WorldWideScience

Sample records for areas vulnerabilities impacts

  1. Territorial Vulnerability Assessment Supporting Risk Managing Coastal Areas Due to Tsunami Impact

    Directory of Open Access Journals (Sweden)

    José Leandro Barros

    2015-09-01

    Full Text Available Portugal’s coastline extends 1187 km. It is characterized by social, economic and physical conditions that differentiate it from the rest of the territory, including population density, location of infrastructure and support of tourism activities. Therefore, it has a significant exposure if a tsunami occurs. Six coastal study sites with varying characteristics were selected for evaluation in this paper, including two core beach-use areas, two residential areas and two industrial areas. These sites are located in the municipalities of Figueira da Foz, Setúbal and Vila do Bispo. The analysis began with the calculation of the potential tsunami inundation area for each site using the 1755 Lisbon tsunami. Next, a methodology distinguished by its multidimensional character was applied to assess local vulnerability to tsunamis. This methodology assesses vulnerabilities associated with morphological, structural, social and tax factors. These four vulnerability components were combined to obtain a Composite Vulnerability Index (CVI, which enabled us to identify the most vulnerable areas and to determine the distinguishing characteristics of each area.

  2. spatially identifying vulnerable areas

    African Journals Online (AJOL)

    The model structure is aimed at understanding the critical vulnerable factors that ... This paper incorporates multiple criteria and rank risk factors. ..... In terms of quantifying vulnerable areas within the country, the analysis is done based on 9 ...

  3. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    Science.gov (United States)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lankao, Patricia; Rosenzweig, Cynthia; Ruth, Mattias; Solecki, William; Tarr, Joel

    2008-01-01

    This slide presentation reviews some of the effects that global change has on urban areas in the United States and how the growth of urban areas will affect the environment. It presents the elements of our Synthesis and Assessment Report (SAP) report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.

  4. Assessment of aquifer intrinsic vulnerability using GIS based Drastic model in Sialkot area, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Saqib Khan

    2016-06-01

    Full Text Available The intrinsic vulnerability of a shallow aquifer of Sialkot is assessed using DRASTIC index method. The information required as input for all seven parameters, i.e. depth to water table, net recharge, aquifer media, soil media, topography, the impact of vadose zone and hydraulic conductivity data were collected from literature surveys and on field surveys. A cumulative vulnerability map was developed using the indices obtained as a result of DRASTIC methodology. The values obtained from DRASTIC model for the study area were between 112 and 151. The area was dominated by medium and moderate vulnerable zones covering an area of 446 km2 and 442 km2 respectively. An area of 79 km2 was covered by the low vulnerable zone while the high vulnerable zone encompassed a total area of 38 km2. Least covered area i-e., 09 km2 was found in the vicinity of the very high vulnerable zone. The validation of the DRASTIC model using the nitrate distribution revealed that very high and high indices have the lower percentage of reliability than of the low to moderate zones as compared with the nitrate distribution in the groundwater.

  5. Environmental impact assessment: Classification of ecosystems with respect to vulnerability for radioactive contamination

    International Nuclear Information System (INIS)

    Blytt, Line Diana

    1999-01-01

    This presentation recommends that an environmental impact assessment should be made ahead of any major action plan in the environment. The final document should point out to the authorities and public that expertise has been systematised in order to predict the effects of an action plan on the environment. This should be done for different scenarios and time scales. A useful tool for an environmental impact assessment is GIS, Geographic Information Systems. It can be used to identify areas and ecosystems that are vulnerable to radioactive contamination. To predict the radiation dose to humans and biota, a vulnerability assessment considers population density, land use, economic resources and the chemical and biological pathways of radionuclides in different ecosystems. Supplemented with knowledge of consumption and dietary habits a vulnerability assessment can be used to identify critical groups and to calculate doses to these groups. For ecosystems, vulnerability can be quantified by using critical loads for radioactive contamination or flux of radionuclides from an area. One criterion for critical load can be that intervention limits for food products should not be exceeded. If the critical load is low, this indicates a high vulnerability. The flux from an area can also identify vulnerability and it can be used to calculate collective dose. The vulnerability approach is a methodology that can be used to select areas that are suitable for treatment, transport and disposal of radioactive waste

  6. Climate Change Vulnerability, Impact, and Adaptation in the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate Change Vulnerability, Impact, and Adaptation in the Lowland and Wetland Areas of Delta State, Nigeria. Project Abstract. Climate change has huge implications for Nigeria and for the rest of the world. This project will enhance knowledge of the key drivers of climate change by creating the Niger Delta regional ...

  7. Rainfall-induced landslide vulnerability Assessment in urban area reflecting Urban structure and building characteristics

    Science.gov (United States)

    Park, C.; Cho, M.; Lee, D.

    2017-12-01

    Landslide vulnerability assessment methodology of urban area is proposed with urban structure and building charateristics which can consider total damage cost of climate impacts. We used probabilistic analysis method for modeling rainfall-induced shallow landslide susceptibility by slope stability analysis and Monte Carlo simulations. And We combined debris flows with considering spatial movements under topographical condition and built environmental condition. Urban vulnerability of landslide is assessed by two categories: physical demages and urban structure aspect. Physical vulnerability is related to buildings, road, other ubran infra. Urban structure vulnerability is considered a function of the socio-economic factors, trigger factor of secondary damage, and preparedness level of the local government. An index-based model is developed to evaluate the life and indirect damage under landslide as well as the resilience ability against disasters. The analysis was performed in a geographic information system (GIS) environment because GIS can deal efficiently with a large volume of spatial data. The results of the landslide susceptibility assessment were compared with the landslide inventory, and the proposed approach demonstrated good predictive performance. The general trend found in this study indicates that the higher population density areas under a weaker fiscal condition that are located at the downstream of mountainous areas are more vulnerable than the areas in opposite conditions.

  8. Application of Social Vulnerability Indicators to Climate Change for the Southwest Coastal Areas of Taiwan

    Directory of Open Access Journals (Sweden)

    Chin-Cheng Wu

    2016-12-01

    Full Text Available The impact of climate change on the coastal zones of Taiwan not only affects the marine environment, ecology, and human communities whose economies rely heavily on marine activities, but also the sustainable development of national economics. The southwest coast is known as the area most vulnerable to climate change; therefore, this study aims to develop indicators to assess social vulnerability in this area of Taiwan using the three dimensions of susceptibility, resistance, and resilience. The modified Delphi method was used to develop nine criteria and 26 indexes in the evaluation, and the analytic hierarchy process method was employed to evaluate the weight of each indicator based on the perspectives of experts collected through questionnaire surveys. The results provide important information pertaining to the vulnerability of the most susceptive regions, the lowest-resistance areas, and the least resilient townships on the southwest coast. The most socially vulnerable areas are plotted based on the present analysis. Experts can consider the vulnerability map provided here when developing adaptation policies. It should be kept in mind that improving the capacities of resistance and resilience is more important than reducing susceptibility in Taiwan.

  9. Australian climate change impacts, adaptation and vulnerability

    International Nuclear Information System (INIS)

    Hennessy, K.; Fitzharris, B.

