficient in Ort1p/Arg11p grows poorly on media lacking arginine. Results High-level expression of a nuclear encoded Arabidopsis thaliana homolog (AtmBAC2 of Ort1p/Arg11p was able to suppress the growth deficiency of arg11. RT-PCR analysis demonstrated expression of AtmBAC2 in all tissues with highest levels in flowers. Promoter-GUS fusions showed preferential expression in flowers, i.e. pollen, in the vasculature of siliques and in aborted seeds. Variable expression was observed in leaf vasculature. Induction of the promoter was not observed during the first two weeks in seedlings grown on media containing NH4NO3, arginine or ornithine as sole nitrogen sources. Conclusion AtmBAC2 was isolated as a mitochondrial transporter for arginine in Arabidopsis. The absence of expression in developing seeds and in cotyledons of seedlings indicates that other transporters are responsible for storage and mobilization of arginine in seeds.

  3. The role of arginine in infection and sepsis.

    Science.gov (United States)

    Luiking, Yvette C; Poeze, Martijn; Ramsay, Graham; Deutz, Nicolaas E P

    2005-01-01

    Sepsis is a systemic response to an infection, with high morbidity and mortality rates. Metabolic changes during infection and sepsis could be related to changes in metabolism of the amino acid L-arginine. In sepsis, protein breakdown is increased, which is a key process to maintain arginine delivery because both endogenous de novo arginine production from citrulline and food intake are reduced. Arginine catabolism, on the other hand, is markedly increased by enhanced use of arginine via the arginase and nitric oxide pathways. As a result, lowered plasma arginine levels are usually found. Arginine may therefore be considered as an essential amino acid in sepsis, and supplementation could be beneficial in sepsis by improving microcirculation and protein anabolism. L-Arginine supplementation in a hyperdynamic pig model of sepsis prohibits the increase in pulmonary arterial blood pressure, improves muscle and liver protein metabolism, and restores the intestinal motility pattern. Arguments raised against arginine supplementation are mainly pointed at stimulating nitric oxide (NO) production, with concerns about toxicity of increased NO and hemodynamic instability with refractory hypotension. NO synthase inhibition, however, increased mortality. Arginine supplementation in septic patients has transient effects on hemodynamics when supplied as a bolus but seems without hemodynamic side effects when supplied continuously. In conclusion, arginine could have an essential role in infection and sepsis.

  4. Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis.

    Science.gov (United States)

    Lindgren, J K; Thomas, V C; Olson, M E; Chaudhari, S S; Nuxoll, A S; Schaeffer, C R; Lindgren, K E; Jones, J; Zimmerman, M C; Dunman, P M; Bayles, K W; Fey, P D

    2014-06-01

    Allelic replacement mutants were constructed within arginine deiminase (arcA1 and arcA2) to assess the function of the arginine deiminase (ADI) pathway in organic acid resistance and biofilm formation of Staphylococcus epidermidis 1457. A growth-dependent acidification assay (pH ∼5.0 to ∼5.2) determined that strain 1457 devoid of arginine deiminase activity (1457 ΔADI) was significantly less viable than the wild type following depletion of glucose and in the presence of arginine. However, no difference in viability was noted for individual 1457 ΔarcA1 (native) or ΔarcA2 (arginine catabolic mobile element [ACME]-derived) mutants, suggesting that the native and ACME-derived ADIs are compensatory in S. epidermidis. Furthermore, flow cytometry and electron paramagnetic resonance spectroscopy results suggested that organic acid stress resulted in oxidative stress that could be partially rescued by the iron chelator dipyridyl. Collectively, these results suggest that formation of hydroxyl radicals is partially responsible for cell death via organic acid stress and that ADI-derived ammonia functions to counteract this acid stress. Finally, static biofilm assays determined that viability, ammonia synthesis, and pH were reduced in strain 1457 ΔADI following 120 h of growth in comparison to strain 1457 and the arcA1 and arcA2 single mutants. It is hypothesized that ammonia synthesis via the ADI pathway is important to reduce pH stress in specific microniches that contain high concentrations of organic acids. PMID:24727224

  5. Arginine does not exacerbate markers of inflammation in cocultures of human enterocytes and leukocytes

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Negrier, I.; Neveux, N.;

    2007-01-01

    with arginine did not affect epithelial integrity, production of any of the cytokines investigated, or the amount of nitric oxide. The amino acid used primarily by nonstimulated intestinal epithelial cells cocultured with leukocytes was glutamine. Activation of IEC with bacteria significantly enhanced...... the catabolism of serine, asparagine, and lysine, and reduced glutamine catabolism. Addition of arginine increased ornithine formation and moderately reduced transepithelial transport of methionine and other amino acids. Hence, arginine supplementation does not interfere with inflammation-associated cross......Enteral arginine supplementation in the critically ill has become a matter of controversy. In this study, we investigated effects of the addition of 0.4 and 1.2 mmol/L arginine in a coculture model on markers of inflammation, enterocyte layer integrity, and amino acid transport. In this model...

  6. [Biochemical methods for the determination of a clinical protein catabolism].

    Science.gov (United States)

    Roth, E; Funovics, J; Schulz, F; Karner, J

    1980-12-01

    1. 20 patients before surgery received enteral nutrition for three days (12 g nitrogen, 1800 Kcal). Nitrogen and urea excretions in urine during the second and third day were determined. Eleven patients had a negative nitrogen balance (-2,7 and -2,4 g/day). In these patients urea production rates were 21,1 and 20,1 g/day. An urea production rate exceeding 15 g urea/day is probable an indication for a protein catabolism. The reason for this catabolic state seems to be a decreased protein utilisation (49 and 47 percent) as the result of a metabolic stress situation. This metabolic stress was determined according the stress index (Bistrian). The patients were in a stress situation comparable to postoperative stress (+3,7 and +3,9). The determination of urea production rate and catabolic index seems a suitable tool for defining a catabolic state. 2. 3-met-histidine excretion in urine were measured in seven patients postoperatively. In different periods saline or aminoacids solutions (5% alanine) were infused. During alanine administration protein (+49%)--and 3-met-histidine excretions (+50%) increased. It is not possible to state a catabolic situation out of the 3-met-histidine excretion, because an increased excretion may result from a stimulated protein synthesis in muscle tissue or from an increased muscleprotein wasting. 3. Free amino acid pools in plasma and muscle tissue were analysed in patients with severe illness of liver and pancreas. The free amino acid pattern differed from healthy volunteers. In patients with liver disease significantly increased concentrations of phenylalanine, tyrosine and methionine were found. In patients with acute pancreatitis highly abnormal pattern of intracellular amino acids occurred with decreased concentrations of glutamine, cysteine, histidine, lysine, arginine and ornithine. The highly significant decreased concentrations of glutamine (p less than 0,01) indicate a catabolic situation of these patients. A quantification of the

  7. An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme

    NARCIS (Netherlands)

    Romagnoli, G.; Verhoeven, M.D.; Mans, R.; Fleury Rey, Y.; Bel-Rhlid, R.; Van den Broek, M.; Maleki Seifar, R.; Ten Pierick, A.; Thompson, M.; Müller, V.; Wahl, S.A.; Pronk, J.T.; Daran, J.M.

    2014-01-01

    Most available knowledge on fungal arginine metabolism is derived from studies on Saccharomyces cerevisiae, in which arginine catabolism is initiated by releasing urea via the arginase reaction. Orthologues of the S. cerevisiae genes encoding the first three enzymes in the arginase pathway were clon

  8. Biosynthetic arginine decarboxylase in phytopathogenic fungi.

    Science.gov (United States)

    Khan, A J; Minocha, S C

    1989-01-01

    It has been reported that while bacteria and higher plants possess two different pathways for the biosynthesis of putrescine, via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC); the fungi, like animals, only use the former pathway. We found that contrary to the earlier reports, two of the phytopathogenic fungi (Ceratocystis minor and Verticillium dahliae) contain significant levels of ADC activity with very little ODC. The ADC in these fungi has high pH optimum (8.4) and low Km (0.237 mM for C. minor, 0.103 mM for V. dahliae), and is strongly inhibited by alpha-difluoromethylarginine (DFMA), putrescine and spermidine, further showing that this enzyme is probably involved in the biosynthesis of polyamines and not in the catabolism of arginine as in Escherichia coli. The growth of these fungi is strongly inhibited by DFMA while alpha-difluoromethylornithine (DFMO) has little effect.

  9. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    Science.gov (United States)

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome.

  10. L-arginine

    Science.gov (United States)

    ... that taking L-arginine, alone or together with antioxidants (Niteworks, Herbalife International, Inc), does not improve performance ... administered as a shot, or applied to the skin, short-term. It can cause some side effects ...

  11. Mobilization of sequestered metabolities into degradative reactions by nutritional stress in Neurospora.

    Science.gov (United States)

    Legerton, T L; Weiss, R L

    1979-06-01

    The pools of arginine and ornithine rapidly disappear during nitrogen starvation of Neurospora crassa. Much of this disappearance can be accounted for by degradation catalyzed by preexisting catabolic enzymes. Purine degradation is also initiated by nitrogen metabolic stress. Mobilization of these compounds into degradative reactions does not appear to be a general response to nutritional stress since neither carbon starvation nor inhibition of protein synthesis elicits this response. It is suggested that nitrogen starvation may specifically alter the distribution of arginine and ornithine between vesicles and cytosol. This would be sufficient to initiate and maintain their degradation. These result suggest that compartmentation of amino acids provides a metabolic reserve to be utilized during periods of specific nutritional stress.

  12. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Marcus eFulde

    2014-08-01

    Full Text Available The arginine-ornithine antiporter (ArcD is part of the Arginine Deiminase System (ADS, a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-13C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth rate in chemically defined media supplemented with arginine when compared to the WT strain, indicating that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host.

  13. Protein catabolism and requirements in severe illness.

    Science.gov (United States)

    Genton, L; Pichard, C

    2011-03-01

    Reduced total body protein mass is a marker of protein-energy malnutrition and has been associated with numerous complications. Severe illness is characterized by a loss of total body protein mass, mainly from the skeletal muscle. Studies on protein turnover describe an increased protein breakdown and, to a lesser extent, an increased whole-body protein synthesis, as well as an increased flux of amino acids from the periphery to the liver. Appropriate nutrition could limit protein catabolism. Nutritional support limits but does not stop the loss of total body protein mass occurring in acute severe illness. Its impact on protein kinetics is so far controversial, probably due to the various methodologies and characteristics of nutritional support used in the studies. Maintaining calorie balance alone the days after an insult does not clearly lead to an improved clinical outcome. In contrast, protein intakes between 1.2 and 1.5 g/kg body weight/day with neutral energy balance minimize total body protein mass loss. Glutamine and possibly leucine may improve clinical outcome, but it is unclear whether these benefits occur through an impact on total body protein mass and its turnover, or through other mechanisms. Present recommendations suggest providing 20 - 25 kcal/kg/day over the first 72 - 96 hours and increasing energy intake to target thereafter. Simultaneously, protein intake should be between 1.2 and 1.5 g/kg/day. Enteral immunonutrition enriched with arginine, nucleotides, and omega-3 fatty acids is indicated in patients with trauma, acute respiratory distress syndrome (ARDS), and mild sepsis. Glutamine (0.2 - 0.4 g/kg/day of L-glutamine) should be added to enteral nutrition in burn and trauma patients (ESPEN guidelines 2006) and to parenteral nutrition, in the form of dipeptides, in intensive care unit (ICU) patients in general (ESPEN guidelines 2009). PMID:22139565

  14. Arginine metabolism in wounds

    International Nuclear Information System (INIS)

    Arginine metabolism in wounds was investigated in the rat in 1) lambda-carrageenan-wounded skeletal muscle, 2) Schilling chambers, and 3) subcutaneous polyvinyl alcohol sponges. All showed decreased arginine and elevated ornithine contents and high arginase activity. Arginase could be brought to the wound by macrophages, which were found to contain arginase activity. However, arginase was expressed by macrophages only after cell lysis and no arginase was released by viable macrophages in vitro. Thus the extracellular arginase of wounds may derive from dead macrophages within the injured tissue. Wound and peritoneal macrophages exhibited arginase deiminase activity as demonstrated by the conversion of [guanido-14C]arginine to radiolabeled citrulline during culture, the inhibition of this reaction by formamidinium acetate, and the lack of prokaryotic contamination of the cultures. These findings and the known metabolic fates of the products of arginase and arginine deiminase in the cellular populations of the wound suggest the possibility of cooperativity among cells for the production of substrates for collagen synthesis

  15. Deletion of Genes Encoding Arginase Improves Use of "Heavy" Isotope-Labeled Arginine for Mass Spectrometry in Fission Yeast.

    Directory of Open Access Journals (Sweden)

    Weronika E Borek

    Full Text Available The use of "heavy" isotope-labeled arginine for stable isotope labeling by amino acids in cell culture (SILAC mass spectrometry in the fission yeast Schizosaccharomyces pombe is hindered by the fact that under normal conditions, arginine is extensively catabolized in vivo, resulting in the appearance of "heavy"-isotope label in several other amino acids, most notably proline, but also glutamate, glutamine and lysine. This "arginine conversion problem" significantly impairs quantification of mass spectra. Previously, we developed a method to prevent arginine conversion in fission yeast SILAC, based on deletion of genes involved in arginine catabolism. Here we show that although this method is indeed successful when (13C6-arginine (Arg-6 is used for labeling, it is less successful when (13C6(15N4-arginine (Arg-10, a theoretically preferable label, is used. In particular, we find that with this method, "heavy"-isotope label derived from Arg-10 is observed in amino acids other than arginine, indicating metabolic conversion of Arg-10. Arg-10 conversion, which severely complicates both MS and MS/MS analysis, is further confirmed by the presence of (13C5(15N2-arginine (Arg-7 in arginine-containing peptides from Arg-10-labeled cells. We describe how all of the problems associated with the use of Arg-10 can be overcome by a simple modification of our original method. We show that simultaneous deletion of the fission yeast arginase genes car1+ and aru1+ prevents virtually all of the arginine conversion that would otherwise result from the use of Arg-10. This solution should enable a wider use of heavy isotope-labeled amino acids in fission yeast SILAC.

  16. Mobilities

    DEFF Research Database (Denmark)

    simple movements of people, goods, and information from A to B. The ‘mobilities turn’ has made it its hallmark to explore the ‘more than’ effects of a world increasingly on the move. This new title in the Routledge Series ‘Critical Concepts in Built Environment’ creates a state-of-the-art reference work...... to social networks, personal identities, and our relationship to the built environment. The omnipresence of mobilities within everyday life, high politics, technology, and tourism (to mention but a few) all point to a key insight harnessed by the ‘mobilities turn’. Namely that mobilities is much more than...... will cover diverse topics such as theories, concepts, methods, and approaches as well as it will explore various modes of mobilities and the relationship to everyday life practices. The selection also covers the ‘politics of mobilities’ from local urban planning schemes to geopolitical issues of refugees...

  17. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    Science.gov (United States)

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-02-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.

  18. Expression and Characterization of ArgR, An Arginine Regulatory Protein in Corynebacterium crenatum

    Institute of Scientific and Technical Information of China (English)

    CHEN Xue Lan; ZHANG Bin; TANG Li; JIAO Hai Tao; XU Heng Yi; XU Feng; XU Hong; WEI Hua; XIONG Yong Hua

    2014-01-01

    Objective Corynebacterium crenatum MT, a mutant from C. crenatum AS 1.542 with a lethal argR gene, exhibits high arginine production. To confirm the effect of ArgR on arginine biosynthesis in C. crenatum, an intact argR gene from wild-type AS 1.542 was introduced into C. crenatum MT, resulting in C. crenatum MT. sp, and the changes of transcriptional levels of the arginine biosynthetic genes and arginine production were compared between the mutant strain and the recombinant strain. Methods Quantitative real-time polymerase chain reaction was employed to analyze the changes of the related genes at the transcriptional level, electrophoretic mobility shift assays were used to determine ArgR binding with the argCJBDF, argGH, and carAB promoter regions, and arginine production was determined with an automated amino acid analyzer. Results Arginine production assays showed a 69.9%reduction in arginine from 9.01±0.22 mg/mL in C. crenatum MT to 2.71±0.13 mg/mL (P Conclusion The arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR, and intact ArgR in C. crenatum MT results in a significant descrease in arginine production.

  19. Inhibition of lytic infection of pseudorabies virus by arginine depletion

    International Nuclear Information System (INIS)

    Pseudorabies virus (PRV) is a member of Alphahepesviruses; it is an enveloped virus with a double-stranded DNA genome. Polyamines (such as spermine and spermidine) are ubiquitous in animal cells and participate in cellular proliferation and differentiation. Previous results of our laboratory showed that the PRV can accomplish lytic infection either in the presence of exogenous spermine (or spermidine) or depletion of cellular polyamines. The amino acid arginine is a precursor of polyamine biosynthesis. In this work, we investigated the role of arginine in PRV infection. It was found that the plaque formation of PRV was inhibited by arginase (enzyme catalyzing the conversion of arginine into ornithine and urea) treatment whereas this inhibition can be reversed by exogenous arginine, suggesting that arginine is essential for PRV proliferation. Western blotting was conducted to study the effect of arginine depletion on the levels of structural proteins of PRV in virus-infected cells. Four PRV structural proteins (gB, gE, UL47, and UL48) were chosen for examination, and results revealed that the levels of viral proteins were obviously reduced in long time arginase treatment. However, the overall protein synthesis machinery was apparently not influenced by arginase treatment either in mock or PRV-infected cells. Analyzing with native gel, we found that arginase treatment affected the mobility of PRV structural proteins, suggesting the conformational change of viral proteins by arginine depletion. Heat shock proteins, acting as molecular chaperons, participate in protein folding and translocation. Our results demonstrated that long time arginase treatment could reduce the expression of cellular heat shock proteins 70 (hsc70 and hsp70), and transcriptional suppression of heat shock protein 70 gene promoter was one of the mechanisms involved in this reduced expression

  20. Effect of L-arginine supplement on liver regeneration after partial hepatectomy in rats

    Directory of Open Access Journals (Sweden)

    Kurokawa Tsuyoshi

    2012-05-01

    Full Text Available Abstract Background Nitric oxide (NO has been reported to be a key mediator in hepatocyte proliferation during liver regeneration. NO is the oxidative metabolite of L-arginine, and is produced by a family of enzymes, collective termed nitric oxide synthase (NOS. Thus, administration of L-arginine might enhance liver regeneration after a hepatectomy. Another amino acid, L-glutamine, which plays an important role in catabolic states and is a crucial factor in various cellular and organ functions, is widely known to enhance liver regeneration experimentally. Thus, the present study was undertaken to evaluate the effects of an L-arginine supplement on liver regeneration, and to compared this with supplementation with L-glutamine and L-alanine (the latter as a negative control, using a rat partial hepatectomy model. Methods Before and after a 70% hepatectomy, rats received one of three amino acid solutions (L-arginine, L-glutamine, or L-alanine. The effects on liver regeneration of the administered solutions were examined by assessment of restituted liver mass, staining for proliferating cell nuclear antigen (PCNA, and total RNA and DNA content 24 and 72 hours after the operation. Results At 72 hours after the hepatectomy, the restituted liver mass, the PCNA labeling index and the DNA quantity were all significantly higher in the L-arginine and L-glutamine groups than in the control. There were no significant differences in those parameters between the L-arginine and L-glutamine groups, nor were any significant differences found between the L-alanine group and the control. Conclusion Oral supplements of L-arginine and L-glutamine enhanced liver regeneration after hepatectomy in rats, suggesting that an oral arginine supplement can clinically improve recovery after a major liver resection.

  1. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1.

    Science.gov (United States)

    Saxton, Robert A; Chantranupong, Lynne; Knockenhauer, Kevin E; Schwartz, Thomas U; Sabatini, David M

    2016-08-11

    The mechanistic Target of Rapamycin Complex 1 (mTORC1) is a major regulator of eukaryotic growth that coordinates anabolic and catabolic cellular processes with inputs such as growth factors and nutrients, including amino acids. In mammals arginine is particularly important, promoting diverse physiological effects such as immune cell activation, insulin secretion, and muscle growth, largely mediated through activation of mTORC1 (refs 4, 5, 6, 7). Arginine activates mTORC1 upstream of the Rag family of GTPases, through either the lysosomal amino acid transporter SLC38A9 or the GATOR2-interacting Cellular Arginine Sensor for mTORC1 (CASTOR1). However, the mechanism by which the mTORC1 pathway detects and transmits this arginine signal has been elusive. Here, we present the 1.8 Å crystal structure of arginine-bound CASTOR1. Homodimeric CASTOR1 binds arginine at the interface of two Aspartate kinase, Chorismate mutase, TyrA (ACT) domains, enabling allosteric control of the adjacent GATOR2-binding site to trigger dissociation from GATOR2 and downstream activation of mTORC1. Our data reveal that CASTOR1 shares substantial structural homology with the lysine-binding regulatory domain of prokaryotic aspartate kinases, suggesting that the mTORC1 pathway exploited an ancient, amino-acid-dependent allosteric mechanism to acquire arginine sensitivity. Together, these results establish a structural basis for arginine sensing by the mTORC1 pathway and provide insights into the evolution of a mammalian nutrient sensor. PMID:27487210

  2. L-Arginine Intake Effect on Adenine Nucleotide Metabolism in Rat Parenchymal and Reproductive Tissues

    Directory of Open Access Journals (Sweden)

    G. Kocic

    2012-01-01

    Full Text Available L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism: 5′-nucleotidase (5′-NU, adenosine deaminase (ADA, AMP deaminase, and xanthine oxidase (XO, during dietary intake of L-arginine for a period of four weeks of male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme, 5′-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased 5′-NU activity and decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic, vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during dietary L-arginine intake.

  3. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy.

    Science.gov (United States)

    Yuzyuk, Tatiana; Thomas, Amanda; Viau, Krista; Liu, Aiping; De Biase, Irene; Botto, Lorenzo D; Pasquali, Marzia; Longo, Nicola

    2016-07-01

    Pyridoxine-Dependent Epilepsy (PDE) is a recessive disorder caused by deficiency of α-aminoadipic semialdehyde dehydrogenase in the catabolic pathway of lysine. It is characterized by intractable seizures controlled by the administration of pharmacological doses of vitamin B6. Despite seizure control with pyridoxine, intellectual disability and developmental delays are still observed in some patients with PDE, likely due to the accumulation of toxic intermediates in the lysine catabolic pathway: alpha-aminoadipic semialdehyde (AASA), delta-1-piperideine-6-carboxylate (P6C), and pipecolic acid. Here we evaluate biochemical and clinical parameters in two PDE patients treated with a lysine-restricted diet and arginine supplementation (100-150mg/kg), aimed at reducing the levels of PDE biomarkers. Lysine restriction resulted in decreased accumulation of PDE biomarkers and improved development. Plasma lysine but not plasma arginine, directly correlated with plasma levels of AASA-P6C (p<0.001, r(2)=0.640) and pipecolic acid (p<0.01, r(2)=0.484). In addition, plasma threonine strongly correlated with the levels of AASA-P6C (p<0.0001, r(2)=0.732) and pipecolic acid (p<0.005, r(2)=0.527), suggesting extreme sensitivity of threonine catabolism to pyridoxine availability. Our results further support the use of dietary therapies in combination with pyridoxine for the treatment of PDE. PMID:27324284

  4. Catabolism and detoxification of 1-aminoalkylphosphonic acids

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; McSorley, Fern R.; Zechel, David L.

    2012-01-01

    In Escherichia coli uptake and catabolism of organophosphonates are governed by the phnCDEFGHIJKLMNOP operon. The phnO cistron is shown to encode aminoalkylphosphonate N-acetyltransferase, which utilizes acetylcoenzyme A as acetyl donor and aminomethylphosphonate, (S)- and (R)-1-aminoethylphospho...

  5. Regulation of carbon catabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Aleksandrzak, T; Kowalczyk, M; Kok, J; Bardowski, J; Bielecki, S; Tramper, J; Polak, J

    2000-01-01

    The Lactococcus lactis IL1403 is a lactose negative, plasmid free strain. Nevertheless, it is able to hydrolyze lactose in the presence of cellobiose. In this work we describe identification of a gene involved in this process. The gene was found to be homologous to the sugar catabolism regulator, cc

  6. Dietary arginine and linear growth

    DEFF Research Database (Denmark)

    van Vught, Anneke J A H; Dagnelie, Pieter C; Arts, Ilja C W;

    2013-01-01

    Child Intervention Study during 2001-2 (baseline), and at 3-year and 7-year follow-up, were used. Arginine intake was estimated via a 7 d precoded food diary at baseline and 3-year follow-up. Data were analysed in a multilevel structure in which children were embedded within schools. Random intercept...

  7. Metabolic control analysis of xylose catabolism in Aspergillus

    NARCIS (Netherlands)

    Prathumpai, W.; Gabelgaard, J.B.; Wanchanthuek, P.; Vondervoort, van de P.J.I.; Groot, de M.J.L.; McIntyre, M.; Nielsen, J.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out, an

  8. Glycosidases: inborn errors of glycosphingolipid catabolism.

    Science.gov (United States)

    Ashida, Hisashi; Li, Yu-Teh

    2014-01-01

    Glycosphingolipids (GSLs) are information-rich glycoconjugates that occur in nature mainly as constituents of biomembranes. Each GSL contains a complex carbohydrate chain linked to a ceramide moiety that anchors the molecule to biomembranes. In higher animals, catabolism of GSLs takes place in lysosomes where sugar chains in GSLs are hydrolyzed by exo-glycosidases to cleave a sugar residue from the non-reducing end of a sugar chain. Inborn errors of GSL-catabolism, collectively called sphingolipidoses or GSL-storage diseases, are caused by the deficiency of exo-glycosidases responsible for the degradation of the specific sugar residues at the non-reducing termini in GSLs. This chapter briefly discusses glycone, anomeric, linkage, and aglycone specificities of exo-glycosidases and some of the historical landmarks on their associations with the chemical pathology of the five best known sphingolipidoses: GM1 gangliosidosis, GM2 gangliosidosis (Tay-Sachs disease), Fabry disease, Gaucher disease, and Krabbe disease. PMID:25151392

  9. Arginase activities and global arginine bioavailability in wild-type and ApoE-deficient mice: responses to high fat and high cholesterol diets.

    Directory of Open Access Journals (Sweden)

    Aaron Erdely

    Full Text Available Increased catabolism of arginine by arginase is increasingly viewed as an important pathophysiological factor in cardiovascular disease, including atherosclerosis induced by high cholesterol diets. Whereas previous studies have focused primarily on effects of high cholesterol diets on arginase expression and arginine metabolism in specific blood vessels, there is no information regarding the impact of lipid diets on arginase activity or arginine bioavailability at a systemic level. We, therefore, evaluated the effects of high fat (HF and high fat-high cholesterol (HC diets on arginase activity in plasma and tissues and on global arginine bioavailability (defined as the ratio of plasma arginine to ornithine + citrulline in apoE(-/- and wild-type C57BL/6J mice. HC and HF diets led to reduced global arginine bioavailability in both strains. The HC diet resulted in significantly elevated plasma arginase in both strains, but the HF diet increased plasma arginase only in apoE(-/- mice. Elevated plasma arginase activity correlated closely with increased alanine aminotransferase levels, indicating that liver damage was primarily responsible for elevated plasma arginase. The HC diet, which promotes atherogenesis, also resulted in increased arginase activity and expression of the type II isozyme of arginase in multiple tissues of apoE(-/- mice only. These results raise the possibility that systemic changes in arginase activity and global arginine bioavailability may be contributing factors in the initiation and/or progression of cardiovascular disease.

  10. Catabolism of hyaluronan: involvement of transition metals

    OpenAIRE

    Šoltés, Ladislav; Kogan, Grigorij

    2009-01-01

    One of the very complex structures in the vertebrates is the joint. The main component of the joint is the synovial fluid with its high-molar-mass glycosaminoglycan hyaluronan, which turnover is approximately twelve hours. Since the synovial fluid does not contain any hyaluronidases, the fast hyaluronan catabolism is caused primarily by reductive-oxidative processes. Eight transition metals – V23, Mn25, Fe26, Co27, Ni28, Cu29, Zn30, and Mo42 – naturally occurring in living organism are essent...

  11. Catabolism of volatile organic compounds influences plant survival.

    Science.gov (United States)

    Oikawa, Patricia Y; Lerdau, Manuel T

    2013-12-01

    Plants emit a diverse array of phytogenic volatile organic compounds (VOCs). The production and emission of VOCs has been an important area of research for decades. However, recent research has revealed the importance of VOC catabolism by plants and VOC degradation in the atmosphere for plant growth and survival. Specifically, VOC catabolism and degradation have implications for plant C balance, tolerance to environmental stress, plant signaling, and plant-atmosphere interactions. Here we review recent advances in our understanding of VOC catabolism and degradation, propose experiments for investigating VOC catabolism, and suggest ways to incorporate catabolism into VOC emission models. Improving our knowledge of VOC catabolism and degradation is crucial for understanding plant metabolism and predicting plant survival in polluted environments.

  12. BASIC AMINO ACID CARRIER 2 gene expression modulates arginine and urea content and stress recovery in Arabidopsis leaves.

    Directory of Open Access Journals (Sweden)

    Séverine ePlanchais

    2014-07-01

    Full Text Available In plants, basic amino acids are important for the synthesis of proteins and signaling molecules and for nitrogen recycling. The Arabidopsis nuclear gene BASIC AMINO ACID CARRIER 2 (BAC2 encodes a mitochondria-located carrier that transports basic amino acids in vitro. We present here an analysis of the physiological and genetic function of BAC2 in planta. When BAC2 is overexpressed in vivo, it triggers catabolism of arginine, a basic amino acid, leading to arginine depletion and urea accumulation in leaves. BAC2 expression was known to be strongly induced by stress. We found that compared to wild type plants, bac2 null mutants (bac2-1 recover poorly from hyperosmotic stress when restarting leaf expansion. The bac2-1 transcriptome differs from the wild-type transcriptome in control conditions and under hyperosmotic stress. The expression of genes encoding stress-related transcription factors, arginine metabolism enzymes, and transporters is particularly disturbed in bac2-1, and in control conditions, the bac2-1 transcriptome has some hallmarks of a wild-type stress transcriptome. The BAC2 carrier is therefore involved in controlling the balance of arginine and arginine-derived metabolites and its associated amino acid metabolism is physiologically important in equipping plants to respond to and recover from stress.

  13. Whole-body synthesis of L-homoarginine in pigs and rats supplemented with L-arginine.

    Science.gov (United States)

    Hou, Yongqing; Hu, Shengdi; Jia, Sichao; Nawaratna, Gayan; Che, Dongsheng; Wang, Fenglai; Bazer, Fuller W; Wu, Guoyao

    2016-04-01

    Recent studies suggest an important role for L-homoarginine in cardiovascular, hepatic and neurological functions, as well as the regulation of glucose metabolism. However, little is known about whole-body L-homoarginine synthesis or its response to dietary L-arginine intake in animals. Four series of experiments were conducted to determine L-homoarginine synthesis and catabolism in pigs and rats. In Experiment 1, male and female pigs were fed a corn- and soybean meal-based diet supplemented with 0.0-2.42 % L-arginine-HCl. In Experiment 2, male and female rats were fed a casein-based diet, while receiving drinking water containing supplemental L-arginine-HCl to provide 0.0-3.6 g L-arginine/kg body-weight/day. In both experiments, urine collected from the animals for 24 h was analyzed for L-homoarginine and related metabolites. In Experiment 3, pigs and rats received a single oral dose of 1 or 10 mg L-homoarginine/kg body-weight, respectively, and their urine was collected for 24 h for analyses of L-homoarginine and related substances. In Experiment 4, slices of pig and rat tissues (including liver, brain, kidney, heart, and skeletal-muscle) were incubated for 1 h in Krebs-bicarbonate buffer containing 5 or 50 µM L-homoarginine. Our results indicated that: (a) animal tissues did not degrade L-homoarginine in the presence of physiological concentrations of other amino-acids; (b) 95-96 % of orally administered L-homoarginine was recovered in urine; (c) L-homoarginine was quantitatively a minor product of L-arginineg catabolism in the body; and (d) dietary L-arginine supplementation dose-dependently increased whole-body L-homoarginine synthesis. These novel findings provide a new framework for future studies of L-homoarginine metabolism and physiology in animals and humans. PMID:26676627

  14. Pharmacological PPARα activation markedly alters plasma turnover of the amino acids glycine, serine and arginine in the rat.

    Directory of Open Access Journals (Sweden)

    Anette Ericsson

    Full Text Available The current study extends previously reported PPARα agonist WY 14,643 (30 µmol/kg/day for 4 weeks effects on circulating amino acid concentrations in rats fed a 48% saturated fat diet. Steady-state tracer experiments were used to examine in vivo kinetic mechanisms underlying altered plasma serine, glycine and arginine levels. Urinary urea and creatinine excretion were measured to assess whole-body amino acid catabolism. WY 14,643 treated animals demonstrated reduced efficiency to convert food consumed to body weight gain while liver weight was increased compared to controls. WY 14,643 raised total amino acid concentration (38%, largely explained by glycine, serine and threonine increases. 3H-glycine, 14C-serine and 14C-arginine tracer studies revealed elevated rates of appearance (Ra for glycine (45.5 ± 5.8 versus 17.4 ± 2.7 µmol/kg/min and serine (21.0 ± 1.4 versus 12.0 ± 1.0 in WY 14,643 versus control. Arginine was substantially decreased (-62% in plasma with estimated Ra reduced from 3.1 ± 0.3 to 1.2 ± 0.2 µmol/kg/min in control versus WY 14,643. Nitrogen excretion over 24 hours was unaltered. Hepatic arginase activity was substantially decreased by WY 14,643 treatment. In conclusion, PPARα agonism potently alters metabolism of several specific amino acids in the rat. The changes in circulating levels of serine, glycine and arginine reflected altered fluxes into the plasma rather than changes in clearance or catabolism. This suggests that PPARα has an important role in modulating serine, glycine and arginine de novo synthesis.

  15. Metabolic control analysis of xylose catabolism in Aspergillus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Gabelgaard, J.B.; Wanchanthuek, P.;

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out...... nidulans grown on media containing xylose, and a concentration up to 30 mM was found. Applying MCA showed that the first polyol dehydrogenase (XDH) in the catabolic pathway of xylose exerted the main flux control in the two strains of A. nidulans and A. niger NW324, but the flux control was exerted mainly...

  16. Adaptations of Arginine's Intestinal-Renal Axis in Cachectic Tumor-Bearing Rats.

    Science.gov (United States)

    Buijs, Nikki; Vermeulen, Mechteld A R; Weeda, Viola B; Bading, James R; Houdijk, Alexander P J; van Leeuwen, Paul A M

    2015-01-01

    Malignancies induce disposal of arginine, an important substrate for the immune system. To sustain immune function, the tumor-bearing host accelerates arginine's intestinal-renal axis by glutamine mobilization from skeletal muscle and this may promote cachexia. Glutamine supplementation stimulates argi-nine production in healthy subjects. Arginine's intestinal-renal axis and the effect of glutamine supplementation in cancer cach-exia have not been investigated. This study evaluated the long-term adaptations of the interorgan pathway for arginine production following the onset of cachexia and the metabolic effect of glutamine supplementation in the cachectic state. Fischer-344 rats were randomly divided into a tumor-bearing group (n = 12), control group (n = 7) and tumor-bearing group receiving a glutamine-enriched diet (n = 9). Amino acid fluxes and net fractional extractions across intestine, kidneys, and liver were studied. Compared to controls, the portal-drained viscera of tumor-bearing rats took up significantly more glutamine and released significantly less citrulline. Renal metabolism was unchanged in the cachectic tumor-bearing rats compared with controls. Glutamine supplementation had no effects on intestinal and renal adaptations. In conclusion, in the cachectic state, an increase in intestinal glutamine uptake is not accompanied by an increase in renal arginine production. The adaptations found in the cachectic, tumor-bearing rat do not depend on glutamine availability.

  17. Bone marrow: its contribution to heme catabolism.

    Science.gov (United States)

    Mähönen, Y; Anttinen, M; Vuopio, P; Tenhunen, R

    1976-01-01

    Heme oxygenase (HO) and biliverdin reductase (BR), the two NADPH-dependent enzymes involved in the degradation of hemoglobin and its derivatives, were measured in bone marrow aspirates from 5 hematologically normal persons, 4 patients with chronic leucemia (CL), 11 patients with acute leucemia (AL), 8 patients with refractory sideroblastic anemia (RA), 7 patients with iron-deficiency anemia (IA), 5 patients with hemolytic anemia (HA), and 7 patients with secondary anemia (SA) to determine the enzymatic capacity of the bone marrow in different hematologic disorders for heme catabolism. HO activity in the bone marrow of normal persons was 0.42 +/- 0.28 (SD) nmoles bilirubin/10 mg protein/min; in CL, 2.15 +/- 1.34; in AL, 0.39 +/- 0.25; in RA, 0.58 +/- 0.37; in IA, 0.41 +/- 0.28; in HA, 2.56 +/- 1.40; and in SA, 1.72 +/- 1.06. BR activity, respectively, was in normal persons 8.7 +/- 2.4 (SD) nmoles bilirubin/10 mg protein/min; in CL, 13.6 +/- 9.1; in AL, 3.8 +/- 3.1 in RA, 5.1 +/- 2.7; in IA, 5.5 +/- 3.7; in HA, 17.0 +/- 7.2; and in SA, 10.5 +/- 4.2. On the basis of these findings it seems evident that both oxygenase and biliverdin reductase activities of the bone marrow are capable of adaptive regulation. The physiologic role of bone marrow in heme catabolism seems to be of significant importance.

  18. SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation.

    Science.gov (United States)

    Pang, Shanshan; Lynn, Dana A; Lo, Jacqueline Y; Paek, Jennifer; Curran, Sean P

    2014-10-06

    Mechanisms that coordinate different metabolic pathways, such as glucose and lipid, have been recognized. However, a potential interaction between amino acid and lipid metabolism remains largely elusive. Here we show that during starvation of Caenorhabditis elegans, proline catabolism is coupled with lipid metabolism by SKN-1. Mutation of alh-6, a conserved proline catabolic enzyme, accelerates fat mobilization, enhances the expression of genes involved in fatty acid oxidation and reduces survival in response to fasting. This metabolic coordination is mediated by the activation of the transcription factor SKN-1/Nrf2, possibly due to the accumulation of the alh-6 substrate P5C, and also requires the transcriptional co-regulator MDT-15. Constitutive activation of SKN-1 induces a similar transcriptional response, which protects animals from fat accumulation when fed a high carbohydrate diet. In human cells, an orthologous alh-6 enzyme, ALDH4A1, is also linked to the activity of Nrf2, the human orthologue of SKN-1, and regulates the expression of lipid metabolic genes. Our findings identify a link between proline catabolism and lipid metabolism, and uncover a physiological role for SKN-1 in metabolism.

  19. Mobilities Mobilities

    Directory of Open Access Journals (Sweden)

    César Pompeyo

    2011-12-01

    Full Text Available Urry, John (2007 Mobilities.Oxford: Polity Press.Urry, John (2007 Mobilities.Oxford: Polity Press.John Urry (1946-, profesor en la Universidad de Lancaster, es un sociólogo de sobra conocido y altamente reputado en el panorama internacional de las ciencias sociales. Su dilatada carrera, aparentemente dispersa y diversificada, ha seguido senderos bastante bien definidos dejando tras de sí un catálogo extenso de obras sociológicas de primer nivel. Sus primeros trabajos se centraban en el campo de la teoría social y la filosofía de las ciencias sociales o de la sociología del poder [...

  20. Effects of lipopolysaccharide on the catabolic activity of macrophages

    International Nuclear Information System (INIS)

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of 125-I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses

  1. Glutamate, Ornithine, Arginine, Proline, and Polyamine Metabolic Interactions: The Pathway Is Regulated at the Post-Transcriptional Level

    Science.gov (United States)

    Majumdar, Rajtilak; Barchi, Boubker; Turlapati, Swathi A.; Gagne, Maegan; Minocha, Rakesh; Long, Stephanie; Minocha, Subhash C.

    2016-01-01

    The metabolism of glutamate into ornithine, arginine, proline, and polyamines is a major network of nitrogen-metabolizing pathways in plants, which also produces intermediates like nitric oxide, and γ-aminobutyric acid (GABA) that play critical roles in plant development and stress. While the accumulations of intermediates and the products of this network depend primarily on nitrogen assimilation, the overall regulation of the interacting sub-pathways is not well understood. We tested the hypothesis that diversion of ornithine into polyamine biosynthesis (by transgenic approach) not only plays a role in regulating its own biosynthesis from glutamate but also affects arginine and proline biosynthesis. Using two high putrescine producing lines of Arabidopsis thaliana (containing a transgenic mouse ornithine decarboxylase gene), we studied the: (1) effects of exogenous supply of carbon and nitrogen on polyamines and pools of soluble amino acids; and, (2) expression of genes encoding key enzymes in the interactive pathways of arginine, proline and GABA biosynthesis as well as the catabolism of polyamines. Our findings suggest that: (1) the overall conversion of glutamate to arginine and polyamines is enhanced by increased utilization of ornithine for polyamine biosynthesis by the transgene product; (2) proline and arginine biosynthesis are regulated independently of polyamines and GABA biosynthesis; (3) the expression of most genes (28 that were studied) that encode enzymes of the interacting sub-pathways of arginine and GABA biosynthesis does not change even though overall biosynthesis of Orn from glutamate is increased several fold; and (4) increased polyamine biosynthesis results in increased assimilation of both nitrogen and carbon by the cells. PMID:26909083

  2. The Use of Anabolic Agents in Catabolic States

    OpenAIRE

    Demling, Robert

    2007-01-01

    Objective: We plan to review the current problem of lean mass erosion in catabolic states, caused by injury and critical illness. This protein loss is driven by the hormonal imbalance and excess inflammation referred to as the “stress response to injury.” We then plan to provide the current concepts on the use of available anabolic agents to attenuate the excess catabolism. Data Source: The available published literature on the pathogenesis of acute catabolic states and the use of anabolic an...

  3. Catabolism of host-derived compounds during extracellular bacterial infections.

    Science.gov (United States)

    Meadows, Jamie A; Wargo, Matthew J

    2014-02-01

    Efficient catabolism of host-derived compounds is essential for bacterial survival and virulence. While these links in intracellular bacteria are well studied, such studies in extracellular bacteria lag behind, mostly for technical reasons. The field has identified important metabolic pathways, but the mechanisms by which they impact infection and in particular, establishing the importance of a compound's catabolism versus alternate metabolic roles has been difficult. In this review we will examine evidence for catabolism during extracellular bacterial infections in animals and known or potential roles in virulence. In the process, we point out key gaps in the field that will require new or newly adapted techniques.

  4. Arginine regulation of gramicidin S biosynthesis.

    OpenAIRE

    Poirier, A.; Demain, A L

    1981-01-01

    Several amino acids are known to affect the gramicidin S producer Bacillus brevis ATCC 9999 with respect ot growth, soluble gramicidin S synthetase formation, antibiotic production, or a combination of these. Our studies confirmed that arginine has paradoxical effects on the B. brevis fermentation; it markedly increased growth and antibiotic production, yet decreased the soluble heavy gramicidin S synthetase activity. We found that arginine did not repress heavy gramicidin S synthetase. The a...

  5. Relevance of arginines in the mode of binding of H1 histones to DNA.

    Science.gov (United States)

    Piscopo, Marina; Conte, Mariachiara; Di Paola, Flaviano; Conforti, Salvatore; Rana, Gina; De Petrocellis, Luciano; Fucci, Laura; Geraci, Giuseppe

    2010-07-01

    The mode of binding of sperm and somatic H1 histones to DNA has been investigated by analyzing the effect of their addition on the electrophoretic mobility of linear and circular plasmid molecules. Low concentrations of sperm histones do not appear to alter the electrophoretic mobility of DNA, whereas at increasing concentrations, an additional DNA band is observed near the migration origin. This band then becomes the only component at higher values. In contrast, somatic histones cause a gradual retardation in the mobility of the DNA band at low concentrations and aggregated structures are observed only at higher values. Experiments on the H1 globular domain obtained by limited proteolysis indicate that the mode of binding to DNA depends on the H1 globular domain. The arginine residues appear to be relevant for the different effects as indicated by experiments on sperm histone and on protamine with arginines deguanidinated to ornithines. The modified molecules influence DNA mobility like somatic H1s, indicating that the positive guanidino groups of arginines cannot be substituted by the positive amino groups of ornithines. Modifications of the amino groups of lysines show that these residues are necessary for the binding of H1 histones to DNA but they have no influence on the binding mode. PMID:20438368

  6. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids.

  7. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity[S

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-01-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  8. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  9. A forward genetic approach in Chlamydomonas reinhardtii as a strategy for exploring starch catabolism.

    Directory of Open Access Journals (Sweden)

    Hande Tunçay

    Full Text Available A screen was recently developed to study the mobilization of starch in the unicellular green alga Chlamydomonas reinhardtii. This screen relies on starch synthesis accumulation during nitrogen starvation followed by the supply of nitrogen and the switch to darkness. Hence multiple regulatory networks including those of nutrient starvation, cell cycle control and light to dark transitions are likely to impact the recovery of mutant candidates. In this paper we monitor the specificity of this mutant screen by characterizing the nature of the genes disrupted in the selected mutants. We show that one third of the mutants consisted of strains mutated in genes previously reported to be of paramount importance in starch catabolism such as those encoding β-amylases, the maltose export protein, and branching enzyme I. The other mutants were defective for previously uncharacterized functions some of which are likely to define novel proteins affecting starch mobilization in green algae.

  10. Arginine Adjunctive Therapy in Active Tuberculosis

    Directory of Open Access Journals (Sweden)

    Aliasghar Farazi

    2015-01-01

    Full Text Available Background. Dietary supplementation has been used as a mechanism to augment the immune system. Adjunctive therapy with L-arginine has the potential to improve outcomes in active tuberculosis. Methods. In a randomized clinical trial 63 participants with smear-positive pulmonary tuberculosis in Markazi Province of Iran were given arginine or placebo for 4 weeks in addition to conventional chemotherapy. The final treatment success, sputum conversion, weight gain, and clinical symptoms after one and two months were considered as primary outcomes and secondary outcomes were ESR, CRP, and Hg. Data were collected and analyzed with SPSS software (ver. 18. Results. Arginine supplementation reduced constitutional symptoms (P=0.032 in patients with smear-positive TB at the end of the first month of treatment. Arginine treated patients had significantly increased BMI at the end of the first and second months of treatment (P=0.032 and P=0.04 and a reduced CRP at the end of the first month of treatment (P=0.03 versus placebo group. Conclusion. Arginine is useful as an adjunctive therapy in patients with active tuberculosis, in which the effects are more likely mediated by the increased production of nitric oxide and improved constitutional symptoms and weight gain. This trial is registered with Clinical Trials Registry of Iran: IRCT201211179855N2.

  11. Arginase and Arginine Dysregulation in Asthma

    Directory of Open Access Journals (Sweden)

    Renée C. Benson

    2011-01-01

    Full Text Available In recent years, evidence has accumulated indicating that the enzyme arginase, which converts L-arginine into L-ornithine and urea, plays a key role in the pathogenesis of pulmonary disorders such as asthma through dysregulation of L-arginine metabolism and modulation of nitric oxide (NO homeostasis. Allergic asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Through substrate competition, arginase decreases bioavailability of L-arginine for nitric oxide synthase (NOS, thereby limiting NO production with subsequent effects on airway tone and inflammation. By decreasing L-arginine bioavailability, arginase may also contribute to the uncoupling of NOS and the formation of the proinflammatory oxidant peroxynitrite in the airways. Finally, arginase may play a role in the development of chronic airway remodeling through formation of L-ornithine with downstream production of polyamines and L-proline, which are involved in processes of cellular proliferation and collagen deposition. Further research on modulation of arginase activity and L-arginine bioavailability may reveal promising novel therapeutic strategies for asthma.

  12. Arginine, scurvy and Cartier's "tree of life"

    Directory of Open Access Journals (Sweden)

    Durzan Don J

    2009-02-01

    Full Text Available Abstract Several conifers have been considered as candidates for "Annedda", which was the source for a miraculous cure for scurvy in Jacques Cartier's critically ill crew in 1536. Vitamin C was responsible for the cure of scurvy and was obtained as an Iroquois decoction from the bark and leaves from this "tree of life", now commonly referred to as arborvitae. Based on seasonal and diurnal amino acid analyses of candidate "trees of life", high levels of arginine, proline, and guanidino compounds were also probably present in decoctions prepared in the severe winter. The semi-essential arginine, proline and all the essential amino acids, would have provided additional nutritional benefits for the rapid recovery from scurvy by vitamin C when food supply was limited. The value of arginine, especially in the recovery of the critically ill sailors, is postulated as a source of nitric oxide, and the arginine-derived guanidino compounds as controlling factors for the activities of different nitric oxide synthases. This review provides further insights into the use of the candidate "trees of life" by indigenous peoples in eastern Canada. It raises hypotheses on the nutritional and synergistic roles of arginine, its metabolites, and other biofactors complementing the role of vitamin C especially in treating Cartier's critically ill sailors.

  13. The Sakaguchi reaction product quenches phycobilisome fluorescence, allowing determination of the arginine concentration in cells of Anabaena strain PCC 7120.

    Science.gov (United States)

    Ke, Shan; Haselkorn, Robert

    2013-01-01

    The filamentous cyanobacterium Anabaena fixes nitrogen in specialized cells called heterocysts. The immediate product of fixation, ammonia, is known to be assimilated by addition to glutamate to make glutamine. How fixed nitrogen is transported along the filament to the 10 to 20 vegetative cells that separate heterocysts is unknown. N-fixing heterocysts accumulate an insoluble polymer containing aspartate and arginine at the cell poles. Lockau's group has proposed that the polymer is degraded at the poles to provide a mobile carrier, arginine, to the vegetative cells (R. Richter, M. Hejazi, R. Kraft, K. Ziegler, and W. Lockau, Eur. J. Biochem. 263:163-169, 1999). We wished to use the Sakaguchi reaction for arginine to determine the relative cellular concentration of arginine along the filament. At present, the methods for measuring absorption of the Sakaguchi reaction product at 520 nm are insufficiently sensitive for that purpose. However, that product quenches the fluorescence of phycobiliproteins, which we have adapted to a determination of arginine. Our results are consistent with the proposal that arginine is a principal nitrogen carrier from heterocysts to vegetative cells in Anabaena.

  14. Arginine methylation regulates the p53 response

    DEFF Research Database (Denmark)

    Jansson, Martin; Durant, Stephen T; Cho, Er-Chieh;

    2008-01-01

    on the p53 response. We show that the protein arginine methyltransferase (PRMT) 5, as a co-factor in a DNA damage responsive co-activator complex that interacts with p53, is responsible for methylating p53. Arginine methylation is regulated during the p53 response and affects the target gene specificity......Activation of the p53 tumour suppressor protein in response to DNA damage leads to apoptosis or cell-cycle arrest. Enzymatic modifications are widely believed to affect and regulate p53 activity. We describe here a level of post-translational control that has an important functional consequence...

  15. Renal catabolism of albumin – current views and controversies

    Directory of Open Access Journals (Sweden)

    Jakub Gburek

    2011-10-01

    Full Text Available Albumin is the main protein of blood plasma, lymph, cerebrospinal fluid and interstitial fluid. The protein assists in many important body functions, including maintenance of proper colloidal osmotic pressure, transport of important metabolites and antioxidant action. Synthesis of albumin takes place mainly in the liver, and its catabolism occurs mostly in vascular endothelium of muscle, skin and liver as well as in the kidney tubular epithelium. Renal catabolism of albumin consists of glomerular filtration and tubular reabsorption. The tubular processes include endocytosis via the multiligand scavenger receptor tandem megalin and cubilin-amnionless complex. Possible ways of further catabolism of this protein are lysosomal proteolysis to amino acids and short peptides, recycling of degradation products into the bloodstream and tubular lumen or transcytosis of whole molecules. The article discusses the molecular aspects of these processes and presents the controversies arising in the light of the last decade of research.

  16. Altered brain arginine metabolism in schizophrenia

    Science.gov (United States)

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-01-01

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease. PMID:27529679

  17. Modulators of arginine metabolism support cancer immunosurveillance

    Directory of Open Access Journals (Sweden)

    Freschi Massimo

    2009-01-01

    Full Text Available Abstract Background Tumor-associated accrual of myeloid derived suppressor cells (MDSC in the blood, lymphoid organs and tumor tissues may lead to perturbation of the arginine metabolism and impairment of the endogenous antitumor immunity. The objective of this study was to evaluate whether accumulation of MDSC occurred in Th2 prone BALB/c and Th1 biased C57BL/6 mice bearing the C26GM colon carcinoma and RMA T lymphoma, respectively, and to investigate whether N(G nitro-L-arginine methyl ester (L-NAME and sildenafil, both modulators of the arginine metabolism, restored antitumor immunity. Results We report here that MDSC accumulate in the spleen and blood of mice irrespective of the mouse and tumor model used. Treatment of tumor-bearing mice with either the phosphodiesterase-5 inhibitor sildenafil or the nitric-oxide synthase (NOS inhibitor L-NAME significantly restrained tumor growth and expanded the tumor-specific immune response. Conclusion Our data emphasize the role of MDSC in modulating the endogenous tumor-specific immune response and underline the anti-neoplastic therapeutic potential of arginine metabolism modulators.

  18. Low plasma arginine:asymmetric dimethyl arginine ratios predict mortality after intracranial aneurysm rupture

    DEFF Research Database (Denmark)

    Staalsø, Jonatan Myrup; Bergström, Anita; Edsen, Troels;

    2013-01-01

    Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthases, predicts mortality in cardiovascular disease and has been linked to cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). In this prospective study, we assessed whether circulating ADMA, arginine...

