WorldWideScience

Sample records for argentinean water cooled

  1. Water-cooled electronics

    CERN Document Server

    Dumont, G; Righini, B

    2000-01-01

    LHC experiments demand on cooling of electronic instrumentation will be extremely high. A large number of racks will be located in underground caverns and counting rooms, where cooling by conventional climatisation would be prohibitively expensive. A series of tests on the direct water cooling of VMEbus units and of their standard power supplies is reported. A maximum dissipation of 60 W for each module and more than 1000 W delivered by the power supply to the crate have been reached. These values comply with the VMEbus specifications. (3 refs).

  2. Elemental and isotopic fingerprint of Argentinean wheat. Matching soil, water, and crop composition to differentiate provenance.

    Science.gov (United States)

    Podio, Natalia S; Baroni, María V; Badini, Raúl G; Inga, Marcela; Ostera, Héctor A; Cagnoni, Mariana; Gautier, Eduardo A; García, Pilar Peral; Hoogewerff, Jurian; Wunderlin, Daniel A

    2013-04-24

    The aim of this study was to investigate if elemental and isotopic signatures of Argentinean wheat can be used to develop a reliable fingerprint to assess its geographical provenance. For this pilot study we used wheat cultivated at three different regions (Buenos Aires, Córdoba, and Entre Ríos), together with matching soil and water. Elemental composition was determined by ICP-MS. δ(13)C and δ(15)N were measured by isotopic ratio mass spectrometry, while (87)Sr/(86)Sr ratio was determined using thermal ionization mass spectrometry. Wheat samples from three sampling sites were differentiated by the combination of 11 key variables (K/Rb, Ca/Sr, Ba, (87)Sr/(86)Sr, Co, Mo, Zn, Mn, Eu, δ(13)C, and Na), demonstrating differences among the three studied regions. The application of generalized Procrustes analysis showed 99.2% consensus between cultivation soil, irrigation water, and wheat samples, in addition to clear differences between studied areas. Furthermore, canonical correlation analysis showed significant correlation between the elemental and isotopic profiles of wheat and those corresponding to both soil and water (r(2) = 0.97, p wheat samples using different statistical methods, showing that wheat elemental and isotopic compositions are mainly related to soil and irrigation water characteristics of the site of growth.

  3. Water Cooled Mirror Design

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pulliam, Elias Noel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  4. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    . To prevent wet discomfort, the T-shirt was made of a polyester material having a water-repellent silicon coating on the inner surface. The chest, front upper arms, and nape of the neck were adopted as the cooling areas of the human body. We conducted human subject experiments in an office with air...

  5. 18 CFR 420.44 - Cooling water.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water...

  6. Biofouling Control in Cooling Water

    Directory of Open Access Journals (Sweden)

    T. Reg Bott

    2009-01-01

    Full Text Available An important aspect of environmental engineering is the control of greenhouse gas emissions. Fossil fuel-fired power stations, for instance, represent a substantial contribution to this problem. Unless suitable steps are taken the accumulation of microbial deposits (biofouling on the cooling water side of the steam condensers can reduce their efficiency and in consequence, the overall efficiency of power production, with an attendant increase in fuel consumption and hence CO2 production. Biofouling control, therefore, is extremely important and can be exercised by chemical or physical techniques or a combination of both. The paper gives some examples of the effectiveness of different approaches to biofouling control.

  7. Dry cooling tower with water augmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ireland, R.G.; Tramontini, V.N.

    1981-06-23

    An air cooling tower system is disclosed for condensing exhaust steam in power plants, that has water cooling augmentation to maintain the plant cooling capacity during high atmospheric temperature periods. The cooling tower includes a plurality of banks of brazed aluminum plate and fin type heat exchangers arranged in inverted ''v'' shaped sets. These heat exchangers cool ammonia used as the cooling fluid in the primary condenser for the power plant turbine exhaust steam. Each of these heat exchangers has a core consisting of a plurality of parallel aluminum plates spaced apart by fin assemblies that define a plurality of fluid passes. Approximately every other one of these passes has closed sides that open at the ends of the core to headers and define ammonia passes. The passes adjacent the ammonia passes are open at the sides and define air passes that permit the free flow of air transversely through the heat exchanger cores. An additional pass is provided adjacent every fourth one of the ammonia passes and these have closed sides and ends and define the passes for the cooling water. The water passes communicate at the bottom of the core with a water inlet manifold and at the top of the core with a water outlet manifold. The cooling tower system is designed so that at 55 degrees fahrenheit air temperatures or below, the cooling air alone will provide the necessary cooling for the ammonia to satisfy plant requirements. Above 55 degrees fahrenheit air temperature, cooling water from a separate water tank is pumped through the water passes to provide an additional cooling effect to maintain the design cooling capacity.

  8. Progress of the Water Cooling System for CYCIAE-100

    Institute of Scientific and Technical Information of China (English)

    LI; Zhen-guo; WU; Long-cheng; LIU; Geng-guo

    2013-01-01

    The water cooling system for CYCIAE-100 has achieved a significant progress in 2013,its progress can be summarized as follows:1)The deionized water production equipment and the main circulating water cooling unit are installed and tested.2)The circulating water cooling unit for high power target and circulating water cooling unit for vacuum helium compressor are installed and tested.

  9. Evaporative cooling: water for thermal comfort

    Directory of Open Access Journals (Sweden)

    José Rui Camargo

    2008-08-01

    Full Text Available Evaporative cooling is an environmentally friendly air conditioning system that operates using induced processes of heat and mass transfer, where water and air are the working fluids. It consists, specifically, in water evaporation, induced by the passage of an air flow, thus decreasing the air temperature. This paper presents three methods that can be used as reference for efficient use of evaporative cooling systems, applying it to several Brazilian cities, characterized by different climates. Initially it presents the basic operation principles of direct and indirect evaporative cooling and defines the effectiveness of the systems. Afterwards, it presents three methods that allows to determinate where the systems are more efficient. It concludes that evaporative cooling systems have a very large potential to propitiate thermal comfort and can still be used as an alternative to conventional systems in regions where the design wet bulb temperature is under 24ºC.

  10. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  11. Amorphous silica scale in cooling waters

    Energy Technology Data Exchange (ETDEWEB)

    Midkiff, W.S.; Foyt, H.P.

    1976-01-01

    In 1968, most of the evaporation cooled recirculating water systems at Los Alamos Scientific Laboratory were nearly inoperable due to scale. These systems, consisting of cooling towers, evaporative water coolers, evaporative condensers, and air washers had been operated on continuous blowdown without chemical treatment. The feedwater contained 80 mg/l silica. A successful program of routine chemical addition in the make-up water was begun. Blends of chelants, dispersants and corrosion inhibitors were found to gradually remove old scale, prevent new scale, and keep corrosion to less than an indicated rate of one mil per year. An explanation has been proposed that amorphous silica by itself does not form a troublesome scale. When combined with a crystal matrix such as calcite, the resultant silica containing scale can be quite troublesome. Rapid buildup of silica containing scale can be controlled and prevented by preventing formation of crystals from other constituents in the water such as hardness or iron. (auth)

  12. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  13. Anomalous Effects in Air While Cooling Water

    CERN Document Server

    Sardo, Rachel

    2008-01-01

    Water is a unique compound with many anomalies and properties not fully understood. Designing an experiment in the laboratory to study such anomalies, we set up a series of experiments where a tube was placed inside a sealed container with thermocouples attached to the outer surface of the tube and in the air adjacent to the tube. Alternately, deionized water and other compounds were added to the tube and cooled to freezing. Several of the thermocouples suspended in the air and adjacent to the tube showed thermal oscillations as the overall temperature of the container was decreasing. The temperature of the thermocouples increased and decreased in a sinusoidal way during part of the cool down to freezing. Thermal oscillations as large as 3 degrees Celsius were recorded with typical frequencies of about 5 oscillations per minute.

  14. Free Cooling in the Water Cooling Towers: a Case Study for Istanbul, Turkey

    OpenAIRE

    KOÇ, İbrahim; PARMAKSIZOGLU, Cem

    2013-01-01

    Energy saving in cooling towers which is used for cooling to the hot water can be significantly improved by using free cooling application. This application is commonly known economizer cycle and when outside conditions are suitable for cooling, it is used for. In this study, the free cooling is applied for the cold water necessity which is supplied by the chiller of the cooling tower in the factory which is available in Istanbul. The results show that the ...

  15. The effect of cooling water on magnet vibrations

    CERN Document Server

    Redaelli, S; Coosemans, Williame; Schnell, Wolfgang

    2002-01-01

    The quadrupole magnets in the CLIC Test Facility II (CTF2) incorporate a water cooling circuit. In the frame-work of the CLIC stability study, the mechanical vibrations of the magnets were measured for different flows of cool-ing water. We present the results and compare them with simple theoretical estimates. It is shown that the vibra-tion requirements of the Compact LInear Collider (CLIC) quadrupoles with cooling water can basically be met.

  16. Application of Cooling Water in Controlled Runout Table Cooling on Hot Strip Mill

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng-dong; I V Samarasekera

    2004-01-01

    The controlled runout table cooling is essential in determining the final mechanical properties and flatness of steel strip. The heat of a hot steel strip is mainly extracted by cooling water during runout. In order to study the heat transfer by water jet impingement boiling during runout, a pilot facility was constructed at the University of British Columbia. On this pilot facility, the water jet impingement tests were carried out under various cooling conditions to investigate the effect of processing parameters, such as cooling water temperature, water jet impingement velocity, initial strip temperature, water flow rate, water nozzle diameter and array of water nozzles, on the heat transfer of heated strip. The results obtained contribute to the optimization of cooling water during runout.

  17. Policy Recommendations for the Argentinean Water Resources National Plan Related to Extreme Events in Forested Mountain Basins.

    Science.gov (United States)

    Urciuolo, A. B.; Iturraspe, R. J.; Lofiego, R.

    2007-05-01

    In the framework of activities developed by COHIFE (Federal Water Resource Council), Argentina is preparing the Water Resources National Plan. To achieve an integrating project and considering that Argentina is a federal country, each province is working on the basis of its own Water Resources Provincial Plan. The first step of the plan consists in the identification of problems, with the purpose of further defining solutions based on structural and non structural actions. The general perception of the stakeholders involved in the plan development is the necessity of the analysis of strategies for the integrated water resource management Although a first document for water policy, named "Principios Rectores de Política Hídrica" is available, there are not specific strategies for integrated management of water and land use oriented to extreme events. In other way, there are a lack of policies oriented to Mountain basin with forest coverage, may be because of most of the population and the economical structure of the country is located on plain regions. This article proposes recommendations for policy to be integrated to the Water Resources National Plan, based on studies developed in a pilot basin representative of the Andean-Patagonia eco-region, in the framework of the EPIC FORCE proyect, financed by the European Union. Project methodology includes basin instrumentation, reconstruction and analysis of extreme events and land-water management practices revision. Climate, flow and sediment Data are available for simulation using the Shetran model on different land use scenarios, including changes in the basin forest coverage. On the basis of the first results of the project, policy guides oriented to fill mentioned policy lacks were defined.

  18. Electrochemistry of Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  19. Progress of the Water Cooling System for CYCIAE-100

    Institute of Scientific and Technical Information of China (English)

    LI; Zhen-guo; WU; Long-cheng; LIU; Geng-guo

    2012-01-01

    <正>According to the general construction schedule of the BRIF project, the water cooling system for CYCIAE-100 has achieved a significant progress in 2012, its progress can be summarized as follows. 1) Inside wiring of 7 water distribution cabinets were completed. 2) Manufacturer selection of circulating water cooling unit and deionized water production equipment was decided after market survey and bidding process. The contracts were formally signed in February. The deionized water production equipment was ready in May and the circulating water cooling

  20. Use of nanofiltration to reduce cooling tower water usage.

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

    2010-09-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  1. Use of nanofiltration to reduce cooling tower water consumption.

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Susan Jeanne; Ciferno, Jared

    2010-10-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  2. A heat dissipating model for water cooling garments

    Directory of Open Access Journals (Sweden)

    Yang Kai

    2013-01-01

    Full Text Available A water cooling garment is a functional clothing used to dissipate human body’s redundant energy in extravehicular environment or other hot environment. Its heat dissipating property greatly affects body’s heat balance. In this paper, a heat dissipating model for the water cooling garment is established and verified experimentally using the experimental thermal-manikin.

  3. Genomic continuity of Argentinean Mennonites

    Science.gov (United States)

    Pardo-Seco, Jacobo; Llull, Cintia; Berardi, Gabriela; Gómez, Andrea; Andreatta, Fernando; Martinón-Torres, Federico; Toscanini, Ulises; Salas, Antonio

    2016-01-01

    Mennonites are Anabaptist communities that originated in Central Europe about 500 years ago. They initially migrated to different European countries, and in the early 18th century they established their first communities in North America, from where they moved to other American regions. We aimed to analyze an Argentinean Mennonite congregation from a genome-wide perspective by way of investigating >580.000 autosomal SNPs. Several analyses show that Argentinean Mennonites have European ancestry without signatures of admixture with other non-European American populations. Among the worldwide datasets used for population comparison, the CEU, which is the best-subrogated Central European population existing in The 1000 Genome Project, is the dataset showing the closest genome affinity to the Mennonites. When compared to other European population samples, the Mennonites show higher inbreeding coefficient values. Argentinean Mennonites show signatures of genetic continuity with no evidence of admixture with Americans of Native American or sub-Saharan African ancestry. Their genome indicates the existence of an increased endogamy compared to other Europeans most likely mirroring their lifestyle that involve small communities and historical consanguineous marriages. PMID:27824108

  4. Application of Heat Pump in Cooling Water System of HIRFL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Accelerator generates a lot of heat when it is working.It must be cooled by the circulating cooling water.Generally the heat was released to atimosphere by the cooling water tower.Because the heat energy is very huge(about 2M watts for HIRFL),it is big waste and the machine can’t be cooled to appropriate temperature when ambient temperature is high in summer.In order to solve the problems,the heat pump has been used

  5. Enhancing the performance of photovoltaic panels by water cooling

    Directory of Open Access Journals (Sweden)

    K.A. Moharram

    2013-12-01

    Full Text Available The objective of the research is to minimize the amount of water and electrical energy needed for cooling of the solar panels, especially in hot arid regions, e.g., desert areas in Egypt. A cooling system has been developed based on water spraying of PV panels. A mathematical model has been used to determine when to start cooling of the PV panels as the temperature of the panels reaches the maximum allowable temperature (MAT. A cooling model has been developed to determine how long it takes to cool down the PV panels to its normal operating temperature, i.e., 35 °C, based on the proposed cooling system. Both models, the heating rate model and the cooling rate model, are validated experimentally. Based on the heating and cooling rate models, it is found that the PV panels yield the highest output energy if cooling of the panels starts when the temperature of the PV panels reaches a maximum allowable temperature (MAT of 45 °C. The MAT is a compromise temperature between the output energy from the PV panels and the energy needed for cooling.

  6. Naegleria fowleri in cooling waters of power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cerva, L.; Kasprzak, W.; Mazur, T.

    1982-01-01

    Six strains of nonvirulent and three strains of virulent variants of Naegleria fowleri amoebae were isolated from the examined cooling water samples from 9 power plants. The virulent variants were obtained solely from effluents discharged from power plants with a closed-circuit cooling N. fowleri was not detected outside the reach of the thermal pollution. A disinfection of out-flowing cooling water seems to be an unnecessary investment in our climate. Warm discharge water should under no conditions be used directly for sports and recreational purposes.

  7. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    Science.gov (United States)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  8. DUSEL Facility Cooling Water Scaling Issues

    Energy Technology Data Exchange (ETDEWEB)

    Daily, W D

    2011-04-05

    Precipitation (crystal growth) in supersaturated solutions is governed by both kenetic and thermodynamic processes. This is an important and evolving field of research, especially for the petroleum industry. There are several types of precipitates including sulfate compounds (ie. barium sulfate) and calcium compounds (ie. calcium carbonate). The chemical makeup of the mine water has relatively large concentrations of sulfate as compared to calcium, so we may expect that sulfate type reactions. The kinetics of calcium sulfate dihydrate (CaSO4 {center_dot} 2H20, gypsum) scale formation on heat exchanger surfaces from aqueous solutions has been studied by a highly reproducible technique. It has been found that gypsum scale formation takes place directly on the surface of the heat exchanger without any bulk or spontaneous precipitation in the reaction cell. The kinetic data also indicate that the rate of scale formation is a function of surface area and the metallurgy of the heat exchanger. As we don't have detailed information about the heat exchanger, we can only infer that this will be an issue for us. Supersaturations of various compounds are affected differently by temperature, pressure and pH. Pressure has only a slight affect on the solubility, whereas temperature is a much more sensitive parameter (Figure 1). The affect of temperature is reversed for calcium carbonate and barium sulfate solubilities. As temperature increases, barium sulfate solubility concentrations increase and scaling decreases. For calcium carbonate, the scaling tendencies increase with increasing temperature. This is all relative, as the temperatures and pressures of the referenced experiments range from 122 to 356 F. Their pressures range from 200 to 4000 psi. Because the cooling water system isn't likely to see pressures above 200 psi, it's unclear if this pressure/scaling relationship will be significant or even apparent. The most common scale minerals found in the

  9. Desiccant Dewpoint Cooling System Independent of External Water Sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    This paper presents a patent pending technical solution aiming to make desiccant cooling systems independent of external water sources, hence solving problems of water availability, cost and treatment that can decrease the system attractiveness. The solution consists in condensing water from the ...... to the desiccant dew-point system without water recovery, the required regeneration temperature increases and the system thermal efficiency decreases.......This paper presents a patent pending technical solution aiming to make desiccant cooling systems independent of external water sources, hence solving problems of water availability, cost and treatment that can decrease the system attractiveness. The solution consists in condensing water from...... the air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...

  10. Use of reclaimed water for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2007-10-16

    Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of water to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort

  11. [Immediate cooling with water: emergency treatment of burns].

    Science.gov (United States)

    Latarjet, J

    1990-01-01

    Experimental data have demonstrated that prolonged immediate cooling with cold water is the best first-aid treatment for burn injuries. However in France, this treatment is rarely applied; instead old, inefficient and aggravating methods are still very popular. Pediatricians must help to change this practice by recommending immediate cold water treatment for burns in children.

  12. A data acquisition system for water heating and cooling experiments

    Science.gov (United States)

    Perea Martins, J. E. M.

    2017-01-01

    This work presents a simple analogue waterproof temperature probe design and its electronic interfacing with a computer to compose a data acquisition system for water temperature measurement. It also demonstrates the system usage through an experiment to verify the water heating period with an electric heater and another to verify the Newton’s law of cooling

  13. Low temperature heating and high temperature cooling embedded water based surface heating and cooling systems

    CERN Document Server

    Babiak, Jan; Petras, Dusan

    2009-01-01

    This Guidebook describes the systems that use water as heat-carrier and when the heat exchange within the conditioned space is more than 50% radiant. Embedded systems insulated from the main building structure (floor, wall and ceiling) are used in all types of buildings and work with heat carriers at low temperatures for heating and relatively high temperature for cooling.

  14. Forward osmosis applied to evaporative cooling make-up water

    Energy Technology Data Exchange (ETDEWEB)

    Nicoll, Peter; Thompson, Neil; Gray, Victoria [Modern Water plc, Guildford (United Kingdom)

    2012-11-15

    Modern Water is in the process of developing a number of forward osmosis based technologies, ranging from desalination to power generation. This paper outlines the progress made to date on the development and commercial deployment of a forward osmosis based process for the production of evaporative cooling tower make-up water from impaired water sources, including seawater. Evaporative cooling requires significant amounts of good quality water to replace the water lost by evaporation, drift and blowdown. This water can be provided by conventional desalination processes or by the use of tertiary treated sewage effluent. The conventional processes are well documented and understood in terms of operation and power consumption. A new process has been successfully developed and demonstrated that provides make-up water directly, using a core platform 'forward osmosis' technology. This new technology shows significant promise in allowing various raw water sources, such as seawater, to be used directly in the forward osmosis step, thus releasing the use of scarce and valuable high grade water for other more important uses. The paper presents theoretical and operational results for the process, where it is shown that the process can produce make-up water at a fraction of the operational expenditure when compared to conventional processes, in particular regarding power consumption, which in some cases may be as low as 15 % compared to competing processes. Chemical additives to the cooling water (osmotic agent) are retained within the process, thus reducing their overall consumption. Furthermore the chemistry of the cooling water does not support the growth of Legionella pneumophila. Corrosion results are also reported. (orig.)

  15. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    Science.gov (United States)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  16. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  17. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  18. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...... in warm/hot and dry environment where dehumidification of outdoor air is not needed. A laboratory experiment was designed and conducted to evaluate the cooling effectiveness of this technology. The experiment was conducted in a twin-climate chamber. One chamber simulated warm/hot and dry outdoor...... environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water...

  19. Modeling and energy simulation of the variable refrigerant flow air conditioning system with water-cooled condenser under cooling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueming; Wu, Jingyi [Shanghai Jiao Tong University, Institute of Refrigeration and Cryogenics (China); Shiochi, Sumio [Daikin Industries Ltd. (Japan)

    2009-09-15

    As a new system, variable refrigerant flow system with water-cooled condenser (water-cooled VRF) can offer several interesting characteristics for potential users. However, at present, its dynamic simulation simultaneously in association with building and other equipments is not yet included in the energy simulation programs. Based on the EnergyPlus's codes, and using manufacturer's performance parameters and data, the special simulation module for water-cooled VRF is developed and embedded in the software of EnergyPlus. After modeling and testing the new module, on the basis of a typical office building in Shanghai with water-cooled VRF system, the monthly and seasonal cooling energy consumption and the breakdown of the total power consumption are analyzed. The simulation results show that, during the whole cooling period, the fan-coil plus fresh air (FPFA) system consumes about 20% more power than the water-cooled VRF system does. The power comparison between the water-cooled VRF system and the air-cooled VRF system is performed too. All of these can provide designers some ideas to analyze the energy features of this new system and then to determine a better scheme of the air conditioning system. (author)

  20. Corrosion induced clogging and plugging in water-cooled generator cooling circuit

    Energy Technology Data Exchange (ETDEWEB)

    Park, B.G.; Hwang, I.S. [Dept. of Nuclear Engineering, Seoul National Univ. (Korea, Republic of); Rhee, I.H. [Dept. of Chemical Engineering, Soonchunhyang Univ. (Korea, Republic of); Kim, K.T.; Chung, H.S. [Korea Electric Power Research Inst. (Korea, Republic of)

    2002-07-01

    Water-cooled electrical generators have been experienced corrosion-related problems that are restriction of flow through water strainers caused by collection of excessive amounts of copper corrosion products (''clogging''), and restriction of flow through the copper strands in the stator bars caused by growth or deposition of corrosion products on the walls of the hollow strands (''plugging''). These phenomena result in unscheduled shutdowns that would be a major concern because of the associated loss in generating capacity. Water-cooled generators are operated in one of two modes. They are cooled either with aerated water (dissolved oxygen >2 ppm) or with deaerated water (dissolved oxygen <50 ppb). Both modes maintain corrosion rates at satisfactorily low levels as long as the correct oxygen concentrations are maintained. However, it is generally believed that very much higher copper corrosion rates result at the intermediate oxygen concentrations of 100-1000 ppb. Clogging and plugging are thought to be associated with these intermediate concentrations, and many operators have suggested that the period of change from high-to-low or from low-to-high oxygen concentration is particularly damaging. In order to understand the detailed mechanism(s) of the copper oxide formation, release and deposition and to identify susceptible conditions in the domain of operating variables, a large-scale experiments are conducted using six hollow strands of full length connected with physico-chemically scaled generator cooling water circuit. To ensure a close simulation of thermal-hydraulic conditions in a generator stator, strands of the loop will be ohmically heated using AC power supply. Experiments is conducted to cover oxygen excursions in both high dissolved oxygen and low dissolved oxygen conditions that correspond to two representative operating condition at fields. A thermal upset condition is also simulated to examine the impact of

  1. Conceptual design of a water cooled breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Pu, Yong; Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Jia; Peng, ChangHong [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Ma, Xuebing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Chen, Lei [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2014-10-15

    Highlights: • We proposed a water cooled ceramic breeder blanket with superheated steam. • Superheated steam is generated at the first wall and the front part of breeder zone. • Superheated steam has negligible impact on neutron absorption by coolant in FW and improves TBR. • The superheated steam at higher temperature can improve thermal efficiency. - Abstract: China Fusion Engineering Test Reactor (CFETR) is an ITER-like superconducting tokamak reactor. Its major radius is 5.7 m, minor radius is 1.6 m and elongation ratio is 1.8. Its mission is to achieve 50–200 MW of fusion power, 30–50% of duty time factor, and tritium breeding ratio not less than 1.2 to ensure the self-sufficiency. As one of the breeding blanket candidates for CFETR, a water cooled breeder blanket with superheated steam is proposed and its conceptual design is being carried out. In this design, sub-cooling water at 265 °C under the pressure of 7 MPa is fed into cooling plates in breeding zone and is heated up to 285 °C with saturated steam generated, and then this steam is pre-superheated up to 310 °C in first wall (FW), final, the pre-superheated steam coming from several blankets is fed into the other one blanket to superheat again up to 517 °C. Due to low density of superheated steam, it has negligible impact on neutron absorption by coolant in FW so that the high energy neutrons entering into breeder zone moderated by water in cooling plate help enhance tritium breeding by {sup 6}Li(n,α)T reaction. Li{sub 2}TiO{sub 3} pebbles and Be{sub 12}Ti pebbles are chosen as tritium breeder and neutron multiplier respectively, because Li{sub 2}TiO{sub 3} and Be{sub 12}Ti are expected to have better chemical stability and compatibility with water in high temperature. However, Be{sub 12}Ti may lead to a reduction in tritium breeding ratio (TBR). Furthermore, a spot of sintered Be plate is used to improve neutron multiplying capacity in a multi-layer structure. As one alternative option

  2. Advances in alkaline cooling water treatment technology: An update

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, A.E. Jr.; Klatskin, S.D.

    1985-01-01

    A series of chromate and non-chromate treatment programs, specifically designed for alkaline pH cooling waters, have been developed. The treatments provide excellent corrosion and scale control over a broad range of water chemistries and are applicable to high conductivity and iron contaminated waters. Low levels of zinc are used to reduce the dependency on alkalinity, chromate and calcium carbonate supersaturation for corrosion control. The precipitation and fouling problems previously encountered with zinc containing treatments have been eliminated by the use of polymeric dispersants.

  3. USE of mine pool water for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Kupar, J. M .; Puder, M. G.

    2006-11-27

    Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

  4. Effect of cooling water on stability of NLC linac components

    Energy Technology Data Exchange (ETDEWEB)

    F. Le Pimpec et al.

    2003-02-11

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  5. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  6. DEVELOPMENT OF SINGLE-PHASED WATER-COOLING RADIATOR FOR COMPUTER CHIP

    Institute of Scientific and Technical Information of China (English)

    ZENG Ping; CHENG Guangming; LIU Jiulong; YANG Zhigang; SUN Xiaofeng; PENG Taijiang

    2007-01-01

    In order to cool computer chip efficiently with the least noise, a single phase water-cooling radiator for computer chip driven by piezoelectric pump with two parallel-connection chambers is developed. The structure and work principle of this radiator is described. Material, processing method and design principles of whole radiator are also explained. Finite element analysis (FEA) software,ANSYS, is used to simulate the heat distribution in the radiator. Testing equipments for water-cooling radiator are also listed. By experimental tests, influences of flowrate inside the cooling system and fan on chip cooling are explicated. This water-cooling radiator is proved more efficient than current air-cooling radiator with comparison experiments. During cooling the heater which simulates the working of computer chip with different power, the water-cooling radiator needs shorter time to reach lower steady temperatures than current air-cooling radiator.

  7. Investigation of the Use of Absorption Cooling Cycles to Reduce the Amount of Cooling Water Needed for Power Plants.

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Bobby D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    This report outlines a preliminary study on the feasibility of using absorption cooling technology to cool thermoelectric power plants. Water availability is becoming more important in the production of energy throughout the world, especially in thermoelectric power generation. Currently, thermoelectric power generation accounts for about 48% of all water withdrawals in the United States. Rising population, increasing e lectricity use per capita, and decreasing water reserves threaten the availability of water for use in cooling power plants. To this end, Sandia National Laboratories has begun an initiative to find ways to increase the water use efficiency of power plants . In 2016, the New Mexico Small Business Association funded a project whereby Sandia would complete a preliminary assessment of the viability of utilizing absorption cooling technologies to aid in cooling thermoelectric power plants, thereby decreasing the amount of water required to generate electricity. This project was proposed by Thales Energy, a small business located in Albuquerque, NM. Due to time and money constraints, only a preliminary analysis was performed. The results indicate that the use of a bsorption cooling technologies is scientifically feasible and that, with more engineering analysis, may be economically feasible for some power plants, dependent upon local environmental conditions and the price currently being paid for cooling water by th e plant.

  8. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2013-06-12

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG), 1.68, ``Initial Test Programs for Water-Cooled Nuclear Power Plants... Initial Test Programs (ITPs) for light water cooled nuclear power plants. ADDRESSES: Please refer...

  9. Coagulation chemistries for silica removal from cooling tower water.

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

  10. Experimental validation of the simulation module of the water-cooled variable refrigerant flow system under cooling operation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yue Ming; Wu, Jing Yi [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai (China); Shiochi, Sumio [Daikin Industries, Ltd., 1304 Kanaoka-cho, Kita-ku, Sakai, Osaka 591-8511 (Japan)

    2010-05-15

    On the basis of EnergyPlus's codes, the catalogue and performance parameters from some related companies, a special simulation module for variable refrigerant flow system with a water-cooled condenser (water-cooled VRF) was developed and embedded in the software of EnergyPlus, the building energy simulation program. To evaluate the energy performance of the system and the accuracy of the simulation module, the measurement of the water-cooled VRF is built in Dalian, China. After simulation and comparison, some conclusions can be drawn. The mean of the absolute value of the daily error in the 9 days is 11.3% for cooling capacity while the one for compressor power is 15.7%. At the same time, the accuracy of the power simulation strongly depends on the accuracy of the cooling capacity simulation. (author)

  11. Water-cooled radiofrequency neuroablation for sacroiliac joint dysfunctional pain.

    Science.gov (United States)

    Biswas, Binay Kumar; Dey, Samarjit; Biswas, Saumya; Mohan, Varinder Kumar

    2016-01-01

    Sacroiliac (SI) joint dysfunction is a common source of chronic low-back pain. Recent evidences from different parts of the world suggest that cooled radiofrequency (RF) neuroablation of sacral nerves supplying SI joints has superior pain alleviating properties than available existing treatment options for SI joint dysfunctional pain. A 35-year-old male had intractable bilateral SI joint pain (numeric rating scale [NRS] - 9/10) with poor treatment response to intra-articular steroid therapy. Bilateral water cooled = RF was applied for neuroablation of nerves supplying both SI joints. Postprocedure pain intensity was 5/10 and after 7 days it was 2/10. On 18(th)-month follow-up, he is pain free except for mild pain (NRS 2/10) on occasional extreme twisting of the back. This case attempts to highlight that sacral neuroablation based on cooled RF technique can be a long lasting remedial option for chronic SI joint pain unresponsive to conventional treatment.

  12. Water-cooled radiofrequency neuroablation for sacroiliac joint dysfunctional pain

    Directory of Open Access Journals (Sweden)

    Binay Kumar Biswas

    2016-01-01

    Full Text Available Sacroiliac (SI joint dysfunction is a common source of chronic low-back pain. Recent evidences from different parts of the world suggest that cooled radiofrequency (RF neuroablation of sacral nerves supplying SI joints has superior pain alleviating properties than available existing treatment options for SI joint dysfunctional pain. A 35-year-old male had intractable bilateral SI joint pain (numeric rating scale [NRS] - 9/10 with poor treatment response to intra-articular steroid therapy. Bilateral water cooled = RF was applied for neuroablation of nerves supplying both SI joints. Postprocedure pain intensity was 5/10 and after 7 days it was 2/10. On 18th-month follow-up, he is pain free except for mild pain (NRS 2/10 on occasional extreme twisting of the back. This case attempts to highlight that sacral neuroablation based on cooled RF technique can be a long lasting remedial option for chronic SI joint pain unresponsive to conventional treatment.

  13. Performance characteristics in hydrodynamic water cooled thrust bearings

    Directory of Open Access Journals (Sweden)

    Farooq Ahmad Najar

    2016-09-01

    Full Text Available This paper deals with the study of the influence on performance characteristics of a thrust bearing with the introduction of cooling circuit and flow velocity of coolant within the designed thrust bearings is described. New method of cooling circuit configuration is taken into consideration and water has been chosen as a coolant here in the present work. Flow velocity of coolant, ranging from 0.5m/s to 2.0m/s is proposed. The Finite difference based numerical model has been developed in order to notice the effect on the heat transfer on a large hydrodynamic lubrication thrust bearing in-terms of its performance characteristics. In the present work, the solution of Reynolds equation, an energy equation with viscosity variation and Fourier heat conduction equations, applied with appropriate boundary conditions. From the present investigation, it is observed significant amount of heat content is removed from the bearing with the increase of flow velocity of coolant in an embedded cooling duct within the pad. An important parameter among performance characteristics has prevailed a significant increase in hydrodynamic pressure generation which in turn subsequently increases the load carrying capacity which has been never ever documented in the background literature.

  14. Water-cooled radiofrequency neuroablation for sacroiliac joint dysfunctional pain

    Science.gov (United States)

    Biswas, Binay Kumar; Dey, Samarjit; Biswas, Saumya; Mohan, Varinder Kumar

    2016-01-01

    Sacroiliac (SI) joint dysfunction is a common source of chronic low-back pain. Recent evidences from different parts of the world suggest that cooled radiofrequency (RF) neuroablation of sacral nerves supplying SI joints has superior pain alleviating properties than available existing treatment options for SI joint dysfunctional pain. A 35-year-old male had intractable bilateral SI joint pain (numeric rating scale [NRS] – 9/10) with poor treatment response to intra-articular steroid therapy. Bilateral water cooled = RF was applied for neuroablation of nerves supplying both SI joints. Postprocedure pain intensity was 5/10 and after 7 days it was 2/10. On 18th-month follow-up, he is pain free except for mild pain (NRS 2/10) on occasional extreme twisting of the back. This case attempts to highlight that sacral neuroablation based on cooled RF technique can be a long lasting remedial option for chronic SI joint pain unresponsive to conventional treatment. PMID:28096589

  15. Process water - waste water - cooling water. Papers; Prozesswasser/Abwasser/Kuehlwasser. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Liese, F. (comp.)

    2002-07-01

    The 39th Metallurgical Seminar focused on water. Modern technologies for water purification and treatment were presented, legal boundary conditions were discussed, and aspects of process water, waste water and cooling water were gone into. Although the boundaries between these three types of water cannot be clearly defined, materials recovery is the prevalent aspect in process water treatment while waste water treatment primarily aims at reducing pollutant concentrations so that both environmental aspects and technical quality standards will be met. This proceedings volume attempts to give its readers a more precise picture of the issues at hand by presenting fundamental research, ecological and legal specifications, and selected examples of industrial applications. [German] Das 39. Metallurgische Seminar beschaeftigt sich mit Wasser. Neben der Praesentation grundsaetzlicher, moderner Techniken zur Reinhaltung und Aufbereitung von Wasser sowie der Darstellung der gesetzlichen Rahmenbedingungen umspannen die Fachvortraege Beitraege zu den Themen Prozesswasser, Abwasser, Kuehlwasser. Wenn auch die Grenzen innerhalb dieser Begriffe teilweise fliessend sind, so zeichnen sich die Prozesswaesser dadurch aus, dass man primaer - wie beispielsweise bei Waschsloesungen und Beizwaessern - an der Wiedergewinnung der Inhaltsstoffe interessiert ist, waehrend bei reinen Abwaessern und Kuehlturmwaessern bzw. deren Abschlaemmungen die massgebliche Aufgabe darin besteht, die Konzentration der Inhaltsstoffe so weit abzusenken, dass man einerseits den Umwelterfordernissen und andererseits den technischen Qualitaetsanforderungen gerecht wird. Ziel dieses Bandes ist es, an Hand von Grundlagen, der Darstellung der oekologischen und behoerdlichen Erfordernisse sowie ausgewaehlter Fallbeispiele aus der Industrie den Leserkreis naeher an diese Thematik heranzufuehren. (orig.)

  16. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  17. Environmental compatible cooling water treatment chemicals; Umweltvertraegliche Chemikalien in der Kuehlwasserkonditionierung

    Energy Technology Data Exchange (ETDEWEB)

    Gartiser, S.; Urich, E.

    2002-02-01

    In Germany about 32 billion m{sup 3}/a cooling water are discharged from industrial plants and power industry. These are conditioned partly with biocides, scaling and corrosion inhibitors. Within the research project the significance of cooling water chemicals was evaluated, identifying the chemicals from product information, calculating their loads from consumption data of more than 180 cooling plants and investigating the basic data needed for an environmental hazard assessment. Additionally the effects of cooling water samples and products were determined in biological test systems. Batch tests were performed under defined conditions in order to measure the inactivation of cooling water biocides. (orig.)

  18. Dechlorination Technology Manual. Final report. [Utility cooling water discharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Aschoff, A.F.; Chiesa, R.J.; Jacobs, M.H.; Lee, Y.H.; Mehta, S.C.; Meko, A.C.; Musil, R.R.; Sopocy, D.M.; Wilson, J.A.

    1984-11-01

    On November 19, 1982, the United States Environmental Protection Agency (EPA) promulgated regulations severely restricting chlorination practices as they relate to utility cooling water discharge systems. EPRI authorized the preparation of a manual on dechlorination technology to assist utilities in evaluating the various alternatives available to them to meet these new requirements. The Dechlorination Technology Manual emphasizes the engineering aspects involved in the selection and design of dechlorination systems. However, background information is included concerning chemistry, regulatory requirements, environmental considerations and aquatic impacts. There is also a brief discussion of the various alternatives to dechlorination. Case studies are given to acquaint the user with the use of the manual for the design of chlorination facilities given various site-related characteristics, such as salt versus fresh waters. Numerous graphs and tables are presented to facilitate the selection and design process. 207 references, 66 figures, 60 tables.

  19. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  20. Experimental study of the decrease in the temperature of an air/water-cooled turbine blade

    Science.gov (United States)

    Ryzhov, A. A.; Sereda, A. V.; Shaiakberov, V. F.; Iskakov, K. M.; Shatalov, Iu. S.

    Results of the full-scale testing of an air/water-cooled deflector-type turbine blade are reported. Data on the decrease in the temperature of the cooling air and of the blade are presented and compared with the calculated values. An analysis of the results indicates that the use of air/water cooling makes it possible to significantly reduce the temperature of the cooling air and of the blade with practically no increase in the engine weight and dimensions.

  1. Development of a water-mist cooling system: A 12,500 Kcal/h air-cooled chiller

    Directory of Open Access Journals (Sweden)

    Chung-Neng Huang

    2015-11-01

    Full Text Available Global warming and energy exhaustion problems are becoming a severe problems, of which energy conservation and carbon reduction are the most critical. Between 40% and 48% of the total electricity used in a building is consumed by air conditioning systems. The development of a supersonic water-misting cooling system with a fuzzy control system is proposed to optimize existing condenser noise, space, and energy consumption, as well as to address problems with cooling capacity resulting from improper control between compressors and condensers. An experimental platform was established for conducting tests, observing cooling efficiencies, and calculating power saving statuses. Comparing the observed cooling efficiency, a temperature difference of 5.4 °C was determined before and after the application; this is significant regarding efficiency. The method produces no pollution or water accumulation. When compared with fixed frequency air-cooled water chillers, an exceptional energy saving of 25% was observed. The newly developed supersonic mist-cooled chiller is an excellent solution to increasing water and electricity fees.

  2. Superheated Water-Cooled Small Modular Underwater Reactor Concept

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-12-01

    Full Text Available A novel fully passive small modular superheated water reactor (SWR for underwater deployment is designed to produce 160 MWe with steam at 500ºC to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF. The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and then the steam, instead of exiting the reactor pressure vessel, turns around and flows downward in the central channel of some IXAF fuel rods within each assembly and then flows upward through the rest of the IXAF pins in the assembly and exits the reactor pressure vessel as superheated steam. In this study, new cladding material to withstand high temperature steam in addition to the fuel mechanical and safety behavior is investigated. The steam temperature was found to depend on the thermal and mechanical characteristics of the fuel. The SWR showed a very different transient behavior compared with a boiling water reactor. The inter-play between the inner and outer channels of the IXAF was mainly beneficial except in the case of sudden reactivity insertion transients where additional control consideration is required.

  3. Effect of Mixed Corrosion Inhibitors in Cooling Water System

    Directory of Open Access Journals (Sweden)

    Dina Raheem

    2011-01-01

    Full Text Available The effect of mixed corrosion inhibitors in cooling system was evaluated by using carbon steel specimens and weight loss analysis. The carbon steel specimens immersed in mixture of sodium phosphate (Na2 HPO4 used as corrosion inhibitor and sodium glocunate (C6 H11 NaO7 as a scale dispersant at different concentrations (20,40, 60, 80 ppm and at different temperature (25,50,75 and 100ºC for (1-5 days. The corrosion inhibitors efficiency was calculated by using uninhibited and inhibited water to give 98.1%. The result of these investigations indicate that the corrosion rate decreases with the increase the corrosion inhibitors concentration at 80 ppm and at 100ºC for 5 days, (i.e, corrosion rate= 0.014gmd.

  4. Overview of Cooling Water System for the KSTAR 1{sup st} Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. J.; Kim, S. T.; Im, D. S.; Joung, N. Y.; Kim, Y. S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The KSTAR cooling water system (CWS) consists of a primary cooling water system (PCWS), a secondary cooling water system (SCWS), and a de-mineralizing and de-ionized water system (DIWS). The PCWS cooling loops have been made for the poloidal field (PF) and toroidal field (TF) magnet power supplies (MPS), vacuum vessel (VV), electron cyclotron heating (ECH), ion cyclotron heating (ICRH), vacuum pumps, diagnostics, helium facility, etc. The CWS had been done individual commissioning of each system to confirm the design specifications by the end of 2006 and had gradually begun operation for the KSTAR ancillary devices by March 2008.

  5. Development of the water cooled lithium lead blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Aiello, G.; Jonquères, N. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Li Puma, A. [CEA-Saclay, DEN/DANS/DM2S/SERMA/LPEC, 91191 Gif Sur Yvette Cedex (France); Morin, A.; Rampal, G. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France)

    2014-10-15

    Highlights: • The WCLL blanket design has been modified to adapt it to the 2012 EFDA DEMO specifications. • Preliminary CAD design of the equatorial outboard module of the WCLL blanket has been developed for DEMO. • Finite elements analyses have been carried out in order to assess the module thermal behavior in the straight part of the module. - Abstract: The water cooled lithium lead (WCLL) blanket, based on near-future technology requiring small extrapolation from present-day knowledge both on physical and technological aspect, is one of the breeding blanket concepts considered as possible candidates for the EU DEMOnstration power plant. In 2012, the EFDA agency issued new specifications for DEMO: this paper describes the work performed to adapt the WCLL blanket design to those specifications. Relatively small modules with straight surfaces are attached to a common Back Supporting Structure housing feeding pipes. Each module features reduced activation ferritic-martensitic steel as structural material, liquid Lithium-Lead as breeder, neutron multiplier and carrier. Water at typical Pressurized Water Reactors (PWR) conditions is chosen as coolant. A preliminary design of the equatorial outboard module has been achieved. Finite elements analyses have been carried out in order to assess the module thermal behavior. Two First Wall (FW) concepts have been proposed, one favoring the thermal efficiency, the other favoring the manufacturability. The Breeding Zone has been designed with C-shaped Double-Walled Tubes in order to minimize the Water/Pb-15.7Li interaction likelihood. The priorities for further development of the WCLL blanket concept are identified in the paper.

  6. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    Science.gov (United States)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  7. Ecological impact of chloro-organics produced by chlorination of cooling tower waters

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R L; Cumming, R B; Pitt, W W; Taylor, F G; Thompson, J E; Hartmann, S J

    1977-01-01

    Experimental results of the initial assessment of chlorine-containing compounds in the blowdown from cooling towers and the possible mutagenic activity of these compounds are reported. High-resolution liquid chromatographic separations were made on concentrates of the blowdown from the cooling tower at the High Flux Isotope Reactor (HFIR) and from the recirculating water system for the cooling towers at the Oak Ridge Gaseous Diffusion Plant (ORGDP), Oak Ridge, Tennessee. The chromatograms of chlorinated cooling waters contained numerous uv-absorbing and cerate-oxidizable constituents that are now being processed through a multicomponent identification procedure. Concentrates of the chlorinated waters are also being examined for mutagenic activity.

  8. Cooling of Water in a Flask: Convection Currents in a Fluid with a Density Maximum

    Science.gov (United States)

    Velasco, S.; White, J. A.; Roman, F. L.

    2010-01-01

    The effect of density inversion on the convective flow of water in a spherical glass flask cooled with the help of an ice-water bath is shown. The experiment was carried out by temperature measurements (cooling curves) taken at three different heights along the vertical diameter of the flask. Flows inside the flask are visualized by seeding the…

  9. State waste discharge permit application for cooling water and condensate discharges

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, R.D.

    1996-08-12

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  10. Thermal behaviour analysis on ITER component cooling water system loop 2B

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin, E-mail: guobin@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Fu, Peng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Dell’Orco, Giovanni; Liliana, Teodoros; Tao, Jun [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Yang, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-11-15

    Highlights: • Thermal hydraulic analysis model has been developed to perform thermal analysis on the component cooling water system loop 2B. • The cooling water temperature profile at client inlet and outlet during one cycle of the most demanding plasma operation scenario was obtained. • Operation behaviour of the main heat exchanger for CCWS-2B has been depicted. - Abstract: ITER cooling water system is composed by several cooling loops, the primary heat transfer loops that form the Tokamak Cooling Water System (TCWS), the secondary heat transfer loops that form the Component Cooling Water System (CCWS) and the Chilled Water System (CHWS) and a tertiary heat transfer loop which is the Heat Rejection System (HRS). The CCWS is further divided into CCWS-1, CCWS-2A, CCWS-2B, CCWS-2C, CCWS-2D depending on the water chemistry needs of clients and wetted area material. The component cooling water system loop 2B (CCWS-2B) has the function to remove heat load from coil power supply component, Neutral Beam Injectors (NBIs) system component and diagnostic system which are located in different buildings. As the total number of the client connections for the loop is a few hundreds, simplified thermal hydraulic analysis model has been developed to perform thermal analysis on the component cooling water system loop 2B. The curve of the cooling water temperature at client inlet and outlet during one cycle of the most demanding plasma operation scenario was obtained and the cooling water flow rate can meet the thermal removal requirement of client was also confirmed from this analysis. In addition, operation behaviour of the main heat exchanger for CCWS-2B in this thermal analysis was depicted for main heat exchanger selection purposes. This study has been carried out with the AFT Fathom code.

  11. Steam-Reheat Option for Supercritical-Water-Cooled Reactors

    Science.gov (United States)

    Saltanov, Eugene

    SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. Main objectives of the development are to increase thermal efficiency of a Nuclear Power Plant (NPP) and to decrease capital and operational costs. The first objective can be achieved by introducing nuclear steam reheat inside a reactor and utilizing regenerative feedwater heaters. The second objective can be achieved by designing a steam cycle that closely matches that of the mature supercritical fossil-fuelled power plants. The feasibility of these objectives is discussed. As a part of this discussion, heat-transfer calculations have been performed and analyzed for SuperCritical-Water (SCW) and SuperHeated-Steam (SHS) channels of the proposed reactor concept. In the calculations a uniform and three non-uniform Axial Heat Flux Profiles (AHFPs) were considered for six different fuels (UO2, ThO 2, MOX, UC2, UC, and UN) and at average and maximum channel power. Bulk-fluid, sheath, and fuel centerline temperatures as well as the Heat Transfer Coefficient (HTC) profiles were obtained along the fuel-channel length. The HTC values are within a range of 4.7--20 kW/m2·K and 9.7--10 kW/m2·K for the SCW and SHS channels respectively. The main conclusion is that while all the mentioned fuels may be used for the SHS channel, only UC2, UC, or UN are suitable for a SCW channel, because their fuel centerline temperatures are at least 1000°C below melting point, while that of UO2, ThO2 , and MOX may reach melting point.

  12. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  13. District cool water distribution; Reseau urbain et distribution d`eau glacee

    Energy Technology Data Exchange (ETDEWEB)

    Schabaillie, D. [Ste Climespace (France)

    1997-12-31

    The city of Paris has developed several district cool water distribution networks (Climespace) for air conditioning purposes, one in the Halles district (central Paris) linked with the Louvre museum, one in the Opera district (with large department stores) and one in the east of paris (Bercy). Each of these networks has a cool water production plant, the one at the Halles producing also hot water and safety electric power. The characteristics of the equipment (heat pumps, refrigerating machinery, storage...) are described. The pipes are laid in the city sewage network, and the cool carrier is water. The various networks are centrally supervised at the Halles center

  14. Demonstration of Noncorrosive, Capacitance- Based Water-Treatment Technology for Chilled-Water Cooling Systems

    Science.gov (United States)

    2014-09-01

    different operating conditions. In this project, the water-management system used at each cooling tower consisted of the following components for web ...wireless remote control. Real-time monitoring was accomplished via web connection to the data controller and software, which allowed system...was scraped off to determine whether new scale would form on the tubes, or to determine if the scale present during the first inspection was old

  15. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary Vine

    2010-12-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes “Best Technology Available” for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant’s steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  16. Corrosion of metals and alloys - Corrosion and fouling in industrial cooling water systems - Part 1: Guidelines for conducting pilot-scale evaluation of corrosion and fouling control additives for open recirculating cooling water systems

    CERN Document Server

    International Organization for Standardization. Geneva

    2006-01-01

    Corrosion of metals and alloys - Corrosion and fouling in industrial cooling water systems - Part 1: Guidelines for conducting pilot-scale evaluation of corrosion and fouling control additives for open recirculating cooling water systems

  17. Three African antelope species with varying water dependencies exhibit similar selective brain cooling.

    Science.gov (United States)

    Strauss, W Maartin; Hetem, Robyn S; Mitchell, Duncan; Maloney, Shane K; Meyer, Leith C R; Fuller, Andrea

    2016-05-01

    The use of selective brain cooling, where warm arterial blood destined for the brain is cooled in the carotid rete via counter-current heat exchange when in close proximity to cooler venous blood, contributes to the conservation of body water. We simultaneously measured carotid blood and hypothalamic temperature in four gemsbok, five red hartebeest and six blue wildebeest to assess the extent to which these free-living animals, with varying water dependency, routinely rely on selective brain cooling. We investigated the hypothesis that innate differences in selective brain cooling exist in large, sympatric artiodactyls with varying water dependency. All three species used selective brain cooling, without any discernible differences in three selective brain cooling indices. GLMMs revealed no species differences in the threshold temperature for selective brain cooling (z = 0.79, P = 0.43), the magnitude (z = -0.51, P = 0.61), or the frequency of selective brain cooling use (z = -0.47, P = 0.64), after controlling for carotid blood temperature and black globe temperature. Comparison of anatomical attributes of the carotid retes of the three species revealed that the volume (F 2,9 = 5.54, P = 0.03) and height (F 2,9 = 5.43, P = 0.03) of the carotid rete, per kilogram body mass, were greater in the red hartebeest than in the blue wildebeest. Nevertheless, intraspecific variability in the magnitude, the frequency of use, and the threshold temperature for selective brain cooling exceeded any interspecific variability in the three indices of selective brain cooling. We conclude that the three species have similar underlying ability to make use of selective brain cooling in an environment with freely available water. It remains to be seen to what extent these three species would rely on selective brain cooling, as a water conservation mechanism, when challenged by aridity, a condition likely to become prevalent throughout much of southern Africa under future climate change

  18. Thermal design of lithium bromide-water solution vapor absorption cooling system for indirect evaporative cooling for IT pod

    Science.gov (United States)

    Sawant, Digvijay Ramkrishna

    Nowadays with increase use of internet, mobile there is increase in heat which ultimately increases the efficient cooling system of server room or IT POD. Use of traditional ways of cooling system has ultimately increased CO2 emission and depletion of CFC's are serious environmental issues which led scientific people to improve cooling techniques and eliminate use of CFC's. To reduce dependency on fossil fuels and 4environmental friendly system needed to be design. For being utilizing low grade energy source such as solar collector and reducing dependency on fossil fuel vapour absorption cooling system has shown a great driving force in today's refrigeration systems. This LiBr-water aabsorption cooling consists of five heat exchanger namely: Evaporator, Absorber, Solution Heat Exchanger, Generator, Condenser. The thermal design was done for a load of 23 kW and the procedure was described in the thesis. There are 120 servers in the IT POD emitting 196 W of heat each on full load and some of the heat was generated by the computer placed inside the IT POD. A detailed procedure has been discussed. A excel spreadsheet was to prepared with varying tube sizes to see the effect on flows and ultimately overall heat transfer coefficient.