    2007-01-01

    Full text: Full text: The IPCC Fourth Assessment Report on impacts, adaptation and vulnerability made the following conclusions about Australia (Hennessy et al., 2007): Regional climate change has occurred. Since 1950, there has been 0.7 0 C warming, with more heat waves, fewer frosts, more rain in north-west Australia, less rain in southern and eastern Australia, an increase in the intensity of Australian droughts and a rise in sea level of about 70 mm. Australia is already experiencing impacts from recent climate change. These are now evident in increasing stresses on water supply and agriculture, changed natural ecosystems, and reduced seasonal snow cover. Some adaptation has already occurred in response to observed climate change. Examples come from sectors such as water, natural ecosystems, agriculture, horticulture and coasts. However, ongoing vulnerability to extreme events is demonstrated by substantial economic losses caused by droughts, floods, fire, tropical cyclones and hail. The climate of the 21st century is virtually certain to be warmer, with changes in extreme events. Heat waves and fires are virtually certain to increase in intensity and frequency. Floods, landslides, droughts and storm surges are very likely to become more frequent and intense, and snow and frost are very likely to become less frequent. Large areas of mainland Australia are likely to have less soil moisture. Potential impacts of climate change are likely to be substantial without further adaptation; As a result of reduced precipitation and increased evaporation, water security problems are projected to intensify by 2030 in southern and eastern Australia; Ongoing coastal development and population growth, in areas such as Cairns and south-east Queensland, are projected to exacerbate risks from sea level rise and increases in the severity and frequency of storms and coastal flooding by 2050. Significant loss of biodiversity is projected to occur by 2020 in some ecologically rich

  10. Vulnerability mapping as a tool to manage the environmental impacts of oil and gas extraction.

    Science.gov (United States)

    Esterhuyse, Surina; Sokolic, Frank; Redelinghuys, Nola; Avenant, Marinda; Kijko, Andrzej; Glazewski, Jan; Plit, Lisa; Kemp, Marthie; Smit, Ansie; Vos, A Tascha; von Maltitz, Michael J

    2017-11-01

    Various biophysical and socio-economic impacts may be associated with unconventional oil and gas (UOG) extraction. A vulnerability map may assist governments during environmental assessments, spatial planning and the regulation of UOG extraction, as well as decision-making around UOG extraction in fragile areas. A regional interactive vulnerability map was developed for UOG extraction in South Africa. This map covers groundwater, surface water, vegetation, socio-economics and seismicity as mapping themes, based on impacts that may emanate from UOG extraction. The mapping themes were developed using a normative approach, where expert input during the identification and classification of vulnerability indicators may increase the acceptability of the resultant map. This article describes the development of the interactive vulnerability map for South Africa, where UOG extraction is not yet allowed and where regulations are still being developed to manage this activity. The importance and policy implications of using vulnerability maps for managing UOG extraction impacts in countries where UOG extraction is planned are highlighted in this article.

  11. Groundwater Vulnerability Assessment of the Tarkwa Mining Area ...

    African Journals Online (AJOL)

    In view of the extensive mining in the Tarkwa area, quality of groundwater has become an important issue. This study estimates aquifer vulnerability by applying the SINTACS model which uses seven environmental parameters to evaluate aquifer vulnerability and geographical information system (GIS) in the Tarkwa mining ...

  12. Estimating vegetation vulnerability to detect areas prone to land degradation in the Mediterranean basin

    Science.gov (United States)

    Imbrenda, Vito; Coluzzi, Rosa; D'Emilio, Mariagrazia; Lanfredi, Maria; Simoniello, Tiziana

    2013-04-01

    Vegetation is one of the key components to study land degradation vulnerability because of the complex interactions and feedbacks that link it to soil. In the Mediterranean region, degradation phenomena are due to a mix of predisposing factors (thin soil horizons, low soil organic matter, increasing aridity, etc.) and bad management practices (overgrazing, deforestation, intensification of agriculture, tourism development). In particular, in areas threatened by degradation processes but still covered by vegetation, large scale soil condition evaluation is a hard task and the detection of stressed vegetation can be useful to identify on-going soil degradation phenomena and to reduce their impacts through interventions for recovery/rehabilitation. In this context the use of satellite time series can increase the efficacy and completeness of the land degradation assessment, providing precious information to understand vegetation dynamics. In order to estimate vulnerability levels in Basilicata (a Mediterranean region of Southern Italy) in the framework of PRO-LAND project (PO-FESR Basilicata 2007-2013), we crossed information on potential vegetation vulnerability with information on photosynthetic activity dynamics. Potential vegetation vulnerability represents the vulnerability related to the type of present cover in terms of fire risk, erosion protection, drought resistance and plant cover distribution. It was derived from an updated land cover map by separately analyzing each factor, and then by combining them to obtain concise information on the possible degradation exposure. The analysis of photosynthetic activity dynamics provides information on the status of vegetation, that is fundamental to discriminate the different vulnerability levels within the same land cover, i.e. the same potential vulnerability. For such a purpose, we analyzed a time series (2000-2010) of a satellite vegetation index (MODIS NDVI) with 250m resolution, available as 16-day composite

  13. European information on climate change impacts, vulnerability and adaptation

    Science.gov (United States)

    Jol, A.; Isoard, S.

    2010-09-01

    Vulnerability to natural and technological disasters is increasing due to a combination of intensifying land use, increasing industrial development, further urban expansion and expanding infrastructure and also climate change. At EU level the European Commission's White Paper on adaptation to climate change (published in 2009) highlights that adaptation actions should be focused on the most vulnerable areas and communities in Europe (e.g. mountains, coastal areas, river flood prone areas, Mediterranean, Arctic). Mainstreaming of climate change into existing EU policies will be a key policy, including within the Water Framework Directive, Marine Strategy Framework Directive, Nature protection and biodiversity policies, integrated coastal zone management, other (sectoral) policies (agriculture, forestry, energy, transport, health) and disaster risk prevention. 2010 is the international year on biodiversity and the Conference of Parties of the biodiversity convention will meet in autumn 2010 (Japan) to discuss amongst other post-2010 strategies, objectives and indicators. Both within the Biodiversity Convention (CBD) and the Climate Change Convention (UNFCCC) there is increasing recognition of the need for integration of biodiversity conservation into climate change mitigation and adaptation activities. Furthermore a number of European countries and also some regions have started to prepare and/or have adopted national adaptation plans or frameworks. Sharing of good practices on climate change vulnerability methods and adaptation actions is so far limited, but is essential to improve such plans, at national, sub national and local level where much of the adaptation action is already taking place and will be expanding in future, also involving increasingly the business community. The EU Clearinghouse on CC impacts, vulnerability and adaptation should address these needs and it is planned to be operational end of 2011. The EEA is expected to have a role in its

  14. Vulnerability analysis and critical areas identification of the power systems under terrorist attacks

    Science.gov (United States)

    Wang, Shuliang; Zhang, Jianhua; Zhao, Mingwei; Min, Xu

    2017-05-01

    This paper takes central China power grid (CCPG) as an example, and analyzes the vulnerability of the power systems under terrorist attacks. To simulate the intelligence of terrorist attacks, a method of critical attack area identification according to community structures is introduced. Meanwhile, three types of vulnerability models and the corresponding vulnerability metrics are given for comparative analysis. On this basis, influence of terrorist attacks on different critical areas is studied. Identifying the vulnerability of different critical areas will be conducted. At the same time, vulnerabilities of critical areas under different tolerance parameters and different vulnerability models are acquired and compared. Results show that only a few number of vertex disruptions may cause some critical areas collapse completely, they can generate great performance losses the whole systems. Further more, the variation of vulnerability values under different scenarios is very large. Critical areas which can cause greater damage under terrorist attacks should be given priority of protection to reduce vulnerability. The proposed method can be applied to analyze the vulnerability of other infrastructure systems, they can help decision makers search mitigation action and optimum protection strategy.