  19. Variable carbon catabolism among Salmonella enterica serovar Typhi isolates.

    Directory of Open Access Journals (Sweden)

    Lay Ching Chai

    Full Text Available BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. METHODOLOGY/PRINCIPAL FINDINGS: To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas of typhoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. CONCLUSION: The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen.

  20. Arginine, scurvy and Cartier's "tree of life"

    OpenAIRE

    Durzan Don J

    2009-01-01

    Abstract Several conifers have been considered as candidates for "Annedda", which was the source for a miraculous cure for scurvy in Jacques Cartier's critically ill crew in 1536. Vitamin C was responsible for the cure of scurvy and was obtained as an Iroquois decoction from the bark and leaves from this "tree of life", now commonly referred to as arborvitae. Based on seasonal and diurnal amino acid analyses of candidate "trees of life", high levels of arginine, proline, and guanidino compoun...

  1. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress

    Science.gov (United States)

    Cheng, Yanfei; Du, Zhaoli; Zhu, Hui; Guo, Xuena; He, Xiuping

    2016-01-01

    Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation. PMID:27507154

  2. Serine one-carbon catabolism with formate overflow

    Science.gov (United States)

    Meiser, Johannes; Tumanov, Sergey; Maddocks, Oliver; Labuschagne, Christiaan Fred; Athineos, Dimitris; Van Den Broek, Niels; Mackay, Gillian M.; Gottlieb, Eyal; Blyth, Karen; Vousden, Karen; Kamphorst, Jurre J.; Vazquez, Alexei

    2016-01-01

    Serine catabolism to glycine and a one-carbon unit has been linked to the anabolic requirements of proliferating mammalian cells. However, genome-scale modeling predicts a catabolic role with one-carbon release as formate. We experimentally prove that in cultured cancer cells and nontransformed fibroblasts, most of the serine-derived one-carbon units are released from cells as formate, and that formate release is dependent on mitochondrial reverse 10-CHO-THF synthetase activity. We also show that in cancer cells, formate release is coupled to mitochondrial complex I activity, whereas in nontransformed fibroblasts, it is partially insensitive to inhibition of complex I activity. We demonstrate that in mice, about 50% of plasma formate is derived from serine and that serine starvation or complex I inhibition reduces formate synthesis in vivo. These observations transform our understanding of one-carbon metabolism and have implications for the treatment of diabetes and cancer with complex I inhibitors.

  3. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    DEFF Research Database (Denmark)

    de Groot, M.J.L.; Prathumpai, Wai; Visser, J.;

    2005-01-01

    , and their kinetic properties were characterized. For the other enzymes of the pathway the kinetic data were available from the literature. The metabolic model was used to analyze flux and metabolite concentration control of the L-arabinose catabolic pathway. The model demonstrated that flux control does not reside......A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography......-arabinose, a level that resulted in realistic intermediate concentrations in the model, flux control coefficients for L-arabinose reductase, L-arabitol dehydrogenase and L-xylulose reductase were 0.68, 0.17 and 0.14, respectively. The analysis can be used as a guide to identify targets for metabolic engineering...

  4. Mediated Electrochemical Measurements of Intracellular Catabolic Activities of Yeast Cells

    Institute of Scientific and Technical Information of China (English)

    Jin Sheng ZHAO; Zhen Yu YANG; Yao LU; Zheng Yu YANG

    2005-01-01

    Coupling with the dual mediator system menadione/ferricyanide, microelectrode voltammetric measurements were undertaken to detect the ferrocyanide accumulations arising from the mediated reduction of ferricyanide by yeast cells. The results indicate that the dual mediator system menadione/ferricyanide could be used as a probe to detect cellular catabolic activities in yeast cells and the electrochemical response has a positive relationship with the specific growth rate of yeast cells.

  5. Increase in sphingolipid catabolic enzyme activity during aging

    OpenAIRE

    Sacket, Santosh J; Chung, Hae-young; Okajima, Fumikazu; Im, Dong-Soon

    2009-01-01

    Aim: To understand the contribution of sphingolipid metabolism and its metabolites to development and aging. Methods: A systemic analysis on the changes in activity of sphingolipid metabolic enzymes in kidney, liver and brain tissues during development and aging was conducted. The study was conducted using tissues from 1-day-old to 720-day-old rats. Results: Catabolic enzyme activities as well as the level of sphingomyelinase (SMase) and ceramidase (CDase) were higher than that of anabolic en...

  6. Staging Mobilities / Designing Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2015-01-01

    as people are ‘staging themselves’ (from below). Staging mobilities is a dynamic process between ‘being staged’ (for example, being stopped at traffic lights) and the ‘mobile staging’ of interacting individuals (negotiating a passage on the pavement). Staging mobilities is about the fact that mobility...

  7. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    Science.gov (United States)

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  8. Spectrophotometric Determination of Arginine in Grape Juice Using 8-Hydroquinoline

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LIANG Xin-hong; ZHAO Rui-xiang; FENG Li-dan; LI Hua

    2008-01-01

    Arginine in grape juice can be metabolized by wine yeasts and malolactic bacteria to precursors of ethyl carbamate, known as carcinogen. The aim of this study was to develop a simple, fast, and accurate method for determining arginine in grape juice with Sakaguchi reaction by separating arginine with strong cation-exchange resins. Parameters were optimized including the concentrations of 8-hydroquinoline and sodium hydrobromite. The color stability lasted for 4 min, which is sufficient to finish the measurement. The method is simple, reproducible and accurate, and can be applied for quick measurement of arginine in grape juice to take necessary measures for controlling the level of ethyl carbamate.

  9. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    Science.gov (United States)

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%. PMID:15120115

  10. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    Science.gov (United States)

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%.

  11. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice.

    Science.gov (United States)

    Marini, Juan C; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight. PMID:25775142

  12. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    Energy Technology Data Exchange (ETDEWEB)

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  13. Arginine specific aminopeptidase from Lactobacillus brevis

    Directory of Open Access Journals (Sweden)

    Arya Nandan

    2010-12-01

    Full Text Available The proteolytic system of lactic acid bacteria contribute to the development of flavor during the ripening of cheese through the generation of short peptides and free amino acids, which directly or indirectly act as flavor precursors. Newly isolated lactic acid bacteria (LAB as well as those procured from culture collection centers were screened for the production of various substrate specific aminopeptidases. Among all the strains screened, L. brevis (NRRL B-1836 was found to produce quantifiable amount of intracellular arginine specific aminopeptidase (EC 3.4.11.6. The productivity of arginine aminopeptidase in 5 L fermentor was 36 IU/L/h. The Luedeking and Piret model was tested for intracellular production of aminopeptidase and the data seemed to fit well, as the correlation coefficient was 0.9964 for MRS. The αAP and βAP was 0.4865 and 0.0046, respectively in MRS medium indicating that the yield was predominantly depended on growth. The culture produced lactic acid and also tolerated pH 2.0-3.0 and 0.3-0.5% bile salts, the most important probiotic features.

  14. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice.

    Directory of Open Access Journals (Sweden)

    Juan C Marini

    Full Text Available Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20 on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L, and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight.

  15. Arginine, citrulline and nitric oxide metabolism in sepsis

    Science.gov (United States)

    Arginine has vasodilatory effects, via its conversion by nitric oxide (NO) synthase into NO, and immunomodulatory actions that play important roles in sepsis. Protein breakdown affects arginine availability, and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore a...

  16. Arginine Deiminase Resistance in Melanoma Cells Is Associated with Metabolic Reprogramming, Glucose Dependence and Glutamine Addiction

    OpenAIRE

    Long, Yan; Tsai, Wen-Bin; Wangpaichitr, Medhi; Tsukamoto, Takashi; Savaraj, Niramol; Feun, Lynn G.; Kuo, Macus Tien

    2013-01-01

    Many malignant human tumors, including melanomas are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of ...

  17. Anti-aging effects of l-arginine

    Directory of Open Access Journals (Sweden)

    Mohamed Z. Gad

    2010-07-01

    Full Text Available l-Arginine is one of the most metabolically versatile amino acids. In addition to its role in the synthesis of nitric oxide, l-arginine serves as a precursor for the synthesis of polyamines, proline, glutamate, creatine, agmatine and urea. Several human and experimental animal studies have indicated that exogenous l-arginine intake has multiple beneficial pharmacological effects when taken in doses larger than normal dietary consumption. Such effects include reduction in the risk of vascular and heart diseases, reduction in erectile dysfunction, improvement in immune response and inhibition of gastric hyperacidity. This review summarises several positive studies and personal experiences of l-arginine. The demonstrated anti-aging benefits of l-arginine show greater potential than any pharmaceutical or nutraceutical agent ever previously discovered.

  18. L-Arginine Pathway in COPD Patients with Acute Exacerbation

    DEFF Research Database (Denmark)

    Ruzsics, Istvan; Nagy, Lajos; Keki, Sandor;

    2016-01-01

    (ADMA, SDMA) is related to hypoxia. In COPD, a rise in ADMA results in a shift of L-arginine breakdown, contributing to airway obstruction. We aimed to compare serum levels of ADMA, SDMA and L-arginine in patients with and without AECOPD. METHODS: L-arginine metabolites quantified by high......BACKGROUND: Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) remains a major cause of mortality. Clinical criteria of AECOPD are subjective. Biomarkers for AECOPD may aid in the initiation of early treatment. Increased production of asymmetric and symmetric dimethylarginine......-arginine, ADMA and SDMA serum levels. In patients with AECOPD, production of ADMA and SDMA are more pronounced presumably due to more severe hypoxic insult. Methylated arginine derivatives in the sera may help early recognition of AECOPD....

  19. Molecular studies on bromovirus capsid protein. VII. Selective packaging on BMV RNA4 by specific N-terminal arginine residuals.

    Science.gov (United States)

    Choi, Y G; Rao, A L

    2000-09-15

    An arginine-rich RNA-binding motif (ARM) found at the N-proximal region of Brome mosaic virus (BMV) coat protein (CP) adopts alpha-helical conformation and shares homology with CPs of plant and insect RNA viruses, HIV-Rev and Tat proteins, bacterial antiterminators, and ribosomal splicing factors. The ARM of BMV CP, consisting of amino acids 9 through 21 with six arginine residues, is essential for RNA binding and subsequent packaging. In this study analysis of the alpha-helical contents of wild-type and mutant peptides by circular dichroism spectra identified protein determinants required for such conformation. Electrophoretic mobility-shift assays between viral RNA and BMV CP peptides with either proline or alanine substitutions revealed that the interaction is nonspecific. Expression in vivo of mature full-length BMV CP subunits, having the same substitutions for each arginine within the ARM, derived from biologically active clones was found to be competent to assemble into infectious virions and cause visible symptom phenotypes in whole plants. However, analysis of virion progeny RNA profiles of CP variants and subsequent in vitro reassembly assays between mutant CP and four BMV RNAs unveiled the ability of arginine residues at positions 10, 13, or 14 of the ARM to confer selective packaging of BMV RNA4. Thus, BMV CP contains determinants that specifically interact with RNA4 to ensure selective packaging.

  20. Life on arginine for Mycoplasma hominis: clues from its minimal genome and comparison with other human urogenital mycoplasmas.

    Directory of Open Access Journals (Sweden)

    Sabine Pereyre

    2009-10-01

    Full Text Available Mycoplasma hominis is an opportunistic human mycoplasma. Two other pathogenic human species, M. genitalium and Ureaplasma parvum, reside within the same natural niche as M. hominis: the urogenital tract. These three species have overlapping, but distinct, pathogenic roles. They have minimal genomes and, thus, reduced metabolic capabilities characterized by distinct energy-generating pathways. Analysis of the M. hominis PG21 genome sequence revealed that it is the second smallest genome among self-replicating free living organisms (665,445 bp, 537 coding sequences (CDSs. Five clusters of genes were predicted to have undergone horizontal gene transfer (HGT between M. hominis and the phylogenetically distant U. parvum species. We reconstructed M. hominis metabolic pathways from the predicted genes, with particular emphasis on energy-generating pathways. The Embden-Meyerhoff-Parnas pathway was incomplete, with a single enzyme absent. We identified the three proteins constituting the arginine dihydrolase pathway. This pathway was found essential to promote growth in vivo. The predicted presence of dimethylarginine dimethylaminohydrolase suggested that arginine catabolism is more complex than initially described. This enzyme may have been acquired by HGT from non-mollicute bacteria. Comparison of the three minimal mollicute genomes showed that 247 CDSs were common to all three genomes, whereas 220 CDSs were specific to M. hominis, 172 CDSs were specific to M. genitalium, and 280 CDSs were specific to U. parvum. Within these species-specific genes, two major sets of genes could be identified: one including genes involved in various energy-generating pathways, depending on the energy source used (glucose, urea, or arginine and another involved in cytadherence and virulence. Therefore, a minimal mycoplasma cell, not including cytadherence and virulence-related genes, could be envisaged containing a core genome (247 genes, plus a set of genes required for

  1. Directed evolution of a second xylitol catabolic pathway in Klebsiella pneumoniae.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1984-01-01

    Klebsiella pneumoniae PRL-R3 has inducible catabolic pathways for the degradation of ribitol and D-arabitol but cannot utilize xylitol as a growth substrate. A mutation in the rbtB regulatory gene of the ribitol operon permits the constitutive synthesis of the ribitol catabolic enzymes and allows growth on xylitol. The evolved xylitol catabolic pathway consists of an induced D-arabitol permease system that also transports xylitol, a constitutively synthesized ribitol dehydrogenase that oxidiz...

  2. Asymmetric Dimethyl Arginine in Hypothyroid Patients

    International Nuclear Information System (INIS)

    Thyroid diseases may lead to endothelial dysfunction, however, the mechanism underlying the endothelial dysfunction in thyroid disease is still not clear. Asymmetric dimethyl arginine (ADMA), a novel inhibitor of endothelial nitric oxide synthetase (eNOS), was reported to inhibit nitric oxide (NO) synthesis from L-arginine. The present study was carried out to investigate ADMA levels together with effects of dislipidemia in sub-clinical and overt hypothyroid females. There were significant increase in the levels of total cholesterol, low density lipoprotein-cholesterol (LDL-c), high density lipoprotein-cholesterol (HDL-c), thyroid stimulating hormone (TSH) and ADMA in hypothyroid females as compared to controls while the levels of NO and free T4 were significantly decreased than controls. Sub-clinical hypothyroid females had significant high TSH, LDL-c and non-significantly high ADMA levels and total cholesterol as compared to controls while they had significant decrease in NO, HDL-c and non-significant decrease in free T4 as compared to controls. There were significant negative correlations between NO and both ADMA (r2 = 0.84) and free T4 (r2 = 0.95) in overt hypothyroid group while significant positive correlation (r2 = 0.85) was detected between TSH and HDL-c in the same group. These results are highly suggestive that the decrease of nitric oxide secondary to accumulation of ADMA represent an important pathogenic factor together with dyslipidemia in endothelial dysfunction and increased cardiovascular risk especially in hypothyroid females

  3. Arginine acts as an inhibitor of the biosynthesis of several mycotoxins.

    Science.gov (United States)

    Touhami, Najim; Buhl, Katharina; Schmidt-Heydt, Markus; Geisen, Rolf

    2016-10-17

    It is well known that the type and the availability of nitrogen have a great influence on the biosynthesis of certain mycotoxins. Here it is shown that some amino acids have no influence, some others strongly support and a third group inhibits the biosynthesis of ochratoxin (OTA) by Penicillium nordicum even in a complex medium, such as PDA. Arginine (Arg) is one of the strong OTA inhibiting amino acids. It was shown that Arg not only inhibits OTA in Penicillium but also citrinin (CIT) biosynthesis in Penicillium verrucosum, Penicillium expansum and Penicillium citrinum and alternariol (AOH), alternariol monomethylether (AME) and tenuazonic acid (TeA) biosynthesis in Alternaria alternata. The minimal inhibitory concentration of Arg differs depending on the mycotoxin and the species analysed. However, the OTA biosynthesis by P. verrucosum and P. nordicum was most sensitive. Growth, on the other hand, was much less affected by Arg. Urea, a metabolite of Arg catabolism, shows a similar inhibitory activity. In wheat medium containing 50mM Arg almost no OTA was produced by Penicillium, in contrast to plain wheat medium. PMID:27400452

  4. Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation.

    Science.gov (United States)

    Fox, Barbara A; Gigley, Jason P; Bzik, David J

    2004-03-01

    Two separate carbamoyl phosphate synthetase activities are required for the de novo synthesis of pyrimidines and arginine in most eukaryotes. Toxoplasma gondii is novel in possessing a single carbamoyl phosphate synthetase II gene that corresponds to a glutamine-dependent form required for pyrimidine biosynthesis. We therefore examined arginine acquisition in T. gondii to determine whether the single carbamoyl phosphate synthetase II activity could provide both pyrimidine and arginine biosynthesis. We found that arginine deprivation efficiently blocks the replication of intracellular T. gondii, yet has little effect on long-term parasite viability. Addition of citrulline, but not ornithine, rescues the growth defect observed in the absence of exogenous arginine. This rescue with citrulline is ablated when parasites are cultured in a human citrullinemia fibroblast cell line that is deficient in argininosuccinate synthetase activity. These results reveal the absence of genes and activities of the arginine biosynthetic pathway and demonstrate that T. gondii is an arginine auxotroph. Arginine starvation was also found to efficiently trigger differentiation of replicative tachyzoites into bradyzoites contained within stable cyst-like structures. These same parasites expressing bradyzoite antigens can be efficiently switched back to rapidly proliferating tachyzoites several weeks after arginine starvation. We hypothesise that the absence of gene activities that are essential for the biosynthesis of arginine from carbamoyl phosphate confers a selective advantage by increasing bradyzoite switching during the host response to T. gondii infection. These findings are consistent with a model of host-parasite evolution that allowed host control of bradyzoite induction by trading off virulence for increased transmission. PMID:15003493

  5. Lysosomes from rabbit type II cells catabolize surfactant lipids.

    Science.gov (United States)

    Rider, E D; Ikegami, M; Pinkerton, K E; Peake, J L; Jobe, A H

    2000-01-01

    The role of a lysosome fraction from rabbit type II cells in surfactant dipalmitoylphosphatidylcholine (DPPC) catabolism was investigated in vivo using radiolabeled DPPC and dihexadecylphosphatidylcholine (1, 2-dihexadecyl-sn-glycero-3-phosphocholine; DEPC), a phospholipase A(1)- and A(2)-resistant analog of DPPC. Freshly isolated type II cells were gently disrupted by shearing, and lysosomes were isolated with Percoll density gradients (density range 1.0591-1.1457 g/ml). The lysosome fractions were relatively free of contaminating organelles as determined by electron microscopy and organelle marker enzymes. After intratracheal injection of rabbits with [(3)H]DPPC and [(14)C]DEPC associated with a trace amount of natural rabbit surfactant, the degradation-resistant DEPC accumulated 16-fold compared with DPPC in lysosome fractions at 15 h. Lysosomes can be isolated from freshly isolated type II cells, and lysosomes from type II cells are the primary catabolic organelle for alveolar surfactant DPPC following reuptake by type II cells in vivo. PMID:10645892

  6. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.

    Science.gov (United States)

    Fuentes, Sebastián; Méndez, Valentina; Aguila, Patricia; Seeger, Michael

    2014-06-01

    Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

  7. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology.

    Science.gov (United States)

    Peck, Spencer C; van der Donk, Wilfred A

    2013-08-01

    Natural product biosynthesis has proven a fertile ground for the discovery of novel chemistry. Herein we review the progress made in elucidating the biosynthetic pathways of phosphonate and phosphinate natural products such as the antibacterial compounds dehydrophos and fosfomycin, the herbicidal phosphinothricin-containing peptides, and the antimalarial compound FR-900098. In each case, investigation of the pathway has yielded unusual, and often unprecedented, biochemistry. Likewise, recent investigations have uncovered novel ways to cleave the CP bond to yield phosphate under phosphorus starvation conditions. These include the discovery of novel oxidative cleavage of the CP bond catalyzed by PhnY and PhnZ as well as phosphonohydrolases that liberate phosphate from phosphonoacetate. Perhaps the crown jewel of phosphonate catabolism has been the recent resolution of the longstanding problem of the C-P lyase responsible for reductively cleaving the CP bond of a number of different phosphonates to release phosphate. Taken together, the strides made on both metabolic and catabolic fronts illustrate an array of fascinating biochemistry. PMID:23870698

  8. Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway

    Directory of Open Access Journals (Sweden)

    Andrey M. Grishin

    2015-06-01

    Full Text Available Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA utilization pathway is abundant and represents the central route for degradation of a variety of organic compounds, whose degradation reactions converge at this pathway. The PA pathway is a hybrid pathway and combines the dual features of aerobic metabolism, i.e., usage of both oxygen to open the aromatic ring and of anaerobic metabolism—coenzyme A derivatization of PA. This allows the degradation process to be adapted to fluctuating oxygen conditions. In this review we focus on the structural and functional aspects of enzymes and their complexes involved in the PA degradation by the catabolic hybrid pathway. We discuss the ability of the central PaaABCE monooxygenase to reversibly oxygenate PA, the controlling mechanisms of epoxide concentration by the pathway enzymes, and the similarity of the PA utilization pathway to the benzoate utilization Box pathway and β-oxidation of fatty acids.

  9. Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway.

    Science.gov (United States)

    Grishin, Andrey M; Cygler, Miroslaw

    2015-06-12

    Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA) utilization pathway is abundant and represents the central route for degradation of a variety of organic compounds, whose degradation reactions converge at this pathway. The PA pathway is a hybrid pathway and combines the dual features of aerobic metabolism, i.e., usage of both oxygen to open the aromatic ring and of anaerobic metabolism-coenzyme A derivatization of PA. This allows the degradation process to be adapted to fluctuating oxygen conditions. In this review we focus on the structural and functional aspects of enzymes and their complexes involved in the PA degradation by the catabolic hybrid pathway. We discuss the ability of the central PaaABCE monooxygenase to reversibly oxygenate PA, the controlling mechanisms of epoxide concentration by the pathway enzymes, and the similarity of the PA utilization pathway to the benzoate utilization Box pathway and β-oxidation of fatty acids.

  10. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  11. Insights into the evolution of sialic acid catabolism among bacteria

    Directory of Open Access Journals (Sweden)

    Almagro-Moreno Salvador

    2009-05-01

    Full Text Available Abstract Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA, epimerase (NanE, and kinase (NanK, necessary for the catabolism of sialic acid (the Nan cluster, are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body

  12. Measurement of arginine metabolites: regulators of nitric oxide metabolism.

    Science.gov (United States)

    Augustine, Molly S; Rogers, Lynette K

    2013-01-01

    Arginine is the substrate for nitric oxide synthases (NOS), and arginine availability regulates the production of nitric oxide. Through the activity of methyltransferases, arginine can be methylated to form monomethylarginine (NMMA), asymmetrical dimethylarginine (ADMA), and symmetrical dimethylarginine (SDMA). NMMA and ADMA directly inhibit NOS, whereas SDMA inhibits the cellular import of arginine through the cationic amino acid transporter. Increased levels of methylarginine compounds have been associated with many diseases including atherosclerosis, renal failure, pulmonary hypertension, and preeclampsia. Previous HPLC methods to measure these molecules rely on derivatization with ortho-phthalaldehyde, which is unstable and requires immediate pre- or post-column reactions. We have identified a new fluorometric agent that is stable for at least 1 week and provides chromatographic properties that facilitate separation of these chemically similar compounds by reverse phase chromatography. PMID:24510541

  13. Plant PRMTs Broaden the Scope of Arginine Methylation

    Institute of Scientific and Technical Information of China (English)

    Ayaz Ahmad; Xiaofeng Cao

    2012-01-01

    Post-translational methylation at arginine residues is one of the most important covalent modifications of proteins,involved in a myriad of essential cellular processes in eukaryotes,such as transcriptional regulation,RNA processing,signal transduction,and DNA repair.Methylation at arginine residues is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs).PRMTs have been extensively studied in various taxa and there is a growing tendency to unveil their functional importance in plants.Recent studies in plants revealed that this evolutionarily conserved family of enzymes regulates essential traits including vegetative growth,flowering time,circadian cycle,and response to high medium salinity and ABA.In this review,we highlight recent advances in the field of posttranslational arginine methylation with special emphasis on the roles and future prospects of this modification in plants.

  14. Distinct Tryptophan Catabolism and Th17/Treg Balance in HIV Progressors and Elite Controllers

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; Patel, Mital; Kema, Ido; Kanagaratham, Cynthia; Radzioch, Danuta; Thebault, Pamela; Lapointe, Rejean; Tremblay, Cecile; Gilmore, Norbert; Ancuta, Petronela; Routy, Jean-Pierre

    2013-01-01

    Tryptophan (Trp) catabolism into immunosuppressive kynurenine (Kyn) by indoleamine 2,3-dioxygenase (IDO) was previously linked to Th17/Treg differentiation and immune activation. Here we examined Trp catabolism and its impact on Th17/Treg balance in uninfected healthy subjects (HS) and a large cohor

  15. Catabolic effects of muramyl dipeptide on rabbit chondrocytes

    International Nuclear Information System (INIS)

    Muramyl dipeptide, an essential structure for the diverse biologic activities of bacterial cell wall peptidoglycan, inhibited the synthesis of glycosaminoglycan/proteoglycan in cultured rabbit costal chondrocytes in a dose-dependent manner. Muramyl dipeptide, as well as lipopolysaccharide and interleukin-1 alpha, also enhanced the release of 35S-sulfate-prelabeled glycosaminoglycan/proteoglycan from the cell layer, which seems to reflect, at least partially, the increasing degradation of glycosaminoglycan/proteoglycan. Five synthetic analogs of muramyl dipeptide known to be adjuvant active or adjuvant inactive were tested for their potential to inhibit synthesis of glycosaminoglycan/proteoglycan and to enhance the release of glycosaminoglycan/proteoglycan in chondrocytes. The structural dependence of these synthetic analogs on chondrocytes was found to parallel that of immunoadjuvant activity. These results suggest that muramyl dipeptide is a potent mediator of catabolism in chondrocytes

  16. Catabolic effects of muramyl dipeptide on rabbit chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ikebe, T.; Iribe, H.; Hirata, M.; Yanaga, F.; Koga, T. (Kyushu Univ., Fukuoka (Japan))

    1990-12-01

    Muramyl dipeptide, an essential structure for the diverse biologic activities of bacterial cell wall peptidoglycan, inhibited the synthesis of glycosaminoglycan/proteoglycan in cultured rabbit costal chondrocytes in a dose-dependent manner. Muramyl dipeptide, as well as lipopolysaccharide and interleukin-1 alpha, also enhanced the release of 35S-sulfate-prelabeled glycosaminoglycan/proteoglycan from the cell layer, which seems to reflect, at least partially, the increasing degradation of glycosaminoglycan/proteoglycan. Five synthetic analogs of muramyl dipeptide known to be adjuvant active or adjuvant inactive were tested for their potential to inhibit synthesis of glycosaminoglycan/proteoglycan and to enhance the release of glycosaminoglycan/proteoglycan in chondrocytes. The structural dependence of these synthetic analogs on chondrocytes was found to parallel that of immunoadjuvant activity. These results suggest that muramyl dipeptide is a potent mediator of catabolism in chondrocytes.

  17. Regulation and evolution of malonate and propionate catabolism in proteobacteria.

    Science.gov (United States)

    Suvorova, I A; Ravcheev, D A; Gelfand, M S

    2012-06-01

    Bacteria catabolize malonate via two pathways, encoded by the mdc and mat genes. In various bacteria, transcription of these genes is controlled by the GntR family transcription factors (TFs) MatR/MdcY and/or the LysR family transcription factor MdcR. Propionate is metabolized via the methylcitrate pathway, comprising enzymes encoded by the prp and acn genes. PrpR, the Fis family sigma 54-dependent transcription factor, is known to be a transcriptional activator of the prp genes. Here, we report a detailed comparative genomic analysis of malonate and propionate metabolism and its regulation in proteobacteria. We characterize genomic loci and gene regulation and identify binding motifs for four new TFs and also new regulon members, in particular, tripartite ATP-independent periplasmic (TRAP) transporters. We describe restructuring of the genomic loci and regulatory interactions during the evolution of proteobacteria.

  18. Cellular Mechanisms of L-arginine Induced Experimental Acute Pancreatitis

    OpenAIRE

    Masood, Omar

    2013-01-01

    AbstractThe University Of ManchesterOmar MasoodMD Thesis 2013Cellular Mechanisms of L-arginine Induced Experimental Acute Pancreatitis. IntroductionImpairment of cytosolic calcium ([Ca2+]i) signaling and in particular calcium overload has emerged as a possible unifying mechanism for precipitating acute pancreatitis (AP.)In the L-arginine (L-arg) experimental model of AP, nitric oxide (NO) has been implicated however the disease progression is largely unaffected by nitric oxide synthase (NOS) ...

  19. Local Administration of L-Arginine Accelerates Wound Closure

    Directory of Open Access Journals (Sweden)

    Masoumeh Varedi

    2009-09-01

    Full Text Available Objective(sThe process of wound healing involves tightly integrated events including inflammation, granulation tissue formation and remodeling. Systemic administration of L arginine promotes wound healing but its global side effects are undesirable. To confine the action of L-arginine at the site of injury, we tested the effects of local administration of L arginine on the healing of excisional wound in the rat.Materials and MethodsFull thickness excisional wounds were generated on the dorsum of adult male rats. The test wounds received 200 µm or 400 µm of L-arginine on day 3 and 5 post-wounding. Normal saline was injected into the sham wounds which were otherwise treated as the test wounds. Control wounds remained unmanipulated. The wound size was monitored daily by imaging. To determine the rate of wound closure, wound images were scanned and the rate of size reduction was analyzed and quantified by ScnImage software. The repaired tissues were harvested on day 12 post-wounding. The tissue sections were prepared and stained for microscopic examination. ResultsWounds treated with L-arginine showed a significant increase in the rate of wound closure. The morphology of basal keratinocytes was altered, and the thickness of neoepidermis was markedly reduced in the wounds treated with L-arginine. Both tested dose of L-arginine were equally effective. ConclusionLocal administration of L-arginine accelerates wound closure and has profound effects on keratinocytes performance during the process of healing. Therefore, it can be potentially used for treatment of skin disorders, in particular, those characterized by hyperkeratosis.

  20. Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth.

    Science.gov (United States)

    Prabhu, Antony; Sarcar, Bhaswati; Kahali, Soumen; Yuan, Zhigang; Johnson, Joseph J; Adam, Klaus-Peter; Kensicki, Elizabeth; Chinnaiyan, Prakash

    2014-02-01

    The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis.

  1. Characterization of genes for chitin catabolism in Haloferax mediterranei.

    Science.gov (United States)

    Hou, Jing; Han, Jing; Cai, Lei; Zhou, Jian; Lü, Yang; Jin, Cheng; Liu, Jingfang; Xiang, Hua

    2014-02-01

    Chitin is the second most abundant natural polysaccharide after cellulose. But degradation of chitin has never been reported in haloarchaea. In this study, we revealed that Haloferax mediterranei, a metabolically versatile haloarchaeon, could utilize colloidal or powdered chitin for growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) accumulation, and the gene cluster (HFX_5025-5039) for the chitin catabolism pathway was experimentally identified. First, reverse transcription polymerase chain reaction results showed that the expression of the genes encoding the four putative chitinases (ChiAHme, ChiBHme, ChiCHme, and ChiDHme, HFX_5036-5039), the LmbE-like deacetylase (DacHme, HFX_5027), and the glycosidase (GlyAHme, HFX_5029) was induced by colloidal or powdered chitin, and chiA Hme, chiB Hme, and chiC Hme were cotranscribed. Knockout of chiABC Hme or chiD Hme had a significant effect on cell growth and PHBV production when chitin was used as the sole carbon source, and the chiABCD Hme knockout mutant lost the capability to utilize chitin. Knockout of dac Hme or glyA Hme also decreased PHBV accumulation on chitin. These results suggested that ChiABCDHme, DacHme, and GlyAHme were indeed involved in chitin degradation in H. mediterranei. Additionally, the chitinase assay showed that each chitinase possessed hydrolytic activity toward colloidal or powdered chitin, and the major product of colloidal chitin hydrolysis by ChiABCDHme was diacetylchitobiose, which was likely further degraded to monosaccharides by DacHme, GlyAHme, and other related enzymes for both cell growth and PHBV biosynthesis. Taken together, this study revealed the genes and enzymes involved in chitin catabolism in haloarchaea for the first time and indicated the potential of H. mediterranei as a whole-cell biocatalyst in chitin bioconversion.

  2. Geometry of guanidinium groups in arginines.

    Science.gov (United States)

    Malinska, Maura; Dauter, Miroslawa; Dauter, Zbigniew

    2016-09-01

    The restraints in common usage today have been obtained based on small molecule X-ray crystal structures available 25 years ago and recent reports have shown that the values of bond lengths and valence angles can be, in fact, significantly different from those stored in libraries, for example for the peptide bond or the histidine ring geometry. We showed that almost 50% of outliers found in protein validation reports released in the Protein Data Bank on 23 March 2016 come from geometry of guanidine groups in arginines. Therefore, structures of small molecules and atomic resolution protein crystal structures have been used to derive new target values for the geometry of this group. The most significant difference was found for NE-CZ-NH1 and NE-CZ-NH2 angles, showing that the guanidinium group is not symmetric. The NE-CZ-NH1 angle is larger, 121.5(10)˚, than NE-CZ-NH2, 119.2(10)˚, due to the repulsive interaction between NH1 and CD1 atom.

  3. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos.

    Science.gov (United States)

    Kuhn, Hallie; Sopko, Richelle; Coughlin, Margaret; Perrimon, Norbert; Mitchison, Tim

    2015-11-15

    Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome.

  4. Acellular matrix of bovine pericardium bound with L-arginine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Joo [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Bae, Jin Woo [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Chun Ho [Laboratory of Tissue Engineering, Korea Cancer Center Hospital, Seoul 139-240 (Korea, Republic of); Lee, Jin Woo [Department of Orthopaedic Surgery, College of Medicine, Yonsei University, Seoul 120-749 (Korea, Republic of); Shin, Jung Woog [Department of Biomedical Engineering, Inje University, Gimhae 621-749 (Korea, Republic of); Park, Ki Dong [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2007-09-15

    Surface immobilization of bioactive molecules onto natural tissues has been interestingly studied for the development of new functional matrices for the replacement of lost or malfunctioning tissues. In this study, an acellular matrix of bovine pericardium (ABP) was chemically modified by the direct coupling of L-arginine after glutaraldehyde (GA) cross-linking. The effects of L-arginine coupling on durability and calcification were investigated and the biocompatibility was evaluated in vitro and in vivo. A four-step detergent and enzymatic extraction process has been utilized to remove cellular components from fresh bovine pericardium (BP). Microscopic observation confirmed that nearly all cellular constituents are removed. Thermal and mechanical properties showed that the durability of L-arginine-treated matrices increased as compared with control ABP and GA-treated ABP. Resistance to collagenase digestion revealed that modified matrices have greater resistance to enzyme digestion than control ABP and GA-treated ABP. The in vivo calcification study demonstrated much less calcium deposition on L-arginine-treated ABP than GA-treated one. In vitro cell viability results showed that ABP modified with L-arginine leads to a significant increase in attachment of human dermal fibroblasts. The obtained results attest to the usefulness of L-arginine-treated ABP matrices for cardiovascular bioprostheses.

  5. Plasma arginine and ornithine are the main citrulline precursors in mice infused with arginine-free diets.

    Science.gov (United States)

    Marini, Juan C; Didelija, Inka Cajo; Castillo, Leticia; Lee, Brendan

    2010-08-01

    Dietary arginine is the main dietary precursor for citrulline synthesis, but it is not known if other precursors can compensate when arginine is absent in the diet. To address this question, the contributions of plasma and dietary precursors were determined by using multitracer protocols in conscious mice infused i.g. either an arginine-sufficient diet [Arg(+)] or an arginine-free diet [Arg(-)]. The plasma entry rate of citrulline and arginine did not differ between the 2 diet groups (156 +/- 6 and 564 +/- 30 micromol kg(-1) h(-1), respectively); however, the entry rate of ornithine was greater in the mice fed the Arg(+) than the Arg(-) diet (332 +/- 33 vs. 180 +/- 16 micromol kg(-1) h(-1)). There was a greater utilization of plasma ornithine for the synthesis of citrulline (49 +/- 4 vs. 36 +/- 3 micromol kg(-1) h(-1), 30 +/- 3% vs. 24 +/- 2% of citrulline entry rate) in the mice fed the Arg(-) diet than the Arg(+) diet. The utilization of plasma arginine did not differ between the 2 diet groups for citrulline synthesis, either through plasma ornithine (approximately 29 +/- 3 micromol kg(-1) h(-1)) or at the site of citrulline synthesis (approximately 12 +/- 3 micromol kg(-1) h(-1)). The contribution of dietary proline to the synthesis of citrulline was mainly at the site of citrulline production (17 +/- 1 micromol kg(-1) h(-1)), rather than through plasma ornithine (5 +/- 0.4 micromol kg(-1) h(-1)). Dietary glutamine was utilized only at the site of citrulline synthesis (4 +/- 0.2 micromol kg(-1) h(-1)). Dietary glutamine and proline made a greater contribution to the synthesis of citrulline in mice fed the Arg(-) diet but remained minor sources for citrulline production. Plasma arginine and ornithine are able to support citrulline synthesis during arginine-free feeding.

  6. L-Arginine Supplementation and Metabolism in Asthma

    Directory of Open Access Journals (Sweden)

    Angela Linderholm

    2011-01-01

    Full Text Available L-Arginine, the amino acid substrate for nitric oxide synthase, has been tested as a therapeutic intervention in a variety of chronic diseases and is commonly used as a nutritional supplement. In this study, we hypothesized that a subset of moderate to severe persistent asthma patients would benefit from supplementation with L-arginine by transiently increasing nitric oxide levels, resulting in bronchodilation and a reduction in inflammation. The pilot study consisted of a 3 month randomized, double-blind, placebo-controlled trial of L-arginine (0.05 g/kg twice daily in patients with moderate to severe asthma. We measured spirometry, exhaled breath nitric oxide, serum arginine metabolites, questionnaire scores, daily medication use and PEFR with the primary endpoint being the number of minor exacerbations at three months. Interim analysis of the 20 subjects showed no difference in the number of exacerbations, exhaled nitric oxide levels or lung function between groups, though participants in the L-arginine group had higher serum L-arginine at day 60 (2.0 ± 0.6 × 10−3 vs. 1.1 ± 0.2 × 10−3 µmol/L, p < 0.05, ornithine at day 30 (2.4 ± 0.9 vs. 1.2 ± 0.3 µmol/L serum, p < 0.05 and ADMA at day 30 (6.0 ± 1.5 × 10−1 vs. 2.6 ± 0.6 × 10−1 µmol/L serum, p < 0.05 on average compared to the placebo group. The study was terminated prematurely. Supplementing asthma subjects with L-arginine increases plasma levels; whether subgroups might benefit from such supplementation requires further study.

  7. The effect of arginine on oral biofilm communities.

    Science.gov (United States)

    Nascimento, M M; Browngardt, C; Xiaohui, X; Klepac-Ceraj, V; Paster, B J; Burne, R A

    2014-02-01

    Alkali production by oral bacteria via the arginine deiminase system (ADS) increases the pH of oral biofilms and reduces the risk for development of carious lesions. This study tested the hypothesis that increased availability of arginine in the oral environment through an exogenous source enhances the ADS activity levels in saliva and dental plaque. Saliva and supra-gingival plaque samples were collected from 19 caries-free (CF) individuals (DMFT = 0) and 19 caries-active (CA) individuals (DMFT ≥ 2) before and after treatment, which comprised the use of a fluoride-free toothpaste containing 1.5% arginine, or a regular fluoride-containing toothpaste twice daily for 4 weeks. ADS activity was measured by quantification of ammonia produced from arginine by oral samples at baseline, after washout period, 4 weeks of treatment, and 2 weeks post-treatment. Higher ADS activity levels were observed in plaque samples from CF compared to those of CA individuals (P = 0.048) at baseline. The use of the arginine toothpaste significantly increased ADS activity in plaque of CA individuals (P = 0.026). The plaque microbial profiles of CA treated with the arginine toothpaste showed a shift in bacterial composition to a healthier community, more similar to that of CF individuals. Thus, an anti-caries effect may be expected from arginine-containing formulations due in large part to the enhancement of ADS activity levels and potential favorable modification to the composition of the oral microbiome.

  8. Glutamine, arginine, and leucine signaling in the intestine.

    Science.gov (United States)

    Marc Rhoads, J; Wu, Guoyao

    2009-05-01

    Glutamine and leucine are abundant constituents of plant and animal proteins, whereas the content of arginine in foods and physiological fluids varies greatly. Besides their role in protein synthesis, these three amino acids individually activate signaling pathway to promote protein synthesis and possibly inhibit autophagy-mediated protein degradation in intestinal epithelial cells. In addition, glutamine and arginine stimulate the mitogen-activated protein kinase and mammalian target of rapamycin (mTOR)/p70 (s6) kinase pathways, respectively, to enhance mucosal cell migration and restitution. Moreover, through the nitric oxide-dependent cGMP signaling cascade, arginine regulates multiple physiological events in the intestine that are beneficial for cell homeostasis and survival. Available evidence from both in vitro and in vivo animal studies shows that glutamine and arginine promote cell proliferation and exert differential cytoprotective effects in response to nutrient deprivation, oxidative injury, stress, and immunological challenge. Additionally, when nitric oxide is available, leucine increases the migration of intestinal cells. Therefore, through cellular signaling mechanisms, arginine, glutamine, and leucine play crucial roles in intestinal growth, integrity, and function.

  9. Influence of L-arginine during bovine in vitro fertilization.

    Science.gov (United States)

    Silva, Thiago Velasco Guimarães; da Silva, Bruno Baraúna; de Sá, André Luiz Alves; da Costa, Nathalia Nogueira; Sampaio, Rafael Vilar; Cordeiro, Marcela da Silva; Santana, Priscila Di Paula Bessa; Adona, Paulo Roberto; Santos, Simone do Socorro Damasceno; Miranda, Moysés dos Santos; Ohashi, Otávio Mitio

    2014-12-01

    The objective of this work was to evaluate the effect of using L-arginine during in vitro fertilization (IVF) on in vitro embryonic development using Bos taurus and Bos indicus semen. Effect of different concentrations (0, 1, 10 and 50 mM) of L-arginine, added to the IVF medium, was evaluated on the fertilization rate at 18 h post-fertilization (hpf), NO3(-)/NO2(-) production during IVF by the Griess colorimetric method (30 hpf), cleavage and blastocyst rates (on Day 2 and Day 7 of culture, respectively) and total blastocyst cell number (Day 7 of culture). The results reveal that the addition of 50 mM L-arginine to IVF medium, with either Bos taurus or Bos indicus spermatozoa, decreased the cleavage rate and blastocyst rate compared to the control group. Other concentrations did not affect embryo production. However, 1 mM L-arginine with Bos indicus semen increased the proportion of hatched blastocysts. These results indicate that high L-arginine concentrations may exhibit toxic effects on bovine gametes during in vitro fertilization. PMID:25651608

  10. Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2010-05-01

    Full Text Available Abstract Background Cancer cells simultaneously exhibit glycolysis with lactate secretion and mitochondrial respiration even in the presence of oxygen, a phenomenon known as the Warburg effect. The maintenance of this mixed metabolic phenotype is seemingly counterintuitive given that aerobic glycolysis is far less efficient in terms of ATP yield per moles of glucose than mitochondrial respiration. Results Here, we resolve this apparent contradiction by expanding the notion of metabolic efficiency. We study a reduced flux balance model of ATP production that is constrained by the glucose uptake capacity and by the solvent capacity of the cell's cytoplasm, the latter quantifying the maximum amount of macromolecules that can occupy the intracellular space. At low glucose uptake rates we find that mitochondrial respiration is indeed the most efficient pathway for ATP generation. Above a threshold glucose uptake rate, however, a gradual activation of aerobic glycolysis and slight decrease of mitochondrial respiration results in the highest rate of ATP production. Conclusions Our analyses indicate that the Warburg effect is a favorable catabolic state for all rapidly proliferating mammalian cells with high glucose uptake capacity. It arises because while aerobic glycolysis is less efficient than mitochondrial respiration in terms of ATP yield per glucose uptake, it is more efficient in terms of the required solvent capacity. These results may have direct relevance to chemotherapeutic strategies attempting to target cancer metabolism.

  11. Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Ravikumar A

    2000-07-01

    Full Text Available Catabolism of tryptophan and tyrosine in relation to the isoprenoid pathway was studied in neurological and psychiatric disorders. The concentration of trytophan, quinolinic acid, kynurenic acid, serotonin and 5-hydroxyindoleacetic acid was found to be higher in the plasma of patients with all these disorders; while that of tyrosine, dopamine, epinephrine and norepinephrine was lower. There was increase in free fatty acids and decrease in albumin (factors modulating tryptophan transport in the plasma of these patients. Concentration of digoxin, a modulator of amino acid transport, and the activity of HMG CoA reductase, which synthesizes digoxin, were higher in these patients; while RBC membrane Na+-K+ ATPase activity showed a decrease. Concentration of plasma ubiquinone (part of which is synthesised from tyrosine and magnesium was also lower in these patients. No morphine could be detected in the plasma of these patients except in MS. On the other hand, strychnine and nicotine were detectable. These results indicate hypercatabolism of tryptophan and hypocatabolism of tyrosine in these disorders, which could be a consequence of the modulating effect of hypothalamic digoxin on amino acid transport.

  12. Hyaluronan Synthesis, Catabolism, and Signaling in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Larry S. Sherman

    2015-01-01

    Full Text Available The glycosaminoglycan hyaluronan (HA, a component of the extracellular matrix, has been implicated in regulating neural differentiation, survival, proliferation, migration, and cell signaling in the mammalian central nervous system (CNS. HA is found throughout the CNS as a constituent of proteoglycans, especially within perineuronal nets that have been implicated in regulating neuronal activity. HA is also found in the white matter where it is diffusely distributed around astrocytes and oligodendrocytes. Insults to the CNS lead to long-term elevation of HA within damaged tissues, which is linked at least in part to increased transcription of HA synthases. HA accumulation is often accompanied by elevated expression of at least some transmembrane HA receptors including CD44. Hyaluronidases that digest high molecular weight HA into smaller fragments are also elevated following CNS insults and can generate HA digestion products that have unique biological activities. A number of studies, for example, suggest that both the removal of high molecular weight HA and the accumulation of hyaluronidase-generated HA digestion products can impact CNS injuries through mechanisms that include the regulation of progenitor cell differentiation and proliferation. These studies, reviewed here, suggest that targeting HA synthesis, catabolism, and signaling are all potential strategies to promote CNS repair.

  13. Inactivity amplifies the catabolic response of skeletal muscle to cortisol

    Science.gov (United States)

    Ferrando, A. A.; Stuart, C. A.; Sheffield-Moore, M.; Wolfe, R. R.

    1999-01-01

    Severe injury or trauma is accompanied by both hypercortisolemia and prolonged inactivity or bed rest (BR). Trauma and BR alone each result in a loss of muscle nitrogen, albeit through different metabolic alterations. Although BR alone can result in a 2-3% loss of lean body mass, the effects of severe trauma can be 2- to 3-fold greater. We investigated the combined effects of hypercortisolemia and prolonged inactivity on muscle protein metabolism in healthy volunteers. Six males were studied before and after 14 days of strict BR using a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis and breakdown rates of skeletal muscle protein were also directly calculated. Each assessment of protein metabolism was conducted during a 12-h infusion of hydrocortisone sodium succinate (120 microg/kg x h), resulting in blood cortisol concentrations that mimic severe injury (approximately 31 microg/dL). After 14 days of strict BR, hypercortisolemia increased phenylalanine efflux from muscle by 3-fold (P muscle protein breakdown (P muscle protein synthesis. Muscle efflux of glutamine and alanine increased significantly after bed rest due to a significant increase in de novo synthesis (P skeletal muscle to the catabolic effects of hypercortisolemia. Furthermore, these effects on healthy volunteers are analogous to those seen after severe injury.

  14. Allantoin catabolism influences the production of antibiotics in Streptomyces coelicolor.

    Science.gov (United States)

    Navone, Laura; Casati, Paula; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K; Rodriguez, Eduardo; Gramajo, Hugo

    2014-01-01

    Purines are a primary source of carbon and nitrogen in soil; however, their metabolism is poorly understood in Streptomyces. Using a combination of proteomics, metabolomics, and metabolic engineering, we characterized the allantoin pathway in Streptomyces coelicolor. When cells grew in glucose minimal medium with allantoin as the sole nitrogen source, quantitative proteomics identified 38 enzymes upregulated and 28 downregulated. This allowed identifying six new functional enzymes involved in allantoin metabolism in S. coelicolor. From those, using a combination of biochemical and genetic engineering tools, it was found that allantoinase (EC 3.5.2.5) and allantoicase (EC 3.5.3.4) are essential for allantoin metabolism in S. coelicolor. Metabolomics showed that under these growth conditions, there is a significant intracellular accumulation of urea and amino acids, which eventually results in urea and ammonium release into the culture medium. Antibiotic production of a urease mutant strain showed that the catabolism of allantoin, and the subsequent release of ammonium, inhibits antibiotic production. These observations link the antibiotic production impairment with an imbalance in nitrogen metabolism and provide the first evidence of an interaction between purine metabolism and antibiotic biosynthesis.

  15. A product of heme catabolism modulates bacterial function and survival.

    Directory of Open Access Journals (Sweden)

    Christopher L Nobles

    Full Text Available Bilirubin is the terminal metabolite in heme catabolism in mammals. After deposition into bile, bilirubin is released in large quantities into the mammalian gastrointestinal (GI tract. We hypothesized that intestinal bilirubin may modulate the function of enteric bacteria. To test this hypothesis, we investigated the effect of bilirubin on two enteric pathogens; enterohemorrhagic E. coli (EHEC, a Gram-negative that causes life-threatening intestinal infections, and E. faecalis, a Gram-positive human commensal bacterium known to be an opportunistic pathogen with broad-spectrum antibiotic resistance. We demonstrate that bilirubin can protect EHEC from exogenous and host-generated reactive oxygen species (ROS through the absorption of free radicals. In contrast, E. faecalis was highly susceptible to bilirubin, which causes significant membrane disruption and uncoupling of respiratory metabolism in this bacterium. Interestingly, similar results were observed for other Gram-positive bacteria, including B. cereus and S. aureus. A model is proposed whereby bilirubin places distinct selective pressure on enteric bacteria, with Gram-negative bacteria being protected from ROS (positive outcome and Gram-positive bacteria being susceptible to membrane disruption (negative outcome. This work suggests bilirubin has differential but biologically relevant effects on bacteria and justifies additional efforts to determine the role of this neglected waste catabolite in disease processes, including animal models.

  16. Inactivity amplifies the catabolic response of skeletal muscle to cortisol

    Science.gov (United States)

    Ferrando, A. A.; Stuart, C. A.; Sheffield-Moore, M.; Wolfe, R. R.

    1999-01-01

    Severe injury or trauma is accompanied by both hypercortisolemia and prolonged inactivity or bed rest (BR). Trauma and BR alone each result in a loss of muscle nitrogen, albeit through different metabolic alterations. Although BR alone can result in a 2-3% loss of lean body mass, the effects of severe trauma can be 2- to 3-fold greater. We investigated the combined effects of hypercortisolemia and prolonged inactivity on muscle protein metabolism in healthy volunteers. Six males were studied before and after 14 days of strict BR using a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis and breakdown rates of skeletal muscle protein were also directly calculated. Each assessment of protein metabolism was conducted during a 12-h infusion of hydrocortisone sodium succinate (120 microg/kg x h), resulting in blood cortisol concentrations that mimic severe injury (approximately 31 microg/dL). After 14 days of strict BR, hypercortisolemia increased phenylalanine efflux from muscle by 3-fold (P catabolic effects of hypercortisolemia. Furthermore, these effects on healthy volunteers are analogous to those seen after severe injury.

  17. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy.

    Science.gov (United States)

    Sinha, Rohit Anthony; You, Seo-Hee; Zhou, Jin; Siddique, Mobin M; Bay, Boon-Huat; Zhu, Xuguang; Privalsky, Martin L; Cheng, Sheue-Yann; Stevens, Robert D; Summers, Scott A; Newgard, Christopher B; Lazar, Mitchell A; Yen, Paul M

    2012-07-01

    For more than a century, thyroid hormones (THs) have been known to exert powerful catabolic effects, leading to weight loss. Although much has been learned about the molecular mechanisms used by TH receptors (TRs) to regulate gene expression, little is known about the mechanisms by which THs increase oxidative metabolism. Here, we report that TH stimulation of fatty acid β-oxidation is coupled with induction of hepatic autophagy to deliver fatty acids to mitochondria in cell culture and in vivo. Furthermore, blockade of autophagy by autophagy-related 5 (ATG5) siRNA markedly decreased TH-mediated fatty acid β-oxidation in cell culture and in vivo. Consistent with this model, autophagy was altered in livers of mice expressing a mutant TR that causes resistance to the actions of TH as well as in mice with mutant nuclear receptor corepressor (NCoR). These results demonstrate that THs can regulate lipid homeostasis via autophagy and help to explain how THs increase oxidative metabolism.