  19. Conceptual design of a passive moderator cooling system for a pressure tube type natural circulation boiling water cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Pal, Eshita, E-mail: eshi.pal@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Nayak, Arun K.; Vijayan, Pallipattu K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-09-15

    Highlights: • Passive moderator cooling system is designed to cool moderator passively during SBO. • PMCS is a system of two natural circulation loops, coupled via a heat exchanger. • RELAP5 analyses show that PMCS maintains moderator within safe limits for 7 days. - Abstract: The recent Fukushima accident has raised strong concern and apprehensions about the safety of reactors in case of a prolonged Station Black Out (SBO) continuing for several days. In view of this, a detailed study was performed simulating this condition in Advanced Heavy Water Reactor. In this study, a novel concept of moderator cooling by passive means has been introduced in the reactor design. The Passive Moderator Cooling System (PMCS) consists of a shell and tube heat exchanger designed to remove 2 MW heat from the moderator inside Calandria. The heat exchanger is located at a suitable elevation from the Calandria of the reactor, such that the hot moderator rises due to buoyancy into the heat exchanger and upon cooling from shell side water returns to Calandria forming a natural circulation loop. The shell side of the heat exchanger is also a natural circulation loop connected to an overhead large water reservoir, namely the GDWP. The objective of the PMCS is to remove the heat from the moderator in case of an SBO and maintaining its temperature below the permissible safe limit (100 °C) for at least 7 days. The paper first describes the concept of the PMCS. The concept has been assessed considering a prolonged SBO for at least 7 days, through an integrated analysis performed using the code RELAP5/MOD3.2 considering all the major components of the reactor. The analysis shows that the PMCS is able to maintain the moderator temperature below boiling conditions for 7 days.

  20. Cooling water system thermal performance analysis using the COCO computer code

    Energy Technology Data Exchange (ETDEWEB)

    Hom, J.; Jakub, R.M.; Durkosh, D.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Energy Systems Business Unit

    1996-10-01

    Westinghouse Energy Systems Business Unit (ESBU) has worked with electric utility personnel to analyze the thermal performance of essential cooling water systems at nuclear generating stations. The primary goal of these analyses has been to demonstrate the operability of the cooling water systems during postulated limiting post-accident operation. In previous cooling water system thermal analyses, peak containment operating conditions were generally used as input assuming steady-state conditions. This approach is conservative as it does not take into account the improvement in containment conditions and cooling water system temperatures over time. This approach can, also, lead to an inconsistent set of assumptions between the two distinct analyses which may result in overly conservative calculated system operating conditions. These conditions inevitably impose unnecessary restrictions on cooling water system operation. Over the last few years, Westinghouse ESBU has coupled both the containment integrity and the cooling water system thermal calculations into an integrated analysis. This allows the use of a consistent set of input parameters and assumptions in the calculation of limiting cooling water system operating conditions. This approach has been successfully used to increase system operating margins. This paper provides an overview of this coupled thermal analysis along with examples of where increased operating margins can be applied.

  1. Cooling Rates of Humans in Air and in Water: An Experiment

    Science.gov (United States)

    Bohren, Craig F.

    2012-12-01

    In a previous article I analyzed in detail the physical factors resulting in greater cooling rates of objects in still water than in still air, emphasizing cooling of the human body. By cooling rate I mean the rate of decrease of core temperature uncompensated by metabolism. I concluded that the "correct ratio for humans is closer to 2 than to 10." To support this assertion I subsequently did experiments, which I report following a digression on hypothermia.

  2. Water source heat pumps for greenhouse soil cooling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spieser, H.

    1987-06-01

    In an attempt to diversify and grow flowers which are in high demand, growers are looking to produce certain exotic flowers which require unique growing conditions. One example is the Alstroemerias also knwon as the Peruvian Lily. If the plants are grown continuously at about 12-15/sup 0/C soil temperature, the plant will continue to flower regardless of air temperature and photoriod. These latter two factors are considered secondary to the importance of cool soil temperatures. Alstroemeria production is still relatively new to the greenhouse industry. Some controversy still exists as to the direct benefits of planned soil cooling. This project was set up to evaluate a mechanical soil cooling system for continuous year round Alstroemeria production. A heat pump soil cooling system was installed in two greenhouses each with dimensions of 16 m by 61 m. Combined these greenhouses have a growing area of 1952 m/sup 2/. These greenhouses are older wooden greenhouses, covered by double poly, air-inflated glazing. This system worked very well, maintaining the soil temperature at the proper levels throughout the spring and summer months. During the rest of the year the soil cooling system is used less intensely. During winter months when soil cooling is not required, the heat pumps provide base load heating to the greenhouse through fan forced unit heaters.

  3. Accident analysis of heavy water cooled thorium breeder reactor

    Science.gov (United States)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition

  4. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohsen; Amooie, Hossein [Bu-Ali Sina Univ., Hamedan (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2016-04-15

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  5. Comparison of solar panel cooling system by using dc brushless fan and dc water

    Science.gov (United States)

    Irwan, Y. M.; Leow, W. Z.; Irwanto, M.; M, Fareq; Hassan, S. I. S.; Safwati, I.; Amelia, A. R.

    2015-06-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer.

  6. Optimization Tool for Direct Water Cooling System of High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Blaabjerg, Frede

    2016-01-01

    important issue for thermal design engineers. This paper aims to present a user friendly optimization tool for direct water cooling system of a high power module which enables the cooling system designer to identify the optimized solution depending on customer load profiles and available pump power. CFD...

  7. Water mist effect on cooling range and efficiency of casting die

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2008-12-01

    Full Text Available This project is showing investigation results of cooling process of casting die in the temperature range 570÷100 °C with 0.40 MPa compressed air and water mist streamed under pressure 0.25÷0.45 MPa in air jet 0.25÷0.50 MPa using open cooling system.The character and the speed of changes of temperature, forming of the temperture’s gradient along parallel layer to cooled surface of die is shawing with thermal and derivative curves. The effect of kind of cooling factor on the temperature and time and distance from cooling nozzle is presented in the paper. A designed device for generating the water mist cooling the die and the view of sprying water stream is shown here. It’s proved that using of the water mist together with the change of heat transfer interface increases intensity of cooling in the zone and makes less the range cooling zone and reduces the porosity of cast microstructure.

  8. Water vapour rises from the cooling towers for the ATLAS detector at Point 1

    CERN Multimedia

    Brice, Maximilien

    2015-01-01

    Electronics on the ATLAS detector produce heat when the experiment is running. An elaborate cooling system keeps the detector from overheating. On the surface, the warm water vapour that rises from the detector 100metres underground is clearly visible from the ATLAS cooling towers on the CERN Meyrin site in Switzerland.

  9. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  10. Operations improvement of the recycling water-cooling systems of sugar mills

    Directory of Open Access Journals (Sweden)

    Shcherbakov Vladimir Ivanovich

    Full Text Available Water management in sugar factories doesn’t have analogues in its complexity among food industry enterprises. Water intensity of sugar production is very high. Circulation water, condensed water, pulp press water and others are used in technological processes. Water plays the main role in physical, chemical, thermotechnical processes of beet processing and sugar production. As a consequence of accession of Russia to the WTO the technical requirements for production processes are changing. The enforcements of ecological services to balance scheme of water consumption and water disposal increased. The reduction of fresh water expenditure is one of the main tasks in economy of sugar industry. The substantial role in fresh water expenditure is played by efficiency of cooling and aeration processes of conditionally clean waters of the 1st category. The article contains an observation of the technologies of the available solutions and recommendations for improving and upgrading the existing recycling water-cooling systems of sugar mills. The authors present the block diagram of the water sector of a sugar mill and a method of calculating the optimal constructive and technological parameters of cooling devices. Water cooling towers enhanced design and upgrades are offered.

  11. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Apfelbaum, Steven; Duvall, Kenneth; Nelson, Theresa; Mensing, Douglas; Bengtson, Harlan; Eppich, John; Penhallegon, Clayton; Thompson, Ry

    2013-09-30

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive

  12. Control of modiolid mussels in cooling water systems by continuous chlorination.

    NARCIS (Netherlands)

    Rajagopal, S.; Venugopalan, V.P.; Velde, G. van der; Jenner, H.A.

    2006-01-01

    Abstract. Modiolid mussels such as Modiolus philippinarum and Modiolus metcalfei constitute a numerically significant group in fouling communities, especially in tropical and subtropical industrial cooling water systems. Nevertheless, there are hardly any published reports on the tolerance of these

  13. INVESTIGATION OF THE PERFORMANCE OF AN ATMOSPHERIC COOLING TOWER USING FRESH AND SALTED WATER

    OpenAIRE

    A. Haddad

    2012-01-01

    Cooling towers are extensively used to evacuate large quantities of heat at modest temperatures through a change of phase of the flowing cooling fluid. Based on this classical principle, the present study investigates the influence of salty water on the heat exchange produced. For that purpose, experiments are carried out using fresh and salty water. Furthermore, a comparison with the results produced through an approach involving the solution of energy equation involving the flow...

  14. Heat transfer analysis during cooling of die with use of water mist

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2011-07-01

    Full Text Available The paper presents the results of the heat transfer area during the cooling process of steel test die with water mist which consist the flow of air in the range 150÷350 l/min and 0.05 0.24 l/min of water. Temperature change in the thickness of die by means showing with the thermal curves and the temperature gradient and temperature distribution in the space between the nozzle and the cooled surface of the metal mold using a thermal imaging camera and thermocouples measurement. The course of changes in the temperature gradient and the received heat flux from the die while cooling its with the flow of air and water mist stream. It has been shown that the use of water mist with a variable flow of air and water controls the process of heat transfer process between the permanent molds, and a stream of water mist.

  15. Water cooled breeder program summary report (LWBR (Light Water Breeder Reactor) development program)

    Energy Technology Data Exchange (ETDEWEB)

    1987-10-01

    The purpose of the Department of Energy Water Cooled Breeder Program was to demonstrate pratical breeding in a uranium-233/thorium fueled core while producing electrical energy in a commercial water reactor generating station. A demonstration Light Water Breeder Reactor (LWBR) was successfully operated for more than 29,000 effective full power hours in the Shippingport Atomic Power Station. The reactor operated with an availability factor of 76% and had a gross electrical output of 2,128,943,470 kilowatt hours. Following operation, the expended core was examined and no evidence of any fuel element defects was found. Nondestructive assay of 524 fuel rods determined that 1.39 percent more fissile fuel was present at the end of core life than at the beginning, proving that breeding had occurred. This demonstrates the existence of a vast source of electrical energy using plentiful domestic thorium potentially capable of supplying the entire national need for many centuries. To build on the successful design and operation of the Shippingport Breeder Core and to provide the technology to implement this concept, several reactor designs of large breeders and prebreeders were developed for commercial-sized plants of 900--1000 Mw(e) net. This report summarizes the Water Cooled Breeder Program from its inception in 1965 to its completion in 1987. Four hundred thirty-six technical reports are referenced which document the work conducted as part of this program. This work demonstrated that the Light Water Breeder Reactor is a viable alternative as a PWR replacement in the next generation of nuclear reactors. This transition would only require a minimum of change in design and fabrication of the reactor and operation of the plant.

  16. Implications of Transitioning from De Facto to Engineered Water Reuse for Power Plant Cooling.

    Science.gov (United States)

    Barker, Zachary A; Stillwell, Ashlynn S

    2016-05-17

    Thermoelectric power plants demand large quantities of cooling water, and can use alternative sources like treated wastewater (reclaimed water); however, such alternatives generate many uncertainties. De facto water reuse, or the incidental presence of wastewater effluent in a water source, is common at power plants, representing baseline conditions. In many cases, power plants would retrofit open-loop systems to cooling towers to use reclaimed water. To evaluate the feasibility of reclaimed water use, we compared hydrologic and economic conditions at power plants under three scenarios: quantified de facto reuse, de facto reuse with cooling tower retrofits, and modeled engineered reuse conditions. We created a genetic algorithm to estimate costs and model optimal conditions. To assess power plant performance, we evaluated reliability metrics for thermal variances and generation capacity loss as a function of water temperature. Applying our analysis to the greater Chicago area, we observed high de facto reuse for some power plants and substantial costs for retrofitting to use reclaimed water. Conversely, the gains in reliability and performance through engineered reuse with cooling towers outweighed the energy investment in reclaimed water pumping. Our analysis yields quantitative results of reclaimed water feasibility and can inform sustainable management of water and energy.

  17. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and

  18. Thermal and electrical energy yield analysis of a directly water cooled photovoltaic module

    Directory of Open Access Journals (Sweden)

    Mtunzi Busiso

    2016-01-01

    Full Text Available Electrical energy of photovoltaic modules drops by 0.5% for each degree increase in temperature. Direct water cooling of photovoltaic modules was found to give improved electrical and thermal yield. A prototype was put in place to analyse the field data for a period of a year. The results showed an initial high performance ratio and electrical power output. The monthly energy saving efficiency of the directly water cooled module was found to be approximately 61%. The solar utilisation of the naturally cooled photovoltaic module was found to be 8.79% and for the directly water cooled module its solar utilisation was 47.93%. Implementation of such systems on households may reduce the load from the utility company, bring about huge savings on electricity bills and help in reducing carbon emissions.

  19. Sea/lake water cooling for Naval facilities. Final report November 1975-November 1977

    Energy Technology Data Exchange (ETDEWEB)

    Ciani, J.

    1978-09-01

    Seawater cooling was found to be economically feasible for a trial Naval facility in San Diego, Calif. and an operational test was recommended for the Naval Security Group Activity (NSGA), Winter Harbor, Maine. A preliminary design and environmental impact assessment were performed for a seawater cooling system at NSGA. This work was supplemented with seawater temperature measurements in the adjoining bay, a study of biofouling and its prevention in this system, and land and offshore surveys at NSGA. A separate study found that the life cycle cost of this seawater cooling system was less than that of the existing conventional air conditioning system. It was concluded that a seawater cooling system for NSGA would cost about $150K, and annually save over 200 MWh of energy and $9,000. Also, a study of the Navywide potential of sea/lake water cooling found that if such cooling were installed at 25 Navy sites, 59 x 1,000 MWh and $3 million could be saved annually. This report recommends that: (1) a final design and installation of an operational test seawater cooling system for NSGA, Winter Harbor be made; (2) seawater temperatures be measured at Apra Harbor, Pearl Harbor, Chicago, and Point Mugu as potential sites; and (3) a parametric model be developed for estimating the capital and energy costs of sea/lake water cooling systems.

  20. Water-cooled radiofrequency neuroablation for sacroiliac joint dysfunctional pain

    OpenAIRE

    2016-01-01

    Sacroiliac (SI) joint dysfunction is a common source of chronic low-back pain. Recent evidences from different parts of the world suggest that cooled radiofrequency (RF) neuroablation of sacral nerves supplying SI joints has superior pain alleviating properties than available existing treatment options for SI joint dysfunctional pain. A 35-year-old male had intractable bilateral SI joint pain (numeric rating scale [NRS] - 9/10) with poor treatment response to intra-articular steroid therapy. ...

  1. Preparation of semi-solid aluminum alloy slurry poured through a water-cooled serpentine channel

    Science.gov (United States)

    Chen, Zheng-Zhou; Mao, Wei-Min; Wu, Zong-Chuang

    2012-01-01

    A water-cooled serpentine channel pouring process was invented to produce semi-solid A356 aluminum alloy slurry for rheocasting, and the effects of pouring temperature and circulating cooling water flux on the microstructure of the slurry were investigated. The results show that at the pouring temperature of 640-680°C and the circulating cooling water flux of 0.9 m3/h, the semi-solid A356 aluminum alloy slurry with spherical primary α(Al) grains can be obtained, whose shape factors are between 0.78 and 0.86 and the grain diameter can reach 48-68 μm. When the pouring temperatures are at 660-680°C, only a very thin solidified shell remains inside the serpentine channel and can be removed easily. When the serpentine channel is cooled with circulating water, the microstructure of the semi-solid slurry can be improved, and the serpentine channel is quickly cooled to room temperature after the completion of one pouring. In terms of the productivity of the special equipment, the water-cooled serpentine channel is economical and efficient.

  2. Summary of research and development effort on air and water cooling of gas turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Fraas, A.P.

    1980-03-01

    The review on air- and water-cooled gas turbines from the 1904 Lemale-Armengaud water-cooled gas turbine, the 1948 to 1952 NACA work, and the program at GE indicates that the potential of air cooling has been largely exploited in reaching temperatures of 1100/sup 0/C (approx. 2000/sup 0/F) in utility service and that further increases in turbine inlet temperature may be obtained with water cooling. The local heat flux in the first-stage turbine rotor with water cooling is very high, yielding high-temperature gradients and severe thermal stresses. Analyses and tests indicate that by employing a blade with an outer cladding of an approx. 1-mm-thick oxidation-resistant high-nickel alloy, a sublayer of a high-thermal-conductivity, high-strength, copper alloy containing closely spaced cooling passages approx. 2 mm in ID to minimize thermal gradients, and a central high-strength alloy structural spar, it appears possible to operate a water-cooled gas turbine with an inlet gas temperature of 1370/sup 0/C. The cooling-water passages must be lined with an iron-chrome-nickel alloy must be bent 90/sup 0/ to extend in a neatly spaced array through the platform at the base of the blade. The complex geometry of the blade design presents truly formidable fabrication problems. The water flow rate to each of many thousands of coolant passages must be metered and held to within rather close limits because the heat flux is so high that a local flow interruption of only a few seconds would lead to a serious failure.Heat losses to the cooling water will run approx. 10% of the heat from the fuel. By recoverying this waste heat for feedwater heating in a command cycle, these heat losses will give a degradation in the power plant output of approx. 5% relative to what might be obtained if no cooling were required. However, the associated power loss is less than half that to be expected with an elegant air cooling system.

  3. Improving of the photovoltaic / thermal system performance using water cooling technique

    Science.gov (United States)

    Hussien, Hashim A.; Numan, Ali H.; Abdulmunem, Abdulmunem R.

    2015-04-01

    This work is devoted to improving the electrical efficiency by reducing the rate of thermal energy of a photovoltaic/thermal system (PV/T).This is achieved by design cooling technique which consists of a heat exchanger and water circulating pipes placed at PV module rear surface to solve the problem of the high heat stored inside the PV cells during the operation. An experimental rig is designed to investigate and evaluate PV module performance with the proposed cooling technique. This cooling technique is the first work in Iraq to dissipate the heat from PV module. The experimental results indicated that due to the heat loss by convection between water and the PV panel's upper surface, an increase of output power is achieved. It was found that without active cooling, the temperature of the PV module was high and solar cells could only achieve a conversion efficiency of about 8%. However, when the PV module was operated under active water cooling condition, the temperature was dropped from 76.8°C without cooling to 70.1°C with active cooling. This temperature dropping led to increase in the electrical efficiency of solar panel to 9.8% at optimum mass flow rate (0.2L/s) and thermal efficiency to (12.3%).

  4. Water-lithium bromide double-effect absorption cooling analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vliet, G.C.; Lawson, M.B.; Lithgow, R.A.

    1980-12-01

    This investigation involved the development of a numerical model for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine, and the use of the model to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The sensitivity analysis was performed by selecting a nominal condition and determining performance sensitivity for each variable with others held constant. The variables considered in the study include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicated in particular that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy. The dynamic model should be valuable as a design tool for developing new absorption machines or modifying current machines to make them optimal based on current and future energy costs.

  5. Operational Experience of Cooling Water Systems for Accelerator Components at PLS

    CERN Document Server

    Kim, Kyungryul; Kim, Young-Chan; Lee, Bongho; Sik Han, Hong; Soo Ko In; Wha Chung, Chin

    2005-01-01

    The cooling water system has been utilized for absorbing heat generated by a multitude of electromagnetic power delivering networks at PLS. The separate cooling water distribution systems for the storage ring, beam transport line and linear accelerator have been operated with a different operating temperature of supplying water. All water used for heat removal from the accelerator components are deionised and filtered to provide with over 2 MO-cm specific resistance. The operating pressures and flows of input water are also controlled with flow balancing scheme at a specified range. The operating temperature of components in the accelerator is sustained as tight as below ±0.1 deg C to minimize the influence of temperature fluctuation on the beam energy and stability. Although the PLS cooling systems were initially installed with a high degree of flexibility to allow for easy maintenance, a number of system improvements have been employed to enhance operational reliability and to incorporate the newly...

  6. Cooling of Gas Turbines. 6; Computed Temperature Distribution Through Cross Section of Water-Cooled Turbine Blade

    Science.gov (United States)

    Livingood, John N. B.; Sams, Eldon W.

    1947-01-01

    A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.

  7. The cool state of water: Infrared insights into ice

    NARCIS (Netherlands)

    Smit, W.J.

    2016-01-01

    Water is an extraordinary substance. It owes its characteristic anomalous properties to a network of strong hydrogen bonds present between water molecules. In ice, water molecules hold regular positions in the crystal. Nevertheless, the behaviour of ice can be dynamic and exciting, especially at the

  8. Biofouling reduction in recirculating cooling systems through biofiltration of process water.

    Science.gov (United States)

    Meesters, K P H; Van Groenestijn, J W; Gerritse, J

    2003-02-01

    Biofouling is a serious problem in industrial recirculating cooling systems. It damages equipment, through biocorrosion, and causes clogging and increased energy consumption, through decreased heat transfer. In this research a fixed-bed biofilter was developed which removed assimilable organic carbon (AOC) from process water, thus limiting the major substrate for the growth of biofouling. The biofilter was tested in a laboratory model recirculating cooling water system, including a heat exchanger and a cooling tower. A second identical model system without a biofilter served as a reference. Both installations were challenged with organic carbon (sucrose and yeast extract) to provoke biofouling. The biofilter improved the quality of the recirculating cooling water by reducing the AOC content, the ATP concentration, bacterial numbers (30-40 fold) and the turbidity (OD660). The process of biofouling in the heat exchangers, the process water pipelines and the cooling towers, was monitored by protein increase, heat transfer resistance, and chlorine demanded for maintenance. This revealed that biofouling was lower in the system with the biofilter compared to the reference installation. It was concluded that AOC removal through biofiltration provides an attractive, environmental-friendly means to reduce biofouling in industrial cooling systems.

  9. Calculation of Radioactivity and Dose Rate of Activated Corrosion Products in Water-Cooled Fusion Reactor

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-01-01

    Full Text Available In water-cooled reactor, the dominant radioactive source term under normal operation is activated corrosion products (ACPs, which have an important impact on reactor inspection and maintenance. A three-node transport model of ACPs was introduced into the new version of ACPs source term code CATE in this paper, which makes CATE capable of theoretically simulating the variation and the distribution of ACPs in a water-cooled reactor and suitable for more operating conditions. For code testing, MIT PWR coolant chemistry loop was simulated, and the calculation results from CATE are close to the experimental results from MIT, which means CATE is available and credible on ACPs analysis of water-cooled reactor. Then ACPs in the blanket cooling loop of water-cooled fusion reactor ITER under construction were analyzed using CATE and the results showed that the major contributors are the short-life nuclides, especially Mn-56. At last a point kernel integration code ARShield was coupled with CATE, and the dose rate around ITER blanket cooling loop was calculated. Results showed that after shutting down the reactor only for 8 days, the dose rate decreased nearly one order of magnitude, which was caused by the rapid decay of the short-life ACPs.

  10. Biofouling on Coated Carbon Steel in Cooling Water Cycles Using Brackish Seawater

    Directory of Open Access Journals (Sweden)

    Pauliina Rajala

    2016-11-01

    Full Text Available Water cooling utilizing natural waters is typically used for cooling large industrial facilities such as power plants. The cooling water cycles are susceptible to biofouling and scaling, which may reduce heat transfer capacity and enhance corrosion. The performance of two fouling-release coatings combined with hypochlorite treatment were studied in a power plant utilizing brackish sea water from the Baltic Sea for cooling. The effect of hypochlorite as an antifouling biocide on material performance and species composition of microfouling formed on coated surfaces was studied during the summer and autumn. Microfouling on surfaces of the studied fouling-release coatings was intensive in the cooling water cycle during the warm summer months. As in most cases in a natural water environment the fouling consisted of both inorganic fouling and biofouling. Chlorination decreased the bacterial number on the surfaces by 10–1000 fold, but the efficacy depended on the coating. In addition to decreasing the bacterial number, the chlorination also changed the microbial species composition, forming the biofilm on the surfaces of two fouling-release coatings. TeknoTar coating was proven to be more efficient in combination with the hypochlorite treatment against microfouling under these experimental conditions.

  11. Simultaneous effects of water spray and crosswind on performance of natural draft dry cooling tower

    Directory of Open Access Journals (Sweden)

    Ahmadikia Hossein

    2013-01-01

    Full Text Available To investigate the effect of water spray and crosswind on the effectiveness of the natural draft dry cooling tower (NDDCT, a three-dimensional model has been developed. Efficiency of NDDCT is improved by water spray system at the cooling tower entrance for high ambient temperature condition with and without crosswind. The natural and forced heat convection flow inside and around the NDDCT is simulated numerically by solving the full Navier-Stokes equations in both air and water droplet phases. Comparison of the numerical results with one-dimensional analytical model and the experimental data illustrates a well-predicted heat transfer rate in the cooling tower. Applying water spray system on the cooling tower radiators enhances the cooling tower efficiency at both no wind and windy conditions. For all values of water spraying rate, NDDCTs operate most effectively at the crosswind velocity of 3m/s and as the wind speed continues to rise to more than 3 m/s up to 12 m/s, the tower efficiency will decrease by approximately 18%, based on no-wind condition. The heat transfer rate of radiator at wind velocity 10 m/s is 11.5% lower than that of the no wind condition. This value is 7.5% for water spray rate of 50kg/s.

  12. The Modification of Sodium Polyacrylate Water Solution Cooling Properties by AL2O3

    Directory of Open Access Journals (Sweden)

    Wojciech Gęstwa

    2010-01-01

    Based on cooling curves, it can be concluded that for the water solution of sodium polyacrylate with AL2O3 nanoparticles in comparison to water and 10% polymer water solution lower cooling speed is obtained. The cooling medium containing nanoparticles provides lower cooling speed in the smallest surface austenite occurance (500–600 C in the charts of the CTP for most nonalloy structural steels and low-alloy steels. However lower cooling temperature at the beginning of martensitic transformation causes the formation of smaller internal stresses, leading to smaller dimensional changes and hardening deformation. For the quenching media the wetting angle was appointed by the drop-shape method. These studies showed the best wettability of polymer water solution (sodium polyacrylate with the addition of AL2O3 nanoparticles, whose wetting angle was about 65 degrees. Obtaining the smallest wetting angle for the medium containing nanoparticles suggests that the heat transfer to the cooling medium is larger. This allows slower cooling at the same time ensuring its homogeneity. The obtained values of wetting angle confirm the conclusions drawn on the basis of cooling curves and allowus to conclude that in the case of the heat transfer rate it will have a lower value than for water and 10% polymer water solution. In the research on hardened carburized steel samples C10 and 16MnCr5 surface hardness, impact strength and changes in the size of cracks in Navy C-ring sample are examined. On this basis of the obtained results it can be concluded that polymer water solution with nanoparticles allows to obtain a better impact strength at comparable hardness on the surface. Research on the dimensional changes on the basis of the sample of Navy C-ring also shows small dimensional changes for samples carburized and hardened in 10% polymer water solution with the addition of nanoparticles AL2O3. Smaller dimensional changes were obtained for samples of steel 16MnCr5 thanfar C10. The

  13. Soft-Sensing Method of Water Temperature Measurement for Controlled Cooling System

    Institute of Scientific and Technical Information of China (English)

    CAI Xiao-hui; ZHANG Dian-hua; WANG Guo-dong; LIU Xiang-hua; FAN Lei

    2003-01-01

    Aiming at the water temperature measuring problem for controlled cooling system of rolling plant, a new water temperature measuring method based on soft-sensing method with a water temperature model of on-line self correction parameter was built. A water temperature compensation factor model was also built to improve coiling temperature control precision. It was proved that the model meets production requirements. The soft-sensing technique has extensive applications in the field of metal forming.

  14. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    Energy Technology Data Exchange (ETDEWEB)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water

  15. Releases from the cooling water system in the Waste Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, W.C.; Lux, C.R.

    1991-01-01

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases.

  16. Releases from the cooling water system in the Waste Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, W.C.; Lux, C.R.

    1991-12-31

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases.

  17. INVESTIGATION OF THE PERFORMANCE OF AN ATMOSPHERIC COOLING TOWER USING FRESH AND SALTED WATER

    Directory of Open Access Journals (Sweden)

    A Haddad

    2012-01-01

    Full Text Available Cooling towers are extensively used to evacuate large quantities of heat at modest temperatures through a change of phase of the flowing cooling fluid. Based on this classical principle, the present study investigates the influence of salty water on the heat exchange produced. For that purpose, experiments are carried out using fresh and salty water. Furthermore, a comparison with the results produced through an approach involving the solution of energy equation involving the flow of air on an evaporating film of fluid. The detailed results show a preponderance of fresh water over the salty.

  18. Study on Effects of Diesel Engine Cooling System Parameters on Water Temperature

    Institute of Scientific and Technical Information of China (English)

    骆清国; 冯建涛; 刘国夫; 桂勇

    2011-01-01

    A simulation model for a certain diesel engine cooling system is set up by using GT-COOL. The backwater tem- perature response in different operating conditions is simulated numerically. The effects of single or multiple system parameters on the water temperature are analyzed. The results show that, changing different single parameters, the time taken for the steady backwater temperature is different, but relatively short; and if multiple parameters are changed, the time will be longer. Referred to the thermal balance test, the simulation results are validated and provide a basis for the intelligent con- trol of the cooling system.

  19. Multi-model assessment of global hydropower and cooling water discharge potential under climate change

    NARCIS (Netherlands)

    van Vliet, M. T H; van Beek, L. P H; Eisner, S.; Flörke, M.; Wada, Y.; Bierkens, M. F P

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding o

  20. Multi-model assessment of global hydropower and cooling water discharge potential under climate change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Beek, van L.P.H.; Eisner, S.; Flörke, M.; Wada, Y.; Bierkens, M.F.P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understandin

  1. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  2. Measured performance of a 3-ton LiBr absorption water chiller and its effect on cooling system operation

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  3. Zirconium carbide coating for corium experiments related to water-cooled and sodium-cooled reactors

    Science.gov (United States)

    Plevacova, K.; Journeau, C.; Piluso, P.; Zhdanov, V.; Baklanov, V.; Poirier, J.

    2011-07-01

    Since the TMI and Chernobyl accidents the risk of nuclear severe accident is intensively studied for existing and future reactors. In case of a core melt-down accident in a nuclear reactor, a complex melt, called corium, forms. To be able to perform experiments with prototypic corium materials at high temperature, a coating which resists to different corium melts related to Generation I and II Water Reactors and Generation IV sodium fast reactor was researched in our experimental platforms both in IAE NNC in Kazakhstan and in CEA in France. Zirconium carbide was selected as protective coating for graphite crucibles used in our induction furnaces: VCG-135 and VITI. The method of coating application, called reactive wetting, was developed. Zirconium carbide revealed to resist well to the (U x, Zr y)O 2-z water reactor corium. It has also the advantage not to bring new elements to this chemical system. The coating was then tested with sodium fast reactor corium melts containing steel or absorbers. Undesirable interactions were observed between the coating and these materials, leading to the carburization of the corium ingots. Concerning the resistance of the coating to oxide melts without ZrO 2, the zirconium carbide coating keeps its role of protective barrier with UO 2-Al 2O 3 below 2000 °C but does not resist to a UO 2-Eu 2O 3 mixture.

  4. Geographic, technologic, and economic analysis of using reclaimed water for thermoelectric power plant cooling.

    Science.gov (United States)

    Stillwell, Ashlynn S; Webber, Michael E

    2014-04-15

    Use of reclaimed water-municipal wastewater treatment plant effluent-in nonpotable applications can be a sustainable and efficient water management strategy. One such nonpotable application is at thermoelectric power plants since these facilities require cooling, often using large volumes of freshwater. To evaluate the geographic, technologic, and economic feasibility of using reclaimed water to cool thermoelectric power plants, we developed a spatially resolved model of existing power plants. Our model integrates data on power plant and municipal wastewater treatment plant operations into a combined geographic information systems and optimization approach to evaluate the feasibility of cooling system retrofits. We applied this broadly applicable methodology to 125 power plants in Texas as a test case. Results show that sufficient reclaimed water resources exist within 25 miles of 92 power plants (representing 61% of capacity and 50% of generation in our sample), with most of these facilities meeting both short-term and long-term water conservation cost goals. This retrofit analysis indicates that reclaimed water could be a suitable cooling water source for thermoelectric power plants, thereby mitigating some of the freshwater impacts of electricity generation.

  5. Simulation of the solidification in a channel of a water-cooled glass flow

    Directory of Open Access Journals (Sweden)

    G. E. Ovando Chacon

    2014-12-01

    Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.

  6. Thermal analysis and water-cooling design of the CSNS MEBT 324 MHz buncher cavity

    Institute of Scientific and Technical Information of China (English)

    LIU Hua-Chang; OUYANG Hua-Fu

    2008-01-01

    At least two bunchers are needed in the 3 MeV H- Medium Energy Beam Transport(MEBT)line located between RFQ and DTL for the CSNS(China Spallation Neutron Source).A nose-cone geometry has been adopted as the type of buncher cavity for its simplicity,higher impedance and lower risk of multipacting.By making use of the results got from the simulations on the buncher with two-dimension code SUPERFISH,the thermal and structural analyses have been carried out,the process and results to determine the resulting frequency shift due to thermal and structural distortion of the cavity are presented,the water-cooling channel position and the optimum cooling water temperature as well as the tuning method by adjusting the cooling water temperature when the cavity is out of resonance are also determined through the analyses.

  7. Thermal analysis and water-cooling design of the CSNS MEBT 324 MHz buncher cavity

    Science.gov (United States)

    Liu, Hua-Chang; Ouyang, Hua-Fu

    2008-04-01

    At least two bunchers are needed in the 3 MeV H- Medium Energy Beam Transport (MEBT) line located between RFQ and DTL for the CSNS (China Spallation Neutron Source). A nose-cone geometry has been adopted as the type of buncher cavity for its simplicity, higher impedance and lower risk of multipacting. By making use of the results got from the simulations on the buncher with two-dimension code SUPERFISH, the thermal and structural analyses have been carried out, the process and results to determine the resulting frequency shift due to thermal and structural distortion of the cavity are presented, the water-cooling channel position and the optimum cooling water temperature as well as the tuning method by adjusting the cooling water temperature when the cavity is out of resonance are also determined through the analyses.

  8. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    Directory of Open Access Journals (Sweden)

    YaoHan Chen

    Full Text Available The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS overestimated the space temperature before water spraying in the case of the same water spray system.

  9. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    Science.gov (United States)

    Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie

    2015-01-01

    The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system.

  10. Ice water submersion for rapid cooling in severe drug-induced hyperthermia

    Science.gov (United States)

    Laskowski, Larissa K.; Landry, Adaira; Vassallo, Susi U.; Hoffman, Robert S.

    2015-01-01

    Context The optimal method of cooling hyperthermic patients is controversial. Although controlled data support ice water submersion, many authorities recommend a mist and fan technique. We report two patients with drug-induced hyperthermia, to demonstrate the rapid cooing rates of ice water submersion. Case details Case 1. A 27-year-old man presented with a sympathomimetic toxic syndrome and a core temperature of 41.4°C after ingesting 4-fluoroamphetamine. He was submerged in ice water and his core temperature fell to 38°C within 18 minutes (a mean cooling rate of 0.18°C/min). His vital signs stabilized, his mental status improved and he left on hospital day 2. Case 2. A 32-year-old man with a sympathomimetic toxic syndrome after cocaine use was transported in a body bag and arrived with a core temperature of 44.4°C. He was intubated, sedated with IV benzodiazepines, and submerged in ice water. After 20 minutes his temperature fell to 38.8°C (a cooling rate of 0.28°C/min). He was extubated the following day, and discharged on day 10. Discussion In these two cases, cooling rates exceeded those reported for mist and fan technique. Since the priority in hyperthermia is rapid cooling, clinical data need to be collected to reaffirm the optimal approach. PMID:25695144

  11. New Mexico cloud super cooled liquid water survey final report 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  12. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    OpenAIRE

    Guiqiang Li; Gang Pei; Ming Yang; Jie Ji

    2014-01-01

    Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T) system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T) with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy ...

  13. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... COMMISSION Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors AGENCY... Systems for Light-Water-Cooled Nuclear Power Reactors,'' in which the NRC made editorial corrections and... analysis for liquid and gaseous radwaste system components for light water nuclear power...

  14. Water cooling thermal power measurement in a vacuum diffusion pump

    Directory of Open Access Journals (Sweden)

    Luís Henrique Cardozo Amorin

    2012-04-01

    Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.

  15. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  16. High Precision Temperature Control and Analysis of RF Deionized Cooling Water System

    CERN Document Server

    Tsai, Zong-Da; Chen June Rong; Liu, Chen-Yao

    2005-01-01

    Previously, the Taiwan Light Source (TLS) has proven the good beam quality mainly depends on the utility system stability. A serial of efforts were devoted to these studies. Further, a high precision temperature control of the RF deionized cooling water system will be achieved to meet the more critical stability requirement. The paper investigates the mixing mechanism through thermal and flow analysis and verifies the practical influences. A flow mixing mechanism and control philosophy is studied and processed to optimize temperature variation which has been reduced from ±0.1? to ±0.01?. Also, the improvement of correlation between RF performance and water cooling stability will be presented.

  17. The Simulation of the Influence of Water Remnants on a Hot Rolled Plate after Cooling

    Directory of Open Access Journals (Sweden)

    Radek Zahradník

    2012-01-01

    Full Text Available In situations when a sheet metal plate of large dimensions is rolled, water remnants from cooling can be observed on the upper side of the plate. This paper focuses on deformations of a hot rolled sheet metal plate that are caused by water remnants after cooling. A transient finite element simulation was used to describe shape deformations of the cross profile of a metal sheet. The finite element model is fully parametric for easy simulation of multiple cases. The results from previous work were used for the boundary conditions.

  18. Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production

    Energy Technology Data Exchange (ETDEWEB)

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi; Takaki, Rie [Faculty of Engineering, Tohoku University, Sendai 980-8579 (Japan); Satake, Akira [Technical Research Institute, Maeda Corporation, Tokyo 179-8914 (Japan); Yoshie, Ryuichiro [Faculty of Engineering, Tokyo Polytechnic University, Atsugi 243-0297 (Japan); Baba, Seizo [Earth Clean Tohoku Co. Ltd., Sendai 984-0038 (Japan)

    2010-02-15

    This paper reports the development and construction of the novel solar cooling and heating system. The system consists of the thermal energy subsystem and the desiccant cooling subsystem. The system utilizes both the cheaper nighttime electric energy and the free daytime solar energy. The system is conceptualized to produce both cooling during summer daytime and hot water production during winter. Testing and evaluation of the system had been done to determine its operational procedure and performance. Based on the results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage. The desiccant cooling subsystem reduced both the temperature and the humidity content of the air using solar energy with a minimal amount of back-up electric energy. The system however, needs further investigation under real conditions. (author)

  19. Cooling Effect of Water Injection on a High-Temperature Supersonic Jet

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-11-01

    Full Text Available The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solution was developed to calculate the multiphase flow field. The temperature data predictions agreed well with the experimental results. When water was injected into the plume, the high temperature core region area was reduced, and the temperature on the head face was much lower than that without water. The relationship between the reduction of temperature on the bottom plate and the momentum ratio is developed, which can be used to predict the cooling effect of water injection in many cases.

  20. PARAMETERS OF WATER CIRCULATION NETWORK FOR A DISTRICT HEATING AND COOLING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, high temperature water generated by two cogeneration plants circulates through a network between the plants and heat substations. At heat substations, supply water of high temperature from the network drives absorption chillers for air-conditioning in summer and meets space heating demands in winter or domestic hot water demands by heat exchangers in the whole year. The parameters, i.e. supply/return water temperature in the network, has a great impact on primary energy consumption (PEC) of the absorption chillers, circulation pumps and domestic hot water (DHW), which is studied in this paper.

  1. State of Fukushima nuclear fuel debris tracked by Cs137 in cooling water.

    Science.gov (United States)

    Grambow, B; Mostafavi, M

    2014-11-01

    It is still difficult to assess the risk originating from the radioactivity inventory remaining in the damaged Fukushima nuclear reactors. Here we show that cooling water analyses provide a means to assess source terms for potential future releases. Until now already about 34% of the inventories of (137)Cs of three reactors has been released into water. We found that the release rate of (137)Cs has been constant for 2 years at about 1.8% of the inventory per year indicating ongoing dissolution of the fuel debris. Compared to laboratory studies on spent nuclear fuel behavior in water, (137)Cs release rates are on the higher end, caused by the strong radiation field and oxidant production by water radiolysis and by impacts of accessible grain boundaries. It is concluded that radionuclide analyses in cooling water allow tracking of the conditions of the damaged fuel and the associated risks.

  2. Studies on advanced water-cooled reactors beyond generation Ⅲ for power generation

    Institute of Scientific and Technical Information of China (English)

    CHENG Xu

    2007-01-01

    China's ambitious nuclear power program motivates the country's nuclear community to develop advanced reactor concepts beyond generation Ⅲ to ensure a long-term, stable, and sustainable development of nuclear power. The paper discusses some main criteria for the selection of future water-cooled reactors by considering the specific Chinese situation. Based on the suggested selection criteria, two new types of water-cooled reactors are recommended for future Chinese nuclear power generation. The high conversion pressurized water reactor utilizes the present PWR technology to a large extent. With a conversion ratio of about 0.95, the fuel utilization is increased about 5 times. This significantly improves the sustainability of fuel resources. The supercritical water-cooled reactor has favorable features in economics,sustainability and technology availability. It is a logical extension of the generation Ⅲ PWR technology in China.The status of international R&D work is reviewed. A new supercritieal water-cooled reactor (SCWR) core structure (the mixed reactor core) and a new fuel assembly design (two-rows FA) are proposed. The preliminary analysis using a coupled neutron-physics/thermal-hydranlics method is carded out. It shows good feasibility for the new design proposal.

  3. Structure of Water Mist Stream and its Impact on Cooling Efficiency of Casting Die

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2012-04-01

    Full Text Available The work is a continuation of research on the use water mist cooling in order to increase efficiency of die-casting aluminum alloys. The paper presents results of research and analysis process, spraying water and generated a stream of water mist, the effect of the type of nozzle, the nozzle size and shape of the emitting of the water mist on the wall surface of casting die on the microstructure and geometry of water mist stream and cooling efficiency. Tests were used to perform high-speed camera to record video in the visible and infrared camera. Results were used to develop a computerized image analysis and statistical analysis. The study showed that there are statistical relationships between water and air flow and geometry of the nozzle and nozzle emitting a stream of microstructure parameters of water mist and heat the incoming stream. These relationships are described mathematical models that allow you to control the generating of adequate stream of water mist and a further consequence, the cooling efficiency of casting die.

  4. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    Energy Technology Data Exchange (ETDEWEB)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to

  5. Numerically Analysed Thermal Condition of Hearth Rollers with the Water-Cooled Shaft

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2016-01-01

    Full Text Available Continuous furnaces with roller hearth have wide application in the steel industry. Typically, furnaces with roller hearth belong to the class of medium-temperature heat treatment furnaces, but can be used to heat the billets for rolling. In this case, the furnaces belong to the class of high temperature heating furnaces, and their efficiency depends significantly on the reliability of the roller hearth furnace. In the high temperature heating furnaces are used three types of watercooled shaft rollers, namely rollers without insulation, rollers with insulating screens placed between the barrel and the shaft, and rollers with bulk insulation. The definition of the operating conditions of rollers with water-cooled shaft greatly facilitates the choice of their design parameters when designing. In this regard, at the design stage of the furnace with roller hearth, it is important to have information about the temperature distribution in the body of the rollers at various operating conditions. The article presents the research results of the temperature field of the hearth rollers of metallurgical heating furnaces. Modeling of stationary heat exchange between the oven atmosphere and a surface of rollers, and between the cooling water and shaft was executed by finite elements method. Temperature fields in the water-cooled shaft rollers of various designs are explored. The water-cooled shaft rollers without isolation, rollers with screen and rollers with bulk insulation, placed between the barrel and the water-cooled shaft were investigated. Determined the change of the thermo-physic parameters of the coolant, the temperature change of water when flowing in a pipe and shaft, as well as the desired pressure to supply water with a specified flow rate. Heat transfer coefficients between the cooling water and the shaft were determined directly during the solution based on the specified boundary conditions. Found that the greatest heat losses occur in the

  6. Cooling water treatment - Processes and regulations; Kuehlwasserbehandlung - Verfahren und Vorschriften

    Energy Technology Data Exchange (ETDEWEB)

    Kirsten, J. [Aquatech GmbH, Nieder-Olm (Germany)

    1998-09-01

    Determination of optimal water treatment methods is to be based on requirements set by technical specifications, economic efficiency aspects, and legal regulations. It is an important task and should be done by experts in cooperation with the responsible supervisory bodies. (orig./CB) [Deutsch] Zusammenfassend kann gesagt werden, dass bei der Auswahl des optimalen Verfahrens einer Kuehlwasserbehandlung technische Anforderungen, wirtschaftliche Vorgaben und behoerdliche Auflagen gleichermassen beruecksichtigt werden muessen. Diese Aufgabe sollte von Fachleuten wahrgenommen und mit den zustaendigen Behoerden abgestimmt werden. (orig.)

  7. Automatic devices for electrochemical water treatment with cooling of electrolyte

    Directory of Open Access Journals (Sweden)

    Trišović Tomislav Lj.

    2016-01-01

    Full Text Available The most common disinfectants for water treatment are based on chlorine and its compounds. Practically, water treatments with chlorine compounds have no alternative, since they provide, in comparison to other effective processes such as ozonization or ultraviolet irradiation, high residual disinfection capacity. Unfortunately, all of chlorine-based compounds for disinfection tend to degrade during storage, thus reducing the concentration of active chlorine. Apart from degradation, additional problems are transportation, storage and handling of such hazardous compounds. Nowadays, a lot of attention is paid to the development of electrochemical devices for in situ production of chlorine dioxide or sodium hypochlorite as efficient disinfectants for water treatment. The most important part of such a device is the electrochemical reactor. Electrochemical reactor uses external source of direct current in order to produce disinfectants in electrochemical reactions occurring at the electrodes. Construction of an electrochemical device for water treatment is based on evaluation of optimal conditions for electrochemical reactions during continues production of disinfectants. The aim of this study was to develop a low-cost electrochemical device for the production of disinfectant, active chlorine, at the place of its usage, based on newly developed technical solutions and newest commercial components. The projected electrochemical device was constructed and mounted, and its operation was investigated. Investigations involved both functionality of individual components and device in general. The major goal of these investigations was to achieve maximal efficiency in extreme condition of elevated room temperature and humidity with a novel device construction involving coaxial heat exchanger at the solution inlet. Room operation of the proposed device was investigated when relative humidity was set to 90% and the ambient temperature of 38°C. The obtained

  8. Influence of the Water-Cooled Heat Exchanger on the Performance of a Pulse Tube Refrigerator

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-02-01

    Full Text Available The water-cooled heat exchanger is one of the key components in a pulse tube refrigerator. Its heat exchange effectiveness directly influences the cooling performance of the refrigerator. However, effective heat exchange does not always result in a good performance, because excessively reinforced heat exchange can lead to additional flow loss. In this paper, seven different water-cooled heat exchangers were designed to explore the best configuration for a large-capacity pulse tube refrigerator. Results indicated that the heat exchanger invented by Hu always offered a better performance than that of finned and traditional shell-tube types. For a refrigerator with a working frequency of 50 Hz, the best hydraulic diameter is less than 1 mm.

  9. Ultrafast cooling by covalently bonded graphene-carbon nanotube hybrid immersed in water

    Science.gov (United States)

    Chen, Jie; Walther, Jens H.; Koumoutsakos, Petros

    2016-11-01

    The increasing power density and the decreasing dimensions of transistors present severe thermal challenges to the design of modern microprocessors. Furthermore, new technologies such as three-dimensional chip-stack architectures require novel cooling solutions for their thermal management. Here, we demonstrate, through transient heat-dissipation simulations, that a covalently bonded graphene-carbon nanotube (G-CNT) hybrid immersed in water is a promising solution for the ultrafast cooling of such high-temperature and high heat-flux surfaces. The G-CNT hybrid offers a unique platform to integrate the superior axial heat transfer capability of individual CNTs via their parallel arrangement. The immersion of the G-CNT in water enables an additional heat dissipation path via the solid-liquid interaction, allowing for the sustainable cooling of the hot surface under a constant power input of up to 10 000 W cm-2.

  10. Water chemistry in heat and cold supply (district heating/cooling)

    Energy Technology Data Exchange (ETDEWEB)

    Deelen-Bremer, Marga van; Vos, Frank de; Heijboer, Rob [KEMA Nederland B.V. (Netherlands)

    2010-07-01

    District heating is seen as an important pillar in the CO{sub 2} reduction. Since the Kyoto protocol with the target for reduction of greenhouse gases, a renewed interest in district heating is visible. District heating and increasingly district cooling can be used for heating/cooling of houses, but also for large buildings and greenhouses. Combined heat and power (CHP), waste incinerator, but also rest heat of industry can provide the heat for district heating. On the other hand cold surface water, groundwater, but also rest heat can be used for district cooling. With the growing heat/cold supply market, also an even larger growth in cases of damages in district heating systems is wittnessed. Damages were chemistry can play an preventing role. A good conditioning of the district heating water, combined with proper monitoring, will safeguard the integrity of the system. (orig.)

  11. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    Energy Technology Data Exchange (ETDEWEB)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water

  12. THE SOLUTION TO THE PROBLEM OF USING GROUND WATER TO COOL LIVESTOCK BUILDINGS

    Directory of Open Access Journals (Sweden)

    Thay Ngok Shon

    2017-01-01

    Full Text Available Ambient temperature in the central part of Vietnam in summer can reach 32–35°C; in some places it can be more than 42°C. Hot climate strongly affects the animal organism alongside with the animal weight reduction and reduction the quantity of egg-laying in poultry. Therefore, air conditioning in livestock buildings is necessary. There are several ways to cool the temperature in such buildings, and each one has its own advantages and disadvantages. We propose to use underground water at the temperature of 24–25°C for this purpose. One of the methods of cooling sheds for livestock is sprinkler irrigation of water on the roof. For calculating the amount of heat, removed from the indoor air in the shed to the cooling water, in the first approximation specialists believe in some cases that an appropriate amount of heat being removed is determined mainly by heat transfer from the air inside the shed to the cooling water through the surface of the roof, represented by the lower part of the wave that form the surface of a metal tile, neglecting the influence of heat conduction on top of the wave of the tile surface. Consequentially, such a simplification leads to possible errors. Therefore, the authors solved the problem of cooling shed by irrigation of water on the roof by an analytical method. Specifically, we solved the problem of heat conductivity of the fin of the finite length of constant cross section, wherein different sides of the fin are conjugate with different environments. Additionally, the calculation considered the effect of solar radiation. For this purpose, the authors have created a heat balance equation at steady state for any infinitesimal element of the fin, and solved the differential equation afterwards. The authors applied the results for calculating practical problem of ground water irrigation of a roof of a livestock shed made of metal areas tiles. 

  13. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Science.gov (United States)

    2010-07-01

    ... electrode monitoring, pH, conductivity, or other representative indicators. (1) You shall prepare and... cooling water using any method listed in 40 CFR part 136. Use the same method for both entrance and exit samples. You may validate 40 CFR part 136 methods for the HAP listed in Table 1 to this subpart...

  14. Patterns of fish assemblage structure and dynamics in waters of the Savannah River Plant. Comprehensive Cooling Water Study final report

    Energy Technology Data Exchange (ETDEWEB)

    Aho, J.M.; Anderson, C.S.; Floyd, K.B.; Negus, M.T.; Meador, M.R.

