WorldWideScience

Sample records for arenaviridae

  1. Clinical laboratory, virologic, and pathologic changes in hamsters experimentally infected with Pirital virus (Arenaviridae): a rodent model of Lassa fever.

    Science.gov (United States)

    Sbrana, Elena; Mateo, Rosa I; Xiao, Shu-Yuan; Popov, Vsevolod L; Newman, Patrick C; Tesh, Robert B

    2006-06-01

    The clinical laboratory, virologic, and pathologic changes occurring in hamsters after infection with Pirital virus (Arenaviridae) are described. Pirital virus infection in the hamsters was characterized by high titered viremia, leukocytosis, coagulopathy, pulmonary hemorrhage and edema, hepatocellular and splenic necrosis, and marked elevation of serum transaminase levels. All of the animals died within 9 days. The clinical and histopathological findings in the Pirital virus-infected hamsters were very similar to those reported in severe human cases of Lassa fever, suggesting that this new animal model could serve as a low-cost and relatively safe alternative for studying the pathogenesis and therapy of Lassa fever. PMID:16760527

  2. Comparative studies on Mopeia viruses and other Arenaviridae, particularly Lassa virus

    OpenAIRE

    Lloyd, Graham

    1983-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Serologically related arenaviruses have been isolated from West Africa, Mozambique, Zimbabwe and the Central African Republic. Human disease is only associated with the West African isolates. The virulence of Mozambique, Zimbabwe and Central African Republic isolates in humans is not known. This Thesis is an account of work carried out by the author to compare the biological characteristic...

  3. Advanced Vaccine Candidates for Lassa Fever

    OpenAIRE

    Lukashevich, Igor S.

    2012-01-01

    Lassa virus (LASV) is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF). LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever) with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in no...

  4. Pathogenesis of Lassa Fever

    OpenAIRE

    Walker, David H.; Yun, Nadezhda E.

    2012-01-01

    Lassa virus, an Old World arenavirus (family Arenaviridae), is the etiological agent of Lassa fever, a severe human disease that is reported in more than 100,000 patients annually in the endemic regions of West Africa with mortality rates for hospitalized patients varying between 5-10%. Currently, there are no approved vaccines against Lassa fever for use in humans. Here, we review the published literature on the life cycle of Lassa virus with the specific focus put on Lassa fever pathogenesi...

  5. Structural and functional studies of novel mechanisms of Lassa fever virus nucleoprotein in immune suppression, viral RNA transcription and replication

    OpenAIRE

    Qi, Xiaoxuan

    2012-01-01

    Lassa fever virus is one of the most dangerous viruses of arenaviridae family, causing more than 500,000 infections per year in Africa. The fatality rate for hospitalized patients is as high as 20%. Due to the high fatality and lack of efficient licensed drugs and vaccines to treat and prevent, Lassa fever virus is classified as a Category A priority pathogen and biosafety level-4 agent by the Centers for Disease Control and Prevention of the USA. Cases were also found in the Americas a...

  6. Pathogenesis of Lassa fever.

    Science.gov (United States)

    Yun, Nadezhda E; Walker, David H

    2012-10-01

    Lassa virus, an Old World arenavirus (family Arenaviridae), is the etiological agent of Lassa fever, a severe human disease that is reported in more than 100,000 patients annually in the endemic regions of West Africa with mortality rates for hospitalized patients varying between 5-10%. Currently, there are no approved vaccines against Lassa fever for use in humans. Here, we review the published literature on the life cycle of Lassa virus with the specific focus put on Lassa fever pathogenesis in humans and relevant animal models. Advancing knowledge significantly improves our understanding of Lassa virus biology, as well as of the mechanisms that allow the virus to evade the host's immune system. However, further investigations are required in order to design improved diagnostic tools, an effective vaccine, and therapeutic agents. PMID:23202452

  7. Pathogenesis of Lassa Fever

    Directory of Open Access Journals (Sweden)

    David H. Walker

    2012-10-01

    Full Text Available Lassa virus, an Old World arenavirus (family Arenaviridae, is the etiological agent of Lassa fever, a severe human disease that is reported in more than 100,000 patients annually in the endemic regions of West Africa with mortality rates for hospitalized patients varying between 5-10%. Currently, there are no approved vaccines against Lassa fever for use in humans. Here, we review the published literature on the life cycle of Lassa virus with the specific focus put on Lassa fever pathogenesis in humans and relevant animal models. Advancing knowledge significantly improves our understanding of Lassa virus biology, as well as of the mechanisms that allow the virus to evade the host’s immune system. However, further investigations are required in order to design improved diagnostic tools, an effective vaccine, and therapeutic agents.