  18. Increase in sphingolipid catabolic enzyme activity during aging

    Institute of Scientific and Technical Information of China (English)

    Santosh J SACKET; Hae-young CHUNG; Fumikazu OKAJIMA; Dong-soon IM

    2009-01-01

    Aim:To understand the contribution of sphingolipid metabolism and its metabolites to development and aging.Methods: A systemic analysis on the changes in activity of sphingolipid metabolic enzymes in kidney, liver and brain tissues during development and aging was conducted. The study was conducted using tissues from 1-day-old to 720-day-old rats.Results: Catabolic enzyme activities as well as the level of sphingomyelinase (SMase) and ceramidase (CDase) were higher than that of anabolic enzyme activities, sphingomyelin synthase and ceramide synthase. This suggested an accumulation of ceramide and sphingosine during development and aging. The liver showed the highest neutral-SMase activity among the tested enzymes while the kidney and brain exhibited higher neutral-SMase and ceramidase activities, indicating a high production of ceramide in liver and ceramide/sphingosine in the kidney and brain. The activities of sphingolipid metabolic enzymes were significantly elevated in all tested tissues during development and aging, although the onset of significant increase in activity varied on the tissue and enzyme type. During aging, 18 out of 21 enzyme activities were further increased on day 720 compared to day 180.Conclusion: Differential increases in sphingolipid metabolic enzyme activities suggest that sphingolipids including ceramide and sphingosine might play important and dynamic roles in proliferation, differentiation and apoptosis during development and aging.

  19. Characterization of purine catabolic pathway genes in coelacanths.

    Science.gov (United States)

    Forconi, Mariko; Biscotti, Maria Assunta; Barucca, Marco; Buonocore, Francesco; De Moro, Gianluca; Fausto, Anna Maria; Gerdol, Marco; Pallavicini, Alberto; Scapigliati, Giuseppe; Schartl, Manfred; Olmo, Ettore; Canapa, Adriana

    2014-09-01

    Coelacanths are a critically valuable species to explore the gene changes that took place in the transition from aquatic to terrestrial life. One interesting and biologically relevant feature of the genus Latimeria is ureotelism. However not all urea is excreted from the body; in fact high concentrations are retained in plasma and seem to be involved in osmoregulation. The purine catabolic pathway, which leads to urea production in Latimeria, has progressively lost some steps, reflecting an enzyme loss during diversification of terrestrial species. We report the results of analyses of the liver and testis transcriptomes of the Indonesian coelacanth Latimeria menadoensis and of the genome of Latimeria chalumnae, which has recently been fully sequenced in the framework of the coelacanth genome project. We describe five genes, uricase, 5-hydroxyisourate hydrolase, parahox neighbor B, allantoinase, and allantoicase, each coding for one of the five enzymes involved in urate degradation to urea, and report the identification of a putative second form of 5-hydroxyisourate hydrolase that is characteristic of the genus Latimeria. The present data also highlight the activity of the complete purine pathway in the coelacanth liver and suggest its involvement in the maintenance of high plasma urea concentrations.

  20. L-Proline nutrition and catabolism in Staphylococcus saprophyticus.

    Science.gov (United States)

    Deutch, Charles E

    2011-05-01

    Staphylococcus saprophyticus strains ATCC 15305, ATCC 35552, and ATCC 49907 were found to require L-proline but not L-arginine for growth in a defined culture medium. All three strains could utilize L-ornithine as a proline source and contained L-ornithine aminotransferase and Δ(1)-pyrroline-5-carboxylate reductase activities; strains ATCC 35552 and ATCC 49907 could use L-arginine as a proline source and had L-arginase activity. The proline requirement also could be met by L-prolinamide, L-proline methyl ester, and the dipeptides L-alanyl-L-proline and L-leucyl-L-proline. The bacteria exhibited L-proline degradative activity as measured by the formation of Δ(1)-pyrroline-5-carboxylate. The specific activity of proline degradation was not affected by addition of L-proline or NaCl but was highest in strain ATCC 49907 after growth in Mueller-Hinton broth. A membrane fraction from this strain had L-proline dehydrogenase activity as detected both by reaction of Δ(1)-pyrroline-5-carboxylate with 2-aminobenzaldehyde (0.79 nmol min(-1) mg(-1)) and by the proline-dependent reduction of p-iodonitrotetrazolium (20.1 nmol min(-1) mg(-1)). A soluble fraction from this strain had Δ(1)-pyrroline-5-carboxylate dehydrogenase activity (88.8 nmol min(-1) mg(-1)) as determined by the NAD(+)-dependent oxidation of DL-Δ(1)-pyrroline-5-carboxylate. Addition of L-proline to several culture media did not increase the growth rate or final yield of bacteria but did stimulate growth during osmotic stress. When grown with L: -ornithine as the proline source, S. saprophyticus was most susceptible to the proline analogues L-azetidine-2-carboylate, 3,4-dehydro-DL-proline, DL-thiazolidine-2-carboxylate, and L-thiazolidine-4-carboxylate. These results indicate that proline uptake and metabolism may be a potential target of antimicrobial therapy for this organism.

  1. Mobile Learning Using Mobile Phones

    Science.gov (United States)

    Vicente, Paula

    2013-01-01

    The participation in mobile learning programs is conditioned by having/using mobile communication technology. Those who do not have or use such technology cannot participate in mobile learning programs. This study evaluates who are the most likely participants of mobile learning programs by examining the demographic profile and mobile phone usage…

  2. Local Structures and Chemical Properties of Deprotonated Arginine

    Institute of Scientific and Technical Information of China (English)

    Hong-bao Li; Zi-jing Lin; Yi Luo

    2012-01-01

    The potential energy surface of gaseous deprotonated arginine has been systematically investigated by first principles calculations.At the B3LYP/6-31G(d) level,apart from the identification of several stable local structures,a new global minimum is located which is about 6.56 kJ/mol more stable than what has been reported.The deprotonated arginine molecule has two distinct forms with the deprotonation at the carboxylate group (COO-).These two forms are bridged by a very high energy barrier and possess very different IR spectral profiles.Our calculated proton dissociation energy and gas-phase acidity of arginine molecule are found to be in good agreement with the corresponding experimental results.The predicted geometries,dipole moments,rotational constants,vertical ionization energies and IR spectra of low energy conformers will be useful for future experimental measurements.

  3. Mitochondria: role of citrulline and arginine supplementation in MELAS syndrome.

    Science.gov (United States)

    El-Hattab, Ayman W; Emrick, Lisa T; Chanprasert, Sirisak; Craigen, William J; Scaglia, Fernando

    2014-03-01

    Mitochondria are found in all nucleated human cells and generate most of the cellular energy. Mitochondrial disorders result from dysfunctional mitochondria that are unable to generate sufficient ATP to meet the energy needs of various organs. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a frequent maternally inherited mitochondrial disorder. There is growing evidence that nitric oxide (NO) deficiency occurs in MELAS syndrome and results in impaired blood perfusion that contributes significantly to several complications including stroke-like episodes, myopathy, and lactic acidosis. Both arginine and citrulline act as NO precursors and their administration results in increased NO production and hence can potentially have therapeutic utility in MELAS syndrome. Citrulline raises NO production to a greater extent than arginine, therefore, citrulline may have a better therapeutic effect. Controlled studies assessing the effects of arginine or citrulline supplementation on different clinical aspects of MELAS syndrome are needed.

  4. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed. PMID:26851837

  5. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed.

  6. Irritability rather than depression during interferon treatment is linked to increased tryptophan catabolism

    NARCIS (Netherlands)

    Russo, S; Kema, IP; Haagsma, EB; Boon, JC; Willemse, PHB; Den Boer, JA; De Vries, EGE; Korf, J

    2005-01-01

    Objective: Treatment with recombinant interferon is associated with high rates of psychiatric comorbidity. We investigated the relation between catabolism of the essential amino acid tryptophan, being rate-limiting of peripheral and cerebral serotonin formation, and psychiatric symptoms in patients

  7. Arginine protection against ammonia toxicity in exhausted rat.

    Science.gov (United States)

    Krishna Mohan, P; Indira, K; Rajendra, W

    1987-01-01

    Arginine administration (5 m moles/kg/day) to albino rats for 7 days, revealed that this vital basic amino acid possesses latent potentiality for the accentuation of urea cycle or at least for arginase activity. The mitigation of ammonia toxicity was observed to be more effective in the case of gastrocnemius and red vastus as compared to white vastus. Further, ammonia and lactate levels were also decreased by arginine in blood and thereby delaying the onset of fatigue by preventing ammonotoxemia and lactic acidemia. PMID:3666875

  8. Abscisic Acid Catabolism in Maize Kernels in Response to Water Deficit at Early Endosperm Development

    OpenAIRE

    Wang, Zhaolong; MAMBELLI, STEFANIA; SETTER, TIM L.

    2002-01-01

    To further our understanding of the greater susceptibility of apical kernels in maize inflorescences to water stress, abscisic acid (ABA) catabolism activity was evaluated in developing kernels with chirally separated (+)‐[3H]ABA. The predominant pathway of ABA catabolism was via 8′‐hydroxylase to form phaseic acid, while conjugation to glucose was minor. In response to water deficit imposed on whole plants during kernel development, ABA accumulated to higher concentrations in apical than bas...

  9. Glutamine synthesis is a regulatory signal controlling glucose catabolism in Saccharomyces cerevisiae.

    OpenAIRE

    Flores-Samaniego, B; Olivera, H; González, A.

    1993-01-01

    The effect of glutamine biosynthesis and degradation on glucose catabolism in Saccharomyces cerevisiae was studied. A wild-type strain and mutants altered in glutamine biosynthesis and degradation were analyzed. Cells having low levels of glutamine synthetase activity showed high ATP/ADP ratios and a diminished rate of glucose metabolism. It is proposed that glutamine biosynthesis plays a role in the regulation of glucose catabolism.

  10. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease.

    Science.gov (United States)

    Romani, Luigina; Fallarino, Francesca; De Luca, Antonella; Montagnoli, Claudia; D'Angelo, Carmen; Zelante, Teresa; Vacca, Carmine; Bistoni, Francesco; Fioretti, Maria C; Grohmann, Ursula; Segal, Brahm H; Puccetti, Paolo

    2008-01-10

    Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.

  11. Morphine enhances purine nucleotide catabolism in rive and in vitro

    Institute of Scientific and Technical Information of China (English)

    Chang LIU; Jian-kai LIU; Mu-jie KAN; Lin GAO; Hai-ying FU; Hang ZHOU; Min HONG

    2007-01-01

    Aim: To investigate the effect and mechanism of morphine on purine nucleotide catabolism. Methods: The rat model of morphine dependence and withdrawal and rat C6 glioma cells in culture were used. Concentrations of uric acid in the plasma were measured by the uricase-rap method, adenosine deaminase (ADA) and xan- thine oxidase (XO) in the plasma and tissues were measured by the ADA and XO test kit. RT-PCR and RT-PCR-Southern blotting were used to examine the relative amount of ADA and XO gene transcripts in tissues and C6 cells. Results: (i) the concentration of plasma uric acid in the morphine-administered group was signifi-cantly higher (P<0.05) than the control group; (ii) during morphine administration and withdrawal periods, the ADA and XO concentrations in the plasma increased significantly (P<0.05); (iii) the amount of ADA and XO in the parietal lobe, liver, small intestine, and skeletal muscles of the morphine-administered groups increased, while the level of ADA and XO in those tissues of the withdrawal groups decreased; (iv) the transcripts of the ADA and XO genes in the parietal lobe, liver, small intestine, and skeletal muscles were higher in the morphine-administered group. The expression of the ADA and XO genes in those tissues returned to the control level during morphine withdrawal, with the exception of the skeletal muscles; and (v) the upregulation of the expression of the ADA and XO genes induced by morphine treatment could be reversed by naloxone. Conclusion: The effects of morphine on purine nucleotide metabolism might be an important, new biochemical pharmacological mechanism of morphine action.

  12. Contents of corticotropin-releasing hormone and arginine vasopressin immunoreativity in the spleen and thymus during a chronic inflammatory stress

    DEFF Research Database (Denmark)

    Chowdrey, H.S.; Lightman, S.L.; Harbuz, M.S.;

    1994-01-01

    Corticotropin-releasing hormone, spleen, thymus, immune system, stress, arthritis, arginine vasopressin......Corticotropin-releasing hormone, spleen, thymus, immune system, stress, arthritis, arginine vasopressin...

  13. Effect of oral L-arginine administration on exhaled nitric oxide (no) concentration in healthy volunteers

    OpenAIRE

    Ogata, Hiroshi; Yatabe, Midori; Misaka, Shingen; Shikama, Yayoi; Sato, Suguru; Munakata, Mitsuru; Kimura, Junko

    2013-01-01

    We previously reported a case of pulmonary hypertension, where the symptoms were improved by oral L-arginine (arginine) administration. Arginine may increase nitric oxide (NO) production in the pulmonary artery. Exhaled NO may reflect pulmonary artery NO production. It has been demonstrated that exhaled NO concentration is higher in patients with allergic diseases, but whether oral arginine administration alters exhaled NO is unknown. Therefore, in this study, we investigated whether oral arg...

  14. Mobile Lexicography

    DEFF Research Database (Denmark)

    Køhler Simonsen, Henrik

    2015-01-01

    Mobile phones are ubiquitous and have completely transformed the way we live, work, learn and conduct our everyday activities. Mobile phones have also changed the way users access lexicographic data. In fact, it can be argued that mobile phones and lexicography are not yet compatible. Modern users...... are already mobile – but lexicography is not yet fully ready for the mobile challenge, mobile users and mobile user situations. The article is based on empirical data from two surveys comprising 10 medical doctors, who were asked to look up five medical substances with the medical dictionary app Medicin...... lexicography....

  15. In vivo arginine production and intravascular nitric oxide synthesis in hypotensive sepsis

    Science.gov (United States)

    Arginine is important in the response to infections and is a precursor for the synthesis of the vasodilator nitric oxide (NO). Low plasma arginine is correlated with a worse prognosis in patients with sepsis, and increased NO has been implicated in the hypotension of sepsis. Data on in vivo arginine...

  16. High plasma arginine concentrations in critically ill patients suffering from hepatic failure

    NARCIS (Netherlands)

    R. Nijveldt (Robin); M.P.C. Siroen; B. van der Hoven (Ben); T. Teerlink (Tom); H.A. Prins (Hubert); A.R.J. Girbes (Armand); P.A.M. van Leeuwen

    2004-01-01

    textabstractObjective: In physiological conditions, the liver plays an important role in the regulation of plasma arginine concentrations by taking up large amounts of arginine from the hepatic circulation. When hepatic failure is present, arginine metabolism may be disturbed. Therefore, we hypothes

  17. Arginine dimethylation products in pediatric patients with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Akram E. El-Sadek

    2016-08-01

    Conclusion: Disturbed serum levels of arginine and its dimethyl derivatives may underlie development and/or progression of CKD. Elevated serum SDMA level is strongly correlated with impaired kidney functions and could be considered as a predictor for kidney functions deterioration and CKD progression.

  18. Theoretical insights into catalytic mechanism of protein arginine methyltransferase 1.

    Directory of Open Access Journals (Sweden)

    Ruihan Zhang

    Full Text Available Protein arginine methyltransferase 1 (PRMT1, the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD simulation and quantum mechanics/molecular mechanics (QM/MM calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.

  19. Imbalanced protein expression patterns of anabolic, catabolic, anti-catabolic and inflammatory cytokines in degenerative cervical disc cells: new indications for gene therapeutic treatments of cervical disc diseases.

    Directory of Open Access Journals (Sweden)

    Demissew S Mern

    Full Text Available Degenerative disc disease (DDD of the cervical spine is common after middle age and can cause loss of disc height with painful nerve impingement, bone and joint inflammation. Despite the clinical importance of these problems, in current publications the pathology of cervical disc degeneration has been studied merely from a morphologic view point using magnetic resonance imaging (MRI, without addressing the issue of biological treatment approaches. So far a wide range of endogenously expressed bioactive factors in degenerative cervical disc cells has not yet been investigated, despite its importance for gene therapeutic approaches. Although degenerative lumbar disc cells have been targeted by different biological treatment approaches, the quantities of disc cells and the concentrations of gene therapeutic factors used in animal models differ extremely. These indicate lack of experimentally acquired data regarding disc cell proliferation and levels of target proteins. Therefore, we analysed proliferation and endogenous expression levels of anabolic, catabolic, ant-catabolic, inflammatory cytokines and matrix proteins of degenerative cervical disc cells in three-dimensional cultures. Preoperative MRI grading of cervical discs was used, then grade III and IV nucleus pulposus (NP tissues were isolated from 15 patients, operated due to cervical disc herniation. NP cells were cultured for four weeks with low-glucose in collagen I scaffold. Their proliferation rates were analysed using 3-(4, 5-dimethylthiazolyl-2-2,5-diphenyltetrazolium bromide. Their protein expression levels of 28 therapeutic targets were analysed using enzyme-linked immunosorbent assay. During progressive grades of degeneration NP cell proliferation rates were similar. Significantly decreased aggrecan and collagen II expressions (P<0.0001 were accompanied by accumulations of selective catabolic and inflammatory cytokines (disintegrin and metalloproteinase with thrombospondin motifs 4

  20. Circadian variation of plasma arginine vasopressin concentration, or arginine vasopressin in enuresis.

    Science.gov (United States)

    Aikawa, T; Kasahara, T; Uchiyama, M

    1999-01-01

    The objective of these studies was to determine a relationship between primary nocturnal enuresis and arginine vasopressin (AVP) secretion. The first study compared 24-h AVP secretion profiles of enuretic (n = 9) and non-enuretic children (n = 8). Blood samples were collected at 1-h intervals for 24 h. In the second study, nocturnal AVP secretion in group A (n = 40)--with low urinary osmotic pressure (UOP) and large nocturnal urine output (NUO)--was compared with that in group D (n = 11) with normal UOP and small NUO. Plasma AVP levels were measured at 30-min intervals, immediately after falling asleep until 06.00 the following morning. The results of the first study showed that the plasma AVP level was significantly lower (p < 0.05-0.001) in the enuretic group between 23.00 and 04.00. The second study showed that group A had significantly lower AVP levels (p < 0.05-0.001) than group D throughout the night. The mean AVP level during night sleep was 0.64 +/- 0.23 pg/ml in group A and 1.43 +/- 0.66 pg/ml in group D. The results of the first study suggest that decreased nocturnal AVP secretion is a cause of bedwetting. However, the results of the second study suggest that nocturnal enuresis cannot be explained by a decrease in nocturnal AVP secretion alone.

  1. Analysis of an Alanine/Arginine Mixture by Using TLC/FTIR Technique

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-01-01

    Full Text Available We applied TLC/FTIR coupled with mapping technique to analyze an alanine/arginine mixture. Narrow band TLC plates prepared by using AgI as a stationary phase were used to separate alanine and arginine. The distribution of alanine and arginine spots was manifested by a 3D chromatogram. Alanine and arginine can be successfully separated by the narrow band TLC plate. In addition, the FTIR spectra of the separated alanine and arginine spots on the narrow band TLC plate are roughly the same as the corresponding reference IR spectra.

  2. Expression of arg genes of Escherichia coli during arginine limitation dependent upon stringent control of translation.

    OpenAIRE

    Williams, M.G.; Rogers, P

    1987-01-01

    The transcription and translation of operons for arginine biosynthetic enzymes after arginine removal (arginine down shift) were studied in relA and relA+ strains of Escherichia coli. After arginine down shift, derepression of synthesis of the arginine biosynthetic enzymes ornithine carbamoyltransferase (argF) and argininosuccinate lyase (argH) began at about 15 min in relA+ cells but was delayed in relA cells for more than 2 h. However, both relA+ and relA cells accumulated high levels of ar...

  3. Substrate uptake and subcellular compartmentation of anoxic cholesterol catabolism in Sterolibacterium denitrificans.

    Science.gov (United States)

    Lin, Ching-Wen; Wang, Po-Hsiang; Ismail, Wael; Tsai, Yu-Wen; El Nayal, Ashraf; Yang, Chia-Ying; Yang, Fu-Chun; Wang, Chia-Hsiang; Chiang, Yin-Ru

    2015-01-01

    Cholesterol catabolism by actinobacteria has been extensively studied. In contrast, the uptake and catabolism of cholesterol by Gram-negative species are poorly understood. Here, we investigated microbial cholesterol catabolism at the subcellular level. (13)C metabolomic analysis revealed that anaerobically grown Sterolibacterium denitrificans, a β-proteobacterium, adopts an oxygenase-independent pathway to degrade cholesterol. S. denitrificans cells did not produce biosurfactants upon growth on cholesterol and exhibited high cell surface hydrophobicity. Moreover, S. denitrificans did not produce extracellular catabolic enzymes to transform cholesterol. Accordingly, S. denitrificans accessed cholesterol by direction adhesion. Cholesterol is imported through the outer membrane via a putative FadL-like transport system, which is induced by neutral sterols. The outer membrane steroid transporter is able to selectively import various C27 sterols into the periplasm. S. denitrificans spheroplasts exhibited a significantly higher efficiency in cholest-4-en-3-one-26-oic acid uptake than in cholesterol uptake. We separated S. denitrificans proteins into four fractions, namely the outer membrane, periplasm, inner membrane, and cytoplasm, and we observed the individual catabolic reactions within them. Our data indicated that, in the periplasm, various periplasmic and peripheral membrane enzymes transform cholesterol into cholest-4-en-3-one-26-oic acid. The C27 acidic steroid is then transported into the cytoplasm, in which side-chain degradation and the subsequent sterane cleavage occur. This study sheds light into microbial cholesterol metabolism under anoxic conditions.

  4. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides.

  5. Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution.

    Science.gov (United States)

    Vynnytska-Myronovska, Bozhena O; Kurlishchuk, Yuliya; Chen, Oleh; Bobak, Yaroslav; Dittfeld, Claudia; Hüther, Melanie; Kunz-Schughart, Leoni A; Stasyk, Oleh V

    2016-02-01

    Tumor cells rely on a continued exogenous nutrient supply in order to maintain a high proliferative activity. Although a strong dependence of some tumor types on exogenous arginine sources has been reported, the mechanisms of arginine sensing by tumor cells and the impact of changes in arginine availability on translation and cell cycle regulation are not fully understood. The results presented herein state that human colorectal carcinoma cells rapidly exhaust the internal arginine sources in the absence of exogenous arginine and repress global translation by activation of the GCN2-mediated pathway and inhibition of mTOR signaling. Tumor suppressor protein p53 activation and G1/G0 cell cycle arrest support cell survival upon prolonged arginine starvation. Cells with the mutant or deleted TP53 fail to stop cell cycle progression at defined cell cycle checkpoints which appears to be associated with reduced recovery after durable metabolic stress triggered by arginine withdrawal.

  6. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.

    Science.gov (United States)

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas; Lyon, David; Mullari, Meeli; Madsen, Maria V; Daniel, Jeremy A; Jensen, Lars J; Nielsen, Michael L

    2016-01-01

    The posttranslational modification of proteins by arginine methylation is functionally important, yet the breadth of this modification is not well characterized. Using high-resolution mass spectrometry, we identified 8030 arginine methylation sites within 3300 human proteins in human embryonic kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified by methylation. Through quantitative proteomics and RNA interference to examine arginine methylation stoichiometry, we unexpectedly found that the protein arginine methyltransferase (PRMT) family of arginine methyltransferases catalyzed methylation independently of arginine sequence context. In contrast to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially regulated the functions of the pre-mRNA splicing factor SRSF2 (serine/arginine-rich splicing factor 2) and the RNA transport ribonucleoprotein HNRNPUL1 (heterogeneous nuclear ribonucleoprotein U-like 1). Knocking down PRMT5 impaired the RNA binding function of SRSF2, whereas knocking down PRMT4 [also known as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human arginine methylome provides a missing piece in the global and integrative view of cellular physiology and protein regulation. PMID:27577262

  7. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation.

    Science.gov (United States)

    El-Hattab, Ayman W; Hsu, Jean W; Emrick, Lisa T; Wong, Lee-Jun C; Craigen, William J; Jahoor, Farook; Scaglia, Fernando

    2012-04-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most common mitochondrial disorders. Although the pathogenesis of stroke-like episodes remains unclear, it has been suggested that mitochondrial proliferation may result in endothelial dysfunction and decreased nitric oxide (NO) availability leading to cerebral ischemic events. This study aimed to assess NO production in subjects with MELAS syndrome and the effect of the NO precursors arginine and citrulline. Using stable isotope infusion techniques, we assessed arginine, citrulline, and NO metabolism in control subjects and subjects with MELAS syndrome before and after arginine or citrulline supplementation. The results showed that subjects with MELAS had lower NO synthesis rate associated with reduced citrulline flux, de novo arginine synthesis rate, and plasma arginine and citrulline concentrations, and higher plasma asymmetric dimethylarginine (ADMA) concentration and arginine clearance. We conclude that the observed impaired NO production is due to multiple factors including elevated ADMA, higher arginine clearance, and, most importantly, decreased de novo arginine synthesis secondary to decreased citrulline availability. Arginine and, to a greater extent, citrulline supplementation increased the de novo arginine synthesis rate, the plasma concentrations and flux of arginine and citrulline, and NO production. De novo arginine synthesis increased markedly with citrulline supplementation, explaining the superior efficacy of citrulline in increasing NO production. The improvement in NO production with arginine or citrulline supplementation supports their use in MELAS and suggests that citrulline may have a better therapeutic effect than arginine. These findings can have a broader relevance for other disorders marked by perturbations in NO metabolism.

  8. Mobility Divides

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    Contemporary mobilities are cultural and social manifestations, and the mobile practices in the everyday life of billions of humans are re-configuring senses of place, self, other and relationships to the built environment. The way ‘mobile situations’ are staged in designed and built environments...... are increasingly becoming ‘second nature’ but also expressions of power, exclusion, and difference. In this talk I will be applying a perspective of ‘mobile situationism’ illustrating how mobile everyday life practices are staged ‘from above’ in planning and policy frameworks, design codes and architectural...... designs, but also how the situated and embodied mobile everyday life practices are staged ‘from below’ in concrete acts of choice concerning modes of mobilities, ways of moving and interacting. The ‘staging mobilites’ framework opens up to an understanding of the meaning of ‘mobilities design...

  9. Mobile payment

    CERN Document Server

    Lerner, Thomas

    2013-01-01

    Paying with mobile devices such as mobile phones or smart phones will expand worldwide in the coming years. This development provides opportunities for various industries (banking, telecommunications, credit card business, manufacturers, suppliers, retail) and for consumers.

  10. Mobile marketing

    OpenAIRE

    KLEČKOVÁ, Zuzana

    2013-01-01

    The main aim of this thesis was to provide a comprehensive overview of the mobile marketing and analyze selected campaigns of Czech mobile marketing in comparison to world successful campaigns. The research contained studying of available literature about the theme to gain general knowledge about the issue. The theoretical part of the thesis contains predominantly various definitions of mobile marketing and its tools, advantages of these tools and some information about Mobile Marketing Assoc...

  11. Mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, W.J.; Marquina, N.

    1986-01-01

    This book presents papers given at a conference on mobile robots. Topics the conference included are the following: mobility systems for robotic vehicles; detection and control of mobile robot motion by real-time computer vision, obstacle avoidance algorithms for an autonomous land vehicle; hierarchical processor and matched filters for range image processing; asynchronous distributed control system for a mobile robot, and, planning in a hierarchical nested autonomous control system.

  12. Understanding Sugar Catabolism in Unicellular Cyanobacteria Toward the Application in Biofuel and Biomaterial Production.

    Science.gov (United States)

    Osanai, Takashi; Iijima, Hiroko; Hirai, Masami Yokota

    2016-01-01

    Synechocystis sp. PCC 6803 is a model species of the cyanobacteria that undergo oxygenic photosynthesis, and has garnered much attention for its potential biotechnological applications. The regulatory mechanism of sugar metabolism in this cyanobacterium has been intensively studied and recent omics approaches have revealed the changes in transcripts, proteins, and metabolites of sugar catabolism under different light and nutrient conditions. Several transcriptional regulators that control the gene expression of enzymes related to sugar catabolism have been identified in the past 10 years, including a sigma factor, transcription factors, and histidine kinases. The modification of these genes can lead to alterations in the primary metabolism as well as the levels of high-value products such as bioplastics and hydrogen. This review summarizes recent studies on sugar catabolism in Synechocystis sp. PCC 6803, emphasizing the importance of elucidating the molecular mechanisms of cyanobacterial metabolism for biotechnological applications. PMID:27023248

  13. Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Andersen, Joakim Mark; Barrangou, Rodolphe; Abou Hachem, Maher;

    2012-01-01

    -phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively...... and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC...... (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6...

  14. Mobile Lexicography

    DEFF Research Database (Denmark)

    Køhler Simonsen, Henrik

    2014-01-01

    Users are already mobile, but the question is to which extent knowledge-based dictionary apps are designed for the mobile user situation. The objective of this article is to analyse the characteristics of the mobile user situation and to look further into the stationary user situation and the mob...

  15. Staging Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    and lived as people are “staging themselves” (from below). Staging mobilities is a dynamic process between “being staged” (for example, being stopped at traffic lights) and the “mobile staging” of interacting individuals (negotiating a passage on the pavement). Staging Mobilities is about the fact...

  16. Gliclazide directly inhibits arginine-induced glucagon release

    DEFF Research Database (Denmark)

    Cejvan, Kenan; Coy, David H; Holst, Jens Juul;

    2002-01-01

    Arginine-stimulated insulin and somatostatin release is enhanced by the sulfonylurea gliclazide. In contrast, gliclazide inhibits the glucagon response. The aim of the present study was to investigate whether this inhibition of glucagon release was mediated by a direct suppressive effect of...... specific antagonist of type 2 somatostatin receptor, DC-41-33 (2 micro mol/l), which fully antagonizes the suppressive somatostatin effect on rat A cells. Gliclazide (30 micro mol/l) inhibited glucagon release by 54% in the perfusion experiments, whereas the somatostatin response was nearly abolished. In...... islet perifusions with DC-41-33, arginine-induced glucagon release was inhibited by 66%. We therefore concluded that gliclazide inhibits glucagon release by a direct action on the pancreatic A cell....

  17. Arginine vasopressin in septic shock: supplement or substitute for norepinephrine?

    OpenAIRE

    Rehberg, Sebastian; Enkhbaatar, Perenlei; Traber, Daniel L

    2009-01-01

    In the current issue of Critical Care, Simon and coworkers investigated the effects of first-line arginine vasopressin (AVP) on organ function and systemic metabolism compared with norepinephrine in a pig model of fecal peritonitis. AVP was titrated according to the mean arterial pressure suggesting a vasopressor rather than a hormone replacement therapy. The study provides some evidence for the safety of this therapeutic approach. It needs to be determined whether AVP is most beneficial as a...

  18. Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Egebo, L A; Nielsen, S V; Jochimsen, B U

    1991-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid (IAA). Examination of this catabolism in strain 110 by in vivo experiments has revealed an enzymatic activity catalyzing the degradation of IAA and 5-hydroxy-indole-3-acetic acid. The activity requires...... an oxygen-consuming opening of the indole ring analogous to the one catalyzed by tryptophan 2,3-dioxygenase. The pattern of metabolite usage by known tryptophan-auxotrophic mutants and studies of metabolites by high-performance liquid chromatography indicate that anthranilic acid is a terminal degradation...

  19. Isolation of a mutation resulting in constitutive synthesis of L-fucose catabolic enzymes.

    OpenAIRE

    Bartkus, J. M.; Mortlock, R. P.

    1986-01-01

    A ribitol-positive transductant of Escherichia coli K-12, JM2112, was used to facilitate the isolation and identification of mutations affecting the L-fucose catabolic pathway. Analysis of L-fucose-negative mutants of JM2112 enabled us to confirm that L-fucose-1-phosphate is the apparent inducer of the fucose catabolic enzymes. Plating of an L-fuculokinase-negative mutant of JM2112 on D-arabinose yielded an isolate containing a second fucose mutation which resulted in the constitutive synthes...

  20. Mobile Probes in Mobile Learning

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Blomhøj, Ulla; Duvaa, Uffe

    as an agent for acquiring empirical data (as the situation in hitherto mobile probe settings) but was also the technological medium for which data should say something about (mobile learning). Consequently, not only the content of the data but also the ways in which data was delivered and handled, provided......In this paper experiences from using mobile probes in educational design of a mobile learning application is presented. The probing process stems from the cultural probe method, and was influenced by qualitative interview and inquiry approaches. In the project, the mobile phone was not only acting...... a valuable dimension for investigating mobile use. The data was collected at the same time as design activities took place and the collective data was analysed based on user experience goals and cognitive processes from interaction design and mobile learning. The mobile probe increased the knowledge base...

  1. PRMT1-mediated arginine methylation controls ATXN2L localization

    Energy Technology Data Exchange (ETDEWEB)

    Kaehler, Christian; Guenther, Anika; Uhlich, Anja; Krobitsch, Sylvia, E-mail: krobitsc@molgen.mpg.de

    2015-05-15

    Arginine methylation is a posttranslational modification that is of importance in diverse cellular processes. Recent proteomic mass spectrometry studies reported arginine methylation of ataxin-2-like (ATXN2L), the paralog of ataxin-2, a protein that is implicated in the neurodegenerative disorder spinocerebellar ataxia type 2. Here, we investigated the methylation state of ATXN2L and its significance for ATXN2L localization. We first confirmed that ATXN2L is asymmetrically dimethylated in vivo, and observed that the nuclear localization of ATXN2L is altered under methylation inhibition. We further discovered that ATXN2L associates with the protein arginine-N-methyltransferase 1 (PRMT1). Finally, we showed that neither mutation of the arginine–glycine-rich motifs of ATXN2L nor methylation inhibition alters ATXN2L localization to stress granules, suggesting that methylation of ATXN2L is probably not mandatory. - Highlights: • ATXN2L is asymmetrically dimethylated in vivo. • ATXN2L interacts with PRMT1 under normal and stress conditions. • PRMT1-mediated dimethylation of ATXN2L controls its nuclear localization. • ATXN2L localization to stress granules appears independent of its methylation state.

  2. Mobilities Design

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Lanng, Ditte Bendix

    Contemporary society is marked and defined by the ways in which mobile goods, bodies, vehicles, objects, and data are organized, moved and staged. On the background of the ‘mobilities turn’ (e.g. Cresswell 2006, Urry 2007) this book articulates a new and emerging research field, namely that of ‘m...... enter into a fruitful relationship with mobilities research, offering a relational and mobile design thinking and a valuable base for a reflective design practice around the ubiquitous structures, spaces and systems of mobilities....... that of ‘mobilities design’. The book revolves around the following research question: How are design decisions and interventions staging mobilities? It builds upon the Staging Mobilities model (Jensen 2013) in an explorative inquiry into the problems and potentials of the design of mobilities. The exchange value...... between mobilities and design research is twofold. To mobilities research this means getting closer to the ‘material’, and to engage in the creative, explorative and experimental approaches of the design world which offer new potentials for innovative research. Design research, on the other hand, might...

  3. Effects of L-Arginine on Physicochemical and Sensory Characteristics of Pork Sausage

    Directory of Open Access Journals (Sweden)

    Cunliu Zhou

    2014-05-01

    Full Text Available The objective of this study is to investigate the effects of L-arginine on physicochemical and sensory properties of pork sausage. CL decreased while pH increased with L-arginine levels (p<0.05. WHC increased at 0.8% L-arginine, but decreased at 0.2% L-arginine, compared with the control. L* decreased while a* increased at 0.4-0.8% L-arginine, compared with the control. Hardness, springiness and chewiness increased at 0.2-0.8% L-arginine (p<0.05, compared with the control. SEM illustrated that the addition of 0.6% L-arginine induced myofibrillar proteins to form a more smooth, compact and uniform gel matrix. DSC disclosed that the addition of 0.6% L-arginine increased the two thermal transition temperatures (Tp. The sample containing 0.6% L-arginine had higher sensory color, flavor, mouthfeel and slice traits than the control. Therefore, L-arginine showed a potential for improvement of yield, texture and sensory qualities of pork sausage.

  4. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production.

    Science.gov (United States)

    Man, Zaiwei; Xu, Meijuan; Rao, Zhiming; Guo, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong

    2016-01-01

    L-arginine is an important amino acid in food and pharmaceutical industries. Until now, the main production method of L-arginine in China is the highly polluting keratin acid hydrolysis. The industrial level L-arginine production by microbial fermentation has become an important task. In previous work, we obtained a new L-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through screening and mutation breeding. In this work, we performed systems pathway engineering of C. crenatum for improved L-arginine production, involving amplification of L-arginine biosynthetic pathway flux by removal of feedback inhibition and overexpression of arginine operon; optimization of NADPH supply by modulation of metabolic flux distribution between glycolysis and pentose phosphate pathway; increasing glucose consumption by strengthening the preexisting glucose transporter and exploitation of new glucose uptake system; channeling excess carbon flux from glycolysis into tricarboxylic acid cycle to alleviate the glucose overflow metabolism; redistribution of carbon flux at α-ketoglutarate metabolic node to channel more flux into L-arginine biosynthetic pathway; minimization of carbon and cofactor loss by attenuation of byproducts formation. The final strain could produce 87.3 g L(-1) L-arginine with yield up to 0.431 g L-arginine g(-1) glucose in fed-batch fermentation. PMID:27338253

  5. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production

    Science.gov (United States)

    Man, Zaiwei; Xu, Meijuan; Rao, Zhiming; Guo, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong

    2016-01-01

    L-arginine is an important amino acid in food and pharmaceutical industries. Until now, the main production method of L-arginine in China is the highly polluting keratin acid hydrolysis. The industrial level L-arginine production by microbial fermentation has become an important task. In previous work, we obtained a new L-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through screening and mutation breeding. In this work, we performed systems pathway engineering of C. crenatum for improved L-arginine production, involving amplification of L-arginine biosynthetic pathway flux by removal of feedback inhibition and overexpression of arginine operon; optimization of NADPH supply by modulation of metabolic flux distribution between glycolysis and pentose phosphate pathway; increasing glucose consumption by strengthening the preexisting glucose transporter and exploitation of new glucose uptake system; channeling excess carbon flux from glycolysis into tricarboxylic acid cycle to alleviate the glucose overflow metabolism; redistribution of carbon flux at α-ketoglutarate metabolic node to channel more flux into L-arginine biosynthetic pathway; minimization of carbon and cofactor loss by attenuation of byproducts formation. The final strain could produce 87.3 g L−1 L-arginine with yield up to 0.431 g L-arginine g−1 glucose in fed-batch fermentation. PMID:27338253

  6. Mobile Semiotics - signs and mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    a potential for mobilities studies if the awareness of seeing the environment as a semiotic layer and system can be sensitized to the insights of the ‘mobilities turn’. Empirically the paper tentatively explores the usefulness of a mobile semiotics approach to cases such as street signage, airport design...

  7. Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon

    Directory of Open Access Journals (Sweden)

    Andre Mancebo Mazzetto

    2016-03-01

    Full Text Available Abstract Land use changes strongly impact soil functions, particularly microbial biomass diversity and activity. We hypothesized that the catabolic respiration response of the microbial biomass would differ depending on land use and that these differences would be consistent at the landscape scale. In the present study, we analyzed the catabolic response profile of the soil microbial biomass through substrate-induced respiration in different land uses over a wide geographical range in Mato Grosso and Rondônia state (Southwest Amazon region. We analyzed the differences among native areas, pastures and crop areas and within each land use and examined only native areas (Forest, Dense Cerrado and Cerrado, pastures (Nominal, Degraded and Improved and crop areas (Perennial, No-Tillage, Conventional Tillage. The metabolic profile of the microbial biomass was accessed using substrate-induced respiration. Pasture soils showed significant responses to amino acids and carboxylic acids, whereas native areas showed higher responses to malonic acid, malic acid and succinic acid. Within each land use category, the catabolic responses showed similar patterns in both large general comparisons (native area, pasture and crop areas and more specific comparisons (biomes, pastures and crop types. The results showed that the catabolic responses of the microbial biomass are highly correlated with land use, independent of soil type or climate. The substrate induced respiration approach is useful to discriminate microbial communities, even on a large scale.

  8. Amino acid catabolism by Lactobacillus helveticus in cheese

    DEFF Research Database (Denmark)

    Kananen, Soila Kaarina

    Amino acid catabolism is the final step in the conversion of caseins to flavour compounds and a part of a complex combination of biochemical pathways in cheese flavour formation. Lactobacillus helveticus is a thermophilic lactic acid bacterium that is used in cheese manufacture as a primary start...

  9. Catabolism of pyrimidines in yeast: A tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, Gorm; Merico, A.; Bjornberg, O.;

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides...

  10. Catabolism of pyrimidines in yeast: a tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, G; Merico, A; Björnberg, O;

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides...

  11. Mechanical ventilation induces myokine expression and catabolism in peripheral skeletal muscle in pigs

    Science.gov (United States)

    Endotoxin (LPS)-induced sepsis increases circulating cytokines which have been associated with skeletal muscle catabolism. During critical illness, it has been postulated that muscle wasting associated with mechanical ventilation (MV) occurs due to inactivity. We hypothesize that MV and sepsis promo...

  12. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis.

    Science.gov (United States)

    Green, Courtney R; Wallace, Martina; Divakaruni, Ajit S; Phillips, Susan A; Murphy, Anne N; Ciaraldi, Theodore P; Metallo, Christian M

    2016-01-01

    Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl-coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation. PMID:26571352

  13. Phytochemicals that modulate amino acid and peptide catabolism by caprine rumen microbes

    Science.gov (United States)

    Background: Microbe-derived ionophores and macrolide antibiotics are often added to ruminant diets, and growth promotion and feed efficiency are among the benefits. One mechanism is inhibition of microbes that catabolize amino acids or peptides and produce ammonia. Plants also produce antimicrobial ...

  14. Changes in expression of proteolytic genes in response to anabolic and catabolic signals in rainbow trout

    Science.gov (United States)

    Rates of protein accrual are largely affected by rates of protein degradation. Determining how proteolytic pathways are affected by catabolic and anabolic signals will contribute to the understanding of the impact and regulation these pathways have on protein turnover. Real time RT-PCR was used to...

  15. Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon.

    Science.gov (United States)

    Mazzetto, Andre Mancebo; Feigl, Brigitte Josefine; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente

    2016-01-01

    Land use changes strongly impact soil functions, particularly microbial biomass diversity and activity. We hypothesized that the catabolic respiration response of the microbial biomass would differ depending on land use and that these differences would be consistent at the landscape scale. In the present study, we analyzed the catabolic response profile of the soil microbial biomass through substrate-induced respiration in different land uses over a wide geographical range in Mato Grosso and Rondônia state (Southwest Amazon region). We analyzed the differences among native areas, pastures and crop areas and within each land use and examined only native areas (Forest, Dense Cerrado and Cerrado), pastures (Nominal, Degraded and Improved) and crop areas (Perennial, No-Tillage, Conventional Tillage). The metabolic profile of the microbial biomass was accessed using substrate-induced respiration. Pasture soils showed significant responses to amino acids and carboxylic acids, whereas native areas showed higher responses to malonic acid, malic acid and succinic acid. Within each land use category, the catabolic responses showed similar patterns in both large general comparisons (native area, pasture and crop areas) and more specific comparisons (biomes, pastures and crop types). The results showed that the catabolic responses of the microbial biomass are highly correlated with land use, independent of soil type or climate. The substrate induced respiration approach is useful to discriminate microbial communities, even on a large scale. PMID:26887228

  16. Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon.

    Science.gov (United States)

    Mazzetto, Andre Mancebo; Feigl, Brigitte Josefine; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente

    2016-01-01

    Land use changes strongly impact soil functions, particularly microbial biomass diversity and activity. We hypothesized that the catabolic respiration response of the microbial biomass would differ depending on land use and that these differences would be consistent at the landscape scale. In the present study, we analyzed the catabolic response profile of the soil microbial biomass through substrate-induced respiration in different land uses over a wide geographical range in Mato Grosso and Rondônia state (Southwest Amazon region). We analyzed the differences among native areas, pastures and crop areas and within each land use and examined only native areas (Forest, Dense Cerrado and Cerrado), pastures (Nominal, Degraded and Improved) and crop areas (Perennial, No-Tillage, Conventional Tillage). The metabolic profile of the microbial biomass was accessed using substrate-induced respiration. Pasture soils showed significant responses to amino acids and carboxylic acids, whereas native areas showed higher responses to malonic acid, malic acid and succinic acid. Within each land use category, the catabolic responses showed similar patterns in both large general comparisons (native area, pasture and crop areas) and more specific comparisons (biomes, pastures and crop types). The results showed that the catabolic responses of the microbial biomass are highly correlated with land use, independent of soil type or climate. The substrate induced respiration approach is useful to discriminate microbial communities, even on a large scale.

  17. Ischemic nucleotide breakdown increases during cardiac development due to drop in adenosine anabolism/catabolism ratio

    NARCIS (Netherlands)

    J.W. de Jong (Jan Willem); E. Keijzer (Elisabeth); T. Huizer (Tom); B. Schoutsen

    1990-01-01

    markdownabstractAbstract Our earlier work on reperfusion showed that adult rat hearts released almost twice as much purine nucleosides and oxypurines as newborn hearts did [Am J Physiol 254 (1988) H1091]. A change in the ratio anabolism/catabolism of adenosine could be responsible for this effect.

  18. Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM.

    OpenAIRE

    Andersen, Joakim Mark; Barrangou, Rodolphe; Abou Hachem, Maher; Lahtinen, Sampo J.; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R.

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosph...

  19. Regulation and control of L-arabinose catabolism in Aspergillus niger

    NARCIS (Netherlands)

    Groot, de M.J.L.

    2005-01-01

    This thesis describes studies on the biochemical properties and regulation of L-arabinose metabolism and arabinan degrading enzymes of Aspergillus niger. We focused on the investigation of the catabolic pathway, firstly by isolating pathway specific regulatory mutants using a newly developed selecti

  20. An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion.

    Directory of Open Access Journals (Sweden)

    Adele Goldman-Pinkovich

    2016-04-01

    Full Text Available Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3, as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade.

  1. An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion.

    Science.gov (United States)

    Goldman-Pinkovich, Adele; Balno, Caitlin; Strasser, Rona; Zeituni-Molad, Michal; Bendelak, Keren; Rentsch, Doris; Ephros, Moshe; Wiese, Martin; Jardim, Armando; Myler, Peter J; Zilberstein, Dan

    2016-04-01

    Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade. PMID:27043018

  2. Oral L-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Smith, Eric P;

    2013-01-01

    -induced obesity, may provide an alternative therapeutic approach. Importantly, recent evidence suggests the amino acid l-arginine, a well-known insulin secretagogue, can also stimulate release of GLP-1 from isolated rat intestine. Here we tested the hypothesis that oral l-arginine acts as a GLP-1 secretagogue...... in vivo, to augment postprandial insulin secretion and improve glucose tolerance. To test this, we administered l-arginine or vehicle by oral gavage, immediately prior to an oral glucose tolerance test in lean and diet-induced obese mice. In both lean and obese mice oral l-arginine increased plasma GLP-1...... and insulin and substantially improved glucose clearance. To directly assess the contribution of GLP-1 receptor (GLP-1R)-signaling to these improvements, l-arginine was given to Glp1r knockout mice and their wild-type littermates. In this experiment oral l-arginine significantly augmented insulin secretion...

  3. Mobilities Design

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Lanng, Ditte Bendix; Wind, Simon

    2016-01-01

    In this paper, we identify the nexus between design (architecture, urban design, service design, etc.) and mobilities as a new and emerging research field. In this paper, we apply a “situational mobilities” perspective and take point of departure in the pragmatist question: “What design decisions...... and interventions affords this particular mobile situation?” The paper presents the contours of an emerging research agenda within mobilities research. The advent of “mobilities design” as an emerging research field points towards a critical interest in the material as well as practical consequences of contemporary......-making. The paper proposes that increased understanding of the material affordances facilitated through design provides important insight to planning and policymaking that at times might be in risk of becoming too detached from the everyday life of the mobile subject within contemporary mobilities landscapes....

  4. Mobility Work

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Bossen, Claus

    2005-01-01

    We posit the concept of Mobility Work to describe efforts of moving about people and things as part of accomplishing tasks. Mobility work can be seen as a spatial parallel to the concept of articulation work proposed by the sociologist Anselm Strauss. Articulation work describes efforts...... of coordination necessary in cooperative work, but focuses, we argue, mainly on the temporal aspects of cooperative work. As a supplement, the concept of mobility work focuses on the spatial aspects of cooperative work. Whereas actors seek to diminish the amount of articulation work needed in collaboration...... by constructing Standard Operation Procedures (SOPs), actors minimise mobility work by constructing Standard Operation Configurations (SOCs). We apply the concept of mobility work to the ethnography of hospital work, and argue that mobility arises because of the need to get access to people, places, knowledge and...

  5. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    A mobile cloud is a cooperative arrangement of dynamically connected communication nodes sharing opportunistic resources. In this book, authors provide a comprehensive and motivating overview of this rapidly emerging technology. The book explores how distributed resources can be shared by mobile...... users in very different ways and for various purposes. The book provides many stimulating examples of resource-sharing applications. Enabling technologies for mobile clouds are also discussed, highlighting the key role of network coding. Mobile clouds have the potential to enhance communications...... performance, improve utilization of resources and create flexible platforms to share resources in very novel ways. Energy efficient aspects of mobile clouds are discussed in detail, showing how being cooperative can bring mobile users significant energy saving. The book presents and discusses multiple...

  6. Remission of diabetes mellitus in cats cannot be predicted by the arginine stimulation test

    OpenAIRE

    Tschuor, F

    2011-01-01

    Background: Responsiveness of β-cells to arginine persists the longest during diabetes progression, making the intravenous arginine stimulation test (IVAST) a useful tool to assess residual insulin and glucagon secretion. Hypothesis: Diabetic cats with and without remission will have different arginine-induced insulin or glucagon response. Animals: 17 cats with diabetes, 7 healthy cats. Methods: Response to IVAST was assessed by calculating insulin and glucagon area under the c...

  7. Arginine synthesis from enteral glutamine in healthy adults in the fed state.

    Science.gov (United States)

    Tomlinson, Chris; Rafii, Mahroukh; Ball, Ronald O; Pencharz, Paul

    2011-08-01

    Recent studies have documented transfer of labeled nitrogen from [2-(15)N]glutamine to citrulline and arginine in fasting human adults. Conversely, in neonates and piglets we have shown no synthesis of arginine from [2-(15)N]glutamate, and others have shown in mice that glutamine is a nitrogen, but not a carbon donor, for arginine synthesis. Therefore, we performed a multitracer study to determine whether glutamine is a nitrogen and/or carbon donor for arginine in healthy adult men. Two glutamine tracers, 2-(15)N and 1-(13)C, were given enterally to five healthy men fed a standardized milkshake diet. There was no difference in plasma enrichments between the two glutamine tracers. 1-(13)C isotopomers of citrulline and arginine were synthesized from [1-(13)C]glutamine. Three isotopomers each of citrulline and arginine were synthesized from the [2-(15)N]glutamine tracer: 2-(15)N, 5-(15)N, and 2,5-(15)N(2). Significantly greater enrichment was found of both [5-(15)N]arginine (0.75%) and citrulline (3.98%) compared with [2-(15)N]arginine (0.44%) and [2-(15)N]citrulline (2.62%), indicating the amino NH(2) from glutamine is mostly transferred to arginine and citrulline by transamination. Similarly, the enrichment of the 1-(13)C isotopomers was significantly less than the 2-(15)N isotopomers, suggesting rapid formation of α-ketoglutarate and recycling of the nitrogen label. Our results show that the carbon for 50% of newly synthesized arginine comes from dietary glutamine but that glutamine acts primarily as a nitrogen donor for arginine synthesis. Hence, studies using [2-(15)N]glutamine will overestimate arginine synthesis rates.

  8. Hyponatraemia in the first week of life in preterm infants. Part I. Arginine vasopressin secretion.

    OpenAIRE

    Rees, L; Brook, C G; Shaw, J C; Forsling, M L

    1984-01-01

    Continuous sequential urinary arginine vasopressin measurements in 14 preterm, ventilated infants suggest that both osmoreceptor and volume receptor systems are able to stimulate the prolonged secretion of arginine vasopressin from 26 weeks' gestation. The kidney is able to respond to arginine vasopressin stimulation from the first day of life and from 26 weeks' gestation. A maximum urine osmolality not exceeding 550 mOsm/kg was reached which varied with hydration of the infant. Excretion of ...

  9. Vasodilator effects of L-arginine are stereospecific and augmented by insulin in humans.

    Science.gov (United States)

    Dallinger, Susanne; Sieder, Anna; Strametz, Jeanette; Bayerle-Eder, Michaela; Wolzt, Michael; Schmetterer, Leopold

    2003-06-01

    The amino acid l-arginine, the precursor of nitric oxide (NO) synthesis, induces vasodilation in vivo, but the mechanism behind this effect is unclear. There is, however, some evidence to assume that the l-arginine membrane transport capacity is dependent on insulin plasma levels. We hypothesized that vasodilator effects of l-arginine may be dependent on insulin plasma levels. Accordingly, we performed two randomized, double-blind crossover studies in healthy male subjects. In protocol 1 (n = 15), subjects received an infusion of insulin (6 mU x kg(-1) x min(-1) for 120 min) or placebo and, during the last 30 min, l-arginine or d-arginine (1 g/min for 30 min) x In protocol 2 (n = 8), subjects received l-arginine in stepwise increasing doses in the presence (1.5 mU x kg(-1) x min(-1)) or absence of insulin. Renal plasma flow and glomerular filtration rate were assessed by the para-aminohippurate and inulin plasma clearance methods, respectively. Pulsatile choroidal blood flow was assessed with laser interferometric measurement of fundus pulsation, and mean flow velocity in the ophthalmic artery was measured with Doppler sonography. l-arginine, but not d-arginine, significantly increased renal and ocular hemodynamic parameters. Coinfusion of l-arginine with insulin caused a dose-dependent leftward shift of the vasodilator effect of l-arginine. This stereospecific renal and ocular vasodilator potency of l-arginine is enhanced by insulin, which may result from facilitated l-arginine membrane transport, enhanced intracellular NO formation, or increased NO bioavailability.