    1986-06-01

    Research conducted as part of the Comprehensive Cooling Water Study (CCWS) has elucidated many factors that are important to fish population and community dynamics in a variety of habitats on the Savannah River Plant (SRP). Information gained from these studies is useful in predicting fish responses to SRP operations. The overall objective of the CCWS was (1) to determine the environmental effects of SRP cooling water withdrawals and discharges and (2) to determine the significance of the cooling water impacts on the environment. The purpose of this study was to: (1) examine the effects of thermal plumes on anadromous and resident fishes, including overwintering effects, in the SRP swamp and associated tributary streams; (2) assess fish spawning and locate nursery grounds on the SRP; (3) examine the level of use of the SRP by spawning fish from the Savannah River, this objective was shared with the Savannah River Laboratory, E.I. du Pont de Nemours and Company; and (4) determine impacts of cooling-water discharges on fish population and community attributes. Five studies were designed to address the above topics. The specific objectives and a summary of the findings of each study are presented.

  15. Characterization of N-Acylhomoserine Lactones Produced by Bacteria Isolated from Industrial Cooling Water Systems

    Directory of Open Access Journals (Sweden)

    Noriya Okutsu

    2015-12-01

    Full Text Available The cooling water systems are used to remove heat generated in the various industries. Biofouling of the cooling water systems causes blocking of condenser pipes and the heat exchanger tubes. In many Gram-negative bacteria, N-acylhomoserine lactone (AHL are used as quorum-sensing signal molecule and associated with biofilm formation. To investigate the relationship between quorum sensing and biofouling in the cooling water system, we isolated a total of 192 bacterial strains from the five cooling water systems, and screened for AHL production. Seven isolates stimulated AHL-mediated purple pigment production in AHL reporter strain Chromobacterium violaceum CV026 or VIR07. Based on their 16S rRNA gene sequences, AHL-producing isolates were assigned to Aeromonas hydrophila, Lysobacter sp., Methylobacterium oryzae, and Bosea massiliensis. To the best of our knowledge, B. massiliensis and Lysobacter sp. have not been reported as AHL-producing species in the previous researches. AHLs extracted from the culture supernatants of B. massiliensis and Lysobacter sp. were identified by liquid chromatography-mass spectrometry. AHLs produced by B. massiliensis were assigned as N-hexanoyl-l-homoserine lactone (C6-HSL, N-(3-oxohexanoyl-l-homoserine lactone (3-oxo-C6-HSL, and N-(3-oxooctanoyl-l-homoserine lactone (3-oxo-C8-HSL. AHLs produced by Lysobacter sp. were assigned as N-decanoyl-l-homoserine lactone (C10-HSL and N-(3-oxodecanoyl-l-homoserine lactone (3-oxo-C10-HSL. This is the first report of identification of AHLs produced by B. massiliensis and Lysobacter sp. isolated from the cooling water system.

  16. Effect of makeup water properties on the condenser fouling in power planr cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Safari, I.; Walker, M.; Abbasian, J.; Arastoopour, H.; Hsieh, M-K.; Dzombak, D.; Miller, D.

    2011-01-01

    The thermoelectric power industry in the U.S. uses a large amount of fresh water. As available freshwater for use in thermoelectric power production becomes increasingly limited, use of nontraditional water sources is of growing interest. Utilization of nontraditional water, in cooling systems increases the potential for mineral precipitation on heat exchanger surfaces. In that regard, predicting the accelerated rate of scaling and fouling in condenser is crucial to evaluate the condenser performance. To achieve this goal, water chemistry should be incorporated in cooling system modeling and simulation. This paper addresses the effects of various makeup water properties on the cooling system, namely pH and aqueous speciation, both of which are important factors affecting the fouling rate in the main condenser. Detailed modeling of the volatile species desorption (i.e. CO{sub 2} and NH{sub 3}), the formation of scale in the recirculating system, and the relationship between water quality and the corresponding fouling rates is presented.

  17. Organohalogen products from chlorination of cooling water at nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Bean, R.M.

    1983-10-01

    Eight nuclear power units at seven locations in the US were studied to determine the effects of chlorine, added as a biocide, on the composition of cooling water discharge. Water, sediment and biota samples from the sites were analyzed for total organic halogen and for a variety of organohalogen compounds. Haloforms were discharged from all plants studied, at concentrations of a few ..mu..g/L (parts-per-billion). Evidence was obtained that power plants with cooling towers discharge a significant portion of the haloforms formed during chlorination to the atmosphere. A complex mixture of halogenated phenols was found in the cooling water discharges of the power units. Cooling towers can act to concentrate halogenated phenols to levels approaching those of the haloforms. Examination of samples by capillary gas chromatography/mass spectrometry did not result in identification of any significant concentrations of lipophilic base-neutral compounds that could be shown to be formed by the chlorination process. Total concentrations of lipophilic (Bioabsorbable) and volatile organohalogen material discharged ranged from about 2 to 4 ..mu..g/L. Analysis of sediment samples for organohalogen material suggests that certain chlorination products may accumulate in sediments, although no tissue bioaccumulation could be demonstrated from analysis of a limited number of samples. 58 references, 25 figures, 31 tables.

  18. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    Energy Technology Data Exchange (ETDEWEB)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir

  19. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    Science.gov (United States)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  20. Volume and structural analysis of super-cooled water under high pressure

    Science.gov (United States)

    Duki, Solomon F.; Tsige, Mesfin

    2012-02-01

    Motivated by recent experimental study of super-cooled water at high pressure [1], we performed atomistic molecular dynamic simulations study on bulk water molecules at isothermal-isobaric ensemble. These simulations are performed at temperatures that range from 40 K to 380 K using two different cooling rates, 10K/ns and 10K/5ns, and pressure that ranges from 1atm to 10000 atm. Our analysis for the variation of the volume of the bulk sample against temperature indicates a downward concave shape for pressures above certain values, as reported in [1]. The same downward concave behavior is observed at high pressure on the mean-squared-displacements (MSD) of the water molecules when the MSD is plotted against time. To get further insight on the effect of the pressure on the sample we have also performed a structural analysis of the sample.[4pt] [1] O. Mishima, J. Chem. Phys. 133, 144503 (2010);

  1. Investigation of Water-spray Cooling of Turbine Blades in a Turbojet Engine

    Science.gov (United States)

    Freche, John C; Stelpflug, William J

    1953-01-01

    An analytical and experimental investigation was made with a J33-A-9 engine to determine the effectiveness of spray cooling as a means of increasing thrust by permitting engine operation at inlet-gas temperatures and speeds above rated. With the assumption of adequate spray cooling at a coolant-to-gas flow ratio of 3 percent, calculations for the sea-level static condition indicated a thrust may be achieved by engine operation at an inlet-gas temperature of 2000 degrees F and an overspeed of 10 percent. Of the water-injection configurations investigated experimentally, those located in the inner ring of the stator diaphragm provided the best cooling at rated engine speed.

  2. Performance of water and diluted ethylene glycol as coolants for electronic cooling

    Directory of Open Access Journals (Sweden)

    M. Gayatri,

    2015-05-01

    Full Text Available As the number of transistors increases with new generation of microprocessor chips, the power draw and heat load to dissipate during operation increases. As a result of increasing the heat loads and heat fluxes the Conventional cooling technologies such as fan, heat sinks are unable to absorb and heat transfer excess heat dissipated by these new microprocessor. So, new technologies are needed to improve the heat removal capacity. In the present work single phase liquid cooling system with mini channel is analyzed and experimentally investigated. Mini channels are chosen as to provide higher heat transfer co-efficient than conventional channel. Copper pipes of 0.36 mm diameter are taken to fabricate heat sink and heat exchanger. A pump is used to circulate the fluid through heat sink and heat exchanger. A solid heated aluminium block to simulate heat generated electronic component is used and electrical input is supplied to the heated aluminium block and cooling system is placed over the heated block. The performance of the cooling system is analyzed from the experimental data obtained. It is experimentally observed that the mini channel liquid cooling system with water as a coolant has better performance than diluted ethylene glycol as coolant at different flow rates. The surface temperature of the heated aluminium block with convective heat transfer co-efficient is observed

  3. Comparison of laboratory and field observations: Ozone water treatment for cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, K.P. [Marley Cooling Tower Co., Mission, KS (United States)

    1996-11-01

    This evaluation, comparing laboratory- and field-generated data, explains the functional results of ozone water treatment use for operating heating, ventilating, and air-conditioning (HVAC) cooling water systems. These effects are classified in the areas of biological growth control, corrosion rate control, and scale control or retardation. Limitations on the application of ozone are discussed. Field results from multiple sites are examined and compared to laboratory-generated data. Theories as to mechanisms are discussed based on the accumulated information. Specific situations such as under-ozonation, and soft and hard water are discussed.

  4. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  5. Economy of replacing a refrigerant in a cooling system for preparing chilled water

    Energy Technology Data Exchange (ETDEWEB)

    Kulcar, B. [Nafta-Petrochem, d.o.o., Mlinska ulica 5, 9220 Lendava (Slovenia); Goricanec, D.; Krope, J. [University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor (Slovenia)

    2010-08-15

    Due to the negative impact of refrigerants containing Cl and Br on the ozone layer, these refrigerants are being replaced with refrigerants containing fluorine. The article describes the replacing of refrigerant R22 in a cooling system for preparing chilled water, used for cooling reactors producing phenol-formaldehyde resins. After analyzing the existing state and the capabilities of the cooling system, the refrigerant R22 was replaced with refrigerant R407C. For both refrigerants a calculation of the cooling system has been made, the results of which are given in the form of diagrams depending on the evaporation temperature of the refrigerant. Profitability evaluation of replacing a refrigerant was carried out using the method of the net present value (NPV), the coefficient of profitability and the period of time in which the investment is going to return itself. Also the calculations of the savings of electrical energy needed for the running of the compressors and the price of chilled water have been done, using the method of internal profitability level (IPL). (author)

  6. HIGH COOLING WATER TEMPERATURE EFFECTS ON DESIGN AND OPERATIONAL SAFETY OF NPPS IN THE GULF REGION

    Directory of Open Access Journals (Sweden)

    BYUNG KOO KIM

    2013-12-01

    Full Text Available The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia, and a much larger one at Barakah (4X1,400 MWe PWR from Korea. Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.

  7. Molecular Dynamics Simulations of Aqueous and Confined Systems Relevant to the Supercritical Water Cooled Nuclear Reactor

    Science.gov (United States)

    Kallikragas, Dimitrios Theofanis

    Supercritical water (SCW) is the intended heat transfer fluid and potential neutron moderator in the proposed GEN-IV Supercritical Water Cooled Reactor (SCWR). The oxidative environment poses challenges in choosing appropriate design materials, and the behaviour of SCW within crevices of the passivation layer is needed for developing a corrosion control strategy to minimize corrosion. Molecular Dynamics simulations have been employed to obtain diffusion coefficients, coordination number and surface density characteristics, of water and chloride in nanometer-spaced iron hydroxide surfaces. Diffusion models for hydrazine are evaluated along with hydration data. Results demonstrate that water is more likely to accumulate on the surface at low density conditions. The effect of confinement on the water structure diminishes as the gap size increases. The diffusion coefficient of chloride decreases with larger surface spacing. Clustering of water at the surface implies that the SCWR will be most susceptible to pitting corrosion and stress corrosion cracking.

  8. Preliminary Analysis on Heat Removal Capacity of Passive Air-Water Combined Cooling Heat Exchanger Using MARS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung-Sin; Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech, Yongin (Korea, Republic of); Bae, Sung-Won; Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Current design requirement for working time of PAFS heat exchanger is about 8 hours. Thus, it is not satisfied with the required cooling capability for the long term SBO(Station Black-Out) situation that is required to over 72 hours cooling. Therefore PAFS is needed to change of design for 72 hours cooling. In order to acquirement of long terms cooling using PAFS, heat exchanger tube has to be submerged in water tank for long time. However, water in the tank is evaporated by transferred heat from heat exchanger tubes, so water level is gradually lowered as time goes on. The heat removal capacity of air cooling heat exchanger is core parameter that is used for decision of applicability on passive air-water combined cooling system using PAFS in long term cooling. In this study, the development of MARS input model and plant accident analysis are performed for the prediction of the heat removal capacity of air cooling heat exchanger. From analysis result, it is known that inflow air velocity is the decisive factor of the heat removal capacity and predicted air velocity is lower than required air velocity. But present heat transfer model and predicted air velocity have uncertainty. So, if changed design of PAFS that has over 4.6 kW heat removal capacity in each tube, this type heat exchanger can be applied to long term cooling of the nuclear power plant.

  9. Multi-Model Assessment of Global Hydropower and Cooling Water Discharge Potential Under Climate Change

    Science.gov (United States)

    van Vliet, M. T. H.; van Beek, L. P. H.; Eisener, S.; Wada, Y.; Bierkens, M. F. P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971-2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18-33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11-14% (for RCP2.6 and the shared socioeconomic

  10. Zinc poisoning associated with separation anxiety in an Argentinean bulldog.

    Science.gov (United States)

    Goicoa, A; Fidalgo, L E; Suárez, M L; Espino, L; Pérez-López, M; Santamarina, G

    2002-02-01

    Separation anxiety in dogs is a complex behavioral syndrome produced by many causes. A hunter 4y-old male Argentinean Bulldog had dental disturbances and gastrointestinal and cutaneous symptoms due to high plasma zinc and low copper and calcium plasma concentration. His behavior made him bite galvanized wire fences in his cage and bunk that contained his food, both of a Zn-containing material. Specific treatment resulted in complete recovery.

  11. Water cooling of shocks in protostellar outflows: Herschel-PACS map of L1157

    CERN Document Server

    Nisini, B; Codella, C; Giannini, T; Liseau, R; Neufeld, D; Tafalla, M; van Dishoeck, E F; Bachiller, R; Baaudry, A; Benz, O A; Bergin, E; Bjerkeli, P; Blake, G; Bontemps, S; Braine, J; Bruderer, S; Caselli, P; Cernicharo, J; Daniel, F; Encrenaz, P; di Giorgio, A M; Dominik, C; Doty, S; Fich, M; Fuente, A; Goicoechea, J R; de Graaw, Th; Helmich, F; Herczeg, G; Herpin, F; Hogerheijde, M; Jacq, T; Johnstone, D; Jorgensen, J; Kaufman, M; Kirstensen, L; Larsson, B; Lis, D; Marseille, M; McCoey, C; Melnick, G; Olberg, M; Parise, B; Pearson, J; Plime, R; Risacher, C; Santiago, J; Saraceno, P; Shipman, R; van Kempen, T A; Visser, R; Viti, S; Wampfler, S; Wyrowski, F; van der Tak, F; Yildiz, U A; Delforge, B; Desbat, J; Hatch, W A; Peron, I; Schieder, R; Stern, J A; Teyssier, D; Whyborn, N

    2010-01-01

    In the framework of the Water in Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This paper reports the first results of this program, presenting a PACS map of the o-H2O 179 um transition obtained toward the young outflow L1157. The 179 um map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the water abundance and total cooling. Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 um emission is spatially correlated with emission from H2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O ...

  12. Fishing for isotopes in the Brookhaven Lab Isotope Producer (BLIP) cooling water

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Jonathan [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider Accelerator Dept.

    2016-04-29

    Be-7 has been used in environmental studies; the isotope is produced during BLIP irradiations and accumulates in the 320 gallons of cooling water. Be-7 has a 53.24 day half-life, so the optimal production/purification time is at the end of the BLIP run season. To purify Be-7 fifteen to twenty gallons of BLIP cooling water are removed and pumped through ion exchange columns that retain Be-7. This labor intensive approach captures ~15 mCi of Be-7, but the solution requires further purification. The method can lead to increased radiation exposure to staff. The ideal way to capture isotopes from large volumes is to reach in to the solution and selectively pull out the desired isotope. It is a lot like fishing.

  13. Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Zhu, Qingjun; Li, Jia; Liu, Songlin

    2016-07-01

    In order to investigate the nuclear response to the water-cooled ceramic breeder blanket models for CFETR, a detailed 3D neutronics model with 22.5° torus sector was developed based on the integrated geometry of CFETR, including heterogeneous WCCB blanket models, shield, divertor, vacuum vessel, toroidal and poloidal magnets, and ports. Using the Monte Carlo N-Particle Transport Code MCNP5 and IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, the neutronics analyses were performed. The neutron wall loading, tritium breeding ratio, the nuclear heating, neutron-induced atomic displacement damage, and gas production were determined. The results indicate that the global TBR of no less than 1.2 will be a big challenge for the water-cooled ceramic breeder blanket for CFETR. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  14. Tritium recovery in Pb17Li-water cooled blanket systems

    Energy Technology Data Exchange (ETDEWEB)

    Malara, C. [Safety Technology Inst., Ispra (Italy); Casini, G. [Systems Engineering & Information Inst., Ispra (Italy); Viola, A. [Univ. of Cagliari (Italy)

    1994-12-31

    The question of tritium recovery in Pb17Li, water cooled blankets is under investigation since several years at JRC Ispra. The method which has been more extensively analyzed is that of slowly circulating the breeder out from the blanket units and of extracting the tritium from it outside the plasma vacuum vessel by helium gas purging in a suited process apparatus. The design features of the process systems are related to: (1) the very low tritium solubility in Pb17Li which implies high permeation rates through the containment structures; (2) the need of keeping as low as possible the tritium concentration in the cooling water both for safety and economical reasons. A computerized model of the tritium behavior in the blanket units and in the extraction system has been developed.

  15. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    Science.gov (United States)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  16. APPLICATION OF A QUASI-2D HYDRO-MORPHOLOGICAL MODEL TO THE ARGENTINEAN PARAN(A) RIVER

    Institute of Scientific and Technical Information of China (English)

    Pedro A.BASILE; Gerardo A.RICCARDI

    2002-01-01

    Herein a simplified quasi-two dimensional horizontal hydro-morphological mathematical model is presented. The governing equations for the quasi-2D horizontal time-depending flow field are represented by the well-known approach of interconnected cells. New discharge laws between cells are incorporated. The model is capable of predicting temporal changes in water depth, velocity distribution,sediment transport, bed elevation, as well as water and suspended sediment exchanges between main stream and flood plains. An application of the model to the middle reach of the Argentinean Parana River is presented. Satisfactory results were obtained during model calibration, validation and application.

  17. Scleractinian corals recorded in the Argentinean Antarctic expeditions between 2012 and 2014, with comments on Flabellum (Flabellum areum Cairns, 1982

    Directory of Open Access Journals (Sweden)

    Laura Schejter

    2016-07-01

    Full Text Available In this contribution, we provide a list of the scleractinian corals recorded during the Argentinean Antarctic expeditions on board the oceanographic vessel Puerto Deseado (Argentina in the austral summers in 2012, 2013 and 2014. The identified taxa consist of six solitary species (Flabellum impensum, F. flexuosum, F. areum, Caryophyllia antarctica, Paraconotrochus antarcticus and Javania antarctica, recorded from 19 sampling sites located off the Antarctic Peninsula and South Shetland and South Orkney islands. We also update the information of F. areum, previously known only from south-west Atlantic waters, extending its distribution range to Antarctic waters and its upper bathymetric range to 218 m.

  18. The unexpected energy saving of cooling water conditioning; Koelwaterconditionering spaart meer energie dan u denkt

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, A. [ed.

    1996-09-01

    On the basis of the example of the dosage of chlorinated bleaching lye in cooling water it is calculated that much more energy can be saved than expected. The use of the lye improves the energy efficiency of heat exchangers. The calculation method is developed by L. Paping and is based on the idea to express the advantages (e.g. energy conservation) and the disadvantages (e.g. environmental burden) as a dimensionless indicator.

  19. Topical report : NSTF facilities plan for water-cooled VHTR RCCS : normal operational tests.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Kilsdonk, D. J.; Tzanos, C. P.; Lomperski, S.; Aeschlimann, R. W.; Nuclear Engineering Division

    2006-09-01

    As part of the Department of Energy (DOE) Generation IV roadmapping activity, the gas-cooled Very High Temperature Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R&D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept.

  20. Radiant Cooling for Closed-Loop Water Containment: Exploration of Possible Application in Dry Docks

    Science.gov (United States)

    2015-08-20

    TYPE 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9. SPONSORING/ MONITORING AGENCY...lengths from 300 to 3000 with diameters ranging from 10 to 24 all cooled a design load of 8 ° = 4. 44̅̅̅̅ above ambient ...water contains a higher concentration of copper and other metals and is at a higher temperature compared to ambient conditions; this is not a concern

  1. Thermal-hydraulic Optimization of Water-cooled Center Conductor Post for Spherical Tokamaks Reactor

    Institute of Scientific and Technical Information of China (English)

    柯严; 吴宜灿; 黄群英; 郑善良

    2002-01-01

    This paper proposes a conceptual structure of segmental water-cooled Center Con ductor Post (CCP) to be flexible in installment and replacement. Thermal-hydraulic optimization and sensitivity analysis of key parameters are performed based on a reference fusion transmutation system with 100 MW fusion power. Numerical simulation by using a commercial code PHOEN]CS has been carried out to be close to the thermal-hydraulic analytical results of the CCP mid-part.

  2. Water-Cooled Data Center Packs More Power Per Rack | Poster

    Science.gov (United States)

    By Frank Blanchard and Ken Michaels, Staff Writers Behind each tall, black computer rack in the data center at the Advanced Technology Research Facility (ATRF) is something both strangely familiar and oddly out of place: It looks like a radiator. The back door of each cabinet is gridded with the coils of the Liebert cooling system, which circulates chilled water to remove heat generated by the high-speed, high-capacity, fault-tolerant equipment.

  3. A Comparative Analysis of Three Water Treatment Programs for Cooling Tower Systems

    Science.gov (United States)

    1991-09-01

    Gallic Acid Powder (item 2063) METHOD: It is necessary to follow the instructions furnished with the conductivity meter that is being used . The...the location and costs of AFLC towers. 2 Definition of Terms Terms commonly used in cooling tower water treatment. Acid : A substance that dissolves...the sulfuric acid program. This program is still indorsed by Air Force Regulation 91-40. System operators use sulfuric acid to lower the pH and

  4. Analysis of tritium behaviour and recovery from a water-cooled Pb17Li blanket

    Energy Technology Data Exchange (ETDEWEB)

    Malara, C. [Institute Regional des Materiaux Avances, Ispra (Italy); Casini, G. [Systems Engineering and Informatics Institute, JRC Ispra, Ispra (Vatican City State, Holy See) (Italy); Viola, A. [Department of Chemical Engineering, University of Cagliari, Cagliari (Italy)

    1995-03-01

    The question of the tritium recovery in water-cooled Pb17Li blankets has been under investigation for several years at JRC Ispra. The method which has been more extensively analysed is that of slowly circulating the breeder out from the blanket units and of extracting the tritium from it outside the plasma vacuum vessel by helium gas purging or vacuum degassing in a suited process apparatus. A computerized model of the tritium behaviour in the blanket units and in the extraction system was developed. It includes four submodels: (1) tritium permeation process from the breeder to the cooling water as a function of the local operative conditions (tritium concentration in Pb17Li, breeder temperature and flow rate); (2) tritium mass balance in each breeding unit; (3) tritium desorption from the breeder material to the gas phase of the extraction system; (4) tritium extraction efficiency as a function of the design parameters of the recovery apparatus. In the present paper, on the basis of this model, a parametric study of the tritium permeation rate in the cooling water and of the tritium inventory in the blanket is carried out. Results are reported and discussed in terms of dimensionless groups which describe the relative effects of the overall resistance on tritium transfer to the cooling water (with and without permeation barriers), circulating Pb17Li flow rate and extraction efficiency of the tritium recovery unit. The parametric study is extended to the recovery unit in the case of tritium extraction by helium purge or vacuum degassing in a droplet spray unit. (orig.).

  5. Natural Convective Heat and Mass Transfer of Water with Corrosion Products at Super—Critical Pressures under Cooling COnditions

    Institute of Scientific and Technical Information of China (English)

    Pei-XueJiang; Ze-PeiRen; 等

    1993-01-01

    A numerical study is reported of laminar natural convective heat and mass transfer on a vertical cooled plate for water containing metal corrosion products at super-critical pressures.The influence of variable properties at super-critical pressures on natural convertion has been analyzed.The difference between heat and mass transfer under cooling or heating conditions is also discussed and some correlations for heat and mass transfer under cooling conditions are recommended.

  6. Effects of Solution Hydrodynamics on Corrosion Inhibition of Steel by Citric Acid in Cooling Water

    Science.gov (United States)

    Ashassi-Sorkhabi, H.; Asghari, E.; Mohammadi, M.

    2014-08-01

    Corrosion is a major problem in cooling water systems, which is often controlled using corrosion inhibitors. Solution hydrodynamics is one of the factors affecting corrosion inhibition of metals in these systems. The present work focuses on the study of the combined effects of citric acid concentration (as a green corrosion inhibitor) and fluid flow on corrosion of steel in simulated cooling water. Electrochemical techniques including Tafel polarization and electrochemical impedance spectroscopy were used for corrosion studies. Laminar flow was simulated using a rotating disk electrode. The effects of solution hydrodynamics on inhibition performance of citric acid were discussed. The citric acid showed low inhibition performance in quiescent solution; however, when the electrode rotated at 200 rpm, inhibition efficiency increased remarkably. It was attributed mainly to the acceleration of inhibitor mass transport toward metal surface. The efficiencies were then decreased at higher rotation speeds due to enhanced wall shear stresses on metal surface and separation of adsorbed inhibitor molecules. This article is first part of authors' attempts in designing green inhibitor formulations for industrial cooling water. Citric acid showed acceptable corrosion inhibition in low rotation rates; thus, it can be used as a green additive to the corrosion inhibitor formulations.

  7. Outbreak of Legionnaires' disease from a cooling water system in a power station (Heysham)

    Energy Technology Data Exchange (ETDEWEB)

    Morton, S.; Dyer, J.V.; Bartlett, C.L.R.; Bibby, L.F.; Hutchinson, D.N.; Dennis, P.J.

    1986-09-01

    In September and October 1981 six cases of pneumonia occurred among men working in a power station under construction. Three were identified as cases of legionella pneumonia and two others had serology suggestive of legionella infection. In a sample of 92 men from the site 10 had low levels of antibodies to legionella; a similar sample of men working on an adjacent site showed none with positive serology. In a case control study it was found that cases of pneumonia were more likely than controls to have worked on a part of the site where four small capacity cooling towers were located. Legionella pneumophila serogroup 1 was isolated from the water systems of these four towers but was not found in samples from any other cooling towers or hot or cold water outlets on the site. It would appear that there was airborne spread of the organism from these cooling water systems which had not received conventional treatment to inhibit corrosion and organic growth. This is the first outbreak of legionnaires' disease to be recorded in an industrial setting in the United Kingdom. No cases of legionella infection have occurred on the site since the introduction of control measures.

  8. Experimental adsorption equilibrium study and comparison of zeolite with water and ethanol for cooling systems

    Institute of Scientific and Technical Information of China (English)

    MAIGA Abdoulaye Siddeye; CHEN Guang-ming; WANG Qin

    2007-01-01

    Two adsorption refrigeration working pairs of zeolite with water and ethanol were studied and the parameters of Dubinin-Astakhov model were regressed using the experimental data of equilibrium. The coefficient of heterogeneity varied from 1.305 to 1.52 for the zeolite-water pair and from 1.73 to 2.128 for zeolite-ethanol pair. The maximum adsorption capacity varied from 0.315 to 0.34 for zeolite-water and 0.23 to 0.28 for zeolite-ethanol, respectively. The results showed that the zeolite-water pair is suitable for solar energy cooling not only because of the high latent heat of vaporization of water but also because of the better equilibrium performance. On the other hand, zeolite-ethanol gives a high adsorption capacity at high regeneration temperature, which means it can be used in heat engine systems like buses and cars.

  9. Thermal and structural finite element analysis of water cooled silicon monochromator for synchrotron radiation comparison of two different cooling schemes

    CERN Document Server

    Artemiev, A I; Busetto, E; Hrdy, J; Mrazek, D; Plesek, I; Savoia, A

    2001-01-01

    The article describes the results of Finite Element Analysis (FEA) of the first Si monochromator crystal distortions due to Synchrotron Radiation (SR) heat load and consequent analysis of the influence of the distortions on a double crystal monochromator performance. Efficiencies of two different cooling schemes are compared. A thin plate of Si crystal is lying on copper cooling support in both cases. There are microchannels inside the cooling support. In the first model the direction of the microchannels is parallel to the diffraction plane. In the second model the direction of the microchannels is perpendicular to the diffraction plane or in other words, it is a conventional cooling scheme. It is shown that the temperature field along the crystal volume is more uniform and more symmetrical in the first model than in the second (conventional) one.

  10. Heat transfer coefficient distribution over the inconel plate cooled from high temperature by the array of water jets

    Science.gov (United States)

    Malinowski, Z.; Telejko, T.; Cebo-Rudnicka, A.; Szajding, A.; Rywotycki, M.; Hadała, B.

    2016-09-01

    The industrial rolling mills are equipped with systems for controlled water cooling of hot steel products. A cooling rate affects the final mechanical properties of steel which are strongly dependent on microstructure evolution processes. In case of water jets cooling the heat transfer boundary condition can be defined by the heat transfer coefficient. In the present study one and three dimensional heat conduction models have been employed in the inverse solution to heat transfer coefficient. The inconel plate has been heated to about 900oC and then cooled by one, two and six water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient distributions at plate surface have been determined in time of cooling.

  11. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  12. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  13. Presence of pathogenic amoebae in power plant cooling waters. Final report, October 15, 1977-September 30, 1979. [Naegleria fowleri

    Energy Technology Data Exchange (ETDEWEB)

    Tyndall, R.L.; Willaert, E.; Stevens, A.R.

    1981-03-01

    Cooling-water-associated algae and sediments from five northern and five southern or western electric power plants were tested for the presence of pathogenic amoebae. In addition, water algae and sediments from five northern and five southern/western sites not associated with power plants were tested. There was a significant correlation at northern power plants between the presence of thermophilic, pathogenic amoebae in cooling waters and thermal additions. Presence of the pathogenic did not correlate with salinity, pH, conductivity, or a variety of various chemical components of the cooling waters. Selected pathogenic isolates were tested serologically and were classified as Naegleria fowleri. Although thermal additions were shown to be contributing factor in predisposing cooling waters to the growth of pathogenic amoebae, the data suggest the involvement of other currently undefined parameters associated with the presence of the pathogenic amoebae. 35 refs., 21 tabs.

  14. Performance Analysis of Photovoltaic Panels with Earth Water Heat Exchanger Cooling

    Directory of Open Access Journals (Sweden)

    Jakhar Sanjeev

    2016-01-01

    Full Text Available The operating temperature is an important factor affecting the performance and life span of the Photovoltaic (PV panels. The rising temperature can be maintained within certain limit using proper cooling techniques. In the present research a novel system for cooling of PV panels named as Earth Water Heat Exchanger (EWHE is proposed and modelled in transient analysis simulation tool (TRNSYS v17.0 for the conditions of Pilani, Rajasthan (India.The various parameters which include cell temperature, PV power output and cell efficiency are observed with respect to variation in mass flow rate of fluid. Simulation results of the system without cooling show that the maximum PV panel temperature reached up to 79.31 °C with electrical efficiency dropped to 9% during peak sunshine hour. On the other hand, when PV panels are coupled with EWHE system, the panel temperature drops to 46.29 °C with an efficiency improving to 11% for a mass flow rate of 0.022 kg/s. In the end the cooling potential of EWHE is found to be in direct correlation with mass flow rate. The proposed system is very useful for the arid regions of western India which are blessed with high solar insolation throughout the year.

  15. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    Energy Technology Data Exchange (ETDEWEB)

    Stillwell, Ashlynn S [Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 1 University Station C1786, Austin, TX 78712 (United States); Clayton, Mary E; Webber, Michael E, E-mail: ashlynn.stillwell@mail.utexas.edu, E-mail: mclayton34@mail.utexas.edu, E-mail: webber@mail.utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

    2011-07-15

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights-a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions-a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m{sup 3}-enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  16. Resistance of Alkali Activated Water-Cooled Slag Geopolymer to Sulphate Attack

    Directory of Open Access Journals (Sweden)

    S. A. Hasanein

    2011-06-01

    Full Text Available Ground granulated blast furnace slag is a finely ground, rapidly chilled aluminosilicate melt material that is separated from molten iron in the blast furnace as a by-product. Rapid cooling results in an amorphous or a glassy phase known as GGBFS or water cooled slag (WCS. Alkaline activation of latent hydraulic WCS by sodium hydroxide and/or sodium silicate in different ratios was studied. Curing was performed under 100 % relative humidity and at a temperature of 38°C. The results showed that mixing of both sodium hydroxide and sodium silicate in ratio of 3:3 wt.,% is the optimum one giving better mechanical as well as microstructural characteristics as compared with cement mortar that has various cement content (cement : sand were 1:3 and 1:2. Durability of the water cooled slag in 5 % MgSO4 as revealed by better microstructure and high resistivity-clarifying that activation by 3:3 sodium hydroxide and sodium silicate, respectively is better than using 2 and 6 % of sodium hydroxide.

  17. Experiences with electrochemical analysis of copper at the PPB-level in saline cooling water and in the water/steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, K. [I/S Nordjyllandsvaerket, Vodskov (Denmark)

    1996-12-01

    Determination of trace amounts of copper in saline cooling water and in process water by differential pulse anodic stripping voltammetry combined with an UV-photolysis pretreatment is described. Copper concentrations well below 1 {mu}g/L may be analysed with a precision in the order of 10% and a high degree of accuracy. The basic principles of the method are described together with three applications covering analysis of cooling and process water samples. The analysis method has been applied to document the adherence of environmental limits for the copper uptake of cooling water passing brass condensers, to monitor the formation of protective layers of iron oxides on the cooling water side of brass condensers, and to study the transport of copper in water/steam cycles with heat exchangers and condensers of brass materials. (au)

  18. Solar heating, cooling, and hot water systems installed at Richland, Washington

    Science.gov (United States)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  19. Experimental Evidence for a Liquid-Liquid Crossover in Deeply Cooled Confined Water

    Science.gov (United States)

    Cupane, Antonio; Fomina, Margarita; Piazza, Irina; Peters, Judith; Schirò, Giorgio

    2014-11-01

    In this work we investigate, by means of elastic neutron scattering, the pressure dependence of mean square displacements (MSD) of hydrogen atoms of deeply cooled water confined in the pores of a three-dimensional disordered SiO2 xerogel; experiments have been performed at 250 and 210 K from atmospheric pressure to 1200 bar. The "pressure anomaly" of supercooled water (i.e., a mean square displacement increase with increasing pressure) is observed in our sample at both temperatures; however, contrary to previous simulation results and to the experimental trend observed in bulk water, the pressure effect is smaller at lower (210 K) than at higher (250 K) temperature. Elastic neutron scattering results are complemented by differential scanning calorimetry data that put in evidence, besides the glass transition at about 170 K, a first-order-like endothermic transition occurring at about 230 K that, in view of the neutron scattering results, can be attributed to a liquid-liquid crossover. Our results give experimental evidence for the presence, in deeply cooled confined water, of a crossover occurring at about 230 K (at ambient pressure) from a liquid phase predominant at 210 K to another liquid phase predominant at 250 K; therefore, they are fully consistent with the liquid-liquid transition hypothesis.

  20. Secondary Cooling Water Quality Management for Multi Purpose Reactor 30 MW GA Siwabessy Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Sunaryo, Geni Rina, E-mail: genirina@batan.go.i [Center for Reactor Technology and Nuclear Safety (PTRKN-BATAN), Bldg. 80, Puspiptek Area, Serpong, Tangerang 15310 (Indonesia)

    2011-07-01

    Indonesia Multi Purpose Research Reactor (MPR) G.A. Siwabessy 30 MW will be 25 years old in 2011. Series of Non Destructive Test (NDT) were done to understand the current condition such as Eddy Current test for Heat Exchangers, water immersed camera for understanding the tank liner condition, ultrasonic for secondary piping etc. Some deteorization was observed because of ageing and some changing was done. One of them is changing some part of secondary pipe lines because of leaking, with the local ones. For having another 25 years operation life, a proper water quality for secondary cooling water is needed towards corrosion prevention. The main objectives of this experiment is to understand the current water quality of secondary cooling water of RSG-GAS from the aspect of corrosion induced by chemicals and bacteria, and establish procedure for managing the secondary cooling water quality. Methodologies applied are surveillance corrosion by immersing coupon into water observed and followed by visual analyses, corrosion rate determination by electrochemical method with various chemical conditions and total bacteria determination by using test kit. The results show visually that the crevice, galvanic and homogeny corrosion with the current water quality easily be observed for carbon steel represented secondary pipelines at the condition of none oxy bio agent addition. This corrosion is being suppressed by adding the oxy bio agent. The orientation of coupon, vertically and horizontally, gives slightly different effect. The closely corrosion rate was obtained by separately experiment, electrochemical, at the concentration of inhibitor 100ppm is 0.13 {+-} 0.02, which is lower than in the raw water of 0.20 {+-} 0.01 mpy. The total bacteria detected is around 10{sup 7} cfu/ml at none reactor operation and without any anti bacteria added. The oxi bio agent chemical addition suppresses the numbers becomes 10{sup 3} cfu/ml. The SRB bacteria is detected as >10{sup 6} cfu/ml at

  1. Hydro-Potential Utilization of Cooling Water on the Hydro-Electric Power Plant Dalešice

    OpenAIRE

    Hudec, Martin; Haluza, Miloslav; Kubálek, Jiří

    2009-01-01

    Engineering solution of a surplus pressure head in a system of reversible machine unit's cooling water. Current technologies supplemented with Francis turbine or more precisely a centrifugal volute-type pump in turbine mode. It contains the layout for the basic extent of several various high-speeds with regard to maximum coverage of working conditions. Minimization of construction works on the structure of the cooling water inlet. Furthermore it includes an assignment of the annual power prod...

  2. Numerical Investigation of the Flow Dynamics and Evaporative Cooling of Water Droplets Impinging onto Heated Surfaces: An Effective Approach To Identify Spray Cooling Mechanisms.

    Science.gov (United States)

    Chen, Jian-Nan; Zhang, Zhen; Xu, Rui-Na; Ouyang, Xiao-Long; Jiang, Pei-Xue

    2016-09-13

    Numerical investigations of the dynamics and evaporative cooling of water droplets impinging onto heated surfaces can be used to identify spray cooling mechanisms. Droplet impingement dynamics and evaporation are simulated using the presented numerical model. Volume-of-fluid method is used in the model to track the free surface. The contact line dynamics was predicted from a dynamic contact angle model with the evaporation rate predicted by a kinetic theory model. A species transport equation was solved in the gas phase to describe the vapor convection and diffusion. The numerical model was validated by experimental data. The physical effects including the contact angle hysteresis and the thermocapillary effect are analyzed to offer guidance for future numerical models of droplet impingement cooling. The effects of various parameters including surface wettability, surface temperature, droplet velocity, droplet size, and droplet temperature were numerically studied from the standpoint of spray cooling. The numerical simulations offer profound analysis and deep insight into the spray cooling heat transfer mechanisms.

  3. Numerical Study of the Effect of a Power Plant Cooling Water Discharge in the Montevideo Bay

    Directory of Open Access Journals (Sweden)

    Mónica Fossati

    2011-01-01

    Full Text Available The numerical simulation of the water temperature in the Río de la Plata River and Montevideo's Bay was done using the numerical model of finite elements RMA-10 in its 2D vertical integrated mode. Parameters involved in the formulations of thermal exchange with the atmosphere were adjusted using measurements of water temperature in several locations of the water body. After calibrating the model, it was used to represent the operation of a power plant located in Montevideo's Bay. This central takes water from the bay in order to cool its generators and also discharges high-temperature water into the bay. The correct representation of temperatures at the water intake and discharge of the plant reflects that the model is able to represent the operation of the central. Several analysis were made to study the thermal plume, the effects of the water discharge on the water intake of the power plant, and the effect on environmental variables of the study area like currents.

  4. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  5. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.

  6. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Approvals § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium...

  7. Experimental simulation of the water cooling of corium spread over the floor of a BWR containment

    Energy Technology Data Exchange (ETDEWEB)

    Morage, F.; Lahey, R.T. Jr.; Podowski, M.Z. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    This paper is concerned with an experimental investigation of the cooling effect of water collected on the surface of corium released onto the floor of a BWR drywell. In the present experiments, the actual reactor materials were replaced by simulant materials. Specifically, the results are shown for Freon-11 film boiling over liquid Wood`s metal spread above a solid porous surface through which argon gas was injected. An analysis of the obtained experimental data revealed that the actual film boiling heat transfer between a molten pool of corium and the water above the pool should be more efficient than predicted by using standard correlations for boiling over solid surfaces. This effect will be further augmented by the gas released due to the ablation of concrete floor beneath the corium and percolating towards its upper surface and into through the water layer above.

  8. Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor

    Institute of Scientific and Technical Information of China (English)

    Lefu ZHANG; Fawen ZHU; Rui TANG

    2009-01-01

    Nickel-based alloys, austenitic stainless steel, ferritic/martensitic heat-resistant steels, and oxide dispersion strengthened steel are presently considered to be the candidate structural or fuel-cladding materials for supercritical water-cooled reactor (SCWR), one of the promising generation IV reactor for large-scale electric power production. However, corrosion and stress corrosion cracking of these candidate alloys still remain to be a major problem in the selection of nuclear fuel cladding and other structural materials, such as water rod. Survey of literature and experimental results reveal that the general corrosion mechanism of those candidate materials exhibits quite complicated mechanism in high-temperature and high-pressure supercritical water. Formation of a stable protective oxide film is the key to the best corrosion-resistant alloys. This paper focuses on the mechanism of corrosion oxide film breakdown for SCWR candidate materials.

  9. Hydroxyl carboxylate based non-phosphorus corrosion inhibition process for reclaimed water pipeline and downstream recirculating cooling water system.

    Science.gov (United States)

    Wang, Jun; Wang, Dong; Hou, Deyin

    2016-01-01

    A combined process was developed to inhibit the corrosion both in the pipeline of reclaimed water supplies (PRWS) and in downstream recirculating cooling water systems (RCWS) using the reclaimed water as makeup. Hydroxyl carboxylate-based corrosion inhibitors (e.g., gluconate, citrate, tartrate) and zinc sulfate heptahydrate, which provided Zn(2+) as a synergistic corrosion inhibition additive, were added prior to the PRWS when the phosphate (which could be utilized as a corrosion inhibitor) content in the reclaimed water was below 1.7 mg/L, and no additional corrosion inhibitors were required for the downstream RCWS. Satisfactory corrosion inhibition was achieved even if the RCWS was operated under the condition of high numbers of concentration cycles. The corrosion inhibition requirement was also met by the appropriate combination of PO4(3-) and Zn(2+) when the phosphate content in the reclaimed water was more than 1.7 mg/L. The process integrated not only water reclamation and reuse, and the operation of a highly concentrated RCWS, but also the comprehensive utilization of phosphate in reclaimed water and the application of non-phosphorus corrosion inhibitors. The proposed process reduced the operating cost of the PRWS and the RCWS, and lowered the environmental hazard caused by the excessive discharge of phosphate. Furthermore, larger amounts of water resources could be conserved as a result.

  10. Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle

    Science.gov (United States)

    Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo

    2010-04-01

    High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.

  11. Temperature-time distribution and thermal stresses on the RTG fins and shell during water cooling

    Science.gov (United States)

    Turner, R. H.

    1983-01-01

    Radioisotope thermoelectric generator (RTG) packages designed for space missions generally do not require active cooling. However, the heat they generate cannot remain inside of the launch vehicle bay and requires active removal. Therefore, before the Shuttle bay door is closed, the RTG coolant tubes attached to the heat rejection fins must be filled with water, which will circulate and remove most of the heat from the cargo bay. There is concern that charging a system at initial temperature around 200 C with water at 24 C can cause unacceptable thermal stresses in the RTG shell and fins. A computer model is developed to estimate the transient temperature distribution resulting from such charging. The thermal stresses resulting from the temperature gradients do not exceed the elastic deformation limit for the material. Since the simplified mathematical model for thermal stresses tends to overestimate stresses, it is concluded that the RTG can be cooled by introducing water at 24 C to the initially hot fin coolant tubes while the RTG is in the Shuttle cargo bay.

  12. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems.

    Science.gov (United States)

    Hsieh, Ming-Kai; Li, Heng; Chien, Shih-Hsiang; Monnell, Jason D; Chowdhury, Indranil; Dzombak, David A; Vidic, Radisav D

    2010-12-01

    Secondary treated municipal wastewater is a promising alternative to fresh water as power plant cooling water system makeup water, especially in arid regions. Laboratory and field testing was conducted in this study to evaluate the corrosiveness of secondary treated municipal wastewater for various metals and metal alloys in cooling systems. Different corrosion control strategies were evaluated based on varied chemical treatment. Orthophosphate, which is abundant in secondary treated municipal wastewater, contributed to more than 80% precipitative removal of phosphorous-based corrosion inhibitors. Tolyltriazole worked effectively to reduce corrosion of copper (greater than 95% inhibition effectiveness). The corrosion rate of mild steel in the presence of free chlorine 1 mg/L (as Cl2) was approximately 50% higher than in the presence of monochloramine 1 mg/L (as Cl2), indicating that monochloramine is a less corrosive biocide than free chlorine. The scaling layers observed on the metal alloys contributed to corrosion inhibition, which could be seen by comparing the mild steel 21-day average corrosion rate with the last 5-day average corrosion rate, the latter being approximately 50% lower than the former.

  13. Cool-water carbonates in an Eocene palaeoestuary, Norseman Formation, Western Australia

    Science.gov (United States)

    Clarke, Jonathan D. A.; Bone, Yvonne; James, Noel P.

    1996-02-01

    Numerous palaeovalleys formed extensive drowned estuaries during Eocene transgressions along the southwestern part of the southern margin of Australia. The Tertiary sediments of the Cowan palaeovalley have been extensively drilled, revealing deposition of the Norseman Formation during the Middle Eocene Tortachilla transgression. Initial deposition occurred during transgression of the valley to form a drowned estuary. Sediments consisted of coarse-grained muddy, lithic, iron and glauconite-rich sands and gravels of mixed carbonate and quartz. Pure carbonates accumulated during the highstand, produced by a typical shallow temperate water assemblage of bryozoans, coralline algae, echinoids and molluscs and were swept into shoals by strong tidal currents. Minor "tropical" components in the form of large benthic foraminifers and dasycladacean algae are present. Coarse bryozoan and trough cross-bedded carbonate sands accumulated in the margins of the estuary and fine bryozoan sands in the deeper parts. Rhodoliths accumulated to form shoals in sheltered localities. The Spencer Gulf and Gulf St. Vincent of South Australia provide close modern analogues to the Cowan palaeovalley and the Norseman Formation. Modern carbonate sediments off Esperance on the south coast of Western Australia contain "tropical" faunal elements within an otherwise temperate skeletal assemblage and also provide a modern analogue. The Norseman Formation thus provides an excellent example of cool-water carbonate deposition in near-shore, tide-dominated environments. This study complements and contrasts existing cool-water shelf facies models based on Tertiary carbonates deposited on deep shelves elsewhere in southern Australia.

  14. Thermo-Mechanical Analysis of Water-Cooled Gun Barrel During Burst Firing

    Institute of Scientific and Technical Information of China (English)

    FAN Li-xia; HU Zhi-gang; ZHAO Jian-bo

    2006-01-01

    The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha-nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo-mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel.

  15. Effects of FLONLIZER, ultraviolet sterilizer, on Legionella species inhabiting cooling tower water.

    Science.gov (United States)

    Yamamoto, H; Urakami, I; Nakano, K; Ikedo, M; Yabuuchi, E

    1987-01-01

    Legionella pneumophila in sterile distilled water was not detected after ultraviolet irradiation by FLONLIZER, a new-type sterilizer, at a flow rate of 82.5 to 364.8 liters/hr. When irradiated by FLONLIZER at a flow rate of under 324.0 liters/hr, no viable cells of legionellae, other heterotrophic bacteria and bacterivorous protozoa were detected in the cooling tower water, which was found to contain L. pneumophila. No viable cells of L. pneumophila and L. bozemanii suspended in sterile distilled water were detected after the irradiation with UV-doses of over 6.16 X 10(3) micro W.sec/cm2. At the irradiation of low UV-doses under 1.06 X 10(4) micro W.sec/cm2, the viable count of legionellae recuperated by photoreactivation from UV-damage increased with the exposure time under a white fluorescent lamp. However, in the samples irradiated with UV-doses of over 3.52 X 10(4) micro W.sec/cm2, equal to the FLONLIZER, legionellae did not recuperate even after 18 hr illumination with a white fluorescent lamp. FLONLIZER is thus expected to act as a sterilizer which can control the legionellae inhabiting cooling tower systems placed in outdoor space.

  16. Analysis of an air cooled ammonia-water vertical tubular absorber

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, J.; Uhia, F.J.; Sieres, J. [Area de Maquinas y Motores Termicos, Escuela Tecnica Superior de Ingenieros Industriales, Campus Lagoas-Marcosende, No 9, 36310 Vigo (Spain)

    2007-03-15

    This paper presents a detailed analysis of an ammonia-water vertical tubular absorber cooled by air. The absorption process takes place co-currently upward inside the tubes. The tubes are externally finned with continuous plate fins and the tube rows are arranged staggered in the direction of the air flow. The air is forced over the tube bank and circulates between the plain fins in cross flow with the ammonia-water mixture. The analysis has been carried out by means of a mathematical model developed on the basis of mass and energy balances and heat and mass transfer equations. The model takes into account separately the churn, slug and bubbly flow patterns experimentally forecasted in this type of absorption processes inside vertical tubes and considers the simultaneous heat and mass transfer processes in both liquid and vapour phases, as well as heat transfer to the cooling air. The model has been implemented in a computer program. Results based on a representative design and nominal operating conditions of an absorber for a small capacity ammonia-water absorption refrigeration system are shown. A parametric analysis was realised to investigate the influence of the design parameters and operating conditions on the absorber performance. The noteworthy results that have effect on practical design of the absorber are presented and commented. (authors)

  17. Craft-joule project: air-cooled water LiBr absorption cooling machine of low capacity for air conditioning (ACABMA)

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, A; Castro, J; Perez Segarra, C.D [Universitat Politecnica de Catalunya, Barcelona (Spain); Lucena, M.A [Instituto Nacional de Tecnica Aeroespecial (Spain)] (and others)

    2000-07-01

    The ACABMA (Air-Cooled water-LiBr Absorption cooling Machine of low capacity for Air- conditioning) project is a Craft-Joule Project within the framework of the Non Nuclear Energy Programme Joule III coordinated by the Centre Technologic de Transferencia de Calor (CTTC). The basic objective of this project is the development of a new air-cooled absorption cooling machine for air-conditioning, in the low power sector market. Making use of water-LiBr technology together with the air-cooling feature, it is possible to reach a better relationship between quality (in terms of performance, ecology, etc.) and price of such absorption machines, than the ones existing on the market. Air-cooling instead of water cooling saves installation costs specially in small systems and removes the demand for cooling water (an important aspect in Southern-European countries), thus increasing the possible application range. The main interest for the SME proposers is to take advantage of the increasing cooling demand in Europe, specially in southern countries. Another point of interest for the SME proposers is the development of a cheaper cooling and heating system in terms of energy and installation costs. In this moment the solar cooling systems are approx. 30% more expensive than the conventional ones. A cheaper absorption machine due to the air-cooling feature together with the possibility of energy savings due to low generator temperatures, that allow the absorption machine for solar applications or waste heat, will lead to solar cooling and heating systems more competitive to the conventional ones. In order to achieve the above mentioned goal, the following step are necessary and will be carried out in this project: i)solution of the air-cooling of the water-LiBr machine, the main problem that up to now has not allowed commercialization, ii)reduction of the size of the air-cooled elements of the machine in order to reduce the machine costs, iii)development of an efficient control

  18. Simulation and control of water-gas shift packed bed reactor with inter-stage cooling

    Science.gov (United States)

    Saw, S. Z.; Nandong, J.

    2016-03-01

    Water-Gas Shift Reaction (WGSR) has become one of the well-known pathways for H2 production in industries. The issue with WGSR is that it is kinetically favored at high temperatures but thermodynamically favored at low temperatures, thus requiring careful consideration in the control design in order to ensure that the temperature used does not deactivate the catalyst. This paper studies the effect of a reactor arrangement with an inter-stage cooling implemented in the packed bed reactor to look at its effect on outlet temperature. A mathematical model is developed based on one-dimensional heat and mass transfers which incorporate the intra-particle effects. It is shown that the placement of the inter-stage cooling and the outlet temperature exiting the inter-stage cooling have strong influence on the reaction conversion. Several control strategies are explored for the process. It is shown that a feedback- feedforward control strategy using Multi-scale Control (MSC) is effective to regulate the reactor temperature profile which is critical to maintaining the catalysts activity.