  15. Spatial variation of vulnerability in geographic areas of North Lebanon

    NARCIS (Netherlands)

    Issa, Sahar; van der Molen, I.; Nader, M.R.; Lovett, Jonathan Cranidge

    2014-01-01

    This paper examines the spatial variation in vulnerability between different geographical areas of the northern coastal region of Lebanon within the context of armed conflict. The study is based on the ‘vulnerability of space’ approach and will be positioned in the academic debate on vulnerability

  16. Risk assessment by dynamic representation of vulnerability, exploitation, and impact

    Science.gov (United States)

    Cam, Hasan

    2015-05-01

    Assessing and quantifying cyber risk accurately in real-time is essential to providing security and mission assurance in any system and network. This paper presents a modeling and dynamic analysis approach to assessing cyber risk of a network in real-time by representing dynamically its vulnerabilities, exploitations, and impact using integrated Bayesian network and Markov models. Given the set of vulnerabilities detected by a vulnerability scanner in a network, this paper addresses how its risk can be assessed by estimating in real-time the exploit likelihood and impact of vulnerability exploitation on the network, based on real-time observations and measurements over the network. The dynamic representation of the network in terms of its vulnerabilities, sensor measurements, and observations is constructed dynamically using the integrated Bayesian network and Markov models. The transition rates of outgoing and incoming links of states in hidden Markov models are used in determining exploit likelihood and impact of attacks, whereas emission rates help quantify the attack states of vulnerabilities. Simulation results show the quantification and evolving risk scores over time for individual and aggregated vulnerabilities of a network.

  17. THE VULNERABILITY TO WATER HAZARDS OF URBAN AREA TURDA– CÂMPIA TURZII

    Directory of Open Access Journals (Sweden)

    IOANA URCAN

    2012-12-01

    Full Text Available The vulnerability to water hazards of urban area Turda – Câmpia Turzii. The risk was defined as a social object whose primary component is vulnerability. This paper examines the way in which vulnerability was defined by highlighting its three aspects: physical, technical and social. The vulnerability involves a complex systematic approach especially when cities are analyzed. The economic, social heritage, the environmental elements can all become factors of vulnerability. In this paper the urban areas vulnerable towaterborne hazards, especially floods were mentioned. The means to reduce urban vulnerability were analyzed, highlighting the measures taken by the local communities to mitigate the crisis.

  18. Toward a coupled Hazard-Vulnerability Tool for Flash Flood Impacts Prediction

    Science.gov (United States)

    Terti, Galateia; Ruin, Isabelle; Anquetin, Sandrine; Gourley, Jonathan J.

    2015-04-01

    Flash floods (FF) are high-impact, catastrophic events that result from the intersection of hydrometeorological extremes and society at small space-time scales, generally on the order of minutes to hours. Because FF events are generally localized in space and time, they are very difficult to forecast with precision and can subsequently leave people uninformed and subject to surprise in the midst of their daily activities (e.g., commuting to work). In Europe, FFs are the main source of natural hazard fatalities, although they affect smaller areas than riverine flooding. In the US, also, flash flooding is the leading cause of weather-related deaths most years, with some 200 annual fatalities. There were 954 fatalities and approximately 31 billion U.S. dollars of property damage due to floods and flash floods from 1995 to 2012 in the US. For forecasters and emergency managers the prediction of and subsequent response to impacts due to such a sudden onset and localized event remains a challenge. This research is motivated by the hypothesis that the intersection of the spatio-temporal context of the hazard with the distribution of people and their characteristics across space and time reveals different paths of vulnerability. We argue that vulnerability and the dominant impact type varies dynamically throughout the day and week according to the location under concern. Thus, indices are appropriate to develop and provide, for example, vehicle-related impacts on active population being focused on the road network during morning or evening rush hours. This study describes the methodological developments of our approach and applies our hypothesis to the case of the June 14th, 2010 flash flood event in the Oklahoma City area (Oklahoma, US). Social (i.e. population socio-economic profile), exposure (i.e. population distribution, land use), and physical (i.e. built and natural environment) data are used to compose different vulnerability products based on the forecast location

  19. Mangrove vulnerability index using GIS

    Science.gov (United States)

    Yunus, Mohd Zulkifli Mohd; Ahmad, Fatimah Shafinaz; Ibrahim, Nuremira

    2018-02-01

    Climate change, particularly its associated sea level rise, is major threat to mangrove coastal areas, and it is essential to develop ways to reduce vulnerability through strategic management planning. Environmental vulnerability can be understood as a function of exposure to impacts and the sensitivity and adaptive capacity of ecological systems towards environmental tensors. Mangrove vulnerability ranking using up to 14 parameters found in study area, which is in Pulau Kukup and Sg Pulai, where 1 is low vulnerability and 5 is very high vulnerability. Mangrove Vulnerability Index (MVI) is divided into 3 main categories Physical Mangrove Index (PMI), Biological Mangrove Index (BMI) and Hazard Mangrove Index (HMI).

  20. Beyond Vulnerability Assessment: Impact of Developments toward Local Adaptive Capacity in Kemijen City Village, Semarang City

    Science.gov (United States)

    Jayanimitta, M. E.; Puspasari, D. A.; Widyahantari, R.; Kristina, D.; Ratnaningtyas, T.; Setionurjaya, A.; Anindita, Y. A.

    2018-02-01

    Vulnerability Assessment is usually used for assessing the ability of an area on facing disaster. In previous studies, the study of Vulnerability Assessment applied only quantitative method to show the vulnerability level. Therefore, this study attempts to add information reviews using qualitative method. Kemijen City Village is one of the administrative areas in the northern part of Semarang City affected by climate change. The residents have to adapt it by renovating and elevating their houses and other infrastructures to avoid floods. There are some development programs held by government, NGOs, and corporations such as Banger Polder Development, PLPBK, etc. It is interesting to know how big the vulnerability level of Kemijen on facing flood disasters, then how the projects can affect local adaptive capacity. To answer it, this research uses mixed-method approach. Vulnerability Assessment uses quantitative method by scoring indicators of Exposure, Sensitivity, and Adaptive Capacity, while the development impact uses qualitative method. The data were collected through interviews and FGD conducted in Joint Studio Course between Diponegoro University and University of Hawaii in October 2016. Non-physical programs such as community empowerment have more positive impacts on local adaptive capacity in Kemijen. Community participation is important for environmental sustainability that can not be done in a short time to educate the people.

  1. GIS based Hydrogeological Vulnerability Mapping of Groundwater Resources in Jerash Area-Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Hammouri, N [Department of Earth and Environmental Sciences, Faculty of Natural Resources and Environment, Hashemite University, Zarqa (Jordan); El-Naqa, A [Department of Water Management and Environment, Faculty of Natural Resources and Environment, Hashemite University, Zarqa (Jordan)

    2008-04-15

    This paper presents groundwater vulnerability mapping for Jerash area, north Jordan generated using EPIK and DRASTIC models. These models have been implemented using GIS to delineate groundwater protection zones and to suggest a protection plan to improve groundwater quality of the major springs and wells. Most of the groundwater resources in the study area are polluted and bacteria and nitrate levels are high. Different sources of groundwater pollution have been identified. Domestic wastewater is considered as a major source of pollution. Urban runoff, fertilizers from agricultural return flows and solid waste disposal appear to be secondary sources. The most relevant vulnerability class of EPIK map is very high which accounts for about 41 % of the total area. While in the DRASTIC vulnerability map, areas with high vulnerability were only about 23 % of the total area. There is a good correlation between vulnerability maps obtained from both models with microbiological and chemical pollution evidences. There is also a good agreement between the areas classified as highly vulnerable and those that have high levels of pollution. [Spanish] El estudio de vulnerabilidad de aguas subterraneas en la region de Yerash, Jordania fue obtenido mediante las metodologias de EPIK y DRASTIC. Se uso GIS para mapear las zonas protegidas y para sugerir un plan de proteccion para mejorar la calidad del agua subterranea en los principales manantiales y pozos. Los niveles de contaminacion bacteriana y de nitratos son elevados. El efluente domestico es la fuente mas importante de contaminacion; vienen en segundo lugar la precipitacion en zonas urbanas, los fertilizantes agricolas y los desechos solidos. En el mapa de EPIK, la vulnerabilidad extrema abarca hasta 41% del area total; en cambio, en el mapa de DRASTIC las areas de alta vulnerabilidad ocupan solo un 23% del area. La correlacion de los datos de contaminacion microbiana y quimica con ambos mapas der vulnerabilidad es buena

  2. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment

    Directory of Open Access Journals (Sweden)

    Kathryn Lane

    2013-01-01

    Full Text Available Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events.