  10. Protective Effect of Arginine on Oxidative Stress in Transgenic Sickle Mouse Models

    OpenAIRE

    Dasgupta, Trisha; Hebbel, Robert P.; Kaul, Dhananjay K.

    2006-01-01

    Sickle cell disease (SCD) is characterized by reperfusion injury and chronic oxidative stress. Oxidative stress and hemolysis in SCD result in inactivation of nitric oxide (NO) and depleted arginine levels. We hypothesized that augmenting NO production by arginine supplementation will reduce oxidative stress in SCD. To this end, we measured the effect of arginine (5% in mouse chow) on NO metabolites (NOx), lipid peroxidation (LPO) and selected antioxidants in transgenic sickle mouse models. U...

  11. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil

    International Nuclear Information System (INIS)

    Bioremediation is often used for in situ remediation of petroleum-contaminated sites. The primary focus of this study was on understanding the indigenous microbial community which can survive in contaminated environment and is responsible for the degradation. Diesel, toluene and naphthalene-degrading microbial consortia were isolated from diesel-contaminated soil by growing on selective hydrocarbon substrates. The presence and frequency of the catabolic genes responsible for aromatic hydrocarbon biodegradation (xylE, ndoB) within the isolated consortia were screened using polymerase chain reaction PCR and DNA-DNA colony hybridization. The diesel DNA-extract possessed both the xylE catabolic gene for toluene, and the nah catabolic gene for polynuclear aromatic hydrocarbon degradation. The toluene DNA-extract possessed only the xylE catabolic gene, while the naphthalene DNA-extract only the ndoB gene. Restriction enzyme analysis with HaeIII indicated similar restriction patterns for the xylE gene fragment between toluene DNA-extract and a type strain, Pseudomonas putida ATCC 23973. A substantial proportion (74%) of the colonies from the diesel-consortium possessed the xylE gene, and the ndoB gene (78%), while a minority (29%) of the toluene-consortium harbored the xylE gene. 59% of the colonies from the naphthalene-consortium had the ndoB gene, and did not have the xylE gene. These results indicate that the microbial population has been naturally enriched in organisms carrying genes for aromatic hydrocarbon degradation and that significant aromatic biodegradative potential exists at the site. Characterization of the population genotype constitutes a molecular diagnosis which permits the determination of the catabolic potential of the site to degrade the contaminant present. (author)

  12. A role for TNFα in intervertebral disc degeneration: A non-recoverable catabolic shift

    Energy Technology Data Exchange (ETDEWEB)

    Purmessur, D.; Walter, B.A. [Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Roughley, P.J. [Shriners Hospital for Children, Montreal, QC (Canada); Laudier, D.M.; Hecht, A.C. [Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Iatridis, James, E-mail: james.iatridis@mssm.edu [Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2013-03-29

    Highlights: ► TNFα induced catabolic changes similar to human intervertebral disc degeneration. ► The metabolic shift induced by TNFα was sustained following removal. ► TNFα induced changes suggestive of cell senescence without affecting cell viability. ► Interventions are required to stimulate anabolism and increase cell proliferation. -- Abstract: This study examines the effect of TNFα on whole bovine intervertebral discs in organ culture and its association with changes characteristic of intervertebral disc degeneration (IDD) in order to inform future treatments to mitigate the chronic inflammatory state commonly found with painful IDD. Pro-inflammatory cytokines such as TNFα contribute to disc pathology and are implicated in the catabolic phenotype associated with painful IDD. Whole bovine discs were cultured to examine cellular (anabolic/catabolic gene expression, cell viability and senescence using β-galactosidase) and structural (histology and aggrecan degradation) changes in response to TNFα treatment. Control or TNFα cultures were assessed at 7 and 21 days; the 21 day group also included a recovery group with 7 days TNFα followed by 14 days in basal media. TNFα induced catabolic and anti-anabolic shifts in the nucleus pulposus (NP) and annulus fibrosus (AF) at 7 days and this persisted until 21 days however cell viability was not affected. Data indicates that TNFα increased aggrecan degradation products and suggests increased β-galactosidase staining at 21 days without any recovery. TNFα treatment of whole bovine discs for 7 days induced changes similar to the degeneration processes that occur in human IDD: aggrecan degradation, increased catabolism, pro-inflammatory cytokines and nerve growth factor expression. TNFα significantly reduced anabolism in cultured IVDs and a possible mechanism may be associated with cell senescence. Results therefore suggest that successful treatments must promote anabolism and cell proliferation in

  13. Evaluation of chemical labeling methods for identifying functional arginine residues of proteins by mass spectrometry.

    Science.gov (United States)

    Wanigasekara, Maheshika S K; Chowdhury, Saiful M

    2016-09-01

    Arginine residues undergo several kinds of post-translational modifications (PTMs). These PTMs are associated with several inflammatory diseases, such as rheumatoid arthritis, atherosclerosis, and diabetes. Mass spectrometric studies of arginine modified proteins and peptides are very important, not only to identify the reactive arginine residues but also to understand the tandem mass spectrometry behavior of these peptides for assigning the sequences unambiguously. Herein, we utilize tandem mass spectrometry to report the performance of two widely used arginine labeling reagents, 1,2-cyclohexanedione (CHD) and phenylglyoxal (PG) with several arginine containing peptides and proteins. Time course labeling studies were performed to demonstrate the selectivity of the reagents in proteins or protein digests. Structural studies on the proteins were also explored to better understand the reaction sites and position of arginine residues. We found CHD showed better labeling efficiencies compared to phenylglyoxal. Reactive arginine profiling on a purified albumin protein clearly pointed out the cellular glycation modification site for this protein with high confidence. We believe these detailed mass-spectrometric studies will provide significant input to profile reactive arginine residues in large-scale studies; therefore, targeted proteomics can be performed to the short listed reactive sites for cellular arginine modifications. PMID:27543028

  14. Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Horn, Heiko; Jungmichel, Stephanie;

    2014-01-01

    The covalent attachment of methyl groups to the side-chain of arginine residues is known to play essential roles in regulation of transcription, protein function and RNA metabolism. The specific N-methylation of arginine residues is catalyzed by a small family of gene products known as protein......, transcription, and chromatin remodeling are predominantly found modified with MMA. Despite this, MMA sites prominently are located outside RNA-binding domains as compared to the proteome-wide distribution of arginine residues. Quantification of arginine methylation in cells treated with Actinomycin D uncovers...

  15. Different roles of cell surface and exogenous glycosaminoglycans in controlling gene delivery by arginine-rich peptides with varied distribution of arginines.

    Science.gov (United States)

    Naik, Rangeetha J; Chatterjee, Anindo; Ganguli, Munia

    2013-06-01

    The role of cell surface and exogenous glycosaminoglycans (GAGs) in DNA delivery by cationic peptides is controlled to a large extent by the peptide chemistry and the nature of its complex with DNA. We have previously shown that complexes formed by arginine homopeptides with DNA adopt a GAG-independent cellular internalization mechanism and show enhanced gene delivery in presence of exogenous GAGs. In contrast, lysine complexes gain cellular entry primarily by a GAG-dependent pathway and are destabilized by exogenous GAGs. The aim of the current study was to elucidate the factors governing the role of cell surface and soluble glycosaminoglycans in DNA delivery by sequences of arginine-rich peptides with altered arginine distributions (compared to homopeptide). Using peptides with clustered arginines which constitute known heparin-binding motifs and a control peptide with arginines alternating with alanines, we show that complexes formed by these peptides do not require cell surface GAGs for cellular uptake and DNA delivery. However, the charge distribution and the spacing of arginine residues affects DNA delivery efficiency of these peptides in presence of soluble GAGs, since these peptides show only a marginal increase in transfection in presence of exogenous GAGs unlike that observed with arginine homopeptides. Our results indicate that presence of arginine by itself drives these peptides to a cell surface GAG-independent route of entry to efficiently deliver functional DNA into cells in vitro. However, the inherent stability of the complexes differ when the distribution of arginines in the peptides is altered, thereby modulating its interaction with exogenous GAGs.

  16. Mechanistic studies on transcriptional coactivator protein arginine methyltransferase 1.

    Science.gov (United States)

    Rust, Heather L; Zurita-Lopez, Cecilia I; Clarke, Steven; Thompson, Paul R

    2011-04-26

    Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups from S-adenosylmethionine (SAM) to the guanidinium group of arginine residues in a number of important cell signaling proteins. PRMT1 is the founding member of this family, and its activity appears to be dysregulated in heart disease and cancer. To begin to characterize the catalytic mechanism of this isozyme, we assessed the effects of mutating a number of highly conserved active site residues (i.e., Y39, R54, E100, E144, E153, M155, and H293), which are believed to play key roles in SAM recognition, substrate binding, and catalysis. The results of these studies, as well as pH-rate studies, and the determination of solvent isotope effects (SIEs) indicate that M155 plays a critical role in both SAM binding and the processivity of the reaction but is not responsible for the regiospecific formation of asymmetrically dimethylated arginine (ADMA). Additionally, mutagenesis studies on H293, combined with pH studies and the lack of a normal SIE, do not support a role for this residue as a general base. Furthermore, the lack of a normal SIE with either the wild type or catalytically impaired mutants suggests that general acid/base catalysis is not important for promoting methyl transfer. This result, combined with the fact that the E144A/E153A double mutant retains considerably more activity then the single mutants alone, suggests that the PRMT1-catalyzed reaction is primarily driven by bringing the substrate guanidinium into the proximity of the S-methyl group of SAM and that the prior deprotonation of the substrate guanidinium is not required for methyl transfer.

  17. Intravenous Selenium Modulates L-Arginine-Induced Experimental Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Jonathan Hardman

    2005-09-01

    Full Text Available Context Oxidative stress is understood to have a critical role in the development of acinar injury in experimental acute pancreatitis. We have previously demonstrated that compound multiple antioxidant therapy ameliorates end-organ damage in the intra-peritoneal L-arginine rat model. As the principal co-factor for glutathione, selenium is a key constituent of multiple antioxidant preparations. Objective The intention of this study was to investigate the effect of selenium on pancreatic and remote organ injury in a wellvalidated experimental model of acute pancreatitis. Methods Male Sprague-Dawley rats were randomly allocated to one of 3 groups (n=5/group and sacrificed at 72 hours. Acute pancreatitis was induced by 250 mg per 100 g body weight of 20% L-arginine hydrochloride in 0.15 mol/L sodium chloride. Group allocations were: Group 1, control; Group 2, acute pancreatitis; Group 3, selenium. Main outcome measures Serum amylase, anti-oxidant levels, bronchoalveolar lavage protein, lung myeloperoxidase activity, and histological assessment of pancreatic injury. Results L-arginine induced acute pancreatitis characterised by oedema, neutrophil infiltration, acinar cell degranulation and elevated serum amylase. Selenium treatment was associated with reduced pancreatic oedema and inflammatory cell infiltration. Acinar degranulation and dilatation were completely absent. A reduction in bronchoalveolar lavage protein content was also demonstrated. Conclusion Intravenous selenium given 24 hours after induction of experimental acute pancreatitis was associated with a reduction in the histological stigmata of pancreatic injury and a dramatic reduction in broncho-alveolar lavage protein content. Serum selenium fell during the course of experimental acute pancreatitis and this effect was not reversed by exogenous selenium supplementation.

  18. Mobile phones and mobile communication

    DEFF Research Database (Denmark)

    Ling, Richard; Donner, Jonathan

    With staggering swiftness, the mobile phone has become a fixture of daily life in almost every society on earth. In 2007, the world had over 3 billion mobile subscriptions. Prosperous nations boast of having more subscriptions than people. In the developing world, hundreds of millions of people who...... researchers in the field, this volume presents an overview of the mobile telephone as a social and cultural phenomenon. Research is summarized and made accessible though detailed descriptions of ten mobile users from around the world. These illustrate popular debates, as well as deeper social forces at work...... could never afford a landline telephone now have a mobile number of their own. With a mobile in our hand many of us feel safer, more productive, and more connected to loved ones, but perhaps also more distracted and less involved with things happening immediately around us. Written by two leading...

  19. Detection of a novel arginine vasopression defect by dideoxy fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamani, M.R.S.; Phillips, J.A. III; Copeland, K.C. (Vanderbilt Univ. School of Medicine, Nashville, TN (United States) Univ. of Vermont College of Medicine, Burlington, VT (United States))

    1993-09-01

    Autosomal dominant neurohypophyseal diabetes insipidus is a familial form of diabetes insipidus. This disorder is associated with variable levels of arginine vasopressin (AVP) and diabetes insipidus of varying severity, which responds to exogenous AVP. To determine the molecular basis of autosomal dominant neurohypophyseal diabetes insipidus, the AVP genes of members of a large kindred were analyzed. A new method, called dideoxy fingerprinting, was used to detect an AVP mutation that was characterized by DNA sequencing. The novel defect found changes the last codon of the AVP signal peptide from alanine to threonine, which should perturb cleavage of mature AVP from its precursor protein and inhibit its secretion or action. 18 refs., 3 figs.

  20. Mobile phone

    International Nuclear Information System (INIS)

    Almost the entire Norwegian population has cell phone. The usefulness of the cell phone is great, but can use a mobile phone to health or discomfort? How can exposure be reduced? NRPA follows research and provides advice on mobile phone use. (AG)

  1. Mobile Semiotics

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2013-01-01

    is a ‘mobile sense making’ where signs and materially situated meanings connect to the moving human body and thus create particular challenges and complexities of making sense of the world. The chapter includes notions of mobility systems and socio-technical networks in order to show how a ‘semiotic layer’ may...

  2. Designing Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    Within the so-called ‘mobilities turn’ (Adey 2010; Cresswell 2006; Urry 2007) much research has taken place during the last decade bringing mobilities into the centre of sociological analysis. However, the materiality and spatiality of artefacts, infrastructures, and sites hosting mobilities...... are often still not engaged with in a sufficiently manner. Often social sciences keep distance to the physical and material as if the social was still to be understood as a realm separate of technology, architecture, and design (for a critique of this see; Latour 2005 and Urry 2000). This paper takes point...... of departure in the sociological perspective termed ‘Staging Mobilities’ (Jensen 2013a) and utilizes this as an analytical frame for exploring cases of mobility design. The paper put focus on how the material shape, design and architectures of technologies, spaces and sites influence mobilities practices...

  3. Mobility Challenges

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Lassen, Claus

    2011-01-01

    This article takes point of departure in the challenges to understand the importance of contemporary mobility. The approach advocated is a cross-disciplinary one drawing on sociology, geography, urban planning and design, and cultural studies. As such the perspective is to be seen as a part...... of the so-called ‘mobility turn’ within social science. The perspective is illustrative for the research efforts at the Centre for Mobility and Urban Studies (C-MUS), Aalborg University. The article presents the contours of a theoretical perspective meeting the challenges to research into contemporary urban...... mobilities. In particular the article discusses 1) the physical city, its infrastructures and technological hardware/software, 2) policies and planning strategies for urban mobility and 3) the lived everyday life in the city and the region....

  4. Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium.

    Science.gov (United States)

    Yudistira, Harry; McClarty, Leigh; Bloodworth, Ruhi A M; Hammond, Sydney A; Butcher, Haley; Mark, Brian L; Cardona, Silvia T

    2011-09-01

    Synthetic cystic fibrosis sputum medium (SCFM) is rich in amino acids and supports robust growth of Burkholderia cenocepacia, a member of the Burkholderia cepacia complex (Bcc). Previous work demonstrated that B. cenocepacia phenylacetic acid (PA) catabolic genes are up-regulated during growth in SCFM and are required for full virulence in a Caenorhabditis elegans host model. In this work, we investigated the role of phenylalanine, one of the aromatic amino acids present in SCFM, as an inducer of the PA catabolic pathway. Phenylalanine degradation intermediates were used as sole carbon sources for growth and gene reporter experiments. In addition to phenylalanine and PA, phenylethylamine, phenylpyruvate, and 2-phenylacetamide were usable as sole carbon sources by wild type B. cenocepacia K56-2, but not by a PA catabolism-defective mutant. EMSA analysis showed that the binding of PaaR, the negative regulator protein of B. cenocepacia PA catabolism, to PA regulatory DNA could only be relieved by phenylacetyl-Coenzyme A (PA-CoA), but not by any of the putative phenylalanine degradation intermediates. Taken together, our results show that in B. cenocepacia, phenylalanine is catabolized to PA and induces PA catabolism through PA activation to PA-CoA. Thus, PaaR shares the same inducer with PaaX, the regulator of PA catabolism in Escherichia coli, despite belonging to a different protein family.

  5. The subcellular compartmentalization of arginine metabolizing enzymes and their role in endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Feng eChen

    2013-07-01

    Full Text Available The endothelial production of nitric oxide (NO mediates endothelium-dependent vasorelaxation and restrains vascular inflammation, smooth muscle proliferation and platelet aggregation. Impaired production of NO is a hallmark of endothelial dysfunction and promotes the development of cardiovascular disease. In endothelial cells, NO is generated by endothelial nitric oxide synthase (eNOS through the conversion of its substrate, L-arginine to L-citrulline. Reduced access to L-arginine has been proposed as a major mechanism underlying reduced eNOS activity and NO production in cardiovascular disease. The arginases (Arg1 and Arg2 metabolize L-arginine to generate L-ornithine and urea and increased expression of arginase has been proposed as a mechanism of reduced eNOS activity secondary to the depletion of L-arginine. Indeed, supplemental L-arginine and suppression of arginase activity has been shown to improve endothelium-dependent relaxation and ameliorate cardiovascular disease. However, L-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis suggesting additional mechanisms. The compartmentalization of intracellular L-arginine into poorly interchangeable pools has been proposed to allow for the local depletion of L-arginine. Indeed the subcellular location of L-arginine metabolizing enzymes plays important functional roles. In endothelial cells, eNOS is found in discrete intracellular locations and the capacity to generate NO is heavily influenced by its localtion. Arg1 and Arg2 also reside in different subcellular environments and are thought to differentially influence endothelial function. The plasma membrane solute transporter, CAT-1 and the arginine recycling enzyme, ASL, co-localize with eNOS and facilitate NO release. This review highlights the importance of the subcellular location of eNOS and arginine transporting and metabolizing enzymes to NO release and cardiovascular disease.

  6. Oral L-arginine supplementation impacts several reproductive parameters during the postpartum period in mares.

    Science.gov (United States)

    Kelley, Dale E; Warren, Lori K; Mortensen, Christopher J

    2013-05-01

    L-arginine is an amino acid which can alter pituitary function and increase blood flow to the reproductive tract. The objective was to determine the effect of supplementing 100g of L-arginine on plasma arginine concentrations, follicular dynamics and ovarian and uterine artery blood flow during the estrus that occurs subsequent to foaling. In Experiment 1, mares were fed 100g L-arginine for 1 day during the last 3 weeks of pregnancy and plasma samples taken for every hour for the first 4h and every other hour until 12h.L-arginine supplementation elevated plasma arginine concentrations from 1 to 8h post feeding; arginine peaked at 6h (arginine: 515±33μmol/L; control: 80±33μmol/L). In Experiment 2, mares received either 100g L-arginine or control diets beginning 21 d before the expected foaling date and continued for 30 d postpartum. The reproductive tract was evaluated by transrectal Doppler ultrasonography from Day 1 postpartum through Day 30. There were no differences in ovarian follicular dynamics, ovarian or uterine resistance indices between groups. Vascular perfusion of the F1 follicular wall was greater in L-arginine supplemented mares (37.3±2.6%) than controls (25.4±2.7%; Pmares had a smaller uterine body and horns and accumulated less uterine fluid than controls (Pfollicular development, raises the possible use of L-arginine supplementation as a breeding management tool during the postpartum period to increase reproductive success. PMID:23523236

  7. An allosteric inhibitor of protein arginine methyltransferase 3.

    Science.gov (United States)

    Siarheyeva, Alena; Senisterra, Guillermo; Allali-Hassani, Abdellah; Dong, Aiping; Dobrovetsky, Elena; Wasney, Gregory A; Chau, Irene; Marcellus, Richard; Hajian, Taraneh; Liu, Feng; Korboukh, Ilia; Smil, David; Bolshan, Yuri; Min, Jinrong; Wu, Hong; Zeng, Hong; Loppnau, Peter; Poda, Gennadiy; Griffin, Carly; Aman, Ahmed; Brown, Peter J; Jin, Jian; Al-Awar, Rima; Arrowsmith, Cheryl H; Schapira, Matthieu; Vedadi, Masoud

    2012-08-01

    PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in vitro. Here, we report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC50 value of 2.5 μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.

  8. Adverse effects associated with arginine alpha-ketoglutarate containing supplements.

    Science.gov (United States)

    Prosser, J M; Majlesi, N; Chan, G M; Olsen, D; Hoffman, R S; Nelson, L S

    2009-05-01

    The athletic performance supplement industry is a multibillion-dollar business and one popular category claims to increase nitric oxide (NO) production. We report three patients presenting to the emergency department with adverse effects. A 33-year-old man presented with palpitations, dizziness, vomiting, and syncope, after the use of NO(2) platinum. His examination and electrocardiogram (ECG) were normal. The dizziness persisted, requiring admission overnight. A 21-year-old man with palpitations and near syncope had used a "nitric oxide" supplement. He was tachycardic to 115 bpm with otherwise normal examination. Laboratory values including methemoglobin, and ECG were unremarkable. He was treated with 1 L of saline with no change in heart rate. He was admitted for observation. A 24-year-old man presented after taking NO-Xplode with palpitations and a headache. His examination, laboratory values, and ECG were normal. He was discharged. The purported active ingredient in these products is arginine alpha-ketoglutarate (AAKG), which is claimed to increase NO production by supplying the precursor L-arginine. The symptoms could be due to vasodilation from increased levels of NO, though other etiologies cannot be excluded. AAKG containing supplements may be associated with adverse effects requiring hospital admission. PMID:19755457

  9. The Role of Protein Arginine Methyltransferases in Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Ji Hye Kim

    2016-01-01

    Full Text Available Protein arginine methyltransferases (PRMTs mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV. Although most PRMTs do not require posttranslational modification (PTM to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6 in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.

  10. Supplementation with l-arginine stabilizes plasma arginine and nitric oxide metabolites, suppresses elevated liver enzymes and peroxidation in sickle cell anaemia.

    Science.gov (United States)

    Jaja, S I; Ogungbemi, S O; Kehinde, M O; Anigbogu, C N

    2016-06-01

    The effect of l-arginine on liver function in SCD has received little or no attention. The effect of a chronic, oral, low-dose supplementation with l-arginine (1gm/day for 6 weeks) on some liver enzymes, lipid peroxidation and nitric oxide metabolites was studied in 20 normal (non-sickle cell anaemia; NSCA) subjects and 20 sickle cell anaemia (SCA) subjects. Ten milliliters of blood was withdrawn from an ante-cubital vein for the estimation of plasma arginine concentration ([R]), alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and alkaline phosphatase (ALP), plasma total bilirubin concentration [TB], malondialdehyde concentration [MDA] and nitric oxide metabolites concentration [NOx]. Before supplementation, ALT, AST, ALP (pconcentration and nitric oxide metabolites levels in NSCA and SCA subjects. Responses in SCA subjects to l-arginine were more sensitive than in NSCA subjects.

  11. Sustainable Mobility

    DEFF Research Database (Denmark)

    Kjærulff, Aslak Aamot

    This paper combines strands of mobilities theory and planning theory, and develops a qualitative approach to look across emerging planning practices. By actively following 8 Danish urban and transport planners, over the course of 2 years, we learn how their practices have changed, inspired...... by mobility management, a concept aiming to reduce carbon emissions from transportation in western societies. The article focuses on how municipal planners formulate the role of mobility management activities organized around private companies, and how their practices are connected to wider ideas on planning....

  12. Accentual mobility

    DEFF Research Database (Denmark)

    Olander, Thomas Kristoffer

    slaviske mobile accentparadigmer i høj grad stemmer overens med hinanden, er det sandsynligt at accentmobiliteten i de to sproggrupper går tilbage til et fælles udgangspunkt. Formålet med afhandlingen er at bestemme den urindoeuropæiske baggrund for de baltoslaviske mobile accentparadigmer. I de...... paradigmatiske accent i urbaltoslavisk på grundlag af materiale fra de tre baltiske sprog og urslavisk. I kapitel IV foretages af en undersøgelse af den foreslåede accentlov ud fra en sammenligning af de rekonstruerede urindoeuropæiske endelser og de tilsvarende former i de urbaltoslaviske mobile...

  13. Subversive Mobilities

    DEFF Research Database (Denmark)

    Thelle, Mikkel

    2013-01-01

    The article approaches mobility through a cultural history of urban conflict. Using a case of “The Copenhagen Trouble,“ a series of riots in the Danish capital around 1900, a space of subversive mobilities is delineated. These turn-of-the-century riots points to a new pattern of mobile gathering......, the swarm; to a new aspect of public action, the staging; and to new ways of configuring public space. These different components indicate an urban assemblage of subversion, and a new characterization of the “throwntogetherness“ of the modern public....

  14. Going Mobile?

    DEFF Research Database (Denmark)

    Tallon, Loic; Froes, Isabel Cristina G.

    2011-01-01

    If the future is mobile, how is the museum community developing within that future? What are the challenges museums face within it? In which directions should we be seeking to evolve our collective knowledge share? It was to gain observations on questions such as these that the 2011 Museums & Mob...... & Mobile survey was developed: 660 museum professionals responded. In this paper the authors highlight nine survey observations that they believe are important to the museum community’s increased understanding of and continued progress within mobile interpretation....

  15. Giardia duodenalis arginine deiminase modulates the phenotype and cytokine secretion of human dendritic cells by depletion of arginine and formation of ammonia.

    Science.gov (United States)

    Banik, Stefanie; Renner Viveros, Pablo; Seeber, Frank; Klotz, Christian; Ignatius, Ralf; Aebischer, Toni

    2013-07-01

    Depletion of arginine is a recognized strategy that pathogens use to evade immune effector mechanisms. Depletion depends on microbial enzymes such as arginases, which are considered virulence factors. The effect is mostly interpreted as being a consequence of successful competition with host enzymes for the substrate. However, both arginases and arginine deiminases (ADI) have been associated with pathogen virulence. Both deplete arginine, but their reaction products differ. An ADI has been implicated in the virulence of Giardia duodenalis, an intestinal parasite that infects humans and animals, causing significant morbidity. Dendritic cells (DC) play a critical role in host defense and also in a murine G. duodenalis infection model. The functional properties of these innate immune cells depend on the milieu in which they are activated. Here, the dependence of the response of these cells on arginine was studied by using Giardia ADI and lipopolysaccharide-stimulated human monocyte-derived DC. Arginine depletion by ADI significantly increased tumor necrosis factor alpha and decreased interleukin-10 (IL-10) and IL-12p40 secretion. It also reduced the upregulation of surface CD83 and CD86 molecules, which are involved in cell-cell interactions. Arginine depletion also reduced the phosphorylation of S6 kinase in DC, suggesting the involvement of the mammalian target of rapamycin signaling pathway. The changes were due to arginine depletion and the formation of reaction products, in particular, ammonium ions. Comparison of NH(4)(+) and urea revealed distinct immunomodulatory activities of these products of deiminases and arginases, respectively. The data suggest that a better understanding of the role of arginine-depleting pathogen enzymes for immune evasion will have to take enzyme class and reaction products into consideration.

  16. Giardia duodenalis Arginine Deiminase Modulates the Phenotype and Cytokine Secretion of Human Dendritic Cells by Depletion of Arginine and Formation of Ammonia

    Science.gov (United States)

    Banik, Stefanie; Renner Viveros, Pablo; Seeber, Frank; Klotz, Christian; Ignatius, Ralf

    2013-01-01

    Depletion of arginine is a recognized strategy that pathogens use to evade immune effector mechanisms. Depletion depends on microbial enzymes such as arginases, which are considered virulence factors. The effect is mostly interpreted as being a consequence of successful competition with host enzymes for the substrate. However, both arginases and arginine deiminases (ADI) have been associated with pathogen virulence. Both deplete arginine, but their reaction products differ. An ADI has been implicated in the virulence of Giardia duodenalis, an intestinal parasite that infects humans and animals, causing significant morbidity. Dendritic cells (DC) play a critical role in host defense and also in a murine G. duodenalis infection model. The functional properties of these innate immune cells depend on the milieu in which they are activated. Here, the dependence of the response of these cells on arginine was studied by using Giardia ADI and lipopolysaccharide-stimulated human monocyte-derived DC. Arginine depletion by ADI significantly increased tumor necrosis factor alpha and decreased interleukin-10 (IL-10) and IL-12p40 secretion. It also reduced the upregulation of surface CD83 and CD86 molecules, which are involved in cell-cell interactions. Arginine depletion also reduced the phosphorylation of S6 kinase in DC, suggesting the involvement of the mammalian target of rapamycin signaling pathway. The changes were due to arginine depletion and the formation of reaction products, in particular, ammonium ions. Comparison of NH4+ and urea revealed distinct immunomodulatory activities of these products of deiminases and arginases, respectively. The data suggest that a better understanding of the role of arginine-depleting pathogen enzymes for immune evasion will have to take enzyme class and reaction products into consideration. PMID:23589577

  17. Enteral L-Arginine and Glutamine Supplementation for Prevention of NEC in Preterm Neonates.

    Science.gov (United States)

    El-Shimi, M S; Awad, H A; Abdelwahed, M A; Mohamed, M H; Khafagy, S M; Saleh, G

    2015-01-01

    Objective. Evaluating the efficacy and safety of arginine and glutamine supplementation in decreasing the incidence of NEC among preterm neonates. Methods. Prospective case-control study done on 75 preterm neonates ≤34 weeks, divided equally into L-arginine group receiving enteral L-arginine, glutamine group receiving enteral glutamine, and control group. Serum L-arginine and glutamine levels were measured at time of enrollment (sample 1), after 14 days of enrollment (sample 2), and at time of diagnosis of NEC (sample 3). Results. The incidence of NEC was 9.3%. There was no difference in the frequency of NEC between L-arginine and control groups (P > 0.05). NEC was not detected in glutamine group; L-arginine concentrations were significantly lower in arginine group than control group in both samples while glutamine concentrations were comparable in glutamine and control groups in both samples. No significant difference was found between groups as regards number of septic episodes, duration to reach full oral intake, or duration of hospital stay. Conclusion. Enteral L-arginine supplementation did not seem to reduce the incidence of NEC. Enteral glutamine may have a preventive role against NEC if supplied early to preterm neonates. However, larger studies are needed to confirm these findings. This work is registered in ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT01263041).

  18. Enteral L-Arginine and Glutamine Supplementation for Prevention of NEC in Preterm Neonates

    Directory of Open Access Journals (Sweden)

    M. S. El-Shimi

    2015-01-01

    Full Text Available Objective. Evaluating the efficacy and safety of arginine and glutamine supplementation in decreasing the incidence of NEC among preterm neonates. Methods. Prospective case-control study done on 75 preterm neonates ≤34 weeks, divided equally into L-arginine group receiving enteral L-arginine, glutamine group receiving enteral glutamine, and control group. Serum L-arginine and glutamine levels were measured at time of enrollment (sample 1, after 14 days of enrollment (sample 2, and at time of diagnosis of NEC (sample 3. Results. The incidence of NEC was 9.3%. There was no difference in the frequency of NEC between L-arginine and control groups (P>0.05. NEC was not detected in glutamine group; L-arginine concentrations were significantly lower in arginine group than control group in both samples while glutamine concentrations were comparable in glutamine and control groups in both samples. No significant difference was found between groups as regards number of septic episodes, duration to reach full oral intake, or duration of hospital stay. Conclusion. Enteral L-arginine supplementation did not seem to reduce the incidence of NEC. Enteral glutamine may have a preventive role against NEC if supplied early to preterm neonates. However, larger studies are needed to confirm these findings. This work is registered in ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT01263041.

  19. Synthesis, characterization and behaviour of trans-bis (argininate) copper (II) to gamma radiation

    International Nuclear Information System (INIS)

    The synthesis, the characterization and the behaviour to gamma radiation of trans-bis (argininate) copper (II) are presented. The synthesis is made from copper sulfate, sodium hydroxide and hydrochloride of L (+) arginine, in aqueous medium, and the characterization by infrared spectroscopy, visible and ultraviolet spectroscopy and elementary analysis. (C.G.C.)

  20. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria.

    Science.gov (United States)

    Tang, Hong; Zhang, Peng; Kieft, Thomas L; Ryan, Shannon J; Baker, Shenda M; Wiesmann, William P; Rogelj, Snezna

    2010-07-01

    The antimicrobial activity of chitosan and chitosan derivatives has been well established. However, although several mechanisms have been proposed, the exact mode of action is still unclear. Here we report on the investigation of antibacterial activity and the antibacterial mode of action of a novel water-soluble chitosan derivative, arginine-functionalized chitosan, on the Gram-negative bacteria Pseudomonas fluorescens and Escherichia coli. Two different arginine-functionalized chitosans (6% arginine-substituted and 30% arginine-substituted) each strongly inhibited P. fluorescens and E. coli growth. Time-dependent killing efficacy experiments showed that 5000 mg l(-1) of 6%- and 30%-substituted chitosan-arginine killed 2.7 logs and 4.5 logs of P. fluorescens, and 4.8 logs and 4.6 logs of E. coli in 4h, respectively. At low concentrations, the 6%-substituted chitosan-arginine was more effective in inhibiting cell growth even though the 30%-substituted chitosan-arginine appeared to be more effective in permeabilizing the cell membranes of both P. fluorescens and E. coli. Studies using fluorescent probes, 1-N-phenyl-naphthylamine (NPN), nile red (NR) and propidium iodide (PI), and field emission scanning electron microscopy (FESEM) suggest that chitosan-arginine's antibacterial activity is, at least in part, due to its interaction with the cell membrane, in which it increases membrane permeability. PMID:20060936

  1. Facilitation of peptide fibre formation by arginine-phosphate/carboxylate interactions

    Indian Academy of Sciences (India)

    K Krishna Prasad; Sandeep Verma

    2008-01-01

    This study describes peptide fibre formation in a hexapeptide, derived from the V3 loop of HIV-1, mediated by the interactions between arginine residues and phosphate/carboxylate anions. This charge neutralization approach was further confirmed when the deletion of arginine residue from the hexapeptide sequence resulted in fibre formation, which was studied by a combination of microscopic techniques.

  2. Enzymatic Synthesis of Agmatine by Immobilized Escherichia coli Cells with Arginine Decarboxylase Activity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-guo; ZHAO Gen-hai; LIU Jun-zhong; LIU Qian; JIAO Qing-cai

    2011-01-01

    A new method for the enzymatic synthesis of agmatine by immobilized Escherichia coli cells with arginine decarboxylase(ADC)activity was established and a series of optimal reaction conditions was set down.The arginine decarboxylase showed the maximum activity when the pyridoxal phosphate(PLP)concentration was 50 mmol/L,pH=7 and 45 ℃.The arginine decarboxylase exhibited the maximum production efficiency when the substrate concentration was 100 mmol/L and the reaction time was 15 h.It was also observed that the appropriate concentration of Mg2+,especially at 0.5 mmol/L promoted the arginine decarboxylase activity; Mn2+ had little effect on the arginine decarboxylase activity.The inhibition of Cu2+ and Zn2+ to the arginine decarboxylase activity was significant.The immobilized cells were continuously used 6 times and the average conversion rate during the six-time usage was 55.6%.The immobilized cells exhibited favourable operational stability.After optimization,the maximally cumulative amount of agmatine could be up to 20 g/L.In addition,this method can also catalyze D,L-arginine to agmatine,leaving the pure optically D-arginine simultaneously.The method has a very important guiding significance to the enzymatic preparation of agmatine.

  3. Acute hypothalamic administration of L-arginine increases feed intake in rats

    OpenAIRE

    Carlos Ricardo Maneck Malfatti; Luiz Augusto da Silva; Ricardo Aparecido Pereira; Renan Garcia Michel; André Luiz Snak; Fabio Seidel dos Santos

    2015-01-01

    Objective: This study investigated the chronic (oral) and acute (hypothalamic infusion) effects of L-arginine supplementation on feed intake, body composition, and behavioral changes in rats. Methods: Twenty rats were divided into two groups treated orally for 60 days; one group received L-arginine (1 g/kg body weight) and one group received saline (1 mL/NaCl ...

  4. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine

    DEFF Research Database (Denmark)

    Lenz, Elisabeth; Jensen, Katrine Birgitte Tarp; Blaabjerg, Lasse Ingerslev;

    2015-01-01

    arginine in a larger production scale. In this work, a tablet formulation was developed for a co-amorphous salt, namely spray dried indomethacin–arginine (SD IND–ARG). The effects of compaction pressure on tablet properties, physical stability and dissolution profiles under non-sink conditions were examined...

  5. Amyloid beta-protein and lipid rafts: focused on biogenesis and catabolism.

    Science.gov (United States)

    Araki, Wataru; Tamaoka, Akira

    2015-01-01

    Cerebral accumulation of amyloid β-protein (Aβ) is thought to play a key role in the molecular pathology of Alzheimer's disease (AD). Three secretases (β-, γ-, and α-secretase) are proteases that control the production of Aβ from amyloid precursor protein. Increasing evidence suggests that cholesterol-rich membrane microdomains termed 'lipid rafts' are involved in the biogenesis and accumulation of Aβ as well as Aβ-mediated neurotoxicity. γ-Secretase is enriched in lipid rafts, which are considered an important site for Aβ generation. Additionally, Aβ-degrading peptidases located in lipid rafts, such as neprilysin, appear to play a role in Aβ catabolism. This mini-review focuses on the roles of lipid rafts in the biogenesis and catabolism of Aβ, covering recent research on the relationship between lipid rafts and the three secretases or Aβ-degrading peptidases. Furthermore, the significance of lipid rafts in Aβ aggregation and neurotoxicity is briefly summarized.

  6. Supplementation with l-arginine stabilizes plasma arginine and nitric oxide metabolites, suppresses elevated liver enzymes and peroxidation in sickle cell anaemia.

    Science.gov (United States)

    Jaja, S I; Ogungbemi, S O; Kehinde, M O; Anigbogu, C N

    2016-06-01

    The effect of l-arginine on liver function in SCD has received little or no attention. The effect of a chronic, oral, low-dose supplementation with l-arginine (1gm/day for 6 weeks) on some liver enzymes, lipid peroxidation and nitric oxide metabolites was studied in 20 normal (non-sickle cell anaemia; NSCA) subjects and 20 sickle cell anaemia (SCA) subjects. Ten milliliters of blood was withdrawn from an ante-cubital vein for the estimation of plasma arginine concentration ([R]), alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and alkaline phosphatase (ALP), plasma total bilirubin concentration [TB], malondialdehyde concentration [MDA] and nitric oxide metabolites concentration [NOx]. Before supplementation, ALT, AST, ALP (pNOx] were higher in NSCA subjects (pNOX] in SCA than in NSCA subjects (plow-dose supplementation with l-arginine improved liver function, oxidative stress, plasma arginine concentration and nitric oxide metabolites levels in NSCA and SCA subjects. Responses in SCA subjects to l-arginine were more sensitive than in NSCA subjects. PMID:27156372

  7. Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae.

    Science.gov (United States)

    Yost, Christopher K; Rath, Amber M; Noel, Tanya C; Hynes, Michael F

    2006-07-01

    A genetic locus encoding erythritol uptake and catabolism genes was identified in Rhizobium leguminosarum bv. viciae, and shown to be plasmid encoded in a wide range of R. leguminosarum strains. A Tn5-B22 mutant (19B-3) unable to grow on erythritol was isolated from a mutant library of R. leguminosarum strain VF39SM. The mutated gene eryF was cloned and partially sequenced, and determined to have a high homology to permease genes of ABC transporters. A cosmid complementing the mutation (pCos42) was identified and was shown to carry all the genes necessary to restore the ability to grow on erythritol to a VF39SM strain cured of pRleVF39f. In the genomic DNA sequence of strain 3841, the gene linked to the mutation in 19B-3 is flanked by a cluster of genes with high homology to the known erythritol catabolic genes from Brucella spp. Through mutagenesis studies, three distinct operons on pCos42 that are required for growth on erythritol were identified: an ABC-transporter operon (eryEFG), a catabolic operon (eryABCD) and an operon (deoR-tpiA2-rpiB) that encodes a gene with significant homology to triosephosphate isomerase (tpiA2). These genes all share high sequence identity to genes in the erythritol catabolism region of Brucella spp., and clustalw alignments suggest that horizontal transfer of the erythritol locus may have occurred between R. leguminosarum and Brucella. Transcription of the eryABCD operon is repressed by EryD and is induced by the presence of erythritol. Mutant 19B-3 was impaired in its ability to compete against wild-type for nodulation of pea plants but was still capable of forming nitrogen-fixing nodules.

  8. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate. PMID:26161636

  9. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway.

    Science.gov (United States)

    Rosado, Ivan V; Langevin, Frédéric; Crossan, Gerry P; Takata, Minoru; Patel, Ketan J

    2011-11-13

    Metabolism is predicted to generate formaldehyde, a toxic, simple, reactive aldehyde that can damage DNA. Here we report a synthetic lethal interaction in avian cells between ADH5, encoding the main formaldehyde-detoxifying enzyme, and the Fanconi anemia (FA) DNA-repair pathway. These results define a fundamental role for the combined action of formaldehyde catabolism and DNA cross-link repair in vertebrate cell survival.

  10. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes

    OpenAIRE

    Tasse, Lena; Bercovici, Juliette; Pizzut-Serin, Sandra; Robe, Patrick; Tap, Julien; Klopp, Christophe; Cantarel, Brandi L; Coutinho, Pedro M; Henrissat, Bernard; Leclerc, Marion; Doré, Joël; Monsan, Pierre; Remaud-Simeon, Magali; Potocki-Veronese, Gabrielle

    2010-01-01

    The human gut microbiome is a complex ecosystem composed mainly of uncultured bacteria. It plays an essential role in the catabolism of dietary fibers, the part of plant material in our diet that is not metabolized in the upper digestive tract, because the human genome does not encode adequate carbohydrate active enzymes (CAZymes). We describe a multi-step functionally based approach to guide the in-depth pyrosequencing of specific regions of the human gut metagenome encoding the CAZymes invo...

  11. Differential effects of cranial radiation on growth hormone response to arginine and insulin infusion

    International Nuclear Information System (INIS)

    The growth hormone responses to arginine infusion and to insulin-induced hypoglycemia were studied in 13 patients with neoplastic disease after treatment with radiation and chemotherapy. Patients who received intensive cranial radiation (greater than 2,400 rads) had no response to either arginine or insulin; those who received moderate cranial radiation (greater than or equal to 2,400 rads) had GH response to arginine but not to insulin; patients receiving no cranial radiation responded to both arginine and insulin. These data support the hypothesis that GH secretion in response to arginine infusion has a different mechanism in contrast to the response to insulin-induced hypoglycemia and that the latter is more vulnerable to cranial radiation

  12. Restricted Mobilities

    DEFF Research Database (Denmark)

    Nielsen, Mette; Lassen, Claus

    2012-01-01

    and stratification mechanisms. In conclusion the article therefore suggests that future urban research and planning also needs a mobile understanding of spaces in the cities and how different mobility systems play an important role to sustain the exclusiveness that often characterises the private/public spaces...... in the article is that the many mobility systems enable specialization of places that are targeted at a special section of the population. This means that various forms of motilities not only create new opportunities for urban life but it is also one of the most critical components of production of new exclusion......Privatisation of public spaces in the contemporary city has increased during the last decades but only few studies have approached this field from a mobility perspective. Therefore the article seeks to rectify this by exploring two Australian examples of private spaces in the city; gated...

  13. Mobile museology

    DEFF Research Database (Denmark)

    Baggesen, Rikke Haller

    posts from the research project blog with three research articles: ‘Museum metamorphosis à la mode’, proposing a fashion perspective on ongoing museum developments; ‘Augmenting the agora: media and civic engagement in museums’, questioning the idea of social media holding a vital potential......Drawing together perspectives from museology, digital culture studies and fashion theory, this thesis considers changes in and challenges for current - day museums as related to ‘mobile museology’. This concept is developed for and elucidated in the thesis to describe an orientation towards...... the fashionable, the ephemeral, and towards an (ideal) state of change and changeability. This orientation is characterised with the triplet concepts of mobile, mobility, and mobilisation, as related to mobile media and movability; to ‘trans - museal’ mediation; and to the mobilisation of collections, audiences...

  14. Mobile Commerce

    OpenAIRE

    Maria Cristina Enache

    2016-01-01

    Mobile commerce, or m-commerce, refers to the use of wireless digital devices to enable transactions on the Web. Described more fully in Chapter 3, m-commerce involves the use of wireless networks to connect cell phones, handheld devices such Blackberries, and personal computers to the Web. Once connected, mobile consumers can conduct transactions, including stock trades, in-store price comparisons, banking, travel reservations, and more.

  15. Effects of Zinc Magnesium Aspartate (ZMA Supplementation on Training Adaptations and Markers of Anabolism and Catabolism

    Directory of Open Access Journals (Sweden)

    Almada Anthony

    2004-12-01

    Full Text Available Abstract This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P or ZMA 30–60 minutes prior to going to sleep during 8-weeks of standardized resistance-training. Subjects completed testing sessions at 0, 4, and 8 weeks that included body composition assessment as determined by dual energy X-ray absorptiometry, 1-RM and muscular endurance tests on the bench and leg press, a Wingate anaerobic power test, and blood analysis to assess anabolic/catabolic status as well as markers of health. Data were analyzed using repeated measures ANOVA. Results indicated that ZMA supplementation non-significantly increased serum zinc levels by 11 – 17% (p = 0.12. However, no significant differences were observed between groups in anabolic or catabolic hormone status, body composition, 1-RM bench press and leg press, upper or lower body muscular endurance, or cycling anaerobic capacity. Results indicate that ZMA supplementation during training does not appear to enhance training adaptations in resistance trained populations.

  16. Increased fat catabolism sustains water balance during fasting in zebra finches.

    Science.gov (United States)

    Rutkowska, Joanna; Sadowska, Edyta T; Cichoń, Mariusz; Bauchinger, Ulf

    2016-09-01

    Patterns of physiological flexibility in response to fasting are well established, but much less is known about the contribution of water deprivation to the observed effects. We investigated body composition and energy and water budget in three groups of zebra finches: birds with access to food and water, food-deprived birds having access to drinking water and food-and-water-deprived birds. Animals were not stimulated by elevated energy expenditure and they were in thermoneutral conditions; thus, based on previous studies, water balance of fasting birds was expected to be maintained by increased catabolism of proteins. In contrast to this expectation, we found that access to water did not prevent reduction of proteinaceous tissue, but it saved fat reserves of the fasting birds. Thus, water balance of birds fasting without access to water seemed to be maintained by elevated fat catabolism, which generated 6 times more metabolic water compared with that in birds that had access to water. Therefore, we revise currently established views and propose fat to serve as the primary source for metabolic water production. Previously assumed increased protein breakdown for maintenance of water budget would occur if fat stores were depleted or if fat catabolism reached its upper limits due to high energy demands. PMID:27582561

  17. The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence.

    Science.gov (United States)

    Ougham, H; Hörtensteiner, S; Armstead, I; Donnison, I; King, I; Thomas, H; Mur, L

    2008-09-01

    The pathway of chlorophyll catabolism during leaf senescence is known in a fair amount of biochemical and cell biological detail. In the last few years, genes encoding a number of the catabolic enzymes have been characterized, including the key ring-opening activities, phaeophorbide a oxygenase (PaO) and red chlorophyll catabolite reductase (RCCR). Recently, a gene that modulates disassembly of chlorophyll-protein complexes and activation of pigment ring-opening has been isolated by comparative mapping in monocot species, positional cloning exploiting rice genomics resources and functional testing in Arabidopsis. The corresponding gene in pea has been identified as Mendel's I locus (green/yellow cotyledons). Mutations in this and other chlorophyll catabolic genes have significant consequences, both for the course of leaf senescence and senescence-like stress responses, notably hypersensitivity to pathogen challenge. Loss of chlorophyll can occur via routes other than the PaO/RCCR pathway, resulting in changes that superficially resemble senescence. Such 'pseudosenescence' responses tend to be pathological rather than physiological and may differ from senescence in fundamental aspects of biochemistry and regulation. PMID:18721307

  18. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Mcintyre, Mhairi; Nielsen, Jens

    2004-01-01

    The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars. In the cultivat......The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars...... of key enzymes in the xylose utilisation pathway revealed that xylose metabolism was occurring in the creA deleted strain, even at high glucose concentrations. Conversely, in the wild type strain, activities of the key enzymes for xylose metabolism increased only when the effects of glucose repression...... had been relieved. Xylose was both a repressor and an inducer of xylanases at the same time. The creA mutation seemed to have pleiotropic effects on carbohydratases and carbon catabolism....

  19. Plant-bacteria partnership: phytoremediation of hydrocarbons contaminated soil and expression of catabolic genes

    Directory of Open Access Journals (Sweden)

    Hamna Saleem

    2016-01-01

    Full Text Available Petroleum hydrocarbons are harmful to living organisms when they are exposed in natural environment. Once they come in contact, it is not an easy to remove them because many of their constituents are persistent in nature. To achieve this target, different approaches have been exploited by using plants, bacteria, and plant-bacteria together. Among them, combined use of plants and bacteria has gained tremendous attention as bacteria possess set of catabolic genes which produce catabolic enzymes to decontaminate hydrocarbons. In return, plant ooze out root exudates containing nutrients and necessary metabolites which facilitate the microbial colonization in plant rhizosphere. This results into high gene abundance and gene expression in the rhizosphere and, thus, leads to enhanced degradation. Moreover, high proportions of beneficial bacteria helps plant to gain more biomass due to their plant growth promoting activities and production of phytohromones. This review focuses functioning and mechanisms of catabolic genes responsible for degradation of straight chain and aromatic hydrocarbons with their potential of degradation in bioremediation. With the understanding of expression mechanisms, rate of degradation can be enhanced by adjusting environmental factors and acclimatizing plant associated bacteria in plant rhizosphere.

  20. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats.

    Science.gov (United States)

    Pan, Yi-Hsuan; Zhang, Yijian; Cui, Jie; Liu, Yang; McAllan, Bronwyn M; Liao, Chen-Chung; Zhang, Shuyi

    2013-01-01

    Some mammals hibernate in response to harsh environments. Although hibernating mammals may metabolize proteins, the nitrogen metabolic pathways commonly activated during hibernation are not fully characterized. In contrast to the hypothesis of amino acid preservation, we found evidence of amino acid metabolism as three of five key enzymes, including phenylalanine hydroxylase (PAH), homogentisate 1,2-dioxygenase (HGD), fumarylacetoacetase (FAH), involved in phenylalanine and tyrosine catabolism were co-upregulated during hibernation in two distantly related species of bats, Myotis ricketti and Rhinolophus ferrumequinum. In addition, the levels of phenylalanine in the livers of these bats were significantly decreased during hibernation. Because phenylalanine and tyrosine are both glucogenic and ketogenic, these results indicate the role of this catabolic pathway in energy supply. Since any deficiency in the catabolism of these two amino acids can cause accumulations of toxic metabolites, these results also suggest the detoxification role of these enzymes during hibernation. A higher selective constraint on PAH, HPD, and HGD in hibernators than in non-hibernators was observed, and hibernators had more conserved amino acid residues in each of these enzymes than non-hibernators. These conserved amino acid residues are mostly located in positions critical for the structure and activity of the enzymes. Taken together, results of this work provide novel insights in nitrogen metabolism and removal of harmful metabolites during bat hibernation.

  1. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.

    Science.gov (United States)

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-09-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.

  2. Simple generic model for dynamic experiments with Saccharomyces cerevisiae in continuous culture. Decoupling between anabolism and catabolism

    DEFF Research Database (Denmark)

    Duboc, Philippe Jean; von Stockar, U.; Villadsen, John

    1998-01-01

    The dynamic behavior of a continuous culture of Saccharomyces cerevisiae subjected to a sudden increase in the dilution rate has been successfully modelled for anaerobic growth on glucose, and for aerobic growth on acetate, on ethanol, and on glucose. The catabolism responded by an immediate jump...... whereas biosynthesis did not. Thus catabolism was in excess to anabolism. The model considers the decoupling between biosynthesis and catabolism, both types of reactions being modelled by first-order kinetic expressions evolving towards maximal values. Yield parameters and maximal reaction rates were...... identified in steady state continuous cultures or during batch experiments. Only the time constant of biosynthesis regeneration, tau(x), and the time constant of catabolic capacity regeneration, tau(cat), had to be identified during transient experiments. In most experiments 7, was around 3 h, and tau...

  3. Altered Nitrogen Balance and Decreased Urea Excretion in Male Rats Fed Cafeteria Diet Are Related to Arginine Availability

    Directory of Open Access Journals (Sweden)

    David Sabater

    2014-01-01

    rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.