  19. Heat Transfer Analysis to Optimize The Water Cooling Scheme For Combustion Device

    Directory of Open Access Journals (Sweden)

    B. Usha Rani

    2014-08-01

    Full Text Available Thermal Propulsion system is one kind of propulsion system which is used to drive torpedo. The present study focuses mainly on design of combustion device known to be thrust chamber or thrust cylinder. The chamber and nozzle wall and the injector face plate must be made of metals selected for high strength at elevated temperature coupled with good thermal conductivity, resistance to high temperature oxidation. chemical inertness on the coolant on the coolant side, and suitability for the fabrication method to be employed. In the case of certain monopropellants, the metal must not catalyze the decomposition. Although aluminum and copper alloys have been used successfully for combustion chambers and nozzles, stainless steels and carbon steels are in widest use today.A cooling jacket permits the circulation of a coolant, which, in the case of flight engines is usually one of the propellants. Water is the only coolant recommended. The cooling jacket consists of an inner and outer wall. The combustion chamber forms the inner wall and another concentric but larger cylinder provides the outer wall. The space between the walls serves as the coolant passage. The nozzle throat region usually has the highest heat transfer intensity and is, therefore, the most difficult to cool.

  20. Cooling water shortage causes nuclear power plant standstill; Hitzefrei fuer Atomstrom

    Energy Technology Data Exchange (ETDEWEB)

    Loenker, O.

    2003-09-01

    The cooling water shortage during the high 'Michaela' induced operators of nuclear and coal power plants to run their plants at lower power. In future heat waves, decentralisation and shutdown of inefficient large-scale power plants may be the only solution. (orig.) [German] Niedrige Pegelstaende, erwaermte Fluesse: Weil das Kuehlwasser knapp wurde, zwang Hoch 'Michaela' die Betreiber von Atom- und Kohle-Kraftwerken zum Drosseln ihrer Anlagen. Gegen kuenftige Hitzewellen hilft nur die Dezentralisierung der Energiewirtschaft und die Abkehr von ineffizienten Grosskraftwerken. (orig.)

  1. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory.

    Science.gov (United States)

    Schlesinger, Daniel; Sellberg, Jonas A; Nilsson, Anders; Pettersson, Lars G M

    2016-03-28

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  2. Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of a steady heat flux to a given water-cooled surface by means of a system energy balance. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Molecular characterization of viable Legionella spp. in cooling tower water samples by combined use of ethidium monoazide and PCR.

    Science.gov (United States)

    Inoue, Hiroaki; Fujimura, Reiko; Agata, Kunio; Ohta, Hiroyuki

    2015-01-01

    Viable Legionella spp. in environmental water samples were characterized phylogenetically by a clone library analysis combining the use of ethidium monoazide and quantitative PCR. To examine the diversity of Legionella spp., six cooling tower water samples and three bath water samples were collected and analyzed. A total of 617 clones were analyzed for their 16S rRNA gene sequences and classified into 99 operational taxonomic units (OTUs). The majority of OTUs were not clustered with currently described Legionella spp., suggesting the wide diversity of not-yet-cultured Legionella groups harbored in cooling tower water environments.

  4. Microbial fouling community analysis of the cooling water system of a nuclear test reactor with emphasis on sulphate reducing bacteria.

    Science.gov (United States)

    Balamurugan, P; Joshi, M Hiren; Rao, T S

    2011-10-01

    Culture and molecular-based techniques were used to characterize bacterial diversity in the cooling water system of a fast breeder test reactor (FBTR). Techniques were selected for special emphasis on sulphate-reducing bacteria (SRB). Water samples from different locations of the FBTR cooling water system, in addition to biofilm scrapings from carbon steel coupons and a control SRB sample were characterized. Whole genome extraction of the water samples and SRB diversity by group specific primers were analysed using nested PCR and denaturing gradient gel electrophoresis (DGGE). The results of the bacterial assay in the cooling water showed that the total culturable bacteria (TCB) ranged from 10(3) to 10(5) cfu ml(-1); iron-reducing bacteria, 10(3) to 10(5) cfu ml(-1); iron oxidizing bacteria, 10(2) to 10(3) cfu ml(-1) and SRB, 2-29 cfu ml(-1). However, the counts of the various bacterial types in the biofilm sample were 2-3 orders of magnitude higher. SRB diversity by the nested PCR-DGGE approach showed the presence of groups 1, 5 and 6 in the FBTR cooling water system; however, groups 2, 3 and 4 were not detected. The study demonstrated that the PCR protocol influenced the results of the diversity analysis. The paper further discusses the microbiota of the cooling water system and its relevance in biofouling.

  5. Study of using microfiltration and reverse osmosis membrane technologies for reclaiming cooling water in the power industry.

    Science.gov (United States)

    Li, J; Xu, Z Y; An, H G; Liu, L Q

    2007-07-01

    A study of using dual membrane technologies, microfiltration (MF) and reverse osmosis (RO), for reclaiming blowdown of the cooling tower was conducted at ZJK power plant, Hebei province, China. The study shows that the combined MF-RO system can effectively reduce water consumption in the power industry. The results indicate that MF process is capable of producing a filtrate suitable for RO treatment and achieving a silt density index (SDI) less than 2, turbidity of 0.2 NTU. The water quality of RO effluent is very good with an average conductivity of about 40 micros/cm and rejection of 98%. The product water is suitable for injection into the cooling tower to counteract with cooling water intrusion. After adopting this system, water-saving effectiveness as expressed in terms of cycles of concentration could be increased from 2.5-2.8 times to 5 times.

  6. Core Design and Deployment Strategy of Heavy Water Cooled Sustainable Thorium Reactor

    Directory of Open Access Journals (Sweden)

    Naoyuki Takaki

    2012-08-01

    Full Text Available Our previous studies on water cooled thorium breeder reactor based on matured pressurized water reactor (PWR plant technology concluded that reduced moderated core by arranging fuel pins in a triangular tight lattice array and using heavy water as coolant is appropriate for achieving better breeding performance and higher burn-up simultaneously [1–6]. One optimum core that produces 3.5 GW thermal energy using Th-233U oxide fuel shows a breeding ratio of 1.07 and averaged burn-up of about 80 GWd/t with long cycle length of 1300 days. The moderator to fuel volume ratio is 0.6 and required enrichment of 233U for the fresh fuel is about 7%. The coolant reactivity coefficient is negative during all cycles despite it being a large scale breeder reactor. In order to introduce this sustainable thorium reactor, three-step deployment scenario, with intermediate transition phase between current light water reactor (LWR phase and future sustainer phase, is proposed. Both in transition phase and sustainer phase, almost the same core design can be applicable only by changing fissile materials mixed with thorium from plutonium to 233U with slight modification in the fuel assembly design. Assuming total capacity of 60 GWe in current LWR phase and reprocessing capacity of 800 ton/y with further extensions to 1600 ton/y, all LWRs will be replaced by heavy water cooled thorium reactors within about one century then thorium reactors will be kept operational owing to its potential to sustain fissile fuels while reprocessing all spent fuels until exhaustion of massive thorium resource.

  7. Conditioning of cooling water in power stations. Feedback from twenty years of experience with acid feeding

    Energy Technology Data Exchange (ETDEWEB)

    Goffin, C.; Duvivier, L.; Girasa, E. [LABORELEC, Chemistry of Water (Belgium); Brognez, J. [ELECTRABEL, TIHANGE Nuclear Power Station (Belgium)

    2002-07-01

    In the late 1970's and early 1980's, with the development of the nuclear programme in many European countries, the recirculation of cooling water in power stations became an issue which required urgent attention. The concentration of several plants of 1000 MW or more on sites along inland waterways actually made simple once-through cooling impossible, owing to the risk of an unacceptable rise in the river's water temperature. The chemical composition of natural freshwater in western European waterways is such that when it becomes slightly concentrated, scale is rapidly formed. The relatively low solubility of calcium carbonate and the degassing of the carbon dioxide during close contact between the water and air in the heat exchangers of the cooling tower explain this precipitation tendency. Fairly soon, experts in the electricity power generation companies highlighted the need for on-site, pilot loop simulations, in order to foresee the physico-chemical phenomena that could arise in industrial installations. The number of financially justifiable processing possibilities could be briefly summarised by the following three solutions: to adapt the concentration factor in order to be under the calcium carbonate solubility limit and thereby avoid the need for any water conditioning; to accept concentration factors of between 1.4 and 1.9 and control the calcium carbonate precipitation through controlled acid injection in the circulation water; to raise the concentration factor over 5 and soften the makeup water through the addition of lime and flocculant. The last of these solutions was rarely ever used in Belgium and France. It was however widely used in Germany. Its application requires a greater investment and leads to higher operating costs than acid injection. Furthermore, it leads to the problem of daily drying and disposal of several dozen tonnes of sludge, which have to be recycled or dumped. In an increasingly stringent environmental context, this

  8. Effect of Water Vapor During Secondary Cooling on Hot Shortness in Fe-Cu-Ni-Sn-Si Alloys

    Science.gov (United States)

    Sampson, Erica; Sridhar, Seetharaman

    2014-10-01

    Residual Cu in recycled steel scrap can cause hot shortness when the iron matrix is oxidized. Hot shortness can occur directly after the solid steel is formed from continuous casting as the steel undergoes a cooling process known as secondary cooling where water is first sprayed on the surface to promote cooling. This is followed by a radiant cooling stage where the steel is cooled in air to room temperature. This investigation examines the roles of water vapor, Si content, temperature, and the presence of Sn in a Fe-0.2 wt pct Cu-0.05 wt pct Ni alloy on oxidation, separated Cu and Cu induced-hot shortness during simulations of the secondary cooling process. The secondary cooling from 1473 K (1200 °C) resulted in a slight increase in liquid quantity and grain boundary penetration as compared to the isothermal heating cycles at 1423 K (1150 °C) due to the higher temperatures experienced in the non-isothermal cycle. The addition of water vapor increased the sample oxidation as compared to samples processed in dry atmospheres due to increased scale adherence, scale plasticity, and inward transport of oxygen. The increase in weight gain of the wet atmosphere increased the liquid formation at the interface in the non-Si containing alloys. The secondary cooling cycle with water vapor and the effect of Sn lead to the formation of many small pools of Cu-rich liquid embedded within the surface of the metal due to the Sn allowing for increased grain boundary decohesion and the water vapor allowing for oxidation within liquid-penetrated grain boundaries. The presence of Si increased the amount of occlusion of Cu and Fe, significantly decreasing the quantity of liquid at the interface and the amount of grain boundary penetration.

  9. The performance of a mobile air conditioning system with a water cooled condenser

    Science.gov (United States)

    Di Battista, Davide; Cipollone, Roberto

    2015-11-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.

  10. Contingency power for small turboshaft engines using water injection into turbine cooling air

    Science.gov (United States)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  11. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    Science.gov (United States)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  12. A water cooled, lithium lead breeding blanket for a DEMO fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Rieger, M.; Biggio, M.; Farfaletti-Casali, F.; Tominetti, S.; Wu, J.; Zucchetti, M. (Commission of the European Communities, Ispra (Italy). Joint Research Centre); Labbe, P.; Baraer, L.; Gervaise, G.; Giancarli, L.; Roze, M.; Severi, Y.; Quintric-Bossy, J. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France))

    1991-04-01

    The main features of a tritium breeding blanket for a Demonstration Power Reactor involving the eutectic Pb-17Li as liquid breeder and water as coolant are presented. The configuration of the blanket segments and breeder modules as well as their arrangement inside the reactor vacuum vessel are outlined. The main design aspects and the corresponding design limits are reviewed, namely those related to thermomechanics, neutronics, magneto-hydrodynamics, tritium permeation and recovery. First results of safety analysis, in particular those connected with the rupture of a coolant tube in the breeder module are presented and discussed. As a conclusion, the feasibility of the concept look attractive. A problem which requires further investigation is that of the tritium self-sufficiency. It is shown that a net tritium production near to one can be obtained if berylium tiles are placed in front of the plasma, provided that they are cooled by heavy water. (orig.).

  13. Techno-economic assessment of boiler feed water production by membrane distillation with reuse of thermal waste energy from cooling water

    NARCIS (Netherlands)

    Kuipers, N.J.M.; Leerdam, R.C. van; Medevoort, J. van; Tongeren, W.G.J.M. van; Verhasselt, B.; Verelst, L.; Vermeersch, M.; Corbisier, D.

    2015-01-01

    The European KIC-Climate project Water and Energy for Climate Change (WE4CC) aims at the technical demonstration, business case evaluation and implementation of new value chains for the production of high-quality water using low-grade thermal waste energy from cooling water. A typical large-scale wa

  14. Coiling Temperature Control Using Temperature Measurement Method for the Hot Rolled Strip in the Water Cooling Banks

    Science.gov (United States)

    Nakagawa, Shigemasa; Tachibana, Hisayoshi; Honda, Tatsuro; Uematsu, Chihiro

    In the hot strip mill, the quality of the strip greatly depends on the cooling process between the last stand in the finishing mill and the coilers. Therefore, it is important to carefully control the coiling temperature to regulate the mechanical properties of the strip. To realize high accuracy of coiling temperature, a new coiling temperature control using temperature measurement method for the hot rolled strip in the water cooling banks has been developed. The features of the new coiling temperature control are as follows: (i) New feedforward control adjusts ON/OFF swiching of cooling headers according to the strip temperature measured in the water cooling banks. (ii) New feedforward control is achieved by dynamic control function. This coiling temperature control has been in operation successfully since 2008 at Kashima Steel Works and improved the accuracy of coiling temperature of high strength steel considerably.

  15. Multi-purpose rainwater harvesting for water resource recovery and the cooling effect.

    Science.gov (United States)

    An, Kyoung Jin; Lam, Yun Fat; Hao, Song; Morakinyo, Tobi Eniolu; Furumai, Hiroaki

    2015-12-01

    The potential use of rainwater harvesting in conjunction with miscellaneous water supplies and a rooftop garden with rainwater harvesting facility for temperature reduction have been evaluated in this study for Hong Kong. Various water applications such as toilet flushing and areal climate controls have been systematically considered depending on the availability of seawater toilet flushing using the Geographic Information System (GIS). For water supplies, the district Area Precipitation per Demand Ratio (APDR) has been calculated to quantify the rainwater utilization potential of each administrative district in Hong Kong. Districts with freshwater toilet flushing prove to have higher potential for rainwater harvest and utilization compared to the areas with seawater toilet flushing. Furthermore, the effectiveness of using rainwater harvesting for miscellaneous water supplies in Hong Kong and Tokyo has been analyzed and compared; this revives serious consideration of diurnal and seasonal patterns of rainfall in applying such technology. In terms of the cooling effect, the implementation of a rooftop rainwater harvesting garden has been evaluated using the ENVI-met model. Our results show that a temperature drop of 1.3 °C has been observed due to the rainwater layer in the rain garden. This study provides valuable insight into the applicability of the rainwater harvesting for sustainable water management practice in a highly urbanized city.

  16. Assessment of stress-corrosion cracking in a water-cooled ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H.; Bruemmer, S.M.

    1989-04-01

    Water-cooled, near-term reactors will operate under conditions at which SCC is possible; however, control of material purity and processing and coolant chemistry can either eliminate or greatly reduce the probability of this type of structural failure. This evaluation has focused on an assessment of water impurity effects on SCC of austenitic stainless steel at temperatures below 100{degree}C and on the conditions controlling sensitization in the fusion heat of Type 316 SS and the fusion materials heat of modified Type 316 SS designated as PCA. This assessment identifies the dominant effect of small concentrations of impurities in high-purity water on SCC such that crack growth rates at 25--75{degree}C in water with as little as 5--15 ppM Cl{sup {minus}} are equal to the crack growth rates at 200--300{degree}C in high-purity water. These effects are primarily for sensitized Type 304 SS, so analysis of sensitization behavior of fusion austenitic alloys was also undertaken. An SSDOS model developed at PNL was used to make these assessments, and correlation to experimental results for Type 316 SS was very good. Both the fusion heat of Type 316 SS and PCA can be severely sensitized but with proper thermal treatment it should be possible to avoid sensitization. 14 refs., 8 figs.

  17. Emergency reactor core cooling water injection device for light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Junro.

    1994-05-13

    A reactor pressure vessel is immersed in pool water of a reactor container. A control valve is interposed to a water supplying pipelines connecting pool water and a pressure vessel. A valve actuation means for opening/closing the control valve comprises a lifting tank. The inner side of the lifting tank and the inner side of the pressure vessel are connected by a communication pipeline (a syphon pipe) at upper and lower two portions. The lifting tank and the control valve are connected by a link mechanism. When a water level in the pressure vessel is lowered, the water level in the lifting tank is lowered to the same level as that in the pressure vessel. This reduces the weight of the lifting tank, the lifting tank is raised, to open the control valve by way of a link mechanism. As a result, liquid phase in the pressure vessel is in communication with the pool water, and the pool water flows down into the pressure vessel to maintain the reactor core in a flooded state. (I.N.).

  18. TRACG-CFD analysis of ESBWR reactor water cleanup shutdown cooling system mixing coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J. [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Marquino, W.; Mistreanu, A.; Yang, J., E-mail: euqrop@hotmail.com [General Electric Hitachi Nuclear Energy, Wilmington, 28401 North Carolina (United States)

    2015-09-15

    The ESBWR is a 1520 nominal [M We] Generation III+ natural circulation boiling water reactor designed to high levels of safety utilizing features that have been successfully used before in operating BWRs, as well as standard features common to A BWR. In September of 2014, the US NRC has certified the ESBWR design for use in the USA. The RWCU/Sdc is an auxiliary system for the ESBWR nuclear island. Basic functions it performs include purifying the reactor coolant during normal operation and shutdown and providing shutdown cooling and cooldown to cold shutdown conditions. The performance of the RWCU system during shutdown cooling is directly related to the temperature of the water removed through the outlets, which is coupled with the vessel and F W temperatures through a thermal mixing coefficient. The complex three-dimensional (3-D) geometry of the BWR downcomer and lower plenum has a great impact on the flow mixing. Only a fine mesh technique like CFD can predict the 3-D temperature distribution in the RPV during shutdown and provide the RWCU/Sdc system inlet temperature. Plant shutdown is an unsteady event by nature and was modeled as a succession of CFD steady-state simulations. It is required to establish the mixing coefficient (which is a function of the heat balance and the core flow) during the operation of the RWCU system in the multiple shutdown cooling modes, and therefore a range of core flows needs to be estimated using quasi steady states obtained with TRACG. The lower end of that range is obtained from a system with minimal power decay heat and core flow; while the higher end corresponds to the power at the beginning of RWCU/Sdc operation when the cooldown is transferred to the RWCU/Sdc after the initial depressurization via the turbine bypass valves. Because the ESBWR RWCU/Sdc return and suction designs provide good mixing, the uniform mixing energy balance was found to be an adequate alternative for deriving the mixing coefficient. The CFD mass flow

  19. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  20. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.; Brigmon, R.

    2009-10-20

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant

  1. Thermal Characteristics of Air-Water Spray Impingement Cooling of Hot Metallic Surface under Controlled Parametric Conditions

    Institute of Scientific and Technical Information of China (English)

    Santosh Kumar Nayak; Purna Chandra Mishra

    2016-01-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combined air and water pressures,plate thickness,water flow rate,nozzle height from the target surface and initial temperature of the hot surface.The effects of these input parameters on the important thermal characteristics such as heat transfer rate,heat transfer coefficient and wetting front movement were measured and examined.Hot flat plate samples of mild steel with dimension 120 mm in length,120 mm breadth and thickness of 4 mm,6 mm,and 8 mm respectively were tested.The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface.Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e,4 mm thick plates.Increase in the nozzle height reduced the heat transfer efficiency of spray cooling.At an inlet water pressure of 4 bar and air pressure of 3 bar,maximum cooling rates 670℃/s and average cooling rate of 305.23℃/s were achieved for a temperature of 850℃ of the steel plate.

  2. Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region

    Directory of Open Access Journals (Sweden)

    Jean-Ann James

    2016-12-01

    Full Text Available The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2 and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamily residential buildings.

  3. 外壳水冷式隔爆型电动机冷却水路有限元分析%FEM analysis of water-cooling channel for water-cooling flameproof motor

    Institute of Scientific and Technical Information of China (English)

    何惠明; 白保东; 王禹; 肖红; 杨晓洲; 范作智

    2012-01-01

    The coal mining water-cooling flameproof motor cannot be drawn out from the motor unit because of deformation of its shell, which makes it difficult to change the motor and maintain the motor unit. The method of adding keyhole caulk weld spots on the outer cooling water jacket was proposed to solve the problem. Based on the elasticity mechanics equations and the principle of finite element method, the stresses and the deformations of the traditional outer cooling water jacket and the outer cooling water jacket with keyhole caulk weld spots were calculated separately in 3. 0 MPa hydraulic pressure by Solid Works COSMO-SXpress finite element analysis method. Water press experiments of the two cooling water jackets were implemented. Obviously, the stress and the deformation of the new cooling water jacket were lower. The experimental result is consistent with the simulation results. It is effective to reduce the stress and the deformation of the cooling water jacket by adding the keyhole caulk weld spots. The new high strength type of water-cooling structure can adapt the high hydraulic pressure to increase the heat release.%煤矿井下用外壳水冷式隔爆电动机在使用过程中电动机外壳容易变形,无法从机组中抽出,影响电机的更换和机组维护.针对此问题,提出了在外水套增加小孔塞焊点的解决方案,基于弹性力学基本方程及有限元分析方法,应用SolidWorks的COSMOSXpress软件,分别计算了3.0MPa水压下传统式冷却水套和带有小孔塞焊点新型冷却水套的应力及形变;对增加小孔塞焊点的新型冷却水套及传统冷却水套分别进行了水压实验,新型外水套形变明显减小.实验结果与仿真结果具有一致性,证明了增加小孔塞焊点减小外水套应力及形变的有效性.增加小孔塞焊点的新型外水套冷却结构可以适应较高水压以达到增加电机散热效果的目的.

  4. The Discussion about Closed Circulating Cooling Water System in Coal Chemical Industry%煤化工项目中闭式循环水系统探讨

    Institute of Scientific and Technical Information of China (English)

    安显威

    2015-01-01

    The characteristic of closed circulating cooling water system and the water-saving reason of closed cooling water were discussed. The process of closed cooling water system and some problem for closed cooling water system were introduced.%探讨了煤化工项目中循环水系统的特点和闭式冷却塔的节水原因,介绍了闭式循环水系统的流程及闭式循环水系统中可能面临的一些问题。

  5. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  6. What is "Normative" at Cooling Water Intakes? Defining Normalcy Before Judging Adverse

    Energy Technology Data Exchange (ETDEWEB)

    Coutant, C.C.

    1998-09-23

    Judgments of adverse environmental impact from cooling water intake structures need to be preceded by an appreciation of what is normal. In its repo~ Return to the River, the Independent Scientd5c Group (now called the Independent Scientfilc Advisory Board) --the scientific peer review arm of the Northwest Power Planning Council-- advanced the notion of a "normative river ecosystem" as a new conceptual foundation for salrnonid recovery in the Columbia River basin. With this perspective, the sum of the best scientific understanding of how organisms and aquatic ecosystems function should be the norm or standard of measure for how we judge the effects of human activities on aquatic systems. ,For the best likelihood of recovery, key aspects of altered systems should be brought back toward nonnative (although not necessarily fully back to the historical or pristine state); new alterations should be judged for adversity by how much they move key attributes away from normative or what might be considered normal. In this presentation, I ask what "normative" is for the setting of cooling water intake structures and how this concept could help resolve long-standing disputes between groups interested in avoiding darnage to all organisms that might be entrained or impinged and those who take a more population or community perspective for judging adverse environmental impact. In essence, I suggest that if a water intake does not move the aquatic ecosystem outside the "normative" range, based on expressions of norrrdcy such as those discussed, then no adverse impact has occurred. Having an explicit baseline in normal or normative would place 316(b) analyses on the same conceptual foundation as 316(a) analyses, which strive to demonstrate the continuation of a balanced, indigenous community of aquatic organisms at the power station Iocation.

  7. Technology to Facilitate the Use of Impaired Waters in Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    Colborn, Robert

    2012-04-30

    The project goal was to develop an effective silica removal technology and couple that with existing electro-dialysis reversal (EDR) technology to achieve a cost effective treatment for impaired waters to allow for their use in the cooling towers of coal fired power plants. A quantitative target of the program was a 50% reduction in the fresh water withdrawal at a levelized cost of water of $3.90/Kgal. Over the course of the program, a new molybdenum-modified alumina was developed that significantly outperforms existing alumina materials in silica removal both kinetically and thermodynamically. The Langmuir capacity is 0.11g silica/g adsorbent. Moreover, a low cost recycle/regeneration process was discovered to allow for multiple recycles with minimal loss in activity. On the lab scale, five runs were carried out with no drop in performance between the second and fifth run in ability to absorb the silica from water. The Mo-modified alumina was successfully prepared on a multiple kilogram scale and a bench scale model column was used to remove 100 ppm of silica from 400 liters of simulated impaired water. Significant water savings would result from such a process and the regeneration process could be further optimized to reduce water requirements. Current barriers to implementation are the base cost of the adsorbent material and the fine powder form that would lead to back pressure on a large column. If mesoporous materials become more commonly used in other areas and the price drops from volume and process improvements, then our material would also lower in price because the amount of molybdenum needed is low and no additional processing is required. There may well be engineering solutions to the fine powder issue; in a simple concept experiment, we were able to pelletize our material with Boehmite, but lost performance due to a dramatic decrease in surface area.

  8. Research on the effects of cooling water velocity on temperature rise of the water-cooled motor in electric vehicles%冷却水流速对汽车水冷电机温升影响研究

    Institute of Scientific and Technical Information of China (English)

    李翠萍; 柴凤; 程树康

    2012-01-01

    In order to attain the optimal velocity of water-cooled motor & cooling water t the relationship between velocity of water-cooled motor' s cooling water and motor temperature was derived based on the heat transfer and hydrodynamic theory- Motor temperature decreased more with the increase of velocity, when cooling water was in laminar flow. When in turbulent flow, the cooling effect on the motor was further enhanced , however, with the velocity increasing, motor temperature dropped to heat saturation with increasing cooling water flow. In this paper a model of water-cooled induction motor based on the thermal network was established. The steady-state temperature rise of motor under rated load was obtained and the temperature distribution of the winding and the stator yoke was also calculated when in different velocity of cooling water. Experiments were conducted on an induction motor prototype to measure the temperature of the motor under rated load and in various flow rates of cooling water. The numerical simulation results and experimental results are consistent with the theoretical analysis results, which proves the correctness of theoretical derivation; The study in this paper provides a reference for the water-cooled motor selecting the rational velocity of cooling water.%为获得水冷电机的最佳流速,基于传热学及流体力学理论推导了水冷电机的冷却水流速与电机内部温度的关系.冷却水层流时,电机温度随着流速的增大下降明显;冷却水紊流后,对电机冷却效果进一步增强,但随流速继续增大,电机温度降低程度随冷却水流量增加将出现热饱和;建立了水冷感应电机热网络模型,基于此模型计算了电机额定负载运行稳态温升及不同流速时电机绕组及定子轭部的温度分布;实验测试了样机额定运行及不同冷却水流速时的电机温升.仿真及实验结果与理论分析结果相一致,验证了理论推导的正确性,为水冷电

  9. Experiments on FTU with an actively water cooled liquid lithium limiter

    Energy Technology Data Exchange (ETDEWEB)

    Mazzitelli, G., E-mail: giuseppe.mazzitelli@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65-00044 Frascati, Rome (Italy); Apicella, M.L.; Apruzzese, G.; Crescenzi, F.; Iannone, F.; Maddaluno, G. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65-00044 Frascati, Rome (Italy); Pericoli-Ridolfini, V. [Associazione EURATOM-ENEA sulla Fusione, CREATE, Università di Napoli Federico II, 80125 Napoli (Italy); Roccella, S.; Reale, M.; Viola, B. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65-00044 Frascati, Rome (Italy); Lyublinski, I.; Vertkov, A. [JSC “RED STAR”, Moscow (Russian Federation)

    2015-08-15

    In order to prevent the overheating of the liquid Li surface and the consequent Li evaporation for T > 500 °C, an advanced version of the liquid lithium limiter has been realized and installed on FTU. This new system, named Cooled Lithium Limiter (CLL), has been optimized to demonstrate the lithium limiter capability to sustain thermal loads as high as 10 MW/m{sup 2} with up to 5 s of plasma pulse duration. The CLL operates with an actively cooled system with water circulation at the temperature of about 200 °C, for heating lithium up to the melting point and for the heat removal during the plasma discharges. To characterize CLL during discharges, a fast infrared camera and the spectroscopic signals from Li and D atom emission have been used. The experiments analyzed so far and simulated by ANSYS code, point out that heat loads as high as 2 MW/m{sup 2} for 1.5 s have been withstood without problems.

  10. Foundry technology and its applications of ductile iron castings produced by water-cooled copper alloy mold

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The high efficiency mechanized foundry technology of castings produced by using water-cooled copper alloy permanent mold has been systematically studied. Through the researching a Cu-Cr-Mg alloy with high conductivity and good combined mechanical properties used for making permanent mold was developed, and the basic design principles of the water-cooled permanent mold along with the control-range of relevant foundry processing parameters were also established.A cast production line equipped with water-cooled copper alloy mold was designed and fabricated for production of ductile iron automobile gear castings. This production line can consistently make automobile gear castings in QT500-15 and QT600-5 (Chinese Standard) grades of ductile iron with up to 95 % casting success rate.

  11. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2014-01-01

    Full Text Available Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.

  12. Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Mohammad H.

    2014-03-30

    Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development

  13. Characterization of Francisella species isolated from the cooling water of an air conditioning system

    Directory of Open Access Journals (Sweden)

    Quan Gu

    2015-09-01

    Full Text Available Strains of Francisella spp. were isolated from cooling water from an air conditioning system in Guangzhou, China. These strains are Gram negative, coccobacilli, non-motile, oxidase negative, catalase negative, esterase and lipid esterase positive. In addition, these bacteria grow on cysteine-supplemented media at 20 °C to 40 °C with an optimal growth temperature of 30 °C. Analysis of 16S rRNA gene sequences revealed that these strains belong to the genus Francisella. Biochemical tests and phylogenetic and BLAST analyses of 16S rRNA, rpoB and sdhA genes indicated that one strain was very similar to Francisella philomiragia and that the other strains were identical or highly similar to the Francisella guangzhouensis sp. nov. strain 08HL01032 we previously described. Biochemical and molecular characteristics of these strains demonstrated that multiple Francisella species exist in air conditioning systems.

  14. Characterization of Francisella species isolated from the cooling water of an air conditioning system.

    Science.gov (United States)

    Gu, Quan; Li, Xunde; Qu, Pinghua; Hou, Shuiping; Li, Juntao; Atwill, Edward R; Chen, Shouyi

    2015-01-01

    Strains of Francisella spp. were isolated from cooling water from an air conditioning system in Guangzhou, China. These strains are Gram negative, coccobacilli, non-motile, oxidase negative, catalase negative, esterase and lipid esterase positive. In addition, these bacteria grow on cysteine-supplemented media at 20 °C to 40 °C with an optimal growth temperature of 30 °C. Analysis of 16S rRNA gene sequences revealed that these strains belong to the genus Francisella. Biochemical tests and phylogenetic and BLAST analyses of 16S rRNA, rpoB and sdhA genes indicated that one strain was very similar to Francisella philomiragia and that the other strains were identical or highly similar to the Francisella guangzhouensis sp. nov. strain 08HL01032 we previously described. Biochemical and molecular characteristics of these strains demonstrated that multiple Francisella species exist in air conditioning systems.

  15. A fiber-coupled 9xx module with tap water cooling

    Science.gov (United States)

    Schleuning, D.; Anthon, D.; Chryssis, A.; Ryu, G.; Liu, G.; Winhold, H.; Fan, L.; Xu, Z.; Tanbun-Ek, T.; Lehkonen, S.; Acklin, B.

    2016-03-01

    A novel, 9XX nm fiber-coupled module using arrays of highly reliable laser diode bars has been developed. The module is capable of multi-kW output power in a beam parameter product of 80 mm-mrad. The module incorporates a hard-soldered, isolated stack package compatible with tap-water cooling. Using extensive, accelerated multi-cell life-testing, with more than ten million device hours of test, we have demonstrated a MTTF for emitters of >500,000 hrs. In addition we have qualified the module in hard-pulse on-off cycling and stringent environmental tests. Finally we have demonstrated promising results for a next generation 9xx nm chip design currently in applications and qualification testing

  16. Direct Preparation of Nano-Quasicrystals via a Water-Cooled Wedge-Shaped Copper Mould

    Directory of Open Access Journals (Sweden)

    Zhifeng Wang

    2012-01-01

    Full Text Available We have successfully synthesized multicomponent Mg-based nano-quasicrystals (nano-QCs through a simple route by using a water-cooled wedge-shaped copper mould. Nanoscale QCs are prepared directly on tip of wedge-shaped castings. The further study shows that nano-QCs in the Mg71Zn26Y2Cu1 alloy show well microhardness of greater than HV450. Electrochemical properties of three kinds of quasicrystal alloys are investigated in simulated seawater. The Mg71Zn26Y2Cu1 nano-QC alloy presents the best corrosion resistance in this study for the formation of well-distributed nano-QC phases (1~5 nm and polygonal Mg2(Cu,Y nanophases (40~50 nm.

  17. Application of a semi-spectral cloud water parameterization to cooling tower plumes simulations

    Science.gov (United States)

    Bouzereau, Emmanuel; Musson Genon, Luc; Carissimo, Bertrand

    2008-10-01

    In order to simulate the plume produced by large natural draft cooling towers, a semi-spectral warm cloud parameterization has been implemented in an anelastic and non-hydrostatic 3D micro-scale meteorological code. The model results are compared to observations from a detailed field experiment carried out in 1980 at Bugey (location of an electrical nuclear power plant in the Rhône valley in East Central France) including airborne dynamical and microphysical measurements. Although we observe a slight overestimation of the liquid-water content, the results are satisfactory for all the 15 different cases simulated, which include different meteorological conditions ranging from low wind speed and convective conditions in clear sky to high wind and very cloudy. Such parameterization, which includes semi-spectral determination for droplet spectra, seems to be promising to describe plume interaction with atmosphere especially for aerosols and cloud droplets.

  18. Manufacturing surface hardened components of 42CrMo4 by water-air spray cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gretzki, T.; Krause, C.; Frolov, I.; Hassel, T.; Nicolaus, M.; Bach, F.W. [Inst. of Materials Science, Leibniz Univ. Hannover, Garbsen (Germany); Kaestner, M.; Abo-Namous, O.; Reithmeier, E. [Inst. of Measurement and Control Engineering, Leibniz Univ. Hannover (Germany); National Metallurgical Academy of Ukraine, Dniepropetrovsk (Ukraine)

    2009-12-15

    By employing integrated heat-treatment using forging heat, a significant shortening of the process chain is attained for manufacturing precision forged components with considerable savings in time and energy. With the aid of water-air spray cooling, surface hardening and tempering can be carried out without, at the same time, reheating the component following quenching. In this work, geometric models of splines and single cylinder crankshafts (both made of 1.7225) were surface hardened and tempered using a purpose-built rotating spray unit The obtained hardness, microstructures and their distortions were investigated. To optically and spatially detect the components, fringe and shadow projection systems were employed. In a second research topic, the influence of the spray parameters on the component's distortion was investigated. For both components; the splined shaft and the crankshaft geometries, it was possible to carry out successful surface heat-treatments using these processes. (orig.)

  19. Photoelectrochemical Study of Corrosion Resisting Property of Cupronickel B10 in Simulated Cooling Water

    Institute of Scientific and Technical Information of China (English)

    XU Qunjie; WAN Zongyue; ZHOU Guoding; YIN Renhe; CAO Weimin; LIN Changjian

    2009-01-01

    The corrosion behavior for cupronickel B10 electrode in simulated cooling water has been studied by using cyclic voltammetry, a photocurrent response method and electrochemical impedance spectroscopy (EIS). The cupronickel electrode shows a p-type photoresponse to positive and negative potential scan, which comes from Cu2O layer on its surface, but its Iph.max is less than that in borax buffer solution. The corrosion resisting property of the cupronickel B10 electrode appeared worse with the increase in the concentrations of Cl-, SO2-4 and S2 ions, as well as with increasing pH. The rise in the temperature may result in a photoresponse changes from p-type to n-type, and the corrosion resisting property fell simultaneously. The results of the EIS measurement agree well with those obtained by a photoelectrochemical method.

  20. Study on an Eco-Friendly Corrosion and Scale Inhibitor in Simulated cooling water

    Directory of Open Access Journals (Sweden)

    Defang Zeng1

    2013-01-01

    Full Text Available In this study, a composite eco-friendly phosphate-free corrosion and scale inhibitor used in simulated cooling water has been developed by sodium polyacrylate, zinc sulfate, sodium tungstate, sodium gluconate and triethanolamine . The corrosion and scale inhibition rate were respectively evaluated by weight loss experiment , the static scale inhibition test and electrochemical test. The results indicated that the corrosion and scale inhibitor was consisted of polyacrylate 14ppm,zinc sulfate 3ppm,sodium tungstate 7ppm,sodium gluconate 2ppm and triethanolamine12ppm.The corrosion inhibition rate could reached 92.79%, and anti-scaling inhibition rate could reached 96.01%. The formula was efficient , phosphate-free and environmental, it would be widely used

  1. Radionuclides in the Cooling Water Systems for the NuMi Beamline and the Antiproton Production Target Station at Fermilab

    CERN Document Server

    Matsumura, Hiroshi; Bessho, Kotaro; Sekimoto, Shun; Yashima, Hiroshi; Kasugai, Yoshimi; Matsuda, Norihiro; Sakamoto, Yukio; Nakashima, Hiroshi; Oishi, Koji; Boehnlein, David; Lauten, Gary; Leveling, Anthony; Mokhov, Nikolai; Vaziri, Kamran

    2014-01-01

    At the 120-GeV proton accelerator facilities of Fermilab, USA, water samples were collected from the cooling water systems for the target, magnetic horn1, magnetic horn2, decay pipe, and hadron absorber at the NuMI beamline as well as from the cooling water systems for the collection lens, pulse magnet and collimator, and beam absorber at the antiproton production target station, just after the shutdown of the accelerators for a maintenance period. Specific activities of {\\gamma} -emitting radionuclides and 3H in these samples were determined using high-purity germanium detectors and a liquid scintillation counter. The cooling water contained various radionuclides depending on both major and minor materials in contact with the water. The activity of the radionuclides depended on the presence of a deionizer. Specific activities of 3H were used to estimate the residual rates of 7Be. The estimated residual rates of 7Be in the cooling water were approximately 5% for systems without deionizers and less than 0.1% f...

  2. Overview of economic, legal, and water availability factors affecting the demand for dry and wet/dry cooling for thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, P.L.

    1977-06-01

    The economic, legal, and water availability factors which will contribute to selection in the future, of dry and wet/dry cooling vis-a-vis other methods of cooling and which will influence the projected market for these types of cooling systems in the next twenty years are considered.

  3. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  4. Personality disorders, depression, and coping styles in Argentinean bulimic patients.

    Science.gov (United States)

    Gongora, Vanesa C; van der Staak, Cees P F; Derksen, Jan J L

    2004-06-01

    This study investigates the coping styles of bulimic patients with personality disorders (PDs) and the effects of the level of depression on the relations between PDs and coping. The sample consisted of 75 Argentinean bulimic outpatients engaged in treatment. Patients completed the SCID II (Structural Interview for DSM IV-Personality Disorders), COPE (Coping Inventory), and the SCL-90-R (Symptom Checklist-90-Revised). No differences in the coping styles of bulimic patients with or without a PD were found. However, when three specific PDs were considered-Avoidant, Obsessive-Compulsive, or Borderline PDs-clear differences in the coping styles of the bulimics were found. However, the differences disappeared when depression was controlled. Regarding the severity of the three specific PDs, coping styles were only found to be associated with the Avoidant PD. Depression showed to affect the relations between coping styles and two specific PDs-Avoidant and Borderline PDs-in bulimic patients.

  5. The tangible and intangible Processes of Internationalization: the Argentinean SMEs

    Directory of Open Access Journals (Sweden)

    Christian Keen

    2013-12-01

    Full Text Available This study reviews the concepts of tangible and intangible internationalization using a data from Argentinean SMEs. The findings suggest that managers may have to make a strategic commitment to upgrade and expand firms’ resources and capabilities to achieve long term internationalization. The results offer evidence that becoming an international company is not only about having a physical presence in a foreign market. It is important to re-focus the firms’ outlook from competing in a protected domestic market to competing in markets with a strong presence of international companies. In addition, managers may have to shift their focus from short-term rent and profit seeking to long-term internationalization. This research also contributes to the study of internationalization of SMEs as it further expands the concept of internationalization by including a long-term perspective where the company can be international without having a physical presence in a foreign market

  6. Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system.

    Science.gov (United States)

    Leach, R N; Stevens, F; Langford, S C; Dickinson, J T

    2006-10-10

    Dropwise condensation of water vapor from a naturally cooling, hot water reservoir onto a hydrophobic polymer film and a silanized glass slide was studied by direct observation and simulations. The observed drop growth kinetics suggests that smallest drops grow principally by the diffusion of water adsorbed on the substrate to the drop perimeter, while drops larger than about 50 microm in diameter grow principally by direct deposition from the vapor onto the drop surface. Drop coalescence plays a critical role in determining the drop-size distribution and stimulates the nucleation of new, small drops on the substrates. Simulations of drop growth incorporating these growth mechanisms provide a good description of the observed drop-size distribution. Because of the large role played by coalescence, details of individual drop growth make little difference to the final drop-size distribution. The rate of condensation per unit substrate area is especially high for the smallest drops and may help account for the high heat transfer rates associated with dropwise condensation relative to filmwise condensation in heat exchange applications.

  7. Modeling the water uptake by chicken carcasses during cooling by immersion

    Directory of Open Access Journals (Sweden)

    Tiago Dias Martins

    2011-09-01

    Full Text Available In this study, water uptake by poultry carcasses during cooling by water immersion was modeled using artificial neural networks. Data from twenty-five independent variables and the final mass of the carcass were collected in an industrial plant to train and validate the model. Different network structures with one hidden layer were tested, and the Downhill Simplex method was used to optimize the synaptic weights. In order to accelerate the optimization calculus, Principal Component Analysis (PCA was used to preprocess the input data. The obtained results were: i PCA reduced the number of input variables from twenty-five to ten; ii the neural network structure 4-6-1 was the one with the best result; iii PCA gave the following order of importance: parameters of mass transfer, heat transfer, and initial characteristics of the carcass. The main contributions of this work were to provide an accurate model for predicting the final content of water in the carcasses and a better understanding of the variables involved.

  8. Pronounced subsurface cooling of North Atlantic waters off Northwest Africa during Dansgaard-Oeschger interstadials

    Science.gov (United States)

    Kim, Jung-Hyun; Romero, Oscar E.; Lohmann, Gerrit; Donner, Barbara; Laepple, Thomas; Haam, Eddie; Sinninghe Damsté, Jaap S.

    2012-07-01

    Millennial-scale Atlantic meridional overturning circulation (AMOC) variability has often been invoked to explain the Dansgaard-Oeschger (DO) events. However, the underlying causes responsible for millennial-scale AMOC variability are still debated. High-resolution U37K' and TEX86H temperature records for the last 50 kyr obtained from the tropical Northeast (NE) Atlantic (core GeoB7926-2, 20°13'N, 18°27'W, 2500 m water depth) show that distinctive DO-type subsurface (i.e. below the mixed layer: >20 m water depth) temperature oscillations occurred with amplitudes of up to 8 °C in the tropical NE Atlantic during Marine Isotope Stage 3 (MIS3). Statistical analyses reveal a positive relationship between the reconstructed substantial cooling of subsurface waters and prominent surface warming over Greenland during DO interstadials. General circulation model (GCM) simulations without external freshwater forcing, the mechanism often invoked in explaining DO events, demonstrate similar anti-phase correlations between AMOC and pronounced NE Atlantic subsurface temperatures under glacial climate conditions. Together with our paleoproxy dataset, this suggests that the vertical temperature structure and associated changes in AMOC were key elements governing DO events during the last glacial.

  9. Discussion on the cooling water of blast furnace hearth%高炉炉缸冷却水的探讨

    Institute of Scientific and Technical Information of China (English)

    许俊; 邹忠平; 胡显波

    2012-01-01

    根据炉缸的传热特点,推导了炉缸传热体系的计算公式,利用公式计算结果,分析了炉缸冷却水对延长高炉寿命的作用,重点是冷却水量、冷却水温对炉缸传热的影响规律。洒水冷却的炉壳温度比自然冷却的炉壳温度有显著降低,说明冷却水对维护炉缸安全生产具有重要的作用;在炉缸传热体系中,当水速大于2m/s时,增大冷却水量对炉内传出热量的影响是有限的;降低冷却水温度,增大冷却效果的作用有限。%Based on the characteristics of heat transfer of blast furnace hearth, a formula for analyzing the heat transfer system of the hearth is deducted. Using the calculation results the effect of cooling water on blast furnace life, focused on the influence of water volume and water temperature on the hearth heat transfer system are analyzed. The shell temperature for water-spray cooling is markedly lower than that of natural cooling, that means the cooling water is very important for the hearth safety. When the water velocity is over 2 m/s, the influence of increasing water volume to heat transfer is limited. In addition, lowering the water temperature has limited effect of hearth cooling.

  10. Argentinean species of Chalarus Walker (Diptera: Pipunculidae): new records and description of Chalarus tani n. sp.

    Science.gov (United States)

    Rodríguez, H C; Rafael, J A; Virla, E G

    2012-04-01

    The Argentinean species of Chalarus Walker were studied. Pipunculidae adults belonging to four species, C halarus chilensis Collin, Chalarus triramosus Rafael, Chalarus absonus Rafael and Chalarus tani n. sp. were described based on two male specimens collected in the La Rioja and Tucuman Provinces, northwestern region of Argentina. Chalarus absonus is recorded for the first time in Argentina. New distributional data and an identification key to the adult males of the Argentinean representatives are provided including figures.

  11. Optimization of the first wall for the DEMO water cooled lithium lead blanket

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, Julien, E-mail: julien.aubert@cea.fr [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Aiello, Giacomo [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Bachmann, Christian [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Di Maio, Pietro Alessandro [Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, Rosario [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy); Li Puma, Antonella; Morin, Alexandre [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Tincani, Amelia [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy)

    2015-10-15

    Highlights: • This paper presents the optimization of the first wall of the water cooled lithium lead DEMO blanket with pressurized water reactor condition and circular channels in order to find the best geometry that can allow the maximum heat flux considering design criteria since an estimate of the engineering limit of the first wall heat load capacity is an essential input for the decision to implement limiters in DEMO. • An optimization study was carried out for the flat first wall design of the DEMO Water-Cooled Lithium Lead considering thermal and mechanical constraint functions, assuming T{sub inlet}/T{sub outlet} equal to 285 °C/325 °C, based on geometric design parameters. • It became clear that through the optimization the advantages of a waved First Wall are diminished. • The analysis shows that the maximum heat load could achieve 2.53 MW m{sup −2}, but considering assumptions such as a coolant velocity ≤8 m/s, pipe diameter ≥5 mm and a total first wall thickness ≤22 mm, heat flux is limited to 1.57 MW m{sup −2}. - Abstract: The maximum heat load capacity of a DEMO First Wall (FW) of reasonable cost may impact the decision of the implementation of limiters in DEMO. An estimate of the engineering limit of the FW heat load capacity is an essential input for this decision. This paper describes the work performed to optimize the FW of the Water Cooled Lithium-Lead (WCLL) blanket concept for DEMO fusion reactor in order to increase its maximum heat load capacity. The optimization is based on the use of water at typical Pressurised Water Reactors conditions as coolant. The present WCLL FW with a waved plasma-faced surface and with circular channels was studied and the heat load limit has been predicted with FEM analysis equal to 1.0 MW m{sup −2} with respect to the Eurofer temperature limit. An optimization study was then carried out for a flat FW design considering thermal and mechanical constraints assuming inlet and outlet

  12. The Deep Cool Terrestrial Biosphere: Habitability of ancient fracture waters of the Canadian Shield (Invited)

    Science.gov (United States)

    Sherwood Lollar, B.; Ballentine, C. J.; Holland, G.; Li, L.; Slater, G. F.; Moser, D. P.

    2013-12-01

    waters and gases with conservative noble gases (He, Ne, Ar, Kr, Xe) provided bulk residence times on the order of billions of years [3]. These results for the first time suggest a realm of the Earth's hydrosphere that preserves a geochemical (and potentially microbial) environment minimally impacted by hydrogeological mixing with the surface over geologic time scales. Ongoing research is investigating the potential for microbial life in these waters, and the timing of life's penetration of these environments relative to the residence times of the fracture waters. These frontiers of the deep cool biosphere may provide a window into the Earth's biodiversity. The saline fracture waters provide a critical environment in which to investigate habitability and to determine whether the types of chemolithotrophic life recognized at the vents and hot springs are supported in the much larger segments of the Earth's crust where lower temperatures and hence slower rates of water-rock reaction prevail. The deepest fracture water may even provide the opportunity to investigate controls on the biotic-abiotic transition and limits to life in the deep Earth. [1] Lin et al. (2006) Science 314, 479-482. [2] Lippmann-Pipke et al. (2011) Chemical Geology 283, 287-296. [3] Holland et al. (2013) Nature 497, 357-360.

  13. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  14. Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling.

    Science.gov (United States)

    Wei, Bo; Yang, Mo; Wang, Zhiyun; Xu, Hongtao; Zhang, Yuwen

    2015-04-01

    Flow and thermal performance of transversal elliptical microchannels were investigated as a passive scheme to enhance the heat transfer performance of laminar fluid flow. The periodic transversal elliptical micro-channel is designed and its pressure drop and heat transfer characteristics in laminar flow are numerically investigated. Based on the comparison with a conventional straight micro- channel having rectangular cross section, it is found that periodic transversal elliptical microchannel not only has great potential to reduce pressure drop but also dramatically enhances heat transfer performance. In addition, when the Reynolds number equals to 192, the pressure drop of the transversal elliptical channel is 36.5% lower than that of the straight channel, while the average Nusselt number is 72.8% higher; this indicates that the overall thermal performance of the periodic transversal elliptical microchannel is superior to the conventional straight microchannel. It is suggested that such transversal elliptical microchannel are attractive candidates for cooling future electronic chips effectively with much lower pressure drop.

  15. Influence of Chlorination and Choice of Materials on Fouling in Cooling Water System under Brackish Seawater Conditions

    Directory of Open Access Journals (Sweden)

    Pauliina Rajala

    2016-06-01

    Full Text Available Cooling systems remove heat from components and industrial equipment. Water cooling, employing natural waters, is typically used for cooling large industrial facilities, such as power plants, factories or refineries. Due to moderate temperatures, cooling water cycles are susceptible to biofouling, inorganic fouling and scaling, which may reduce heat transfer and enhance corrosion. Hypochlorite treatment or antifouling coatings are used to prevent biological fouling in these systems. In this research, we examine biofouling and materials’ degradation in a brackish seawater environment using a range of test materials, both uncoated and coated. The fouling and corrosion resistance of titanium alloy (Ti-6Al-4V, super austenitic stainless steel (254SMO and epoxy-coated carbon steel (Intershield Inerta160 were studied in the absence and presence of hypochlorite. Our results demonstrate that biological fouling is intensive in cooling systems using brackish seawater in sub-arctic areas. The microfouling comprised a vast diversity of bacteria, archaea, fungi, algae and protozoa. Chlorination was effective against biological fouling: up to a 10–1000-fold decrease in bacterial and archaeal numbers was detected. Chlorination also changed the diversity of the biofilm-forming community. Nevertheless, our results also suggest that chlorination enhances cracking of the epoxy coating.

  16. Inline Array Jet Impingement Cooling Using Al2O3 / Water Nanofluid In A Plate Finned Electronic Heat Sink

    Directory of Open Access Journals (Sweden)

    R. Reji Kumar

    2016-07-01

    Full Text Available - Jet impingement cooling is a technique used for cooling the electronic systems. In this work, heat transfer and pressure drop characteristics of deionized water and Al2O3/water nanofluid in an electronic heat sink having aluminium plate fins and provision for jet impingement cooling have been studied. A novel heat sink contains two rows of plate fins of size 29mm x 24mm x 0.56mm. A thin plate having 110 holes of diameter 2.5 mm is used to produce number of jets. The plate is kept inside the heat sink in such a way that H/dn is 5.2 mm and adjacent jet spacing is 2mm. The overall dimension of the heat sink is 60x60x 65 mm. For this work we prepared a Al2O3/water nanofluid by dispersing specified quantity of nanoparticles in to deionized water by using a ultrasonic bath. Experiments were conducted under constant heat flux condition and the volume flow rate of the fluid was in the range of 1.315 to 2.778. It is found from the results that the nanofluid removes heat better than water in the jet impingement cooling with very low rise in pressure drop.