  3. Health effects of coastal storms and flooding in urban areas: a review and vulnerability assessment.

    Science.gov (United States)

    Lane, Kathryn; Charles-Guzman, Kizzy; Wheeler, Katherine; Abid, Zaynah; Graber, Nathan; Matte, Thomas

    2013-01-01

    Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC) may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events.

  4. Buildings vs. ballistics: Quantifying the vulnerability of buildings to volcanic ballistic impacts using field studies and pneumatic cannon experiments

    Science.gov (United States)

    Williams, G. T.; Kennedy, B. M.; Wilson, T. M.; Fitzgerald, R. H.; Tsunematsu, K.; Teissier, A.

    2017-09-01

    Recent casualties in volcanic eruptions due to trauma from blocks and bombs necessitate more rigorous, ballistic specific risk assessment. Quantitative assessments are limited by a lack of experimental and field data on the vulnerability of buildings to ballistic hazards. An improved, quantitative understanding of building vulnerability to ballistic impacts is required for informing appropriate life safety actions and other risk reduction strategies. We assessed ballistic impacts to buildings from eruptions at Usu Volcano and Mt. Ontake in Japan and compiled available impact data from eruptions elsewhere to identify common damage patterns from ballistic impacts to buildings. We additionally completed a series of cannon experiments which simulate ballistic block impacts to building claddings to investigate their performance over a range of ballistic projectile velocities, masses and energies. Our experiments provide new insights by quantifying (1) the hazard associated with post-impact shrapnel from building and rock fragments; (2) the effect of impact obliquity on damage; and (3) the additional impact resistance buildings possess when claddings are struck in areas directly supported by framing components. This was not well identified in previous work which may have underestimated building vulnerability to ballistic hazards. To improve assessment of building vulnerability to ballistics, we use our experimental and field data to develop quantitative vulnerability models known as fragility functions. Our fragility functions and field studies show that although unreinforced buildings are highly vulnerable to large ballistics (> 20 cm diameter), they can still provide shelter, preventing death during eruptions.

  5. Questioning Complacency: Climate Change Impacts, Vulnerability, and Adaptation in Norway

    International Nuclear Information System (INIS)

    O'Brien, Karen; Eriksen, Siri; Sygna, Linda; Naess, Lars Otto

    2006-01-01

    Most European assessments of climate change impacts have been carried out on sectors and ecosystems, providing a narrow understanding of what climate change really means for society. Furthermore, the main focus has been on technological adaptations, with less attention paid to the process of climate change adaptation. In this article, we present and analyze findings from recent studies on climate change impacts, vulnerability, and adaptation in Norway, with the aim of identifying the wider social impacts of climate change. Three main lessons can be drawn. First, the potential thresholds and indirect effects may be more important than the direct, sectoral effects. Second, highly sensitive sectors, regions, and communities combine with differential social vulnerability to create both winners and losers. Third, high national levels of adaptive capacity mask the barriers and constraints to adaptation, particularly among those who are most vulnerable to climate change. Based on these results, we question complacency in Norway and other European countries regarding climate change impacts and adaptation. We argue that greater attention needs to be placed on the social context of climate change impacts and on the processes shaping vulnerability and adaptation

  6. Defining energy vulnerability in mobility. Measuring energy vulnerability in mobility. Acting against energy vulnerability in mobility. Discussing energy vulnerability in mobility. Task no. 4

    International Nuclear Information System (INIS)

    Jouffe, Yves; Massot, Marie-Helene; Noble, Cyprien

    2015-01-01

    Extensive expansion of urban areas generates transportation needs and energy expenses for mobility. Households already impacted by fuel poverty also suffer from energy vulnerability in their mobility. This report was prepared in the framework of the study of fuel poverty in France in the light of several indicators from existing inquiries, databases and modeling tools. The report is organised in 4 parts dealing with: the definition of energy vulnerability in mobility, its measurement, the possible remedial actions, and the discussions about energy vulnerability in mobility through working group meetings, respectively

  7. Vulnerability of the global terrestrial ecosystems to climate change.

    Science.gov (United States)

    Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng

    2018-05-27

    Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Vulnerability of intertropical littoral areas

    Science.gov (United States)

    Manighetti, Isabelle; De Wit, Rutger; Duvail, Stéphanie; Seyler, Patrick

    2017-10-01

    The coastal zone is of very high importance for human development and human wellbeing. Half of the global urban population lives in the coastal zone, where it has access to both continental and marine ecosystem services and to maritime transport. These urban populations coexist with rural and traditional coastal populations, some of which still possess good traditional ecological knowledge of the coastal ecosystems. Marine biodiversity and favourable environmental conditions sustain fisheries and aquaculture, represent a source of inspiration for humankind and provide numerous opportunities for recreation and tourism. In addition, coastal areas provide nursery functions for juvenile fish and invertebrates, which is important for the fish and crayfish stocks exploited offshore. Located at the interface between marine energy and continental processes, the coastal landscapes are dynamic environments. Nevertheless, the destruction of habitats and the increasing exploitation of the coastal zone represent serious threats to the ecosystems. Moreover, human land use and modifications in the watersheds have strong impacts on the coastal zone primarily by contributing to their pollution and nutrient over-enrichment. Damming and creation of reservoirs upstream also heavily modify the hydrology of the watersheds and often dramatically reduce the delivery of sediments to the coastal zone. In addition to these regional and local anthropogenic impacts, the coastal zone is vulnerable to global change among which sea level rise and climate change are particularly important drivers. Many coastal zones extend along giant faults and subduction zones, which makes them particularly exposed to earthquakes and tsunami hazards. Other forms of natural hazards are caused by hurricanes and cyclones that develop at sea and whose trajectories often hit the coastlines.

  9. Determining Vulnerability Importance in Environmental Impact Assessment

    International Nuclear Information System (INIS)

    Toro, Javier; Duarte, Oscar; Requena, Ignacio; Zamorano, Montserrat

    2012-01-01

    The concept of vulnerability has been used to describe the susceptibility of physical, biotic, and social systems to harm or hazard. In this sense, it is a tool that reduces the uncertainties of Environmental Impact Assessment (EIA) since it does not depend exclusively on the value assessments of the evaluator, but rather is based on the environmental state indicators of the site where the projects or activities are being carried out. The concept of vulnerability thus reduces the possibility that evaluators will subjectively interpret results, and be influenced by outside interests and pressures during projects. However, up until now, EIA has been hindered by a lack of effective methods. This research study analyzes the concept of vulnerability, defines Vulnerability Importance and proposes its inclusion in qualitative EIA methodology. The method used to quantify Vulnerability Importance is based on a set of environmental factors and indicators that provide a comprehensive overview of the environmental state. The results obtained in Colombia highlight the usefulness and objectivity of this method since there is a direct relation between this value and the environmental state of the departments analyzed. - Research Highlights: ► The concept of vulnerability could be considered defining Vulnerability Importance included in qualitative EIA methodology. ► The use of the concept of environmental vulnerability could reduce the subjectivity of qualitative methods of EIA. ► A method to quantify the Vulnerability Importance proposed provides a comprehensive overview of the environmental state. ► Results in Colombia highlight the usefulness and objectivity of this method.