  8. Pathogenesis of Lassa Fever

    Science.gov (United States)

    Yun, Nadezhda E.; Walker, David H.

    2012-01-01

    Lassa virus, an Old World arenavirus (family Arenaviridae), is the etiological agent of Lassa fever, a severe human disease that is reported in more than 100,000 patients annually in the endemic regions of West Africa with mortality rates for hospitalized patients varying between 5-10%. Currently, there are no approved vaccines against Lassa fever for use in humans. Here, we review the published literature on the life cycle of Lassa virus with the specific focus put on Lassa fever pathogenesis in humans and relevant animal models. Advancing knowledge significantly improves our understanding of Lassa virus biology, as well as of the mechanisms that allow the virus to evade the host’s immune system. However, further investigations are required in order to design improved diagnostic tools, an effective vaccine, and therapeutic agents. PMID:23202452

  9. Galectin-3 is upregulated in activated glia during Junin virus-induced murine encephalitis.

    Science.gov (United States)

    Jaquenod De Giusti, Carolina; Alberdi, Lucrecia; Frik, Jesica; Ferrer, María F; Scharrig, Emilia; Schattner, Mirta; Gomez, Ricardo M

    2011-09-01

    Argentine haemorrhagic fever (AHF) is a systemic febrile syndrome characterized by several haematological and neurological alterations caused by Junín virus (JUNV), a member of the Arenaviridae family. Newborn mice are highly susceptible to JUNV and the course of infection has been associated with the viral strain used. Galectin-3 (Gal-3) is an animal lectin that has been proposed to play an important role in some central nervous system (CNS) diseases. In this study, we analysed Gal-3 expression at the transcriptional and translational expression levels during JUNV-induced CNS disease. We found that Candid 1 strain induced, with relatively low mortality, a subacute/chronic CNS disease with significant glia activation and upregulation of Gal-3 in microglia cells as well as in reactive astrocytes that correlated with viral levels. Our results suggest an important role for Gal-3 in viral-induced CNS disease.

  10. Diagnóstico virológico y molecular de virus transmitidos por roedores. Hantavirus y arenavirus

    Directory of Open Access Journals (Sweden)

    Silvana Levis

    2010-04-01

    Full Text Available Los hantavirus (familia Bunyaviridae y arenavirus (familia Arenaviridae son virus de roedores; cada uno de ellos parece estar estrictamente asociado con una especie de roedor en la que causa una infección persistente y asintomática. En las Américas tienen como reservorios primarios a roedores de la sub-familia Sigmodontinae, y son causantes de síndrome pulmonar por Hantavirus (SPH y fiebres hemorrágicas, respectivamente (1,2. El número de estos virus identificados en los últimos años ha aumentado significativamente; actualmente, el género Hantavirus está compuesto por más de 28 tipos diferentes, mientras que al menos 23 arenavirus conforman el género Arenavirus. Entre los hantavirus asociados con SPH se destacan el virus Sin Nombre en Norteamérica, y los virus Andes, Laguna Negra, Caño Delgadito, Araraquara y Juquitiba, en el cono sur de América, entre otros (2. Los arenavirus asociados a fiebres hemorrágicas reconocidos en Sud América al presente son: Junín (Argentina, Guanarito (Venezuela, Sabiá (Brasil, y Machupo y Chapare (Bolivia (3.