  4. Insulin resistance is a two-sided mechanism acting under opposite catabolic and anabolic conditions.

    Science.gov (United States)

    Schwartsburd, Polina

    2016-04-01

    The survival of multi-cellular organisms depends on the organism ability to maintain glucose homeostasis for time of low/high nutrient availability or high energy needs, and the ability to fight infections or stress. These effects are realized through the insulin controlled transport of blood glucose into the insulin-responsive cells such as muscle, fat and liver cells. Reduction in the ability of these cells to take glucose from the blood in response to normal circulating levels of insulin is known as insulin resistance (IR). Chronic IR is a key pathological feature of obesity, type 2 diabetes, sepsis and cancer cachexia, however temporal IR are widely met in fasting/ hibernation, pregnancy, anti-bacterial immunity, exercise and stress. Paradoxically, a certain part of the IR-cases is associated with catabolic metabolism, whereas the other is related to anabolic pathways. How can this paradoxical IR-response be explained? What is the metabolic basis of this IR variability and its physiological and pathological impacts? An answer to these questions might be achieved through the hypothesis in which IR is considered as a two-sided mechanism acting under opposite metabolic conditions (catabolism and anabolism) but with the common aim to sustain glucose homeostasis in a wide metabolic range. To test this hypothesis, I examined the main metabolic distinctions between the varied IR-cases and their dependence on the blood glucose concentration, level of the IR-threshold, and catabolic/anabolic activation. On the basis of the established interrelations, a simple model of IR-distribution has been developed. The model revealed the «U-type distribution» form with separation into two main IR-groups, each determined in the catabolic or anabolic conditions with one exception - type 2 diabetes and its paradoxical catabolic activation in anabolic conditions. The dual opposing (or complementary) role for the IR opens a new possibility for better understanding the cause and

  5. Microwave heating of arginine yields highly fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Brightly fluorescent nanoparticles were produced via a single-step, single-precursor procedure based on microwave heating of an aqueous solution of the amino acid arginine. Key structural and optical properties of the resulting Arg nanoparticles, Arg-dots, are reported and discussed with emphasis on the pH dependence of their fluorescence emission. The surface of the Arg-dots was functionalised through coupling to folic acid, opening up ways for connecting fluorescent nanoparticles to cancer cells. The generality and versatility of the microwave heating procedure was further demonstrated by the synthesis of different types of carbon nanoparticles, such as CE-dots, that were produced by use of citric acid and ethanolamine as precursors and compared to the Arg-dots.

  6. Microwave heating of arginine yields highly fluorescent nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Philippidis, Aggelos [Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser (Greece); Stefanakis, Dimitrios [University of Crete, Department of Chemistry (Greece); Anglos, Demetrios, E-mail: anglos@iesl.forth.gr [Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser (Greece); Ghanotakis, Demetrios, E-mail: ghanotakis@chemistry.uoc.gr [University of Crete, Department of Chemistry (Greece)

    2013-01-15

    Brightly fluorescent nanoparticles were produced via a single-step, single-precursor procedure based on microwave heating of an aqueous solution of the amino acid arginine. Key structural and optical properties of the resulting Arg nanoparticles, Arg-dots, are reported and discussed with emphasis on the pH dependence of their fluorescence emission. The surface of the Arg-dots was functionalised through coupling to folic acid, opening up ways for connecting fluorescent nanoparticles to cancer cells. The generality and versatility of the microwave heating procedure was further demonstrated by the synthesis of different types of carbon nanoparticles, such as CE-dots, that were produced by use of citric acid and ethanolamine as precursors and compared to the Arg-dots.

  7. Haloarchaeal Protein Translocation via the Twin Arginine Translocation Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Pohlschroder Mechthild

    2009-02-03

    Protein transport across hydrophobic membranes that partition cellular compartments is essential in all cells. The twin arginine translocation (Tat) pathway transports proteins across the prokaryotic cytoplasmic membranes. Distinct from the universally conserved Sec pathway, which secretes unfolded proteins, the Tat machinery is unique in that it secretes proteins in a folded conformation, making it an attractive pathway for the transport and secretion of heterologously expressed proteins that are Sec-incompatible. During the past 7 years, the DOE-supported project has focused on the characterization of the diversity of bacterial and archaeal Tat substrates as well as on the characterization of the Tat pathway of a model archaeon, Haloferax volcanii, a member of the haloarchaea. We have demonstrated that H. volcanii uses this pathway to transport most of its secretome.

  8. The Nitric Oxide Synthase Inhibitor NG-Nitro-L-Arginine Methyl Ester Diminishes the Immunomodulatory Effects of Parental Arginine in Rats with Subacute Peritonitis.

    Science.gov (United States)

    Lo, Hui-Chen; Hung, Ching-Yi; Huang, Fu-Huan; Su, Tzu-Cheng; Lee, Chien-Hsing

    2016-01-01

    The combined treatment of parenteral arginine and the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) have been shown to improve liver function and systemic inflammation in subacute peritonitic rats. Here, we investigated the effects of single and combined parenteral arginine and L-NAME treatments on leukocyte and splenocyte immunity. Male Wistar rats were subjected to cecal punctures and were intravenously given total parenteral nutrition solutions with or without arginine and/or L-NAME supplementations for 7 days. Non-surgical and sham-operated rats with no cecal puncture were given a chow diet and parenteral nutrition, respectively. Parenteral feeding elevated the white blood cell numbers and subacute peritonitis augmented the parenteral nutrition-induced alterations in the loss of body weight gain, splenomegaly, and splenocyte decreases. Parenteral arginine significantly increased the B-leukocyte level, decreased the natural killer T (NKT)-leukocyte and splenocyte levels, alleviated the loss in body weight gain and total and cytotoxic T-splenocyte levels, and attenuated the increases in plasma nitrate/nitrite and interferon-gamma production by T-splenocytes. L-NAME infusion significantly decreased NKT-leukocyte level, tumor-necrosis factor (TNF)-alpha production by T-splenocytes and macrophages, and interferon-gamma production by T-leukocytes, monocytes, and T-splenocytes, as well as increased interleukin-6 production by T-leukocytes and monocytes and nitrate/nitrite production by T-leukocytes. Combined treatment significantly decreased plasma nitrate/nitrite, the NKT-leukocyte level, and TNF-alpha production by T-splenocytes. Parenteral arginine may attenuate immune impairment and L-NAME infusion may augment leukocyte proinflammatory response, eliminate splenocyte proinflammatory and T-helper 1 responses, and diminish arginine-induced immunomodulation in combined treatment in subacute peritonitic rats.

  9. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis

    Directory of Open Access Journals (Sweden)

    Mechteld A. R. Vermeulen

    2016-01-01

    Full Text Available Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%. Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285.

  10. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis.

    Science.gov (United States)

    Vermeulen, Mechteld A R; Brinkmann, Saskia J H; Buijs, Nikki; Beishuizen, Albertus; Bet, Pierre M; Houdijk, Alexander P J; van Goudoever, Johannes B; van Leeuwen, Paul A M

    2016-01-01

    Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE) calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%). Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285.

  11. L-arginine, the substrate of nitric oxide synthase,inhibits fertility of male rats

    Institute of Scientific and Technical Information of China (English)

    W. D. Ramasooriya; M. G. Dharmasiri

    2001-01-01

    Aim: To examine the effect of L-arginine, the substrate of nitric oxide (NO) synthase, on reproductive function of male rots. Methods: Male rats were gavaged with either L-arginine (100 or 200 mg@ kg- 1@ d-1), D-arginine (200 mg@ kg- 1@ d-1 ) or vehicle (0.9% NaCl) for seven consecutive days. Their sexual behaviour and fertility were evaluat ed using receptive females. Results: L-arginine (200 mg/kg) had no significant effect on sexual competence (in terms of sexual arousal, libido, sexual vigour and sexual performance). In mating experiments, the higher dose of L arginine effectively and reversibly inhibited fertility, whilst the lower dose and the inactive stereoisomer D-arginine had no significant effect. The antifertility effect caused by L-arginine was due to a profound elevation in the preimplantation loss mediated possibly by impairment in epididymal sperm maturation, hyperactivated sperm motility and sperm capaci ration. Conclusion: Elevated NO production may be detrimental to male fertility.

  12. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis

    Science.gov (United States)

    Vermeulen, Mechteld A. R.; Brinkmann, Saskia J. H.; Buijs, Nikki; Beishuizen, Albertus; Bet, Pierre M.; Houdijk, Alexander P. J.; van Goudoever, Johannes B.; van Leeuwen, Paul A. M.

    2016-01-01

    Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE) calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%). Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285. PMID:27200186

  13. One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhongjun; Zhu Hui; Wang Xiaolei; Yang Fan; Yang Xiurong, E-mail: xryang@ciac.jl.c [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 (China)

    2009-11-18

    A green one-step approach has been developed for the synthesis of amino-functionalized magnetite nanoparticles. The synthesis was accomplished by simply mixing FeCl{sub 2} with arginine under ambient conditions. It was found that the Fe{sup 2+}/arginine molar ratio, reaction duration and temperature greatly influence the size, morphology and composition of magnetic nanoparticles. The arginine-stabilized magnetic nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy techniques. The results show that the prepared nanoparticles are spherically shaped with a nearly uniform size distribution and pure magnetite phase. The presence of arginine on the magnetic nanoparticle surface has been confirmed and the amount of surface arginine varies with the Fe{sup 2+}/arginine molar ratio. The surface amine densities are calculated to be 5.60 and 7.84 {mu}mol mg{sup -1} for magnetic nanoparticles prepared at 1:1 and 1:2 Fe{sup 2+}/arginine molar ratio, respectively. The as-synthesized nanoparticles show superparamagnetic behavior at room temperature and good solubility in water. In addition, using a similar synthesis procedure, we have been able to synthesize superparamagnetic manganese and cobalt ferrite nanoparticles.

  14. One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles

    International Nuclear Information System (INIS)

    A green one-step approach has been developed for the synthesis of amino-functionalized magnetite nanoparticles. The synthesis was accomplished by simply mixing FeCl2 with arginine under ambient conditions. It was found that the Fe2+/arginine molar ratio, reaction duration and temperature greatly influence the size, morphology and composition of magnetic nanoparticles. The arginine-stabilized magnetic nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy techniques. The results show that the prepared nanoparticles are spherically shaped with a nearly uniform size distribution and pure magnetite phase. The presence of arginine on the magnetic nanoparticle surface has been confirmed and the amount of surface arginine varies with the Fe2+/arginine molar ratio. The surface amine densities are calculated to be 5.60 and 7.84 μmol mg-1 for magnetic nanoparticles prepared at 1:1 and 1:2 Fe2+/arginine molar ratio, respectively. The as-synthesized nanoparticles show superparamagnetic behavior at room temperature and good solubility in water. In addition, using a similar synthesis procedure, we have been able to synthesize superparamagnetic manganese and cobalt ferrite nanoparticles.

  15. Investigation on the remineralization effect of arginine toothpaste for early enamel caries: nanotribological and nanomechanical properties

    Science.gov (United States)

    Yu, Ping; Arola, Dwayne D.; Min, Jie; Yu, Dandan; Xu, Zhou; Li, Zhi; Gao, Shanshan

    2016-11-01

    Remineralization is confirmed as a feasible method to restore early enamel caries. While there is evidence that the 8% arginine toothpaste has a good remineralization effect by increasing surface microhardness, the repair effect on wear-resistance and nanomechanical properties still remains unclear. Therefore, this research was conducted to reveal the nanotribological and nanomechanical properties changes of early caries enamel after remineralized with arginine toothpaste. Early enamel caries were created in bovine enamel blocks, and divided into three groups according to the treatment solutions: distilled and deionized water (DDW group), arginine toothpaste slurry (arginine group) and fluoride toothpaste slurry (fluoride group). All of the samples were subjected to pH cycling for 12 d. The nanotribological and nanomechanical properties were evaluated via the nanoscratch and nanoindentation tests. The wear depth and scratch morphology were observed respectively by scanning probe microscopic (SPM) and scanning electron microscopy (SEM). Finally, x-ray photoelectron spectroscopy (XPS) was used for element analysis of remineralized surfaces. Results showed that the wear depth of early caries enamel decreased after remineralization treatment and both the nanohardness and elastic modulus increased. Compared with the fluoride group, the arginine group exhibited higher nanohardness and elastic modulus with higher levels of calcium, fluoride, nitrogen and phosphorus; this group also underwent less wear and related damage. Overall, the synergistic effect of arginine and fluoride in arginine toothpaste achieves better nanotribological and nanomechanical properties than the single fluoride toothpaste, which could have significant impact on fight against early enamel caries.

  16. Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats

    Directory of Open Access Journals (Sweden)

    J.M. Cruciol-Souza

    1999-10-01

    Full Text Available Although it has been demonstrated that nitric oxide (NO released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg induced tetanic fade. The Nw-nitro-L-arginine (L-NOARG; 2 mg/kg alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg or ODQ (15 µg/kg. ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.

  17. Hepatic adaptation compensates inactivation of intestinal arginine biosynthesis in suckling mice.

    Directory of Open Access Journals (Sweden)

    Vincent Marion

    Full Text Available Suckling mammals, including mice, differ from adults in the abundant expression of enzymes that synthesize arginine from citrulline in their enterocytes. To investigate the importance of the small-intestinal arginine synthesis for whole-body arginine production in suckling mice, we floxed exon 13 of the argininosuccinate synthetase (Ass gene, which codes for a key enzyme in arginine biosynthesis, and specifically and completely ablated Ass in enterocytes by crossing Ass (fl and Villin-Cre mice. Unexpectedly, Ass (fl/fl /VilCre (tg/- mice showed no developmental impairments. Amino-acid fluxes across the intestine, liver, and kidneys were calculated after determining the blood flow in the portal vein, and hepatic and renal arteries (86%, 14%, and 33%, respectively, of the transhepatic blood flow in 14-day-old mice. Relative to control mice, citrulline production in the splanchnic region of Ass (fl/fl /VilCre (tg/- mice doubled, while arginine production was abolished. Furthermore, the net production of arginine and most other amino acids in the liver of suckling control mice declined to naught or even changed to consumption in Ass (fl/fl /VilCre (tg/- mice, and had, thus, become remarkably similar to that of post-weaning wild-type mice, which no longer express arginine-biosynthesizing enzymes in their small intestine. The adaptive changes in liver function were accompanied by an increased expression of genes involved in arginine metabolism (Asl, Got1, Gpt2, Glud1, Arg1, and Arg2 and transport (Slc25a13, Slc25a15, and Slc3a2, whereas no such changes were found in the intestine. Our findings suggest that the genetic premature deletion of arginine synthesis in enterocytes causes a premature induction of the post-weaning pattern of amino-acid metabolism in the liver.

  18. Arginines Plasma Concentration and Oxidative Stress in Mild to Moderate COPD

    Science.gov (United States)

    Zinellu, Angelo; Fois, Alessandro Giuseppe; Sotgia, Salvatore; Sotgiu, Elisabetta; Zinellu, Elisabetta; Bifulco, Fabiana; Mangoni, Arduino A; Pirina, Pietro; Carru, Ciriaco

    2016-01-01

    Background Elevated plasma concentrations of the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) have been observed in respiratory conditions such as asthma and cystic fibrosis. Since oxidative stress has been shown to increase the activity of arginine methylating enzymes, hence increased ADMA synthesis, and to reduce ADMA degrading enzymes, hence increased ADMA concentrations, we assessed methylated arginines concentrations in chronic obstructive pulmonary disease (COPD), a disease characterized by increased oxidative stress. Methods Plasma arginine, ADMA and symmetric dimethylarginine (SDMA), oxidative stress markers (thiobarbituric acid reactive substances, TBARS, and plasma proteins SH, PSH) and antioxidants (taurine and paraoxonase 1, PON1, activity) were measured in 43 COPD patients with mild (n = 29) or moderate (n = 14) disease and 43 age- and sex-matched controls. Results TBARS significantly increased with COPD presence and severity (median 2.93 vs 3.18 vs 3.64 μmol/L, respectively in controls, mild and moderate group, p<0.0001 by ANOVA) whereas PSH decreased (6.69±1.15 vs 6.04±0.85 vs 5.33±0.96 μmol/gr prot, p<0.0001 by ANOVA). Increased ADMA/arginine ratio, primarily due to reduced arginine concentrations, was also observed with COPD presence and severity (median 0.0067 vs 0.0075 vs 0.0100, p<0.0001 by ANOVA). In multiple logistic regression analysis, only TBARS (OR 0.44, 95% CI 0.25–0.77; p = 0.0045) and ADMA/Arginine ratio (OR 1.72, 95% CI 2.27–13.05; p = 0.02) were independently associated with COPD severity. Conclusion COPD presence and severity are associated with increased oxidative stress and alterations in arginine metabolism. The reduced arginine concentrations in COPD may offer a new target for therapeutic interventions increasing arginine availability. PMID:27479314

  19. The effect of L-arginine on guinea-pig and rabbit airway smooth muscle function in vitro

    OpenAIRE

    Perez A.C.; Paul W.; Harrison S.; Page C.P.; Spina D.

    1998-01-01

    We have investigated the effects of L-arginine, D-arginine and L-lysine on airway smooth muscle responsiveness to spasmogens in vitro. Both L-arginine and D-arginine (100 mM) significantly reduced the contractile potency and maximal contractile response to histamine but not to methacholine or potassium chloride in guinea-pig epithelium-denuded isolated trachea. Similarly, the contractile response to histamine was significantly reduced by L-arginine (100 mM) in rabbit epithelium-denuded isolat...

  20. Mobile Usability

    DEFF Research Database (Denmark)

    Aryana, Bijan; Clemmensen, Torkil

    2013-01-01

    In this article, a country specific comparative mobile usability study is presented, using Iran and Turkey as the two chosen emerging/emergent nation exemplars of smartphone usage and adoption. In a focus group study, three mobile applications were selected by first-time users of smartphones...... personal contacts. The results and analysis establish the existence of country specific issues and concerns, as well as reveal generic usability issues. The article concludes that the source of these issues is most likely due to a combination of certain contextual features endemic to both Iran and Turkey...

  1. Mobile Misfortune

    DEFF Research Database (Denmark)

    Vigh, Henrik Erdman

    2015-01-01

    of the mobility it enables. This article, thus, looks at the motives and manners in which young men in Bissau become caught up in transnational flows of cocaine. It shows how motion is emotively anchored and affectively bound: tied to and directed toward a feeling of worth and realisation of being, and how...

  2. Designing Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    How is the width of the pavement shaping the urban experience? How is the material design of transport infrastructure and mobile technology affording social interaction in everyday life spaces? How do people inhabit these spaces with their bodies and in accordance to social and cultural norms...

  3. Mobil nationalisme

    DEFF Research Database (Denmark)

    Koefoed, Lasse Martin

    2006-01-01

    , varer, mennesker og kapital men derimod en integreret del af disse tendenser. Gennem begrebet mobil nationalisme argumenteres der for en analytisk optik, hvor nationalisme forstås som en proces hvorigennem skiftende relationer og bevægelser mellem forskellige socio-rumlige skalaer som kroppen...

  4. Mobile Phone

    Institute of Scientific and Technical Information of China (English)

    籍万杰

    2004-01-01

    Your mobile phone rings.and instead of usual electronic signals,it's playing your favorite music.A friend sends your favorite song to cheer you up.One day,a record company might forward new records and music videos to your phone.

  5. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eLeprince

    2015-01-01

    Full Text Available Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signalling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K, VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1, a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  6. Resistance training minimizes catabolic effects induced by sleep deprivation in rats.

    Science.gov (United States)

    Mônico-Neto, Marcos; Antunes, Hanna Karen Moreira; Lee, Kil Sun; Phillips, Stuart M; Giampá, Sara Quaglia de Campos; Souza, Helton de Sá; Dáttilo, Murilo; Medeiros, Alessandra; de Moraes, Wilson Max; Tufik, Sergio; de Mello, Marco Túlio

    2015-11-01

    Sleep deprivation (SD) can induce muscle atrophy. We aimed to investigate the changes underpinning SD-induced muscle atrophy and the impact of this condition on rats that were previously submitted to resistance training (RT). Adult male Wistar EPM-1 rats were randomly allocated into 1 of 5 groups: control, sham, SD (for 96 h), RT, and RT+SD. The major outcomes of this study were muscle fiber cross-sectional area (CSA), anabolic and catabolic hormone profiles, and the abundance of select proteins involved in muscle protein synthesis and degradation pathways. SD resulted in muscle atrophy; however, when SD was combined with RT, the reduction in muscle fiber CSA was attenuated. The levels of IGF-1 and testosterone were reduced in SD animals, and the RT+SD group had higher levels of these hormones than the SD group. Corticosterone was increased in the SD group compared with the control group, and this increase was minimized in the RT+SD group. The increases in corticosterone concentrations paralleled changes in the abundance of ubiquitinated proteins and the autophagic proteins LC3 and p62/SQSTM1, suggesting that corticosterone may trigger these changes. SD induced weight loss, but this loss was minimized in the RT+SD group. We conclude that SD induced muscle atrophy, probably because of the increased corticosterone and catabolic signal. High-intensity RT performed before SD was beneficial in containing muscle loss induced by SD. It also minimized the catabolic signal and increased synthetic activity, thereby minimizing the body's weight loss. PMID:26513007

  7. Lysosomal glycosphingolipid catabolism by acid ceramidase: formation of glycosphingoid bases during deficiency of glycosidases.

    Science.gov (United States)

    Ferraz, Maria J; Marques, André R A; Appelman, Monique D; Verhoek, Marri; Strijland, Anneke; Mirzaian, Mina; Scheij, Saskia; Ouairy, Cécile M; Lahav, Daniel; Wisse, Patrick; Overkleeft, Herman S; Boot, Rolf G; Aerts, Johannes M

    2016-03-01

    Glycosphingoid bases are elevated in inherited lysosomal storage disorders with deficient activity of glycosphingolipid catabolizing glycosidases. We investigated the molecular basis of the formation of glucosylsphingosine and globotriaosylsphingosine during deficiency of glucocerebrosidase (Gaucher disease) and α-galactosidase A (Fabry disease). Independent genetic and pharmacological evidence is presented pointing to an active role of acid ceramidase in both processes through deacylation of lysosomal glycosphingolipids. The potential pathophysiological relevance of elevated glycosphingoid bases generated through this alternative metabolism in patients suffering from lysosomal glycosidase defects is discussed.

  8. Regulation of fructose uptake and catabolism by succinate in Azospirillum brasilense.

    OpenAIRE

    Mukherjee, A; S. Ghosh

    1987-01-01

    Fructose uptake and catabolism in Azospirillum brasilense is dependent on three fructose-inducible enzymes (fru-enzymes): (i) enzyme I and (ii) enzyme II of the phosphoenolpyruvate:fructose phosphotransferase system and (iii) 1-phosphofructokinase. In minimal medium containing 3.7 mM succinate and 22 mM fructose as sources of carbon, growth of A. brasilense was diauxic, succinate being utilized in the first phase of growth and fructose in the second phase with a lag period between the two gro...

  9. Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer.

    Science.gov (United States)

    Kennedy, Kelly M; Scarbrough, Peter M; Ribeiro, Anthony; Richardson, Rachel; Yuan, Hong; Sonveaux, Pierre; Landon, Chelsea D; Chi, Jen-Tsan; Pizzo, Salvatore; Schroeder, Thies; Dewhirst, Mark W

    2013-01-01

    Lactate accumulation in tumors has been associated with metastases and poor overall survival in cancer patients. Lactate promotes angiogenesis and metastasis, providing rationale for understanding how it is processed by cells. The concentration of lactate in tumors is a balance between the amount produced, amount carried away by vasculature and if/how it is catabolized by aerobic tumor or stromal cells. We examined lactate metabolism in human normal and breast tumor cell lines and rat breast cancer: 1. at relevant concentrations, 2. under aerobic vs. hypoxic conditions, 3. under conditions of normo vs. hypoglucosis. We also compared the avidity of tumors for lactate vs. glucose and identified key lactate catabolites to reveal how breast cancer cells process it. Lactate was non-toxic at clinically relevant concentrations. It was taken up and catabolized to alanine and glutamate by all cell lines. Kinetic uptake rates of lactate in vivo surpassed that of glucose in R3230Ac mammary carcinomas. The uptake appeared specific to aerobic tumor regions, consistent with the proposed "metabolic symbiont" model; here lactate produced by hypoxic cells is used by aerobic cells. We investigated whether treatment with alpha-cyano-4-hydroxycinnamate (CHC), a MCT1 inhibitor, would kill cells in the presence of high lactate. Both 0.1 mM and 5 mM CHC prevented lactate uptake in R3230Ac cells at lactate concentrations at ≤ 20 mM but not at 40 mM. 0.1 mM CHC was well-tolerated by R3230Ac and MCF7 cells, but 5 mM CHC killed both cell lines ± lactate, indicating off-target effects. This study showed that breast cancer cells tolerate and use lactate at clinically relevant concentrations in vitro (± glucose) and in vivo. We provided additional support for the metabolic symbiont model and discovered that breast cells prevailingly take up and catabolize lactate, providing rationale for future studies on manipulation of lactate catabolism pathways for therapy.

  10. Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit.

    Science.gov (United States)

    Ozga, Jocelyn A; Reinecke, Dennis M; Ayele, Belay T; Ngo, Phuong; Nadeau, Courtney; Wickramarathna, Aruna D

    2009-05-01

    In pea (Pisum sativum), normal fruit growth requires the presence of the seeds. The coordination of growth between the seed and ovary tissues involves phytohormones; however, the specific mechanisms remain speculative. This study further explores the roles of the gibberellin (GA) biosynthesis and catabolism genes during pollination and fruit development and in seed and auxin regulation of pericarp growth. Pollination and fertilization events not only increase pericarp PsGA3ox1 message levels (codes for GA 3-oxidase that converts GA(20) to bioactive GA(1)) but also reduce pericarp PsGA2ox1 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA(20) to GA(29)), suggesting a concerted regulation to increase levels of bioactive GA(1) following these events. 4-Chloroindole-3-acetic acid (4-Cl-IAA) was found to mimic the seeds in the stimulation of PsGA3ox1 and the repression of PsGA2ox1 mRNA levels as well as the stimulation of PsGA2ox2 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA(1) to GA(8)) in pericarp at 2 to 3 d after anthesis, while the other endogenous pea auxin, IAA, did not. This GA gene expression profile suggests that both seeds and 4-Cl-IAA can stimulate the production, as well as modulate the half-life, of bioactive GA(1), leading to initial fruit set and subsequent growth and development of the ovary. Consistent with these gene expression profiles, deseeded pericarps converted [(14)C]GA(12) to [(14)C]GA(1) only if treated with 4-Cl-IAA. These data further support the hypothesis that 4-Cl-IAA produced in the seeds is transported to the pericarp, where it differentially regulates the expression of pericarp GA biosynthesis and catabolism genes to modulate the level of bioactive GA(1) required for initial fruit set and growth. PMID:19297588

  11. Biochemical and Structural Characterization of a Ureidoglycine Aminotransferase in the Klebsiella pneumoniae Uric Acid Catabolic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Ealick, Steven E. (Cornell)

    2010-09-03

    Many plants, fungi, and bacteria catabolize allantoin as a mechanism for nitrogen assimilation. Recent reports have shown that in plants and some bacteria the product of hydrolysis of allantoin by allantoinase is the unstable intermediate ureidoglycine. While this molecule can spontaneously decay, genetic analysis of some bacterial genomes indicates that an aminotransferase may be present in the pathway. Here we present evidence that Klebsiella pneumoniae HpxJ is an aminotransferase that preferentially converts ureidoglycine and an {alpha}-keto acid into oxalurate and the corresponding amino acid. We determined the crystal structure of HpxJ, allowing us to present an explanation for substrate specificity.

  12. D-Allose catabolism of Escherichia coli

    DEFF Research Database (Denmark)

    Poulsen, Tim S.; Chang, Ying-Ying; Hove-Jensen, Bjarne

    1999-01-01

    gene) were Als-. Transcription of the two allose operons, measured as β-galactosidase activity specified by alsI-lacZ+ or alsE-lacZ+ operon fusions, was induced by allose. Ribose also caused derepression of expression of the regulon under conditions in which ribose phosphate catabolism was impaired.......Genes involved in allose utilization of Escherichia coli K-12 are organized in at least two operons, alsRBACE and alsI, located next to each other on the chromosome but divergently transcribed. Mutants defective in alsI (allose 6-phosphate isomerase gene) and alsE (allulose 6-phosphate epimerase...

  13. Resveratrol inhibits Trypanosoma cruzi arginine kinase and exerts a trypanocidal activity.

    Science.gov (United States)

    Valera Vera, Edward A; Sayé, Melisa; Reigada, Chantal; Damasceno, Flávia S; Silber, Ariel M; Miranda, Mariana R; Pereira, Claudio A

    2016-06-01

    Arginine kinase catalyzes the reversible transphosphorylation between ADP and phosphoarginine which plays a critical role in the maintenance of cellular energy homeostasis. Arginine kinase from the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, meets the requirements to be considered as a potential therapeutic target for rational drug design including being absent in its mammalian hosts. In this study a group of polyphenolic compounds was evaluated as potential inhibitors of arginine kinase using molecular docking techniques. Among the analyzed compounds with the lowest free binding energy to the arginine kinase active site (market price; and (3) has as a well-defined target enzyme which is absent in the mammalian host, it is a promising compound as a trypanocidal drug for Chagas disease. PMID:26976067

  14. Large-Scale Identification of the Arginine Methylome by Mass Spectrometry

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Nielsen, Michael L

    2016-01-01

    The attachment of one or more methylation groups to the side chain of arginine residues is a regulatory mechanism for cellular proteins. Recent advances in mass spectrometry-based characterization allow comprehensive identification of arginine methylation sites by peptide-level enrichment...... strategies. Described in this unit is a 4-day protocol for enrichment of arginine-methylated peptides and subsequent identification of thousands of distinct sites by mass spectrometry. Specifically, the protocol explains step-by-step sample preparation, enrichment using commercially available antibodies......, prefractionation using strong cation exchange, and identification using liquid chromatography coupled to tandem mass spectrometry. A strategy for relative quantification is described using stable isotope labeling by amino acids in cell culture (SILAC). Approaches for analysis of arginine methylation site occupancy...

  15. Corrosion Inhibition Effect of Carbon Steel in Sea Water by L-Arginine-Zn2+ System

    Directory of Open Access Journals (Sweden)

    S. Gowri

    2014-01-01

    Full Text Available The inhibition efficiency of L-Arginine-Zn2+ system in controlling corrosion of carbon steel in sea water has been evaluated by the weight-loss method. The formulation consisting of 250 ppm of L-Arginine and 25 ppm of Zn2+ has 91% IE. A synergistic effect exists between L-Arginine and Zn2+. Polarization study reveals that the L-Arginine-Zn2+ system functions as an anodic inhibitor and the formulation controls the anodic reaction predominantly. AC impedance spectra reveal that protective film is formed on the metal surface. Cyclic voltammetry study reveals that the protective film is more compact and stable even in a 3.5% NaCl environment. The nature of the protective film on a metal surface has been analyzed by FTIR, SEM, and AFM analysis.

  16. Endothelial arginine resynthesis contributes to the maintenance of vasomotor function in male diabetic mice

    DEFF Research Database (Denmark)

    Chennupati, Ramesh; Meens, Merlijn J P M T; Marion, Vincent;

    2014-01-01

    AIM: Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice. METHODS...... AND RESULTS: Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/- = Ass-KOTie2) were generated by crossing Assfl/fl mice ( = control) with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP) was recorded in 34-week-old male mice. Vasomotor...... of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting...

  17. Metabolomic analysis of plasma and liver from surplus arginine fed Atlantic salmon

    Science.gov (United States)

    Andersen, Synne M.; Assaad, Houssein I.; Lin, Gang; Wang, Junjun; Aksnes, Anders; Wu, Guoyao; Espe, Marit

    2016-01-01

    The aim of this study was to determine the metabolic effect of surplus arginine (36.1 g/kg dry matter) compared to a control diet with required arginine (21.1 g/kg dry matter) in adult Atlantic salmon (Salmo salar L.). Although the feeding trial had no significant effect on growth, there were significant differences in the metabolite profile in both plasma and liver in experimental group as compared to the control group. There was increased concentrations of biliverdin, PGF-2 alpha, oxidized glutathione, selenocysteine, two monoacylglycerols and a tripeptide in the liver as well as decreased concentrations of valine and a vitamin D3 metabolite in plasma of arginine supplemented fish. These results indicate that while surplus arginine does not affect growth or body weight, it induces metabolic changes in Atlantic salmon. PMID:25553364

  18. Utilization of ornithine and arginine as specific precursors of clavulanic acid.

    Science.gov (United States)

    Romero, J; Liras, P; Martín, J F

    1986-01-01

    Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-14C] citrulline were not incorporated at all. Mutant nca-1, a strain that is blocked in clavulanic acid biosynthesis, did not incorporate arginine into clavulanic acid. S. clavuligerus showed arginase activity, converting arginine into ornithine, but not amidinotransferase activity. Both arginase activity and clavulanic acid formation were enhanced simultaneously by supplementing the production medium with 10 mM arginine. PMID:2877616

  19. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: A preliminary report

    NARCIS (Netherlands)

    G. Meynen; U.A. Unmehopa; J.J. van Heerikhuize; M.A. Hofman; D.F. Swaab; W.J.G. Hoogendijk

    2006-01-01

    Background: Elevated arginine vasopressin (AVP) plasma levels have been observed in major depression, particularly in relation to the melancholic subtype. Two hypothalamic structures produce plasma vasopressin: the supraoptic nucleus (SON) and the paraventricular nucleus (PVN). The aim of this study

  20. The effect of citrulline and arginine supplementation on lactic acidemia in MELAS syndrome.

    Science.gov (United States)

    El-Hattab, Ayman W; Emrick, Lisa T; Williamson, Kaitlin C; Craigen, William J; Scaglia, Fernando

    2013-12-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a mitochondrial disorder in which nitric oxide (NO) deficiency may play a role in the pathogenesis of several complications including stroke-like episodes and lactic acidosis. Supplementing the NO precursors arginine and citrulline restores NO production in MELAS syndrome. In this study we evaluated the effect of arginine or citrulline on lactic acidemia in adults with MELAS syndrome. Plasma lactate decreased significantly after citrulline supplementation, whereas the effect of arginine supplementation did not reach statistical significance. These results support the potential therapeutic utility of arginine and citrulline in MELAS syndrome and suggest that citrulline supplementation may be more efficacious. However, therapeutic efficacy of these compounds should be further evaluated in clinical trials.

  1. Streptococcus pneumoniae arginine synthesis genes promote growth and virulence in pneumococcal meningitis

    NARCIS (Netherlands)

    J.R. Piet; M. Geldhoff; B.D.C. van Schaik; M.C. Brouwer; M. Valls Seron; M.E. Jakobs; K. Schipper; Y. Pannekoek; A.H. Zwinderman; T. van der Poll; A.H.C. van Kampen; F. Baas; A van der Ende; D. van de Beek

    2014-01-01

    Streptococcus pneumoniae (pneumococcus) is a major human pathogen causing pneumonia, sepsis and bacterial meningitis. Using a clinical phenotype based approach with bacterial whole-genome sequencing we identified pneumococcal arginine biosynthesis genes to be associated with outcome in patients with

  2. Thermal, FT–IR and SHG efficiency studies of L-arginine doped KDP crystals

    Indian Academy of Sciences (India)

    K D Parikh; D J Dave; B B Parekh; M J Joshi

    2007-04-01

    Potassium dihydrogen phosphate (KDP) is a well known nonlinear optical (NLO) material with different applications. Since most of the amino acids exhibit NLO property, it is of interest to dope them in KDP. In the present study, amino acid L-arginine was doped in KDP. The doping of L-arginine was confirmed by FT–IR and paper chromatography. Thermogravimetry suggested that as the amount of doping increases the thermal stability decreases as well as the value of thermodynamic and kinetic parameters decreases. The second harmonic generation (SHG) efficiency of L-arginine doped KDP crystals was found to be increasing with doping concentration of L-arginine. The results are discussed here.

  3. Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle Wehling-Henricks

    Full Text Available BACKGROUND: Duchenne muscular dystrophy (DMD is the most common, lethal disease of childhood. One of 3500 new-born males suffers from this universally-lethal disease. Other than the use of corticosteroids, little is available to affect the relentless progress of the disease, leading many families to use dietary supplements in hopes of reducing the progression or severity of muscle wasting. Arginine is commonly used as a dietary supplement and its use has been reported to have beneficial effects following short-term administration to mdx mice, a genetic model of DMD. However, the long-term effects of arginine supplementation are unknown. This lack of knowledge about the long-term effects of increased arginine metabolism is important because elevated arginine metabolism can increase tissue fibrosis, and increased fibrosis of skeletal muscles and the heart is an important and potentially life-threatening feature of DMD. METHODOLOGY: We use both genetic and nutritional manipulations to test whether changes in arginase metabolism promote fibrosis and increase pathology in mdx mice. Our findings show that fibrotic lesions in mdx muscle are enriched with arginase-2-expressing macrophages and that muscle macrophages stimulated with cytokines that activate the M2 phenotype show elevated arginase activity and expression. We generated a line of arginase-2-null mutant mdx mice and found that the mutation reduced fibrosis in muscles of 18-month-old mdx mice, and reduced kyphosis that is attributable to muscle fibrosis. We also observed that dietary supplementation with arginine for 17-months increased mdx muscle fibrosis. In contrast, arginine-2 mutation did not reduce cardiac fibrosis or affect cardiac function assessed by echocardiography, although 17-months of dietary supplementation with arginine increased cardiac fibrosis. Long-term arginine treatments did not decrease matrix metalloproteinase-2 or -9 or increase the expression of utrophin, which have

  4. Mannitol/l-Arginine-Based Formulation Systems for Freeze Drying of Protein Pharmaceuticals: Effect of the l-Arginine Counter Ion and Formulation Composition on the Formulation Properties and the Physical State of Mannitol.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2016-10-01

    Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride. PMID:27506270

  5. Mannitol/l-Arginine-Based Formulation Systems for Freeze Drying of Protein Pharmaceuticals: Effect of the l-Arginine Counter Ion and Formulation Composition on the Formulation Properties and the Physical State of Mannitol.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2016-10-01

    Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride.

  6. Nonspecific blockade of vascular free radical signals by methylated arginine analogues

    Directory of Open Access Journals (Sweden)

    Pedro M.A.

    1998-01-01

    Full Text Available Methylated arginine analogues are often used as probes of the effect of nitric oxide; however, their specificity is unclear and seems to be frequently overestimated. This study analyzed the effects of NG-methyl-L-arginine (L-NMMA on the endothelium-dependent release of vascular superoxide radicals triggered by increased flow. Plasma ascorbyl radical signals measured by direct electron paramagnetic resonance spectroscopy in 25 rabbits increased by 3.8 ± 0.7 nmol/l vs baseline (28.7 ± 1.4 nmol/l, P<0.001 in response to papaverine-induced flow increases of 121 ± 12%. In contrast, after similar papaverine-induced flow increases simultaneously with L-NMMA infusions, ascorbyl levels were not significantly changed compared to baseline. Similar results were obtained in isolated rabbit aortas perfused ex vivo with the spin trap a-phenyl-N-tert-butylnitrone (N = 22. However, in both preparations, this complete blockade was not reversed by co-infusion of excess L-arginine and was also obtained by N-methyl-D-arginine, thus indicating that it is not related to nitric oxide synthase. L-arginine alone was ineffective, as previously demonstrated for NG-methyl-L-arginine ester (L-NAME. In vitro, neither L-arginine nor its analogues scavenged superoxide radicals. This nonspecific activity of methylated arginine analogues underscores the need for careful controls in order to assess nitric oxide effects, particularly those related to interactions with active oxygen species.

  7. L-Arginine but not L-glutamine likely increases exogenous carbohydrate oxidation during endurance exercise.

    Science.gov (United States)

    Rowlands, David S; Clarke, Jim; Green, Jackson G; Shi, Xiaocai

    2012-07-01

    The addition of L-arginine or L-glutamine to glucose-electrolyte solutions can increase intestinal water, glucose, and sodium absorption in rats and humans. We evaluated the utility of L-arginine and L-glutamine in energy-rehydration beverages through assessment of exogenous glucose oxidation and perceptions of exertion and gastrointestinal distress during endurance exercise. Eight cyclists rode 150 min at 50% of peak power on four occasions while ingesting solutions at a rate of 150 mL 15 min(-1) that contained (13)C-enriched glucose (266 mmol L(-1)) and sodium citrate ([Na(+)] 60 mmol L(-1)), and either: 4.25 mmol L(-1) L-arginine or 45 mmol L(-1) L-glutamine, and as controls glucose only or no glucose. Relative to glucose only, L-arginine invoked a likely 12% increase in exogenous glucose oxidation (90% confidence limits: ± 8%); however, the effect of L-glutamine was possibly trivial (4.5 ± 7.3%). L-Arginine also led to very likely small reductions in endogenous fat oxidation rate relative to glucose (12 ± 4%) and L-glutamine (14 ± 4%), and relative to no glucose, likely reductions in exercise oxygen consumption (2.6 ± 1.5%) and plasma lactate concentration (0.20 ± 0.16 mmol L(-1)). Effects on endogenous and total carbohydrate oxidation were inconsequential. Compared with glucose only, L-arginine and L-glutamine caused likely small-moderate effect size increases in perceptions of stomach fullness, abdominal cramp, exertion, and muscle tiredness during exercise. Addition of L-arginine to a glucose and electrolyte solution increases the oxidation of exogenous glucose and decreases the oxygen cost of exercise, although the mechanisms responsible and impact on endurance performance require further investigation. However, L-arginine also increases subjective feelings of gastrointestinal distress, which may attenuate its other benefits.

  8. Effects of inhaled L-arginine administration in a murine model of acute asthma.

    Directory of Open Access Journals (Sweden)

    Zeynep Arikan-Ayyildiz

    2014-10-01

    Full Text Available Increased arginase activity in the airways decreases L-arginine and causes deficiency of bronchodilating and anti-inflammatory nitric oxide (NO in asthma. As, it is suggested that L-arginine may have therapeutic potential in asthma treatment, we aimed to investigate the effects of inhaled L-arginine on oxygen saturation (SaO₂ and airway histology in a murine model of acute asthma. Twenty eight BALB/c mice were divided into four groups; I, II, III and IV (control. All groups except the control were sensitized and challenged with ovalbumin. After establishement of acute asthma attack by metacholine administration, the mice were treated with inhaled L-arginine (Group I, saline (Group II and budesonide (Group III, respectively. SaO₂was measured by pulse oximeter just before and 5 min after methacholine. A third measurement of SaO₂was also obtained 15 min after drug administration in these study groups. Inflammation in the lung tissues of the sacrificed animals were scored to determine the effects of the study drugs. The number of eosinophils in bronchoalveolar lavage (BAL was determined. The results indicated that inflammatory scores significantly improved in groups receiving study drugs when compared with placebo and L-arginine was similar in decreasing scores when compared with budesonide. SaO₂had a tendency to increase after L-arginine administration after acute asthma attack and this increase was statistically significant (p=0.043. Eosinophilia in BAL significantly reduced in group receiving L-arginine when compared with placebo (p<0.05. Thus in this study we demonstrated that L-arginine improved SaO₂and inflammatory scores in an acute model of asthma.

  9. Influence of in ovo injection of L-arginine on productive and physiological performance of quail

    Directory of Open Access Journals (Sweden)

    W. K. Al–Hayani,

    2011-07-01

    Full Text Available This study evaluated the influence of inoculation of different levels of L–arginine into eggs of 0-day-old quail embryos. On 0 day of incubation, 480 eggs (120 for each treatment group were injected with 0% arginine (C group; 1% arginine (T1; 2% arginine (T2; or 3% arginine (T3. After hatching, 336 quail chicks (84 chicks produced from each in ovo injection treatment were placed in an experimental quail house and distributed into 4 treatment groups of 3 replicates each with 16 quail chicks for each replicate. Traits determined in this study were hatchability rate, initial body weight (7 days of age, final body weight (42 days old, feed intake, weight gain, feed conversion ratio, proportional weights of carcass, breast, legs, back bone, wings, neck, abdominal fat, liver, heart, and gizzard, blood serum glucose, protein, cholesterol, total lipids, triglycerides, calcium and phosphorus and Results revealed that in ovo injection with different levels of L–arginine on 0 day of incubation resulted in significant increase (P≤0.05 in hatchability rate, initial body weight, final body weight, feed conversion ratio and serum glucose, protein, total protein, calcium, phosphorus and proportional weights of carcass, breast, legs, liver, heart, and gizzard and significant decrease (P≤0.05 in serum cholesterol, total lipids, triglycerides and proportional weight of back bone, wings and abdominal fat. In conclusion, the inoculation of different levels of L–arginine into eggs of 0–day–old quail embryos especially at the levels of 2% and 3% resulted in significant improvement in productive and physiological performance of quail. Hence in ovo injection with L–arginine could be used as a beneficial tool for enhance productive performance of quail.

  10. Chiral pharmacokinetics and inversion of NG-nitro-arginine in the rat

    Institute of Scientific and Technical Information of China (English)

    Yan-feiXIN; RuiTONG; YangFANG; Xiang-junZHOU; Yong-xiangWANG

    2004-01-01

    AIM: To explore pharmacokinetics of NG-nitro-D-arginine (D-NNA) and NG-nitro-L-arginine (L-NNA) in conscious rats.METHODS: The plasma concentration of D-NNA and L-NNA were determined by chiral ligand exchange method with capillary electrochromatography (CEC). Pharmacokinetic parameters were estimated using non-compartment model and were fitted using a computer program DAS. Chiral inversion rate of D-NNA to L-

  11. L-Arginine but not L-glutamine likely increases exogenous carbohydrate oxidation during endurance exercise.

    Science.gov (United States)

    Rowlands, David S; Clarke, Jim; Green, Jackson G; Shi, Xiaocai

    2012-07-01

    The addition of L-arginine or L-glutamine to glucose-electrolyte solutions can increase intestinal water, glucose, and sodium absorption in rats and humans. We evaluated the utility of L-arginine and L-glutamine in energy-rehydration beverages through assessment of exogenous glucose oxidation and perceptions of exertion and gastrointestinal distress during endurance exercise. Eight cyclists rode 150 min at 50% of peak power on four occasions while ingesting solutions at a rate of 150 mL 15 min(-1) that contained (13)C-enriched glucose (266 mmol L(-1)) and sodium citrate ([Na(+)] 60 mmol L(-1)), and either: 4.25 mmol L(-1) L-arginine or 45 mmol L(-1) L-glutamine, and as controls glucose only or no glucose. Relative to glucose only, L-arginine invoked a likely 12% increase in exogenous glucose oxidation (90% confidence limits: ± 8%); however, the effect of L-glutamine was possibly trivial (4.5 ± 7.3%). L-Arginine also led to very likely small reductions in endogenous fat oxidation rate relative to glucose (12 ± 4%) and L-glutamine (14 ± 4%), and relative to no glucose, likely reductions in exercise oxygen consumption (2.6 ± 1.5%) and plasma lactate concentration (0.20 ± 0.16 mmol L(-1)). Effects on endogenous and total carbohydrate oxidation were inconsequential. Compared with glucose only, L-arginine and L-glutamine caused likely small-moderate effect size increases in perceptions of stomach fullness, abdominal cramp, exertion, and muscle tiredness during exercise. Addition of L-arginine to a glucose and electrolyte solution increases the oxidation of exogenous glucose and decreases the oxygen cost of exercise, although the mechanisms responsible and impact on endurance performance require further investigation. However, L-arginine also increases subjective feelings of gastrointestinal distress, which may attenuate its other benefits. PMID:22048324

  12. Structural organization of the rat gene for the arginine vasopressin-neurophysin precursor

    OpenAIRE

    Schmale, H.; Heinsohn, S; Richter, D

    1983-01-01

    The rat arginine vasopressin-neurophysin precursor gene has been isolated from a genomic library cloned in lambda phage Charon 4A. Restriction mapping and nucleotide sequence analysis demonstrated that the gene is 1.85 kilobase pairs long and contains two intervening sequences located in the protein coding region. Exon A encodes a putative signal peptide, the hormone arginine vasopressin and the variable N terminus of the carrier protein neurophysin, exon B encodes the highly conserved middle...

  13. Abnormal mitochondrial L-arginine transport contributes to the pathogenesis of heart failure and rexoygenation injury.

    Directory of Open Access Journals (Sweden)

    David Williams

    Full Text Available BACKGROUND: Impaired mitochondrial function is fundamental feature of heart failure (HF and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. METHODS AND RESULTS: In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01 compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05. The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1 exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. CONCLUSION: These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury.

  14. Abnormal Mitochondrial L-Arginine Transport Contributes to the Pathogenesis of Heart Failure and Rexoygenation Injury

    Science.gov (United States)

    Byrne, Melissa; Joshi, Mandar; Horlock, Duncan; Lam, Nicholas T.; Gregorevic, Paul; McGee, Sean L.; Kaye, David M.

    2014-01-01

    Background Impaired mitochondrial function is fundamental feature of heart failure (HF) and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO) metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. Methods and Results In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model) we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively) and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01) compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05). The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1) exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. Conclusion These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury. PMID:25111602

  15. Mobile-to-mobile wireless channels

    CERN Document Server

    Zajic, Alenka

    2013-01-01

    Present-day mobile communications systems can be classified as fixed-to-mobile because they allow mobility on only one end (e.g. the mobile phone to a fixed mobile operator's cell tower). In answer to the consumer demand for better coverage and quality of service, emerging mobile-to-mobile (M-to-M) communications systems allow mobile users or vehicles to directly communicate with each other. This practical book provides a detailed introduction to state-of-the-art M-to-M wireless propagation. Moreover, the book offers professionals guidance for rapid implementation of these communications syste

  16. Arginine Inhibits Adsorption of Proteins on Polystyrene Surface

    Science.gov (United States)

    Shikiya, Yui; Tomita, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2013-01-01

    Nonspecific adsorption of protein on solid surfaces causes a reduction of concentration as well as enzyme inactivation during purification and storage. However, there are no versatile inhibitors of the adsorption between proteins and solid surfaces at low concentrations. Therefore, we examined additives for the prevention of protein adsorption on polystyrene particles (PS particles) as a commonly-used material for vessels such as disposable test tubes and microtubes. A protein solution was mixed with PS particles, and then adsorption of protein was monitored by the concentration and activity of protein in the supernatant after centrifugation. Five different proteins bound to PS particles through electrostatic, hydrophobic, and aromatic interactions, causing a decrease in protein concentration and loss of enzyme activity in the supernatant. Among the additives, including arginine hydrochloride (Arg), lysine hydrochloride, guanidine hydrochloride, NaCl, glycine, and glucose, Arg was most effective in preventing the binding of proteins to PS particles as well as activity loss. Moreover, even after the mixing of protein and PS particles, the addition of Arg caused desorption of the bound protein from PS particles. This study demonstrated a new function of Arg, which expands the potential for application of Arg to proteins. PMID:23967100

  17. Intensive mobilities:

    DEFF Research Database (Denmark)

    Vannini, Phillip; Bissell, David; Jensen, Ole B.

    This paper explores the intensities of long distance commuting journeys as a way of exploring how bodily sensibilities are being changed by the mobilities that they undertake. The context of this paper is that many people are travelling further to work than ever before owing to a variety of factors...... with fieldwork conducted in Canada, Denmark and Australia to develop our understanding of the experiential politics of long distance workers. Rather than focusing on the extensive dimensions of mobilities that are implicated in patterns and trends, our paper turns to the intensive dimensions of this experience....... By exploring how experiences of long-distance workers become constituted by a range of different material forces enables us to more sensitively consider the practical, technical, and political implications of this increasingly prevalent yet underexplored regime of work....

  18. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    Full Text Available Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  19. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  20. Relationship of arginine with lysine in diets for laying Japanese quails

    Directory of Open Access Journals (Sweden)

    Renata de Souza Reis

    2012-01-01

    Full Text Available To determine the relationship of arginine with lysine for Japanese quails during the period of production, an experiment was conducted using 360 subspecies of Japanese quails (Coturnix coturnix japonica with 162 days of age, distributed in a completely randomized design. Diets were formulated with corn, soybean meal, sorghum and wheat bran containing 20.0% crude protein and 2,800 kcal ME/kg. The basal diet contained suboptimal level of lysine equal to 1% and was supplemented with five levels of L-arginine 99% (0.032; 0.083; 0.134; 0.185 and 0.236% to replace the glutamic acid, corresponding to the relationship of arginine with digestible lysine of 1.16, 1.21, 1.26, 1.31 and 1.36. The parameters studied were: feed intake, egg production per hen/day, egg production per hen housed, commercial egg production, egg weight, egg mass, feed conversion by egg mass, feed conversion per dozen eggs, weight and percentage of components of the eggs (yolk, albumen and shell and specific gravity. There was no significant effect on the relationship of arginine with digestible lysine in the diet of Japanese quails for any of the parameters examined. The arginine/lysine ratio of 1.16, which corresponds to a daily intake of 288.84 mg of arginine, provides satisfactory performance and egg quality of Japanese quails.

  1. Network Mobiles

    Directory of Open Access Journals (Sweden)

    Alhamali Masoud Alfrgani .Ali

    2015-07-01

    Full Text Available Mobile devices are becoming increasingly popular for delivering multimedia content, particularly by means of streaming. The main disadvantage of these devices is their limited battery life. Unfortunately, streaming of multimedia content causes the battery of the device to discharge very fast, often causing the battery to deplete before the streaming task finishes, resulting in user dissatisfaction. It is generally not possible to charge the device while on the go as electricity socket and charger are required. Therefore, to avoid this user dissatisfaction, it is necessary to find ways to prolong the battery lifetime and to support the completion of the multimedia streaming tasks. A typical architecture for mobile multimedia streaming is presented In this architecture, a wired server streams multimedia content over a wireless IP network to a number of client devices. These devices could be PDAs, smartphones or any other mobile device with 802.11 connectivity. In relation to possible power savings, the multimedia streaming process can be described as consisting of three stages: reception, decoding and playing. Other researchers have shown that energy savings can be made in each stage, for example by using pre-buffering in the reception stage, feedback control during decoding and backlight adjustment for playing. However, it is not a common practice to combine energy savings in the three stages in order to achieve the best

  2. Acetone formation in the Vibrio family: a new pathway for bacterial leucine catabolism.

    Science.gov (United States)

    Nemecek-Marshall, M; Wojciechowski, C; Wagner, W P; Fall, R

    1999-12-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of L-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. L-Leucine, but not D-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of L-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only alpha-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d(7))-L-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  3. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites.