  17. Augmentation of Cooling Output by Silica Gel-Water Adsorption Cycle Utilizing the Waste Heat of GHP

    Science.gov (United States)

    Homma, Hiroki; Araki, Nobuyuki

    The GHP (Gas engine Heat Pump) system is expected to have high energy-efficiency in utilizing the waste heat exhausted from a gas engine. In summer season, a silica gel-water adsorption cooling unit driven by the exhaust heat is considered as a cooling system for saving energy. In this work, an attempt was made to improve the COP of a silica gel-water adsorption cooling system by enhancing heat and mass transfer in the silica gel adsorption layer. A unit cell was introduced as a simplified model of adsorber for analyzing the phenomena of heat and mass transfer in the adsorbent. This cell was composed of a single tube with a silica gel layer bonded on its external surface. Optimization of heat and mass transfer characteristics for the unit cell was carried out by experimental and analytical approach.

  18. Cooling water pump of a rotary piston internal combustion engine. Kuehlwasserpumpe einer Rotationskolbenbrennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Eiermann, D.; Nuber, R.

    1991-05-23

    Spatial arrangement of a cooling pump of a trochoid-type rotary piston internal combustion engine with a liquid-cooled casing. First the coolant is conducted isochronically and in parallel through cooling chambers of the jacket and a side part into a common hollow space from where it is transported by the cooling pump into the other side part, on past a thermostat to a cooler located in the other side part and back into the cooling loop in the casing. The cooling pump is located in the jacket and its impeller is positioned in a cooling chamber of the other side part. Its shaft can be fitted with a speed controller for the fresh air supply and a lubricating pump.

  19. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  20. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.

    Science.gov (United States)

    Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun

    2014-01-01

    Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺).

  1. Root cooling strongly affects diel leaf growth dynamics, water and carbohydrate relations in Ricinus communis.

    Science.gov (United States)

    Poiré, Richard; Schneider, Heike; Thorpe, Michael R; Kuhn, Arnd J; Schurr, Ulrich; Walter, Achim

    2010-03-01

    In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant - especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots.

  2. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors AGENCY... Commission (NRC) is issuing a new regulatory guide (RG), 1.79.1, ``Initial Test Program of Emergency Core... System (ADAMS): You may access publicly available documents online in the NRC Library at...

  3. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? 250.217 Section 250.217 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF...

  4. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? 250.248 Section 250.248 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL...

  5. Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom;

    2013-01-01

    -fibre-reinforced polyester plates were treated using an atmospheric pressure gliding-arc discharge with air flow to improve adhesion with a vinylester adhesive. The electrodes were water-cooled so as to operate the gliding arc continually. The treatment improved wettability and increased the density of oxygen...

  6. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  7. Development of methods for the decrease in instability of recycling water of conjugated closed-circuit cooling system of HPP

    Science.gov (United States)

    Chichirov, A. A.; Chichirova, N. D.; Vlasov, S. M.; Lyapin, A. I.; Misbakhov, R. Sh.; Silov, I. Yu.; Murtazin, A. I.

    2016-10-01

    On Russian HPPs, conjugated closed-circuit cooling systems, where purge water is used as initial for water-treatment facilities, are widespread. For this reason, it is impossible to use general methods for the stabilization treatment of recycling water in order to prevent scale formation in the units of a system, namely, turbine condensers and cooling towers. In this paper, the methods for the decrease in the instability of recycling water using the methods of chemical engineering, such as stabilization and synchronization of flows and organization of recycles, are suggested. The results of an industrial experiment on the implementation of stabilization treatment of recycling water by the organization of recycle are given. The experiment was carried out on Kazan CHPP-3. The flow scheme involved the recycle of chemically purified water (CPW) for the heat network make-up to the closed-circuit cooling system. The experiment was carried out at three stages with the gradual change of the consumption of the recycle, namely, 0, 50, and 100 t/h. According to the results of experiments, the reliable decrease in the rate of the sedimentation was recorded on the units of the system, namely, turbine condenser and chimney-type cooling tower. This is caused by two reasons. Firstly, this is periodic excessive concentration of recycling water due to the nonstationary character of inlet and outlet flows. Secondly, this is seasonal (particularly, in the summer period) exceeding of the evaporation coefficient. As a result of stabilization and synchronization of flows and organization of recycles, the quality of clarified and chemically purified water for the heat network make-up increases and the corrosion of iron- and copper-containing structural materials decreases. A natural decrease in temperature drop on the operating turbine condensers is mentioned.

  8. Control of cross-infection risks in the dental operatory: prevention of water retraction by bur cooling spray systems.

    Science.gov (United States)

    Crawford, J J; Broderius, C

    1988-05-01

    A new dental unit control system was found to overcome the possibility of mechanically retracting bacteria from the mouth into the water line used to provide a spray of water to cool high-speed burs during treatments. This was demonstrated by results obtained after clinical use and after use in simulated, worst case test conditions using a red tempera indicator solution and indicator bacteria.

  9. Convective Heat and Mass Transfer in Water at Super—Critical Pressures under Heating or Cooling Conditions in Vertical Tubes

    Institute of Scientific and Technical Information of China (English)

    Pei-XueJiang; Ze-PeiRen; 等

    1995-01-01

    Forced and mixed convection heat and mass transfer are studied numerically for water containing metallic corrosion products in a heated or cooled vertical tube with variable thermophysical properties at super-citical pressures.the fouling mechanisms and fouling models are presented.The influence of variable properties at super-critical pressures on forced or mixed convection has been analyzed.The differences between heat and mass transfer under heating and cooling conditions are discussed.It is found that variable properties,especially buoyancy,greatly influence the fluid flow and heat mass fransfer.

  10. Radiochemical separation of {sup 7}Be from the cooling water of the neutron spallation source SINQ at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, D.; Stowasser, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ayranov, M. [Commission of the European Communities, Luxembourg (Luxembourg). Directorate General Energy; Gialanella, L. [Seconda Univ. di Napoli, Caserta (Italy). Dipt. di Matematica e Fisica; Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (Italy); Di Leva, A.; Romano, M.; Schuermann, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (Italy); Universita di Napoli Frederico II (Italy). Dipt. di Fisica

    2013-10-01

    {sup 7}Be is a key radionuclide for investigation of several astrophysical processes and phenomena. In addition, it is used as a tracer in war measurements. It is produced in considerable amounts in the cooling water (D{sub 2}O) of the Spallation Induced Neutron Source (SINQ) facility at PSI by spallation reactions on {sup 16}O with the generated fast neutrons. A shielded ion-exchange filter containing 100 mL of the mixed-bed ion exchanger LEWATIT was installed as a bypass for the cooling water into the cooling loop of SINQ for three months. The collected activity of {sup 7}Be was in the range of several hundred GBq. Further, the {sup 7}Be was separated and purified in a hot-cell remotely-controlled using a separation system installed. With the exception of {sup 10}Be, radioactive by-products can be neglected, so that this cooling water could serve as an ideal source for highly active {sup 7}Be-samples. The facility is capable of producing {sup 7}Be with activities up to 1 TBq per year. The {sup 7}Be sample preparation is described in detail and the possible uses are discussed. In particular some preliminary results of {sup 7}Be ion beam production are presented. (orig.)

  11. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  12. Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

    2010-10-01

    In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water

  13. Age and growth of mangrove red snapper Lutjanus argentimaculatus at its cool-water-range limits.

    Science.gov (United States)

    Piddocke, T P; Butler, G L; Butcher, P A; Stewart, J; Bucher, D J; Christidis, L

    2015-05-01

    This study investigates the age and growth of Lutjanus argentimaculatus at its southern (cooler) range limits in eastern Australia. Specimens were collected from New South Wales and southern Queensland between November 2011 and December 2013. Fork lengths (LF ) ranged from 190 to 1019 mm, and ages ranged from 2+ to 57+ years. Growth was described by the von Bertalanffy growth function with coefficients L∞ = 874·92 mm, K = 0·087 year(-1) and t0 = -2·76 years. Estimates of the instantaneous natural mortality rate (M) ranged from 0·072 to 0·25. The LF (mm) and mass (W; g) relationship was represented by the equation: W=2·647×10-5LF2·92. The maximum age of 57+ years is the oldest reported for any lutjanid and comparisons with tropical studies suggest that the age-based demography of L. argentimaculatus follows a latitudinal gradient. High maximum ages and low natural mortality rates indicate considerable vulnerability to overexploitation at the species' cool-water-range limits. These results demonstrate the need to identify underlying processes driving latitudinal gradients in fish demography.

  14. Performance characteristics of two-phase-flow turbo-expanders used in water-cooled chillers

    Energy Technology Data Exchange (ETDEWEB)

    Brasz, J.J. [United Technologies Carrier, New York, NY (United States)

    1999-07-01

    Use of two-phase-flow throttle loss recovery devices in water-cooled chillers requires satisfactory part-load operation. This paper describes the results of two-phase-flow impulse turbine testing and the data reduction of the test results into a two-phase-flow turbine off-design performance model. It was found that the main parameter controlling the efficiency of two-phase-flow turbine is the ratio of the nozzle spouting velocity to the rotor speed. The turbine mass flow rate is mainly controlled by inlet subcooling of the entering liquid. The strong sensitivity of turbine mass flow rate on inlet subcooling allows the use of a conventional float valve upstream of the turbine as an effective means of controlling the turbine during part-load operation. For a well-designed two-phase-flow turbine, nozzle spouting velocity and therefore turbine efficiency is hardly affected by the amount of inlet subcooling. Also, capacity can be substantially reduced by a reduction in the amount of inlet subcooling entering the turbine nozzles. Hence, turbine part-load efficiency equals its full-load efficiency over a wide range of flow rates using this control concept. (Author)

  15. Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR

    Science.gov (United States)

    Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong

    2016-02-01

    China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  16. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  17. Development of the Water Cooled Ceramic Breeder Test Blanket Module in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio, E-mail: enoeda.mikio@jaea.go.jp [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Suzuki, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Ezato, Koichiro; Seki, Yohji; Yoshikawa, Akira; Tsuru, Daigo; Akiba, Masato [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2012-08-15

    The development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and evaluation toward DEMO blanket, the module fabrication technology development by a candidate structural material, reduced activation martensitic/ferritic steel, F82H, is one of the most critical items from the viewpoint of realization of TBM testing in ITER. In Japan, fabrication of a real scale first wall, side walls, a breeder pebble bed box and assembling of the first wall and side walls have succeeded. Recently, the real scale partial mockup of the back wall was fabricated. The fabrication procedure of the back wall, whose thickness is up to 90 mm, was confirmed toward the fabrication of the real scale back wall by F82H. Important key technologies are almost clarified for the fabrication of the real scale TBM module mockup. From the view point of testing and evaluation, development of the technology of the blanket tritium recovery, development of advanced breeder and multiplier pebbles and the development of the blanket neutronics measurement technology are also performed. Also, tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been started as the verification test of tritium production performance. This paper overviews the recent achievements of the development of the WCCB TBM in Japan.

  18. Application of imitation steam'' systems to hot water district heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, P.J.; Chen, D.B.

    1991-10-01

    Pequod Associates, Inc. and District Energy St. Paul, Inc. installed a pilot project of an innovative District Heating technology through a contract with the US DOE. This applied research was funded by the Energy Research and Development Act (94--163) for District Heating and Cooling Research. The experimental design is an intervention technique that permits hot water district heating systems to connect to buildings equipped with steam heating systems to connect to buildings equipped with steam heating systems. This method can substantially reduce conversion costs in many older buildings. The method circulates Imitation Steam, which is moist hot air, as a heating medium in standard steam radiators and steam heating coils. Based on the operation of the system during the 1989--90 and 1990--91 winter heating seasons, we conclude the following: the basic concept of using Imitation Steam was proved feasible. The performance of the system can be improved beyond the levels achieved in this installation. Imitation Steam did not cause significant corrosion in the piping system. The technology can be used by other district heating systems to lower conversion costs and increase market penetration. Among the additional benefits from this technology are: eliminating old, inefficient boilers; lower maintenance costs; improved fuel efficiency; reduced emissions.

  19. Roseomonas frigidaquae sp. nov., isolated from a water-cooling system.

    Science.gov (United States)

    Kim, Mi Sun; Baik, Keun Sik; Park, Seong Chan; Rhee, Moon Soo; Oh, Hee-Mock; Seong, Chi Nam

    2009-07-01

    A non-motile, coccobacilli-shaped, pale-pink-pigmented bacterium, designated strain CW67(T), was isolated from a water-cooling system in Gwangyang, Republic of Korea. Cells were found to be Gram-negative, catalase-positive and oxidase-positive, the major fatty acids were C(18 : 1)omega7c (43.6 %) and C(16 : 0) (15.8 %), the predominant respiratory lipoquinone was Q-10 and the DNA G+C content was 69.5 mol%. A phylogenetic tree based on 16S rRNA gene sequence comparisons showed that strain CW67(T) forms an evolutionary lineage within the radiation of the genus Roseomonas and that its closest relative is Roseomonas gilardii subsp. rosea MDA5605(T) (94.7 % sequence similarity). Evidence from this polyphasic study showed that strain CW67(T) could not be assigned to any recognized species. It therefore represents a novel species, for which the name Roseomonas frigidaquae sp. nov. is proposed, with CW67(T) (=KCTC 22211(T) =JCM 15073(T)) as the type strain.

  20. Proposal for the award of an industrial support contract for cooling water treatment

    CERN Document Server

    1999-01-01

    This document concerns the award of an Industrial Support contract for cooling water treatment for LEP, PS and SPS. Following a market survey carried out among 46 firms in twelve Member States, a call for tenders (IT-2557/ST) was sent on 26 July 1999 to seven firms and two consortia in five Member States. By the closing date, CERN had received five tenders from firms and consortia in three Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium AQUAZUR (FR) and SCHILLING CHEMIE (DE), the lowest bidder after realignment, for an initial period of three years, starting on 1 January 2000, for a total amount not exceeding 976 482 Swiss francs, not subject to revision until 31 December 2001. The contract will include options for two further one-year extensions beyond the initial three year period. The consortium has indicated the following distribution by country of the work covered by this adjudication proposal: FR - 52% and DE - 48%.

  1. Effect of Internal Heat Recovery in Ammonia-Water Absorption Cooling Cycles: Exergy and Structural Analysis

    Directory of Open Access Journals (Sweden)

    Miquel Nogués

    2009-03-01

    Full Text Available First and second law analysis have been conducted for three low temperature driven ammonia-water absorption cooling cycles with increasing internal heat recovery. Based on the results of exergy analysis the structural analysis has been achieved. The obtained Coefficients of Structural Bonds (CSB consider how the irreversibility of the whole cycle is affected by a change in the irreversibility related to an efficiency improvement of a single component. Trends for the different configurations are similar, while quantitative differences among the main heat exchangers are considerable. The highest values of the CSB are found for the refrigerant heat exchanger. Also the evaporator, the condenser, the generator and the absorber show values higher than unity. The lowest CSB’s are obtained in the solution heat exchanger. In general, CSB’s decrease with increasing efficiency. That means that for very efficient heat exchangers, a further improvement looks less attractive. The dephlegmator is an exception as it shows a singularity of the CSB value due to its complex interactions with the other components. Once the CSB’s are obtained for the main components, they can be used in the structural method of the thermoeconomic optimisation. This method enables us to find the optimum design of a component in a straightforward calculation.

  2. Design of a water cooled monoblock divertor for DEMO using Eurofer as structural material

    Energy Technology Data Exchange (ETDEWEB)

    Richou, Marianne, E-mail: marianne.richou@cea.fr [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Li-Puma, Antonella [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Visca, Eliseo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, IT-00044 Frascati (Italy)

    2014-10-15

    The performed investigation focus on a monoblock type design for a water cooled DEMO divertor using Eurofer as structural material. In 2013, a study case of such a concept was presented. It was shown that basic concepts using Eurofer as structural material are limited to an incident heat flux of 8 MW m{sup −2}. Since, the EFDA agency issued new specifications. In this study, the conceptual design is reassessed with regard to specifications. Then, steady state thermal analyses and thermo-mechanical elastic analyses have been performed to define an upgrade of the geometry taking into account new specifications, design criteria and the maximum heat flux requirement of 10 MW m{sup −2}. An analysis of the influence of each adjustable geometrical parameter on thermo-mechanical design criteria was performed. As a consequence, geometrical parameters were set in order to fit to materials requirements. For defined hydraulic conditions taken in the most favourable configuration, the limit of this design is estimated to an incident heat flux of 10 MW m{sup −2}. Margin to critical heat flux and rules against progressive deformation/ratcheting in structural material limit the design.

  3. Preliminary Study on the High Efficiency Supercritical Pressure Water-Cooled Reactor for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Park, Jong Kyun; Cho, Bong Hyun and others

    2006-01-15

    This research has been performed to introduce a concept of supercritical pressure water cooled reactor(SCWR) in Korea The area of research includes core conceptual design, evaluation of candidate fuel, fluid systems conceptual design with mechanical consideration, preparation of safety analysis code, and construction of supercritical pressure heat transfer test facility, SPHINX, and preliminary test. As a result of the research, a set of tools for the reactor core design has been developed and the conceptual core design with solid moderator was proposed. The direct thermodynamic cycle has been studied to find a optimum design. The safety analysis code has also been adapted to supercritical pressure condition. A supercritical pressure CO2 heat transfer test facility has been constructed and preliminary test proved the facility works as expected. The result of this project will be good basis for the participation in the international collaboration under GIF GEN-IV program and next 5-year mid and long term nuclear research program of MOST. The heat transfer test loop, SPHINX, completed as a result of this project may be used for the power cycle study as well as further heat transfer study for the various geometries.

  4. Influence of Cooling to Heating Load Ratio on Optimal Supply Water and Air Temperatures in an Air Conditioning System

    Science.gov (United States)

    Karino, Naoki; Shiba, Takashi; Yokoyama, Ryohei; Ito, Koichi

    In planning an air conditioning system, supply water and air temperatures are important factors from the viewpoint of energy saving and cost reduction. For example, lower temperature supply water and air for space cooling reduce the coefficient of performance of a refrigeration machine, and increase the thickness of heat insulation material. However, they enable larger temperature differences, and reduce equipment sizes and power demand. It is also an important subject to evaluate the effect of the supply water and air temperatures on energy saving and cost reduction on the annual basis by considering not only cooling but also heating loads. The purposes of this paper are to propose an optimal planning method for an air conditioning system with large temperature difference, and to analyze the effect of supply water and air temperatures on the long-term economics through a numerical study for an office building. As a result, it is shown that the proposed method effectively determines supply water and air temperatures, and the influence of the cooling to heating load ratio on the long-term economics is clarified.

  5. Legionella detection and subgrouping in water air-conditioning cooling tower systems in Kuwait.

    Science.gov (United States)

    Al-Matawah, Qadreyah; Al-Zenki, Sameer; Al-Azmi, Ahmad; Al-Waalan, Tahani; Al-Salameen, Fadila; Hejji, Ahmad Ben

    2015-07-01

    The main aim of the study was to test for the presence of Legionnaires' disease-causing microorganisms in air-conditioned buildings in Kuwait using molecular technologies. For this purpose, 547 samples were collected from 38 cooling towers for the analysis of Legionella pneumophila. These samples included those from water (n = 178), air (n = 231), and swabs (n = 138). Out of the 547 samples, 226 (41%) samples were presumptive positive for L. pneumophila, with L. pneumophila viable counts in the positive water samples ranging from 1 to 88 CFU/ml. Of the Legionella culture-positive samples, 204 isolates were examined by latex agglutination. These isolates were predominately identified as L. pneumophila serogroup (sg) 2-14. Using the Dresden panel of monoclonal antibodies, 74 representatives isolates were further serogrouped. Results showed that 51% of the isolates belonged to serogroup 7 followed by 1 (18%) and 3 (18%). Serogroups 4 (4%) and 10 (7%) were isolated at a lower frequency, and two isolates could not be assigned to a serogroup. These results indicate the wide prevalence of L. pneumophila serogroup 7 as the predominant serogroup at the selected sampling sites. Furthermore, the 74 L. pneumophila (sg1 = 13; sg3 = 13; sg4 = 3; sg7 = 38; sg10 = 5; sgX = 2) isolates were genotyped using the seven gene protocol sequence-based typing (SBT) scheme developed by the European Working Group for Legionella Infections (EWGLI). The results show that Legionella isolates were discriminated into nine distinct sequence typing (ST) profiles, five of which were new to the SBT database of EWGLI. Additionally, all of the ST1 serogroup 1 isolates were of the OLDA/Oxford subgroup. These baseline data will form the basis for the development of a Legionella environmental surveillance program and used for future epidemiological investigations.

  6. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    Science.gov (United States)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  7. Did Cooling of Subthermocline Waters Help Establish Modern Upwelling Regions? Evidence rom ODP Site 716 in the Indian Ocean: Subthermocline δ18O Record Does Not Exceed General Cooling Trend of the Global Deep Ocean

    Science.gov (United States)

    Phelps, S.; Polissar, P. J.; deMenocal, P. B.

    2012-12-01

    The modern Indian Ocean exhibits a strong sea surface temperature gradient between the upwelling zone in the northwest Arabian Sea and the central warm pool. However, during the Pliocene, this temperature difference was essentially nonexistent. The shift in Indian Ocean sea surface temperature patterns parallels those in ocean basins worldwide—modern upwelling zones were dramatically warmer in the Pliocene and cooled around 2 million years ago, which had significant implications for regional precipitation patterns. Whether this cooling was due to stronger upwelling, colder subthermocline waters or other factors is not yet known. We analyzed the δ18O of benthic foraminifera from ODP site 716 in the Indian Ocean to test whether cooling of subthermocline waters contributed to cooling of the Arabian Sea upwelling region. Currently, bottom water at this 533 meter-deep site ventilates the thermocline and eventually upwells in the northwest Arabian Sea. We used the stable oxygen isotopic composition of the benthic foraminifera Uvigerina proboscidea and Cibicidoides spp. to infer changes in the temperature of bottom water at site 716. Our benthic record exhibits a ~1.5‰ secular shift over the past 4.5 million years, indicating cooling of bottom waters. The benthic δ18O trend at site 716 parallels the record from the deep ocean suggesting cooling of shallow waters was comparable to that observed in abyssal waters. The onset of cooling precedes the shift observed in upwelling regions by ~0.5 million years suggesting that colder subsurface waters were not the proximal cause of cooler upwelling regions. Cooler subsurface waters were likely a precondition that primed the system to amplify any changes in upwelling, but increased wind-driven upwelling at 2 million years initiated the establishment of the modern cold upwelling regions.

  8. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    Science.gov (United States)

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  9. Prevalence of Pathogens Causing Subclinical Mastitis in Argentinean Dairy Herds

    Directory of Open Access Journals (Sweden)

    Silvana Andrea Dieser

    2014-01-01

    Full Text Available The objective of this study was to investigate the prevalence of different mastitis pathogens in Argentinean dairy farms. Composite milk samples were collected of 2296 cows from 51 randomly selected herds in Córdoba, Argentina. Somatic cell count was determined in all samples and bacterial examination of the milk samples with a SCC exceeding 200,000 cells/mL was performed. About 54%of cows were diagnosed with subclinical mastitis (SCC ≥200,000/mL. Bacteria were isolated in 83.1% of milk samples subjected to bacteriological analysis. The most frequently isolated pathogen was coagulase-negative staphylococci (CNS (52.1%, followed by Staphylococcus aureus (21.3%, Corynebacterium spp. (5.2%, Streptococcus agalactiae (4.4% and Streptococcus dysgalactiae (4.4%. This study demonstrates that among the major pathogens isolated, the contagious bacteria caused most of the subclinical infections of dairy cows in Cordoba, Argentina. Moreover, CNS was the most relevant group of minor pathogens causing subclinical mastitis.

  10. Energy policy and energy market performance: The Argentinean case

    Energy Technology Data Exchange (ETDEWEB)

    Recalde, Marina, E-mail: mrecalde@uns.edu.ar [Departamento de Economia, Universidad Nacional del Sur (UNS) - Consejo Nacional de Ciencia y Tecnologia (CONICET), 12 de Octubre 1198 piso 7, B8000CTX Bahia Blanca (Argentina)

    2011-06-15

    In the early 1990s Argentina liberalized and privatized the energy system, trending to a total market oriented system and abandoning the use of energy policy. Since 2004, as a result of a boom in energy demand and constrains in energy supply, Argentina has gone through an energy problem mainly related to natural gas and electricity, which derived in energy shutdowns. In this frame, this study explores the role of energy policy and institutions in Argentina, with the aim of discussing whether it has been properly used to contrast the observed lack of coordination between fossil energy reserves management and the demand of fuels in power generation. The results of the analysis enhance the relevance of regulatory and control authorities, as well as the active use of long run energy policy for the energy system performance in order to avoid coordination failures between subsectors of the system. The relevance of energy consumption for the development process, and the particular characteristics of energy systems require a wide planning perspective. - Highlights: > This paper examines some aspects of the performance of the Argentinean energy system and energy policy. > There is a lack of coordination between fossil energy reserves management and electricity demand. > It is required an improvement of the regulatory framework, and an active role of the regulatory authorities. > A better planning for electricity supply and strengthening aspects related to the linking with other energy chains. > Promoting a systematic exploitation of NG and oil reserves' and increasing the share of RETs in the energy mix.

  11. Circadian Typology and Personality Styles in Argentinean University Women

    Directory of Open Access Journals (Sweden)

    María Pilar Sánchez López

    2016-02-01

    Full Text Available The aim of this paper is to study the differential personality profiles of subjects according to their circadian typology (Mornigness- Eveningness. The CS Scale (Smith, Reilly y Midkinff, 1989 and the Millon Inventory of Styles of Personality (Millon, 1994 have been applied to 120 Argentinean University Women (AUW. The results point out that all AUW with high scores in morningness (M are more organised to gather and elaborate the information of the environment. On the other hand, women characterised by Eveningness (E are more creative and risky, more disappointed with routines and predictable facts and look for original and unexpected results. Furthermore, Intermediate group of woman (not clearly M or V is studied; some new findings arise: Intermediate, as compared with W tend to behave in a more adequate and formal way in social contexts and they express their emotions or act spontaneously more unlikely. Through that method we have a better picture of the differential patterns of personality, according to the Mornigness-Eveningness features of the subjects. Generally speaking, the findings open the way for future research in which specific variables of personalities will be included. 

  12. Application of MF,Ozone and RO in Treatment of Municipal Sewage Reused as Circulating Cooling Water

    Institute of Scientific and Technical Information of China (English)

    Zhang Liqiang

    2007-01-01

    @@ Reuse of treated municipal sewage as circulating cooling water of fossil-fired power plants is a very theme worthy to be studied and spread because of the water shortage in most areas of China. This paper presents a process using coagulation + MF + ozone + partial RO to deal with the recycled sewage after treated preliminarily in sewage treatment plant. The process solves effectively the problem of higher TDS and higher total hardness in product water in winter, thus is especially fit for cities where sewage quality changes obviously with seasons.

  13. IMPROVEMENT OF SYSTEMS OF TECHNICAL WATER SUPPLY WITH COOLING TOWERS FOR HEAT POWER PLANTS TECHNICAL AND ECONOMIC INDICATORS PERFECTION. Part 2

    Directory of Open Access Journals (Sweden)

    Yu. A. Zenovich-Leshkevich-Olpinskiy

    2016-01-01

    Full Text Available The method of calculation of economic efficiency that can be universal and is suitable for feasibility study of modernization of irrigation and water distribution system of cooling towers has been developed. The method takes into account the effect of lower pressure exhaust steam in the condenser by lowering the temperature of the cooling water outlet of a cooling tower that aims at improvement of technical and economic indicators of heat power plants. The practical results of the modernization of irrigation and water distribution system of a cooling tower are presented. As a result, the application of new irrigation and water distribution systems of cooling towers will make it possible to increase the cooling efficiency by more than 4 оС and, therefore, to obtain the fuel savings by improving the vacuum in the turbine condensers. In addition, the available capacity of CHP in the summer period is increased. The results of the work, the experience of modernization of irrigation and water distribution systems of the Gomel CHP-2 cooling towers system, as well as the and methods of calculating of its efficiency can be disseminated for upgrading similar facilities at the power plants of the Belarusian energy system. Some measures are prosed to improve recycling systems, cooling towers and their structures; such measures might significantly improve the reliability and efficiency of technical water supply systems of heat power plants.

  14. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA

    Science.gov (United States)

    Liu, Heping; Blanken, Peter D.; Weidinger, Tamas; Nordbo, Annika; Vesala, Timo

    2011-04-01

    Understanding seasonal variations in the evaporation of inland waters (e.g., lakes and reservoirs) is important for water resource management as well as the prediction of the hydrological cycles in response to climate change. We analyzed eddy covariance-based evaporation measurements from the Ross Barnett Reservoir (32°26'N, 90°02'W which is always ice-free) in central Mississippi during the cool months (i.e., September-March) of 2007 and 2008, and found that the variability in cold front activities (i.e., passages of cold fronts and cold/dry air masses behind cold fronts) played an important role in modulating the exchange of sensible (H) and latent (λE) heat fluxes. Our analysis showed that 2007's warmer cool season had smaller mean H and λE than 2008's cooler cool season. This implies that the warmer cool season did not accelerate evaporation and heat exchange between the water surface and the atmosphere. Instead, more frequent cold fronts and longer periods of cold/dry air masses behind the cold fronts in 2008 resulted in overall larger H and λE as compared with 2007, this primarily taking the form of sporadic short-term rapid 'pulses' of H and λE losses from the water's surface. These results suggest that future climate-induced changes in frequency of cold fronts and the meteorological properties of the air masses behind cold fronts (e.g., wind speeds, temperature, and humidity), rather than other factors of climate change, would produce significant variations in the water surface's energy fluxes and subsequent evaporation rates.

  15. A novel method to design water spray cooling system to protect floating roof atmospheric storage tanks against fires

    Directory of Open Access Journals (Sweden)

    Iraj Alimohammadi

    2015-01-01

    Full Text Available Hydrocarbon bulk storage tank fires are not very common, but their protection is essential due to severe consequences of such fires. Water spray cooling system is one of the most effective ways to reduce damages to a tank from a fire. Many codes and standards set requirements and recommendations to maximize the efficiency of water spray cooling systems, but these are widely different and still various interpretations and methods are employed to design such systems. This article provides a brief introduction to some possible design methods of cooling systems for protection of storage tanks against external non-contacting fires and introduces a new method namely “Linear Density Method” and compares the results from this method to the “Average Method” which is currently in common practice. The average Method determines the flow rate for each spray nozzle by dividing the total water demand by the number of spray nozzles while the Linear Density Method determines the nozzle flow rate based on the actual flow over the surface to be protected. The configuration of the system includes a one million barrel crude oil floating roof tank to be protected and which is placed one half tank diameter from a similar adjacent tank with a full surface fire. Thermal radiation and hydraulics are modeled using DNV PHAST Version 6.53 and Sunrise PIPENET Version 1.5.0.2722 software respectively. Spray nozzles used in design are manufactured by Angus Fire and PNR Nozzles companies. Schedule 40 carbon steel pipe is used for piping. The results show that the cooling system using the Linear Density Method consumes 3.55% more water than the design using the average method assuming a uniform application rate of 4.1 liters per minute. Despite higher water consumption the design based on Linear Density Method alleviates the problems associated with the Average Method and provides better protection.

  16. Economic analysis of the integrated heating and cooling potential of a residential passive-solar water wall design

    Energy Technology Data Exchange (ETDEWEB)

    Roach, F.; Mangeng, C.; Kirschner, C.; Ben-David, S.

    1982-01-01

    The heating potential of residential water wall designs has been analyzed for many years. Because this past work has been confined strictly to heating potential, it has understated the true energy savings potential of water walls. Preliminary performance estimates for the heating and cooling potential of water walls have recently been made available. These estimates include the Btu displacement that is attributable to a 300-square foot water wall design in a 1200-square foot residence. The design is for a forced ventilation water wall system that includes the fans and ducting necessary to achieve a 3000-cfm flow of air. The cooling and heating energy displacement estimates are combined with appropriate region-specific fuel prices, system costs, and general economic parameters in a lifecycle cost analysis of this fixed-size water wall design. The economic indicators used to discuss the results include net present value and a total cost goal. Input data and results are presented in mapped form and used to assess the energy savings potential of the water wall in 220 regions of the continental United States.

  17. Energy and Exergy Performances of Air-Based vs. Water-Based Heating and Cooling Systems: A Case Study of a Single-Family House

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    -based systems, an air heating and cooling system, and a radiant floor heating and cooling system were chosen, respectively. A single-family house was used as a case study assuming that different space heating and cooling systems were used to condition the indoor space of this house. In addition to the thermal...... energy and exergy inputs to the system, energy and exergy inputs to the auxiliary components were also studied. Both heating and cooling cases were considered and three climatic zones were studied; Copenhagen (Denmark), Yokohama (Japan), and Ankara (Turkey). The analysis showed that the water......-based radiant heating and cooling system performed better than the air-based system both in terms of energy and exergy input to the heating/cooling plant. The relative benefits of the water-based system over the air-based system vary depending on the climatic zone. The air-based system also requires higher...

  18. The Effects of Cylinder Head Gasket Opening on Engine Temperature Distribution for a Water-Cooled Engine

    Science.gov (United States)

    Jang, J. Y.; Chi, G. X.

    2017-02-01

    In a liquid-cooled engine, coolant is pumped throughout the water jacket of the engine, drawing heat from the cylinder head, pistons, combustion chambers, cylinder walls, and valves, etc. If the engine temperature is too high or too low, various problems will occur. These include overheating of the lubricating oil and engine parts, excessive stresses between engine parts, loss of power, incomplete burning of fuel, etc. Thus, the engine should be maintained at the proper operating temperature. This study investigated the effects of different cylinder head gasket opening on the engine temperature distributions in a water-cooled motorcycle engine. The numerical predictions for the temperature distribution are in good agreement with the experimental data within 20%.

  19. Proposal for the Award of a Blanket Purchase Contract for the Supply of Water-Cooled Cables for the LHC

    CERN Document Server

    2002-01-01

    This document concerns the award of a blanket purchase contract for the supply of water-cooled cables for the LHC. Following a market survey carried out among 26 firms in six Member States, a call for tenders (IT-3008/ST/LHC) was sent on 18 February 2002 to four firms in three Member States. By the closing date, CERN had received two tenders from two firms in two Member States. The Finance Committee is invited to agree to the negotiation of a blanket purchase contract with BRAR (IT), the only compliant bidder, for the supply of water-cooled cables for the LHC for a total amount not exceeding 1 720 000 euros (2 529 805 Swiss francs), subject to revision for inflation from 1 January 2004. The rate of exchange which has been used is that stipulated in the tender. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: IT - 100%.

  20. Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled reactor

    Institute of Scientific and Technical Information of China (English)

    Xinggang LI; Qingzhi YAN; Rong MA; Haoqiang WANG; Changchun GE

    2009-01-01

    Modified AL-6XN austenite steel was patterned after AL-6XN superaustenitic stainless steel by introducing microalloy elements such as zirconium and titanium in order to adapt to recrystallizing thermo-mechanical treatment and further improve crevice corrosion resistance. Modified AL-6XN exhibited comparable tensile strength, and superior plasticity and impact toughness to commercial AL-6XN steel. The effects of aging behavior on corrosion resistance and impact toughness were measured to evaluate the qualification of modified AL-6XN steel as an in-core component and cladding material in a supercritical water-cooled reactor. Attention should be paid to degradation in corrosion resistance and impact toughness after aging for 50 hours when modified AL-6XN steel is considered as one of the candidate materials for in-core components and cladding tubes in supercritical water-cooled reactors.

  1. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  2. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    Science.gov (United States)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  3. Liquid-Cooled Garment

    Science.gov (United States)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  4. Optimization Tool for Direct Water Cooling System of High Power IGBT Modules

    OpenAIRE

    Bahman, Amir Sajjad; Blaabjerg, Frede

    2016-01-01

    Thermal management of power electronic devices is essential for reliable system performance especially at high power levels. Since even the most efficient electronic circuit becomes hot because of ohmic losses, it is clear that cooling is needed in electronics and even more as the power increases. One of the most important activities in the thermal management and reliability improvement is the cooling system design. As industries are developing smaller power devices with higher power densitie...

  5. Optimization of power-cycle arrangements for Supercritical Water cooled Reactors (SCWRs)

    Science.gov (United States)

    Lizon-A-Lugrin, Laure

    The world energy demand is continuously rising due to the increase of both the world population and the standard of life quality. Further, to assure both a healthy world economy as well as adequate social standards, in a relatively short term, new energy-conversion technologies are mandatory. Within this framework, a Generation IV International Forum (GIF) was established by the participation of 10 countries to collaborate for developing nuclear power reactors that will replace the present technology by 2030. The main goals of these nuclear-power reactors are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. As a member of the GIF, Canada has decided to orient its efforts towards the design of a CANDU-type Super Critical Water-cooled Reactor (SCWR). Such a system must run at a coolant outlet temperature of about 625°C and at a pressure of 25 MPa. It is obvious that at such conditions the overall efficiency of this kind of Nuclear Power Plant (NPP) will compete with actual supercritical water-power boilers. In addition, from a heat-transfer viewpoint, the use of a supercritical fluid allows the limitation imposed by Critical Heat Flux (CHF) conditions, which characterize actual technologies, to be removed. Furthermore, it will be also possible to use direct thermodynamic cycles where the supercritical fluid expands right away in a turbine without the necessity of using intermediate steam generators and/or separators. This work presents several thermodynamic cycles that could be appropriate to run SCWR power plants. Improving both thermal efficiency and mechanical power constitutes a multi-objective optimization problem and requires specific tools. To this aim, an efficient and robust evolutionary algorithm, based on genetic algorithm, is used and coupled to an appropriate power plant thermodynamic simulation model. The results provide numerous combinations to achieve a thermal efficiency higher than 50% with a

  6. An open reversed Brayton cycle with regeneration using moist air for deep freeze cooled by circulating water

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shaobo [Guangdong Ocean University, College of Engineering, East Jiefang Rd. No. 40, Xiashan, Zhanjiang, Guangdong 524006 (China); Northwestern Polytechnical University, School of Aeroengine and Thermal Power Engineering, Xi' an, Shaanxi 710072 (China); Zhang, Hefei [Northwestern Polytechnical University, School of Aeroengine and Thermal Power Engineering, Xi' an, Shaanxi 710072 (China)

    2009-01-15

    This paper presents an open reversed Brayton cycle with regeneration using moist air for deep freeze cooled by circulating water, and proves its feasibility through performance simulation. Pinch technology is used to analyze the cooling of the wet air after compressor and the water used for cooling wet air after compressor. Its refrigeration depends mainly on the sensible heat of air and the latent heat of water vapor, its performance is more efficient than a conventional air-cycle, and the utilization of turbo-machinery makes it possible. The adoption of this cycle will make deep freeze easily and reduce initial cost because very low temperature, about -55 C, air is obtained. The sensitivity analysis of coefficient of performance to the efficiency of compressor and the efficiency of compressor, and the results of the cycle are also given. The simulation results show that the COP of this system depends on the temperature before turbine, the efficiency of compressor and the efficiency of compressor, and varies with the wet bulb temperature of the outdoor air. Humid air is a perfect working fluid for deep freeze with no cost to the user. (author)

  7. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    Science.gov (United States)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  8. The Role of Soya Oil Ester in Water-Based PCM for Low Temperature Cool Energy Storage

    Directory of Open Access Journals (Sweden)

    I. M. Rasta

    2016-01-01

    Full Text Available This study focuses on the preparation of the water-based phase change material (PCM with very small soya oil solution for low temperature latent heat thermal energy storage (LHTES. Soya oil ester is soluble very well in water and acts as nucleating agent for a novel solid-liquid PCM candidate that is suitable for low temperature cool storage in the range between −9°C and −6°C. Thermal energy storage properties of the water with very small soya oil ester solution were measured by T-history method. The experimental results show that very small amount of soya oil ester in water can lower the freezing point and trigger ice nucleation for elimination of the supercooling degree. The phase transition temperatures of the water-based PCMs with soya oil as nucleate agent were lower than those of individual water. The thermal properties make it potential PCM for LHTES systems used in low temperature cool energy storage applications.

  9. Presence of pathogenic microorganisms in power-plant cooling waters. Report for October 1, 1979-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Tyndall, R.L.

    1982-10-01

    Cooling waters from eleven geographically disparate power plants were tested for the presence of Naegleria fowleri and Legionella pneumophila (LDB). Control source waters for each plant were also tested for these pathogens. Water from two of the eleven plants contained pathogenic Naegleria, and infectious Legionella were found in seven of the test sites. Pathogenic Naegleria were not found in control waters, but infectious Legionella were found in five of the eleven control source water sites. Concentrations of nitrite, sulfate, and total organic carbon correlated with the concentrations of LDB. A new species of Legionella was isolated from one of the test sites. In laboratory tests, both Acanthamoeba and Naegleria were capable of supporting the growth of Legionella pneumophila.

  10. Genetic and biochemical studies in Argentinean patients with variegate porphyria

    Directory of Open Access Journals (Sweden)

    Giudice Jimena

    2008-06-01

    Full Text Available Abstract Background A partial deficiency in Protoporphyrinogen oxidase (PPOX produces the mixed disorder Variegate Porphyria (VP, the second acute porphyria more frequent in Argentina. Identification of patients with an overt VP is absolutely important because treatment depends on an accurate diagnosis but more critical is the identification of asymptomatic relatives to avoid acute attacks which may progress to death. Methods We have studied at molecular level 18 new Argentinean patients biochemically diagnosed as VP. PPOX gene was amplified in one or in twelve PCR reactions. All coding exons, flanking intronic and promoter regions were manual or automatically sequenced. For RT-PCR studies RNA was retrotranscripted, amplified and sequenced. PPOX activity in those families carrying a new and uncharacterized mutation was performed. Results All affected individuals harboured mutations in heterozygous state. Nine novel mutations and 3 already reported mutations were identified. Six of the novel mutations were single nucleotide substitutions, 2 were small deletions and one a small insertion. Three single nucleotide substitutions and the insertion were at exon-intron boundaries. Two of the single nucleotide substitutions, c.471G>A and c.807G>A and the insertion (c.388+3insT were close to the splice donor sites in exons 5, 7 and intron 4 respectively. The other single nucleotide substitution was a transversion in the last base of intron 7, g.3912G>C (c.808-1G>C so altering the consensus acceptor splice site. However, only in the first case the abnormal band showing the skipping of exon 5 was detected. The other single nucleotide substitutions were transversions: c.101A>T, c.995G>C and c.670 T>G that result in p.E34V, p.G332A and W224G aminoacid substitutions in exons 3, 10 and 7 respectively. Activity measurements indicate that these mutations reduced about 50% PPOX activity and also that they co-segregate with this reduced activity value. Two

  11. Optimization of Energy Saving for Petrochemistry Enterprise Recirculating Cooling Water System%石化企业循环冷却水系统节能优化

    Institute of Scientific and Technical Information of China (English)

    吴罗刚; 周勇

    2012-01-01

    对目前石化企业循环冷却水系统存在的问题,提出强化传热和循环冷却水的串级利用的方法,加强生产和水质管理,以降低循环冷却水系统能耗。%Based on the problem of the petrochemistry enterprise recirculating cooling water system, propose the method of heat transfer enhancement and recirculated cooling water cascade utilization, strengthen management, so as to reduce the recirculating cooling water system energy consumption.

  12. IMPROVEMENT OF SYSTEMS OF TECHNICAL WATER SUPPLY WITH COOLING TOWERS FOR STEAM POWER PLANTS TECHNICAL AND ECONOMIC INDICATORS PERFECTION. Part 1

    Directory of Open Access Journals (Sweden)

    Yu. A. Zenovich-Leshkevich-Olpinskiy

    2016-01-01

    Full Text Available In order to reduce the temperature of cooling water and increase the efficiency of use of power resources the main directions of modernization of systems of technical water supply with cooling towers at steam power plants are presented. The problems of operation of irrigation systems and water distribution systems of cooling towers are reviewed. The design of heat and mass transfer devices, their shortcomings and the impact on the cooling ability of the cooling tower are also under analysis. The use of droplet heat and mass transfer device based on the lattice polypropylene virtually eliminates the shortcomings of the film and droplet-film heat and mass transfer devices of the cooling tower, increasing lifetime, and improving the reliability and efficiency of the operation of the main equipment of thermal power plants. The design of the water distribution devices of cooling towers is also considered. It is noted that the most effective are water-spattering low-pressure nozzles made of polypropylene that provides uniform dispersion of water and are of a high reliability and durability.

  13. Development of dual cooled annular fuel and its possibility to enhance both economy and safety of light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yanghyun; Kim, Keonsik; Park, Jeongyong; Yang, Yongsik; Kim, Hyungkyu; In, Wangkee; Song, Kunwoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Over the past few decades, extensive studies have been performed to improve the reliability and safety of light water reactor (LWR) fuel. In recent years, power updating of about 10% is being achieved by modifying safety analysis methodology and subsequent increase in safety margin. But departure from nucleate boiling (DNB) and loss of coolant accident (LOCA) are still two of the most important limiting factors which would restrict power updating more than 10%. Duel cooled annular fuel, cooled in both internal and external cooling channel, has advantages of considerably lower heat flux and lower fuel temperature than conventional solid fuel. While lower heat flus gives higher DNB margin for the same power retie, lower temperature reduces the stored energy of fuel. However, there are many technical issues that should be addressed before any new type of fuel can be considered for application to LWR. This paper describes the key technologies that Korea Atomic Energy Research Institute (KAERI) has developed for dual cooled annular fuel and discusses the feasibility of its application to LWR.

  14. Method of estimation of sea-shelf water exchange using information on differential coastal cooling above underwater slopes

    Science.gov (United States)

    Chubarenko, Irina

    2013-04-01

    Physics of formation of differential coastal cooling in areas with sloping bottom, as well as the associated water dynamics, is already quite well investigated. This allows for using this knowledge for quantitative estimation of deep sea - coastal area (cross-shore) water-exchange. It is especially effective during periods of seasonal autumnal cooling, when vertical gravitational convection reaches bottom in shallower coastal areas. Then, the water temperature in sloping area (the picture of differential coastal cooling) is formed by combined effect of the heat exchange with the cooler atmosphere and horizontal heat transport due to water-exchange with the warmer sea. If the heat loss to the atmosphere in the open area and in coastal region can be taken approximately the same, then time rate of decrease of water temperature in deep-sea surface layer provides its measure, which can be applied also in sloping area. Thus, the heat transport by horizontal (cross-shore) exchange can be estimated. Theoretical considerations were checked using the results of original laboratory experiments, 3D numerical modeling in basins with sloping bottom, comparison with field measurement and satellite data for the South-Eastern Baltic Sea. Analytical expressions for cross-shore temperature variations during periods of the developed vertical convection were obtained for several flow regimes (e.g., no exchange with the sea, quasi-steady-state exchange due to the cross-shore density gradients). Series of laboratory experiments have demonstrated the particular features of the coast-sea temperature profiles in different flow regimes (see poster EGU2013-502). Three-dimensional non-hydrostatic hydrodynamic model MIKE3-FlowModel (DHI Water & Environment) was applied to reproduce both the laboratory experiments and the results of field measurements in the Gdansk bay of the Baltic Sea (74 cruise of r/v 'Prof. Stockman', October, 2005). Data of spectroradiometers MODIS Aqua for October

  15. The demise of the early Eocene greenhouse - Decoupled deep and surface water cooling in the eastern North Atlantic

    Science.gov (United States)

    Bornemann, André; D'haenens, Simon; Norris, Richard D.; Speijer, Robert P.

    2016-10-01

    Early Paleogene greenhouse climate culminated during the early Eocene Climatic Optimum (EECO, 50 to 53 Ma). This episode of global warmth is subsequently followed by an almost 20 million year-long cooling trend leading to the Eocene-Oligocene glaciation of Antarctica. Here we present the first detailed planktic and benthic foraminiferal isotope single site record (δ13C, δ18O) of late Paleocene to middle Eocene age from the North Atlantic (Deep Sea Drilling Project Site 401, Bay of Biscay). Good core recovery in combination with well preserved foraminifera makes this site suitable for correlations and comparison with previously published long-term records from the Pacific Ocean (e.g. Allison Guyot, Shatsky Rise), the Southern Ocean (Maud Rise) and the equatorial Atlantic (Demerara Rise). Whereas our North Atlantic benthic foraminiferal δ18O and δ13C data agree with the global trend showing the long-term shift toward heavier δ18O values, we only observe minor surface water δ18O changes during the middle Eocene (if at all) in planktic foraminiferal data. Apparently, the surface North Atlantic did not cool substantially during the middle Eocene. Thus, the North Atlantic appears to have had a different surface ocean cooling history during the middle Eocene than the southern hemisphere, whereas cooler deep-water masses were comparatively well mixed. Our results are in agreement with previously published findings from Tanzania, which also support the idea of a muted post-EECO surface-water cooling outside the southern high-latitudes.

  16. Water and Climate Impacts on Power System Operations: The Importance of Cooling Systems and Demand Response Measures

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miara, Ariel [City College of New York, NY (United States); Ibanez, Eduardo [GE Energy Connections, Atlanta, GA (United States); Hummon, Marissa [Tendril, Denver, CO (United States)

    2016-12-01

    The U.S. electricity sector is highly dependent upon water resources; changes in water temperatures and water availability can affect operational costs and the reliability of power systems. Despite the importance of water for power system operations, the effects of changes in water characteristics on multiple generators in a system are generally not modeled. Moreover, demand response measures, which can change the magnitude and timing of loads and can have beneficial impacts on power system operations, have not yet been evaluated in the context of water-related power vulnerabilities. This effort provides a first comprehensive vulnerability and cost analysis of water-related impacts on a modeled power system and the potential for demand response measures to address vulnerability and cost concerns. This study uniquely combines outputs and inputs of a water and power plant system model, production cost, model, and relative capacity value model to look at variations in cooling systems, policy-related thermal curtailments, and demand response measures to characterize costs and vulnerability for a test system. Twenty-five scenarios over the course of one year are considered: a baseline scenario as well as a suite of scenarios to evaluate six cooling system combinations, the inclusion or exclusion of policy-related thermal curtailments, and the inclusion or exclusion of demand response measures. A water and power plant system model is utilized to identify changes in power plant efficiencies resulting from ambient conditions, a production cost model operating at an hourly scale is used to calculate generation technology dispatch and costs, and a relative capacity value model is used to evaluate expected loss of carrying capacity for the test system.

  17. An application of the zeolite/water adsorption technology for beer cooling; Die Anwendung der Zeolith/Wasser-Technologie zur Bierkuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Maier-Laxhuber, P.; Schmidt, R.; Becky, A.; Woerz, R. [Zeo-Tech GmbH, Unterschleissheim (Germany)

    2002-08-01

    A reusable self-chilling keg (CoolKeg) with an integrated cooling technique based on zeolite/water adsorption technology has been developed. Over 20.000 self cooled party-kegs have been manufactured in 2001 for the home consumer market in Germany. The CoolKeg is a 20 l party-keg which provides chilled (7 C) beer within 45 minutes. (orig.) [German] Fuer die Kuehlung von Bier wurden selbstkuehlende Faesser entwickelt, die Zeolith/Wasser-Technologie als besonders umweltfreundliche Kuehltechnik beinhalten. Nach Gebrauch werden die Mehrwegfaesser in der Brauerei reaktiviert. (orig.)