  11. A multivalent and cross-protective vaccine strategy against arenaviruses associated with human disease.

    Directory of Open Access Journals (Sweden)

    Maya F Kotturi

    2009-12-01

    Full Text Available Arenaviruses are the causative pathogens of severe hemorrhagic fever and aseptic meningitis in humans, for which no licensed vaccines are currently available. Pathogen heterogeneity within the Arenaviridae family poses a significant challenge for vaccine development. The main hypothesis we tested in the present study was whether it is possible to design a universal vaccine strategy capable of inducing simultaneous HLA-restricted CD8+ T cell responses against 7 pathogenic arenaviruses (including the lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses, either through the identification of widely conserved epitopes, or by the identification of a collection of epitopes derived from multiple arenavirus species. By inoculating HLA transgenic mice with a panel of recombinant vaccinia viruses (rVACVs expressing the different arenavirus proteins, we identified 10 HLA-A02 and 10 HLA-A03-restricted epitopes that are naturally processed in human antigen-presenting cells. For some of these epitopes we were able to demonstrate cross-reactive CD8+ T cell responses, further increasing the coverage afforded by the epitope set against each different arenavirus species. Importantly, we showed that immunization of HLA transgenic mice with an epitope cocktail generated simultaneous CD8+ T cell responses against all 7 arenaviruses, and protected mice against challenge with rVACVs expressing either Old or New World arenavirus glycoproteins. In conclusion, the set of identified epitopes allows broad, non-ethnically biased coverage of all 7 viral species targeted by our studies.

  12. Advanced vaccine candidates for Lassa fever.

    Science.gov (United States)

    Lukashevich, Igor S

    2012-11-01

    Lassa virus (LASV) is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF). LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever) with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered. PMID:23202493

  13. Advanced Vaccine Candidates for Lassa Fever

    Science.gov (United States)

    Lukashevich, Igor S.

    2012-01-01

    Lassa virus (LASV) is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF). LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever) with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered. PMID:23202493

  14. Advanced Vaccine Candidates for Lassa Fever

    Directory of Open Access Journals (Sweden)

    Igor S. Lukashevich

    2012-10-01

    Full Text Available Lassa virus (LASV is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF. LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered.

  15. The New World arenavirus Tacaribe virus induces caspase-dependent apoptosis in infected cells.

    Science.gov (United States)

    Wolff, Svenja; Groseth, Allison; Meyer, Bjoern; Jackson, David; Strecker, Thomas; Kaufmann, Andreas; Becker, Stephan

    2016-04-01

    The Arenaviridae is a diverse and growing family of viruses that already includes more than 25 distinct species. While some of these viruses have a significant impact on public health, others appear to be non-pathogenic. At present little is known about the host cell responses to infection with different arenaviruses, particularly those found in the New World; however, apoptosis is known to play an important role in controlling infection of many viruses. Here we show that infection with Tacaribe virus (TCRV), which is widely considered the prototype for non-pathogenic arenaviruses, leads to stronger induction of apoptosis than does infection with its human-pathogenic relative Junín virus. TCRV-induced apoptosis occurred in several cell types during late stages of infection and was shown to be caspase-dependent, involving the activation of caspases 3, 7, 8 and 9. Further, UV-inactivated TCRV did not induce apoptosis, indicating that the activation of this process is dependent on active viral replication/transcription. Interestingly, when apoptosis was inhibited, growth of TCRV was not enhanced, indicating that apoptosis does not have a direct negative effect on TCRV infection in vitro. Taken together, our data identify and characterize an important virus-host cell interaction of the prototypic, non-pathogenic arenavirus TCRV, which provides important insight into the growing field of arenavirus research aimed at better understanding the diversity in responses to different arenavirus infections and their functional consequences.

  16. A STAT-1 knockout mouse model for Machupo virus pathogenesis

    Directory of Open Access Journals (Sweden)

    Shurtleff Amy C

    2011-06-01

    Full Text Available Abstract Background Machupo virus (MACV, a member of the Arenaviridae, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics. Methods Mice lacking signal transducer and activator of transcription 1 (STAT-1 were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection. Results We report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection. Conclusions The STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection.

  17. Novel arenavirus sequences in Hylomyscus sp. and Mus (Nannomys setulosus from Cote d'Ivoire: implications for evolution of arenaviruses in Africa.