    Science.gov (United States)

    Jaganath, Indu B; Mullen, William; Lean, Michael E J; Edwards, Christine A; Crozier, Alan

    2009-10-15

    The role of colonic microflora in the breakdown of quercetin-3-O-rutinoside (rutin) was investigated. An in vitro fermentation model was used and (i) 28 micromol of rutin and (ii) 55 micromol of quercetin plus 18 x 10(6) dpm of [4-(14)C]quercetin (60 nmol) were incubated with fresh fecal samples from three human volunteers, in the presence and absence of glucose. The accumulation of quercetin during in vitro fermentation demonstrated that deglycosylation is the initial step in the breakdown of rutin. The subsequent degradation of quercetin was dependent upon the interindividual composition of the bacterial microflora and was directed predominantly toward the production of either hydroxyphenylacetic acid derivatives or hydroxybenzoic acids. Possible catabolic pathways for these conversions are proposed. The presence of glucose as a carbon source stimulated the growth and production of bacterial microflora responsible for both the deglycosylation of rutin and the catabolism of quercetin. 3,4-Dihydroxyphenylacetic acid accumulated in large amounts in the fecal samples and was found to possess significant reducing power and free radical scavenging activity. This catabolite may play a key role in the overall antioxidant capacity of the colonic lumen after the ingestion of quercetin-rich foods.

  4. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Todd, Jonathan D.; Thrash, J. Cameron; Qian, Yanping; Qian, Michael C.; Temperton, Ben; Guo, Jiazhen; Fowler, EMily K.; Aldrich, Joshua T.; Nicora, Carrie D.; Lipton, Mary S.; Smith, Richard D.; De Leenheer, Patrick; Payne, Samuel H.; Johnston, Andrew W.; Davie-Martin, Cleo L.; Halsey, Kimberly H.; Giovannoni, Stephen J.

    2016-05-16

    Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS)3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur5,6. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a DMSP lyase, shunts as much as 59% of DMSP uptake to DMS production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of DMS as the supply of DMSP exceeds cellular sulfur demands for biosynthesis. These findings suggest that DMSP supply and demand relationships in Pelagibacter metabolism are important to determining rates of oceanic DMS production.

  5. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.

    Science.gov (United States)

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E; Rhee, Kyu Y; Jacobs, William R; Berney, Michael; Blanchard, John S

    2016-03-25

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb. PMID:26858255

  6. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis.

    Science.gov (United States)

    Zhang, Minjie; Mani, Sriniwasan B; He, Yao; Hall, Amber M; Xu, Lin; Li, Yefu; Zurakowski, David; Jay, Gregory D; Warman, Matthew L

    2016-08-01

    Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease. PMID:27427985

  7. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism.

    Science.gov (United States)

    Madiraju, Anila K; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T; Kibbey, Richard G; Shulman, Gerald I

    2016-06-14

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419

  8. Correlating denitrifying catabolic genes with N2O and N2 emissions from swine slurry composting.

    Science.gov (United States)

    Angnes, G; Nicoloso, R S; da Silva, M L B; de Oliveira, P A V; Higarashi, M M; Mezzari, M P; Miller, P R M

    2013-07-01

    This work evaluated N dynamics that occurs over time within swine slurry composting piles. Real-time quantitative PCR (qPCR) analyzes were conducted to estimate concentrations of bacteria community harboring specific catabolic nitrifying-ammonium monooxygenase (amoA), and denitrifying nitrate- (narG), nitrite- (nirS and nirG), nitric oxide- (norB) and nitrous oxide reductases (nosZ) genes. NH3-N, N2O-N, N2-N emissions represented 15.4 ± 1.9%, 5.4 ± 0.9%, and 79.1 ± 2.0% of the total nitrogen losses, respectively. Among the genes tested, temporal distribution of narG, nirS, and nosZ concentration correlated significantly (pcompost pile. Considering our current empirical limitations to accurately measure N2 emissions from swine slurry composting at field scale the use of these catabolic genes could represent a promising monitoring tool to aid minimize our uncertainties on biological N mass balances in these systems.

  9. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice.

  10. Empagliflozin, via Switching Metabolism Toward Lipid Utilization, Moderately Increases LDL Cholesterol Levels Through Reduced LDL Catabolism.

    Science.gov (United States)

    Briand, François; Mayoux, Eric; Brousseau, Emmanuel; Burr, Noémie; Urbain, Isabelle; Costard, Clément; Mark, Michael; Sulpice, Thierry

    2016-07-01

    In clinical trials, a small increase in LDL cholesterol has been reported with sodium-glucose cotransporter 2 (SGLT2) inhibitors. The mechanisms by which the SGLT2 inhibitor empagliflozin increases LDL cholesterol levels were investigated in hamsters with diet-induced dyslipidemia. Compared with vehicle, empagliflozin 30 mg/kg/day for 2 weeks significantly reduced fasting blood glucose by 18%, with significant increase in fasting plasma LDL cholesterol, free fatty acids, and total ketone bodies by 25, 49, and 116%, respectively. In fasting conditions, glycogen hepatic levels were further reduced by 84% with empagliflozin, while 3-hydroxy-3-methylglutaryl-CoA reductase activity and total cholesterol hepatic levels were 31 and 10% higher, respectively (both P empagliflozin. Importantly, none of these parameters were changed by empagliflozin in fed conditions. Empagliflozin significantly reduced the catabolism of (3)H-cholesteryl oleate-labeled LDL injected intravenously by 20%, indicating that empagliflozin raises LDL levels through reduced catabolism. Unexpectedly, empagliflozin also reduced intestinal cholesterol absorption in vivo, which led to a significant increase in LDL- and macrophage-derived cholesterol fecal excretion (both P empagliflozin, by switching energy metabolism from carbohydrate to lipid utilization, moderately increases ketone production and LDL cholesterol levels. Interestingly, empagliflozin also reduces intestinal cholesterol absorption, which in turn promotes LDL- and macrophage-derived cholesterol fecal excretion. PMID:27207551

  11. Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum.

    Science.gov (United States)

    Du, Lei; Ma, Li; Qi, Feifei; Zheng, Xianliang; Jiang, Chengying; Li, Ailei; Wan, Xiaobo; Liu, Shuang-Jiang; Li, Shengying

    2016-03-18

    4-Cresol is not only a significant synthetic intermediate for production of many aromatic chemicals, but also a priority environmental pollutant because of its toxicity to higher organisms. In our previous studies, a gene cluster implicated to be involved in 4-cresol catabolism, creCDEFGHIR, was identified in Corynebacterium glutamicum and partially characterized in vivo. In this work, we report on the discovery of a novel 4-cresol biodegradation pathway that employs phosphorylated intermediates. This unique pathway initiates with the phosphorylation of the hydroxyl group of 4-cresol, which is catalyzed by a novel 4-methylbenzyl phosphate synthase, CreHI. Next, a unique class I P450 system, CreJEF, specifically recognizes phosphorylated intermediates and successively oxidizes the aromatic methyl group into carboxylic acid functionality via alcohol and aldehyde intermediates. Moreover, CreD (phosphohydrolase), CreC (alcohol dehydrogenase), and CreG (aldehyde dehydrogenase) were also found to be required for efficient oxidative transformations in this pathway. Steady-state kinetic parameters (Km and kcat) for each catabolic step were determined, and these results suggest that kinetic controls serve a key role in directing the metabolic flux to the most energy effective route.

  12. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.

    Science.gov (United States)

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E; Rhee, Kyu Y; Jacobs, William R; Berney, Michael; Blanchard, John S

    2016-03-25

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb.

  13. Opposing effects of apolipoprotein m on catabolism of apolipoprotein B-containing lipoproteins and atherosclerosis

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Pedersen, Tanja Xenia; Gordts, Philip L S M;

    2010-01-01

    (LDL). Objective: We explored putative links between apoM and very-low-density (VLDL)/LDL metabolism and the antiatherogenic potential of apoM in vivo. Methods and Results: Plasma apoM was increased approximately 2.1 and approximately 1.5 fold in mice lacking LDL receptors (Ldlr(-/-)) and expressing...... dysfunctional LDL receptor-related protein 1 (Lrp1(n2/n2)), respectively, but was unaffected in apoE-deficient (ApoE(-/-)) mice. Thus, pathways controlling catabolism of VLDL and LDL affect plasma apoM. Overexpression ( approximately 10-fold) of human apoM increased (50% to 70%) and apoM deficiency decreased......M impairs the catabolism of VLDL/LDL that occurs independently of the LDL receptor and LRP1. ApoM overexpression decreased atherosclerosis in ApoE(-/-) (60%) and cholate/cholesterol-fed wild-type mice (70%). However, in Ldlr(-/-) mice the antiatherogenic effect of apoM was attenuated by its VLDL...

  14. Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids

    Science.gov (United States)

    Grottoli, Andréa G.; Rodrigues, Lisa J.

    2011-09-01

    Corals rely on stored energy reserves (i.e., lipids, carbohydrates, and protein) to survive bleaching events. To better understand the physiological implications of coral bleaching on lipid catabolism and/or synthesis, we measured the δ13C of coral total lipids (δ13CTL) in experimentally bleached (treatment) and non-bleached (control) Porites compressa and Montipora capitata corals immediately after bleaching and after 1.5 and 4 months of recovery on the reef. Overall δ13CTL values in treatment corals were significantly lower than in control corals because of a 1.9 and 3.4‰ decrease in δ13CTL immediately after bleaching in P. compressa and M. capitata, respectively. The decrease in δ13CTL coincided with decreases in total lipid concentration, indicating that corals catabolized δ13C-enriched lipids. Since storage lipids are primarily depleted during bleaching, we hypothesize that they are isotopically enriched relative to other lipid classes. This work further helps clarify our understanding of changes to coral metabolism and biogeochemistry when bleached and helps elucidate how lipid classes may influence recovery from bleaching and ultimately coral survival.

  15. Catabolism and Deactivation of the Lipid-derived Hormone Jasmonoyl-isoleucine

    Directory of Open Access Journals (Sweden)

    Abraham JK Koo

    2012-02-01

    Full Text Available The oxylipin hormone jasmonate controls myriad processes involved in plant growth, development and immune function. The discovery of jasmonoyl-L-isoleucine (JA-Ile as the major bioactive form of the hormone highlights the need to understand biochemical and cell biological processes underlying JA-Ile homeostasis. Among the major metabolic control points governing the accumulation of JA-Ile in plant tissues are the availability of jasmonic acid, the immediate precursor of JA-Ile, and oxidative enzymes involved in catabolism and deactivation of the hormone. Recent studies indicate that JA-Ile turnover is mediated by a ω-oxidation pathway involving members of the CYP94 family of cytochromes P450. This discovery opens new opportunities to genetically manipulate JA-Ile levels for enhanced resistance to environmental stress, and further highlights ω-oxidation as a conserved pathway for catabolism of lipid-derived signals in plants and animals. Functional characterization of the full complement of CYP94 P450s promises to reveal new pathways for jasmonate metabolism and provide insight into the evolution of oxylipin signaling in land plants.

  16. The ygeW encoded protein from Escherichia coli is a knotted ancestral catabolic transcarbamylase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongdong; Jin, Zhongmin; Yu, Xiaolin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang (Maryland); (GWU); (Georgia)

    2012-06-28

    Purine degradation plays an essential role in nitrogen metabolism in most organisms. Uric acid is the final product of purine catabolism in humans, anthropoid apes, birds, uricotelic reptiles, and almost all insects. Elevated levels of uric acid in blood (hyperuricemia) cause human diseases such as gout, kidney stones, and renal failure. Although no enzyme has been identified that further degrades uric acid in humans, it can be oxidized to produce allantoin by free-radical attack. Indeed, elevated levels of allantoin are found in patients with rheumatoid arthritis, chronic lung disease, bacterial meningitis, and noninsulin-dependent diabetes mellitus. In other mammals, some insects and gastropods, uric acid is enzymatically degraded to the more soluble allantoin through the sequential action of three enzymes: urate oxidase, 5-hydroxyisourate (HIU) hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase. Therefore, an elective treatment for acute hyperuricemia is the administration of urate oxidase. Many organisms, including plants, some fungi and several bacteria, are able to catabolize allantoin to release nitrogen, carbon, and energy. In Arabidopsis thaliana and Eschrichia coli, S-allantoin has recently been shown to be degraded to glycolate and urea by four enzymes: allantoinase, allantoate amidohydrolase, ureidoglycine aminohydrolase, and ureidoglycolate amidohydrolase.

  17. The African Mobile Story

    DEFF Research Database (Denmark)

    This book identifies the factors that has enabled the growth of mobile telephony in Africa. The book covers the regulatory factors, the development and usage of mobile application, mobile security and sustainable power source for mobile networks......This book identifies the factors that has enabled the growth of mobile telephony in Africa. The book covers the regulatory factors, the development and usage of mobile application, mobile security and sustainable power source for mobile networks...

  18. Influence of black gram (Vigna mungo) trypsin inhibitory fraction on the hepatic protein catabolism in male albino mice.

    Science.gov (United States)

    Kamalakannan, V; Sathyamoorthy, A V; Motlag, D B

    1984-01-01

    The effect of black gram and black gram trypsin inhibitor on the protein catabolism of male albino mice has been investigated. Group 1 was given autoclaved black gram (control), Group II raw black gram and Group III the autoclaved black gram incorporated with 1% black gram trypsin inhibitor. Blood as well as urinary urea and creatine were found to be elevated in Groups II and III. Increased levels of arginase, ornithine transcarbamylase and transaminases were noted in Groups II and III. The results suggested an enhanced catabolism of proteins evoked by the native black gram trypsin inhibitor.

  19. A Key ABA Catabolic Gene, OsABA8ox3, Is Involved in Drought Stress Resistance in Rice

    OpenAIRE

    Shanlan Cai; Guobin Jiang; Nenghui Ye; Zhizhan Chu; Xuezhong Xu; Jianhua Zhang; Guohui Zhu

    2015-01-01

    Expressions of ABA biosynthesis genes and catabolism genes are generally co-regulated in plant development and responses to environmental stress. Up-regulation of OsNCED3 gene, a key gene in ABA biosynthesis, has been suggested as a way to enhance plant drought resistance but little is known for the role of ABA catabolic genes during drought stress. In this study, we found that OsABA8ox3 was the most highly expressed gene of the OsABA8ox family in rice leaves. Expression of OsABA8ox3 was prom...

  20. Effects of Arginine Vasopressin on musical short-term memory

    Directory of Open Access Journals (Sweden)

    Roni Y. Granot

    2013-10-01

    Full Text Available Previous genetic studies showed an association between variations in the gene coding for the 1a receptor of the neuro-hormone arginine vasopressin (AVP and musical working memory (WM. The current study set out to test the influence of intranasal administration (INA of AVP on musical as compared to verbal WM using a double blind crossover (AVP – placebo design. Two groups of 25 males were exposed to 20 IU of AVP in one session, and 20 IU of saline water (placebo in a second session, one week apart. In each session subjects completed the tonal subtest from Gordon's Musical Aptitude Profile, the interval subtest from the Montreal Battery for Evaluation of Amusias (MBEA, and the forward and backward digit span tests. Scores in the digit span tests were not influenced by AVP. In contrast, in the music tests there was an AVP effect. In the MBEA test, scores for the group receiving placebo in the first session (PV were higher than for the group receiving vasopressin in the first session (VP (p < .05 with no main Session effect nor Group * Session interaction. In the Gordon test there was a main Session effect (p < .05 with scores higher in the second as compared to the first session, a marginal main Group effect (p = .093 and a marginal Group X Session interaction (p = 0.88. In addition we found that the group that received AVP in the first session scored higher on scales indicative of happiness, and alertness on the Positive and Negative Affect Scale, (PANAS. Only in this group and only in the music test these scores were significantly correlated with memory scores. Together the results reflect a complex interaction between AVP, musical memory, arousal, and contextual effects such as session, and base levels of memory. The results are interpreted in light of music's universal use as a means to modulate arousal on the one hand, and AVP's influence on mood, arousal, and social interactions on the other.

  1. Spatiotemporal profiles of arginine vasopressin transcription in cultured suprachiasmatic nucleus.

    Science.gov (United States)

    Yoshikawa, Tomoko; Nakajima, Yoshihiro; Yamada, Yoshiko; Enoki, Ryosuke; Watanabe, Kazuto; Yamazaki, Maya; Sakimura, Kenji; Honma, Sato; Honma, Ken-ichi

    2015-11-01

    Arginine vasopressin (AVP), a major neuropeptide in the suprachiasmatic nucleus (SCN), is postulated to mediate the output of the circadian oscillation. Mice carrying a reporter gene of AVP transcription (AVP(ELuc)) were produced by knocking-in a cDNA of Emerald-luciferase (ELuc) in the translational initiation site. Homozygous mice did not survive beyond postnatal day 7. Using the heterozygous (AVP(ELuc/+)) mice, a bioluminescence reporter system was developed that enabled to monitor AVP transcription through AVP-ELuc measurement in real time for more than 10 cycles in the cultured brain slice. AVP(ELuc/+) mice showed circadian behaviour rhythms and light responsiveness indistinguishable from those of the wild-type. Robust circadian rhythms in AVP-ELuc were detected in the cultured SCN slice at a single cell as well as tissue levels. The circadian rhythm of the whole SCN slice was stable, with the peak at the mid-light phase of a light-dark cycle, while that of a single cell was more variable. By comparison, rhythmicity in the paraventricular nucleus and supraoptic nucleus in the hypothalamus was unstable and damped rapidly. Spatiotemporal profiles of AVP expression at the pixel level revealed significant circadian rhythms in the entire area of AVP-positive cells in the SCN, and at least two clusters that showed different circadian oscillations. Contour analysis of bioluminescence intensity in a cell-like region demonstrated the radiation area was almost identical to the cell size. This newly developed reporter system for AVP gene expression is a useful tool for the study of circadian rhythms. PMID:26342201

  2. Transsulfuration pathway thiols and methylated arginines: the Hunter Community Study.

    Directory of Open Access Journals (Sweden)

    Arduino A Mangoni

    Full Text Available BACKGROUND: Serum homocysteine, when studied singly, has been reported to be positively associated both with the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine [ADMA, via inhibition of dimethylarginine dimethylaminohydrolase (DDAH activity] and with symmetric dimethylarginine (SDMA. We investigated combined associations between transsulfuration pathway thiols, including homocysteine, and serum ADMA and SDMA concentrations at population level. METHODS: Data on clinical and demographic characteristics, medication exposure, C-reactive protein, serum ADMA and SDMA (LC-MS/MS, and thiols (homocysteine, cysteine, taurine, glutamylcysteine, total glutathione, and cysteinylglycine; capillary electrophoresis were collected from a sample of the Hunter Community Study on human ageing [n = 498, median age (IQR = 64 (60-70 years]. RESULTS: REGRESSION ANALYSIS SHOWED THAT: a age (P = 0.001, gender (P = 0.03, lower estimated glomerular filtration rate (eGFR, P = 0.08, body mass index (P = 0.008, treatment with beta-blockers (P = 0.03, homocysteine (P = 0.02, and glutamylcysteine (P = 0.003 were independently associated with higher ADMA concentrations; and b age (P = 0.001, absence of diabetes (P = 0.001, lower body mass index (P = 0.01, lower eGFR (P<0.001, cysteine (P = 0.007, and glutamylcysteine (P < 0.001 were independently associated with higher SDMA concentrations. No significant associations were observed between methylated arginines and either glutathione or taurine concentrations. CONCLUSIONS: After adjusting for clinical, demographic, biochemical, and pharmacological confounders the combined assessment of transsulfuration pathway thiols shows that glutamylcysteine has the strongest and positive independent associations with ADMA and SDMA. Whether this reflects a direct effect of glutamylcysteine on DDAH activity (for ADMA and/or cationic amino acid transport requires further investigations.

  3. Effects of arginine vasopressin on musical working memory.

    Science.gov (United States)

    Granot, Roni Y; Uzefovsky, Florina; Bogopolsky, Helena; Ebstein, Richard P

    2013-01-01

    Previous genetic studies showed an association between variations in the gene coding for the 1a receptor of the neuro-hormone arginine vasopressin (AVP) and musical working memory (WM). The current study set out to test the influence of intranasal administration (INA) of AVP on musical as compared to verbal WM using a double blind crossover (AVP-placebo) design. Two groups of 25 males were exposed to 20 IU of AVP in one session, and 20 IU of saline water (placebo) in a second session, 1 week apart. In each session subjects completed the tonal subtest from Gordon's "Musical Aptitude Profile," the interval subtest from the "Montreal Battery for Evaluation of Amusias (MBEA)," and the forward and backward digit span tests. Scores in the digit span tests were not influenced by AVP. In contrast, in the music tests there was an AVP effect. In the MBEA test, scores for the group receiving placebo in the first session (PV) were higher than for the group receiving vasopressin in the first session (VP) (p effect nor Group × Session interaction. In the Gordon test there was a main Session effect (p effect (p = 0.093) and a marginal Group × Session interaction (p = 0.88). In addition we found that the group that received AVP in the first session scored higher on scales indicative of happiness, and alertness on the positive and negative affect scale, (PANAS). Only in this group and only in the music test these scores were significantly correlated with memory scores. Together the results reflect a complex interaction between AVP, musical memory, arousal, and contextual effects such as session, and base levels of memory. The results are interpreted in light of music's universal use as a means to modulate arousal on the one hand, and AVP's influence on mood, arousal, and social interactions on the other. PMID:24151474

  4. Robotique Mobile

    OpenAIRE

    Filliat, David

    2011-01-01

    1 Introduction I Les bases de la navigation 2 Les différents types de navigation 3 Les sources d'information 4 Matériels courants en robotique mobile II Navigation réactive 5 Navigation vers un but 6 Évitement d'obstacles 7 Apprentissage par renforcement III Navigation utilisant une carte 8 Localisation, Cartographie et Planification 9 Les représentations de l'environne 10 Localisation 11 Cartographie 12 Planification École d'ingénieur

  5. Differential role of arginine mutations on the structure and functions of α-crystallin☆

    Science.gov (United States)

    Panda, Alok Kumar; Nandi, Sandip Kumar; Chakraborty, Ayon; Nagaraj, Ram H.; Biswas, Ashis

    2016-01-01

    Background α-Crystallin is a major protein of the eye lens in vertebrates. It is composed of two subunits, αA- and αB-crystallin. α-Crystallin is an oligomeric protein having these two subunits in 3:1 ratio. It belongs to small heat shock protein family and exhibits molecular chaperone function, which plays an important role in maintaining the lens transparency. Apart from chaperone function, both subunits also exhibit anti-apoptotic property. Comparison of their primary sequences reveals that αA- and αB-crystallin posses 13 and 14 arginine residues, respectively. Several of them undergo mutations which eventually lead to various eye diseases such as congenital cataract, juvenile cataract, and retinal degeneration. Interestingly, many arginine residues of these subunits are modified during glycation and even some are truncated during aging. All these facts indicate the importance of arginine residues in α-crystallin. Scope of review In this review, we will emphasize the recent in vitro and in vivo findings related to congenital cataract causing arginine mutations in α-crystallin. Major conclusions Congenital cataract causing arginine mutations alters the structure and decreases the chaperone function of α-crystallin. These mutations also affect the lens morphology and phenotypes. Interestingly, non-natural arginine mutations (generated for mimicking the glycation and truncation environment) improve the chaperone function of α-crystallin which may play an important role in maintaining the eye lens transparency during aging. General significance The neutralization of positive charge on the guanidino group of arginine residues is not always detrimental to the functionality of α-crystallin. PMID:26080000

  6. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction.

    Science.gov (United States)

    Long, Yan; Tsai, Wen-Bin; Wangpaichitr, Medhi; Tsukamoto, Takashi; Savaraj, Niramol; Feun, Lynn G; Kuo, Macus Tien

    2013-11-01

    Many malignant human tumors, including melanomas, are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase-1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine, resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of resistance, we established several ADI-PEG20-resistant (ADI(R)) variants from A2058 and SK-Mel-2 melanoma cells. Compared with the parental lines, these ADI(R) variants showed the following characteristics: (i) all ADI(R) cell lines showed elevated ASS1 expression, resulting from the constitutive binding of the transcription factor c-Myc on the ASS1 promoter, suggesting that elevated ASS1 is the major mechanism of resistance; (ii) the ADI(R) cell lines exhibited enhanced AKT signaling and were preferentially sensitive to PI3K/AKT inhibitors, but reduced mTOR signaling, and were preferentially resistant to mTOR inhibitor; (iii) these variants showed enhanced expression of glucose transporter-1 and lactate dehydrogenase-A, reduced expression of pyruvate dehydrogenase, and elevated sensitivity to the glycolytic inhibitors 2-deoxy-glucose and 3-bromopyruvate, consistent with the enhanced glycolytic pathway (the Warburg effect); (iv) the resistant cells showed higher glutamine dehydrogenase and glutaminase expression and were preferentially vulnerable to glutamine inhibitors. We showed that c-Myc, not elevated ASS1 expression, is involved in upregulation of many of these enzymes because knockdown of c-Myc reduced their expression, whereas overexpressed ASS1 by transfection reduced their expression. This study identified multiple targets for overcoming ADI-PEG resistance in cancer chemotherapy using recombinant arginine-degrading enzymes.

  7. Arginine and glutamine availability and macrophage functions in the obese insulin-resistant Zucker rat.

    Science.gov (United States)

    Blanc, Marie-Céline; Moinard, Christophe; Béziel, Aurélie; Darquy, Sylviane; Cynober, Luc; De Bandt, Jean-Pascal

    2005-01-01

    Increased susceptibility to infections in obese patients may be related to decreased availability of arginine and glutamine, which may affect immune cell functions. Our aim was to evaluate the in vitro effects of these amino acids on the function of macrophages from obese insulin-resistant Zucker rats. Macrophages, isolated from male Zucker obese or lean rats by peritoneal lavage, were incubated in Dulbecco's modified Eagle medium (DMEM) without arginine or glutamine. Arginine or glutamine was added to the medium at increasing final concentrations (0, 0.25, 0.5, 1 or 2 mM). After stimulation by lipopolysaccharide (LPS) from E. coli (40 microg/ml), productions of tumour necrosis factor alpha (TNFalpha) and of nitric oxide (NO) were measured after 3 or 48 h incubation, respectively. NO production, lower in macrophages from obese rats, decreased in macrophages from lean rats (0 mM: 2,423 +/- 1,174 vs. 2 mM: 198 +/- 31 microM/mg protein/24 h; P glutamine was added. TNFalpha production, lower in macrophages from obese rats, was inversely correlated with glutamine concentration. In the presence of arginine, NO production was constantly higher in macrophages from obese rats. It peaked at 0.5 mM arginine and decreased thereafter in both groups. TNFalpha production in macrophages from lean rats was unaffected by arginine, but decreased in macrophages from obese rats (0 mM: 1920 +/- 450 vs. 2 mM: 810 +/- 90 microM/mg protein/3 h; P arginine and glutamine metabolism in macrophages of obese rats, resulting in decreased TNFalpha production and increased NO release, may contribute to increased susceptibility to infection in insulin-resistant states.

  8. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction.

    Science.gov (United States)

    Long, Yan; Tsai, Wen-Bin; Wangpaichitr, Medhi; Tsukamoto, Takashi; Savaraj, Niramol; Feun, Lynn G; Kuo, Macus Tien

    2013-11-01

    Many malignant human tumors, including melanomas, are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase-1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine, resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of resistance, we established several ADI-PEG20-resistant (ADI(R)) variants from A2058 and SK-Mel-2 melanoma cells. Compared with the parental lines, these ADI(R) variants showed the following characteristics: (i) all ADI(R) cell lines showed elevated ASS1 expression, resulting from the constitutive binding of the transcription factor c-Myc on the ASS1 promoter, suggesting that elevated ASS1 is the major mechanism of resistance; (ii) the ADI(R) cell lines exhibited enhanced AKT signaling and were preferentially sensitive to PI3K/AKT inhibitors, but reduced mTOR signaling, and were preferentially resistant to mTOR inhibitor; (iii) these variants showed enhanced expression of glucose transporter-1 and lactate dehydrogenase-A, reduced expression of pyruvate dehydrogenase, and elevated sensitivity to the glycolytic inhibitors 2-deoxy-glucose and 3-bromopyruvate, consistent with the enhanced glycolytic pathway (the Warburg effect); (iv) the resistant cells showed higher glutamine dehydrogenase and glutaminase expression and were preferentially vulnerable to glutamine inhibitors. We showed that c-Myc, not elevated ASS1 expression, is involved in upregulation of many of these enzymes because knockdown of c-Myc reduced their expression, whereas overexpressed ASS1 by transfection reduced their expression. This study identified multiple targets for overcoming ADI-PEG resistance in cancer chemotherapy using recombinant arginine-degrading enzymes. PMID:23979920

  9. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages

    Directory of Open Access Journals (Sweden)

    Meera eRath

    2014-10-01

    Full Text Available Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase (NOS, which metabolizes arginine to nitric oxide (NO and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline-NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and antiinflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions and cancer.

  10. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation.

    Directory of Open Access Journals (Sweden)

    Ayaz Ahmad

    Full Text Available Post-translational methylation of arginine residues profoundly affects the structure and functions of protein and, hence, implicated in a myriad of essential cellular processes such as signal transduction, mRNA splicing and transcriptional regulation. Protein arginine methyltransferases (PRMTs, the enzymes catalyzing arginine methylation have been extensively studied in animals, yeast and, to some extent, in model plant Arabidopsis thaliana. Eight genes coding for the PRMTs were identified in Oryza sativa, previously. Here, we report that these genes show distinct expression patterns in various parts of the plant. In vivo targeting experiment demonstrated that GFP-tagged OsPRMT1, OsPRMT5 and OsPRMT10 were localized to both the cytoplasm and nucleus, whereas OsPRMT6a and OsPRMT6b were predominantly localized to the nucleus. OsPRMT1, OsPRMT4, OsPRMT5, OsPRMT6a, OsPRMT6b and OsPRMT10 exhibited in vitro arginine methyltransferase activity against myelin basic protein, glycine-arginine-rich domain of fibrillarin and calf thymus core histones. Furthermore, they depicted specificities for the arginine residues in histones H3 and H4 and were classified into type I and Type II PRMTs, based on the formation of type of dimethylarginine in the substrate proteins. The two homologs of OsPRMT6 showed direct interaction in vitro and further titrating different amounts of these proteins in the methyltransferase assay revealed that OsPRMT6a inhibits the methyltransferase activity of OsPRMT6b, probably, by the formation of heterodimer. The identification and characterization of PRMTs in rice suggests the conservation of arginine methylation in monocots and hold promise for gaining further insight into regulation of plant development.

  11. Optimum Mobility Performance with Mobile IP & SIP

    OpenAIRE

    B. Naresh Kumar; DR. R. V. KRISHNAIAH

    2013-01-01

    Mobility will place an efficient role in now days in the wireless communications. Mobile IP andSIP provide the mobility service to the handset users. The problems in Mobile IP and SIP s are triangular,handoff, Intra domain problems. These problems create signal lose and improper signalling to the user. Toovercome these we provide add of service to the Mobile IP and SIP with the integration of the two services.This service provides optimum performance of the system.

  12. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Subtil Thorsten

    2012-03-01

    Full Text Available Abstract Background In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism. Results To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose. Conclusion Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization

  13. Relationships between PSII-independent hydrogen bioproduction and starch metabolism as evidenced from isolation of starch catabolism mutants in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Chochois, Vincent; Constans, Laure; Beyly, Audrey; Soliveres, Melanie; Peltier, Gilles; Cournac, Laurent [CEA, DSV, IBEB, Laboratoire de Bioenergetique et Biotechnologie des Bacteries and Microalgues, Saint Paul Lez Durance, F-13108 (France); CNRS, UMR Biologie Vegetale and Microbiologie Environnementales, Saint Paul lez Durance, F-13108 (France); Aix-Marseille Universite, Saint Paul lez Durance, F-13108 (France); Dauvillee, David; Ball, Steven [Univ Lille Nord de France, F-59000 Lille (France); USTL, UGSF, F-59650 Villeneuve d' Ascq (France); CNRS, UMR 8576, F-59650 Villeneuve d' Ascq (France)

    2010-10-15

    Sulfur deprivation, which is considered as an efficient way to trigger long-term hydrogen photoproduction in unicellular green algae has two major effects: a decrease in PSII which allows anaerobiosis to be reached and carbohydrate (starch) storage. Starch metabolism has been proposed as one of the major factors of hydrogen production, particularly during the PSII-independent (or indirect) pathway. While starch biosynthesis has been characterized in the green alga Chlamydomonas reinhardtii, little remains known concerning starch degradation. In order to gain a better understanding of starch catabolism pathways and identify those steps likely to limit the starch-dependent hydrogen production, we have designed a genetic screening procedure aimed at isolating mutants of the green alga C. reinhardtii affected in starch mobilization. Using two different screening protocols, the first one based on aerobic starch degradation in the dark and the second one on anaerobic starch degradation in the light, eighteen mutants were isolated among a library of 15,000 insertion mutants, eight (std1-8) with the first screen and ten (sda1-10) with the second. Most of the mutant strains isolated in this study showed a reduction or a delay in the PSII-independent hydrogen production. Further characterization of these mutants should allow the identification of molecular determinants of starch-dependent hydrogen production and supply targets for future biotechnological improvements. (author)

  14. Mobile Transporter

    Science.gov (United States)

    2001-01-01

    The Space Shuttle Atlantis, STS-110 mission, deployed this railcar, called the Mobile Transporter, and an initial 43-foot section of track, the S0 (S-zero) truss, preparing the International Space Station (ISS) for future spacewalks. The first railroad in space, the Mobile Transporter will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The 27,000-pound S0 truss is the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002. STS-110's Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station.

  15. Absence of Btn1p in the yeast model for juvenile Batten disease may cause arginine to become toxic to yeast cells.

    Science.gov (United States)

    Vitiello, Seasson Phillips; Wolfe, Devin M; Pearce, David A

    2007-05-01

    Lymphoblast cell lines established from individuals with juvenile Batten disease (JNCL) bearing mutations in CLN3 and yeast strains lacking Btn1p (btn1-Delta), the homolog to CLN3, have decreased intracellular levels of arginine and defective lysosomal/vacuolar transport of arginine. It is important to establish the basis for this decrease in arginine levels and whether restoration of arginine levels would be of therapeutic value for Batten disease. Previous studies have suggested that synthesis and degradation of arginine are unaltered in btn1-Delta. Using the yeast model for the Batten disease, we have determined that although btn1-Delta results in decreased intracellular arginine levels, it does not result from altered arginine uptake, arginine efflux or differences in arginine incorporation into peptides. However, expression of BTN1 is dependent on arginine and Gcn4p, the master regulator of amino acid biosynthesis. Moreover, deletion of GCN4 (gcn4-Delta), in combination with btn1-Delta, results in a very specific growth requirement for arginine. In addition, increasing the intracellular levels of arginine through overexpression of Can1p, the plasma membrane basic amino acid permease, results in increased cell volume and a severe growth defect specific to basic amino acid availability for btn1-Delta, but not wild-type cells. Therefore, elevation of intracellular levels of arginine in btn1-Delta cells is detrimental and is suggestive that btn1-Delta and perhaps mutation of CLN3 predispose cells to keep arginine levels lower than normal.

  16. DETERMINATION OF PROTEIN CATABOLIC RATE IN PATIENTS ON CHRONIC INTERMITTENT HEMODIALYSIS - UREA OUTPUT MEASUREMENTS COMPARED WITH DIETARY-PROTEIN INTAKE AND WITH CALCULATION OF UREA GENERATION RATE

    NARCIS (Netherlands)

    STEGEMAN, CA; HUISMAN, RM; DEROUW, B; JOOSTEMA, A; DEJONG, PE

    1995-01-01

    We assessed the agreement between different methods of determining protein catabolic rate (PCR) in hemodialysis patients and the possible influence of postdialysis urea rebound and the length of the interdialytic interval on the PCR determination. Protein catabolic rate derived from measured total u

  17. Deprivation of L-Arginine Induces Oxidative Stress Mediated Apoptosis in Leishmania donovani Promastigotes: Contribution of the Polyamine Pathway

    Science.gov (United States)

    Mandal, Abhishek; Das, Sushmita; Roy, Saptarshi; Ghosh, Ayan Kumar; Sardar, Abul Hasan; Verma, Sudha; Saini, Savita; Singh, Ruby; Abhishek, Kumar; Kumar, Ajay; Mandal, Chitra; Das, Pradeep

    2016-01-01

    The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis. PMID:26808657

  18. Effect of counter ions of arginine as an additive for the solubilization of protein and aromatic compounds.

    Science.gov (United States)

    Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-10-01

    Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions. PMID:27234496

  19. Effect of counter ions of arginine as an additive for the solubilization of protein and aromatic compounds.

    Science.gov (United States)

    Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-10-01

    Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions.

  20. Reduced arginine availability and nitric oxide synthesis in cancer is related to impaired endogenous arginine synthesis.

    Science.gov (United States)

    Engelen, Mariëlle P K J; Safar, Ahmed M; Bartter, Thaddeus; Koeman, Fari; Deutz, Nicolaas E P

    2016-07-01

    Reduced plasma arginine (ARG) concentrations are found in various types of cancer. ARG and its product nitric oxide (NO) are important mediators in the immune function and the defense against tumour cells. It remains unclear whether the diminished systemic ARG availability in cancer is related to insufficient endogenous ARG synthesis, negatively affecting NO synthesis, and whether a dietary amino acid mixture is able to restore this. In 13 patients with advanced non-small cell lung cancer (NSCLC) and 11 healthy controls, whole body ARG and CIT (citrulline) rates of appearance were measured by stable isotope methodology before and after intake of a mixture of amino acids as present in whey protein. The conversions of CIT to ARG (indicator of de novo ARG synthesis) and ARG to CIT (marker of NO synthesis), and ARG clearance (reflecting ARG disposal capacity) were calculated. Plasma isotopic enrichments and amino acid concentrations were measured by LC-MS/MS. Conversions of CIT to ARG and ARG to CIT (P<0.05), and CIT rate of appearance (P=0.07) were lower in NSCLC. ARG rate of appearance and clearance were comparable suggesting no enhanced systemic ARG production and disposal capacity in NSCLC. After intake of the mixture, ARG rate of appearance and concentration increased (P<0.001), and ARG to CIT conversion was restored in NSCLC. In conclusion, an impaired endogenous ARG synthesis plays a role in the reduced systemic ARG availability and NO synthesis in advanced NSCLC. Nutritional approaches may restore systemic ARG availability and NO synthesis in cancer, but the clinical implication remains unclear. PMID:27129191

  1. Bioaugmentation of DDT-contaminated soil by dissemination of the catabolic plasmid pDOD

    Institute of Scientific and Technical Information of China (English)

    Chunming Gao; Xiangxiang Jin; Jingbei Ren; Hua Fang; Yunlong Yu

    2015-01-01

    A plasmid transfer-mediated bioaugmentation method for the enhancement of dichlorodiphenyltrichloroethane (DDT) degradation in soil was developed using the catabolic plasmid pDOD from Sphingobacterium sp.D-6.The pDOD plasmid could be transferred to soil bacteria,such as members of Cellulomonas,to form DDT degraders and thus accelerate DDT degradation.The transfer efficiency of pDOD was affected by the donor,temperature,moisture,and soil type.Approximately 50.7% of the DDT in the contaminated field was removed 210 days after the application of Escherichia coli TG Ⅰ (pDOD-gfp).The results suggested that seeding pDOD into soil is an effective bioaugmentation method for enhancing the degradation of DDT.

  2. Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Bradley Smith

    2016-10-01

    Full Text Available Metabolic reprogramming is critical to oncogenesis, but the emergence and function of this profound reorganization remain poorly understood. Here we find that cooperating oncogenic mutations drive large-scale metabolic reprogramming, which is both intrinsic to cancer cells and obligatory for the transition to malignancy. This involves synergistic regulation of several genes encoding metabolic enzymes, including the lactate dehydrogenases LDHA and LDHB and mitochondrial glutamic pyruvate transaminase 2 (GPT2. Notably, GPT2 engages activated glycolysis to drive the utilization of glutamine as a carbon source for TCA cycle anaplerosis in colon cancer cells. Our data indicate that the Warburg effect supports oncogenesis via GPT2-mediated coupling of pyruvate production to glutamine catabolism. Although critical to the cancer phenotype, GPT2 activity is dispensable in cells that are not fully transformed, thus pinpointing a metabolic vulnerability specifically associated with cancer cell progression to malignancy.

  3. Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Darling, T.N.; Davis, D.G.; London, R.E.; Blum, J.J.

    1987-10-01

    Leishmania braziliensis panamensis promastigotes were incubated with glucose as the sole carbon source. About one-fifth of the glucose consumed under aerobic conditions was oxidized to CO/sub 2/. Nuclear magnetic resonance studies with (1-/sup 13/C)glucose showed that the other products released were succinate, acetate, alanine, pyruvate, and lactate. Under anaerobic conditions, lactate output increased, glycerol became a major product, and, surprisingly, glucose consumption decreased. Enzymatic assays showed that the lactate formed was D(-)-lactate. The release of alanine during incubation with glucose as the sole carbon source suggested that appreciable proteolysis occurred, consistent with our observation that a large amount of ammonia was released under these conditions. The discoveries that D-lactate is a product of L. braziliensis glucose catabolism, that glycerol is produced under anaerobic conditions, and that the cells exhibit a reverse Pasteur effect open the way for detailed studies of the pathways of glucose metabolism and their regulation in this organism.

  4. Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin

    Energy Technology Data Exchange (ETDEWEB)

    Leissring, Malcolm A.; Malito, Enrico; Hedouin, Sabrine; Reinstatler, Lael; Sahara, Tomoko; Abdul-Hay, Samer O.; Choudhry, Shakeel; Maharvi, Ghulam M.; Fauq, Abdul H.; Huzarska, Malwina; May, Philip S.; Choi, Sungwoon; Logan, Todd P.; Turk, Benjamin E.; Cantley, Lewis C.; Manolopoulou, Marika; Tang, Wei-Jen; Stein, Ross L.; Cuny, Gregory D.; Selkoe, Dennis J. (Harvard-Med); (BWH); (Yale-MED); (Scripps); (UC); (Mayo)

    2010-09-20

    Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are {approx} 10{sup 6} times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-a-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's 'closed,' inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. Conclusions/Significance: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  5. Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2.

    Science.gov (United States)

    Nguyen, Thi Phi Oanh; Helbling, Damian E; Bers, Karolien; Fida, Tekle Tafese; Wattiez, Ruddy; Kohler, Hans-Peter E; Springael, Dirk; De Mot, René

    2014-10-01

    The widespread agricultural application of carbofuran and concomitant contamination of surface and ground waters has raised health concerns due to the reported toxic effects of this insecticide and its degradation products. Most bacteria that degrade carbofuran only perform partial degradation involving carbamate hydrolysis without breakdown of the resulting phenolic metabolite. The capacity to mineralize carbofuran beyond the benzofuran ring has been reported for some bacterial strains, especially sphingomonads, and some common metabolites, including carbofuran phenol, were identified. In the current study, the catabolism of carbofuran by Novosphingobium sp. KN65.2 (LMG 28221), a strain isolated from a carbofuran-exposed Vietnamese soil and utilizing the compound as a sole carbon and nitrogen source, was studied. Several KN65.2 plasposon mutants with diminished or abolished capacity to degrade and mineralize carbofuran were generated and characterized. Metabolic profiling of representative mutants revealed new metabolic intermediates, in addition to the initial hydrolysis product carbofuran phenol. The promiscuous carbofuran-hydrolyzing enzyme Mcd, which is present in several bacteria lacking carbofuran ring mineralization capacity, is not encoded by the Novosphingobium sp. KN65.2 genome. An alternative hydrolase gene required for this step was not identified, but the constitutively expressed genes of the unique cfd operon, including the oxygenase genes cfdC and cfdE, could be linked to further degradation of the phenolic metabolite. A third involved oxygenase gene, cfdI, and the transporter gene cftA, encoding a TonB-dependent outer membrane receptor with potential regulatory function, are located outside the cfd cluster. This study has revealed the first dedicated carbofuran catabolic genes and provides insight in the early steps of benzofuran ring degradation.

  6. Role of Myofibrillar Protein Catabolism in Development of Glucocorticoid Myopathy: Aging and Functional Activity Aspects

    Directory of Open Access Journals (Sweden)

    Teet Seene

    2016-05-01

    Full Text Available Muscle weakness in corticosteroid myopathy is mainly the result of the destruction and atrophy of the myofibrillar compartment of fast-twitch muscle fibers. Decrease of titin and myosin, and the ratio of nebulin and MyHC in myopathic muscle, shows that these changes of contractile and elastic proteins are the result of increased catabolism of the abovementioned proteins in skeletal muscle. Slow regeneration of skeletal muscle is in good correlation with a decreased number of satellite cells under the basal lamina of muscle fibers. Aging causes a reduction of AMP-activated protein kinase (AMPK activity as the result of the reduced function of the mitochondrial compartment. AMPK activity increases as a result of increased functional activity. Resistance exercise causes anabolic and anticatabolic effects in skeletal muscle: muscle fibers experience hypertrophy while higher myofibrillar proteins turn over. These changes are leading to the qualitative remodeling of muscle fibers. As a result of these changes, possible maximal muscle strength is increasing. Endurance exercise improves capillary blood supply, increases mitochondrial biogenesis and muscle oxidative capacity, and causes a faster turnover rate of sarcoplasmic proteins as well as qualitative remodeling of type I and IIA muscle fibers. The combination of resistance and endurance exercise may be the fastest way to prevent or decelerate muscle atrophy due to the anabolic and anticatabolic effects of exercise combined with an increase in oxidative capacity. The aim of the present short review is to assess the role of myofibrillar protein catabolism in the development of glucocorticoid-caused myopathy from aging and physical activity aspects.

  7. Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin.

    Directory of Open Access Journals (Sweden)

    Malcolm A Leissring

    Full Text Available BACKGROUND: Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE, a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. METHODOLOGY/PRINCIPAL FINDINGS: We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are approximately 10(6 times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's "closed," inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. CONCLUSIONS/SIGNIFICANCE: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  8. Microbial life in frozen boreal soils-environmental constraints on catabolic and anabolic activity

    Science.gov (United States)

    Oquist, M. G.; Sparrman, T.; Haei, M.; Segura, J.; Schleucher, J.; Nilsson, M. B.

    2013-12-01

    Microbial activity in frozen soils has recently gained increasing attention and the fact that soil microorganisms can perform significant metabolic activity at temperatures below freezing is apparent. However, to what extent microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is still very uncertain. This presentation will address how the fundamental environmental factors of temperature, liquid water availability and substrate availability combine to regulate rates of catabolic and anabolic microbial processes in frozen soils. The presented results are gained from investigations of the surface layers of boreal forest soils with seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. In turn, the capacity for a specific soil to retain liquid water at sub-zero temperatures is controlled by the structural composition of the soil, and especially the soil organic matter is of integral importance. We also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless

  9. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  10. Arginine: A Potent Prey Attractant to Predatory Newts in Mountain Streams

    Science.gov (United States)

    Ferrer, R. P.; Zimmer, R. K.

    2005-05-01

    Chemoreception of aquatic organisms has been well-studied in the laboratory, but rarely in the field. The California newt, Taricha torosa, in natural stream habitats is an excellent animal for exploring behavioral responses to prey odors. Here, we selected 13 amino acids for field bioassays based on their concentrations in prey tissue extracts. Bioassays were calibrated for stimulus dilution by means of fluorescent dye releases and flow-through spectrofluorometry. Moreover, hydrodynamic properties of stream flows were determined using an electromagnetic current meter. Of all amino acids tested, only arginine, alanine and glycine were significantly attractive (relative to stream water controls). These three substances caused free-ranging newts to turn upstream and swim towards the odor sources. Additional experiments showed that arginine was the most effective attractant, evoking plume-tracking behavior at concentrations as low as 10 nM. In subsequent trials, nine arginine analogs were tested, but each compound failed to elicit a significant response. Even subtle changes to arginine, such as the addition of a single carbon to the side chain, destroyed all bioactivity. Within its natural habitat, the California newt thus exhibits keen sensitivity and narrow tuning to the free amino acid, arginine, a chemical signal of its prey.

  11. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine

    Energy Technology Data Exchange (ETDEWEB)

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang (GUW); (Maryland); (GWU); (Georgia)

    2010-01-07

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in L-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by L-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with L-arginine bound and in the active R-state complexed with CoA and L-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of L-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by {approx}10 {angstrom} and decreases its height by {approx}20{angstrom}. AAK dimers move 5{angstrom} outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by {approx}4{sup o}. The NAT domains rotate {approx}109{sup o} relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the L-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.

  12. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Jensen, J B; Egsgaard, H; Van Onckelen, H;

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid chromatogr...

  13. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    ter Schure, E G; Silljé, H H; Vermeulen, E E; Kalhorn, J W; Verkleij, A J; Boonstra, J; Verrips, C T

    1998-01-01

    Growth of Saccharomyces cerevisiae on ammonia and glutamine decreases the expression of many nitrogen catabolic genes to low levels. To discriminate between ammonia- and glutamine-driven repression of GAP1, PUT4, GDH1 and GLN1, a gln1-37 mutant was used. This mutant is not able to convert ammonia in

  14. CATABOLISM OF AROMATIC BIOGENIC AMINES BY 'PSEUDOMONAS AERUGINOSA' PA01 VIA META CLEAVAGE OF HOMOPROTOCATECHUIC ACID (JOURNAL VERSION)

    Science.gov (United States)

    Pseudomonas aruginosa PA01 catabolized the aromatic amines tyramine and octopamine through 4-hydroxyphenylacetic acid and 3,4-dihydroxyphenylacetic acid (HPA). Meta ring cleavage was mediated by 3-4-dihydroxyphenylacetate 2,3-dioxygenase (HPADO), producing 2-hydroxy-5-carboxymeth...

  15. Oxidised low density lipoprotein causes human macrophage cell death through oxidant generation and inhibition of key catabolic enzymes.

    Science.gov (United States)

    Katouah, Hanadi; Chen, Alpha; Othman, Izani; Gieseg, Steven P

    2015-10-01

    Oxidised low density lipoprotein (oxLDL) is thought to be a significant contributor to the death of macrophage cells observed in advanced atherosclerotic plaques. Using human-derived U937 cells we have examined the effect of cytotoxic oxLDL on oxidative stress and cellular catabolism. Within 3h of the addition of oxLDL, there was a rapid, concentration dependent rise in cellular reactive oxygen species followed by the loss of cellular GSH, and the enzyme activity of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and aconitase. The loss of these catabolic enzymes was accompanied by the loss of cellular ATP and lower lactate generation. Addition of the macrophage antioxidant 7,8-dihydroneopterin inhibited the ROS generation, glutathione loss and catabolic inactivation. NOX was shown to be activated by oxLDL addition while apocynin inhibited the loss of GSH and cell viability. The data suggests that oxLDL triggers an excess of ROS production through NOX activation, and catabolic failure through thiol oxidation resulting in cell death. PMID:26255116

  16. Increased VLDL in nephrotic patients results from a decreased catabolism while increased LDL results from increased synthesis

    NARCIS (Netherlands)

    de Sain-van der Velden, M; Kaysen, GA; Barrett, HA; Stellaard, F; Gadellaa, MM; Voorbij, HA; Reijngoud, DJ; Rabelink, TJ

    1998-01-01

    Increased very low density lipoprotein (VLDL) in nephrotic patients results from a decreased catabolism while increased low density lipoprotein (LDL) results from increased synthesis. Hyperlipidemias a hallmark of nephrotic syndrome that has been associated with increased risk for ischemic heart dis

  17. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    Directory of Open Access Journals (Sweden)

    V. Barquissau

    2016-05-01

    Conclusions: Conversion of human white fat cells into brite adipocytes results in a major metabolic reprogramming inducing fatty acid anabolic and catabolic pathways. PDK4 redirects glucose from oxidation towards triglyceride synthesis and favors the use of fatty acids as energy source for uncoupling mitochondria.

  18. Inflammatory and catabolic signalling in intervertebral discs: The roles of NF-B and MAP Kinases

    Directory of Open Access Journals (Sweden)

    K Wuertz

    2012-02-01

    Full Text Available Painful intervertebral disc disease is characterised not only by an imbalance between anabolic (i.e., matrix synthesis and catabolic (i.e., matrix degradation processes, but also by inflammatory mechanisms. The increased expression and synthesis of matrix metalloproteinases and inflammatory factors is mediated by specific signal transduction, in particular the nuclear factor-kappaB (NF-kB and mitogen-activated protein kinase (MAPK-mediated pathways. NF-kB and MAPK have been identified as the master regulators of inflammation and catabolism in several musculoskeletal disorders (e.g., osteoarthritis, and recently growing evidence supports the importance of these signalling pathways in painful disc disease. With continuing research exploiting in vitro and in vivo model systems to elucidate the roles of these pathways in disc degeneration, it may be possible in the near future to specifically target these major inflammatory / catabolic signalling pathways to treat painful degenerative disc disease. In this perspective, we aim to summarise the current state of knowledge concerning the inflammatory and catabolic molecular pathways of intervertebral disc disease (IDD, with a detailed description of NF-kB and MAP kinase-mediated signal transduction in disc cells. Furthermore, we will discuss the emerging novel molecular treatment modalities for IDD using pharmacological inhibitors targeting these pathways.