  10. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    Science.gov (United States)

    Quattrochi, D. A.; Wilbanks, T. J.; Kirshen, P. H.; Romero-Lankao, P.; Rosenzweig, C. E.; Ruth, M.; Solecki, W.; Tarr, J. A.

    2007-05-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been enunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAP) reports to support informed discussion and decision making regarding climate change and variability by policy makers, resource managers, stakeholders, the media, and the general public. We are working on a chapter of SAP 4.6 ("Analysis of the Effects of Global Chance on Human Health and Welfare and Human Systems") wherein we wish to describe the effects of global climate change on human settlements. This paper will present the thoughts and ideas that are being formulated for our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We wish to present these ideas and concepts as a "work in progress" that are subject to several rounds of review, and we invite comments from listeners at this session on the rationale and veracity of our thoughts. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts

  11. A vulnerability assessment for water availability related to the impacts of climate change in Banyuasin Valley, South Sumatra, Indonesia

    Science.gov (United States)

    Hamdani, Y.

    2018-03-01

    Banyuasin Valley region is located in lowland areas that is potentially subjected to hazard of flooding and submergence. The indication of reduction hazard in water availability is in the period of 2010 with decreasing value of Total Run Off at - 500 mm/year and in the period 2030 is the lowest decline of the region Banyuasin with a value of -100 mm/year. Tanjung Api-api port, built in this area, is feared to be vulnerable to the availability of clean water due to the impact of climate change. The vulnerability components consist of exposure, sensitivity, and adaptive capacity. The formula means vulnerability to a certain hazard is strengthened by its exposure and its sensitivity and decreased by its adaptive capacity. The results of this study showed that water availability in the baseline condition is in low vulnerability (47.91%) whereas, at the projection condition, vulnerability is in the category of moderate vulnerability (81.28%).

  12. Vulnerability assessment of atmospheric environment driven by human impacts.

    Science.gov (United States)

    Zhang, Yang; Shen, Jing; Ding, Feng; Li, Yu; He, Li

    2016-11-15

    Atmospheric environment quality worsening is a substantial threat to public health worldwide, and in many places, air pollution due to the intensification of the human activity is increasing dramatically. However, no studies have been investigated the integration of vulnerability assessment and atmospheric environment driven by human impacts. The objective of this study was to identify and prioritize the undesirable environmental changes as an early warning system for environment managers and decision makers in term of human, atmospheric environment, and social economic elements. We conduct a vulnerability assessment method of atmospheric environment associated with human impact, this method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators under the Exposure-Sensitivity- Adaptive Capacity (ESA) framework. Decision makers can find out relevant vulnerability assessment results with different vulnerable attitudes. In the Beijing-Tianjin-Hebei (BTH) region, China, we further applied this developed method and proved it to be reliable and consistent with the China Environmental Status Bulletin. Results indicate that the vulnerability of atmospheric environment in the BTH region is not optimistic, and environment managers should do more about air pollution. Thus, the most appropriate strategic decision and development program of city or state can be picked out assisting by the vulnerable results. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Risk Perception and Vulnerability of Wetlands Areas on South ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Canadian specialists are contributing to research examining the risks to and vulnerability of wetland areas along the Atlantic coast of South America. These areas along the coastline protect ecosystems provide flood control, stabilize shorelines, replenish groundwater, and purify water. They also act as reservoirs of ...

  14. Cyber Security Vulnerability Impact on I and C Reliability

    International Nuclear Information System (INIS)

    Hadley, Mark D.; McBride, Justin B.

    2006-01-01

    We present a discussion of the cyber security vulnerability impact on instrument and control reliability. In the discussion we demonstrate the likely vector of attack and vulnerabilities associated with commodity hardware, protocols and communication media. The current fleet of nuclear power plants in the United States utilizes aging analog instrument and control systems which are more frequently suffering from obsolescence and failure. The commodity equipment available now and in the near future incorporates features from information technology systems which compound cyber vulnerabilities

  15. Assessment of Socioeconomic Vulnerability to Floods in the Bâsca Chiojdului Catchment Area

    Directory of Open Access Journals (Sweden)

    REMUS PRĂVĂLIE

    2014-12-01

    Full Text Available Hydrological risk phenomena such as floods are among the most costly natural disasters worldwide, effects consisting of socioeconomic damages and deaths. The Bâsca Chiojdului catchment area, by its morphometric and hydrographic peculiarities, is prone to generate these hydrological risk phenomena, so there is a high vulnerability in the socioeconomic elements. This paper is focused on the identification of the main socioeconomic elements vulnerable to hydrological risk phenomena such as floods, based on the assessment of their manifestation potential. Thus, following the delimitation of areas with the highest flood occurrence potential (susceptibility to floods, major socioeconomic factors existing in the basin, considering human settlements (constructions, transport infrastructure, and agricultural areas (the most important category, were superimposed. Results showed a high vulnerability for all three exposed socioeconomic elements especially in valley sectors, of which household structures were the most vulnerable, given both their importance and the high number of areas highly exposed to floods (approximately 2,500 houses and outbuildings, out of a total of about 10,250, intersect the most susceptible area to floods in the study area.

  16. Vulnerability assessment of storm surges in the coastal area of Guangdong Province

    Directory of Open Access Journals (Sweden)

    K. Li

    2011-07-01

    Full Text Available Being bordered by the South China Sea and with long coastline, the coastal zone of Guangdong Province is often under severe risk of storm surges, as one of a few regions in China which is seriously threatened by storm surges. This article systematically analyzes the vulnerability factors of storm surges in the coastal area of Guangdong (from Yangjing to Shanwei. Five vulnerability assessment indicators of hazard-bearing bodies are proposed, which are social economic index, land use index, eco-environmental index, coastal construction index, and disaster-bearing capability index. Then storm surge vulnerability assessment index system in the coastal area of Guangdong is established. Additionally, the international general mode about coastal vulnerability assessment is improved, and the vulnerability evolution model of storm surges in the coastal area of Guangdong is constructed. Using ArcGIS, the vulnerability zoning map of storm surges in the study region is drawn. Results show that there is the highest degree of storm surge vulnerability in Zhuhai, Panyu, and Taishan; second in Zhongshan, Dongguan, Huiyang, and Haifeng; third in Jiangmen, Shanwei, Yangjiang, and Yangdong; fourth in Baoan, Kaiping, and Enping; and lowest in Guangzhou, Shunde, Shenzhen, and Longgang. This study on the risk of storm surges in these coastal cities can guide the land use of coastal cities in the future, and provide scientific advice for the government to prevent and mitigate the storm surge disasters. It has important theoretical and practical significance.