    Directory of Open Access Journals (Sweden)

    David Coulibaly-N'Golo

    Full Text Available This study aimed to identify new arenaviruses and gather insights in the evolution of arenaviruses in Africa. During 2003 through 2005, 1,228 small mammals representing 14 different genera were trapped in 9 villages in south, east, and middle west of Côte d'Ivoire. Specimens were screened by pan-Old World arenavirus RT-PCRs targeting S and L RNA segments as well as immunofluorescence assay. Sequences of two novel tentative species of the family Arenaviridae, Menekre and Gbagroube virus, were detected in Hylomyscus sp. and Mus (Nannomys setulosus, respectively. Arenavirus infection of Mus (Nannomys setulosus was also demonstrated by serological testing. Lassa virus was not found, although 60% of the captured animals were Mastomys natalensis. Complete S RNA and partial L RNA sequences of the novel viruses were recovered from the rodent specimens and subjected to phylogenetic analysis. Gbagroube virus is a closely related sister taxon of Lassa virus, while Menekre virus clusters with the Ippy/Mobala/Mopeia virus complex. Reconstruction of possible virus-host co-phylogeny scenarios suggests that, within the African continent, signatures of co-evolution might have been obliterated by multiple host-switching events.

  18. Virus like particle-based vaccines against emerging infectious disease viruses.

    Science.gov (United States)

    Liu, Jinliang; Dai, Shiyu; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2016-08-01

    Emerging infectious diseases are major threats to human health. Most severe viral disease outbreaks occur in developing regions where health conditions are poor. With increased international travel and business, the possibility of eventually transmitting infectious viruses between different countries is increasing. The most effective approach in preventing viral diseases is vaccination. However, vaccines are not currently available for numerous viral diseases. Virus-like particles (VLPs) are engineered vaccine candidates that have been studied for decades. VLPs are constructed by viral protein expression in various expression systems that promote the selfassembly of proteins into structures resembling virus particles. VLPs have antigenicity similar to that of the native virus, but are non-infectious as they lack key viral genetic material. VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines. Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses, which may offer effective antiviral protection. Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases. The infectious agents discussed include RNA viruses from different virus families, such as the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Togaviridae families. PMID:27405928

  19. Junín virus infection of human hematopoietic progenitors impairs in vitro proplatelet formation and platelet release via a bystander effect involving type I IFN signaling.

    Science.gov (United States)

    Pozner, Roberto G; Ure, Agustín E; Jaquenod de Giusti, Carolina; D'Atri, Lina P; Italiano, Joseph E; Torres, Oscar; Romanowski, Victor; Schattner, Mirta; Gómez, Ricardo M

    2010-04-15

    Argentine hemorrhagic fever (AHF) is an endemo-epidemic disease caused by Junín virus (JUNV), a member of the arenaviridae family. Although a recently introduced live attenuated vaccine has proven to be effective, AHF remains a potentially lethal infection. Like in other viral hemorrhagic fevers (VHF), AHF patients present with fever and hemorrhagic complications. Although the causes of the bleeding are poorly understood, impaired hemostasis, endothelial cell dysfunction and low platelet counts have been described. Thrombocytopenia is a common feature in VHF syndromes, and it is a major sign for its diagnosis. However, the underlying pathogenic mechanism has not yet been elucidated. We hypothesized that thrombocytopenia results from a viral-triggered alteration of the megakaryo/thrombopoiesis process. Therefore, we evaluated the impact of JUNV on megakaryopoiesis using an in vitro model of human CD34+ cells stimulated with thrombopoietin. Our results showed that CD34+ cells are infected with JUNV in a restricted fashion. Infection was transferrin receptor 1 (TfR1)-dependent and the surface expression of TfR1 was higher in infected cultures, suggesting a novel arenaviral dissemination strategy in hematopoietic progenitor cells. Although proliferation, survival, and commitment in JUNV-infected cultures were normal, viral infection impaired thrombopoiesis by decreasing in vitro proplatelet formation, platelet release, and P-selectin externalization via a bystander effect. The decrease in platelet release was also TfR1-dependent, mimicked by poly(I:C), and type I interferon (IFN alpha/beta) was implicated as a key paracrine mediator. Among the relevant molecules studied, only the transcription factor NF-E2 showed a moderate decrease in expression in megakaryocytes from either infected cultures or after type I IFN treatment. Moreover, type I IFN-treated megakaryocytes presented ultrastructural abnormalities resembling the reported thrombocytopenic NF-E2(-/-) mouse

  20. Isolation of Tacaribe virus, a Caribbean arenavirus, from host-seeking Amblyomma americanum ticks in Florida.

    Directory of Open Access Journals (Sweden)