  18. Technical Schemes and Characteristics of Water-cooling Milk Tanks%水冷式奶罐的技术方案及其特性分析

    Institute of Scientific and Technical Information of China (English)

    田雅颂; 陈东; 谢继红; 李国盛

    2015-01-01

    Direct cooling milk tanks need high power and energy consumption, so four technical schemes of water-cooling milk tanks are put forward: water-cooling milk tank using groundwater, water-cooling milk tank using outdoor air, water-cooling milk tank with ice storage and water-cooling milk tank producing hot water. Working principle and characteristics of four technical schemes are introduced and compared based on 10 tons of milk tanks. It shows that compared with direct cooling milk tanks, equipment cost and electricity consumption of water-cooling milk tanks using groundwater is about half of that, water-cooling milk tanks using outdoor air can decrease electricity consumption cost more than 30%, electricity consumption cost of water-cooling milk tanks with ice storage can decrease more than 50%, water-cooling milk tanks preparing hot water can get 1~3 tons hot water of 40~80℃ to meet needs of cleaning milking equipment and milk tanks.%针对直冷式奶罐功率配置较高、能耗较大等不足,给出了4种水冷式奶罐技术方案:采用地下水冷源的水冷式奶罐、采用室外空气冷源的水冷式奶罐、采用冰蓄冷的水冷式奶罐和同时制取热水的水冷式奶罐。对4种技术方案的工作流程和特点进行了介绍,并以10吨奶罐为例,对4种水冷式奶罐和直冷式奶罐进行了计算比较。结果表明:与直冷式奶罐相比,采用地下水冷源的水冷式奶罐设备费用和电耗费用均降低约50%;采用室外空气冷源的水冷式奶罐电耗费用可降低30%以上;采用冰蓄冷的水冷式奶罐耗电费用降低约50%;同时制取热水的水冷式奶罐可免费获得1~3吨40~80℃的热水,可满足挤奶装置和奶罐的清洗需要。

  19. Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore

    Institute of Scientific and Technical Information of China (English)

    Song-tao Yang; Mi Zhou; Tao Jiang; Shan-fei Guan; Wei-jun Zhang; and Xiang-xin Xue

    2016-01-01

    A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V–Ti–Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio (η), S removal ratio (RS), and P removal ratio (RP) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350°C were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved theη,RS, and RP in the coal-based reduction of V–Ti–Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70μm at 1350°C, which is substantially larger than the minimum particle size required (20μm) for mag-netic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V–Ti–Cr iron ore followed by magnetic separation.

  20. COOLING SYSTEM CONTROL AND MANAGEMENT METHOD OF AFTER SPINNING FAN WATER CURTAIN COOLING SYSTEM%后纺风机水帘降温系统控制与管理方法

    Institute of Scientific and Technical Information of China (English)

    梁利忠

    2014-01-01

    Through analyzed the working principle of after spinning the fan water curtain cooling system , and clarified the effect of fan water curtain cooling system on the after spinning production status , so proposing the control method of after spinning fan water curtain cooling system and management methods , so as to meet the requirements of production process.%通过对后纺风机水帘降温系统工作原理的分析,阐述水帘降温系统对后纺生产状态的影响,提出风机水帘降温系统的控制方法及管理方法,以满足后纺的生产工艺要求。

  1. A system for the comparison of tools for the simulation of water-based radiant heating and cooling systems

    DEFF Research Database (Denmark)

    Behrendt, Benjamin; Raimondo, Daniela; Zhang, Ye;

    2011-01-01

    increase of water based radiant systems in modern buildings and a need for reliable simulation tools to predict the indoor environment and energy performance. This paper describes the comparison of the building simulation tools IDA ICE, IES , EnergyPlus and TRNSYS. The simulation tools are compared to each......Low temperature heating and high temperature cooling systems such as thermally activated building systems (TABS) offer the chance to use low exergy sources, which can be very beneficial financially as well as ecologically when using renewable energy sources. The above has led to a considerable...... other using the same room and boundary conditions. The results show significant differences in predicted room temperatures, heating and cooling degree hours as well as thermal comfort in winter and summer....

  2. Application of Pulsed Electrical Fields for Advanced Cooling and Water Recovery in Coal-Fired Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Young Cho; Alexander Fridman

    2009-04-02

    The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filter membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the

  3. Water treatments in semi-closed cooling circuits and their impact on the quality of effluents discharged by CERN

    CERN Document Server

    Santos Leite Cima Gomes, J; Kleiner, S

    2008-01-01

    The main goal of this study is to assess the impact of the discharges of the semi-closed water cooling circuits of CERN (European Center for Nuclear Research) on the overall quality of CERN's effluents, taking as guidelines the international legislation supported on the knowledge of the water systems of CERN. In order to reach this goal, a thorough analysis of the functioning of the semi-closed water cooling systems of CERN's particle accelerators was done, as well as, an analysis of the treatment that is done to prevent the proliferation of bacteria such as Legionella. The products used in these water treatments, as well as their impact, were also researched. In addition, a study of the applicable regulation to CERN's effluent was done. This study considered not only the regulation of France and Switzerland (CERN's host states) but also the international regulation from the European community, Portugal Germany, Spain, U.S. and Canada, having in view a better understanding of the limit values of the parameter...

  4. Effects of tropical climate and water cooling methods on growing pigs' responses

    NARCIS (Netherlands)

    Huynh, T.T.T.; Aarnink, A.J.A.; Truong, C.T.; Kemp, B.; Verstegen, M.W.A.

    2006-01-01

    We report a study on crossbred growing pig ((Duroc x Pietrain) x Large White) that measured the effect of tropical conditions on respiration rate (RR), skin temperature (ST), rectal temperature (RT) and productivity and determined the efficacy of two simple cooling methods. The experiment was a rand

  5. Ultrafast cooling by covalently bonded graphene-carbon nanotube hybrid immersed in water

    DEFF Research Database (Denmark)

    Chen, Jie; Walther, Jens Honore; Koumoutsakos, Petros

    2016-01-01

    The increasing power density and the decreasing dimensions of transistors present severe thermal challenges to the design of modern microprocessors. Furthermore, new technologies such as three-dimensional chip-stack architectures require novel cooling solutions for their thermal management. Here...

  6. Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-01

    The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

  7. Analysis on thermophoretic deposit of fine particle on water wall of 10 MW high temperature gas-cooled reactor

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tao; YANG Rui-Chang; JIA Dou-Nan

    2005-01-01

    The water wall is an important part of the passive natural circulation residual heat removal system in a high temperature gas-cooled reactor. The maximum temperatures of the pressure shell and the water wall are calculated using annular vertical closed cavity model. Fine particles can deposit on the water wall due to the thermophore sis effect. This deposit can affect heat transfer. The thermophoretic deposit efficiency is calculated by using Batch and Shen's formula fitted for both laminar flow and turbulent flow. The calculated results indicate that natural convection is turbulent in the closed cavity. The transient thermophoretic deposit efficiency rises with the increase of the pressure shell's temperature. Its maximum value is 14%.

  8. AUTOMATED DEAD-END ULTRAFILTRATION FOR ENHANCED SURVEILLANCE OF LEGIONELLA 2 PNEUMOPHILA AND LEGIONELLA SPP. IN COOLING TOWER WATERS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Leskinen, S.; Kearns, E.; Jones, W.; Miller, R.; Betivas, C.; Kingsley, M.; Lim, D.

    2011-10-10

    Detection of Legionella pneumophila in cooling towers and domestic hot water systems involves concentration by centrifugation or membrane filtration prior to inoculation onto growth media or analysis using techniques such as PCR or immunoassays. The Portable Multi-use Automated Concentration System (PMACS) was designed for concentrating microorganisms from large volumes of water in the field and was assessed for enhancing surveillance of L. pneumophila at the Savannah River Site, SC. PMACS samples (100 L; n = 28) were collected from six towers between August 2010 and April 2011 with grab samples (500 ml; n = 56) being collected before and after each PMACS sample. All samples were analyzed for the presence of L. pneumophila by direct fluorescence immunoassay (DFA) using FITC-labeled monoclonal antibodies targeting serogroups 1, 2, 4 and 6. QPCR was utilized for detection of Legionella spp. in the same samples. Counts of L. pneumophila from DFA and of Legionella spp. from qPCR were normalized to cells/L tower water. Concentrations were similar between grab and PMACS samples collected throughout the study by DFA analysis (P = 0.4461; repeated measures ANOVA). The same trend was observed with qPCR. However, PMACS concentration proved advantageous over membrane filtration by providing larger volume, more representative samples of the cooling tower environment, which led to reduced variability among sampling events and increasing the probability of detection of low level targets. These data highlight the utility of the PMACS for enhanced surveillance of L. pneumophila by providing improved sampling of the cooling tower environment.

  9. Internet Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at America's Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    J. Daniel Arthur

    2011-09-30

    In recent years, rising populations and regional droughts have caused coal-fired power plants to temporarily curtail or cease production due to a lack of available water for cooling. In addition, concerns about the availability of adequate supplies of cooling water have resulted in cancellation of plans to build much-needed new power plants. These issues, coupled with concern over the possible impacts of global climate change, have caused industry and community planners to seek alternate sources of water to supplement or replace existing supplies. The Department of Energy, through the National Energy Technology Laboratory (NETL) is researching ways to reduce the water demands of coal-fired power plants. As part of the NETL Program, ALL Consulting developed an internet-based Catalog of potential alternative sources of cooling water. The Catalog identifies alternative sources of water, such as mine discharge water, oil and gas produced water, saline aquifers, and publicly owned treatment works (POTWs), which could be used to supplement or replace existing surface water sources. This report provides an overview of the Catalog, and examines the benefits and challenges of using these alternative water sources for cooling water.

  10. Solar-assisted dual-effect adsorption cycle for the production of cooling effect and potable water

    KAUST Repository

    Ng, K. C.

    2009-05-17

    This paper investigates the performance of a solar-assisted adsorption (AD) cycle which produces two useful effects, namely cooling and desalination, with only a low-temperature heat input such as thermal energy from solar collectors. Heat sources varying from 65 to 80°C can be obtained from 215-m2 flat plate-type solar collectors to regenerate the proposed silica gel-water-based AD cycle. In this paper, both mathematical modelling and experimental results from the AD cycle operation are discussed, in terms of two key parameters, namely specific daily water production (SDWP) and specific cooling capacity (SCC). The experimental results show that the AD cycle is capable of producing chilled water at 7 to 10°C with varying SCC range of 25-35 Rton/tonne of silica gel. Simultaneously, the AD cycle produces a SDWP of 3-5 m3 per tonne of silica gel per day, rendering it as a dual-effect machine that has an overall conversion or performance ratio of 0.8-1.1. © The Author 2009. Published by Oxford University Press. All rights reserved.

  11. Presence of pathogenic microorganisms in power-plant cooling waters. Final report, October 1, 1981-June 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Tyndall, R.L.

    1983-07-01

    Air was sampled at the point of discharge and at short distances downwind and upwind from industrial and power-plant cooling towers. Both high-volume electrostatic and impinger type samplers were used. Concentrates of the air samples were analyzed for Legionnaires' Disease Bacteria (LDB). In some cases, the samples were also tested for the presence of free-living amoebae. The concentrations of LDB in the air samples were well below the minimal infectious dose for guinea pigs and precluded testing of the samples for infectious LDB. Results of LDB analysis were related to the meteorological conditions at the time of sampling. Generally, the concentrations of LDB in the air at the discharge of the cooling towers were 1 x 10/sup -6/ to 1 x 10/sup -7/ of that found in comparable volumes of tower basin water. During periods of high humidity and wind speed, LDB was detected in a few downwind samples and one upwind sample. One site with extensive construction and excavation activity had higher LDB concentrations in air samples relative to other sites. Nonpathogenic Naegleria were present in one of two air samples taken in the mist at the base of a natural-draft cooling tower.

  12. SIMULATION OF SOLAR LITHIUM BROMIDE–WATER ABSORPTION COOLING SYSTEM WITH DOUBLE GLAZED FLAT PLATE COLLECTOR FOR ADRAR

    Directory of Open Access Journals (Sweden)

    ML CHOUGUI

    2014-12-01

    Full Text Available Adrar is a city in the Sahara desert, in southern Algeria known for its hot and dry climate, where a huge amount of energy is used for air conditioning. The aim of this research is to simulate a single effect lithium bromide–water absorption chiller coupled to a double-glazed flat plate collector to supply the cooling loads for a house of 200m2 in Adrar. The thermal energy is stored in an insulated thermal storage tank. The system was designed to cover a cooling load of 10.39KW for design day of July. Thermodynamic model was established to simulate the absorption cycle. The results have shown that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 65.3 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy.

  13. RESONANCE CONTROL FOR THE COUPLED CAVITY LINAC AND DRIFT TUBE LINAC STRUCTURES OF THE SPALLATION NEUTRON SOURCE LINAC USING A CLOSED-LOOP WATER COOLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, J. D. (John D.); Brown, R. L. (Richard L.); Brown, S. K. (Stanley K.); Bustos, G. R. (Gerald R.); Crow, M.L. (Martin L.); Gregory, W. S.; Hood, M. E. (Michael E.); Jurney, J. D. (James D.); Medalen, I. (Ivan); Owen, A. C. (Albert C.); Weiss, Robert E.

    2001-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the protons to an energy of 185 MeV. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems.

  14. Passive cooling effect of RC roof covered with the ceramics having high water retention and evaporation capacity

    Science.gov (United States)

    Yamazaki, M.; Kanaya, M.; Shimazu, T.; Ohashi, T.; Kato, N.; Horikoshi, T.

    2011-10-01

    Hot days in metropolitan cities have increased remarkably by the heat island phenomenon these days. Thus the authors tried to develop the porous ceramics with high water retention and evaporation capacity as a maintenance-free material to improve thermal environment. The developed ceramic pellets have high water retention of more than 60 % of water absorption and high water evaporation which is similar to water surface. In this study, three types of 5 meter squared large flat-roofed structural specimen simulated reinforced concrete (RC) slab were constructed on the outside. The variation of water content and temperature of the specimens and atmosphere temperature around the specimens were measured from summer in 2009. In the case of the ceramic pellets, the temperature under RC slab was around 15 degree C lower than that of the control. The results were probably contributed by passive cooling effect of evaporated rain water, and the effect was similar to in the case of the grasses. From the viewpoint of thermal environment improvement, substitution of a rooftop gardening by the porous ceramics could be a promising method.

  15. Survey for the presence of specific free-living amoebae in cooling waters from Belgian power plants.

    Science.gov (United States)

    Behets, Jonas; Declerck, Priscilla; Delaedt, Yasmine; Verelst, Lieve; Ollevier, Frans

    2007-05-01

    Free-living amoebae (FLA) are distributed ubiquitously in aquatic environments with increasing importance in hygienic, medical and ecological relationships to man. In this study, water samples from Belgian industrial cooling circuits were quantitatively surveyed for the presence of FLA. Isolated, thermotolerant amoebae were identified morphologically as well as using the following molecular methods: enzyme-linked immunosorbent assay and isoenzyme electrophoresis and PCR. Thermophilic amoebae were present at nearly all collection sites, and the different detection methods gave similar results. Naegleria fowleri was the most frequently encountered thermotolerant species, and concentrations of thermotolerant FLA were correlated with higher temperatures.

  16. Mathematical model on heat transfer of water-cooling steel-stick bottom electrode of DC electric arc furnace

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    For predicting and controlling the melted depth of bottom electrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process of heat transfer, then 3D mathematical model by control capacity method is built. At the same time, the measurement on the melted depth of bottom electrode is conducted which verified the correctness of the built mathematical model. On the base of verification, all kinds of key parameters are calculated through the application and a series of results are simulated. Finally, the optimum parameters are found and the service lifeof bottom electrode is prolonged.

  17. The recent development of fabrication of ODS ferritic steels for supercritical water-cooled reactors core application

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Li, M.; Liao, L.; Liu, X.; He, P.; Xu, Y.; Chen, W.; Ge, C. [Univ. of Science and Technology Beijing, School of Materials Science and Engineering, Beijing (China)

    2010-07-01

    Development of cladding materials which can work at high temperature is crucial to realize highly efficient and high-burnup operation of Generation IV nuclear energy systems. Oxide dispersion strengthened (ODS) ferritic steel is one of the most promising cladding materials for advanced nuclear reactors, such as supercritical water-cooled reactor. ODS ferritic steels with Cr content of 12, 14 and 18% were designed and fabricated in China through the mechanical alloying (MA) route. The process parameters were discussed and optimized. Mechanical properties were measured at room temperature and high temperature. (author)

  18. Experience with water-cooled grates in waste incinerators; Erfahrungen mit dem wassergekuehlten Rost in der thermischen Abfallverwertung

    Energy Technology Data Exchange (ETDEWEB)

    Drexler, J.; Krueger, J. [Muellkraftwerk Schwandorf Betriebsgesellschaft mbH (Germany)

    1999-07-01

    The 17th Federal Nuisance Control Ordinance and the Act on Recycling and Waste Management have resulted in major changes in incinerator design and operation. The specified combustion conditions and emission quality specifications required a significant reduction of the air rating in order to raise the combustion temperature and reduce the investment cost of the projected new system. The more rigid burnout specifications made it necessary to increase the secondary air volume and reduce the primary air volume for grate cooling. The Schwandorf incinerator reported shorter grate bar lives even before the above legal regulations came into force as a result of increasing calorific values. Since 1994, experiments were made with water-cooled grates. The investigations aimed at unhurried development of a complete grate cooling system, from cooling of grate bars to heat removal, and were carried out in cooperation with component suppliers. Apart from the wear measurements, data on thermal layout were to determined as well. Three water-cooled grates from different suppliers have been tested since then. [German] Die mit der 17. Bundes-Immissionsschutz-Verordnung (BImSchV) verbundenen Vorschriften haben in Verbindung mit dem Kreislaufwirtschaftsgesetz zu einschneidenden Massnahmen beim Betrieb von Muellverbrennungsanlagen gefuehrt. Durch die in paragraph 4 der 17 BImSchV festgelegten Verbrennungsbedingungen und die strengen gesetzlichen Auflagen in der Abgasreinigung wurde eine deutliche Reduzierung der Luftzahl notwendig. Hierdurch sollte die Verbrennungstemperatur gesteigert und die Investitionskosten bei der neu zu errichtenden Rauchgasreinigungsanlage gesenkt werden. Weiterhin wurde durch die strengeren Grenzwerte hinsichtlich des Ausbrandes der Rauchgase eine Steigerung der Sekundaerluftmenge notwendig. Die zur Kuehlung des Rostes eingesetzte Primaerluft musste aus den beiden genannten Gruenden deutlich reduziert werden. Bereits vor Eintreten der Wirksamkeit der oben

  19. Analysis and improvement of secondary cooling water system of continuous casting in WISCO%武钢连铸二冷水系统分析与改进

    Institute of Scientific and Technical Information of China (English)

    刘洋; 鲁新义; 胡念慈; 吴英; 闻臻; 陈玮

    2014-01-01

    针对武钢连铸二冷水系统冷却效果不佳问题,对二冷水压缩空气控制系统、喷淋水控制系统和喷嘴特性等现状逐一进行分析,结果表明,由于二冷水压缩空气压力控制不稳,不能实现喷淋水、气的自由调控,以及由于喷嘴流量调节方法不当使得铸坯宽度方向上温差大,其结果导致了铸坯边角裂纹。解进方法是调整压缩空气控制方式,在支路上安装调节阀、压力检测器及流量计,优化二冷水、气配比参数,最终实现二冷水系统冷却效果的精确控制。二冷水系统改进后的效果极为显著。%The status of the secondary cooling water system was analyzed from several aspects inclu-ding working principle of secondary cooling water ,the control systems of compressed air and spray water and the properties of nozzles ,in order to solve the problem of slab corner cracking caused by poor cooling effect of secondary cooling water .The result shows that the main factors resulting in poor cooling of secondary cooling water are the unstable air pressure control system ,non-free adjust-ment of pray water in the width direction ,and the improper adjusting manner of nozzle flow .By opti-mizing the control manner of compressed air ,installing control valve ,pressure sensor and flow meter in the branch circuit ,and optimizing the water and gas ratio of secondary cooling ,precise control of water and air of secondary cooling water is made possible ,the cooling effect of secondary cooling wa-ter is improved effectively ,and the number of corner cracks on the slab is reduced obviously .

  20. Sensitivity Analysis of Fuel Centerline Temperatures in SuperCritical Water-cooled Reactors (SCWRs)

    Science.gov (United States)

    Abdalla, Ayman

    SuperCritical Water-cooled Reactors (SCWRs) are one of the six nuclear-reactor concepts currently being developed under the Generation-IV International Forum (GIF). A main advantage of SCW Nuclear Power Plants (NPPs) is that they offer higher thermal efficiencies compared to those of current conventional NPPs. Unlike today's conventional NPPs, which have thermal efficiencies between 30 - 35%, SCW NPPs will have thermal efficiencies within a range of 45 - 50%, owing to high operating temperatures and pressures (i.e., coolant temperatures as high as 625°C at 25 MPa pressure). The use of current fuel bundles with UO2 fuel at the high operating parameters of SCWRs may cause high fuel centerline temperatures, which could lead to fuel failure and fission gas release. Studies have shown that when the Variant-20 (43-element) fuel bundle was examined at SCW conditions, the fuel centerline temperature industry limit of 1850°C for UO2 and the sheath temperature design limit of 850°C might be exceeded. Therefore, new fuel-bundle designs, which comply with the design requirements, are required for future use in SCWRs. The main objective of this study to conduct a sensitivity analysis in order to identify the main factors that leads to fuel centerline temperature reduction. Therefore, a 54-element fuel bundle with smaller diameter of fuel elements compared to that of the 43-element bundle was designed and various nuclear fuels are examined for future use in a generic Pressure Tube (PT) SCWR. The 54-element bundle consists of 53 heated fuel elements with an outer diameter of 9.5 mm and one central unheated element of 20-mm outer diameter which contains burnable poison. The 54-element fuel bundle has an outer diameter of 103.45 mm, which is the same as the outer diameter of the 43-element fuel bundle. After developing the 54-element fuel bundle, one-dimensional heat-transfer analysis was conducted using MATLAB and NIST REFPROP programs. As a result, the Heat Transfer

  1. A new orb-weaving spider from the Argentinean flooding pampas grasses: Aculepeira morenoae new species (Araneae, Araneidae).

    Science.gov (United States)

    Rubio, Gonzalo D; Izquierdo, Matías A; Piacentini, Luis N

    2013-02-14

    A new species of the orb-weaving spider genus Aculepeira Chamberling & Ivie 1942, A. morenoae new species, is described and illustrated based on male and female specimens from the Argentinean natural flooding pampas grasses.

  2. Practical Use Study of the Direct Conveyance and Cooling System for Iced Water by the Propylene Glycol Solutio

    Science.gov (United States)

    Seki, Mitsuo; Ninomiya, Tohru; Matsubara, Kazuo; Aikawa, Keisuke; Ikoma, Kenji

    In a cold storage warehouse, by developing the thermal energy storage technique using cheap electric powerin the night, it is necessary to construct a high-efficient and energy-saving-type refrigeration system in which air conditioning is possible at 0 degrees c. We created a brine iced water (ice slurry) cooled under 0 degreesc by a closed supercooling ice making method. For a practical application, the brine iced water was directly sent to the load side, and it was utilized as the secondary refrigerant for the heat exchange. As a result, by replacing the pure water with a marketed propylene glycol solution, it was proven that the conventional closed supercooling ice making method could be similarly utilized for the ice making. However, it is necessary to control the evaporation temperature in the refrigerator, because the freezing temperature changes with the brine concentration. In the refrigerator entrance, it is necessary to heat at a constant temperature so that the inflow brine may not freeze. In case of the brine iced water, the fluidity of the brine iced water is high, and the ice particle is carried away by the flow. Therefore, it is necessary to prevent runoff of the ice particle from an intake of the thermal storage tank in case of thebrine water. This proposal system was confirmed that there was practically no problem by an operation of a 15kW refrigerator system.

  3. Comparison of plate counts, Petrifilm, dipslides, and adenosine triphosphate bioluminescence for monitoring bacteria in cooling-tower waters.

    Science.gov (United States)

    Mueller, Sherry A; Anderson, James E; Kim, Byung R; Ball, James C

    2009-04-01

    Effective bacterial control in cooling-tower systems requires accurate and timely methods to count bacteria. Plate-count methods are difficult to implement on-site, because they are time- and labor-intensive and require sterile techniques. Several field-applicable methods (dipslides, Petrifilm, and adenosine triphosphate [ATP] bioluminescence) were compared with the plate count for two sample matrices--phosphate-buffered saline solution containing a pure culture of Pseudomonas fluorescens and cooling-tower water containing an undefined mixed bacterial culture. For the pure culture, (1) counts determined on nutrient agar and plate-count agar (PCA) media and expressed as colony-forming units (CFU) per milliliter were equivalent to those on R2A medium (p = 1.0 and p = 1.0, respectively); (2) Petrifilm counts were not significantly different from R2A plate counts (p = 0.99); (3) the dipslide counts were up to 2 log units higher than R2A plate counts, but this discrepancy was not statistically significant (p = 0.06); and (4) a discernable correlation (r2 = 0.67) existed between ATP readings and plate counts. For cooling-tower water samples (n = 62), (1) bacterial counts using R2A medium were higher (but not significant; p = 0.63) than nutrient agar and significantly higher than tryptone-glucose yeast extract (TGE; p = 0.03) and PCA (p ATP readings and plate counts varied from system to system, was poor (r2 values ranged from ATP method was not sufficiently sensitive to measure counts below approximately 10(4) CFU/mL.

  4. Effects of evaporative cooling on the regulation of body water and milk production in crossbred Holstein cattle in a tropical environment

    Science.gov (United States)

    Chaiyabutr, N.; Chanpongsang, S.; Suadsong, S.

    2008-09-01

    The aim of this study was to determine how evaporative cooling modifies body function with respect to water metabolism and other variables relevant to milk synthesis in crossbred cattle. The study was conducted on two groups of 0.875HF:0.125RS crossbred Holstein cattle (87.5%) housed in an open-sided barn with a tiled roof (non-cooled animals) and in a close-sided barn under an evaporative cooling system (cooled animals). The maximum ambient temperature and relative humidity for the non-cooled group were 33°C and 61%, with the corresponding values for the evaporatively cooled barn being 28°C and 84%, respectively. The temperature humidity index (THI) of under non-cooled conditions was higher ( P Milk yields of cooled animals were higher by 42%, 36% and 79% on average than those of non-cooled animals during early-, mid- and late-lactation, respectively. The decline in milk yields as lactation advances was markedly apparent in late-lactating non-cooled animals, while no significant changes in milk composition at different stages of lactation were observed in either group. Mean arterial plasma concentrations, arteriovenous concentration differences (A-V differences) and the extraction ratio across the mammary gland for acetate, glucose and triglyceride of cooled animals were not significantly different compared with values for non-cooled animals. No differences were seen in plasma hormonal levels for triiodotyronine (T3) and insulin-like growth factor-1 (IGF-1), but plasma cortisol and thyroxine (T4) levels tended to be lower in non-cooled animals. This study suggests that low cooling temperature accompanied by high humidity influences a galactopoietic effect, in part through increases in ECF, blood volume and plasma volume in association with an increase in DMI, which partitions the distribution of nutrients to the mammary gland for milk synthesis. Cooled animals were unable to maintain high milk yield as lactation advances even though a high level of body fluids

  5. Proposal for the award of a contract for the modification to the LEP water cooling system for the LHC

    CERN Document Server

    2002-01-01

    This document concerns the award of a contract for the modification of the hydraulic, electrical and control systems of the LEP water cooling system for the LHC. Following a market survey carried out among 74 firms in fifteen Member States, a call for tenders (IT-2633/ST/LHC) was sent on 23 November 2001 to seven firms and six consortia, five consisting of two firms and one consisting of three firms, in ten Member States. By the closing date, CERN had received six tenders from three firms and three consortia in six Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium AIR ET CHALEUR (BE) - MELOTTE (NL), the lowest bidder, for the modification of the hydraulic, electrical and control systems of the LEP water cooling system for the LHC for a total amount of 11 026 713 euros (16 232 465 Swiss francs), subject to revision for inflation after 31 December 2003. The rate of exchange which has been used is that stipulated in the tender. The consortium has indica...

  6. Effect of diesel leakage in circulating cooling water system on preponderant bacteria diversity and bactericidal effect of biocides.

    Science.gov (United States)

    Zhong, Huiyun; Liu, Fang; Lu, Jinjin; Yang, Wei; Zhao, Chaocheng

    2015-01-01

    Petroleum products leakage results in adverse effect on the normal operation of a circulating cooling water system. However, relatively little research has been done to explore the effect of petroleum products leakage on circulating cooling water quality and biofilm preponderant bacteria diversity. Also, normal biocides application modes cannot fulfil the need for biofilm control. In this study, diesel oil was used as the experimental subject representing leaking petroleum products; the effect of diesel addition on biofilm preponderant bacteria diversity and the bactericidal effect of chlorine dioxide and tetradecyl dimethyl benzyl ammonium chloride (1427) was investigated. Bacterial community structures were examined by PCR-denaturing gradient gel electrophoresis and PCR cloning of 16S rDNA genes. Except for 100 mg/L diesel, increasing diesel concentration enhanced the biofilm detachment ratio compared with the control test. The microstructure of biofilm samples with 0, 300 and 900 mg/L diesel addition was observed. The species of preponderant bacteria in the biofilm sample with 300 mg/L diesel addition were more and the bacterial distribution was more uniform than those in the biofilm sample with 900 mg/L diesel addition. With ClO2 and 1427 addition, chemical oxygen demand increased, lipid phosphorus and bacterial count first decreased and then remained stable, and the bactericidal ratio first increased and then remained stable. Diesel addition variation has more obvious effect on ClO2 than 1427.

  7. Biofouling characteristics and identification of preponderant bacteria at different nutrient levels in batch tests of a recirculating cooling water system.

    Science.gov (United States)

    Liu, Fang; Zhao, Chao-Cheng; Xia, Lu; Yang, Fei; Chang, Xin; Wang, Yong-Qiang

    2011-01-01

    Understanding the influence of nutrient levels on biofouling control is an important requirement for management strategies in a recirculating cooling water system. Nutrient limitation may be one way to control biofouling development without increasing biocide dosing. Therefore, this study was carried out to investigate the effects of nutrient levels on biofouling characteristics and to identify the preponderant bacteria in the batch tests with a simulated cooling water system. The biofouling characteristics were assessed by varying the biofoulant mass and the bacteria respiratory activity, which was estimated by measuring oxygen uptake rates. According to the results obtained in nutrient factor experiments, the biofouling could be better controlled at carbon, nitrogen and phosphorus concentrations of 30 mg N/L, 8 mg N/L and 1.0 mg P/L, respectively. Increasing carbon concentrations shortened the biofouling initial growth period and resulted in higher biofoulant mass. The preponderant bacteria strains involved in biofouling under two culture conditions were identified by applying both physiological and biochemical tests and further molecular biology techniques with phylogenetic affiliation analysis. Enterobacter (family Enterobacteriaceae), Staphylococcus (family Micrococcaceae), Bacillus (family Bacillaceae), Proteus (family Enterobacteriaceae), Neisseria (family Neisseriaceae) and Pseudomonas (family Pseudomonadaceae) were dominant in the conditions of lower carbon concentration (30 mg/L). Enterobacter are autotrophs, but the other five bacteria are all heterotrophs. In the conditions of higher carbon concentration (70 mg/L), Klebsiella (family Enterobacteriaceae), Enterobacter and Microbacterium (family Microbacteriaceae) were dominant; Enterobacter and Microbacterium are heterotrophs.

  8. Acrylic acid-allylpolyethoxy carboxylate copolymer dispersant for calcium carbonate and iron(III) hydroxide scales in cooling water systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guangqing; Huang, Jingyi; Zhou, Yuming; Yao, Qingzhao; Ling, Lei; Zhang, Peixin; Fu, Change [Southeast Univ., Nanjing (China). School of Chemistry and Chemical Engineering; Wu, Wendao; Sun, Wei; Hu, Zhengjun [Jianghai Chemical Co., Ltd., Changzhou (China)

    2012-05-15

    A novel environmentally friendly type of calcium carbonate and iron(III) scale inhibitor (ALn) was synthesized. The anti-scale property of the Acrylic acid-allylpolyethoxy carboxylate copolymer (AA-APELn or ALn) towards CaCO{sub 3} and iron(III) in the artificial cooling water was studied through static scale inhibition tests. The observation shows that both calcium carbonate and iron(III) inhibition increase with increasing the degree of polymerization of ALn from 5 to 15, and the dosage of ALn plays an important role on calcium carbonate and iron(III)-inhibition. The effect on formation of CaCO{sub 3} was investigated with a combination of scanning electronic microscopy (SEM), Transmission electron microscopy (TEM), X-ray powder diffraction (XRD) analysis and Fourier transform infrared spectrometer, respectively. The results showed that the ALn copolymer not only influences calcium carbonate crystal morphology and crystal size but also the crystallinity. The crystallization of CaCO{sub 3} in the absence of inhibitor was rhombohedral calcite crystal, whereas a mixture of calcite with vaterite crystals was found in the presence of the ALn copolymer. Inhibition mechanism is proposed that the interactions between calcium or iron ions and polyethylene glycol (PEG) are the fundamental impetus to restrain the formation of the scale in cooling water systems. (orig.)

  9. New and Green Multi-component Scaling and Corrosion Inhibitor for the Cooling Water of Central Air Conditioners

    Science.gov (United States)

    Li, Maodong; Dai, Chenlin; Yang, Bo; Qiao, Yue; Zhu, Zhiping

    2016-12-01

    A green multi-component inhibitor was developed in this study to obtain suitable scale and corrosion inhibitor for the cooling water treatment of central air conditioners. The inhibitor formulation consisted of hydrolyzed polymaleic anhydride/Tween-80/sodium N-lauroyl sarcosinate/tolyltriazole (named 4-HTSA). Weight loss test and electrochemical method were used to investigate the corrosion inhibition performance of 4-HTSA on A3 carbon steel and T2 red copper in synthetic cooling water, and the scale inhibition performance of 4-HTSA was studied by the calcium carbonate precipitation method. The influence of parameters, such as pH, temperature, scaling and corrosive ion, on 4-HTSA was researched. Scanning electron microscopy (SEM) and x-ray diffraction were used for examination of the scale, and corrosion coupons were analyzed by SEM/energy-dispersive x-ray spectroscopy. Results showed that 4-HTSA had excellent scale and corrosion inhibition performance and wide tolerance to pH, temperature and the concentration of scaling and corrosive ion. Polarization curves indicated that 4-HTSA was anodic inhibitor.

  10. Ecological studies on the American alligator (Alligator mississippiensis) on the Savannah River Plant. Comprehensive Cooling Water Study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Seigel, R.A.; Brandt, L.A.; Knight, J.L.; Novak, S.S.

    1986-06-01

    The American alligator (Alligator mississippiensis) is the largest vertebrate of the Savannah River Plant (SRP), reaching a maximum length of 3.7 meters (12 feet) and weighing up to 175 kg (385 pounds). Currently, populations in coastal South Carolina are considered Threatened, whereas populations in inland areas (such as the SRP) are still Endangered. Because of their legal status and economic and ecological importance, it is important to determine the environmental impacts of SRP operations on the local alligator population. The major objectives under the Endangered Species Program of the Comprehensive Cooling Water Study (CCWS) were as follows: (1) document and compare the present status and distribution of alligators on the SRP to previous surveys, in order to determine long-term changes in population abundance; (2) establish baseline population and ecological parameters of the Steel Creek population so that the ecological effects of L-Reactor operations can be determined, and (3) conduct ecological research on the immediate impacts of thermal effluents on American alligators. Gladden et al., (1985) summarized data on previous population surveys, temporal changes in the Par Pond population, preliminary results of the Steel Creek surveys and Savannah River Ecology Laboratory (SREL) research on the effects of thermal effluents. This report summarizes the current status of the SRP population, presents data on the abundance, movement patterns and activity cycles of the Steel Creek population, and presents additional data on the effect of cooling water releases on alligator ecology and behavior.

  11. Environment Friendly Agricultural Brand “Cool Vege” Through Carbon Sequestration by Biochar for Sustainable Management of Food and Water = Cool The Earth from The Dining Table with COOL Vege =

    Directory of Open Access Journals (Sweden)

    Akira Shibata

    2013-11-01

    Full Text Available The reduction of of greenhouse gas to mitigate or adapt to drastic climate change are one of the most important issues for human beings. On the other hand, rural development is also important issue for sustainable rural natural resources to secure food and water. Then, we propose the new socio-economic scheme to solve these issues at the same time through biochar carbon capture and sequestration. This scheme contains 4 measure factors that 1 Carbon Capture & Storage(CCS via biochar, 2 Biochar CCS should be carried out at agricultural lands for rural development, 3 Biochar CCS should be monitored and measured to generate carbon credits and social creditability, 4 The ECO-brand “Cool Vege” for agricultural products derived from biochar CCS. And, it consists of many stake holders and actors that local community, compost center, farmers, CCS local committee consisted by local governments and universities as scientific authority, companies, retailers and normal citizen as consumers. Therefore, when proceeding this scheme, it is needed to have holistic aspect like bird view.

  12. Study on the Influence of the Cold-End Cooling Water Thickness on the Generative Performance of TEG

    Science.gov (United States)

    Zhou, Li; Guo, Xuexun; Tan, Gangfeng; Ji, Kangping; Xiao, Longjie

    2016-11-01

    At present, about 40% of the fuel energy is discharged into air with the exhaust gas when an automobile is working, which is a big waste of energy. A thermoelectric generator (TEG) has the ability to harvest the waste heat energy in the exhaust gas. The traditional TEG cold-end is cooled by the engine cooling system, and although its structure is compact, the TEG weight and the space occupied are important factors restricting its application. In this paper, under the premise of ensuring the TEG maximum net output power and reducing the TEG water consumption as much as possible, the optimization of the TEG water thickness in the normal direction of the cold-end surface (WTNCS) is studied, which results in lighter weight, less space occupied and better automobile fuel economy. First, the thermal characteristics of the target diesel vehicle exhaust gas are evaluated based on the experimental data. Then, according to the thermoelectric generation model and the cold-end heat transfer model, the effect of the WTNCS on the cold-end temperature control stability and the system flow resistance are studied. The results show that the WTNCS influences the TEG cold-end temperature. When the engine works in a stable condition, the cold-end temperature decreases with the decrease of the WTNCS. The optimal value of the WTNCS is 0.02 m and the TEG water consumption is 8.8 L. Comparin it with the traditional vehicle exhaust TEG structure, the power generation increased slightly, but the water consumption decreased by about 39.5%, which can save fuel at0.18 L/h when the vehicle works at the speed of 60 km/h.

  13. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  14. Root-zone cooling effect of water-cooled seedling bed on growth of tomato seedling%水冷式苗床根际降温效果及其对番茄幼苗生长的影响

    Institute of Scientific and Technical Information of China (English)

    李胜利; 师晓丹; 夏亚真; 孙治强

    2014-01-01

    作为水分和养分吸收运输的主要器官,根系及其代谢直接影响着植株的生长与发育,相对于地上部温度植株对地温更为敏感。根际高温是影响夏季蔬菜集约化育苗主要障碍因子之一,适宜、稳定的根际温度是幼苗根系生长和培育壮苗的重要保证。为了降低夏季集约化育苗时幼苗的根际高温环境,设计了一种低能耗的根际降温方式,该研究利用地下水作为降温媒介,采用梯形排管作为冷却管道,设计了一套水冷式苗床用于集约化育苗根际局部降温。试验结果表明,在番茄育苗期间,水冷式苗床番茄幼苗根际积温、日均温和平均最高温分别比对照苗床降低了154.1、4.5和6.5℃。水冷式苗床平均一天中番茄幼苗根际温度高于25℃历时比对照苗床减少了7.6 h,高于28℃历时比对照苗床减少了7.2 h。水冷式苗床番茄幼苗叶片的蒸腾速率比对照提高了36.3%,提高了叶-气温差。水冷式苗床番茄幼苗根系活力和光合作用显著高于对照苗床,壮苗指数比对照苗床提高了34.9%。因此,水冷式降温苗床能够较好的降低根际温度,缓解夏季高温对番茄幼苗生长的胁迫。%As the main plant organ of absorbing and transporting water and nutrients, root system and its metabolism directly affect plant growth and development.Plant growth is more susceptible to root zone temperature than above ground portion. The root zone temperature greatly affects the growth and physiological metabolism of plant. Optimal and stable rhizosphere temperature is an important factor for root growth and metabolism. The heat stress around rhizosphere during summer season is an important factor limiting the seedling growth. Root-zone cooling is more economical compared with air temperature cooling, it can be an effective solution to alleviate high temperature stress. A new water-cooled seedling bed (WSD) was exploited by using

  15. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing.

  16. Performance of a day/night water heat storage system for heating and cooling of semi-closed greenhouses in mild winter climate

    NARCIS (Netherlands)

    Baeza, E.J.; Pérez Parra, J.J.; López, J.C.; Gázquez, J.C.; Meca, D.E.; Stanghellini, C.; Kempkes, F.L.K.; Montero, J.I.

    2012-01-01

    A novel system for heating/cooling greenhouses based on air/water heat exchangers connected to a thermally stratified water storage tank was tested in a small greenhouse compartment at the Experimental Station of the Cajamar Foundation in Almería, Spain. The system maintained a closed greenhouse (no

  17. A descaling treatment for aerated water, especially in cooling towers; Procede de traitement antitartre d`eau aeree, notamment dans les refrigerants atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Delemont, F.; Mureau, P.

    1996-04-26

    Carbon dioxide is injected into the water aerating air, for example in the water flowing in a cooling tower; the dissolved carbon dioxide prevents scaling to take place on the heat exchange surfaces or leads to the dissolution of the deposited scale. This system has the advantage to avoid any acid use and thus polluting effluents. 2 refs.

  18. Evaluation of the suitabil[i]ty of Fischer-Tropsch gas-to-liquid (GTL) Primary Column Bottoms as process cooling water : analysis of microbial community dynamics, fouling, scaling and corrosion / Savia Susanna Slabbert

    OpenAIRE

    Slabbert, Savia Susanna

    2007-01-01

    Water in South Africa is becoming limiting due to economic growth, social development and the country's water demand that exceed its water availability. Water conservation in the industry can be accomplished by the reuse of process water instead of direct treatment and discharge. By reusing a process effluent as cooling water in cooling towers, the water requirements of an industry, such as Sasol, will be lower and a zero effluent discharge scenario could be achieved. At Sas...

  19. Subtask 1.24 - Optimization of Cooling Water Resources for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Stepan; Richard Shockey; Bethany Kurz; Wesley Peck

    2009-03-31

    The Energy & Environmental Research Center (EERC) has developed an interactive, Web-based decision support system (DSS{copyright} 2007 EERC Foundation) to provide power generation utilities with an assessment tool to address water supply issues when planning new or modifying existing generation facilities. The Web-based DSS integrates water and wastewater treatment technology and water law information with a geographic information system-based interactive map that links to state and federal water quality and quantity databases for North Dakota, South Dakota, Minnesota, Wyoming, Montana, Nebraska, Wisconsin, and Iowa.

  20. Apparatus and method of direct water cooling several parallel circuit cards each containing several chip packages

    Energy Technology Data Exchange (ETDEWEB)

    Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY

    2011-12-20

    A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.

  1. Hot and cool water in Herbig Ae protoplanetary disks. A challenge for Herschel

    CERN Document Server

    Woitke, Peter; Kamp, Inga; Hogerheijde, Michiel R

    2009-01-01

    The spatial origin and detectability of rotational H2O emission lines from Herbig Ae type protoplanetary disks beyond 70 micron is discussed. We use the recently developed disk code ProDiMo to calculate the thermo-chemical structure of a Herbig Ae type disk and apply the non-LTE line radiative transfer code Ratran to predict water line profiles and intensity maps. The model shows three spatially distinct regions in the disk where water concentrations are high, related to different chemical pathways to form the water: (1) a big water reservoir in the deep midplane behind the inner rim, (2) a belt of cold water around the distant icy midplane beyond the snow-line r>20AU, and (3) a layer of irradiated hot water at high altitudes z/r=0.1...0.3, extending from about 1AU to 30AU, where the kinetic gas temperature ranges from 200K to 1500K. Although region 3 contains only little amounts of water vapour (~3x10^-5 M_Earth), we find this warm layer to be almost entirely responsible for the rotational water emission lin...

  2. Exergetic analysis of a double stage LiBr-H{sub 2}O thermal compressor cooled by air/water and driven by low grade heat

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, M. [Instituto C.C. Eduardo Torroja (CSIC), Edificacion y Habitabilidad, Madrid (Spain); Venegas, M.; Garcia, N. [Universidad Carlos III de Madrid (Spain). Departamento de Ingenieria Termica y Fluidos; Palacios, E. [Universidad Politecnica de Madrid (Spain). Departamento de Mecanica Industrial

    2005-05-01

    In the present paper, an exergetic analysis of a double stage thermal compressor using the lithium bromide-water solution is performed. The double stage system considered allows obtaining evaporation temperatures equal to 5{sup o} C using solar heat coming from flat plate collectors and other low grade thermal sources. In this study, ambient air and water are alternatively used as cooling fluids without crystallization problems up to condensation-absorption temperatures equal to 50 {sup o}C. The results obtained give the entropy generated, the exergy destroyed and the exergetic efficiency of the double stage thermal compressor as a function of the absorption temperature. The conclusions obtained show that the irreversibilities generated by the double stage thermal compressor will tend to increase with the absorption temperature up to 45 {sup o}C. The maximum value corresponds to 1.35 kJ kg{sup -}1{sup K-1}. The entropy generated and the exergy destroyed by the air cooled system are higher than those by the water cooled one. The difference between the values increases when the absorption temperature increases. For an absorption temperature equal to 50 {sup o}C, the air cooled mode generates 14% more entropy and destroys 14% more exergy than the water cooled one. Also, the results are compared with those of previous studies for single and double effect air cooled and water cooled thermal compressors. The conclusions show that the double stage system has about 22% less exergetic efficiency than the single effect one and 32% less exergetic efficiency than the double effect one. (author)

  3. Development of a test facility for analyzing transients in supercritical water-cooled reactors by fractional scaling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D., E-mail: thiagodbtr@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil); Silva, Mário A. B. da, E-mail: mabs500@gmail.com [Departamento de Energia Nuclear (CTG/UFPE), Av. Professor Luiz Freire, 1000, Recife 50740-540, PE (Brazil); Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil)

    2016-01-15

    The feasibility of performing experiments using water under supercritical conditions is limited by technical and financial difficulties. These difficulties can be overcome by using model fluids that are characterized by feasible supercritical conditions, that is, lower critical pressure and critical temperature. Experimental investigations are normally used to determine the conditions under which model fluids reliably represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine the model fluids that represent supercritical fluids in a transient state. Recently, a similar technique known as fractional scaling analysis was developed to establish the conditions under which experiments can be performed using models that represent transients in prototypes. This paper presents a fractional scaling analysis application to determine parameters for a test facility in which transient conditions in supercritical water-cooled reactors are simulated by using carbon dioxide as a model fluid, whose critical point conditions are more feasible than those of water. Similarity is obtained between water (prototype) and carbon dioxide (model) by depressurization in a simple vessel. The main parameters required for the construction of a future test facility are obtained using the proposed method.

  4. Sterilization of circulating cooling water by ultrasound%超声用于循环冷却水灭菌

    Institute of Scientific and Technical Information of China (English)

    张帆; 吕效平; 韩萍芳; 秦振宝

    2011-01-01

    将超声用于石油化工循环冷却水中异养菌的灭菌处理,详细系统地考察了各个影响因素:超声频率、声强、声场形式对冷却水净化处理的影响规律。通过正交实验得出,在超声声强为0.30W/cm2下,采用28/40kHz混频超声处理1000mL循环冷却水,处理时间为60min时灭菌率达到94.6%。抑菌实验表明,经过72h后抑菌率仍为82.1%。结果说明了超声灭菌不仅能起到较好的灭菌效果,还有长久抑菌的作用。同时,利用超声处理KI溶液后的吸光度变化表示超声频率、声强与超声空化强度的关系,以此探索了超声灭菌的机理,认为超声空化作用是超声灭菌的一个重要原因,将超声用于循环冷却水灭菌过程将成为绿色环保的工业循环冷却水净化新方法。%The use of ultrasound in circulating cooling water sterilization is effective, moreover a long-term effect of bacteriostasis function exists. Several factors, including ultrasonic frequency and intensity, acoustic form which affect the treating result of cooling water were investigated. The optimum condition of sterilization: ultrasonic mixing frequency of 28/40kHz, ultrasonic intensity of 0.30W/cm2, sterilization time of 60min was obtained through orthogonal test. Under this condition 1000 mL circulating water was treated and the bactericidal rate was up to 94.6%. Bacteriostasis test showed that bacteriostasis rate was 82.1% after 72 h. Ultrasonic cavitation could influence the absorbance of KI solution, so the relationship between ultrasonic frequency, intensity with ultrasonic cavitation was obtained. Ultrasonic cavitation was one of the important reasons for ultrasonic sterilization by exploring the mechanism of ultrasonic sterilization. Ultrasound used for sterilization of circulation cooling water will be a new environment-friendly method for purification of industrial circulating cooling water.

  5. A Management Strategy for the Heavy Water Reflector Cooling System of HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Park, Y. C.; Lim, S. P. (and others)

    2007-11-15

    Heavy water is used as the reflector and the moderator of the HANARO research reactor. After over 10 years operation since first criticality in 1995 there arose some operational issues related with the tritium. A task force team(TFT) has been operated for 1 year since September 2006 to study and deduce resolutions of the issues concerning the tritium and the degradation of heavy water in the HANARO reflector system. The TFT drew many recommendations on the hardware upgrade, tritium containing air control, heavy water quality management, waste management, and tritium measurement system upgrade.

  6. Cooling effects of artificial water facilities by using a moving type turbulence promoter; Kudo ranryu sokushintai ni yoru suireikyaku jikkenho

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, K.; Nomura, T.; Nishimura, N.; Iyota, H. [Osaka City University, Osaka (Japan)

    1996-10-27

    Artificial water facilities present an effective means to alleviate trying micrometeorological phenomena such as warming of the urban space. For the reproduction of such an alleviating means by use of a model in a wind tunnel, a moving disturbance promoter (moving spire) was developed so as to render disturbances in a wind tunnel current similar in scale to ones in the real atmosphere, and an air current cooling experiment was conducted using a model fountain. The effort was intended for a small-size wind tunnel without a space large enough for disturbance promoter installation, and a moving type spire was developed for promoting disturbance effectively. The new spire is driven by a driving unit consisting of a motor and cam and can change its angle relative to the main current by 140{degree} at a rotation cycle of 1.7Hz., and this changes the flow direction of the main current periodically. As compared with the generally used combination of a roughness block and stationery spire, this new spire produced a disturbance intensity two times greater and a disturbance scale three times larger. When the disturbance intensity and scale were increased, the cooling characteristics of the air current changed in response to changes in the state of flow. 8 refs., 7 figs., 1 tab.

  7. Molecular and antigenic characterization of bovine Coronavirus circulating in Argentinean cattle during 1994-2010.

    Science.gov (United States)

    Bok, M; Miño, S; Rodriguez, D; Badaracco, A; Nuñes, I; Souza, S P; Bilbao, G; Louge Uriarte, E; Galarza, R; Vega, C; Odeon, A; Saif, L J; Parreño, V

    2015-12-31

    Bovine coronavirus (BCoV) is an important viral pathogen associated with neonatal calf diarrhea. Our aim was to investigate the incidence of BCoV in diarrhea outbreaks in beef and dairy herds from Argentina during 1994-2010. A total of 5.365 fecal samples from diarrheic calves were screened for BCoV diagnosis by ELISA. The virus was detected in 1.71% (92/5365) of the samples corresponding to 5.95% (63/1058) of the diarrhea cases in 239 beef and 324 dairy farms. The detection rate of BCoV was significantly higher in dairy than in beef herds: 12.13% (29/239) vs. 4.32% (14/324) respectively. Phylogenetic analysis of the hypervariable S1 region of seven representative samples (from different husbandry systems, farm locations and years of sampling) indicated that BCoV strains circulating in Argentinean beef and dairy herds formed a cluster distinct from other geographical regions. Interestingly, Argentinean strains are distantly related (at both the nucleotide and amino acid levels) with the Mebus historic reference BCoV strain included in the vaccines currently available in Argentina. However, Mebus-induced antibodies were capable of neutralizing the BCoV Arg95, a field strain adapted to grow in vitro, and vice versa, indicating that both strains belong to the same CoV serotype reported in cattle. This work represents the first large survey describing BCoV circulation in Argentinean cattle.

  8. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Michael E. [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Theregowda, Ranjani B. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept of Civil and Mechanical Engineering; Safari, Iman [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Dzombak, David A. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept of Civil and Mechanical Engineering; Hsieh, Ming-Kai [Tamkang Univ., Taipei (Taiwan). Waer Resources Management and Policy Research Center; Miller, David C. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-10-01

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondary-treated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  9. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  10. Hydronic rooftop cooling systems

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian Eric; Berman, Mark J.