  19. Mobile shearography

    Science.gov (United States)

    Kalms, Michael; Jueptner, Werner

    2005-04-01

    By reason of their sensitivity, accuracy and non-contact as well as non-destructive characteristics, modern optical methods such as digital speckle shearography have found an increasing interest for NDT applications on the factory floor. With new carbon filter technologies and other lightweight constructions in aircraft and automotive manufacturing, adapted examination designs and especially developed testing methods are necessary. Shearography as a coherent optical method has been widely accepted as an useful NDT tool. It is a robust interferometric method to determine locations with maximum stress on various material structures. However, limitations of this technique can be found in the bulky equipment components, the interpretation of the complex sherographic result images and at the work with non-cooperative surfaces (dark absorber, bright shining reflectors). We report a mobile shearography system that was especially designed for investigations at aircraft and automotive constructions.

  20. Mobile video with mobile IPv6

    CERN Document Server

    Minoli, Daniel

    2012-01-01

    Increased reliance on mobile devices and streaming of video content are two of the most recent changes that have led those in the video distribution industry to be concerned about the shifting or erosion of traditional advertising revenues. Infrastructure providers also need to position themselves to take advantage of these trends. Mobile Video with Mobile IPv6provides an overview of the current mobile landscape, then delves specifically into the capabilities and operational details of IPv6. The book also addresses 3G and 4G services, the application of Mobile IPv6 to streaming and other mobil

  1. Mobilization of mercury from lean tissues during simulated migratory fasting in a model songbird.

    Science.gov (United States)

    Seewagen, Chad L; Cristol, Daniel A; Gerson, Alexander R

    2016-05-12

    The pollutant methylmercury accumulates within lean tissues of birds and other animals. Migrating birds catabolize substantial amounts of lean tissue during flight which may mobilize methylmercury and increase circulating levels of this neurotoxin. As a model for a migrating songbird, we fasted zebra finches (Taeniopygia guttata) that had been dosed with 0.0, 0.1, and 0.6 parts per million (ppm) dietary methylmercury and measured changes in blood total mercury concentrations (THg) in relation to reductions in lean mass. Birds lost 6-16% of their lean mass during the fast, and THg increased an average of 12% and 11% in the 0.1 and 0.6 ppm treatments, respectively. Trace amounts of THg in the 0.0 ppm control group also increased as a result of fasting, but remained extremely low. THg increased 0.4 ppm for each gram of lean mass catabolized in the higher dose birds. Our findings indicate that methylmercury is mobilized from lean tissues during protein catabolism and results in acute increases in circulating concentrations. This is a previously undocumented potential threat to wild migratory birds, which may experience greater surges in circulating methylmercury than demonstrated here as a result of their greater reductions in lean mass.

  2. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium.

    Science.gov (United States)

    Yang, Zhenquan; Meng, Xia; Breidt, Frederick; Dean, Lisa L; Arritt, Fletcher M

    2015-04-01

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known about the growth and metabolism of this organism in these products. To clarify the mechanisms of pH change and growth of B. licheniformis in vegetable broth under acidic conditions, a cucumber juice medium representative of a noninhibitory vegetable broth was used to monitor changes in pH, cell growth, and catabolism of sugars and amino acids. For initial pH values between pH 4.1 to 6.0, pH changes resulted from both fermentation of sugar (lowering pH) and ammonia production (raising pH). An initial pH elevation occurred, with starting pH values of pH 4.1 to 4.9 under both aerobic and anaerobic conditions, and was apparently mediated by the arginine deiminase reaction of B. licheniformis. This initial pH elevation was prevented if 5 mM or greater acetic acid was present in the brine at the same pH. In laboratory media, under favorable conditions for growth, data indicated that growth of the organism was inhibited at pH 4.6 with protonated acetic acid concentrations of 10 to 20 mM, corresponding to 25 to 50 mM total acetic acid; however, growth inhibition required greater than 300 mM citric acid (10-fold excess of the amount in processed tomato products) products under similar conditions. The data indicate that growth and pH increase by B. licheniformis may be inhibited by the acetic acid present in most commercial acidified vegetable products but not by the citric acid in many tomato products.

  3. Sialic acid transport and catabolism are cooperatively regulated by SiaR and CRP in nontypeable Haemophilus influenzae

    Directory of Open Access Journals (Sweden)

    Johnston Jason W

    2010-09-01

    Full Text Available Abstract Background The transport and catabolism of sialic acid, a critical virulence factor for nontypeable Haemophilus influenzae, is regulated by two transcription factors, SiaR and CRP. Results Using a mutagenesis approach, glucosamine-6-phosphate (GlcN-6P was identified as a co-activator for SiaR. Evidence for the cooperative regulation of both the sialic acid catabolic and transport operons suggested that cooperativity between SiaR and CRP is required for regulation. cAMP was unable to influence the expression of the catabolic operon in the absence of SiaR but was able to induce catabolic operon expression when both SiaR and GlcN-6P were present. Alteration of helical phasing supported this observation by uncoupling SiaR and CRP regulation. The insertion of one half-turn of DNA between the SiaR and CRP operators resulted in the loss of SiaR-mediated repression of the transport operon while eliminating cAMP-dependent induction of the catabolic operon when GlcN-6P was present. SiaR and CRP were found to bind to their respective operators simultaneously and GlcN-6P altered the interaction of SiaR with its operator. Conclusions These results suggest multiple novel features for the regulation of these two adjacent operons. SiaR functions as both a repressor and an activator and SiaR and CRP interact to regulate both operons from a single set of operators.

  4. Regulatory role for L-arginine in the utilization of amino acids by pig small-intestinal bacteria.

    Science.gov (United States)

    Dai, Zhao-Lai; Li, Xi-Long; Xi, Peng-Bin; Zhang, Jing; Wu, Guoyao; Zhu, Wei-Yun

    2012-07-01

    We recently reported that bacteria from the pig small intestine rapidly utilize and metabolize amino acids (AA). This study investigated the effect of L-arginine on the utilization of AA by pure bacterial strains (Streptococcus sp., Escherichia coli and Klebsiella sp.) and mixed bacterial cultures derived from the pig small intestine. Bacteria were incubated at 37°C for 3 h in anaerobic AA media containing 0-5 mmol/L of arginine to determine the effect of arginine on the bacterial utilization of AA. Amino acids in the medium plus cell extracts were analyzed by high-performance liquid chromatography. Results indicated concentration-dependent increases in the bacterial utilization of arginine and altered fluxes of arginine into ornithine and citrulline in the bacteria. Net glutamine utilization increased in pure bacterial strains with increased concentrations of arginine. With the addition of arginine, net utilization of threonine, glycine, phenylalanine and branched-chain AA increased (P<0.05) in Streptococcus sp. and Klebsiella sp., but decreased in E. coli. Net utilization of lysine, threonine, isoleucine, leucine, glycine and alanine by jejunal or ileal mixed bacteria decreased (P<0.05) with the addition of arginine. Complete utilization of asparagine, aspartate and serine were observed in pig small-intestinal bacteria after 3 h of incubation. Overall, the addition of arginine affected the metabolism of the arginine-family of AA and the serine- and aspartate-family of AA in small-intestinal bacteria and reduced the utilization of most AA in ileal mixed bacteria. These novel findings indicate that arginine exerts its beneficial effects on swine nutrition partially by regulating AA utilization and metabolism in the small-intestinal microbiota.

  5. Signifiance of Arginine 20 in the 2A protease for swine vesicular disease virus pathogenicity

    DEFF Research Database (Denmark)

    Inoue, Toru; Zhang, Zhidong; Wang, Leyuan;

    2007-01-01

    of the 2A protease is particularly significant. Inoculation of pigs with mutant viruses containing single amino acid substitutions at this residue leads to the appearance of revertants, often containing an arginine at this position encoded by an AGA codon, one of six codons for this residue. The properties...... in pigs of two chimeric viruses, each with an arginine residue at this position but encoded by different codons, have been investigated in parallel with the parental pathogenic and attenuated strains. Presence of the arginine residue, but not of the AGA codon, is essential for induction of high viraemia......Pathogenic and attenuated strains of swine vesicular disease virus (SVDV), an enterovirus, have been characterized previously and, by using chimeric infectious cDNA clones, the key determinants of pathogenicity in pigs have been mapped to the coding region for 1D–2A. Within this region, residue 20...

  6. Oral arginine metabolism may decrease the risk for dental caries in children.

    Science.gov (United States)

    Nascimento, M M; Liu, Y; Kalra, R; Perry, S; Adewumi, A; Xu, X; Primosch, R E; Burne, R A

    2013-07-01

    Arginine metabolism by oral bacteria via the arginine deiminase system (ADS) increases the local pH, which can neutralize the effects of acidification from sugar metabolism and reduce the cariogenicity of oral biofilms. To explore the relationship between oral arginine metabolism and dental caries experience in children, we measured ADS activity in oral samples from 100 children and correlated it with their caries status and type of dentition. Supragingival dental plaque was collected from tooth surfaces that were caries-lesion-free (PF) and from dentinal (PD) and enamel (PE) caries lesions. Regardless of children's caries status or type of dentition, PF (378.6) had significantly higher ADS activity compared with PD (208.4; p caries status. Mixed-model analysis showed that plaque caries status is significantly associated with ADS activity despite children's age, caries status, and dentition (p caries.

  7. Aflatoxin B1 induced upregulation of protein arginine methyltransferase 5 in human cell lines.

    Science.gov (United States)

    Ghufran, Md Sajid; Ghosh, Krishna; Kanade, Santosh R

    2016-09-01

    The exposure of naturally occurring mycotoxins affects human health and play a vital role in cancer initiation and progression. Aflatoxin B1 is a difuranocoumarin mycotoxin, classified as a group I carcinogen. The present study was conducted to assess the effect of aflatoxin B1 on epigenetic regulatory proteins. The protein arginine methyltransferase 5 expression was induced upon aflatoxin B1 treatment in a dose and time dependent manner. Further global arginine methylation was also increased in the same manner. This is the first report showing the induction of epigenetic regulatory protein, protein arginine methyltransferase 5 upon aflatoxin B1 treatment. Further study is required to establish the detailed pathway of PRMT5 induction. PMID:27242039

  8. Discovery of a Potent Class I Protein Arginine Methyltransferase Fragment Inhibitor.

    Science.gov (United States)

    Ferreira de Freitas, Renato; Eram, Mohammad S; Szewczyk, Magdalena M; Steuber, Holger; Smil, David; Wu, Hong; Li, Fengling; Senisterra, Guillermo; Dong, Aiping; Brown, Peter J; Hitchcock, Marion; Moosmayer, Dieter; Stegmann, Christian M; Egner, Ursula; Arrowsmith, Cheryl; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Schapira, Matthieu

    2016-02-11

    Protein methyltransferases (PMTs) are a promising target class in oncology and other disease areas. They are composed of SET domain methyltransferases and structurally unrelated Rossman-fold enzymes that include protein arginine methyltransferases (PRMTs). In the absence of a well-defined medicinal chemistry tool-kit focused on PMTs, most current inhibitors were identified by screening large and diverse libraries of leadlike molecules. So far, no successful fragment-based approach was reported against this target class. Here, by deconstructing potent PRMT inhibitors, we find that chemical moieties occupying the substrate arginine-binding site can act as efficient fragment inhibitors. Screening a fragment library against PRMT6 produced numerous hits, including a 300 nM inhibitor (ligand efficiency of 0.56) that decreased global histone 3 arginine 2 methylation in cells, and can serve as a warhead for the development of PRMT chemical probes.

  9. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate.

    Science.gov (United States)

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  10. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion.

    Directory of Open Access Journals (Sweden)

    Markus Munder

    Full Text Available Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8(+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i CD8(+ T cells with specificity against the MART-1aa26-35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii clonal CMV pp65aa495-503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495-503 specific T cell receptor were analyzed. Our data demonstrate that human CD8(+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency.

  11. Potential protective effect of arginine against 4-nitrophenol-induced ovarian damage in rats.

    Science.gov (United States)

    Xu, Wei-Feng; Li, Yan-Sen; Dai, Peng-Yuan; Li, Chun-Mei

    2016-01-01

    4-nitrophenol (PNP) is generally regarded as a diesel exhaust particle (DEP). Arginine plays an important role as a new feed additive, possessing highly efficient antioxidant activities. Here we investigated the effects of dietary supplementation with arginine against ovarian damage induced by PNP in rats. A total of thirty-two female rats postnatal day 28 (PND 28) were randomly divided into four groups. Two groups were fed with basal diet or 13 g/kg arginine in diet for 4 weeks, respectively; the other two groups were given PNP (100 mg/kg b.w.) daily by subcutaneous injection for 2 weeks following pretreatment with either basal diet or arginine diet for 2 weeks. The values of body weight gain (BWG), average daily gain (ADG) and percentage weight gain (PWG) upon PNP treatment were significantly reduced than those in other groups. The relative liver weight in the PNP group was significantly decreased compared with the control group. Treatment with PNP significant reduced the number of corpora lutea, although serum 17β-estradiol (E2) and progesterone (P4) concentrations were unchanged. The morphology of the ovaries in PNP-treated rats displayed necrosis, follicular deformation and granulosa cells irregular arrangement. Moreover, exposure to PNP enhanced production of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and decreased the activities of total superoxide dismutase (T-SOD) and catalase (CAT), and the co-administration of arginine can attenuate the oxidative stress caused by PNP. These results suggest that arginine may have a protective effect against ovarian damage induced by PNP owing to its antioxidant capacity effect. PMID:27193729

  12. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents.

    Science.gov (United States)

    Mann, Anita; Shukla, Vasundhara; Khanduri, Richa; Dabral, Spoorti; Singh, Harpal; Ganguli, Munia

    2014-03-01

    The success of gene therapy relies on the development of safe and efficient multifunctional carriers of nucleic acids that can overcome extra- and intracellular barriers, protect the nucleic acid and mediate its release at the desired site allowing gene expression. Peptides bear unique properties that are indispensable for any carrier, e.g., they can mediate DNA condensation, cellular targeting, membrane translocation, endosomal escape and nuclear localization. In an effort to design a multifunctional peptide, we have modified an arginine homopeptide R16 by replacement of seven arginines with histidines and addition of one cysteine at each end respectively to impart endosomal escape property while maintaining the DNA condensation and release balance. Addition of histidines imparts endosomal escape property to arginine homopeptide, but their arrangement with respect to arginines is more critical in controlling DNA condensation, release and transfection efficiency. Intriguingly, R5H7R4 peptide where charge/arginine is distributed in blocks is preferred for strong condensation while more efficient transfection is seen in the variants R9H7 and H4R9H3, which exhibit weak condensation and strong release. Addition of cysteine to each of these peptides further fine-tuned the condensation-release balance without application of any oxidative procedure unlike other similar systems reported in the literature. This resulted in a large increase in the transfection efficiency in all of the histidine modified peptides irrespective of the arginine and histidine positions. This series of multifunctional peptides shows comparable transfection efficiency to commercially available transfection reagent Lipofectamine 2000 at low charge ratios, with simple preparative procedure and exhibits much less toxicity. PMID:24476132

  13. Mobile OS Comparative Study

    OpenAIRE

    Joseph, Jyothy; K, Shinto Kurian

    2013-01-01

    In the fast growing mobile revolutionary era, many operating systems are playing vital role in present market. This study is intending to identify the apt and secure mobile based on mobile operating systems capability and user requirements.

  14. Mobile Inquiry Based Learning

    NARCIS (Netherlands)

    Specht, Marcus

    2012-01-01

    Specht, M. (2012, 8 November). Mobile Inquiry Based Learning. Presentation given at the Workshop "Mobile inquiry-based learning" at the Mobile Learning Day 2012 at the Fernuniversität Hagen, Hagen, Germany.

  15. Micro Mobility Marketing

    DEFF Research Database (Denmark)

    Hosbond, Jens Henrik; Skov, Mikael B.

    2008-01-01

    Mobile marketing refers to marketing of services or goods using mobile technology and mobile marketing holds potentially great economical opportunities. Traditionally, mobile marketing has been viewed as mobility in the large taking place virtually anywhere, anytime. Further, research shows...... considerable number of studies on push-based SMS mobile marketing campaigns. This paper explores a related yet different form of mobile marketing namely micro mobility marketing. Micro mobility marketing denotes mobility in the small, meaning that promotion of goods takes place within a circumscribed location......, in our case a medium-sized retail supermarket. Two prototypes based on push and pull marketing strategies are implemented and evaluated. Taking outset in a synthesis of central issues in contemporary research on mobile marketing, we discuss their role in micro mobility marketing to point to similarities...

  16. Effects of chronic oral L-arginine administration on the L-arginine/NO pathway in patients with peripheral arterial occlusive disease or coronary artery disease: L-Arginine prevents renal loss of nitrite, the major NO reservoir.

    Science.gov (United States)

    Schneider, Jessica Y; Rothmann, Sabine; Schröder, Frank; Langen, Jennifer; Lücke, Thomas; Mariotti, François; Huneau, Jean François; Frölich, Jürgen C; Tsikas, Dimitrios

    2015-09-01

    Despite saturation of nitric oxide (NO) synthase (NOS) by its substrate L-arginine (Arg), oral and intravenous supplementation of Arg may enhance NO synthesis, a phenomenon known as "The L-arginine paradox". Yet, Arg is not only a source of NO, but is also a source for guanidine-methylated (N (G)) arginine derivatives which are all inhibitors of NOS activity. Therefore, Arg supplementation may not always result in enhanced NO synthesis. Concomitant synthesis of N (G)-monomethyl arginine (MMA), N (G),N (G)-dimethylarginine (asymmetric dimethylarginine, ADMA) and N (G),N (G´)-dimethylarginine (symmetric dimethylarginine, SDMA) from supplemented Arg may outweigh and even outbalance the positive effects of Arg on NO. Another possible, yet little investigated effect of Arg supplementation may be alteration of renal function, notably the influence on the excretion of nitrite in the urine. Nitrite is the autoxidation product of NO and the major reservoir of NO in the circulation. Nitrite and Arg are reabsorbed in the proximal tubule of the nephron and this reabsorption is coupled, at least in part, to the renal carbonic anhydrase (CA) activity. In the present placebo-controlled studies, we investigated the effect of chronic oral Arg supplementation of 10 g/day for 3 or 6 months in patients suffering from peripheral arterial occlusive disease (PAOD) or coronary artery disease (CAD) on the urinary excretion of nitrite relative to nitrate. We determined the urinary nitrate-to-nitrite molar ratio (UNOxR), which is a measure of nitrite-dependent renal CA activity before and after oral intake of Arg or placebo by the patients. The UNOxR was also determined in 6 children who underwent the Arg test, i.e., intravenous infusion of Arg (0.5 g Arg/kg bodyweight) for 30 min. Arg was well tolerated by the patients of the three studies. Oral Arg supplementation increased Arg (plasma and urine) and ADMA (urine) concentrations. No appreciable changes were seen in NO (in PAOD and CAD) and

  17. Trends in Mobile Marketing

    OpenAIRE

    Chocholová, Petra

    2010-01-01

    The principal aim of this thesis is to assess the state of the mobile marketing as of the first quarter of 2011 and to discuss various scenarios of the future development. This thesis defines the terms "mobile marketing" and "mobile advertising" and identifies the main players in the industry. It explores the main categories of mobile advertising such as mobile messaging, in-content and mobile internet advertising. Later, it analyzes the latest trends in the industry and describes in detail t...

  18. Cooperating mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  19. Nonspecific blockade of vascular free radical signals by methylated arginine analogues

    OpenAIRE

    Pedro M.A.; Augusto O.; Barbeiro H.V.; Carvalho M.H.C.; da-Luz P.L.; Laurindo F.R.M.

    1998-01-01

    Methylated arginine analogues are often used as probes of the effect of nitric oxide; however, their specificity is unclear and seems to be frequently overestimated. This study analyzed the effects of NG-methyl-L-arginine (L-NMMA) on the endothelium-dependent release of vascular superoxide radicals triggered by increased flow. Plasma ascorbyl radical signals measured by direct electron paramagnetic resonance spectroscopy in 25 rabbits increased by 3.8 ± 0.7 nmol/l vs baseline (28.7 ± 1.4 nmol...

  20. Radiometric assay for determining the incorporation of L-canavanine or L-arginine into protein

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, G.A.; Thomas, D.A.

    1985-06-01

    Procedures for a radiometric assay of L-(guanidinooxy-/sup 14/C)canavanine were developed which provide a convenient and accurate measure of the incorporation of (/sup 14/C)canavanine into de novo-synthesized proteins. These methods are also applicable to determining (/sup 14/C)arginine incorporation into protein. These procedures have been employed to study the synthesis of L-(guanidinooxy-/sup 14/C)canavanine- and L-(guanidino-/sup 14/C)arginine-containing proteins from the hemolymph of Manduca sexta and Heliothis virescens, two highly destructive insect pests.

  1. The Role of Arginin and Uric Acid on Portulaca Grandiflora Growth under Saline Conditions.

    OpenAIRE

    Mahmoud Yagi

    2014-01-01

    Seeds of Portulaca grandiflora were soaked in distilled water, NaCl or NaCl with uric acid or arginine or in one of the amino acids. Treatment of seeds of Portulaca grandiflora with arginine and uric acid under saline conditions increased the percent of seed germination from 55% to 80%. Incorporation of these amino acids in the nutrient medium also significantly enhanced the dry weights as well as the contents of chlorophyll and ascorbic acid in the seedlings. Levels of both total amino acids...

  2. Efficacy L-Arginine In Patients With Nonalcoholic Steatohepatitis Associated With Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Oleksandr Fediv

    2015-01-01

    Full Text Available Abstract Background and Purpose Recent research in the field of hematology indicate that among the many pathogenic mechanisms of development and progression of nonalcoholic steatohepatitis NASH which occurs on the background of the metabolic syndrome an important role is played by endothelial dysfunction and violations of haemocoagulation. The aim of this research was to study the effectiveness of L-arginine as it corrects endothelial dysfunction and disorders of homeostasis haemocoagulation link in patients with NASH associated with the metabolic syndrome. Subjects and Methods 128 patients with nonalcoholic steatohepatitis associated with metabolic syndrome were examined. Some patients 63 persons received standard treatment according to national guidelines. To another group 65 patients on the background of basic therapy L-arginine hydrochloride followed by transition to oral form of L-arginine aspartate was administered. Blood levels of stable nitrogen monoxide metabolites nitrites nitrates endothelin-1 and plasma recalcification time prothrombin time thrombin time activated partial thromboplastin time fibrinogen plasma level activity of antithrombin III and coagulation factor XIII potential activity of plasminogen plasma fibrinolytic blood activity were studied. Results Originally significantly increased levels of endothelin-1 decreased after the therapy in all studied groups but more noticeable changes in the group with L-arginine appointment were observed p0.05. In the studied groups normalization of stable nitrogen monoxide metabolites after treatment was also noticed. Significant p0.05 increase in all haemocoagulation time characteristics and activities of antithrombin-III and factor XIII was found. The positive effect of L-arginine on blood fibrinolytic activity was noted. Discussion and Conclusion Combined therapy of nonalcoholic steatohepatitis associated with metabolic syndrome with a differentiated degreeal L-arginine assignment by

  3. Effect of L-arginine on neuromuscular transmission of the chick biventer cervicis muscle

    Directory of Open Access Journals (Sweden)

    B. Esfandiar

    2008-01-01

    Full Text Available biventer cervicis muscleD. Effect of L-arginine on neuromuscular transmission of the chick EsfandiarAbstractBackground and Purpose: NO is a short-lived gas molecule generated by degradation of L-arg to citrulline and by the activation of enzyme NOS Ca2+/calmodulin-dependent. There are multiple NOS isoforms that strongly are expressed in skeletal muscle, suggesting the crucial role of NO in regulating muscular metabolism and function. In this study, the effect of L-arginine was examined at the neuromuscular junction of the chick biventer cervicis muscle.Materials and Methods: Biventer cervicis muscle preparations from chick’s age of 3 weeks were set up in the organ bath. The organ bath had a vessel with volume of about 70 ml; it contained Tyrode solution aerated with oxygen and was kept at 37º C. NO levels was also measured in the chick biventer cervicis muscle homogenates, using spectrophotometer method for the direct detection of NO, nitrite and nitrate. Total nitrite (nitrite+nitrate was measured by a spectrophotometer at 540 nm after the conversion of nitrate to nitrite by copperized cadmium granules.Results: L-Arginine at 500 µg/ml, decreased twitch response to electrical stimulation, and produced rightward shift of the dose-response curve for acetylcholine or carbachol. L-arginine at 1000 µg/ml produced a strong shift to the right of the dose-response curve for acetylcholine or carbachol with a reduction in efficacy. The inhibitory effect of L-arginine on the twitch response was blocked by caffeine (200 µg/ml. NO levels were found to be significantly increased in concentrations 500 and 1000 µg/ml of L-arginine in comparison with the control group (p < 0.001.Conclusion: These findings indicate a possible role of increased NO levels in the suppressive action of L-arginie on the twitch response. In addition, the results indicate that the post-junctional antagonistic action of L-arginine is probably the result of impaired sarcoplasmic

  4. Arginine vasopressin stimulates phosphoinositide turnover in an enriched rat Leydig cell preparation

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol and phosphatidyl......An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol and...

  5. Dietary l-Arginine Supplementation Protects Weanling Pigs from Deoxynivalenol-Induced Toxicity

    OpenAIRE

    Li Wu; Peng Liao; Liuqin He; Zemeng Feng; Wenkai Ren; Jie Yin; Jielin Duan; Tiejun Li; Yulong Yin

    2015-01-01

    This study was conducted to determine the positive effects of dietary supplementation with l-arginine (Arg) on piglets fed a deoxynivalenol (DON)-contaminated diet. A total of eighteen, 28-day-old healthy weanling pigs were randomly assigned into one of three groups: uncontaminated basal diet (control group), 6 mg/kg DON-contaminated diet (DON group) and 6 mg/kg DON + 1% l-arginine (DON + ARG group). After 21 days of Arg supplementation, piglets in the DON and DON + ARG groups were challenged...

  6. DNA strand break dependence on Tris and arginine scavenger concentrations under ultra-soft X-ray irradiation: the contribution of secondary arginine radicals.

    Science.gov (United States)

    Souici, Mounir; Khalil, Talat Tariq; Boulanouar, Omar; Belafrites, Abdelfettah; Mavon, Christophe; Fromm, Michel

    2016-05-01

    In this study, we used a bench-top cold-cathode ultra-soft X-ray (USX) generator to expose aqueous DNA plasmid solutions to low-LET radiation under various scavenging conditions. Single- and double-strand breaks were assessed using classic gel electrophoresis quantification of linear, circular and supercoiled plasmid DNA topologies. With their very low penetration range in water, USX can only interact with matter up to short distances, of the order of 50 μm. We validated a stirring procedure which makes it possible to expose 100 µL of aqueous samples (2 mm thick). The scavenging of OH radicals by Tris buffer was studied at ambient temperature under aerobic conditions and compared to data gathered in the literature. A very good agreement was found with the rare data dealing with DNA plasmid exposed to Al Kα photons at low temperature (T ≤ 277 K), which therefore validated the experimental procedure. The yields for DNA single-strand breaks determined during this study enabled the ratio of indirect to direct effects to be determined at 96.2%, in good agreement with the value of 97.7% stemming from a study based on γ-ray irradiation of frozen solutions of plasmid DNA. Then, arginine was used both to create a "biological-like" chemical environment around the DNA plasmids and as an OH radical scavenger, in vitro. Although arginine has a greater scavenging (protecting) power than Tris, surprisingly, it led to higher rates of strand breakage. Based on the specific binding modes of arginine to DNA, we suggest that the side effects observed are due to the presence of arginine near to, but also inside, the DNA double helix. PMID:26994994

  7. Mobile Schools for a Mobile World

    Science.gov (United States)

    Booth, Susan

    2013-01-01

    Overwhelmingly, independent schools are embracing mobile devices--laptops, iPads or other tablets, and smartphones--to enhance teaching and learning. This article describes the results of the "NAIS 2012 Mobile Learning Survey." Among its findings were that 75 percent of NAIS-member schools currently use mobile learning devices in at…

  8. Functional variation in the arginine vasopressin 2 receptor as a modifier of human plasma von Willebrand factor levels

    DEFF Research Database (Denmark)

    Nossent, Anne Yaël; Robben, J H; Deen, P M T;

    2010-01-01

    SUMMARY OBJECTIVES: Stimulation of arginine vasopressin 2 receptor (V2R) with arginine vasopressin (AVP) results in a rise in von Willebrand factor (VWF) and factor VIII plasma levels. We hypothesized that gain-of-function variations in the V2R gene (AVPR2) would lead to higher plasma levels of V...

  9. Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth.

    Directory of Open Access Journals (Sweden)

    Priyanka Das

    Full Text Available Cationic amino acid transporters (mCAT1 and mCAT2B regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.

  10. The microbiome, intestinal function, and arginine metabolism of healthy Indian women are different from those of American and Jamaican women

    Science.gov (United States)

    Indian women have slower arginine flux during pregnancy compared with American and Jamaican women. Arginine is a semi-essential amino acid that becomes essential during periods of rapid lean tissue deposition. It is synthesized only from citrulline, a nondietary amino acid produced mainly in the gut...

  11. Application of Response Surface Methodology for Optimizing Arginine Deiminase Production Medium for Enterococcus faecium sp. GR7

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur

    2013-01-01

    Full Text Available Arginine metabolism in Enterococcus faecium sp. GR7 was enhanced via arginine deiminase pathway. Process parameters including fermentation media and environmental conditions were optimized using independent experiments and response surface methodology (central composite design. Fermentation media (EAPM were optimized using independent experiments which resulted in 4-fold increase in arginine deiminase specific activity as compared to basal medium. To further enhance arginine deiminase activity in E. faecium sp. GR7 and biomass production including a five-level central composite design (CCD was employed to study the interactive effect of three-process variables. Response surface methodology suggested a quadratic model which was further validated experimentally where it showed approximately 15-fold increase in arginine metabolism (in terms of arginine deiminase specific activity over basal medium. By solving the regression equation and analyzing the response surface cartons, optimal concentrations of the media components (g/L were determined as arginine 20.0; tryptone 15.0; lactose 10.0; K2HPO4 3.0; NaCl 1.0, MnSO4 0.6 mM; Tween 80 1%; pH 6.0 for achieving specific arginine deiminase activity of 4.6 IU/mG with concomitant biomass production of 12.1 mg/L. The model is significant as the coefficient of determination (R2 was 0.87 to 0.90 for all responses. Enhanced arginine deiminase yield from E. faecium, a GRAS lactic acid bacterial strain, is desirable to explore in vitro therapeutic potential of the arginine metabolizing E. faecium sp. GR7.

  12. Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation.

    Science.gov (United States)

    El-Hattab, Ayman W; Emrick, Lisa T; Hsu, Jean W; Chanprasert, Sirisak; Almannai, Mohammed; Craigen, William J; Jahoor, Farook; Scaglia, Fernando

    2016-04-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most frequent maternally inherited mitochondrial disorders. The pathogenesis of this syndrome is not fully understood and believed to result from several interacting mechanisms including impaired mitochondrial energy production, microvasculature angiopathy, and nitric oxide (NO) deficiency. NO deficiency in MELAS syndrome is likely to be multifactorial in origin with the decreased availability of the NO precursors, arginine and citrulline, playing a major role. In this study we used stable isotope infusion techniques to assess NO production in children with MELAS syndrome and healthy pediatric controls. We also assessed the effect of oral arginine and citrulline supplementations on NO production in children with MELAS syndrome. When compared to control subjects, children with MELAS syndrome were found to have lower NO production, arginine flux, plasma arginine, and citrulline flux. In children with MELAS syndrome, arginine supplementation resulted in increased NO production, arginine flux, and arginine concentration. Citrulline supplementation resulted in a greater increase of these parameters. Additionally, citrulline supplementation was associated with a robust increase in citrulline concentration and flux and de novo arginine synthesis rate. The greater effect of citrulline in increasing NO production is due to its greater ability to increase arginine availability particularly in the intracellular compartment in which NO synthesis takes place. This study, which is the first one to assess NO metabolism in children with mitochondrial diseases, adds more evidence to the notion that NO deficiency occurs in MELAS syndrome, suggests a better effect for citrulline because of its greater role as NO precursor, and indicates that impaired NO production occurs in children as well as adults with MELAS syndrome. Thus, the initiation of treatment with NO precursors may be

  13. Cross platform Mobile Applications Development: Mobile Apps Mobility

    OpenAIRE

    Redda, Yonathan Aklilu

    2012-01-01

    In recent years, the mobile computing sector has been having quite a revolution.Mobile computing devices have shed loads of weight, gone slim, achieved mass popularityand a great market penetration. But one of the challenges that has been part ofmobile computing is technology and device fragmentation leaving application developersfor mobile phones bewildered. Platform developers, device manufacturers comewith so many features and functionalities that it has been dicult to provide developerswi...

  14. Combination of recreational soccer and caloric restricted diet reduces markers of protein catabolism and cardiovascular risk in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    de Sousa, M Vieira; Fukui, R; Krustrup, Peter;

    2016-01-01

    D) patients. Objective: We compared the effects of acute and chronic soccer training plus calorie-restricted diet on protein catabolism and cardiovascular risk markers in T2D. Design, setting and subjects: Fifty-one T2D patients (61.1±6.4 years, 29 females: 22 males) were randomly allocated...... levels were suggestive of lower muscle protein catabolism. Conclusions: Recreational soccer training was popular and safe, and was associated with decreased plasma glucose and IGFBP-3 levels, decreased ammoniagenesis, and increased lipolytic activity and IGF-1/IGFBP-3 ratio, all indicative of attenuated...... catabolism....

  15. Arginine appearance and nitric oxide synthesis in critically ill infants can be increased with a protein-energy-enriched enteral formula

    NARCIS (Netherlands)

    C.T. de Betue (Carlijn); K.F.M. Joosten (Koen); N.E.P. Deutz (Nicolaas); A.C.E. Vreugdenhil; D.A. van Waardenburg (Dick)

    2013-01-01

    textabstractBackground: Arginine is considered an essential amino acid during critical illness in children, and supplementation of arginine has been proposed to improve arginine availability to facilitate nitric oxide (NO) synthesis. Protein-energy-enriched enteral formulas (PE-formulas) can improve

  16. Arginine-vasopressin stimulates the formation of phosphatidic acid in rat Leydig cells

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1987-01-01

    Arginine-vasopressin (AVP) stimulated the formation of labelled phosphatidic acid (PA) in [C]arachidonic acid-prelabelled rat Leydig cells. After addition of 10 M AVP [C]arachidonoylphosphatidic acid reached a maximum within 2 min. The increase was dose-dependent (10-10 M). No change in labelling...

  17. Arginine-based biodegradable ether-ester polymers with low cytotoxicity as potential gene carriers.

    Science.gov (United States)

    Memanishvili, Tamar; Zavradashvili, Nino; Kupatadze, Nino; Tugushi, David; Gverdtsiteli, Marekh; Torchilin, Vladimir P; Wandrey, Christine; Baldi, Lucia; Manoli, Sagar S; Katsarava, Ramaz

    2014-08-11

    The success of gene therapy depends on safe and effective gene carriers. Despite being widely used, synthetic vectors based on poly(ethylenimine) (PEI), poly(l-lysine) (PLL), or poly(l-arginine) (poly-Arg) are not yet fully satisfactory. Thus, both improvement of established carriers and creation of new synthetic vectors are necessary. A series of biodegradable arginine-based ether-ester polycations was developed, which consists of three main classes: amides, urethanes, and ureas. Compared to that of PEI, PLL, and poly-Arg, much lower cytotoxicity was achieved for the new cationic arginine-based ether-ester polymers. Even at polycation concentrations up to 2 mg/mL, no significant negative effect on cell viability was observed upon exposure of several cell lines (murine mammary carcinoma, human cervical adenocarcinoma, murine melanoma, and mouse fibroblast) to the new polymers. Interaction with plasmid DNA yielded compact and stable complexes. The results demonstrate the potential of arginine-based ether-ester polycations as nonviral carriers for gene therapy applications. PMID:24963693

  18. Evidence for a metabolic shift of arginine metabolism in sickle cell disease

    NARCIS (Netherlands)

    Schnog, JJB; Jager, EH; van der Dijs, FPL; Duits, AJ; Moshage, H; Muskiet, FD; Muskiet, FAJ

    2004-01-01

    Over the last few years, a pivotal role has been ascribed to reduced nitric oxide (NO) availability as a contributing factor to the vaso-occlusive process of sickle cell disease. We investigated whether arginine metabolism in sickle cell patients is different from healthy controls. Blood samples wer

  19. Glutamine supplementation, citrulline production, and de novo arginine synthesis: Is there a relation?

    Science.gov (United States)

    We would like to comment on the recent publications by Buijs et al. The authors hypothesized that a parenteral supplement of glutamine stimulates citrulline formation and enhances de novo arginine synthesis. To test this hypothesis, they conducted an experiment with stable isotopes in patients under...

  20. Conformationally Constrained Peptidomimetics as Inhibitors of the Protein Arginine Methyl Transferases

    DEFF Research Database (Denmark)

    Knuhtsen, Astrid; Legrand, Baptiste; Van der Poorten, Olivier;

    2016-01-01

    Protein arginine N-methyl transferases (PRMTs) belong to a family of enzymes that modulate the epigenetic code through modifications of histones. In the present study, peptides emerging from a phage display screening were modified in the search for PRMT inhibitors through substitution with non-pr...

  1. Watermelon enhances arginine availability in an animal model of type-II diabetes

    Science.gov (United States)

    Watermelon fruit contain lycopene, a red pigment known for its ability to scavenge free hydroxyl radicals. L-Citrulline, an amino acid that acts as a vasodilator and is a precursor of L-arginine, is found in all cucurbits, but is most plentiful in watermelon. In a study with Zucker diabetic fatty ...

  2. Reduced preabsorptive insulin response in aged rats : differential effects of amphetamine and arginine-vasopressin

    NARCIS (Netherlands)

    Buwalda, B.; Strubbe, J.H.; Bohus, B.

    1991-01-01

    The experiments presented here have been designed to investigate whether the age-related attenuation of the vagal reactivity to emotional stressors and its modulation by amphetamine (Amph) or arginine-vasopressin (AVP) can be generalized for other physiological response patterns. We therefore studie

  3. EWS is a substrate of type I protein arginine methyltransferase, PRMT8.

    Science.gov (United States)

    Kim, Jun-Dal; Kako, Koichiro; Kakiuchi, Misako; Park, Gwi Gun; Fukamizu, Akiyoshi

    2008-09-01

    EWS, a pro-oncoprotein which is encoded by the Ewing sarcoma (EWS) gene, contains arginine-glycine-glycine repeats (RGG box) in its COOH-terminus. We previously found that the RGG box of EWS is a target for dimethylation catalyzed by protein arginine methyltransferases (PRMTs). Although it has been observed that arginine residues in EWS are dimethylated in vivo, the endogenous enzyme(s) responsible for this reaction have not been identified to date. In the present study, we determined that EWS was physically associated with PRMT8, the novel eighth member of the PRMT family, through the COOH-terminal region of EWS including RGG3 with the NH2-terminal region of PRMT8 encompassing the S-adenosyl-L-methionine binding domain, and that arginine residues in EWS were asymmetrically dimethylated by PRMT8 using amino acid analysis with thin-layer chromatography. These results suggested that EWS is a substrate for PRMT8, as efficient as for PRMT1.

  4. [Antioxidant effects of L-arginine in the rat heart in experimental rhabdomyolysis].

    Science.gov (United States)

    Filimonenko, V P; Nikitchenko, I V; Kaliman, P A

    2009-01-01

    The glycerol administration in a dose of 1 ml of 50% water solution/100 g b. w. was found to cause considerable accumulation of the total heme in the rat blood serum that is accompanied by an increase of TBA-reactive products and protein carbonyl derivates contents and by changes of protein level. Heme entering in the heart tissue is observed in the first hours after glycerol injection. The breaches of heart antioxidant-prooxidant balance are noted in twenty-four hours: TBA-reactive products and protein carbonyl derivates accumulation, heme oxygenase and catalase activation, superoxide dismutase activity lowering and reduction of glutathione content elevation. Pretreatment by L-arginine (0.5 h before glycerol administration) almost did not affect the blood serum changes caused by glycerol injection. However in the rat heart L-arginine administration prevents from TBA-reactive products and protein carbonyl derivates accumulation and the breaches of superoxide dismutase and catalase activities. Besides L-arginine causes the ealier heme oxygenase induction. Possible mechanisms of L-arginine protective action in the rat heart under experimental rhabdomyolysis are discussed. PMID:19877424

  5. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep.

    Science.gov (United States)

    Satterfield, M Carey; Dunlap, Kathrin A; Keisler, Duane H; Bazer, Fuller W; Wu, Guoyao

    2013-09-01

    Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and L-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or L-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal L-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that L-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.

  6. Levels of arginine-vasopressin in cerebrospinal fluid during passive avoidance behavior in rats

    NARCIS (Netherlands)

    Kloet, E.R. de; Laczi, F.; Gaffori, O.; Fekete, M.; Wied, D. de

    1984-01-01

    The concentration of immunoreactive arginine-vasopressin (IR-AVP) was measured in the cerebrospinal fluid (CSF) during acquisition and retention of passive avoidance behavior. IR-AVP level in CSF of male Wistar rats immediately after the learning trial was increased; the rate of which was related to

  7. Mapping the twin-arginine protein translocation network of Bacillus subtilis

    NARCIS (Netherlands)

    Monteferrante, Carmine G.; MacKichan, Calum; Marchadier, Elodie; Prejean, Maria-Victoria; Carballido-Lopez, Rut; van Dijl, Jan Maarten

    2013-01-01

    Bacteria employ twin-arginine translocation (Tat) pathways for the transport of folded proteins to extracytoplasmic destinations. In recent years, most studies on bacterial Tat pathways addressed the membrane-bound TatA(B)C subunits of the Tat translocase, and the specific interactions between this

  8. Mobile Operating Systems

    OpenAIRE

    Vipin Kamboj; Hitesh Gupta

    2012-01-01

    Mobile phones are used by every people in today’s life. We use mobile phones without knowing the different factors that a mobile used including its technology, operating system, CPU ,RAM etc. Many types of operating system are used by different mobile. Every operating system has their advantage

  9. TYPOLOGIES OF MOBILE APPLICATIONS

    OpenAIRE

    Ion Ivan; Alin Zamfiroiu; Dragoş Palaghiţă3

    2013-01-01

    Mobile applications and their particularities are analyzed. Mobile application specific characteristics are defined. Types of applications are identified and analyzed. The paper established differences between mobile applications and mobile application categories. For each identified type the specific structures and development model are identified.

  10. Planktonic versus biofilm catabolic communities: importance of the biofilm for species selection and pesticide degradation.

    Science.gov (United States)

    Verhagen, Pieter; De Gelder, Leen; Hoefman, Sven; De Vos, Paul; Boon, Nico

    2011-07-01

    Chloropropham-degrading cultures were obtained from sludge and soil samples by using two different enrichment techniques: (i) planktonic enrichments in shaken liquid medium and (ii) biofilm enrichments on two types of solid matrixes (plastic chips and gravel). Denaturing gradient gel electrophoresis fingerprinting showed that planktonic and biofilm cultures had a different community composition depending on the presence and type of added solid matrix during enrichment. This was reflected in the unique chloropropham-degrading species that could be isolated from the different cultures. Planktonic and biofilm cultures also differed in chloropropham-degrading activity. With biofilm cultures, slower chloropropham removal was observed, but with less build-up of the toxic intermediate 3-chloroaniline. Disruption of the biofilm architecture resulted in degradation characteristics shifting toward those of the free suspensions, indicating the importance of a well-established biofilm structure for good performance. These results show that biofilm-mediated enrichment techniques can be used to select for pollutant-degrading microorganisms that like to proliferate in a biofilm and that cannot be isolated using conventional shaken-liquid procedures. Furthermore, the influence of the biofilm architecture on the pesticide degradation characteristics suggests that for bioaugmentation the use of biofilm catabolic communities might be a proficient alternative to using planktonic freely suspended cultures. PMID:21602394

  11. Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits

    Institute of Scientific and Technical Information of China (English)

    Andrej Kochevenko; Wagner L.Araújo; Gregory S.Maloney; Denise M.Tieman; Phuc Thi Do; Mark G.Taylor; Harry J.Klee; Alisdair R.Fernie

    2012-01-01

    The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine,isoleucine,and valine.These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids.Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized,their catabolism in plants is not yet completely understood.We previously characterized the branched chain amino acid transaminase gene family in tomato,revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes.Here,we examined possible functions of the enzymes during fruit development.We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3,evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3.We quantitatively tested,via precursor and isotope feeding experiments,the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles.Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration,but also reveal that keto acids,rather than amino acids,are the likely precursors for the branched chain flavor volatiles.

  12. Metabolic switch during adipogenesis: From branched chain amino acid catabolism to lipid synthesis.

    Science.gov (United States)

    Halama, Anna; Horsch, Marion; Kastenmüller, Gabriele; Möller, Gabriele; Kumar, Pankaj; Prehn, Cornelia; Laumen, Helmut; Hauner, Hans; Hrabĕ de Angelis, Martin; Beckers, Johannes; Suhre, Karsten; Adamski, Jerzy

    2016-01-01

    Fat cell metabolism has an impact on body homeostasis and its proper function. Nevertheless, the knowledge about simultaneous metabolic processes, which occur during adipogenesis and in mature adipocytes, is limited. Identification of key metabolic events associated with fat cell metabolism could be beneficial in the field of novel drug development, drug repurposing, as well as for the discovery of patterns predicting obesity risk. The main objective of our work was to provide comprehensive characterization of metabolic processes occurring during adipogenesis and in mature adipocytes. In order to globally determine crucial metabolic pathways involved in fat cell metabolism, metabolomics and transcriptomics approaches were applied. We observed significantly regulated metabolites correlating with significantly regulated genes at different stages of adipogenesis. We identified the synthesis of phosphatidylcholines, the metabolism of even and odd chain fatty acids, as well as the catabolism of branched chain amino acids (BCAA; leucine, isoleucine and valine) as key regulated pathways. Our further analysis led to identification of an enzymatic switch comprising the enzymes Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthase) and Auh (AU RNA binding protein/enoyl-CoA hydratase) which connects leucine degradation with cholesterol synthesis. In addition, propionyl-CoA, a product of isoleucine degradation, was identified as a putative substrate for odd chain fatty acid synthesis. The uncovered crosstalks between BCAA and lipid metabolism during adipogenesis might contribute to the understanding of molecular mechanisms of obesity and have potential implications in obesity prediction. PMID:26408941

  13. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice.

    Science.gov (United States)

    Niewiadomski, Julie; Zhou, James Q; Roman, Heather B; Liu, Xiaojing; Hirschberger, Lawrence L; Locasale, Jason W; Stipanuk, Martha H

    2016-01-01

    To gain further insights into the effects of elevated cysteine levels on energy metabolism and the possible mechanisms underlying these effects, we conducted studies in cysteine dioxygenase (Cdo1)-null mice. Cysteine dioxygenase (CDO) catalyzes the first step of the major pathway for cysteine catabolism. When CDO is absent, tissue and plasma cysteine levels are elevated, resulting in enhanced flux of cysteine through desulfhydration reactions. When Cdo1-null mice were fed a high-fat diet, they gained more weight than their wild-type controls, regardless of whether the diet was supplemented with taurine. Cdo1-null mice had markedly lower leptin levels, higher feed intakes, and markedly higher abundance of hepatic stearoyl-CoA desaturase 1 (SCD1) compared to wild-type control mice, and these differences were not affected by the fat or taurine content of the diet. Thus, reported associations of elevated cysteine levels with greater weight gain and with elevated hepatic Scd1 expression are also seen in the Cdo1-null mouse model. Hepatic accumulation of acylcarnitines suggests impaired mitochondrial β-oxidation of fatty acids in Cdo1-null mice. The strong associations of elevated cysteine levels with excess H2 S production and impairments in energy metabolism suggest that H2 S signaling could be involved.

  14. Redundancy in putrescine catabolism in solvent tolerant Pseudomonas putida S12.

    Science.gov (United States)

    Bandounas, Luaine; Ballerstedt, Hendrik; de Winde, Johannes H; Ruijssenaars, Harald J

    2011-06-10

    Pseudomonas putida S12 is a promising platform organism for the biological production of substituted aromatic compounds due to its extreme tolerance towards toxic chemicals. Solvent or aromatic stress tolerance may be due to membrane modifications and efflux pumps; however in general, polyamines have also been implicated in stressed cells. Previous transcriptomics results of P. putida strains producing an aromatic compound, or being exposed to the solvent toluene, indicated differentially expressed genes involved in polyamine transport and metabolism. Therefore, the metabolism of the polyamine, putrescine was investigated in P. putida S12, as no putrescine degradation pathways have been described for this strain. Via transcriptome analysis various, often redundant, putrescine-induced genes were identified as being potentially involved in putrescine catabolism via oxidative deamination and transamination. A series of knockout mutants were constructed in which up to six of these genes were sequentially deleted, and although putrescine degradation was affected in some of these mutants, complete elimination of putrescine degradation in P. putida S12 was not achieved. Evidence was found for the presence of an alternative pathway for putrescine degradation involving γ-glutamylation. The occurrence of multiple putrescine degradation routes in the solvent-tolerant P. putida S12 is indicative of the importance of controlling polyamine homeostasis, as well as of the high metabolic flexibility exhibited by this microorganism.

  15. Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Scheuner, Carmen; Goker, Markus; Mavromatis, Kostas; Hooper, Sean D.; Porat, Iris; Klenk, Hans-Peter; Ivanova, Natalia; Kyrpides, Nikos

    2011-05-03

    The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.

  16. Characterization of the Erwinia chrysanthemi Gan locus, involved in galactan catabolism.

    Science.gov (United States)

    Delangle, Aurélie; Prouvost, Anne-France; Cogez, Virginie; Bohin, Jean-Pierre; Lacroix, Jean-Marie; Cotte-Pattat, Nicole Hugouvieux

    2007-10-01

    beta-1,4-Galactan is a major component of the ramified regions of pectin. Analysis of the genome of the plant pathogenic bacteria Erwinia chrysanthemi revealed the presence of a cluster of eight genes encoding proteins potentially involved in galactan utilization. The predicted transport system would comprise a specific porin GanL and an ABC transporter made of four proteins, GanFGK(2). Degradation of galactans would be catalyzed by the periplasmic 1,4-beta-endogalactanase GanA, which released oligogalactans from trimer to hexamer. After their transport through the inner membrane, oligogalactans would be degraded into galactose by the cytoplasmic 1,4-beta-exogalactanase GanB. Mutants affected for the porin or endogalactanase were unable to grow on galactans, but they grew on galactose and on a mixture of galactotriose, galactotetraose, galactopentaose, and galactohexaose. Mutants affected for the periplasmic galactan binding protein, the transporter ATPase, or the exogalactanase were only able to grow on galactose. Thus, the phenotypes of these mutants confirmed the functionality of the gan locus in transport and catabolism of galactans. These mutations did not affect the virulence of E. chrysanthemi on chicory leaves, potato tubers, or Saintpaulia ionantha, suggesting an accessory role of galactan utilization in the bacterial pathogeny. PMID:17644603

  17. Effect of arginase inhibition on pulmonary L-arginine metabolism in murine Pseudomonas pneumonia.

    Directory of Open Access Journals (Sweden)

    Anne Mehl

    Full Text Available RATIONALE: Infection of the lung with Pseudomonas aeruginosa results in upregulation of nitric oxide synthases (NOS and arginase expression, and both enzymes compete for L-arginine as substrate. Nitric oxide (NO production may be regulated by arginase as it controls L-arginine availability for NOS. We here studied the effect of systemic arginase inhibition on pulmonary L-arginine metabolism in Pseudomonas pneumonia in the mouse. METHODS: Mice (C57BL/6, 8-10 weeks old, female underwent direct tracheal instillation of Pseudomonas (PAO-1-coated agar beads and were treated by repeated intra-peritoneal injections of the arginase inhibitor 2(S-amino-6-boronohexanoic acid (ABH or PBS until lungs were harvested on day 3 of the infection. L-arginine metabolites were quantified using liquid chromatography-tandem mass spectrometry, NO metabolites nitrate and nitrite by Griess reagent and cytokines by ELISA. RESULTS: NO metabolite concentrations (48.5±2.9 vs. 10.9±2.3 µM, p<0.0001, as well as L-ornithine (29.6±1.7 vs 2.3±0.4 µM, p<0.0001, the product of arginase activity, were increased in Pseudomonas infected lungs compared to naïve controls. Concentrations of the NOS inhibitor asymmetric dimethylarginine (ADMA were also increased (0.44±0.02 vs. 0.16±0.01 µM, p<0.0001. Arginase inhibition in the infected animals resulted in a significant decrease in L-ornithine (14.6±1.6 µM, p<0.0001 but increase in L-arginine concentration (p<0.001, L-arginine/ADMA ratio (p<0.001, L-arginine availability for NOS (p<0.001, and NO metabolite concentrations (67.3±5.7 µM, p<0.05. Arginase inhibitor treatment also resulted in an increase in NO metabolite levels in animals following intratracheal injection of LPS (p = 0.015. Arginase inhibition was not associated with an increase in inflammatory markers (IFN-γ, IL-1β, IL-6, MIP-2, KC or TNF-α in lung. Concentrations of the L-ornithine-dependent polyamines putrescine, spermidine and spermine were increased

  18. Next generation mobile broadcasting

    CERN Document Server

    Gómez-Barquero, David

    2013-01-01

    Next Generation Mobile Broadcasting provides an overview of the past, present, and future of mobile multimedia broadcasting. The first part of the book-Mobile Broadcasting Worldwide-summarizes next-generation mobile broadcasting technologies currently available. This part covers the evolutions of the Japanese mobile broadcasting standard ISDB-T One-Seg, ISDB-Tmm and ISDB-TSB; the evolution of the South Korean T-DMB mobile broadcasting technology AT-DMB; the American mobile broadcasting standard ATSC-M/H; the Chinese broadcasting technologies DTMB and CMMB; second-generation digital terrestrial

  19. Experimental evidence of a xylose-catabolic pathway on the pAO1 megaplasmid of Arthrobacter nicotinovorans

    Directory of Open Access Journals (Sweden)

    Marius Mihasan

    2012-09-01

    Full Text Available The pAO1 megaplasmid of A. nicotinovorans consists of 165 ORF's related mainly to nicotine degradation, uptake and utilization of carbohydrates, amino acids and sarcosine. A putative sugar catabolic pathway consisting of 11 ORF's organized as a single operon were previously described. The current work brings experimental data supporting the existence of a D-Xylose catabolic pathway on the pAO1 megaplasmid. When grown on D-xylose containing media, the cells harboring the pAO1 megaplasmid grow to higher cell densities and also express the OxRe protein coded by the megaplasmid. A putative pathway similar to Weimberg pentose pathway is postulated, in which D-xylose is transported in the cell by the ABC-type transport system and then transformed using the putative sugar-dehidrogenase OxRe to D-xylonate, which is further degrated to 2-ketoglutarate and integrated into the general metabolism of the cell

  20. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri.