  17. A method proposal for cumulative environmental impact assessment based on the landscape vulnerability evaluation

    International Nuclear Information System (INIS)

    Pavlickova, Katarina; Vyskupova, Monika

    2015-01-01

    Cumulative environmental impact assessment deals with the occasional use in practical application of environmental impact assessment process. The main reasons are the difficulty of cumulative impact identification caused by lack of data, inability to measure the intensity and spatial effect of all types of impacts and the uncertainty of their future evolution. This work presents a method proposal to predict cumulative impacts on the basis of landscape vulnerability evaluation. For this purpose, qualitative assessment of landscape ecological stability is conducted and major vulnerability indicators of environmental and socio-economic receptors are specified and valuated. Potential cumulative impacts and the overall impact significance are predicted quantitatively in modified Argonne multiple matrixes while considering the vulnerability of affected landscape receptors and the significance of impacts identified individually. The method was employed in the concrete environmental impact assessment process conducted in Slovakia. The results obtained in this case study reflect that this methodology is simple to apply, valid for all types of impacts and projects, inexpensive and not time-consuming. The objectivity of the partial methods used in this procedure is improved by quantitative landscape ecological stability evaluation, assignment of weights to vulnerability indicators based on the detailed characteristics of affected factors, and grading impact significance. - Highlights: • This paper suggests a method proposal for cumulative impact prediction. • The method includes landscape vulnerability evaluation. • The vulnerability of affected receptors is determined by their sensitivity. • This method can increase the objectivity of impact prediction in the EIA process

  18. Chemical and radiological vulnerability assessment in urban areas

    Directory of Open Access Journals (Sweden)

    Stojanović Božidar

    2006-01-01

    Full Text Available Cities and towns are faced with various types of threat from the extraordinary events involving chemical and radiological materials as exemplified by major chemical accidents, radiological incidents, fires, explosions, traffic accidents, terrorist attacks, etc. On the other hand, many sensitive or vulnerable assets exist within cities, such as: settlements, infrastructures, hospitals, schools, churches, businesses, government, and others. Besides emergency planning, the land use planning also represents an important tool for prevention or reduction of damages on people and other assets due to unwanted events. This paper considers development of method for inclusion vulnerability assessment in land use planning with objective to assess and limit the consequences in cities of likely accidents involving hazardous materials. We made preliminary assessment of criticality and vulnerability of the assets within Belgrade city area in respect to chemical sites and transportation roads that can be exposed to chemical accidents, or terrorist attacks.

  19. Vulnerability of particularly valuable areas. Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This report is part of the scientific basis for the management plan for the North Sea and Skagerrak. The report focuses on the vulnerability of particularly valuable areas to petroleum activities, maritime transport, fisheries, land-based and coastal activities and long-range transboundary pollution. A working group with representatives from many different government agencies, headed by the Institute of Marine Research and the Directorate for Nature Management, has been responsible for drawing up the present report on behalf of the Expert Group for the North Sea and Skagerrak. The present report considers the 12 areas that were identified as particularly valuable during an earlier stage of the management plan process on the environment, natural resources and pollution. There are nine areas along the coast and three open sea areas in the North Sea that were identified according to the same predefined criteria as used for the management plans for the Barents Sea: Lofoten area and the Norwegian Sea. The most important criteria for particularly valuable areas are importance for biological production and importance for biodiversity.(Author)

  20. Vulnerability of particularly valuable areas. Summary

    International Nuclear Information System (INIS)

    2012-01-01

    This report is part of the scientific basis for the management plan for the North Sea and Skagerrak. The report focuses on the vulnerability of particularly valuable areas to petroleum activities, maritime transport, fisheries, land-based and coastal activities and long-range transboundary pollution. A working group with representatives from many different government agencies, headed by the Institute of Marine Research and the Directorate for Nature Management, has been responsible for drawing up the present report on behalf of the Expert Group for the North Sea and Skagerrak. The present report considers the 12 areas that were identified as particularly valuable during an earlier stage of the management plan process on the environment, natural resources and pollution. There are nine areas along the coast and three open sea areas in the North Sea that were identified according to the same predefined criteria as used for the management plans for the Barents Sea: Lofoten area and the Norwegian Sea. The most important criteria for particularly valuable areas are importance for biological production and importance for biodiversity.(Author)

  1. The regional impacts of climate change: an assessment of vulnerability

    National Research Council Canada - National Science Library

    Zinyowera, Marufu C; Moss, Richard H; Watson, R. T

    1998-01-01

    .... The Regional Impacts of Climate Change: An Assessment of Vulnerability reviews state-of-the-art information on potential impacts of climate change for ecological systems, water supply, food production, coastal infrastructure, human health...

  2. Integrating Social impacts on Health and Health-Care Systems in Systemic Seismic Vulnerability Analysis

    Science.gov (United States)

    Kunz-Plapp, T.; Khazai, B.; Daniell, J. E.

    2012-04-01

    This paper presents a new method for modeling health impacts caused by earthquake damage which allows for integrating key social impacts on individual health and health-care systems and for implementing these impacts in quantitative systemic seismic vulnerability analysis. In current earthquake casualty estimation models, demand on health-care systems is estimated by quantifying the number of fatalities and severity of injuries based on empirical data correlating building damage with casualties. The expected number of injured people (sorted by priorities of emergency treatment) is combined together with post-earthquake reduction of functionality of health-care facilities such as hospitals to estimate the impact on healthcare systems. The aim here is to extend these models by developing a combined engineering and social science approach. Although social vulnerability is recognized as a key component for the consequences of disasters, social vulnerability as such, is seldom linked to common formal and quantitative seismic loss estimates of injured people which provide direct impact on emergency health care services. Yet, there is a consensus that factors which affect vulnerability and post-earthquake health of at-risk populations include demographic characteristics such as age, education, occupation and employment and that these factors can aggravate health impacts further. Similarly, there are different social influences on the performance of health care systems after an earthquake both on an individual as well as on an institutional level. To link social impacts of health and health-care services to a systemic seismic vulnerability analysis, a conceptual model of social impacts of earthquakes on health and the health care systems has been developed. We identified and tested appropriate social indicators for individual health impacts and for health care impacts based on literature research, using available European statistical data. The results will be used to

  3. Modelling farm vulnerability to flooding: A step toward vulnerability mitigation policies appraisal

    Science.gov (United States)

    Brémond, P.; Abrami, G.; Blanc, C.; Grelot, F.

    2009-04-01

    Recent catastrophic flood events such as Elbe in 2002 or Rhône in 2003 have shown limits of flood management policies relying on dykes protection: worsening of flood impacts downstream, increased damage by dykes rupture. Those events, among others, contributes to radical changes on the philosophy of flood prevention, with the promotion of new orientations for mitigating flood exposition. Two new trends may have a significant impact on rural areas: floodplain restoration and vulnerability mitigation. The Rhône River program, which is an contract of objectives signed between French Government and local collectivites, is highly illustrative of these new trends and their impact on agricultural sector. In this program, it appears that areas to be concerned by floodplain restoration are agricultural ones, because their supposed vulnerability to flood is expected to be less important to urban areas. As a consequence, agricultural sector is particularly concerned by planned actions on mitigation of assets vulnerability, an important part of the program (financial support of European Union of 7.5 Million euros). Mitigation of agricultural assets vulnerability reveals particularly interesting for two following reasons. Firstly, it is a way to maintain agricultural activities in floodplains yet existing, without promoting flood protection. Secondly, in case of floodplain restoration, vulnerability mitigation is a way for local authorities to compensate over-flooding impacts. In practice, local authorities may financially support farmers for implementing measures to mitigate their farm vulnerability. On the Rhône River, an important work has already been done to identify farm vulnerability to flooding, and propose measures to mitigate it. More than 3 000 farms exposed to flood risk have been identified representing 88 690 ha of agricultural areas which is estimated to generate damage between 400 and 800 Million euros depending on the season of occurrence for a catastrophic