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  11. Evaluation on the heat removal capacity of the first wall for water cooled breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng, E-mail: jiangkecheng@ipp.ac.cn; Cheng, Xiaoman; Chen, Lei; Huang, Kai; Ma, Xuebin; Liu, Songlin

    2016-02-15

    Highlights: • Heat removal capacity of the FW is evaluated under BWR, PWR and He coolant inlet conditions. • Heat transfer property of the gas–liquid two phase and the two boiling crises are analyzed. • Heat removal capacity of water is larger than helium coolant. - Abstract: The water cooled ceramic breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). As an important component of the blanket, the FW should satisfy with the thermal requirements in any case. In this paper, three parameters including the heat removal capacity, coolant pressure drop as well as the temperature rise of the FW were investigated under different coolant velocity and heat flux from the plasma. Using the same first wall structure, two main water cooled schemes including Boiling Water Reactor (BWR, 7 MPa pressure and 265 °C temperature inlet) and Pressurized Water Reactor (PWR, 15 MPa pressure and 285 °C temperature inlet) conditions are discussed in the thermal hydraulic calculation. For further research, the thermal hydraulic characteristics of using helium as coolant (8 MPa pressure, 300 °C temperature inlet) are also explored to provide CFETR blanket design with more useful data supports. Without regard to the outlet coolant condition requirements of the blanket, the results indicate that the ultimate heat flux that the FW can resist is 2.2 MW/m{sup 2} at velocity of 5 m/s for BWR, 2.0 MW/m{sup 2} at velocity of 5 m/s for PWR and 0.87 MW/m{sup 2} for helium at velocity 100 m/s under the chosen operation condition. The detrimental departure from nucleate boiling (DNB) crisis would occur at the velocity of 1 m/s under the heat flux of 3 MW/m{sup 2} and dry out crisis appears at the velocity of less than 0.2 m/s with the heat flux of more than 1 MW/m{sup 2} for BWR. The further blanket/FW optimization design is provided with more useful data references according to the abundant calculation results.

  12. Distribution of sequence-based types of legionella pneumophila serogroup 1 strains isolated from cooling towers, hot springs, and potable water systems in China.

    Science.gov (United States)

    Qin, Tian; Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing; Shao, Zhujun

    2014-04-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea.

  13. Experimental evaluation of a breadboard heat and product-water removal system for a space-power fuel cell designed with static water removal and evaporative cooling

    Science.gov (United States)

    Hagedorn, N. H.; Prokipius, P. R.

    1977-01-01

    A test program was conducted to evaluate the design of a heat and product-water removal system to be used with fuel cell having static water removal and evaporative cooling. The program, which was conducted on a breadboard version of the system, provided a general assessment of the design in terms of operational integrity and transient stability. This assessment showed that, on the whole, the concept appears to be inherently sound but that in refining this design, several facets will require additional study. These involve interactions between pressure regulators in the pumping loop that occur when they are not correctly matched and the question of whether an ejector is necessary in the system.

  14. Implementation of an Automatic System for the Monitoring of Start-up and Operating Regimes of the Cooling Water Installations of a Hydro Generator

    Directory of Open Access Journals (Sweden)

    Ioan Pădureanu

    2015-07-01

    Full Text Available The safe operation of a hydro generator depends on its thermal regime, the basic conditions being that the temperature in the stator winding fall within the limits of the insulation class. As the losses in copper depend on the square current in the stator winding, it is necessary that the cooling water debit should be adapted to the values of these losses, so that the winding temperature falls within the range of the values prescribed in the specifications. This paper presents an efficient solution of commanding and monitoring the water cooling installations of two high-power hydro generators.

  15. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems

    Science.gov (United States)

    Toghraie, Davood; Alempour, Seyed Mohammadbagher; Afrand, Masoud

    2016-11-01

    In this paper, experimental determination of dynamic viscosity of water based magnetite nanofluid (Fe3O4/water) was performed. The viscosity was measured in the temperature range of 20-55 °C for various samples with solid volume fractions of 0.1%, 0.2%, 0.4%, 1%, 2% and 3%. The results showed that the viscosity considerably decreases with increasing temperature. Moreover, the viscosity enhances with an increase in the solid volume fraction, remarkably. The calculated viscosity ratios showed that the maximum viscosity enhancement was 129.7%. Using experimental data, a new correlation has been proposed to predict the viscosity of magnetite nanofluid (Fe3O4/water). A comparison between the experimental results and the correlation outputs showed that the proposed model has a suitable accuracy.

  16. Performance analysis on a solar-powered air-cooled two-staged water ejector cooling system%风冷太阳能双级水喷射制冷空调系统性能分析

    Institute of Scientific and Technical Information of China (English)

    卢苇; 郑立星; 陈洪杰

    2011-01-01

    The performance was analyzed for a solar-powered air-cooled two-staged water ejector cooling system that rated cooling capacity is 12.3 Kw. The cooling capacity of the proposed system increases with the rising of indoor temperature and the enhancement of solar irradiance, while decreases with the rising of the ambient temperature. The COP has similar changing trend with that of the cooling capacity except that it increases rapidly with the enhancement of solar irradiance firstly and then become stable when the solar irradiance exceeding a certain value. The cooling capacity is 7.7~32 Kw and the COP is 0.082~0.107 under the normal operating conditions with indoor temperature over 27℃, ambient temperature below 38 ℃. And solar irradiance surpassing 500 W/m2.%对额定制冷量为12.3kW的风冷太阳能双级水喷射制冷空调系统进行了变工况性能分析.该系统的制冷量随室内温度升高而增大,随环境温度升高而减小,随太阳辐照度增强而增大;COP的变化与制冷量的变化类似,所不同的是COP随着太阳辐照度的增强先迅速增大,当太阳辐照度增大到一定程度后,COP基本保持稳定.在室内温度不低于27℃,室外温度不高于38℃,太阳辐照度不低于500 W/m2的条件下,系统的制冷量为7.7~32 kW,COP为0.082~0.107.

  17. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  18. Water and chemical savings in cooling towers by using membrane capacitive deionization

    NARCIS (Netherlands)

    Limpt, van B.; Wal, van der A.

    2014-01-01

    Membrane capacitive deionization (MCDI) is a water desalination technology based on applying a voltage difference between two oppositely placed porous carbon electrodes. In front of each electrode, an ion exchange membrane is positioned, and between them, a spacer is situated, which transports the w

  19. Optimization of nanocrystalline -alumina coating for direct spray water-cooling of optical devices

    Indian Academy of Sciences (India)

    S N Alam; M Anaraky; Z Shafeizadeh; P J Parbrook

    2014-12-01

    In this study, aluminium oxide films were deposited on BK7 glass substrates using radio frequencymagnetron sputtering. The purposes of this study are to clarify the influence of O2 flow as reactive partial gas, which is necessary to form Al2O3 films, and then the influence of substrate temperature on structure and rigidity of coatings towards water injection. The fabricated metal oxide films were characterized using techniques such as atomic force microscopy (AFM), X-ray diffraction (XRD), spectrophotometry, ellipsometry and Rutherford backscattering (RBS) analysis. Modifications of the partial gas percentage influences the optical properties and composition of the deposited aluminium oxide, the best samples being those deposited with 5% and 8% oxygen. The substrate temperature affects the structure and crystallization of the films. Nanocrystalline -Al2O3 has been observed at temperatures above 300 °C with the grain size of 25 nm. After water injection, there was a large diversity in the surface roughness of samples with different substrate temperature. Experiments have shown that the best resistance against water injection occurs for the sample deposited at 350 °C with 5%partial gas. We conclude that the rigidity of nanocrystalline -Al2O3 coatings can be explained by both Hall–Petch and Coble creep mechanism. In this case, there is an optimum grain size of around 42 nm against water spray.

  20. Water cooling of shocks in protostellar outflows : Herschel-PACS map of L1157

    NARCIS (Netherlands)

    Nisini, B.; Benedettini, M.; Codella, C.; Giannini, T.; Liseau, R.; Neufeld, D.; Tafalla, M.; van Dishoeck, E. F.; Bachiller, R.; Baudry, A.; Benz, A. O.; Bergin, E.; Bjerkeli, P.; Blake, G.; Bontemps, S.; Braine, J.; Bruderer, S.; Caselli, P.; Cernicharo, J.; Daniel, F.; Encrenaz, P.; di Giorgio, A. M.; Dominik, C.; Doty, S.; Fich, M.; Fuente, A.; Goicoechea, J. R.; de Graauw, Mattheus; Helmich, F.; Herczeg, G.; Herpin, F.; Hogerheijde, M.; Jacq, T.; Johnstone, D.; Jorgensen, J.; Kaufman, M.; Kristensen, L.; Larsson, B.; Lis, D.; Marseille, M.; McCoey, C.; Melnick, G.; Olberg, M.; Parise, B.; Pearson, J.; Plume, R.; Risacher, C.; Santiago, J.; Saraceno, P.; Shipman, R.; van Kempen, T. A.; Visser, R.; Viti, S.; Wampfler, S.; Wyrowski, F.; van der Tak, F.; Yildiz, U. A.; Delforge, B.; Desbat, J.; Hatch, W. A.; Peron, I.; Schieder, R.; Stern, J. A.; Teyssier, D.; Whyborn, N.

    2010-01-01

    Context. The far-IR/sub-mm spectral mapping facility provided by the Herschel-PACS and HIFI instruments has made it possible to obtain, for the first time, images of H2O emission with a spatial resolution comparable to ground based mm/sub-mm observations. Aims. In the framework of the Water In Star-

  1. Water cooling of shocks in protostellar outflows: Herschel-PACS map of L1157

    NARCIS (Netherlands)

    B. Nisini; M. Benedettini; C. Codella; T. Giannini; R. Liseau; D. Neufeld; M. Tafalla; E.F. van Dishoeck; R. Bachiller; A. Baudry; A.O. Benz; E. Bergin; P. Bjerkeli; G. Blake; S. Bontemps; J. Braine; S. Bruderer; P. Caselli; J. Cernicharo; F. Daniel; P. Encrenaz; A.M. Di Giorgio; C. Dominik; S. Doty; M. Fich; A. Fuente; J.R. Goicoechea; T. de Graauw; F. Helmich; G. Herczeg; F. Herpin; M. Hogerheijde; T. Jacq; D. Johnstone; J. Jørgensen; M. Kaufman; L. Kristensen; B. Larsson; D. Lis; M. Marseille; C. McCoey; G. Melnick; M. Olberg; B. Parise; J. Pearson; R. Plume; C. Risacher; J. Santiago; P. Saraceno; R. Shipman; T.A. van Kempen; R. Visser; S. Viti; S. Wampfler; F. Wyrowski; F. van der Tak; U.A. Yıldız; B. Delforge; J. Desbat; W.A. Hatch; I. Péron; R. Schieder; J.A. Stern; D. Teyssier; N. Whyborn

    2010-01-01

    Context. The far-IR/sub-mm spectral mapping facility provided by the Herschel-PACS and HIFI instruments has made it possible to obtain, for the first time, images of H2O emission with a spatial resolution comparable to ground based mm/sub-mm observations. Aims. In the framework of the Water In Star-

  2. Passive residual energy utilization system in thermal cycles on water-cooled power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Guilherme M.; Guimaraes, Lamartine N.F., E-mail: placco@ieav.cta.br, E-mail: guimarae@ieav.cta.br [Instituto de Estudos Avancados (IEAV/DCTA) Sao Jose dos Campos, SP (Brazil); Santos, Rubens S. dos, E-mail: rsantos@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN -RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work presents a concept of a residual energy utilization in nuclear plants thermal cycles. After taking notice of the causes of the Fukushima nuclear plant accident, an idea arose to adapt a passive thermal circuit as part of the ECCS (Emergency Core Cooling System). One of the research topics of IEAv (Institute for Advanced Studies), as part of the heat conversion of a space nuclear power system is a passive multi fluid turbine. One of the main characteristics of this device is its passive capability of staying inert and be brought to power at moments notice. During the first experiments and testing of this passive device, it became clear that any small amount of gas flow would generate power. Given that in the first stages of the Fukushima accident and even during the whole event there was plenty availability of steam flow that would be the proper condition to make the proposed system to work. This system starts in case of failure of the ECCS, including loss of site power, loss of diesel generators and loss of the battery power. This system does not requires electricity to run and will work with bleed steam. It will generate enough power to supply the plant safety system avoiding overheating of the reactor core produced by the decay heat. This passive system uses a modified Tesla type turbine. With the tests conducted until now, it is possible to ensure that the operation of this new turbine in a thermal cycle is very satisfactory and it performs as expected. (author)

  3. Cool-water Eocene-Oligocene carbonate sedimentation on a paleobathymetric high, Kangaroo Island, southern Australia

    Science.gov (United States)

    James, Noel P.; Matenaar, Joanne; Bone, Yvonne

    2016-07-01

    The Kingscote Limestone is a thin, biofragmental ~ 41 m thick Paleogene subtropical to cool-temperate carbonate interpreted to have accumulated in a seaway developed between a series of mid-shelf islands. It is a pivotal section that allows interpretation of a region in which there is little exposure of early Cenozoic shelf sediments. Sedimentation occurred on part of the shelf along the northern margin of an extensive Eocene embayment that evolved into a narrow Oligocene ocean following collapse of the Tasman Gateway. Eocene strata are subtropical echinoid-rich floatstones with conspicuous bryozoans, and mollusks, together with large and small benthic foraminifers. Numerous echinoid rudstone storm deposits punctuate the succession. Correlation with coeval Eocene strata across southern Australia supports a regional facies model wherein inner neritic biosiliceous spiculitic sediments passed outboard into calcareous facies. The silica was derived from land covered by a thriving subtropical forest and attendant deep weathering. Oligocene rocks are distinctively cooler cyclic cross-bedded bryozoan rudstones and floatstones with a similar benthic biota but dominated by bryozoans and containing no large benthic foraminifers. These deposits are interpreted as flood-dominated tidal subaqueous dunes that formed in a flood-tide dominated inter-island strait. Omission surfaces at the top of the Eocene and at the top of most Oligocene cycles are Fe-stained hardgrounds that underwent extensive multigeneration seafloor and meteoric diagenesis prior to deposition of the next cycle. Cycles in the Kingscote Limestone, although mostly m-scale and compositionally distinct are similar to those across the region and point to a recurring cycle motif controlled by icehouse eustasy and local paleogeography.

  4. 冷却塔风机水轮机拖动改造%Transformation of Water Turbine to Drive Cooling Tower Fan

    Institute of Scientific and Technical Information of China (English)

    曾祥松

    2016-01-01

    The throttling loss in circulative water system was studied and analyzed. Us-ing water turbine to replace motor by utilizing surplus water head in circulating water system to drive water turbine and in turn the cooling tower fan, achieving energy saving goal.%对循环水系统的节流损失进行了研究分析.利用循环水系统中的富余水头,推动水轮机转动,驱动冷却塔风机转动.从而由水轮机取代电机,达到节能目的.

  5. Experimental Study of the Cooling of Electrical Components Using Water Film Evaporation

    Directory of Open Access Journals (Sweden)

    S. Harmand

    2012-01-01

    Full Text Available Heat and mass transfer, which occur in the evaporation of a falling film of water, are studied experimentally. This evaporation allows the dissipation of the heat flux produced by twelve resistors, which simulate electrical components on the back side of an aluminium plate. On the front side of the plate, a falling film of water flows by the action of gravity. An inverse heat conduction model, associated with a spatial regularisation, was developed and produces the local heat fluxes on the plate using the measured temperatures. The efficiency of this evaporative process has been studied with respect to several parameters: imposed heat flux, inlet mass flow rate, and geometry. A comparison of the latent and sensible fluxes used to dissipate the imposed heat flux was studied in the case of a plexiglass sheet in front of the falling film at different distances from the aluminium plate.

  6. Low Maintenance Water Treatment for Heating and Cooling Systems: Review of Technologies and Guidelines for Implementation

    Science.gov (United States)

    2007-09-01

    by oxidizing bio- cides. Also, the relatively new phosphonate, manganese/aminophosphonic acid ( MAPA ) has shown some promise as a copper corrosion...Headquarters, U.S. Army Corps of Engineers HVAC heating, ventilating, and air conditioning IWC International Water Conference MAPA manganese/aminophosphonic...aninophosphonic acid ( MAPA ) Y Y Mercaptobenzothiazole (MBT) N Y Molybdate Y N Nitrite N Y Orthophosphate Y N Phosphonocarboxylic acid (POCA) Y N

  7. 风冷式与水冷式单元空调机组的对比%Comparison between air-cooled and water-cooled unitary air conditioners

    Institute of Scientific and Technical Information of China (English)

    赵丽

    2012-01-01

    从不同方面比较了风冷式和水冷式单元空调机组的优缺点,包括机组能效比、名义工况冷源综合制冷性能系数、机房面积以及对总体建筑环境的影响.指出了对于大型会展建筑中冷热负荷具有临时性的空调区域,分散式风冷单元空调机组有较好的发展前景.%Compares the advantages and disadvantages of air-cooled and water-cooled unitary air conditioners from different aspects including the unit EER, the overall nominal working condition refrigerating coefficient of performance, the area of machine room, and the influence on the building environment. Points out that to the areas in convention and exhibition buildings with temporary cooling/ heating loads, there will be a better prospect for the decentralized air-cooled unitary air conditioners.

  8. Improved immersion vacuum cooling technology of water-cooked chicken%白煮整鸡浸泡真空冷却改进技术的研究

    Institute of Scientific and Technical Information of China (English)

    胡文娟; 姚中峰; 赵精晶; 刘毅; 李兴民

    2012-01-01

    以白煮整鸡为研究对象,分别使用风冷(AB)、水冷(WI)、浸泡真空冷却(IVC)及先浸泡真空冷却后水浸泡冷却(IVC-WI)4种方式对其进行冷却处理,并对样品的冷却效果进行分析。结果表明:实验样品从中心温度(约为95℃)冷却到10℃,IVC-WI的冷却时间(53min)比AB(145min)的缩短92min,且前者的冷却速率(1.54℃/min)约是后者(0.62℃/min)的2.5倍。与传统风冷冷却相比,IVC-WI处理后的样品冷却损失更少,产品得率和水分含量显著升高(P〈0.05),而且IVC-WI处理后的样品的色差和质构也有所改善,从而很好地改善了实验样品的品质。%Air cooling (AB), water immersion (Wl), immersion vacuum cooling (IVC) and immersion vacuum cooling followed by water immersion cooling (IVC-WI) were used to study effects of cooling water-cooked chicken. It was found that, compared with the traditional methods-AB, the cooling time of IVC-WI(53 min) was shorter about 92 min than AB(145 min) and the cooling rate of IVC-WI(1.54 %/min) was 2.6 times AB(0.62 ~C/min) with a decrease of the core temperature of samples from 95 ~ to 10 %. Additionally, the water-cooked chicken had been improved by IVC-Wl-treated have a lower cooling loss, higher product yield and moisture content. What's more, the color and instrumental properties of water-cooked chicken had been improved by IVC-WI. In short, the quality of water-cooked chicken had been improved.

  9. Effectiveness of eugenol sedation to reduce the metabolic rates of cool and warm water fish at high loading densities

    Science.gov (United States)

    Cupp, Aaron R.; Hartleb, Christopher F.; Fredricks, Kim T.; Gaikowski, Mark P.

    2016-01-01

    Effects of eugenol (AQUI-S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L−1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L−1, yellow perch controls (0 mg L−1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg−1 h−1, while yellow perch exposed to 20 and 30 mg L−1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg−1 h−1 respectively. Nile tilapia exposed to 30 mg L−1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg−1 h−1) relative to the 0 mg L−1 eugenol control (546.6 ± 53.5 mg O2 kg−1 h−1) at a loading density of 120 g L−1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L−1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.

  10. Dew Point Evaporative Comfort Cooling

    Science.gov (United States)

    2012-11-01

    220 Figure 140. Water-cooled chilled water plant with primary/secondary...enough to buffer the space by carrying away solar loads in unoccupied volumes, such as ceiling plenums. For rooftop installations, where ceiling...and are significant for the three-month period and generally exceed 68%. Larger chilled water plants with water-cooled condensers can operate with

  11. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  12. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  13. Electron cooling

    Science.gov (United States)

    Meshkov, I.; Sidorin, A.

    2004-10-01

    The brief review of the most significant and interesting achievements in electron cooling method, which took place during last two years, is presented. The description of the electron cooling facilities-storage rings and traps being in operation or under development-is given. The applications of the electron cooling method are considered. The following modern fields of the method development are discussed: crystalline beam formation, expansion into middle and high energy electron cooling (the Fermilab Recycler Electron Cooler, the BNL cooler-recuperator, cooling with circulating electron beam, the GSI project), electron cooling in traps, antihydrogen generation, electron cooling of positrons (the LEPTA project).

  14. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    Science.gov (United States)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  15. Sediment waves with a biogenic twist in Pleistocene cool water carbonates, Great Australian Bight

    DEFF Research Database (Denmark)

    Anderskouv, Kresten; Surlyk, Finn; Huuse, Mads;

    2010-01-01

    on the Galathea 3 expedition in 2006, allowing description of the morphology and internal architecture of the sediment waves in unprecedented detail, leading to an alternative interpretation of their formation. Most sediment waves were initiated by preferential deposition on the landward side of irregular erosion...... surfaces. Sediment wave accretion took place under the influence of density driven currents, which decelerated up the landward-dipping flanks and accelerated down the seaward-dipping flanks of the sediment waves. The currents are interpreted as dense water cascades formed by summer evaporation and strong...

  16. Numerical study of saturation steam/water mixture flow and flashing initial sub-cooled water flow inside throttling devices

    CERN Document Server

    CERN. Geneva

    2016-01-01

    In this work, a Computational Fluid-Dynamics (CFD) approach to model this phenomenon inside throttling devices is proposed. To validate CFD results, different nozzle geometries are analyzed, comparing numerical results with experimental data. Two cases are studied: Case 1: saturation steam/water mixture flow inside 2D convergent-divergent nozzle (inlet, outlet and throat diameter of nozzle are 0.1213m, 0.0452m and 0.0191m respectively). In this benchmark, a range of total inle...

  17. Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  18. VARIAN加速器内循环水冷维修%Maintenance of Internal Circulation Water Cooling System of VARIAN Accelerator

    Institute of Scientific and Technical Information of China (English)

    逄宏义

    2012-01-01

    介绍了VARIAN(瓦里安)加速器内循环水冷系统的原理及故障维修。%Introduce the working principles and trouble shooting of the internal circulation water cooling system of VARIAN Accelerator.

  19. Modeling and simulation of evaporative condensation cooling water system for subway%地铁蒸发冷凝冷水系统建模与仿真

    Institute of Scientific and Technical Information of China (English)

    孙超

    2016-01-01

    针对某地铁车站的空调水系统,描述系统中各主要组件的数学模型,在 EASY5平台上建立空调水系统仿真模型,将冷却塔系统与蒸发冷凝系统进行对比。结果表明:蒸发冷凝系统的COP 明显高于风冷系统,且系统动态响应更快,建立的仿真模型能够为蒸发冷凝冷水系统的模拟提供参考。%The mathematical model of the main components is described according to the air-conditioning water system for subway.The simulation model of air-conditioning water system is established based on EASY5 .The evaporative condensation system is compared with the cooling tower system.The results show that the COP of the evapora-tive condensation cooling water system is higher than that of the air cooling system and its dynamic response is faster.The simulation model can provide valuable reference for the simulation of evaporative condensation cooling water system.

  20. Thermal analysis for energy consumption reduction in cooling water systems; Analisis termico para la reduccion del consumo de energia en sistemas de agua de enfriamiento

    Energy Technology Data Exchange (ETDEWEB)

    Picon Nunez, Martin [Instituto de Investigaciones Cientificas, Universidad de Guanajuato, Guanajuato (Mexico); Quillares Vargas, Luis [Tecnopinch, S. A. de C. V., (Mexico)

    1998-12-31

    This paper presents the fundamental principles for the thermal analysis of cooling water systems in processing plants. In existing heat dissipating networks this methodology application allows the identification of opportunities for reducing the energy consumption used for cooling water pumping. The methodology is based on the determination of the minimum cooling water flow as a function of the installed heat exchange capacity, subjected to the restrictions of the maximum allowed temperature elevation. The methodology application to real systems, has resulted in saving 20% of the total energy consumed in cooling water pumping. [Espanol] En este trabajo se presentan los principios fundamentales para el analisis termico de sistemas de enfriamiento en plantas de proceso. En redes de eliminacion de calor existentes, la aplicacion de esta metodologia permite identificar oportunidades para reducir el consumo de energia utilizada para el bombeo del fluido enfriante. La metodologia se basa en la determinacion del flujo minimo de agua de enfriamiento en funcion de la capacidad de transferencia de calor instalada, sujeta a las restricciones de maximo incremento de temperatura permitido. La aplicacion de la metodologia a sistemas reales, ha resultado en ahorros del 20% del total de la energia que se consume en el bombeo del agua de enfriamiento.

  1. Detection of the liquid-liquid transition in the deeply cooled water confined in MCM-41 with elastic neutron scattering technique

    Science.gov (United States)

    Wang, Zhe; Ito, Kanae; Chen, Sow-Hsin

    2016-05-01

    In this paper we present a review on our recent experimental investigations into the phase behavior of the deeply cooled water confined in a nanoporous silica material, MCM-41, with elastic neutron scattering technique. Under such strong confinement, the homogeneous nucleation process of water is avoided, which allows the confined water to keep its liquid state at temperatures and pressures that are inaccessible to the bulk water. By measuring the average density of the confined heavy water, we observe a likely first-order low-density liquid (LDL) to high-density liquid (HDL) transition in the deeply cooled region of the confined heavy water. The phase separation starts from 1.12±0.17{ kbar} and 215±1{ K} and extends to higher pressures and lower temperatures in the phase diagram. This starting point could be the liquid-liquid critical point of the confined water. The locus of the Widom line is also estimated. The observation of the liquid-liquid transition in the confined water has potential to explain the mysterious behaviors of water at low temperatures. In addition, it may also have impacts on other disciplines, because the confined water system represents many biological and geological systems in which water resides in nanoscopic pores or in the vicinity of hydrophilic or hydrophobic surfaces.

  2. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  3. Energy Saving and Water Cooling Facility in an Industry Using Prgrammable Logic Controller

    Directory of Open Access Journals (Sweden)

    Sudhananda Paul

    2016-04-01

    Full Text Available This project gives the idea about how to reduce the power loss in an industry, which are being wasted by the fans and pumps in operating condition as well as to get water as per the necessity by an industry with proper quality. This can be done by proper switching and speed control of motors used in fans and pumps. As the power consumed is directly proportional to the cube of speed so by reducing the speed energy can be saved. An attempt is also made to connect the power factor improving capacitor for energy saving. By using this concept the industry can save huge amount of energy and can be able to reduce the electricity bill

  4. Cooling water of power plant creates "hot spots" for tropical fishes and parasites.

    Science.gov (United States)

    Emde, Sebastian; Kochmann, Judith; Kuhn, Thomas; Dörge, Dorian D; Plath, Martin; Miesen, Friedrich W; Klimpel, Sven

    2016-01-01

    Thermally altered water bodies can function as "hot spots" where non-native species are establishing self-sustaining populations beyond their tropical and subtropical native regions. Whereas many tropical fish species have been found in these habitats, the introduction of non-native parasites often remains undetected. Here, n = 77 convict cichlids (Amatitlania nigrofasciata) were sampled by electro-fishing at two sites from a thermally altered stream in Germany and examined for parasite fauna and feeding ecology. Stomach content analysis suggests an opportunistic feeding strategy of A. nigrofasciata: while plant material dominated the diet at the warm water inlet (∼30 °C), relative contributions of insects, plants, and crustaceans were balanced 3 km downstream (∼27 °C). The most abundant non-native parasite species was the tropical nematode Camallanus cotti with P = 11.90 % and P = 80.00 % at the inlet and further downstream, respectively. Additionally, nematode larvae of Anguillicoloides crassus and one specimen of the subtropical species Bothriocephalus acheilognathi were isolated. A. nigrofasciata was also highly infected with the native parasite Acanthocephalus anguillae, which could be linked to high numbers of the parasite's intermediate host Asellus aquaticus. The aim of this study was to highlight the risk and consequences of the release and establishment of ornamental fish species for the introduction and spread of non-indigenous metazoan parasites using the convict cichlid as a model species. Furthermore, the spread of non-native parasites into adjacent fish communities needs to be addressed in the future as first evidence of Camallanus cotti in native fish species was also found.

  5. A Process for Evaluating Adverse Environmental Impacts by Cooling-Water System Entrainment at a California Power Plant

    Directory of Open Access Journals (Sweden)

    C.P. Ehrler

    2002-01-01

    Full Text Available A study to determine the effects of entrainment by the Diablo Canyon Power Plant (DCPP was conducted between 1996 and 1999 as required under Section 316(b of the Clean Water Act. The goal of this study was to present the U.S. Environmental Protection Agency (EPA and Central Coast Regional Water Quality Control Board (CCRWQCB with results that could be used to determine if any adverse environmental impacts (AEIs were caused by the operation of the plant’s cooling-water intake structure (CWIS. To this end we chose, under guidance of the CCRWQCB and their entrainment technical working group, a unique approach combining three different models for estimating power plant effects: fecundity hindcasting (FH, adult equivalent loss (AEL, and the empirical transport model (ETM. Comparisons of the results from these three approaches provided us a relative measure of confidence in our estimates of effects. A total of 14 target larval fish taxa were assessed as part of the DCPP 316(b. Example results are presented here for the kelp, gopher, and black-and-yellow (KGB rockfish complex and clinid kelpfish. Estimates of larval entrainment losses for KGB rockfish were in close agreement (FH is approximately equals to 550 adult females per year, AEL is approximately equals to 1,000 adults [male and female] per year, and ETM = larval mortality as high as 5% which could be interpreted as ca. 2,600 1 kg adult fish. The similar results from the three models provided confidence in the estimated effects for this group. Due to lack of life history information needed to parameterize the FH and AEL models, effects on clinid kelpfish could only be assessed using the ETM model. Results from this model plus ancillary information about local populations of adult kelpfish suggest that the CWIS might be causing an AEI in the vicinity of DCPP.

  6. Study of thermal management in water-cooled PEMFC%水冷型PEMFC的热管理研究

    Institute of Scientific and Technical Information of China (English)

    朱柳; 朱新坚; 沈海峰

    2012-01-01

    质子交换膜燃料电池(PEMFC)电堆内气、水两相的分布和热量的产生与传递间相互影响.为提高电堆的性能和寿命,根据连续方程和质量守恒定律,建立了电堆内气、水两相传输的动态模型;根据能量守衡原理,建立了PEMFC电堆温度和冷却水温度的动态模型;并在此基础上采用李雅普诺夫函数反向递推法设计了—种非线性鲁棒控制器,使系统温度能在一定摄动范围内保持稳定.最后,在Matlab/Simulink平台上验证了该模型及控制策略的有效性.%The distributions of gas and liquid water, thermal generation and transferring are interacting with each other dosely in proton exchange membrane fuel cell (PEMFC). According to the continuity equation and law of mass conservation, a dynamic model of two-phase (gas and liquid water) transmission in PEMFC was established; and on the basis of energy conservation theory, models of stack temperature and cooling water temperature were developed; what's more, based on these foregoing models, a nonlinear robust controller was proposed by adopting the method of Lyapunov function reverse recursion. Finally, the effectiveness and robustness of the whole model and control strategies were verified on the platform of Matlab/Simulink.

  7. Contribution of the Yellow Sea bottom cold water to the abnormal cooling of sea surface temperature in the summer of 2011

    Science.gov (United States)

    Lee, Joon-ho; Pang, Ig-Chan; Moon, Jae-Hong

    2016-06-01

    Satellite-based sea surface temperature (SST) measurements revealed an abnormal cooling anomaly over the Yellow Sea (YS) in the summer of 2011. Using in situ hydrographic profiles, meteorological fields, and an ocean circulation model with a passive tracer experiment, we identified the cold SST anomaly and its connection with the YS Bottom Cold Water (YSBCW), which occupies the central part of the YS below the thermocline in the summer. The summer SST anomalies in the YS showed three cold peaks in 1993, 2003, and 2011 over the past 20 years, but the reasons for the cooling events were different, as one was due to weakened surface heating and the other was attributed to mixing with the YSBCW. In 1993 and 2003, relatively weak surface heating made the surface water cooler compared with that during the other years, whereas in 2011, a strong vertical mixing of water was induced by a typhoon that passed through the central YS, causing the surface water to cool by ˜8°C and the bottom water to warm up by ˜4°C. A tracer experiment further confirmed that the vertical heat transfers between the warm surface and the cold bottom water masses when the typhoon passed through the YS interior.

  8. Heat pump using dual heat sources of air and water. Performance in cooling mode; Mizu kuki ryonetsugen heat pump no kenkyu. Reibo unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S.; Miura, N. [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y. [Kubota Corp., Osaka (Japan)

    1997-11-25

    When a heat pump is used for cooling purpose, it is possible to utilize different kinds of waste water as high-heat sources. However, these heat sources would have their temperatures vary with seasons and time in a day. Therefore, a discussion was given on performance of a heat pump when water and air heat sources are used for condensers during cooling operation independently, in series and in parallel, respectively. The air condenser shows an equivalent COP as compared with the water condenser when air temperature is lower by about 8 degC than water temperature. At the same heat source temperature, the COP for the water condenser indicated a value higher by about 0.6 than the case of the air condenser. A method to use condensers in parallel experiences little contribution from the air heat source, and performance of the heat pump decreases below the case of using the water heat source independently when the air heat source temperature becomes higher than that of the water heat source. In the case of series use in which a water condenser is installed in front and an air condenser in rear, its effect is exhibited when temperature in the air heat source is lower than that in the water heat source. Better performance was shown than in operating the water heat source independently. 2 refs., 9 figs.

  9. 核电循环泵轴承冷却风扇结构及其流场分析%Structure and Flow Field Analysis of Bearing Cooling Fans of the Circulating Cooling Water Pump in a Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    吴明哲; 王晓冬; 孙德臣

    2016-01-01

    The circulating cooling water pump in a nuclear power plant operates in a high temperature environment,and the pump bearing receives a large amount of heat load,so the work reliability is of great importance.To reduce the bearing’s working temperature and ensure its safe operation,a cooling device should be installed in the pump system.The structure of the bearing’s axial flow cooling fan in the pump was proposed,and the optimum design method of the bearing’s axial flow cooling fan in the pump was established.For the fan blades,the optimized calculation using BFGS algorithm was proceeded.A simulation verification of the system was proposed by using FLUENT,whose results showed that the design method is suitable for the bearing’s axial flow cooling fan design in circulating cooling water pumps in a nuclear power plant.%核电站冷却水循环泵在高温环境下工作,泵轴承受到很大的热负载,其工作可靠性至关重要。为降低轴承工作温度、保证轴承安全工作,在泵轴系统上设置了冷却装置。提出了泵轴承冷却用轴流式风扇的结构,建立了风扇结构的 BFGS 优化计算方法,采用计算流体力学软件 FLUENT 对风扇流场进行了数值分析。数值模拟结果表明,基于 BFGS 设计方法得到的冷却风扇性能有较好的设计计算精度,能够满足核电站冷却水循环泵轴承冷却的要求,该计算方法方便可行。

  10. Gas-Microjet Reactive Scattering: Collisions of HCl and DCl with Cool Salty Water.

    Science.gov (United States)

    Faust, Jennifer A; Sobyra, Thomas B; Nathanson, Gilbert M

    2016-02-18

    Liquid microjets provide a powerful means to investigate reactions of gases with salty water in vacuum while minimizing gas-vapor collisions. We use this technique to explore the fate of gaseous HCl and DCl molecules impinging on 8 molal LiCl and LiBr solutions at 238 K. The experiments reveal that HCl or DCl evaporate infrequently if they become thermally accommodated at the surface of either solution. In particular, we observe minimal thermal desorption of HCl following HCl collisions and no distinct evidence for rapid, interfacial DCl→HCl exchange following DCl collisions. These results imply that surface thermal motions are not generally strong enough to propel momentarily trapped HCl or DCl back into the gas phase before they ionize and disappear into solution. Instead, only HCl and DCl molecules that scatter directly from the surface escape entry. These recoiling molecules transfer less energy upon collision to LiBr/H2O than to LiCl/H2O, reflecting the heavier mass of Br(-) than of Cl(-) in the interfacial region.

  11. The necessity of Energy-Saving Reconstruct of Circulating Water Cooling Tower%循环水冷却塔节能改造必要性

    Institute of Scientific and Technical Information of China (English)

    胡俊

    2014-01-01

    The article introduces the traditional cooling tower motor reducer drive and newly developed energy-saving water power during the 12th Five Year Plan Period. Taking the circulating water cooling tower transformation technology of Guixi smelter for exam-ple, the cooling tower fan rotating was driven by water power machine instead of the motor, coupling and reducer in traditional cooling tower. Thus, the equipment investment and electricity load were reduced to realize the energy-saving effect.%介绍传统冷却塔电机减速机传动和十二五期间新研发的节能水能机,并以贵溪冶炼厂循环水冷却塔改造技术为例,即将冷却塔由水能机驱动风机旋转,代替传统冷却塔中的电机、联轴器、减速机,以减少设备投入,降低用电负荷,达到预期节能效果。

  12. Capitalist agriculture between countryside and the city A study of two cases in Argentinean Pampas region

    Directory of Open Access Journals (Sweden)

    Gabriel Ivan Bober

    2013-09-01

    Full Text Available This article analyzes transformations in agriculture, agrarian structure and population dynamics in the context of economic expansion in Argentinean Pampas in recent decades. Increase of crops va­lues, new technology packages available and local dynamics generate changes and new relationships between rural and urban areas. The study is a comparison of two different cases: one, is an example of processes of soybean production at Pampas region and the other exposes diversified dynamics of agriculture and urban expansion. 

  13. A look-up table for trans-critical heat transfer in water-cooled tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zahlan, H.; Tavoularis, S., E-mail: stavros.tavoularis@uottawa.ca; Groeneveld, D.C.

    2015-04-15

    Highlights: • A new look-up table has been created for high subcritical and supercritical heat transfer. • The table is more accurate than previous methods. • The table can be expanded to account for different effects. - Abstract: This article describes the development and validation of a trans-critical heat transfer look-up table for water at high subcritical and supercritical pressures. As a basis for constructing the table, an extensive database of near-critical and supercritical heat transfer measurements was compiled and upgraded by the rejection of unreliable or inappropriate data, the removal of duplicates and outliers and the reduction of data scatter. A large number of available single-phase and supercritical heat transfer correlations were assessed against the database and the most accurate correlations for each heat transfer regime were identified. These correlations were then used to construct a skeleton table, which provides values of the heat transfer coefficient for a matrix of combinations of 11 values of pressure in the range from 19 to 30 MPa, 9 values of mass flux in the range from 100 to 5000 kg/m{sup 2} s, 17 values of bulk enthalpy in the range from 1000 to 3000 kJ/kg, and 8 values of wall superheat in the range from 10 to 500 K. For the construction of the final table, the predictions of correlations were replaced by experimental values, adjusted following established trends to conform to the skeleton table value matrix. Unlike all previous prediction methods, the table applies not only to normal heat transfer conditions but also to conditions with heat transfer deterioration and enhancement, as it includes data obtained under such conditions. The table values were further adjusted so that apparent discontinuities that were not related to physically plausible changes in heat transfer were smoothened out. The predictions of the table were assessed statistically against the experimental database. When compared to predictions of other

  14. Study of the mechanism action of sodium gluconate used for the protection of scale and corrosion in cooling water system

    Directory of Open Access Journals (Sweden)

    Rachid Touir

    2014-12-01

    Full Text Available This work based on the mechanism action study of sodium gluconate (SG for ordinary mild steel used for cooling water system treatment. In the first time, we evaluated the temperature effect on the scale inhibition of SG using statistic scale inhibition method. Result showed that the inhibition efficiency became more important with increasing temperature, at great concentration (10−2 and 10−3 M. This can be explained by forming of stable complex SG–Ca2+. In the second time, the present work focuses on the study of operational parameters and corrosion products effect on SG performance using potentiodynamic polarization and electrochemical impedance spectroscopic method. The obtained results show that SG is a very good inhibitor for corrosion and scale and remains effective in the presence of corrosion products. For this study we were proposed a mechanism action for SG on metallic surface. In addition, the SG keeps its effectiveness in a more aggressive medium such as 3% NaCl. Finally, to complete the formulation, we added a not oxidizing biocide (CTAB to SG. The results obtained show that SG remains its effective.

  15. Recent state-of-the-art of biodegradable scale inhibitors for cooling-water treatment applications (Review)

    Science.gov (United States)

    Popov, K. I.; Kovaleva, N. E.; Rudakova, G. Ya.; Kombarova, S. P.; Larchenko, V. E.

    2016-02-01

    Scale formation is a challenge worldwide. Recently, scale inhibitors represent the best solution of this problem. The polyaminocarboxylic acids have been the first to be successfully applied in the field, although their efficacy was rather low. The next generation was developed on the grounds of polyphosphonic acids. The main disadvantage of these is associated with low biodegradation level. Polyacrylate-based phosphorous free inhibitors proposed as an alternative to phosphonates all also had low biodegradability. Thus, the main trend of recent R&D is the development of a new generation: environmentally friendly biodegradable scale inhibitors. The recent state of the word and domestic scale inhibitors markets is considered, the main industrial inhibitors manufacturers and marketed substances, as well as the general trends of R&D in the field, are characterized. It is demonstrated that most research is focused on biodegradable polymers and on phosponates with low phosphorus content, as well as on implementation of biodegradable fragments into polyacrylate matrixes for biodegradability enhancement. The problem of research results comparability is indicated along with domestic-made inhibitors quality and the gaps in scale inhibition mechanism. The actuality of fluorescent indicator fragment implementation into the scale inhibitor molecule for the better reagent monitoring in a cooling water system is specially emphasized.

  16. Chlorine dioxide as an alternative antifouling biocide for cooling water systems: Toxicity to larval barnacle Amphibalanus reticulatus (Utinomi).

    Science.gov (United States)

    Venkatnarayanan, Srinivas; Sriyutha Murthy, P; Kirubagaran, Ramalingam; Venugopalan, Vayalam P

    2017-01-19

    Chlorine dioxide (ClO2) is seen as an effective alternative to chlorine, which is widely used as an antifouling biocide. However, data on its efficacy against marine macrofoulants is scanty. In this study, acute toxicity of ClO2 to larval forms of the fouling barnacle Amphibalanus reticulatus was investigated. ClO2 treatment at 0.1mg/L for 20min elicited 45-63% reduction in naupliar metamorphosis, 70% inhibition of cyprid settlement and 80% inhibition of metamorphosis to juveniles. Increase in concentration to 0.2mg/L did not result in any significant difference in the settlement inhibition or metamorphosis. Treatment with 0.2mg/L of ClO2 elicited substantial reduction in the settlement of barnacle larvae compared to control. The study indicates the possibility of using ClO2 as an alternative antifouling biocide in power plant cooling water systems. However, more work needs to be done on the environmental effects of such switchover, which we are currently undertaking.

  17. Molecular typing of Legionella pneumophila from air-conditioning cooling waters using mip gene, SBT, and FAFLP methods.

    Science.gov (United States)

    Gong, Xiangli; Li, Juntao; Zhang, Ying; Hou, Shuiping; Qu, Pinghua; Yang, Zhicong; Chen, Shouyi

    2017-04-07

    Legionella spp. are important waterborne pathogens. Molecular typing has become an important method for outbreaks investigations and source tracking of Legionnaires. In a survey program conducted by the Guangzhou Center for Disease Control and Prevention, multiple serotypes Legionella pneumophila (L. pneumophila) were isolated from waters in air-conditioning cooling towers in urban Guangzhou region, China between 2008 and 2011. Three genotyping methods, mip (macrophage infectivity potentiator) genotyping, SBT (sequence-based typing), and FAFLP (fluorescent amplified fragment length polymorphism analysis) were used to type these waterborne L. pneumophila isolates. The three methods were capable of typing all the 134 isolates and a reference strain of L. pneumophila (ATCC33153), with discriminatory indices of 0.7034, 0.9218, and 0.9376, for the mip, SBT, and FAFLP methods respectively. Among the 9 serotypes of the 134 isolates, 10, 50, and 34 molecular types were detected by the mip, SBT, and FAFLP methods respectively. The mip genotyping and SBT typing are more feasible for inter-laboratory results sharing and comparison of different types of L. pneumophila. The SBT and FAFLP typing methods were rapid with higher discriminatory abilities. Combinations of two or more of the typing methods enables more accurate typing of Legionella isolates for outbreak investigations and source tracking of Legionnaires.

  18. Potential and limits of water cooled divertor concepts based on monoblock design as possible candidates for a DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li-Puma, Antonella, E-mail: antonella.lipuma@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Richou, Marianne; Magaud, Philippe; Missirlian, Marc [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Visca, Eliseo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, IT-00044 Frascati (Italy); Ridolfini, Vincenzo Pericoli [EFDA-CSU Garching, PPPT department, D-85748 Garching bei München (Germany)

    2013-10-15

    In this paper water-cooled divertor concepts based on tungsten monoblock design identified in previous studies as candidate for fusion power plant have been reviewed to assess their potential and limits as possible candidates for a DEMO concept deliverable in a short to medium term (“conservative baseline design”). The rationale and technology development assumptions that have led to their selection are revisited taking into account present factual information on reactor parameters, materials properties and manufacturing technologies. For that purpose, main parameters impacting the divertor design are identified and their relevance discussed. The state of the art knowledge on materials and relevant manufacturing techniques is reviewed. Particular attention is paid to material properties change after irradiation; phenomenon thresholds (if any) and possible operating ranges are identified (in terms of temperature and damage dose). The suitability of various proposed heat sink/structural and sacrificial layer materials, as proposed in the past, are re-assessed (e.g. with regard to the possibility of reducing peak heat flux and/or neutron radiation damages). As a result, potential and limits of various proposed concepts are highlighted, ranges in which they could operate (if any) defined and possible improvements are proposed. Identified missing point in materials database and/or manufacturing techniques knowledge that should be uppermost investigated in future R and D activities are reported. This work has been carried out in the frame of EFDA PPPT Work Programme activities.

  19. Cold-water immersion and iced-slush ingestion are effective at cooling firefighters following a simulated search and rescue task in a hot environment.

    Science.gov (United States)

    Walker, Anthony; Driller, Matthew; Brearley, Matt; Argus, Christos; Rattray, Ben

    2014-10-01

    Firefighters are exposed to hot environments, which results in elevated core temperatures. Rapidly reducing core temperatures will likely increase safety as firefighters are redeployed to subsequent operational tasks. This study investigated the effectiveness of cold-water immersion (CWI) and iced-slush ingestion (SLUSH) to cool firefighters post-incident. Seventy-four Australian firefighters (mean ± SD age: 38.9 ± 9.0 years) undertook a simulated search and rescue task in a heat chamber (105 ± 5 °C). Testing involved two 20-min work cycles separated by a 10-min rest period. Ambient temperature during recovery periods was 19.3 ± 2.7 °C. Participants were randomly assigned one of three 15-min cooling protocols: (i) CWI, 15 °C to umbilicus; (ii) SLUSH, 7 g·kg(-1) body weight; or (iii) seated rest (CONT). Core temperature and strength were measured pre- and postsimulation and directly after cooling. Mean temperatures for all groups reached 38.9 ± 0.9 °C at the conclusion of the second work task. Both CWI and SLUSH delivered cooling rates in excess of CONT (0.093 and 0.092 compared with 0.058 °C·min(-1)) and reduced temperatures to baseline measurements within the 15-min cooling period. Grip strength was not negatively impacted by either SLUSH or CONT. CWI and SLUSH provide evidence-based alternatives to passive recovery and forearm immersion protocols currently adopted by many fire services. To maximise the likelihood of adoption, we recommend SLUSH ingestion as a practical and effective cooling strategy for post-incident cooling of firefighters in temperate regions.

  20. Ozonation of cooling water prevents biofilms and legionella. Hygiene; Kuehlwasserbehandlung mit Ozon haelt Biofilme und Legionellen in Schach. Hygiene

    Energy Technology Data Exchange (ETDEWEB)

    Hackl, W.; Hoffmann, M. [BWT Wassertechnik GmbH, Schriesheim (Germany). Forschung und Entwicklung

    2006-11-15

    Legionella in plumes of evaporation cooling towers have often caused serious illnesses and even deaths. To prevent the growth of microorganisms in cooling towers, operators often use hazardous and toxic biocides or chlorine. There is an ecologically and also technically efficient alternative: In the Briey plant of the international Norma group, biofilm and legionella prophylaxis is achieved by ozonation. (orig.)

  1. Distribution of a pelagic tunicate, Salpa fusiformis in warm surface current of the eastern Korean waters and its impingement on cooling water intakes of Uljin nuclear power plant.

    Science.gov (United States)

    Chae, Jinho; Choi, Hyun Woo; Lee, Woo Jin; Kim, Dongsung; Lee, Jae Hac

    2008-07-01

    Impingement of a large amount of gelatinous plankton, Salpa fusiformis on the seawater intake system-screens in a nuclear power plant at Uljin was firstly recorded on 18th June 2003. Whole amount of the clogged animals was estimated were presumptively at 295 tons and the shortage of cooling seawater supply by the animal clogging caused 38% of decrease in generation capability of the power plant. Zooplankton collection with a multiple towing net during the day and at night from 5 to 6 June 2003 included various gelatinous zooplanktons known to be warm water species such as salps and siphonophores. Comparatively larger species, Salpa fusiformis occupied 25.4% in individual density among the gelatinous plankton and showed surface distribution in the depth shallower than thermocline, performing little diel vertical migration. Temperature, salinity and satellite data also showed warm surface current predominated over the southern coastal region near the power plant in June. The results suggested that warm surface current occasionally extended into the neritic region may transfer S. fusiformis, to the waters off the power plant. The environmental factors and their relation to ecobiology of the large quantity of salpa population that are being sucked into the intake channel of the power plant are discussed.

  2. A Parametric Study of the Impact of the Cooling Water Site Specific Conditions on the Efficiency of a Pressurized Water Reactor Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Mohamed M. A. Ibrahim

    2014-01-01

    Full Text Available In this study, the thermal analysis for the impact of the cooling seawater site specific conditions on the thermal efficiency of a conceptual pressurized water reactor nuclear power plant (PWR NPP is presented. The PWR NPP thermal performance depends upon the heat transfer analysis of steam surface condenser accounting for the key parameters such as the cooling seawater salinity and temperature that affect the condenser overall heat transfer coefficient and fouling factor. The study has two aspects: the first one is the impact of the temperature and salinity within a range of (290 K–310 K and 0.00–60000 ppm on the seawater thermophysical properties such as density, specific heat, viscosity, and thermal conductivity that reflect a reduction in the condenser overall heat transfer coefficient from 2.25 kW/m2 K to 1.265 kW/m2 K at temperature and salinity of 290 K and 0.00 ppm and also from 2.35 kW/m2 K to 1.365 kW/m2 K at temperature and salinity of 310 K and 60000 ppm, whereas the second aspect is the fouling factor variations due to the seawater salinity. The analysis showed that the two aspects have a significant impact on the computation of the condenser overall heat transfer coefficient, whereas the increase of seawater salinity leads to a reduction in the condenser overall heat transfer coefficient.

  3. Improvement of energy efficiency by optimized thermal insulation of cooling water pipes of air conditioning systems and refrigerant pipes of cooling systems; Steigerung der Energieeffizienz durch optimierte Daemmung der Kuehlwasserrohrleitungen von Klimaanlagen und Kaeltemittelrohrleitungen von Kuehlanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Chmielarski, Jarema [ARMACELL SWITZERLAND AG, Pfaffnau (Switzerland)

    2011-05-31

    Higher energy efficiency is an issue also in air conditioning and refrigeration, which accounts for 14 percent of Germany's total energy consumption today (according to ASERCOM) and can be assumed to have a similar energy consumption level in other European levels. The new Energy Conservation Ordinance of October 2009 was the first that specified obligatory thermal insulation also of cooling and cold water pipes in space HVAC systems. A current study by the Armacell company showed that while this is an important first step, thicker insulation layers must be specified for the future.

  4. Research and the Application of Water Reuse Recycle Cooling Water System%中水回用循环冷却水系统研究及现场应用

    Institute of Scientific and Technical Information of China (English)

    张少松; 曹培宽; 白小明

    2012-01-01

    The paper studied the water treatment chemicals that were successfully used in the cycle cooling water system. Recycled water was used in the cycle cooling water system as supplement water in this system, and examined the site operation in a thermo electron corporation of Tianjin economic development zone. In addition, the performance factors were analyzed of cycle cooling water system. Practice had proved that recycled water as supplement water for the circulating water system was successful about 5 years.%针对滨海新区中水水质,研究了适应天津经济技术开发区某热电公司应用的中水水质、系统材质和工况条件的水处理药剂及其配套高浓缩倍率水处理技术,并应用于现场运行控制。通过对近五年现场应用结果进行深入总结分析,说明中水回用于循环水系统处理技术是成功的,取得明显的经济效益和社会效益。

  5. Explore the Water-cooled Slag Cooler Drum Master Cylinder Structure%滚筒水冷式冷渣机主筒结构探讨

    Institute of Scientific and Technical Information of China (English)

    吴浪

    2014-01-01

    在锅炉系统中,冷渣机对高温炉渣的冷却起着重要的作用,而滚筒水冷式冷渣机因其自身所具有的一些优点得到了较为广泛的应用。在滚筒水冷式冷渣机中,其主筒结构对其性能和工作效率等都会产生直接的影响。针对生产的实际需求,对滚筒水冷式冷渣机进行改进和完善时,要充分考虑主筒结构设计和所要改善的问题,从而使其能够更好地发挥冷却作用。%In the boiler system, slag cooler for cooling high-temperature slag plays an important role, and the cold cylinder water-cooled slag machine has its own advantages has been more widely used. In the cylinder water-cooled slag cooler in the main tube structures have a direct impact on their performance and work efficiency will be. When the actual demand for the production of cylinder water-cooled slag cooler to improve and perfect, to fully consider the master cylinder and the structural design issues to be improved, making it better able to exert a cooling effect.