    Science.gov (United States)

    Teixeira, Januana S; Seeras, Arisha; Sanchez-Maldonado, Alma Fernanda; Zhang, Chonggang; Su, Marcia Shu-Wei; Gänzle, Michael G

    2014-09-01

    This study aimed to determine whether glutamine deamidation improves acid resistance of Lactobacillus reuteri, and to assess whether arginine, glutamine, and glutamate-mediated acid resistance are redundant or complementary mechanisms of acid resistance. Three putative glutaminase genes, gls1, gls2, and gls3, were identified in L. reuteri 100-23. All three genes were expressed during growth in mMRS and wheat sourdough. L. reuteri consistently over-expressed gls3 and the glutamate decarboxylase gadB. L. reuteri 100-23ΔgadB over-expressed gls3 and the arginine deiminase gene adi. Analysis of the survival of L. reuteri in acidic conditions revealed that arginine conversion is effective at pH of 3.5 while glutamine or glutamate conversion were effective at pH of 2.5. Arginine conversion increased the pHin but not ΔΨ; glutamate decarboxylation had only a minor effect on the pHin but increased the ΔΨ. This study demonstrates that glutamine deamidation increases the acid resistance of L. reuteri independent of glutamate decarboxylase activity. Arginine and glutamine/glutamate conversions confer resistance to lactate at pH of 3.5 and phosphate at pH of 2.5, respectively. Knowledge of L. reuteri's acid resistance improves the understanding of the adaptation of L. reuteri to intestinal ecosystems, and facilitates the selection of probiotic and starter cultures.

  1. Converting the yeast arginine can1 permease to a lysine permease.

    Science.gov (United States)

    Ghaddar, Kassem; Krammer, Eva-Maria; Mihajlovic, Natalija; Brohée, Sylvain; André, Bruno; Prévost, Martine

    2014-03-01

    Amino acid uptake in yeast cells is mediated by about 16 plasma membrane permeases, most of which belong to the amino acid-polyamine-organocation (APC) transporter family. These proteins display various substrate specificity ranges. For instance, the general amino acid permease Gap1 transports all amino acids, whereas Can1 and Lyp1 catalyze specific uptake of arginine and lysine, respectively. Although Can1 and Lyp1 have different narrow substrate specificities, they are close homologs. Here we investigated the molecular rules determining the substrate specificity of the H(+)-driven arginine-specific permease Can1. Using a Can1-Lyp1 sequence alignment as a guideline and a three-dimensional Can1 structural model based on the crystal structure of the bacterial APC family arginine/agmatine antiporter, we introduced amino acid substitutions liable to alter Can1 substrate specificity. We show that the single substitution T456S results in a Can1 variant transporting lysine in addition to arginine and that the combined substitutions T456S and S176N convert Can1 to a Lyp1-like permease. Replacement of a highly conserved glutamate in the Can1 binding site leads to variants (E184Q and E184A) incapable of any amino acid transport, pointing to a potential role for this glutamate in H(+) coupling. Measurements of the kinetic parameters of arginine and lysine uptake by the wild-type and mutant Can1 permeases, together with docking calculations for each amino acid in their binding site, suggest a model in which residues at positions 176 and 456 confer substrate selectivity at the ligand-binding stage and/or in the course of conformational changes required for transport.

  2. The effect of L-Arginine on the brain tissue of stressed rats

    Directory of Open Access Journals (Sweden)

    Batoul Ebadi

    2010-01-01

    Full Text Available   Abstract  Introduction: This study was conducted to determine the possible beneficial results of L-arginine on prefrontal cortex of rats which impressed by immobilization stress to define the synchronous impression of stress and nitric oxide (NO on evolution of prefrontal cortex of rats after birth. Methods: Forty-eight one month, male Wistar rats were divided into two groups: stressed and non-stressed. L-Arginine (200 mg/kg as a NO synthase (NOS inducer and L-NAME (2O mg/kg were injected intraperitonealy (IP and 7- nitroindazde (25 mg/kg as non-specific was injected subcutaneously (S.C. for 4 weeks. The kind of stress was immobilization for 4 weeks, every other day. The brain was removed after this period and each brain divided into two parts in a coronal section manner. Anterior part used for histological studies with H&E staining and posterior part used for measurement of NO production using spectrophotometer at 540 nm wavelengh. Results: Statistical analysis of microscopic and light microscopic finding showed that thickness of prefrontal cortex and NO production were significantly decreased in stressed rats and especially in groups which received 7- nitroindazole and L-NAME and L-arginine could reverse these results. Discussion: According to this research, we could say that L-arginine decreases the cortical damages in stressed rats and 7-nitroindazole and L-NAME increase this damage in non-stressed group. Although in non stressed groups, L-arginine, L-NAME and 7- nitroindazole were all non-protective and damaging.

  3. Supplemental arginine above the requirement during suckling causes obesity and insulin resistance in rats.

    Science.gov (United States)

    Otani, Lila; Mori, Tomomi; Koyama, Ayaka; Takahashi, Shin-Ichiro; Kato, Hisanori

    2016-06-01

    Nutrition in early life is important in determining susceptibility to adult obesity, and arginine may promote growth acceleration in infants. We hypothesized that maternal arginine supplementation may promote growth in their pups and contribute to obesity and alteration of the metabolic system in later life. Dams and pups of Wistar rats were given a normal diet (15% protein) as a control (CN) or a normal diet with 2% arginine (ARG). Altered profiles of free amino acids in breast milk were observed in that the concentrations of threonine and glycine were lower in the ARG dams compared with the CN dams. The offspring of the CN and ARG dams were further subdivided into normal-diet (CN-CN and ARG-CN) groups and a high fat-diet groups (CN-HF and ARG-HF). In response to the high fat-diet feeding, the visceral fat deposits were significantly increased in the ARG-HF group (although not compared with the CN-HF group); no difference was observed between the CN-CN and ARG-CN groups. The blood glucose and insulin levels after glucose loading were significantly higher in the ARG-HF group compared with the CN-HF group. The results suggest that the offspring of dams supplemented with arginine during lactation acquired increased susceptibility to a high-fat diet, resulting in visceral obesity and insulin resistance. The lower supply of threonine and glycine to pups may be one of the contributing causes to the programming of lifelong obesity risk in offspring. Our findings also indicated that maternal arginine supplementation during suckling causes obesity and insulin resistance in rats. PMID:27188903

  4. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae

    OpenAIRE

    Brat Dawid; Weber Christian; Lorenzen Wolfram; Bode Helge B; Boles Eckhard

    2012-01-01

    Abstract Background The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobut...

  5. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae

    OpenAIRE

    Brat, Dawid; Weber, Christian; Lorenzen, Wolfram; Bode, Helge Björn; Boles, Eckhard

    2012-01-01

    Background: The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. ...

  6. The influence of environmental parameters on the catabolism of branched-chain amino acids by Staphylococcus xylosus and Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Olesen, Pelle Thonning; Stahnke, Louise Heller

    2004-01-01

    Degradation of the amino acids leucine, isoleucine and valine into branched flavour compounds by Staphylococcus xylosus and Staphylococcus carnosus was studied using resting cell cultures added to a defined reaction medium under different environmental conditions relevant to sausage fermentation...... detection (GC/FID). Main volatile catabolic products of leucine, isoleucine and valine were 3-methylbutanoic, 2-methylbutanoic and 2-methylpropanoic acids, respectively. The generation of branched flavour compounds was influenced significantly by most of the investigated environmental parameters...

  7. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types

    Science.gov (United States)

    Amend, Jan P.; McCollom, Thomas M.; Hentscher, Michael; Bach, Wolfgang

    2011-10-01

    Active deep-sea hydrothermal vents are hosted by a range of different rock types, including basalt, peridotite, and felsic rocks. The associated hydrothermal fluids exhibit substantial chemical variability, which is largely attributable to compositional differences among the underlying host rocks. Numerical models were used to evaluate the energetics of seven inorganic redox reactions (potential catabolisms of chemolithoautotrophs) and numerous biomolecule synthesis reactions (anabolism) in a representative sampling of these systems, where chemical gradients are established by mixing hydrothermal fluid with seawater. The wide ranging fluid compositions dictate demonstrable differences in Gibbs energies (Δ G r) of these catabolic and anabolic reactions in three peridotite-hosted, six basalt-hosted, one troctolite-basalt hybrid, and two felsic rock-hosted systems. In peridotite-hosted systems at low to moderate temperatures (10), hydrogen oxidation yields the most catabolic energy, but the oxidation of methane, ferrous iron, and sulfide can also be moderately exergonic. At higher temperatures, and consequent SW:HF mixing ratios anabolism in chemolithoautotrophs—represented here by the synthesis of amino acids, nucleotides, fatty acids, saccharides, and amines—were generally most favorable at moderate temperatures (22-32 °C) and corresponding SW:HF mixing ratios (˜15). In peridotite-hosted and the troctolite-basalt hybrid systems, Δ G r for primary biomass synthesis yielded up to ˜900 J per g dry cell mass. The energetics of anabolism in basalt- and felsic rock-hosted systems were far less favorable. The results suggest that in peridotite-hosted (and troctolite-basalt hybrid) systems, compared with their basalt (and felsic rock) counterparts, microbial catabolic strategies—and consequently variations in microbial phylotypes—may be far more diverse and some biomass synthesis may yield energy rather than imposing a high energetic cost.

  8. Separation and partial characterization of the enzymes of the toluene-4-monooxygenase catabolic pathway in Pseudomonas mendocina KR1.

    OpenAIRE

    Whited, G M; Gibson, D T

    1991-01-01

    The route of toluene degradation by Pseudomonas mendocina KR1 was studied by separating or purifying from toluene-grown cells the catabolic enzymes responsible for oxidation of p-cresol through the ring cleavage step. Enzymatic transformations corresponding to each of the metabolic steps in the proposed degradative pathway were conducted with cell-free preparations. p-Cresol was metabolized by the enzyme p-cresol methylhydroxylase to p-hydroxybenzaldehyde. p-Hydroxybenzaldehyde was further ox...

  9. Mobile platform security

    CERN Document Server

    Asokan, N; Dmitrienko, Alexandra

    2013-01-01

    Recently, mobile security has garnered considerable interest in both the research community and industry due to the popularity of smartphones. The current smartphone platforms are open systems that allow application development, also for malicious parties. To protect the mobile device, its user, and other mobile ecosystem stakeholders such as network operators, application execution is controlled by a platform security architecture. This book explores how such mobile platform security architectures work. We present a generic model for mobile platform security architectures: the model illustrat

  10. Tenured Public Servant Mobility

    OpenAIRE

    Aline Pauron

    2003-01-01

    The mobility of tenured public servants is studied from three points of view: geographic mobility (defined by a change of regional study and planning area (ZEAT) or department within a ZEAT), socio-economic mobility (change of socio-economic group) and structural mobility (change of ministry or service within a ministry). Geographic mobility is the most frequent, concerning an average 4.2% of staff every year. Not including upgrading (from grade D to grade C and from primary school teacher to...

  11. MOBILE MARKETING FUTURE TRENDS

    OpenAIRE

    CĂTOIU, Iacob; GÂRDAN, Daniel Adrian; GÂRDAN, Doru Lucian

    2010-01-01

    The present article proposes an introspection into the field of a new marketing specialization – mobile marketing. The concept mainly refers to all marketing activities related to the new communication channel – Short Message Service, Multimedia Messaging Service, and internet access from mobile phone. The article provides, at the same time, a marketing perspective about future trends of mobile marketing and mobile media, and also a technical perspective related to the future mobile communica...

  12. ON MOBILE MESH NETWORKS

    OpenAIRE

    Namiot, Dmitry

    2015-01-01

    With the advances in mobile computing technologies and the growth of the Net, mobile mesh networks are going through a set of important evolutionary steps. In this paper, we survey architectural aspects of mobile mesh networks and their use cases and deployment models. Also, we survey challenging areas of mobile mesh networks and describe our vision of promising mobile services. This paper presents a basic introductory material for Masters of Open Information Technologies Lab, interested in m...

  13. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soil microbes play a major role in ecological processes and are closely associated with the aboveground plant community. In order to understand the effects of vegetation type on the characteristics of soil microbial communities, the soil microbial communities were assessed by plate counts, phospholipid fatty acid (PLFA) and Biolog microplate techniques in five plant communities, i.e., soybean field (SF), artificial turf (AT), artificial shrub (AS), natural shrub (NS), and maize field (MF) in Jinan, Shandong Province, North China. The results showed that plant diversity had little discernible effect on microbial biomass but a positive impact on the evennessof utilized substrates in Biolog microplate. Legumes could significantly enhance the number of cultural microorganisms, microbial biomass, and community catabolic diversity. Except for SF dominated by legumes, the biomass of fungi and the catabolic diversity of microbial community were higher in less disturbed soil beneath NS than in frequently disturbed soils beneath the other vegetation types. These results confirmed that high number of plant species, legumes, and natural vegetation types tend to support soil microbial communities with higher function. The present study also found a significant correlation between the number of cultured bacteria and catabolic diversity of the bacterial community. Different research methods led to varied results in this study. The combination of several approaches is recommended for accurately describing the characteristics of microbial communities in many respects.

  14. Stable isotope resolved metabolomics revealed the role of anabolic and catabolic processes in glyphosate-induced amino acid accumulation in Amaranthus palmeri biotypes

    Science.gov (United States)

    Using stable isotope resolved metabolomics (SIRM), we characterized the role of anabolic (de novo synthesis) vs catabolic (protein catalysis) processes contributing to free amino acid pools in glyphosate susceptible (S) and resistant (R) Amaranthus palmeri biotypes. Following exposure to glyphosate ...

  15. Crystal structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30.

    Directory of Open Access Journals (Sweden)

    Ke Liu

    Full Text Available SMN (Survival motor neuron protein was characterized as a dimethyl-arginine binding protein over ten years ago. TDRD3 (Tudor domain-containing protein 3 and SPF30 (Splicing factor 30 kDa were found to bind to various methyl-arginine proteins including Sm proteins as well later on. Recently, TDRD3 was shown to be a transcriptional coactivator, and its transcriptional activity is dependent on its ability to bind arginine-methylated histone marks. In this study, we systematically characterized the binding specificity and affinity of the Tudor domains of these three proteins quantitatively. Our results show that TDRD3 preferentially recognizes asymmetrical dimethylated arginine mark, and SMN is a very promiscuous effector molecule, which recognizes different arginine containing sequence motifs and preferentially binds symmetrical dimethylated arginine. SPF30 is the weakest methyl-arginine binder, which only binds the GAR motif sequences in our library. In addition, we also reported high-resolution crystal structures of the Tudor domain of TDRD3 in complex with two small molecules, which occupy the aromatic cage of TDRD3.

  16. Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1.

    Science.gov (United States)

    Hung, Ming-Lung; Hautbergue, Guillaume M; Snijders, Ambrosius P L; Dickman, Mark J; Wilson, Stuart A

    2010-06-01

    The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA-protein interaction can be readily disrupted by export factors further down the pathway.

  17. MOBILE TELECOMMUNICATIONS SERVICES AND MOBILE HEALTH DEVICES

    OpenAIRE

    Gheorghe Meghisan; Georgeta-Madalina Meghisan

    2015-01-01

    The purpose of this research paper is to identify the potential of mobile health devices with a positive impact on the public health care system from Romania. More people monitoring their health situation with the help of mobile health applications could lead to less money spent by the public health sector with treating more advanced diseases. Approach/ methodology. The analysis of the Romanian mobile telecommunications market and health situation of the population from Romania was based on s...

  18. Mobile Notes: Mobile Devices in Creative Discussions

    OpenAIRE

    Bollen, Lars; Juarez, Guillermo; Hoppe, Ulrich

    2006-01-01

    The trendy notion of "mobile learning" has different connotations: On the one hand, it can be understood as "learning on the move" - often referred to as "learning any time anywhere". Of course this interpretation relies on specific kinds of technological enabling, but the definition aims at the general setting of learning activities. Particularly, it includes informal learning settings (cf. [1]). A second interpretation sees mobile learning somewhat more pragmatically as learning with mobile...

  19. Preventive oral supplementation with glutamine and arginine has beneficial effects on the intestinal mucosa and inflammatory cytokines in endotoxemic rats.

    Science.gov (United States)

    Zhou, Xihong; Wu, Xin; Yin, Yulong; Zhang, Cui; He, Liuqin

    2012-08-01

    The objective of this study was to evaluate the effect of oral supplementation with a combination of arginine and glutamine on the intestinal mucosa and inflammatory cytokines of lipopolysaccharide (LPS)-induced adult rats. Fifty Sprague-Dawley rats (average weight of 185 ± 15 g) were randomly divided into five groups: control group A (CA) and control group B (CB), both orally supplemented with 0.9% saline; group Arg, supplemented with 300 mg/kg day(-1) arginine; group Gln, supplemented with 300 mg/kg day(-1) glutamine; group AG, supplemented with 150 mg/kg day(-1) arginine and 150 mg/kg day(-1) glutamine. The experiment lasted for 2 weeks. Food intake and body weight were measured during the experiment. At 10.00 h of day 15, animals were injected with 4 mg/kg LPS (group CB, Arg, Gln, and AG) or sterile saline (group CA) after supplementation. Then at 14.00 h, all animals were killed and blood and tissue collected. The results showed that compared with group CB, arginine concentration tended to be increased (P > 0.05) in group Arg and AG, while there was no significant difference in glutamine concentration among the groups challenged with LPS. Oral supplementation with arginine or/and glutamine mitigated morphology impairment (lower villus height, P Arginine only significantly decreased TNF-α mRNA abundance in the ileum, while glutamine significantly decreased both TNF-α and IL-10 mRNA in the ileum. A combination of arginine and glutamine significantly decreased TNF-α and IL-1β mRNA abundance in both the jejunum and ileum, while they also significantly decreased anti-inflammatory IL-10 in the ileum. These results revealed that an oral supply of combined arginine and glutamine had more favorable effects on the intestinal mucosa and inflammatory cytokines than a supply of arginine or glutamine alone.

  20. Roles of a sustained activation of NCED3 and the synergistic regulation of ABA biosynthesis and catabolism in ABA signal production in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    REN HuiBo; JIA WenSuo; FAN YiJian; GAO ZhiHui; WEI KaiFa; LI GuiFen; LIU Jing; CHEN Lin; LI BingBing; HU JianFang

    2007-01-01

    ABA, acting as a stress signal, plays crucial roles in plant resistance to water stress. Because ABA signal production is based on ABA biosynthesis, the regulation of NCED, a key enzyme in the ABA biosynthesis pathway, is normally thought of as the sole factor controlling ABA signal production. Here we demonstrate that ABA catabolism in combination with a synergistic regulation of ABA biosynthesis plays a crucial role in governing ABA signal production. Water stress induced a significant accumulation of ABA, which exhibited different patterns in detached and attached leaves. ABA catabolism followed a temporal trend of exponential decay for both basic and stress ABA, and there was little difference in the catabolic half-lives of basic ABA and stress ABA. Thus, the absolute rate of ABA catabolism, i.e. the amount of ABA catabolized per unit time, increases with increased ABA accumulation. From the dynamic processes of ABA biosynthesis and catabolism, it can be inferred that stress ABA accumulation may be governed by a synergistic regulation of all the steps in the ABA biosynthesis pathway. Moreover, to maintain an elevated level of stress ABA sustained activation of NCED3 should be required. This inference was supported by further findings that the genes encoding major enzymes in the ABA biosynthesis pathway, e.g. NCED3, AAO3 and ABA3 were all activated by water stress, and with ABA accumulation progressing, the expressions of NCED3, AAO3 and ABA3 remained activated. Data on ABA catabolism and gene expression jointly indicate that ABA signal production is controlled by a sustained activation of NCED3 and the synergistic regulation of ABA biosynthesis and catabolism.

  1. Complete Genome Sequence of the d-Amino Acid Catabolism Bacterium Phaeobacter sp. Strain JL2886, Isolated from Deep Seawater of the South China Sea.

    Science.gov (United States)

    Fu, Yingnan; Wang, Rui; Zhang, Zilian; Jiao, Nianzhi

    2016-01-01

    Phaeobacter sp. strain JL2886, isolated from deep seawater of the South China Sea, can catabolize d-amino acids. Here, we report the complete genome sequence of Phaeobacter sp. JL2886. It comprises ~4.06 Mbp, with a G+C content of 61.52%. A total of 3,913 protein-coding genes and 10 genes related to d-amino acid catabolism were obtained. PMID:27587825

  2. The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of l-Phenylalanine, l-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida

    OpenAIRE

    Arias-Barrau, Elsa; Olivera, Elías R.; Luengo, José M.; Fernández, Cristina; Galán, Beatriz; García, José L.; Díaz, Eduardo; Miñambres, Baltasar

    2004-01-01

    Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Wherea...

  3. Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor.

    OpenAIRE

    Beck von Bodman, S; Hayman, G. T.; Farrand, S K

    1992-01-01

    The Ti plasmids of Agrobacterium tumefaciens are conjugal elements whose transfer is strongly repressed. Transfer is induced by the conjugal opines, a group of unique carbon compounds synthesized in crown gall tumors. The opines also induce Ti plasmid-encoded genes required by the bacteria for opine catabolism. We have cloned and sequenced a gene from the Ti plasmid pTiC58, whose product mediates the opine-dependent regulation of conjugal transfer and catabolism of the conjugal opines, agroci...

  4. Mobility Charters and Manifestos

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2010-01-01

    This paper explore a number of different cases of articulating notions of ‘correct’ mobility behavior and practice by looking into charters, manifestos and codes of mobility regulation. Within such discourses of ‘correct mobility’ more or less subtle expressions of power as well as normative...... and ethical positions on mobility prevail. Such ‘imagined correct mobility behavior’ are drawing on larger issues of societal change that need to be brought out in a critical analysis and discussion reflecting the attempts to control, design and orchestrate mobility patterns. The paper therefore argues within...... the ‘mobility turn’ that mobility is much more than movement from A to B. Seeing the cultural dimension as well as the underpinning power plays of normative mobility discourses opens up the reflection about imagined futures and imagined mobile subjects. Theoretically the paper bridges discourse studies...

  5. Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Patterson John R

    2008-09-01

    Full Text Available Abstract Background L-arginine is the common substrate for the two isoforms of arginase. Arginase I, highly expressed in the liver and arginase II mainly expressed in the kidney. Arginase I-producing myeloid derived suppressor cells have been shown to inhibit T-cell function by the depletion of L-arginine. On the other hand, arginase II has been detected in patients with cancer and is thought to metabolize L-arginine to L-ornithine needed to sustain rapid tumor growth; however its role in L-arginine depletion is unclear. Thus, in tumor biology, L-arginine metabolism may play a dual role in tumor growth and in the induction of T cell dysfunction. Therefore, we studied in murine renal cell carcinoma (RCC cell lines, the effect of arginase II on tumor cell proliferation and L-arginine depletion. The effect of arginase inhibitors on cell proliferation was also tested. Methods Three murine renal cell carcinoma (mRCC cell lines were tested for the presence of arginase. nor-NOHA, an arginase inhibitor was used to substantiate the effect of arginase on cell growth and L-arginine depletion. Amino acid levels were tested by HPLC. Results Our results show that mRCC cell lines express only arginase II and were able to deplete L-arginine from the medium. Cell growth was independent of the amount of arginase activity expressed by the cells. nor-NOHA significantly (P = 0.01 reduced arginase II activity and suppressed cell growth in cells exhibiting high arginase activity. The depletion of L-arginine by mRCC induced the decrease expression of CD3ζ a key element for T-cell function. Conclusion The results of this study show for the first time that arginase II produced by RCC cell lines depletes L-arginine resulting in decreased expression of CD3ζ. These results indicate that RCC cell lines expressing arginase II can modulate the L-arginine metabolic pathway to regulate both cell growth and T-cell function. Blocking arginase may lead to a decrease in RCC cell

  6. Inversion of allosteric effect of arginine on N-acetylglutamate synthase, a molecular marker for evolution of tetrapods

    Directory of Open Access Journals (Sweden)

    Cabrera-Luque Juan

    2008-09-01

    Full Text Available Abstract Background The efficient conversion of ammonia, a potent neurotoxin, into non-toxic metabolites was an essential adaptation that allowed animals to move from the aquatic to terrestrial biosphere. The urea cycle converts ammonia into urea in mammals, amphibians, turtles, snails, worms and many aquatic animals and requires N-acetylglutamate (NAG, an essential allosteric activator of carbamylphosphate synthetase I (CPSI in mammals and amphibians, and carbamylphosphate synthetase III (CPSIII in fish and invertebrates. NAG-dependent CPSI and CPSIII catalyze the formation of carbamylphosphate in the first and rate limiting step of ureagenesis. NAG is produced enzymatically by N-acetylglutamate synthase (NAGS, which is also found in bacteria and plants as the first enzyme of arginine biosynthesis. Arginine is an allosteric inhibitor of microbial and plant NAGS, and allosteric activator of mammalian NAGS. Results Information from mutagenesis studies of E. coli and P. aeruginosa NAGS was combined with structural information from the related bacterial N-acetylglutamate kinases to identify four residues in mammalian NAGS that interact with arginine. Substitutions of these four residues were engineered in mouse NAGS and into the vertebrate-like N-acetylglutamate synthase-kinase (NAGS-K of Xanthomonas campestris, which is inhibited by arginine. All mutations resulted in arginine losing the ability to activate mouse NAGS, and inhibit X. campestris NAGS-K. To examine at what point in evolution inversion of arginine effect on NAGS occur, we cloned NAGS from fish and frogs and examined the arginine response of their corresponding proteins. Fish NAGS were partially inhibited by arginine and frog NAGS were activated by arginine. Conclusion Difference in arginine effect on bacterial and mammalian NAGS most likely stems from the difference in the type of conformational change triggered by arginine binding to these proteins. The change from arginine

  7. Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor.

    Science.gov (United States)

    Beck von Bodman, S; Hayman, G T; Farrand, S K

    1992-01-15

    The Ti plasmids of Agrobacterium tumefaciens are conjugal elements whose transfer is strongly repressed. Transfer is induced by the conjugal opines, a group of unique carbon compounds synthesized in crown gall tumors. The opines also induce Ti plasmid-encoded genes required by the bacteria for opine catabolism. We have cloned and sequenced a gene from the Ti plasmid pTiC58, whose product mediates the opine-dependent regulation of conjugal transfer and catabolism of the conjugal opines, agrocinopines A and B. The gene, accR, is closely linked to the agrocinopine catabolic locus. A spontaneous mutant Ti plasmid, pTiC58Trac, which constitutively expresses conjugal transfer and opine catabolism, was complemented in trans by a clone of wild-type accR. Comparative sequence analysis identified a 5-base-pair deletion close to the 5' end of the mutant accR allele from pTiC58Trac. Analysis of lacZ fusions in conjugal transfer and opine catabolic structural genes demonstrated that the accR-encoded function is a transcriptional repressor. accR can encode a 28-kDa protein. This protein is related to a class of repressor proteins that includes LacR, GutR, DeoR, FucR, and GlpR that regulate sugar catabolic systems in several bacterial genera. PMID:1731335

  8. Vitamin A deficiency increases protein catabolism and induces urea cycle enzymes in rats.

    Science.gov (United States)

    Esteban-Pretel, Guillermo; Marín, M Pilar; Cabezuelo, Francisco; Moreno, Verónica; Renau-Piqueras, Jaime; Timoneda, Joaquín; Barber, Teresa

    2010-04-01

    Chronic vitamin A deficiency induces a substantial delay in the rates of weight and height gain in both humans and experimental animals. This effect has been associated with an impaired nutrient metabolism and loss of body protein. Therefore, we analyzed the effect of vitamin A deficiency on endogenous proteolysis and nitrogen metabolism and its reversibility with all-trans retinoic acid (RA). Male weanling rats, housed in pairs, were pair-fed a vitamin A-deficient (VAD) or control diet until they were 60 d old. A group of deficient rats were further treated with daily intraperitoneal injections of all-trans RA for 10 d. Final body and tissue (i.e. liver and heart) weights were significantly lower and tissue:body weight ratios were similar in VAD rats and in controls. Conversely, the epididymal white fat:body weight ratio and the plasma concentrations of alanine aminotransferase and adiponectin were significantly higher in VAD rats, which also had hepatic macrovesicular lipid accumulations. Plasma and gastrocnemius muscle 3-methylhistidine, urine nitrogen, and plasma and urine urea concentrations were all significantly higher in the VAD group. The expression of the genes encoding urea cycle enzymes and their activities increased in VAD livers. These changes were partially reverted by all-trans RA. We propose that fuel partitioning in vitamin A deficiency may shift from fatty acids to protein catabolism as an energy source. Our results emphasize the importance of vitamin A on the energy balance control system and they provide an explanation for the role of vitamin A in protein turnover, development, and growth.

  9. Estimating fermentative amino acid catabolism in the small intestine of growing pigs.

    Science.gov (United States)

    Columbus, D A; Cant, J P; de Lange, C F M

    2015-11-01

    Fermentative catabolism (FAAC) of dietary and endogenous amino acids (AA) in the small intestine contributes to loss of AA available for protein synthesis and body maintenance functions in pigs. A continuous isotope infusion study was performed to determine whole body urea flux, urea recycling and FAAC in the small intestine of ileal-cannulated growing pigs fed a control diet (CON, 18.6% CP; n=6), a high fibre diet with 12% added pectin (HF, 17.7% CP; n = 4) or a low-protein diet (LP, 13.4% CP; n = 6). (15)N-ammonium chloride and (13)C-urea were infused intragastrically and intravenously, respectively, for 4 days. Recovery of ammonia at the distal ileum was increased by feeding additional fibre when compared with the CON (P > 0.05) but was not affected by dietary protein (0.24, 0.39 and 0.14 mmol nitrogen/kg BW/day for CON, HF and LP, respectively; P small intestine suggesting rapid absorption of ammonia before the distal ileum and lack of uniformity of enrichment in the digesta ammonia pool. A two-pool model was developed to determine possible value ranges for nitrogen flux in the small intestine assuming rapid absorption of ammonia.Maximum estimated FAAC based on this model was significantly lower when dietary protein content was decreased (32.9, 33.4 and 17.4 mmol nitrogen/kg BW/day; P small intestine nitrogen flux( P > 0.05)compared with CON. The two-pool model developed in the present study allows for estimation of FAAC but still has limitations. Quantifying FAAC in the small intestine of pigs, as well as other non-ruminants and humans, offers a number of challenges but warrants further investigation.

  10. Molecular and population analyses of a recombination event in the catabolic plasmid pJP4.

    Science.gov (United States)

    Larraín-Linton, Juanita; De la Iglesia, Rodrigo; Melo, Francisco; González, Bernardo

    2006-10-01

    Cupriavidus necator JMP134(pJP4) harbors a catabolic plasmid, pJP4, which confers the ability to grow on chloroaromatic compounds. Repeated growth on 3-chlorobenzoate (3-CB) results in selection of a recombinant strain, which degrades 3-CB better but no longer grows on 2,4-dichlorophenoxyacetate (2,4-D). We have previously proposed that this phenotype is due to a double homologous recombination event between inverted repeats of the multicopies of this plasmid within the cell. One recombinant form of this plasmid (pJP4-F3) explains this phenotype, since it harbors two copies of the chlorocatechol degradation tfd gene clusters, which are essential to grow on 3-CB, but has lost the tfdA gene, encoding the first step in degradation of 2,4-D. The other recombinant plasmid (pJP4-FM) should harbor two copies of the tfdA gene but no copies of the tfd gene clusters. A molecular analysis using a multiplex PCR approach to distinguish the wild-type plasmid pJP4 from its two recombinant forms, was carried out. Expected PCR products confirming this recombination model were found and sequenced. Few recombinant plasmid forms in cultures grown in several carbon sources were detected. Kinetic studies indicated that cells containing the recombinant plasmid pJP4-FM were not selectable by sole carbon source growth pressure, whereas those cells harboring recombinant plasmid pJP4-F3 were selected upon growth on 3-CB. After 12 days of repeated growth on 3-CB, the complete plasmid population in C. necator JMP134 apparently corresponds to this form. However, wild-type plasmid forms could be recovered after growing this culture on 2,4-D, indicating that different plasmid forms can be found in C. necator JMP134 at the population level. PMID:16980481

  11. Organic matter mineralization in frozen boreal soils-environmental constraints on catabolic and anabolic microbial activity

    Science.gov (United States)

    Oquist, Mats G.; Sparrman, Tobias; Schleucher, Jürgen; Nilsson, Mats B.

    2014-05-01

    Heterotrophic microbial mineralization of soil organic matter (SOM) and associated production and emission of atmospheric trace gases proceed during the winter months in the frozen soils of high latitude ecosystems. However, in what ways this microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is uncertain. This presentation will address how temperature, water availability and substrate availability combine to regulate rates of microbial activity at below freezing temperatures and the implications of this activity for SOM mineralization in the surface layers of boreal forest soils experiencing seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. Using stable isotope labeling (13C) we also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity prior to substrate uptake. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless, the soil microbial population appear very adapted to seasonal freezing with respect to their metabolic performance.

  12. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes.

    Science.gov (United States)

    Tasse, Lena; Bercovici, Juliette; Pizzut-Serin, Sandra; Robe, Patrick; Tap, Julien; Klopp, Christophe; Cantarel, Brandi L; Coutinho, Pedro M; Henrissat, Bernard; Leclerc, Marion; Doré, Joël; Monsan, Pierre; Remaud-Simeon, Magali; Potocki-Veronese, Gabrielle

    2010-11-01

    The human gut microbiome is a complex ecosystem composed mainly of uncultured bacteria. It plays an essential role in the catabolism of dietary fibers, the part of plant material in our diet that is not metabolized in the upper digestive tract, because the human genome does not encode adequate carbohydrate active enzymes (CAZymes). We describe a multi-step functionally based approach to guide the in-depth pyrosequencing of specific regions of the human gut metagenome encoding the CAZymes involved in dietary fiber breakdown. High-throughput functional screens were first applied to a library covering 5.4 × 10(9) bp of metagenomic DNA, allowing the isolation of 310 clones showing beta-glucanase, hemicellulase, galactanase, amylase, or pectinase activities. Based on the results of refined secondary screens, sequencing efforts were reduced to 0.84 Mb of nonredundant metagenomic DNA, corresponding to 26 clones that were particularly efficient for the degradation of raw plant polysaccharides. Seventy-three CAZymes from 35 different families were discovered. This corresponds to a fivefold target-gene enrichment compared to random sequencing of the human gut metagenome. Thirty-three of these CAZy encoding genes are highly homologous to prevalent genes found in the gut microbiome of at least 20 individuals for whose metagenomic data are available. Moreover, 18 multigenic clusters encoding complementary enzyme activities for plant cell wall degradation were also identified. Gene taxonomic assignment is consistent with horizontal gene transfer events in dominant gut species and provides new insights into the human gut functional trophic chain. PMID:20841432

  13. Mobile Portal Implementation Strategy

    DEFF Research Database (Denmark)

    Gao, Ping; Damsgaard, Jan

    2005-01-01

    Mobile portal plays an important role in mobile commerce market. Current literature focuses on static analysis on the value chain of mobile portals. This article provides a dynamic perspective on mobile portal strategy. Drawing upon network economics, we describe mobile portal implementation...... as a fourphase process. In different phase, a portal provider has various challenges to overcome and adopt diverse strategies, and correspondingly the regulator has different foci. The conceptual framework proposed in this article offers a basis for further analyses on the market dynamics of mobile commerce......, and can be generalized to studying other networked technologies...

  14. Head First Mobile Web

    CERN Document Server

    Gardner, Lyza; Grigsby, Jason

    2011-01-01

    Despite the huge number of mobile devices and apps in use today, your business still needs a website. You just need it to be mobile. Head First Mobile Web walks you through the process of making a conventional website work on a variety smartphones and tablets. Put your JavaScript, CSS media query, and HTML5 skills to work-then optimize your site to perform its best in the demanding mobile market. Along the way, you'll discover how to adapt your business strategy to target specific devices. Navigate the increasingly complex mobile landscapeTake both technical and strategic approaches to mobile

  15. Anti-stress and Adaptogenic Activity of l-Arginine Supplementation

    Directory of Open Access Journals (Sweden)

    Vanita Gupta

    2005-01-01

    Full Text Available In the present study, oral supplementation of l-arginine in rats was evaluated for its anti-stress and adaptogenic activity using the cold (5°C–hypoxia (428 mmHg–restraint (C-H-R animal model. A dose-dependent study of l-arginine was carried out at doses of 12.5, 25.0, 50.0, 100.0, 200.0 and 500.0 mg/kg body weight, administered orally 30 min prior to C-H-R exposure. The time taken by the rat to attain a rectal temperature of 23°C (Trec 23°C during C-H-R exposure and its recovery to Trec 37°C at normal atmospheric pressure and 32 ± 1°C were used as biomarkers of anti-stress and adaptogenic activity. Biochemical parameters related to lipid peroxidation, anti-oxidants, cell membrane permeability, nitric oxide and stress, with and without administration of the least effective l-arginine dose, were measured in rats on attaining Trec 23°C and Trec 37°C. The least effective adaptogenic dose of l-arginine was 100.0 mg/kg body weight. The C-H-R exposure of control rats, on attaining Trec 23°C, resulted in a significant increase in plasma malondialdehyde (MDA, blood lactate dehydrogenase (LDH and a decrease in blood catalase (CAT and plasma testosterone levels. On recovery (Trec 37°C of control rats, there was a further decrease in CAT and plasma testosterone, and an increase in LDH. l-Arginine supplementation resulted in a significant decrease in plasma MDA, an increase in blood superoxide dismutase (SOD, CAT levels maintained at control values and a lower increase in LDH compared with controls (45.3 versus 58.5% and 21.5 versus 105.2% on attaining Trec 23°C during C-H-R exposure and on recovery to Trec 37°C. The results suggested that l-arginine possesses potent anti-stress activity during C-H-R exposure and recovery from C-H-R-induced hypothermia.

  16. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

    Directory of Open Access Journals (Sweden)

    Sarker SR

    2013-04-01

    Full Text Available Satya Ranjan Sarker, Yumiko Aoshima, Ryosuke Hokama, Takafumi Inoue, Keitaro Sou, Shinji Takeoka Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns, Tokyo, Japan Background: Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt in the arginine head group. Methods: Cationic lipids were hydrated in 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid (HEPES buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results: We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the

  17. l-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats

    Science.gov (United States)

    Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2015-01-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might

  18. Insight on an arginine synthesis metabolon from the tetrameric structure of yeast acetylglutamate kinase.

    Directory of Open Access Journals (Sweden)

    Sergio de Cima

    Full Text Available N-acetyl-L-glutamate kinase (NAGK catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS, which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK has, in addition to the amino acid kinase (AAK domain found in other NAGKs, a ~150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the -110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs.

  19. Exploring the Mobility of Mobile Phone Users

    CERN Document Server

    Csáji, Balázs Cs; Traag, V A; Delvenne, Jean-Charles; Huens, Etienne; Van Dooren, Paul; Smoreda, Zbigniew; Blondel, Vincent D

    2013-01-01

    Mobile phone datasets allow for the analysis of human behavior on an unprecedented scale. The social network, temporal dynamics and mobile behavior of mobile phone users have often been analyzed independently from each other using mobile phone datasets. In this article, we explore the connections between various features of human behavior extracted from a large mobile phone dataset. Our observations are based on the analysis of communication data of 100000 anonymized and randomly chosen individuals in a dataset of communications in Portugal. We show that clustering and principal component analysis allow for a significant dimension reduction with limited loss of information. The most important features are related to geographical location. In particular, we observe that most people spend most of their time at only a few locations. With the help of clustering methods, we then robustly identify home and office locations and compare the results with official census data. Finally, we analyze the geographic spread ...

  20. Mobile Phones on Campus

    Institute of Scientific and Technical Information of China (English)

    朴春宝

    2007-01-01

    After entering the 21st century, more and more people have mobile phones in China. At the end of 2002, there were 20 million mobile phone users. By the year 2005 the number has reached up to 30 million.

  1. Making Everyday Mobility

    DEFF Research Database (Denmark)

    Wind, Simon

    Based upon a qualitative PhD study of 11 families everyday mobility, this paper inquiries into the everyday mobility of families with children in the Greater Copenhagen Area and the role mobility plays in contributing to coping in the families’ everyday life. Drawing on Mobilities theory (Jensen...... 2013; Urry 2007) and family theory (Holdsworth 2013; Morgan 2011), it is argued that family mobility is far from only an instrumental phenomenon, displacing family members back and forth between activities and doings, but also a type of family practice (Morgan, 2011) carrying social and emotional...... repercussions. Moreover, family mobility does not simply happen, rather the successful performance of everyday mobility is a creative process that requires labour, skill and knowledge (Vannini 2012). It is proposed that families cope with everyday life through the on-going making and performance of mobility...

  2. Ion mobility sensor system

    Science.gov (United States)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  3. Tandem mobile robot system

    Science.gov (United States)

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  4. Mobile Informal Learning

    NARCIS (Netherlands)

    Glahn, Christian; Börner, Dirk

    2010-01-01

    Glahn, C., & Börner, D. (2009). Mobile Informal Learning. Presented at Mobile Learning in Context Symposium at the Open University of the Netherlands. September, 11, 2009, Heerlen, The Netherlands: Open University of the Netherlands.

  5. One-Pot Green Synthesis and Bioapplication of l-Arginine-Capped Superparamagnetic Fe3O4 Nanoparticles

    Science.gov (United States)

    Lai, Yongchao; Yin, Weiwei; Liu, Jinting; Xi, Rimo; Zhan, Jinhua

    2010-02-01

    Water-soluble l-arginine-capped Fe3O4 nanoparticles were synthesized using a one-pot and green method. Nontoxic, renewable and inexpensive reagents including FeCl3, l-arginine, glycerol and water were chosen as raw materials. Fe3O4 nanoparticles show different dispersive states in acidic and alkaline solutions for the two distinct forms of surface binding l-arginine. Powder X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the structure of Fe3O4 nanocrystals. The products behave like superparamagnetism at room temperature with saturation magnetization of 49.9 emu g-1 and negligible remanence or coercivity. In the presence of 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride, the anti-chloramphenicol monoclonal antibodies were connected to the l-arginine-capped magnetite nanoparticles. The as-prepared conjugates could be used in immunomagnetic assay.

  6. Effects of a food supplement rich in arginine in patients with smear positive pulmonary tuberculosis--a randomised trial

    DEFF Research Database (Denmark)

    Schön, T; Idh, J; Westman, A;

    2011-01-01

    In tuberculosis (TB), the production of nitric oxide (NO) is confirmed but its importance in host defense is debated. Our aim was to investigate whether a food supplement rich in arginine could enhance clinical improvement in TB patients by increased NO production. Smear positive TB patients from.......39) or secondary outcomes. In the subgroup analysis according to HIV status, peanut supplemented HIV+/TB patients showed increased cure rate (83.8% (31/37) vs 53.1% (17/32), p ... Gondar, Ethiopia (n = 180) were randomized to a food supplementation rich in arginine (peanuts, equivalent to 1 g of arginine/day) or with a low arginine content (wheat crackers, locally called daboqolo) during four weeks. The primary outcome was cure rate according to the WHO classification...

  7. A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora.

    Science.gov (United States)

    Elleuche, Skander; Pöggeler, Stefanie

    2008-11-01

    Cyanase degrades toxic cyanate to NH3 and CO2 in a bicarbonate-dependent reaction. High concentrations of cyanate are fairly toxic to organisms. Here, we characterize a eukaryotic cyanase for the first time. We have isolated the cyn1 gene encoding a cyanase from the filamentous ascomycete Sordaria macrospora and functionally characterized the cyn1 product after heterologous expression in Escherichia coli. Site-directed mutagenesis confirmed a predicted catalytic centre of three conserved amino-acids. A Deltacyn1 knockout in S. macrospora was totally devoid of cyanase activity and showed an increased sensitivity to exogenously supplied cyanate in an arginine-depleted medium, defects in ascospore germination, but no other obvious morphological phenotype. By means of real-time PCR we have demonstrated that the transcriptional level of cyn1 is markedly elevated in the presence of cyanate and down-regulated by addition of arginine. The putative functions of cyanase in fungi are discussed.

  8. Atomic-Resolution Structure of an N(5) Flavin Adduct in D-Arginine Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Guoxing; Yuan, Hongling; Wang, Siming; Gadda, Giovanni; Weber, Irene T. (GSU)

    2011-09-06

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 {angstrom} atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct.

  9. Atomic-resolution structure of an N5 flavin adduct in D-arginine dehydrogenase.

    Science.gov (United States)

    Fu, Guoxing; Yuan, Hongling; Wang, Siming; Gadda, Giovanni; Weber, Irene T

    2011-07-26

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 Å atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct. PMID:21707047

  10. Influence of a Hydrophobic Environment on the Structure of Arginine-Carboxylate Salt Bridge

    Institute of Scientific and Technical Information of China (English)

    FENG,Yong(封勇); LIU,Lei(刘磊); MU,Ting-Wei(穆廷巍); GUO,Qing-Xiang(郭庆祥)

    2002-01-01

    The exact structure of an arginine-carboxylate salt bridge in different chemical environments remains a controversial problem. In the present work, the zwitterionic and neutral forms of arginine-carboxylate salt bridge were studied by the B3LYP/6-311G(d,p)//PM3 method. It turns out that the neutral forms are more stable than the zwitterionic counterparis in gas phase.However, when bound by c-cyclodextrin, the zwitterionic forms become more stable than the corresponding neutral ones.It is suggested that the hydrophobic environment provided by the cyclodextrin cavity leads to such behavior. Tnerefore, the salt bridge still could be in a zwitterionic form in the hydrophobic interior of the real proteins.

  11. Zinc induces unfolding and aggregation of dimeric arginine kinase by trapping reversible unfolding intermediate.

    Science.gov (United States)

    Liu, Taotao; Wang, Xicheng

    2010-11-01

    Arginine kinase plays an important role in the cellular energy metabolism of invertebrates. Dimeric arginine kinase (dAK) is unique in some marine invertebrates. The effects of Zn²(+) on the unfolding and aggregation of dAK from the sea cucumber Stichopus japonicus were investigated. Our results indicated that Zn²(+) caused dAK inactivation accompanied by conformational unfolding, the exposure of hydrophobic surface, and aggregation. Kinetic studies showed the inactivation and unfolding of dAK followed biphasic kinetic courses. Zn²(+) can affect unfolding and refolding of dAK by trapping the reversible intermediate. Our study provides important information regarding the effect of Zn²(+) on metabolic enzymes in marine invertebrates.

  12. Selection of Arginine-Rich Anti-Gold Antibodies Engineered for Plasmonic Colloid Self-Assembly

    CERN Document Server

    Jain, Purvi; Narayanan, S Shankara; Sharma, Jadab; Girard, Christian; Dujardin, Erik; Nizak, Clément

    2014-01-01

    Antibodies are affinity proteins with a wide spectrum of applications in analytical and therapeutic biology. Proteins showing specific recognition for a chosen molecular target can be isolated and their encoding sequence identified in vitro from a large and diverse library by phage display selection. In this work, we show that this standard biochemical technique rapidly yields a collection of antibody protein binders for an inorganic target of major technological importance: crystalline metallic gold surfaces. 21 distinct anti-gold antibody proteins emerged from a large random library of antibodies and were sequenced. The systematic statistical analysis of all the protein sequences reveals a strong occurrence of arginine in anti-gold antibodies, which corroborates recent molecular dynamics predictions on the crucial role of arginine in protein/gold interactions. Once tethered to small gold nanoparticles using histidine tag chemistry, the selected antibodies could drive the self-assembly of the colloids onto t...

  13. 157 nm Photodissociation of Dipeptide Ions Containing N-Terminal Arginine

    Science.gov (United States)

    Webber, Nathaniel; He, Yi; Reilly, James P.

    2013-12-01

    Twenty singly-charged dipeptide ions with N-terminal arginine were photodissociated using 157 nm light in both a linear ion-trap mass spectrometer and a MALDI-TOF-TOF mass spectrometer. Analogous to previous work on dipeptides containing C-terminal arginine, this set of samples enabled insights into the photofragmentation propensities associated with individual residues. In addition to familiar products such as a-, d-, and immonium ions, m2 and m2+13 ions were also observed. Certain side chains tended to cleave between their β and γ carbons without necessarily forming d- or w-type ions, and a few other ions were produced by the high-energy fragmentation of multiple bonds.

  14. Mobile Marketing in Japan

    OpenAIRE

    Noah H. N. Lynn; Paul D. Berger

    2014-01-01

    In this paper we describe the state of mobile marketing in Japan. We consider the various aspects of mobile marketing in Japan and what has led to the overwhelming adoption by Japanese youth, and to a degree Japanese society as a whole, of social media and associated activities. This growth of mobile marketing has dramatic, positive implications for marketing, in general, as well as for the sale of selected product classes. We also consider markers for suggesting what the future of mobile mar...

  15. Ion mobility spectrometry

    CERN Document Server

    Eiceman, GA

    2005-01-01

    Key Developments for Faster, More Precise Detection Capabilities Driven by the demand for the rapid and advanced detection of explosives, chemical and biological warfare agents, and narcotics, ion mobility spectrometry (IMS) undergone significant refinements in technology, computational capabilities, and understanding of the principles of gas phase ion chemistry and mobility. Beginning with a thorough discussion of the fundamental theories and physics of ion mobility, Ion Mobility Spectrometry, Second Edition describes the recent advances in instrumentation and newly

  16. Mobile internet protocol analysis

    OpenAIRE

    Brachfeld, Lawrence J.

    1999-01-01

    Mobile Internet Protocol (IP) is a proposed standard that builds on the current Internet Protocol by making the fact that a user is mobile transparent to applications and higher level protocols such as Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). Mobile IP allows mobile computers to send and receive packets addressed with their home network IP address, regardless of the IP address of their current point of attachment on the Internet while maintaining any current conne...

  17. Staging interrail mobilities

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg; Gyimóthy, Szilvia; Jensen, Ole B.

    2016-01-01

    This article applies the multiscalar ‘staging mobilities’ framework from the emergent subfield of mobilities design to analyse an enduring European rail travel phenomenon, interrail. This discussion extends and contributes to tourism mobilities research. Second, the article enriches previous stud...... and seat reservations. To reach these aims, the research design intertwines multi-sited ethnography, netnography, survey and interviews. The conclusion offers theoretical reflections pertaining to the role of mobilities designs and methodical hybrids in tourism mobilities research....

  18. PSiS Mobile

    OpenAIRE

    Anacleto, Ricardo; Luz, Nuno; Figueiredo, Lino

    2010-01-01

    In this paper, we present a state of the art on applications of mobile devices to support decision of a tourist running on a trip. We focus on two types of applications, tourism recommendation and tourism guide, making a brief description of the main characteristics of each one of them. We also refer the main problems encountered on the development of applications for mobile devices, and present PSiS (Personalized Sightseeing Tours Recommendation System) Mobile, our proposal to a mobile recom...

  19. Mobile connections : curator's statement.

    OpenAIRE

    Hemment, Drew

    2004-01-01

    The Mobile Connections exhibition at the Futuresonic 2004 festival explored how mobile and locative media reconfigure social, cultural and information space. It looked beyond computing in its current form, towards the social and cultural possibilities opened by a new generation of networked, location-aware media. It sought an art of mobile communications: asking, are there any forms of expression that are intrinsic or unique to mobile and locative media?

  20. Fixed mobile convergence handbook

    CERN Document Server

    Ahson, Syed A

    2010-01-01

    From basic concepts to future directions, this handbook provides technical information on all aspects of fixed-mobile convergence (FMC). The book examines such topics as integrated management architecture, business trends and strategic implications for service providers, personal area networks, mobile controlled handover methods, SIP-based session mobility, and supervisory and notification aggregator service. Case studies are used to illustrate technical and systematic implementation of unified and rationalized internet access by fixed-mobile network convergence. The text examines the technolo