    Katherine A Sayler

    Full Text Available Arenaviridae are a family of single stranded RNA viruses of mammals and boid snakes. Twenty-nine distinct mammalian arenaviruses have been identified, many of which cause severe hemorrhagic disease in humans, particularly in parts of sub-Saharan Africa, and in Central and South America. Humans typically become infected with an arenavirus through contact with excreta from infected rodents. Tacaribe virus (TCRV is an arenavirus that was first isolated from bats and mosquitoes during a rabies surveillance survey conducted in Trinidad from 1956 to 1958. Tacaribe virus is unusual because it has never been associated with a rodent host and since that one time isolation, the virus has not been isolated from any vertebrate or invertebrate hosts. We report the re-isolation of the virus from a pool of 100 host-seeking Amblyomma americanum (lone star ticks collected in a Florida state park in 2012. TCRV was isolated in two cell lines and its complete genome was sequenced. The tick-derived isolate is nearly identical to the only remaining isolate from Trinidad (TRVL-11573, with 99.6% nucleotide identity across the genome. A quantitative RT-PCR assay was developed to test for viral RNA in host-seeking ticks collected from 3 Florida state parks. Virus RNA was detected in 56/500 (11.2% of surveyed ticks. As this virus was isolated from ticks that parasitize humans, the ability of the tick to transmit the virus to people should be evaluated. Furthermore, reservoir hosts for the virus need to be identified in order to develop risk assessment models of human infection.

  1. Serological Assays Based on Recombinant Viral Proteins for the Diagnosis of Arenavirus Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Masayuki Saijo

    2012-10-01

    Full Text Available The family Arenaviridae, genus Arenavirus, consists of two phylogenetically independent groups: Old World (OW and New World (NW complexes. The Lassa and Lujo viruses in the OW complex and the Guanarito, Junin, Machupo, Sabia, and Chapare viruses in the NW complex cause viral hemorrhagic fever (VHF in humans, leading to serious public health concerns. These viruses are also considered potential bioterrorism agents. Therefore, it is of great importance to detect these pathogens rapidly and specifically in order to minimize the risk and scale of arenavirus outbreaks. However, these arenaviruses are classified as BSL-4 pathogens, thus making it difficult to develop diagnostic techniques for these virus infections in institutes without BSL-4 facilities. To overcome these difficulties, antibody detection systems in the form of an enzyme-linked immunosorbent assay (ELISA and an indirect immunofluorescence assay were developed using recombinant nucleoproteins (rNPs derived from these viruses. Furthermore, several antigen-detection assays were developed. For example, novel monoclonal antibodies (mAbs to the rNPs of Lassa and Junin viruses were generated. Sandwich antigen-capture (Ag-capture ELISAs using these mAbs as capture antibodies were developed and confirmed to be sensitive and specific for detecting the respective arenavirus NPs. These rNP-based assays were proposed to be useful not only for an etiological diagnosis of VHFs, but also for seroepidemiological studies on VHFs. We recently developed arenavirus neutralization assays using vesicular stomatitis virus (VSV-based pseudotypes bearing arenavirus recombinant glycoproteins. The goal of this article is to review the recent advances in developing laboratory diagnostic assays based on recombinant viral proteins for the diagnosis of VHFs and epidemiological studies on the VHFs caused by arenaviruses.

  2. High-resolution structure of the N-terminal endonuclease domain of the Lassa virus L polymerase in complex with magnesium ions.

    Directory of Open Access Journals (Sweden)

    Gregor D Wallat

    Full Text Available Lassa virus (LASV causes deadly hemorrhagic fever disease for which there are no vaccines and limited treatments. LASV-encoded L polymerase is required for viral RNA replication and transcription. The functional domains of L-a large protein of 2218 amino acid residues-are largely undefined, except for the centrally located RNA-dependent RNA polymerase (RdRP motif. Recent structural and functional analyses of the N-terminal region of the L protein from lymphocytic choriomeningitis virus (LCMV, which is in the same Arenaviridae family as LASV, have identified an endonuclease domain that presumably cleaves the cap structures of host mRNAs in order to initiate viral transcription. Here we present a high-resolution crystal structure of the N-terminal 173-aa region of the LASV L protein (LASV L173 in complex with magnesium ions at 1.72 Å. The structure is highly homologous to other known viral endonucleases of arena- (LCMV NL1, orthomyxo- (influenza virus PA, and bunyaviruses (La Crosse virus NL1. Although the catalytic residues (D89, E102 and K122 are highly conserved among the known viral endonucleases, LASV L endonuclease structure shows some notable differences. Our data collected from in vitro endonuclease assays and a reporter-based LASV minigenome transcriptional assay in mammalian cells confirm structural prediction of LASV L173 as an active endonuclease. The high-resolution structure of the LASV L endonuclease domain in complex with magnesium ions should aid the development of antivirals against lethal Lassa hemorrhagic fever.