  4. METHOD FOR THE ESTIMATION OF SOIL VULNERABILITY AT THE CHEMICAL AGENTS IMPACT

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2006-10-01

    Full Text Available The negative effect induced to the soil by any impact, commonly chemical impact, defining the soil vulnerability to this impulse. To put in equation this soil characteristic, were chosen these physical and chemical indicators which determining the phenomenon intensity and its evolution direction, as: texture, pH (soil reaction, organic matter content, carbonates content and ion exchange capacity. Each of these indicators was divided into five classes, depending on the content in elements and/or chemical substances that defining any indicator, the specific indicator size, and on the direction and intensity of process generated by impact. Every of these five classes have been got marks from one to five according to soil capacity to putting up resistance to modification induced by impact. One mark reflecting the lowest impact resistance and five mark the highest ones. By summing of characteristic marks for each class resulted a scale from 5 to 25. According to this scale we could have very high soil vulnerability with only 5 points, and an invulnerable soil with 25 points. Analytical data of all these five physics and chemical indicators, determined for a specific territory, could be framing in vulnerability scale according to the presented methodology. This methodology permit to realize maps of the specific territories for soils vulnerability to impact of any nature chemical agents.

  5. Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors

    Science.gov (United States)

    Blauhut, Veit; Stahl, Kerstin; Stagge, James Howard; Tallaksen, Lena M.; De Stefano, Lucia; Vogt, Jürgen

    2016-07-01

    Drought is one of the most costly natural hazards in Europe. Due to its complexity, drought risk, meant as the combination of the natural hazard and societal vulnerability, is difficult to define and challenging to detect and predict, as the impacts of drought are very diverse, covering the breadth of socioeconomic and environmental systems. Pan-European maps of drought risk could inform the elaboration of guidelines and policies to address its documented severity and impact across borders. This work tests the capability of commonly applied drought indices and vulnerability factors to predict annual drought impact occurrence for different sectors and macro regions in Europe and combines information on past drought impacts, drought indices, and vulnerability factors into estimates of drought risk at the pan-European scale. This hybrid approach bridges the gap between traditional vulnerability assessment and probabilistic impact prediction in a statistical modelling framework. Multivariable logistic regression was applied to predict the likelihood of impact occurrence on an annual basis for particular impact categories and European macro regions. The results indicate sector- and macro-region-specific sensitivities of drought indices, with the Standardized Precipitation Evapotranspiration Index (SPEI) for a 12-month accumulation period as the overall best hazard predictor. Vulnerability factors have only limited ability to predict drought impacts as single predictors, with information about land use and water resources being the best vulnerability-based predictors. The application of the hybrid approach revealed strong regional and sector-specific differences in drought risk across Europe. The majority of the best predictor combinations rely on a combination of SPEI for shorter and longer accumulation periods, and a combination of information on land use and water resources. The added value of integrating regional vulnerability information with drought risk prediction

  6. Estimating drought risk across Europe from reported drought impacts, hazard indicators and vulnerability factors

    Science.gov (United States)

    Blauhut, V.; Stahl, K.; Stagge, J. H.; Tallaksen, L. M.; De Stefano, L.; Vogt, J.

    2015-12-01

    Drought is one of the most costly natural hazards in Europe. Due to its complexity, drought risk, the combination of the natural hazard and societal vulnerability, is difficult to define and challenging to detect and predict, as the impacts of drought are very diverse, covering the breadth of socioeconomic and environmental systems. Pan-European maps of drought risk could inform the elaboration of guidelines and policies to address its documented severity and impact across borders. This work (1) tests the capability of commonly applied hazard indicators and vulnerability factors to predict annual drought impact occurrence for different sectors and macro regions in Europe and (2) combines information on past drought impacts, drought hazard indicators, and vulnerability factors into estimates of drought risk at the pan-European scale. This "hybrid approach" bridges the gap between traditional vulnerability assessment and probabilistic impact forecast in a statistical modelling framework. Multivariable logistic regression was applied to predict the likelihood of impact occurrence on an annual basis for particular impact categories and European macro regions. The results indicate sector- and macro region specific sensitivities of hazard indicators, with the Standardised Precipitation Evapotranspiration Index for a twelve month aggregation period (SPEI-12) as the overall best hazard predictor. Vulnerability factors have only limited ability to predict drought impacts as single predictor, with information about landuse and water resources as best vulnerability-based predictors. (3) The application of the "hybrid approach" revealed strong regional (NUTS combo level) and sector specific differences in drought risk across Europe. The majority of best predictor combinations rely on a combination of SPEI for shorter and longer aggregation periods, and a combination of information on landuse and water resources. The added value of integrating regional vulnerability information

  7. GIS BASED AQUIFER VULNERABILITY ASSESSMENT IN HANGZHOU-JIAXINGHUZHOU PLAIN, CHINA

    Directory of Open Access Journals (Sweden)

    Jean de Dieu Bazimenyera

    2014-01-01

    Full Text Available Hangzhou-Jiaxing-Huzhou plain is among the regions which faces the shortage of water due to its increasing population, industrialization, agriculture and domestic use; hence the high dependence on groundwater. In China, the exploitation of aquifers has been historically undertaken without proper concern for environmental impacts or even the concept of sustainable yield. In order to maintain basin aquifer as a source of water for the area, it is necessary to find out whether certain locations in this groundwater basin are susceptible to receive and transmit pollution, this is why the main objective of this research is to find out the groundwater vulnerable zones using Geographical Information System (GIS model in Hangzhou-Jiaxing-Huzhou plain. GIS was used to create groundwater vulnerability map by overlaying hydro-geological data. The input of the model was provided by the following seven data layers: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone and hydraulic Conductivity. This study showed that Hangzhou-Jiaxing-Huzhou area is grouped into three categories: High vulnerable zone with 27.4% of the total area, moderate vulnerable zone which occupy the great part of that area 60.5% and low vulnerable zone with 12.1%. This research suggests first the prioritization of high vulnerable areas in order to prevent the further pollution to already polluted areas; next the frequent monitoring of vulnerable zones to monitor the changing level of pollutants; and finally suggests that this model can be an effective tool for local authorities who are responsible for managing groundwater resources in that area.

  8. Ecologically least vulnerable sites for exploration drilling in the Wadden Sea and the North Sea coastal area

    International Nuclear Information System (INIS)

    Lindeboom, H.J.; Bergman, M.J.N.; De Gee, A.