  6. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    Science.gov (United States)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  7. The influence of Savannah River discharge and changing SRS cooling water requirements on the potential entrainment of ichthyoplankton at the SRS Savannah River intakes

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.H.

    1992-08-01

    Entrainment (i.e., withdrawal of fish larvae and eggs in cooling water) at the SRS Savannah River intakes is greatest when periods of high river water usage coincide with low river dischargeduring the spawning season. American shad and striped bass are the two species of greatest concern because of their recreational and/or commercial importance and because they produce drifting eggs and larvae vulnerable to entrainment. In the mid-reaches of the Savannah River, American shad and striped bass spawn primarily during April and May. An analysis of Savannah River discharge during April and May 1973--1989 indicated the potential for entrainment of 4--18% of the American shad and striped bass larvae and eggs that drifted past the SRS. This analysis assumed the concurrent operation of L-, K-, and P-Reactors. Additional scenarios investigated were: (1) shutting down L- and P-Reactors, and operating K-Reactor with a recycle cooling tower; and (2) shutting down L- and P-Reactors, eliminating minimum flows to Steel Creek, and operating K-Reactor with a recycle cooling tower. The former scenario reduced potential entrainment to 0.7--3.3%, and the latter scenario reduced potential entrainment to 0.20.8%. Thus, the currently favored scenario of operating K-Reactor with a cooling tower and not operating L- and P-Reactors represents a significant lessening of the impact of SRS operations.

  8. Correction Calculation of Circulating Cooling Water Pipeline Resistance%循环冷却水管路水阻修正计算研究

    Institute of Scientific and Technical Information of China (English)

    苗卉; 商显有; 侯平利

    2011-01-01

    The relevant factors of circulating cooling water pipeline resistance are analyzed and a correction calculation method of resistance is provided. When the condenser parameters change, corresponding to different cooling water flow, the circulating cooling water pipeline resistance can be modified according to the reference power plant condenser water resistance curve. This method can be used in the optimization of steam turbine cold end.%分析了影响循环冷却水管路水阻的相关因素,给出一种水阻的修正计算方法.在凝汽器相关参数变化时,对应于不同的循环冷却水流量,可根据参考电厂凝汽器的水阻曲线对循环冷却水管路的水阻进行修正.该方法可运用于汽轮机冷端优化研究.

  9. Analysis of admixture and genetic structure of two Native American groups of Southern Argentinean Patagonia.

    Science.gov (United States)

    Sala, Andrea; Corach, Daniel

    2014-03-01

    Argentinean Patagonia is inhabited by people that live principally in urban areas and by small isolated groups of individuals that belong to indigenous aboriginal groups; this territory exhibits the lowest population density of the country. Mapuche and Tehuelche (Mapudungun linguistic branch), are the only extant Native American groups that inhabit the Argentinean Patagonian provinces of Río Negro and Chubut. Fifteen autosomal STRs, 17 Y-STRs, mtDNA full length control region sequence and two sets of Y and mtDNA-coding region SNPs were analyzed in a set of 434 unrelated individuals. The sample set included two aboriginal groups, a group of individuals whose family name included Native American linguistic root and urban samples from Chubut, Río Negro and Buenos Aires provinces of Argentina. Specific Y Amerindian haplogroup Q1 was found in 87.5% in Mapuche and 58.82% in Tehuelche, while the Amerindian mtDNA haplogroups were present in all the aboriginal sample contributors investigated. Admixture analysis performed by means of autosomal and Y-STRs showed the highest degree of admixture in individuals carrying Mapuche surnames, followed by urban populations, and finally by isolated Native American populations as less degree of admixture. The study provided novel genetic information about the Mapuche and Tehuelche people and allowed us to establish a genetic correlation among individuals with Mapudungun surnames that demonstrates not only a linguistic but also a genetic relationship to the isolated aboriginal communities, representing a suitable proxy indicator for assessing genealogical background.

  10. Social Skills Questionnaire for Argentinean College Students (SSQ-U) Development and Validation.

    Science.gov (United States)

    Morán, Valeria E; Olaz, Fabián O; Del Prette, Zilda A P

    2015-11-27

    In this paper we present a new instrument called Social Skills Questionnaire for Argentinean College Students (SSQ-U). Based on the adapted version of the Social Skills Inventory - Del Prette (SSI-Del Prette) (Olaz, Medrano, Greco, & Del Prette, 2009), we wrote new items for the scale, and carried out psychometric analysis to assess the validity and reliability of the instrument. In the first study, we collected evidence based on test content through expert judges who evaluated the quality and the relevance of the items. In the second and third studies, we provided validity evidence based on the internal structure of the instrument using exploratory (n = 1067) and confirmatory (n = 661) factor analysis. Results suggested a five-factor structure consistent with the dimensions of social skills, as proposed by Kelly (2002). The fit indexes corresponding to the obtained model were adequate, and composite reliability coefficients of each factor were excellent (above .75). Finally, in the fourth study, we provided evidence of convergent and discriminant validity. The obtained results allow us to conclude that the SSQ-U is the first valid and reliable instrument for measuring social skills in Argentinean college students.

  11. Potential To Increase Productivity And Sustainability In Argentinean Agriculture With Controlled Traffic Farming: A Short Discussion

    Directory of Open Access Journals (Sweden)

    Antille Diogenes L.

    2015-09-01

    Full Text Available Drivers for and potential barriers against adoption of controlled traffic farming (CTF systems in Argentina are reviewed. Traffic compaction is one of the main factors affecting crop productivity within Argentinean agriculture, and has significant although less quantified impacts on the whole-of-farm system. This suggests that the benefits of no-tillage (NT, which represents the dominant form of cropping in Argentina, are not fully realised. Conservative estimates indicate that crop yields could be improved by at least 15% if NT is used in conjunction with CTF. Cost-benefit analyses of available options for compaction management are required. Despite this, and based on reported evidence internationally, a shift toward increased uptake of CTF within Argentinean agriculture is likely to: (1 improve productivity and farm profitability, (2 enhance environmental performance, and (3 maintain competitiveness of the agricultural sector. Appropriate technical advice and support is a key requirement to drive adoption of CTF. Therefore, the adoption process will benefit from collaboration developed with well-established research and extension organisations in Australia and the United Kingdom, and active engagement of machinery manufacturers.

  12. Effect of chlorine and temperature on free-living protozoa in operational man-made water systems (cooling towers and hot sanitary water systems) in Catalonia.

    Science.gov (United States)

    Canals, Oriol; Serrano-Suárez, Alejandra; Salvadó, Humbert; Méndez, Javier; Cervero-Aragó, Sílvia; Ruiz de Porras, Vicenç; Dellundé, Jordi; Araujo, Rosa

    2015-05-01

    In recent decades, free-living protozoa (FLP) have gained prominence as the focus of research studies due to their pathogenicity to humans and their close relationship with the survival and growth of pathogenic amoeba-resisting bacteria. In the present work, we studied the presence of FLP in operational man-made water systems, i.e. cooling towers (CT) and hot sanitary water systems (HSWS), related to a high risk of Legionella spp. outbreaks, as well as the effect of the biocides used, i.e. chlorine in CT and high temperature in HSWS, on FLP. In CT samples, high-chlorine concentrations (7.5 ± 1.5 mg chlorine L(-1)) reduced the presence of FLP by 63.8 % compared to samples with low-chlorine concentrations (0.04 ± 0.08 mg chlorine L(-1)). Flagellates and amoebae were observed in samples collected with a level of 8 mg chlorine L(-1), which would indicate that some FLP, including the free-living amoeba (FLA) Acanthamoeba spp., are resistant to the discontinuous chlorine disinfection method used in the CT studied. Regarding HSWS samples, the amount of FLP detected in high-temperatures samples (53.1 ± 5.7 °C) was 38 % lower than in low-temperature samples (27.8 ± 5.8 °C). The effect of high temperature on FLP was chiefly observed in the results obtained by the culture method, in which there was a clear reduction in the presence of FLP at temperatures higher than 50 °C, but not in those obtained by PCR. The findings presented here show that the presence of FLP in operational man-made water systems should be taken into account in future regulations.

  13. 水冷壁系统水自流动可行性的流体动力学计算%Hydrodynamic Calculation of Feasibility of Water Self-Flow in Water-Cooling Wall System

    Institute of Scientific and Technical Information of China (English)

    王彪

    2015-01-01

    In operation of water wall-cooled gasifier, although mistrip of water circulating pump of boiler appears, and guard valve of water wall opens, yet the water self-flow membrane of the water-cooling wall system is not formed.In connection with the problem, the lacation of the guard valve of water wall is removed to the first floor, it is verified through test that it conforms to hydrodynamic principle, when the power goes out, the self-flow of water in water-cooling wall system can reach 51. 2 m 3 /h.After the revamp, the system runs well, ensuring safe production.%在水冷壁气化炉运行过程中,锅炉水循环泵跳车,水冷壁事故阀打开,但水冷壁系统的水却没有形成自流动。针对该问题,将水冷壁事故阀改置在一楼,通过试验证明其符合流体动力学原理,断电时水冷壁系统水的自流量可达51.2 m 3/h。改造后,系统运行良好,确保了安全生产。

  14. Proposal for the award of a blanket contract for the supply and installation of water-cooled bus bars and cables for the LHC

    CERN Document Server

    2003-01-01

    This document concerns the award of a blanket contract for the supply and installation of water-cooled bus bars and cables for the LHC project. Following a market survey carried out among 22 firms in six Member States, a call for tenders (IT-2941/ST/LHC) was sent on 30 June 2003 to three firms in two Member States. By the closing date, CERN had received tenders from the three firms. The Finance Committee is invited to agree to the negotiation of a blanket contract with FLOHE (DE), the lowest bidder, for the supply and installation of water-cooled bus bars and cables, for a total amount not exceeding 2 900 000 Swiss francs, subject to revision after 1 January 2005 according to the LME copper prices. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: DE - 100%.

  15. 水冷变频高速电动机的结构设计%Structure Design of Water-Cooled Inverter Duty High Speed Electric Motor

    Institute of Scientific and Technical Information of China (English)

    林治新

    2014-01-01

    Based on the structrue design of the standard three-phase electric motor, this article discussed in detail the heat-dissipation function and structure of the water-cooled motors. The water-cooled, inverter-drived and high speed motors for dragging rock wool machine were developed to meet the market demand.%以普通三相电动机结构设计为基础,详细论述了水冷电机的散热能力及结构,开发出适用于拖动岩棉机械的水冷、变频、高速电动机,满足了市场需求。

  16. 换流站内冷水中铝离子的监测%The monitor of Aluminum ion in cooling water of converter stations

    Institute of Scientific and Technical Information of China (English)

    田兴旺; 张蓬鹤; 吴巍; 乐文静

    2012-01-01

    All of the inside cooling water dispose system of DC project in converter stations exist the problem of serious canker and aggradation, according to a mass of analyzing, the scale formation of aluminum ion is serious, in order to prevent in time, it needs online monitoring. This paper mainly introduce the method about monitoring of Aluminum ion in cooling water of converter stations.%各换流站直流工程内冷水处理系统均存在严重的腐蚀和沉积问题,经多方面分析,铝离子结垢比较严重,需要通过在线监测来进行及时预防.本文主要介绍内冷水中铝离子的在线监测方法.

  17. 液化烃储罐水喷雾冷却系统设计%Designing of Water-Spray Cooling System for Liquefied Hydrocarbon Storage Tanks

    Institute of Scientific and Technical Information of China (English)

    赵彦永

    2000-01-01

    通过对液化烃储罐火灾特点及水喷雾冷却系统灭火机理的分析,对液化烃储罐水喷雾消防冷却系统的设计方法加以探讨。提出了"罐上喷头工作压力为定值"的假设,从而简化了设计计算。%Discussions are made on the methods for designing water-spray cooling system for liquefied hydrocarbonstorage tanks through analyzing the characteristics of the fire hazards with liquefied hydrocarbon storage tanks and the fireextinguishing mechanism of water-spray cooling system, with the hypothesis of "The working pressure of the spray nozzleson the tanks is a set value." advanced,so that design calculations are simplified.

  18. Development of thermal-hydraulic analysis methodology for multiple modules of water-cooled breeder blanket in fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2016-02-15

    Highlights: • A methodology to simulate the K-DEMO blanket system was proposed. • The results were compared with the CFD, to verify the prediction capability of MARS. • 46 Blankets in a single sector in K-DEMO were simulated using MARS-KS. • Supervisor program was devised to handle each blanket module individually. • The calculation results showed the flow rates, pressure drops, and temperatures. - Abstract: According to the conceptual design of the fusion DEMO reactor proposed by the National Fusion Research Institute of Korea, the water-cooled breeding blanket system incorporates a total of 736 blanket modules. The heat flux and neutron wall loading to each blanket module vary along their poloidal direction, and hence, thermal analysis for at least one blanket sector is required to confirm that the temperature limitations of the materials are satisfied in all the blanket modules. The present paper proposes a methodology of thermal analysis for multiple modules of the blanket system using a nuclear reactor thermal-hydraulic analysis code, MARS-KS. In order to overcome the limitations of the code, caused by the restriction on the number of computational nodes, a supervisor program was devised, which handles each blanket module separately at first, and then corrects the flow rate, considering pressure drops that occur in each module. For a feasibility test of the proposed methodology, 46 blankets in a single sector were simulated; the calculation results of the parameters, such as mass flow, pressure drops, and temperature distribution in the multiple blanket modules showed that the multi-module analysis method can be used for efficient thermal-hydraulic analysis of the fusion DEMO reactor.

  19. Effect of temperature, chloride ions and sulfide ions on the electrochemical properties of 316L stainless steel in simulated cooling water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days' immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the elect...

  20. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    OpenAIRE

    Gowtham Mohan; Sujata Dahal; Uday Kumar; Andrew Martin; Hamid Kayal

    2014-01-01

    Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases) liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a) electricity by combining steam rankine cycle using heat recovery steam generator (HRSG); (b) clean water by air gap membrane distillation (AGMD) plant; and (c) cooling by single stage vapor absorption chiller (VAC). The flue gases liber...

  1. The influence of water/air cooling on collateral tissue damage using a diode laser with an innovative pulse design (micropulsed mode)-an in vitro study.

    Science.gov (United States)

    Beer, F; Körpert, W; Buchmair, A G; Passow, H; Meinl, A; Heimel, P; Moritz, A

    2013-05-01

    Since the diode laser is a good compromise for the daily use in dental offices, finding usage in numerous dental indications (e.g., surgery, periodontics, and endodontics), the minimization of the collateral damage in laser surgery is important to improve the therapeutical outcome. The aim of this study was to investigate the effect of water/air cooling on the collateral thermal soft tissue damage of 980-nm diode laser incisions. A total of 36 mechanically executed laser cuts in pork liver were made with a 980-nm diode laser in micropulsed mode with three different settings of water/air cooling and examined by histological assessment to determine the area and size of carbonization, necrosis, and reversible tissue damage as well as incision depth and width. In our study, clearly the incision depth increased significantly under water/air cooling (270.9 versus 502.3 μm-test group 3) without significant changes of incision width. In test group 2, the total area of damage was significantly smaller than in the control group (in this group, the incision depth increases by 65 %). In test group 3, the total area of damage was significantly higher (incision depth increased by 85 %), but the bigger part of it represented a reversible tissue alteration leaving the amount of irreversible damage almost the same as in the control group. This first pilot study clearly shows that water/air cooling in vitro has an effect on collateral tissue damage. Further studies will have to verify, if the reduced collateral damage we have proved in this study can lead to accelerated wound healing. Reduction of collateral thermal damage after diode laser incisions is clinically relevant for promoted wound healing.

  2. The definition of cool

    Energy Technology Data Exchange (ETDEWEB)

    Nichiporuk, A.

    2005-05-01

    A new air cooling system at Agnico-Eagle's LaRonde mine, located in the Abitibi Region of Quebec is described. The new system serves a mine operating at 7,250 plus feet level. The system is installed at the surface; it utilizes ammonia to cool water, which cools the air. The system consists of four compressors which lower the temperature of the ammonia to minus 2 degrees C. Water, which at this temperature is 14 degrees, and ammonia pass through a plate heat exchanger simultaneously, however, without coming into contact with each other. The heat transfer that occurs causes the water's temperature to drop to 2 degrees C. The total volume of water cooled is 220 litres per second. The system is capable of reducing 636,000 cfm of air from 30 degrees C to 6 degrees C, to which 214,000 cfm of non-cooled air is added. This mixture, which is maintained at approximately 8 degrees C throughout the summer season, is sent underground to the deepest parts of the mine. The system runs from June to September, depending on the weather. In the evenings, when the temperature dips to around four to five degrees C, the water is shut down and side doors are opened to prevent the water from freezing.

  3. Effect of temperature, chloride ions and sulfide ions on the electrochemical properties of 316L stainless steel in simulated cooling water

    Institute of Scientific and Technical Information of China (English)

    Li Jinbo; Zhai Wen; Zheng Maosheng; Zhu Jiewu

    2008-01-01

    The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days' immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the electrochemical property of 316L stainless steel in simulated cooling water and the pitting potential declines with the concentration of chloride ions; the passivation current has no obvious effect; the rise of the concentration of sulfide ions obviously increases the passivation current, but the pitting potential changes little, which indicates that the two types of ions may have different effects on destructing passive film of stainless steel. The critical concentration of chloride ions causing anodic potential curve's change in simulated cooling water is 250 mg/L for 316 L stainless. The effect of sulfide ions on the corrosion resistance behavior of stainless steel is increasing the passivation current density Ip. The addition of 6mg/L sulfide ions to the solution makes Ip of 316 L increase by 0.5 times.

  4. Development of a multiphysics analysis system for sodium-water reaction phenomena in steam generators of sodium-cooled fast reactors

    Science.gov (United States)

    Uchibori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki

    2015-12-01

    A multiphysics analysis system for sodium-water reaction phenomena in a steam generator of sodium-cooled fast reactors was newly developed. The analysis system consists of the mechanistic numerical analysis codes, SERAPHIM, TACT, and RELAP5. The SERAPHIM code calculates the multicomponent multiphase flow and sodium-water chemical reaction caused by discharging of pressurized water vapor. Applicability of the SERAPHIM code was confirmed through the analyses of the experiment on water vapor discharging in liquid sodium. The TACT code was developed to calculate heat transfer from the reacting jet to the adjacent tube and to predict the tube failure occurrence. The numerical models integrated into the TACT code were verified through some related experiments. The RELAP5 code evaluates thermal hydraulic behavior of water inside the tube. The original heat transfer correlations were corrected for the tube rapidly heated by the reacting jet. The developed system enables evaluation of the wastage environment and the possibility of the failure propagation.

  5. 循环冷却水浊度偏高原因及处理%Causes and Treatment of High Turbidity of Circulating Cooling Water

    Institute of Scientific and Technical Information of China (English)

    普宏波; 何应贵

    2016-01-01

    循环冷却水浊度是循环水装置运行中重要指标之一。对水富云天化有限公司有机生产装置循环冷却水浊度偏高的原因进行分析,并提出相应对策。%Water turbidity of circulating cooling water is one of the important indicators of plant opera-tion.The causes of high turbidity in Shuifu Yuntianhua Ltd were analyzed,and the corresponding counter-measures were proposed.

  6. 采用风机盘管的办公建筑冷却塔供冷温度计算与分析%Analysis and Calculation of the cold Water Supply Temperature of Free Cooling by Cooling Tower in the Office Building with Fan Coil

    Institute of Scientific and Technical Information of China (English)

    贺江波

    2014-01-01

    选取办公建筑内的一个计算单元为分析对象,建立了办公建筑的冷却塔供冷温度计算模型,分析了室内冷却塔供冷工况下冷源侧供冷温度的影响因素,提出了办公建筑冷却塔供冷系统运行的适宜运行工况。%Selected an calculation unit in the office building for analysis, Setup an calculation model for the cold water supply temperature of free cooling by cooling tower , analysis the influence factor of the cooling tower side to the old water supply temperature, proposed an suitable working condition for the free cooling by cooling tower.

  7. Alternative cooling water flow path for RHR heat exchanger and its effect on containment response during extended station blackout for Chinshan BWR-4 plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw

    2016-04-15

    Highlights: • Motivating alternative RHR heat exchanger tube-side flow path and determining required capacity. • Calculate NSSS and containment response during 24-h SBO for Chinshan BWR-4 plant. • RETRAN and GOTHIC models are developed for NSSS and containment, respectively. • Safety relief valve blowdown flow and energy to drywell are generated by RETRAN. • Analyses are performed with and without reactor depressurization, respectively. - Abstract: The extended Station Blackout (SBO) of 24 h has been analyzed with respect to the containment response, in particular the suppression pool temperature response, for the Chinshan BWR-4 plant of MARK-I containment. The Chinshan plant, owned by Taiwan Power Company, has twin units with rated core thermal power of 1840 MW each. The analysis is aimed at determining the required alternative cooling water flow capacity for the residual heat removal (RHR) heat exchanger when its tube-side sea water cooling flow path is blocked, due to some reason such as earthquake or tsunami, and is switched to the alternative raw water source. Energy will be dissipated to the suppression pool through safety relief valves (SRVs) of the main steam lines during SBO. The RETRAN model is used to calculate the Nuclear Steam Supply System (NSSS) response and generate the SRV blowdown conditions, including SRV pressure, enthalpy, and mass flow rate. These conditions are then used as the time-dependent boundary conditions for the GOTHIC code to calculate the containment pressure and temperature response. The shaft seals of the two recirculation pumps are conservatively assumed to fail due to loss of seal cooling and a total leakage flow rate of 36 gpm to the drywell is included in the GOTHIC model. Based on the given SRV blowdown conditions, the GOTHIC containment calculation is performed several times, through the adjustment of the heat transfer rate of the RHR heat exchanger, until the criterion that the maximum suppression pool temperature

  8. Probabilistic Fracture Mechanics Analysis of Boling Water Reactor Vessel for Cool-Down and Low Temperature Over-Pressurization Transients

    Directory of Open Access Journals (Sweden)

    Jeong Soon Park

    2016-04-01

    Full Text Available The failure probabilities of the reactor pressure vessel (RPV for low temperature over-pressurization (LTOP and cool-down transients are calculated in this study. For the cool-down transient, a pressure–temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition (RTNDT. The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.

  9. Water-column cooling and sea surface salinity increase in the upwelling region off central-south Chile driven by a poleward displacement of the South Pacific High

    Science.gov (United States)

    Schneider, Wolfgang; Donoso, David; Garcés-Vargas, José; Escribano, Rubén

    2017-02-01

    Here we present results of direct observations of seawater temperature and salinity over the continental shelf off central-south Chile that shows an unprecedented cooling of the entire water column and an increase in upper layer salinity during 2002 to 2013. We provide evidence that this phenomenon is related to the intensification but mostly to a recent southward displacement of the South Pacific High over the same period, from 2007 on. This in turn has accelerated alongshore, equatorward, subtropical coastal upwelling favorable winds, particularly during winter, injecting colder water from below into the upper water column. Consequently, the environmental conditions on the shelf off central-south Chile shifted from a warmer (fresher) to a cooler (saltier) phase; water column temperature dropped from 11.7 °C (2003-2006) to 11.3 °C (2007-2012) and upper layer salinity rose by 0.25; water column stratification gradually decreased. The biological impacts of such abrupt cooling are apparently already happening in this coastal ecosystem, as recent evidence shows substantial changes in the plankton community and negative trends in zooplankton biomass over the same period.

  10. Tartaric Acid as a Non-toxic and Environmentally-Friendly Anti-scaling Material for Using in Cooling Water Systems: Electrochemical and Surface Studies

    Science.gov (United States)

    Asghari, Elnaz; Gholizadeh-Khajeh, Maryam; Ashassi-Sorkhabi, Habib

    2016-10-01

    Because of the major limitations in drinking water resources, the industries need to use unprocessed water sources for their cooling systems; these water resources contain major amount of hardening cations. So, mineral scales are formed in cooling water systems during the time and cause major problems. The use of green anti-scaling materials such as carboxylic acids is considered due to their low risks of environmental pollution. In the present work, the scale inhibition performance of tartaric acid as a green organic material was evaluated. Chemical screening tests, cathodic and anodic voltammetry measurements and electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FESEM), energy-dispersive x-ray and x-ray diffraction, were used for the evaluation of the scale inhibition performance. The results showed that tartaric acid can prevent calcium carbonate precipitation significantly. The hard water solution with 2.0 mM of tartaric acid indicated the highest scale inhibition efficiency (ca. 68%). The voltammetry, EIS and FESEM results verified that tartaric acid can form smooth and homogeneous film on steel surface through formation of Fe(III)-tartrate complexes and retard the local precipitation of calcium carbonate deposits.

  11. Energy Performance of Water-based and Air-based Cooling Systems in Plus-energy Housing

    DEFF Research Database (Denmark)

    Andersen, Mads E.; Schøtt, Jacob; Kazanci, Ongun Berk

    2016-01-01

    Energy use in buildings accounts for a large part of the energy use globally and as a result of this, international building energy performance directives are becoming stricter. This trend has led to the development of zero-energy and plus-energy buildings. Some of these developments have led...... achieved and cooling might be needed even in residential buildings. This paper focuses on the cooling operation of a detached, single-family house, which was designed as a plus-energy house in Denmark. The simulation model of the house was created in IDA ICE and it was validated with measurement data...... energy use reductions. The coupling of radiant floor with the ground enables to obtain “free” cooling, although the brine pump power should be kept to a minimum to fully take advantage of this solution. By implementing a ground heat exchanger instead of the heat pump and use the crawl-space air as intake...

  12. Argentinean Society of Experimental Pharmacology: Brief history and main scientific contributions to the discipline.

    Science.gov (United States)

    Sánchez Bruni, Sergio F; Acosta, Gabriela B

    2016-07-01

    Argentina Biomedical Science has been historically strong. The development of Human and Veterinary Pharmacology in our country as a pivotal discipline has been acknowledged worldwide because of the quality of its contributions. Argentinean Society of Experimental Pharmacology (SAFE) is a non- profit association whose research fields include Experimental and Clinical Pharmacology. SAFE main goals are described as follow (a) To meet active researchers for studying concerns regarding Experimental and Clinical Pharmacology (b) To launch an initiative for development of the discipline in mainly our country and other collaborative countries worldwide (c) To spread the pharmacological know-how obtained from different research teams (d) To strengthen relations between pharmacologists (e) To facilitate the presentation and discussion of scientific papers. This current article shows the SAFE's more important scientific contribution to pharmacology through its former research scientists to the present.

  13. Incomplete hemolytic-uremic syndrome in Argentinean children with bloody diarrhea.

    Science.gov (United States)

    López, E L; Contrini, M M; Devoto, S; de Rosa, M F; Graña, M G; Aversa, L; Gómez, H F; Genero, M H; Cleary, T G

    1995-09-01

    Argentina has an exceptionally high frequency of hemolytic-uremic syndrome (HUS). We sought to define prospectively the role of verocytotoxins (Shiga-like toxins [SLTs]) in 254 Argentinean children with grossly bloody diarrhea during spring and summer. Free fecal SLTs (I/II) and/or DNA probe-positive isolates were found in 99 (39%) of the children. During the follow-up period, HUS developed in 6 patients (4 with evidence of recent SLT infection based on stool studies); another 14 patients had some, but not all, of the abnormalities seen in typical HUS. The development of HUS or incomplete HUS in these children was significantly associated with recent SLT-Escherichia coli infection (p = 0.024). The high incidence of SLT-associated bloody diarrhea in Argentina explains, at least partially, the unusually high frequency of HUS. Our data indicate that incomplete forms of HUS may be common in patients with SLT-associated bloody diarrhea.

  14. Organophilic bentonites based on Argentinean and Brazilian bentonites: part 2: potential evaluation to obtain nanocomposites

    Directory of Open Access Journals (Sweden)

    L. B. Paiva

    2012-12-01

    Full Text Available This work describes the preparation of composites of polypropylene and organophilic bentonites based on Brazilian and Argentinean bentonites. During the processing of the samples in a twin screw microextruder, torque and pressures of the extruder were accompanied and the viscosity values were calculated. No significant changes in the torque, pressure and viscosity were found for composites prepared with different bentonites. The samples were characterized by XRD and TEM to evaluate the structure and dispersion of the organophilic bentonites. Composites with exfoliated, partially exfoliated and intercalated structures were obtained and correlations between the intrinsic properties of the sodium clays and organophilic bentonites and their influence on the composites were studied. The cation exchange capacity of the sodium bentonites and the swelling capacity of the organophilic bentonites were the most important properties to obtain exfoliated structures in composites. All bentonites showed the potential to obtain polymer nanocomposites, but the ones from Argentina displayed the best results.

  15. In Vitro Evaluation of Antiprotozoal and Antiviral Activities of Extracts from Argentinean Mikania Species

    Directory of Open Access Journals (Sweden)

    Laura C. Laurella

    2012-01-01

    Full Text Available The aim of this study was to investigate the antiprotozoal and antiviral activities of four Argentinean Mikania species. The organic and aqueous extracts of Mikania micrantha, M. parodii, M. periplocifolia, and M. cordifolia were tested on Trypanosoma cruzi epimastigotes, Leishmania braziliensis promastigotes, and dengue virus type 2. The organic extract of M. micrantha was the most active against T. cruzi and L. braziliensis exhibiting a growth inhibition of 77.6±4.5% and 84.9±6.1%, respectively, at a concentration of 10 μg/ml. The bioguided fractionation of M. micrantha organic extract led to the identification of two active fractions. The chromatographic profile and infrared analysis of these fractions revealed the presence of sesquiterpene lactones. None of the tested extracts were active against dengue virus type 2.

  16. Single Party Cabinets and Presidential Democracies: insights from the Argentinean case

    Directory of Open Access Journals (Sweden)

    Marcelo CAMERLO

    2013-07-01

    Full Text Available The study of presidential cabinets has mainly focused on coalitional formations, distinguishing individual ministers in terms of their party affiliation particularly at cabinet instauration and termination. This article moves the focus to single-party cabinets to study minister appointment in situations where the legislative support is less relevant. A model of analysis that observes extra-partisan affiliations, individual technical skills and personal liaison with the president is proposed and exploratory applied to the Argentinean case. The results suggest that well positioned presidents tend to apply closer strategies of portfolio distribution, with levels of institutionalization that depends on the president’s party organization and the president’s style of leadership.

  17. Dynamics and genesis of calcic accumulations in soils and sediments of the Argentinean Pampa

    Institute of Scientific and Technical Information of China (English)

    Alsu Kuznetsova; Olga Khokhlova

    2015-01-01

    abstract Micromorphology of calcic accumulations (calcite, whewellite and gypsum) and geochemical indices were considered as indicators of genesis and evolution of pedogenic accumulations in soils and paleosediments of the Argentinean Pampa. Two groups of separate and independent calcic accumula-tions were studied using scanning electron microscopy:(i) in situ Argiudolls, reflecting the current soil formation; (ii) in the layers of calcrete (locally named tosca), reflecting the past environments and conditions of these layers sedimentation. New pedogenic gypsum accumulations in Argiudolls were described and possible ways of their formation were suggested. Combined analyses of morphology of carbonate accumulations and geochemical indices in different horizons of Argiudolls and layers of tosca showed that the tosca is paleopedocomplex with complicated formation history. Influence of current environment on tosca morphology is absent, so it is possible to use these pedofeatures for paleor-econstructions in further studying.

  18. Experimental and Numerical Investigation of the Effect of Process Conditions on Residual Wall Thickness and Cooling and Surface Characteristics of Water-Assisted Injection Molded Hollow Products

    Directory of Open Access Journals (Sweden)

    Hyungpil Park

    2015-01-01

    Full Text Available Recently, water-assisted injection molding was employed in the automobile industry to manufacture three-dimensional hollow tube-type products with functionalities. However, process optimization is difficult in the case of water-assisted injection molding because of the various rheological interactions between the injected water and the polymer. In this study, the boiling phenomenon that occurs because of the high melt temperature when injecting water and the molding characteristics of the hollow section during the water-assisted injection process were analyzed by a water-assisted injection molding analysis. In addition, the changes in the residual wall thickness accompanying changes in the process conditions were compared with the analysis results by considering water-assisted injection molding based on gas-assisted injection molding. Furthermore, by comparing the cooling characteristics and inner wall surface qualities corresponding to the formation of the hollow section by gas and water injections, a water-assisted injection molding technique was proposed for manufacturing hollow products with functionality.

  19. Blade-to-coolant heat-transfer results and operating data from a natural-convection water-cooled single-stage turbine

    Science.gov (United States)

    Diaguila, Anthony J; Freche, John C

    1951-01-01

    Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.

  20. Rational cooling water system for a large blast furnace hearth%大型高炉合理炉缸冷却制度

    Institute of Scientific and Technical Information of China (English)

    宁晓钧; 左海滨; 张建良; 杨天钧

    2012-01-01

    Since the temperature distribution and erosion of blast furnace hearth are directly affected by cooling system,a rational cooling water system is the assurance for long campaign life of large blast furnace.Combined with a 4 000m3 blast furnace,physical and mathematical models of temperature fields of blast furnace hearth and bottom were built according to heat transfer theory.Two different hearth cooling systems,namely "low water capacity and large temperature difference" and "large water capacity and small temperature difference",are both investigated by modeling and numerical simulation.Effects of different cooling systems on hearth temperature field,hearth erosion and blast furnace life are also analyzed.The results indicate that during the initial period with thicker brick lining,effects of different cooling systems on blast furnace temperature distribution are nearly the same.As the brick lining gradually becomes thinner,different cooling systems have much different effects on temperature distribution.When the brick lining is eroded to a certain level,even the best cooling system is of no use,but "large water capacity and small temperature difference" and enhanced cooling measures will slow down the erosion and prolong the campaign life.%合理的炉缸冷却制度是保证大型高炉长寿的基础,不同冷却制度对高炉炉缸的温度分布和侵蚀状况具有直接影响.结合某4000 m3级高炉,根据传热学理论建立了高炉炉缸、炉底温度场物理模型和数学模型,通过数值模拟对"大水量、小温差"和"小水量、大温差"这两种不同炉缸冷却制度进行了研究,分析了不同冷却制度对炉缸温度场、炉缸侵蚀状况及高炉寿命的影响.结果表明,在炉役初期砖衬较厚时,不同冷却制度对炉内温度分布的影响区别不大;随着砖衬的不断减薄,不同冷却制度对炉内温度分布的影响逐渐明显;当砖衬侵蚀到一定程度后,再好的冷却

  1. Energy saving modification for cooling tower by using water turbine%利用水轮机对冷却塔进行节能改造

    Institute of Scientific and Technical Information of China (English)

    李文祥

    2015-01-01

    This paper explains the energy saving principles and advantages of electric fan of large scale cooling tower,and introduces the design procedure,modification project,data calculation and analysis,and energy saving calculation as well as static payback time of mixed flow water turbine special for cooling tower instead of motor. After modification,energy-saving purpose is achieved.%阐述了大型冷却塔电动风机节能改造的原理和优点,介绍了以冷却塔专用混流式水轮机取代电机的设计过程、改造工程、数据计算及分析、节能计算、静态投资回收期等,改造后达到了节能目的。

  2. Energy savings based on solar heating and improved cooling of the district heating water; Energibesparelser baseret paa solvarme og bedre afkoeling af fjernvarmevandet. Projektrapport

    Energy Technology Data Exchange (ETDEWEB)

    Fafner, K.; Kristjansson, H.; Hansen, Karl Erik

    2009-08-15

    The report analyses and compares the potential for savings in the heat supply, namely use of solar heating and better cooling of the circulating water in the district heating system. The analyses shows that better cooling in the users' heating systems, i.e. lower district heating temperature, should have higher priority than installation of a solar heating system. The report also demonstrates that solar heating continues to have a large un-utilized potential in the Danish heat supply in general, but for the individual building owner installation of a solar heating system will be far more expensive than buying a part of a large-scale solar heating system. However, lowering the return temperature in the district heating transmission pipes is economically more attractive for the building owners than solar heating.

  3. A Review of Common Problems in Design and Installation of Water Spray Cooling and Low Expansion Foam System to Protect Storage Tanks Containing Hydrocarbons Against Fires

    Directory of Open Access Journals (Sweden)

    Iraj Alimohammadi

    2015-12-01

    Full Text Available Tank fires are rare but carry significant potential risk to life and property. For this reason fire protection of tanks is critical. Fixed Low expansion foam and water spray cooling systems are one of the most effective and economical ways to reduce damages to a tank from fire. Such systems are currently installed in many companies but are not effective enough and require involvement of firefighters which in turn threaten their lives. This paper studies in a systematic way the problems of foam and cooling systems currently installed in a few domestic companies which operate storage tanks with focus on floating and fixed roof atmospheric tanks containing hydrocarbons and offers possible solutions for more efficient installation, design and operation of such systems.

  4. 射流式碳化硅水冷镜数值模拟%Numerical Simulation of Water Jet Cooled SiC Mirror

    Institute of Scientific and Technical Information of China (English)

    李斌; 焦路光; 刘亮; 李兰; 周琼; 袁圣付; 刘文广

    2011-01-01

    将射流水冷技术应用到高能激光器反射镜的冷却中,设计了射流式碳化硅水冷镜.利用通用有限元分析软件ANSYS的流体分析模块FLOTRAN,建立了流体对流换热系数和压力计算的二维模型,在验证模型可靠性的基础上计算了一定参数下的换热系数和压力分布.利用ANSYS中的多物理场分析模块,建立了水冷镜形变计算的三维模型,计算了相应的镜体温度和形变分布,比较了不同材料和不同类型水冷镜的性能.计算结果表明,射流式碳化硅水冷镜可以获得很小的镜面形变,同时具有结构简单、冷却均匀性好、抗压性好等优点,在高能激光器中具有较广阔的应用前景.%Jet cooling technology is used in mirror cooling of high power lasers and water jet cooled mirror is designed based on this. 2D model is built and validated to calculate the convective heat transfer coefficient and pressure of liquid under certain parameters by fluid analysis module FLOTRAN in finite element analysis software ANSYS. 3D model is built to calculate corresponding temperature and deformation distribution of the mirror by the module of multi-physics in ANSYS, and the performance comparisons of different materials and different cooling methods are made. The results show that water jet cooled SiC mirror exhibits small mirror deformation, simple structure,good cooling uniformity and good pressure characteristic, which has great prospects in the application of high power lasers.

  5. Theoretical analysis of the performance of different cooling strategies with the concept of cool exergy

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air for the v......The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air......-water, etc.) and indoor terminal units, only with a minimized demand. The water-based floor cooling system performed better than the air-based cooling system; when an air-to-water heat pump was used as the cooling source, the required exergy input was 28% smaller for the floor cooling system. The auxiliary...... exergy input of air-based systems was significantly larger than the water-based systems. The use of available cool exergy in the crawl-space resulted in 54% and 29% smaller exergy input to the power plant for the air-based and water-based cooling systems, respectively. For floor cooling, the exergy input...

  6. Reduced-scale water test of natural circulation for decay heat removal in loop-type sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, T., E-mail: murakami@criepi.denken.or.jp [Central Research Institute of Electric Power Industry, 1646 Abiko, Chiba (Japan); Eguchi, Y., E-mail: eguchi@criepi.denken.or.jp [Central Research Institute of Electric Power Industry, 1646 Abiko, Chiba (Japan); Oyama, K., E-mail: kazuhiro_oyama@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 2-34-17 Jinguumae, Shibuya, Tokyo (Japan); Watanabe, O., E-mail: osamu4_watanabe@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 2-34-17 Jinguumae, Shibuya, Tokyo (Japan)

    2015-07-15

    Highlights: • The natural circulation characteristics of a loop-type SFR are examined by a water test. • The performance of decay heat removal system is evaluated using a similarity law. • The effects of flow deviation in the parallel piping of a primary loop are clarified. • The reproducibility of the natural circulation test is confirmed. - Abstract: Water tests of a loop-type sodium-cooled fast reactor have been conducted to physically evaluate the natural circulation characteristics. The water test apparatus was manufactured as a 1/10-scale mock-up of the Japan Sodium-Cooled Fast Reactor, which adopts a decay heat removal system (DHRS) utilizing natural circulation. Tests simulating a variety of events and operation conditions clarified the thermal hydraulic characteristics and core-cooling performance of the natural circulation in the primary loop. Operation conditions such as the duration of the pump flow coast-down and the activation time of the DHRS affect the natural circulation characteristics. A long pump flow coast-down cools the upper plenum of the reactor vessel (RV). This causes the loss of the buoyant force in the RV. The test result indicates that a long pump flow coast-down tends to result in a rapid increase in the core temperature because of the loss of the buoyant force. The delayed activation of the DHRS causes a decrease in the natural circulation flow rate and a temperature rise in the RV. Flow rate deviation and a reverse flow appear in the parallel cold-leg piping in some events, which cause thermal stratification in the cold-leg piping. The DHRS prevents the core temperature from fatally rise even for the most severe design-basis event, in which sodium leakage in a secondary loop of the DHRS and the opening failure of a single damper of the air cooler occur simultaneously. In the water test for the case of siphon break in the primary loop, which is one of the design extension conditions, a circulation flow consisting of ascendant

  7. 城市中水用于电厂循环冷却水问题探讨%Study on Problems of Reclaimed Water as Circulatory Cooling Water Application in Power Plant

    Institute of Scientific and Technical Information of China (English)

    张贺满

    2012-01-01

    Summarized the present situation of reclaimed water as circulating cooling system in domestic and international, analyzed the recycling economy, introduced several kinds of reclaimed water reuse technology, comprehensive analysis of reclaimed water reuse existing problems and solving measures.%简述了国内外中水回用于循环冷却系统的现状,分析了中水回用的经济性,介绍了几种中水回用技术,综合分析提出中水回用存在的问题并给出解决措施。

  8. Steam-Electric Power-Plant-Cooling Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  9. Cooling tower waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

    1998-05-01

    At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

  10. Gas and Liquid Entrainment in Recirculating Cooling Water System%循环冷却水系统的气液夹带问题分析

    Institute of Scientific and Technical Information of China (English)

    蔡玉颖

    2012-01-01

    Water-saving and emission reduction was an important portion as well as the irresistible trend of industrial development.The recirculating cooling water system and water source was briefly introduced according to the industrial practice.The phenomenon of gas and liquid entrainment and its mechanism and influencing factors were analyzed,and the novel control techniques were reviewed.%节水减排是工业发展的必然趋势和重要组成部分。本文从生产实际出发,在对循环冷却水系统及水源进行介绍的基础上,对气体液滴夹带现象及其机理、影响因素进行了分析,并对新型气液夹带控制技术进行了综述。

  11. Application of vacuum steam systems to hot water district heating and cooling systems; Phase 2, System design and installation: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-01-01

    Pequod Associates, Inc. and District Energy St. Paul, Inc. installed a pilot project of an innovative District Heating technology through a contract with the US Department of Energy: Application of Vacuum Steam Systems to Hot Water District Heating and Cooling Systems FG01-88CE26560. This applied research was funded by the Energy Research and Development Act (94-163) for District Heating and Cooling Research. The Department of Energy recognizes the importance of developing low-cost conversion techniques for hot water district heating systems. The experimental design is an intervention technique that permits hot water district heating systems to connect to buildings equipped with steam heating systems. This method can substantially reduce conversion cost in many older buildings. The method circulates moist hot air as a heating medium under atmospheric and vacuum conditions in standard steam radiators and steam heating coils. The system operates with heat exchangers and blower/receiver package. The pilot project involved the installation of such a system in an office building located at 310 Cedar Street, St. Paul, Minnesota. The installation enabled District Energy to provide service to a building that otherwise could not be converted to district heating without major system renovations. If the operating results of the pilot project are favorable, the technology cab be adopted by many district heating systems to lower conversion costs and increase market penetration. Among the additional benefits from this technology are eliminating old, inefficient boilers, lower maintenance costs and improved fuel efficiency.

  12. An Analysis Method of Cooling Tower Supplemental Water Cost%冷却塔补水成本的一种分析方法

    Institute of Scientific and Technical Information of China (English)

    唐毅

    2014-01-01

    The paper proposes the idea of converting the cooling tower supplement water of central air conditioning system to the corresponding electricity energy cost , as well as the concept of electrical equivalent price in water sup-plement cost.According to research , it is found that the water prices among different cities in China are quite dis-tinct, which suggests that the operation cost of cooling tower needs to be fully considered in air conditioning system selection.%本文提出了将集中空调系统冷却塔补水量换算成同等电费的电量来参与空调系统运行能耗成本计算的思路,提出了水的电当量概念。通过对比全国部分城市的水价,发现各城市之间水价差异大,认为在选择空调方案时,应充分重视冷却塔补水的运行成本。

  13. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Gowtham Mohan

    2014-10-01

    Full Text Available Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a electricity by combining steam rankine cycle using heat recovery steam generator (HRSG; (b clean water by air gap membrane distillation (AGMD plant; and (c cooling by single stage vapor absorption chiller (VAC. The flue gases liberated from the gas turbine power cycle is the prime source of energy for the tri-generation system. The heat recovered from condenser of steam cycle and excess heat available at the flue gases are utilized to drive cooling and desalination cycles which are optimized based on the cooling energy demands of the villas. Economic and environmental benefits of the tri-generation system in terms of cost savings and reduction in carbon emissions were analyzed. Energy efficiency of about 82%–85% is achieved by the tri-generation system compared to 50%–52% for combined cycles. Normalized carbon dioxide emission per MW·h is reduced by 51.5% by implementation of waste heat recovery tri-generation system. The tri-generation system has a payback period of 1.38 years with cumulative net present value of $66 million over the project life time.

  14. Optimization of convective heat transfer coefficient in water jet cooled mirror%射流式水冷镜对流换热系数的优化

    Institute of Scientific and Technical Information of China (English)

    李斌; 焦路光; 刘亮; 李兰; 周琼; 袁圣付; 刘文广

    2011-01-01

    介绍了射流水冷技术并将其应用到高能激光器反射镜的冷却中,设计了射流式水冷镜.采用计算流体力学的方法,利用通用有限元软件ANSYS的流体分析模块FLOTRAN对单孔内射流进行了数值模拟,详细讨论了各孔参数对换热性能的影响.实现了孔参数的优化.结果表明:在水冷镜中采用射流技术可以获得很好的对流换热效果,换热系数可达100 KW/(m·K)以上,且具有结构简单、可控性强等特点.%The jet cooling technology was introduced and used in the cooling of high power laser mirror, then the water jet cooled mirror was designed.Computational fluid dynamics method was adopted to simulate the jet in a hole by the fluid analysis module FLOTRAN of the finite element analysis software ANSYS, then the influence on the capability of heat transfer of the parameters of the hole was discussed and optimization of the parameters was achieved.The results show that great capability of heat transfer can be achieved by using the jet cooling technology, with simple structure and good controllability, and the heat transfer coefficient can be higher than 100 kW/(m2 · K).

  15. Workshop 4 Converter cooling & recuperation

    Science.gov (United States)

    Iles, Peter; Hindman, Don

    1995-01-01

    Cooling the PV converter increases the overall TPV system efficiency, and more than offsets the losses incurred in providing cooling systems. Convective air flow methods may be sufficient, and several standard water cooling systems, including thermo-syphon radiators, capillary pumps or microchannel plates, are available. Recuperation is used to increase system efficiency, rather than to increase the emitter temperature. Recuperators operating at comparable high temperatures, such as in high temperature turbines have worked effectively.

  16. PSYCHOMETRIC PROPERTIES OF THE THREE PATHWAYS TO WELL-BEING SCALE IN A LARGE SAMPLE OF ARGENTINEAN ADOLESCENTS.

    Science.gov (United States)

    Góngora, Vanesa C; Castro Solano, Alejandro

    2015-08-01

    The Authentic Happiness Theory considers that well-being can be reached by three main pathways: a pleasant life, an engaged life, or a meaningful life. This study investigates the psychometric properties of the Three Pathways to Well-being scale in Argentinean adolescents and compares that to prior results for Argentinean adults. A sample of 255 Argentinean adolescent students (110 boys, 145 girls) aged between 13 and 18 years (M age = 15.5, SD = 1.6) was used in this study. The participants completed the Spanish versions of the Three Pathways to Well-being scale, the Meaning in Life Questionnaire, the Satisfaction With Life Scale, and the Personal Wellbeing Index. Confirmatory factor analyses verified the three-factor structure of the test, accounting for 46% of the variance. The internal consistencies were α = .76 for the pleasant life, α = .80 for the engaged life, and α = .70 for the meaningful life. Concurrent validity was examined with the Satisfaction With Life Scale, the Personal Wellbeing Index, and the Meaning in Life Questionnaire, and the engaged life was the pathway most strongly associated with the positive related measures.

  17. Air cooled absorption chillers for solar cooling applications

    Science.gov (United States)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    The chemical composition of a 'best' absorption refrigerant system is identified, and those properties of the system necessary to design hot water operated, air cooled chilling equipment are determined. Air cooled chillers from single family residential sizes into the commercial rooftop size range are designed and operated.

  18. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  19. Free cooling in an urban environment - A lake and ground water distribution network to cover the heating and cooling needs of buildings - Feasibility study for the City of Neuchatel, Switzerland; Freecooling en milieu urbain. Reseau de distribution d'eau de lac et d'eau souterraine pour couvrir les besoins en rafraichissement et en chaleur des batiments. Etude de faisabilite pour la Ville de Neuchatel, Suisse - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Matthey, B.; Affolter, M.

    2009-12-15

    The potential cooling demand in the City of Neuchatel (35,000 inhabitants) is estimated to at least 15 MW. Considering the natural cooling resources available (the Lake of Neuchatel, the Serriere spring, groundwater), these needs can be satisfied without electrical refrigeration equipment. However, the multiplicity of resources and needs implicates the use of multiple and complementary water supply systems: individual wells, multiple building network, lake water distribution network for an entire district. Three exploitation systems to supply cooling water to the center of Neuchatel have been evaluated: lake water, ground water, existing drinking water network. The analysis indicates that the realization of a lake water network for free cooling and heat pumps is economically attractive. In a first step and to meet the short-term demand, the providing of cool water through the existing drinking water network can be considered. In Serriere, the use of the heating and cooling resource of the Serriere river has been evaluated. The results demonstrate the technical and economical feasibility of a heating and cooling water supply network. (authors)

  20. 不同温度水液淬火介质冷却特性的变化规律%Change Laws of Cooling Characteristics of Different Temperature Water

    Institute of Scientific and Technical Information of China (English)

    赵晶; 李勇; 方建飞; 李丽

    2012-01-01

    为了在热处理中更加有效地选择和利用水的冷却能力,利用Ivf smart quench设备测定了不同水液温度时的冷却曲线,并根据冷却曲线上的特征来评价不同温度水液的冷却特性.结果表明:在0~80℃,冷却过程曲线分为3个阶段:膜沸腾阶段、泡沸腾阶段和对流冷却阶段;100℃水的冷却过程曲线无法清晰分辨出冷却过程的3个阶段.随温度的升高,蒸汽膜破裂时的温度递减,对流温度递增,冷却过程曲线右移;最大冷速和达到最大冷速时的温度呈递减的趋势,冷却速度曲线左移;即随着水温的升高,水的冷却能力越低.%In order to conduce to use water cooling ability more effectively in heat treatment, the cooling curve for assessing the water cooling ability was measured using Ivf smart quench equipment, and the cooling characteristics of different temperature water were evaluated according characteristic value. The results show that, at 0-80 °C, cooling process curve is divided into three stages: film boiling stage, bubble boiling stage and convection cooling stage; 100 °C water cooling process curve can not clearly discern the cooling process of three stages. With the increase of temperature, the temperature of the steam film is broken descending, convection temperature increasing, cooling process curve moves to the right. Maximum speed and the temperature of achieving maximum cooling speed both have decrease trends. The cooling speed curve moves to the left. With the increase of temperature, the water cooling ability is lower.