  3. Los nuevos escenarios de transmisión de la fiebre hemorrágica Argentina desde la introducción de la vacuna a virus junín vivo atenuado (Candid#1: una experiencia en trabajadores golondrinas

    Directory of Open Access Journals (Sweden)

    Ana Briggiler

    2015-01-01

    Full Text Available La fiebre hemorrágica Argentina (FHA es una enfermedad viral aguda grave causada por el virus Junín, de la familia Arenaviridae. El área endémica de la FHA coincide geográficamente con el mayor complejo agroindustrial cerealero de exportación del Argentina. Desde la implementación de la vacunación con Candid#1, se logró una importante reducción de la incidencia y se modificaron los patrones de riesgo. Un estudio previo permitió caracterizar estos cambios e identificar tres escenarios de transmisión: clásico, emergente-reemergente y viajero. Dentro de este último escenario se incluyen los trabajadores migrantes estacionales que se desplazan cada año, principalmente desde la provincia de Santiago del Estero, al área endémica para trabajar en el despanojado de maíz. Con el objetivo de brindar protección a este grupo de trabajadores se inició una campaña de prevención que incluyó: capacitación de personal de salud de esta provincia, educación para la salud e inmunización con vacuna Candid#1. Se vacunaron 3021 trabajadores. Previo a la vacunación, se tomaron muestras de suero en un grupo de 104 voluntarios. Se realizó la detección de anticuerpos neutralizantes específicos para virus Junín en el total de las mismas y 6 (5,76% arrojaron resultado positivo. El inesperado hallazgo de un elevado porcentaje de trabajadores con anticuerpos, nos sugiere la necesidad de valorar varias hipótesis: a que el resultado sea producto de un muestreo no probabilístico; b que podría tratarse de personas que enfermaron en viajes previos, c o que se vacunaron en viajes previos; d considerar esta región como un escenario emergente.

  4. Los nuevos escenarios de transmisión de la fiebre hemorrágica Argentina desde la introducción de la vacuna a virus junín vivo atenuado (Candid#1: una experiencia en trabajadores golondrinas

    Directory of Open Access Journals (Sweden)

    Ana Briggiler

    2015-03-01

    Full Text Available La fiebre hemorrágica Argentina (FHA es una enfermedad viral aguda grave causada por el virus Junín, de la familia Arenaviridae. El área endémica de la FHA coincide geográficamente con el mayor complejo agroindustrial cerealero de exportación del Argentina. Desde la implementación de la vacunación con Candid#1, se logró una importante reducción de la incidencia y se modificaron los patrones de riesgo. Un estudio previo permitió caracterizar estos cambios e identificar tres escenarios de transmisión: clásico, emergente-reemergente y viajero. Dentro de este último escenario se incluyen los trabajadores migrantes estacionales que se desplazan cada año, principalmente desde la provincia de Santiago del Estero, al área endémica para trabajar en el despanojado de maíz. Con el objetivo de brindar protección a este grupo de trabajadores se inició una campaña de prevención que incluyó: capacitación de personal de salud de esta provincia, educación para la salud e inmunización con vacuna Candid#1. Se vacunaron 3021 trabajadores. Previo a la vacunación, se tomaron muestras de suero en un grupo de 104 voluntarios. Se realizó la detección de anticuerpos neutralizantes específicos para virus Junín en el total de las mismas y 6 (5,76% arrojaron resultado positivo. El inesperado hallazgo de un elevado porcentaje de trabajadores con anticuerpos, nos sugiere la necesidad de valorar varias hipótesis: a que el resultado sea producto de un muestreo no probabilístico; b que podría tratarse de personas que enfermaron en viajes previos, c o que se vacunaron en viajes previos; d considerar esta región como un escenario emergente.