    1996-01-01

    The Dutch Oil Company (NAM, abbreviated in Dutch) applied for a number of exploration drilling in the Dutch part of the Wadden Sea and the North Sea coastal area. NAM is obliged to draft a so-called MER (environmental impact report) to indicate the most environment-friendly alternative for the test drilling. By order of NAM, NIOZ and the IBN-DLO (Institute for Research on Forests and Nature) analyzed samples of the animal life in all the potential sites. Based on the results of the analyses, literature and expert knowledge the ecologically least vulnerable sites and the ecologically least vulnerable season were selected during a workshop. In this report the results are given of the workshop, the field sample analyses and a sailing trip along the sites

  9. Evaluating soil contamination risk impact on land vulnerability and climate change in east Azerbaijan, Iran

    Science.gov (United States)

    Shahbazi, Farzin; Anaya-Romero, Maria; de La Rosa, Diego

    2010-05-01

    spring, while will increase 32 and 52 percent in summer and autumn. As most of the arable land that is suitable for cultivation in the study area is already in use, chemical fertilizers application will widely obvious to increase crop production. According to 88 study points identified by grid survey method (44 consecutively profiles and augers), Typic Calcixerepts are the most dominant subgroups in the studied area. Altitude varies from 1300 to 1600m with a mean of about 1450m, and slope gradients vary from flat to more than 10%. The attainable contamination risk for two hypothetical scenarios was estimated for the natural conditions of selected soils, under current Ahar climate conditions and calculated amount according to IPCC report by application of the Pantanal model. Results showed that 32%, 25%, 4% and 27% of total studied area were classified as V1, V2, V3, and V4 vulnerable land due to phosphorous while it will not be changed by climate change. Also, attainable vulnerability classes because of heavy metals will be constant too, but the whole area subdivided as: V1 and V3 in a total of 57% and 31%, respectively. Nitrate is the major nitrogen derived pollutant and the main source of groundwater contamination because of its high mobility. According to the obtained results, nitrogen risk impact on land vulnerability will decrease by climate change while in the future scenario more than 55% of total area will classify as none vulnerable area. Assessing pesticide and climate change impact presents those four vulnerable classes: V1, V2, V3, and V4 in a total of 1%, 2%, 28% and 57% studied are while they will change to 1%, 2%, 49%, and 36%. In other words, 19% of total area will be improved by climate change.

  10. [Ecological vulnerability of coal mining area: a case study of Shengli Coalfield in Xilinguole of Inner Mongolia, China].

    Science.gov (United States)

    Quan, Zhan-Jun; Li, Yuan; Li, Jun-Sheng; Han, Yu; Xiao, Neng-Wen; Fu, Meng-Di

    2013-06-01

    In this paper, an ecological vulnerability evaluation index system for the Shengli Coalfield in Xilinguole of Inner Mongolia was established, which included 16 factors in ecological sensitivity, natural and social pressure, and ecological recovery capacity, respectively. Based on the expert scoring method and analytic hierarchy process (AHP), an ecological vulnerability model was built for the calculation of the regional ecological vulnerability by means of RS and GIS spatial analysis. An analysis of the relationships between land use and ecological vulnerability was also made, and the results were tested by spatial auto-correlation analysis. Overall, the ecological vulnerability of the study area was at medium-high level. The exploitation of four opencast areas in the Coalfield caused a significant increase of ecological vulnerability. Moreover, due to the effects of mine drained water and human activities, the 300 -2000 m around the opencast areas was turning into higher ecologically fragile area. With further exploitation, the whole Coalfield was evolved into moderate and heavy ecological vulnerability area, and the coal resources mining was a key factor in this process. The cluster analysis showed that the spatial distribution of the ecological vulnerability in the study area had reasonable clustering characteristics. To decrease the population density, control the grazing capacity of grassland, and regulate the ratios of construction land and cultivated land could be the optimal ways for resolving the natural and social pressure, and to increase the investment and improve the vegetation recovery coefficient could be the fundamental measures for decreasing the ecological vulnerability of the study area.

  11. Unexpected high vulnerability of functions in wilderness areas: evidence from coral reef fishes

    Science.gov (United States)

    Vigliola, Laurent; Graham, Nicholas A. J.; Wantiez, Laurent; Parravicini, Valeriano; Villéger, Sébastien; Mou-Tham, Gerard; Frolla, Philippe; Friedlander, Alan M.; Kulbicki, Michel; Mouillot, David

    2016-01-01

    High species richness is thought to support the delivery of multiple ecosystem functions and services under changing environments. Yet, some species might perform unique functional roles while others are redundant. Thus, the benefits of high species richness in maintaining ecosystem functioning are uncertain if functions have little redundancy, potentially leading to high vulnerability of functions. We studied the natural propensity of assemblages to be functionally buffered against loss prior to fishing activities, using functional trait combinations, in coral reef fish assemblages across unfished wilderness areas of the Indo-Pacific: Chagos Archipelago, New Caledonia and French Polynesia. Fish functional diversity in these wilderness areas is highly vulnerable to fishing, explained by species- and abundance-based redundancy packed into a small combination of traits, leaving most other trait combinations (60%) sensitive to fishing, with no redundancy. Functional vulnerability peaks for mobile and sedentary top predators, and large species in general. Functional vulnerability decreases for certain functional entities in New Caledonia, where overall functional redundancy was higher. Uncovering these baseline patterns of functional vulnerability can offer early warning signals of the damaging effects from fishing, and may serve as baselines to guide precautionary and even proactive conservation actions. PMID:27928042

  12. Groundwater vulnerability assessment for the Banyas Catchment of the Syrian coastal area using GIS and the RISKE method.

    Science.gov (United States)

    Kattaa, Bassam; Al-Fares, Walid; Al Charideh, Abdul Rahman

    2010-05-01

    Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and landuse planning. This contribution aims at estimating aquifer vulnerability by applying the RISKE model in Banyas Catchment Area (BCA), Tartous Prefecture, west Syria. An additional objective is to demonstrate the combined use of the RISKE model and a geographical information system (GIS) as an effective method for groundwater pollution risk assessment. The RISKE model uses five environmental parameters (Rock of aquifer media, Infiltration, Soil media, Karst, and Epikarst) to characterize the hydro-geological setting and evaluate aquifer vulnerability. The elevated eastern and low western part of the study area was dominated by high vulnerability classes, while the middle part was characterized by moderate vulnerability classes. Based on the vulnerability analysis, it was found that 2% and 39% of BCA is under low and high vulnerability to groundwater contamination, respectively, while more than 52% and 5% of the area of BCA can be designated as an area of moderate and very high vulnerability to groundwater contamination, respectively. The GIS technique has provided an efficient environment for analyses and high capabilities of handling a large amount of spatial data. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Construction of an integrated social vulnerability index in urban areas prone to flash flooding

    Science.gov (United States)

    Aroca-Jimenez, Estefania; Bodoque, Jose Maria; Garcia, Juan Antonio; Diez-Herrero, Andres

    2017-09-01

    Among the natural hazards, flash flooding is the leading cause of weather-related deaths. Flood risk management (FRM) in this context requires a comprehensive assessment of the social risk component. In this regard, integrated social vulnerability (ISV) can incorporate spatial distribution and contribution and the combined effect of exposure, sensitivity and resilience to total vulnerability, although these components are often disregarded. ISV is defined by the demographic and socio-economic characteristics that condition a population's capacity to cope with, resist and recover from risk and can be expressed as the integrated social vulnerability index (ISVI). This study describes a methodological approach towards constructing the ISVI in urban areas prone to flash flooding in Castilla y León (Castile and León, northern central Spain, 94 223 km2, 2 478 376 inhabitants). A hierarchical segmentation analysis (HSA) was performed prior to the principal components analysis (PCA), which helped to overcome the sample size limitation inherent in PCA. ISVI was obtained from weighting vulnerability factors based on the tolerance statistic. In addition, latent class cluster analysis (LCCA) was carried out to identify spatial patterns of vulnerability within the study area. Our results show that the ISVI has high spatial variability. Moreover, the source of vulnerability in each urban area cluster can be identified from LCCA. These findings make it possible to design tailor-made strategies for FRM, thereby increasing the efficiency of plans and policies and helping to reduce the cost of mitigation measures.

  14. Analysis of economic vulnerability to flash floods in urban areas of Castilla y León (Spain)

    Science.gov (United States)

    Aroca-Jimenez, Estefanía; Bodoque, Jose Maria; García, Juan Antonio; Diez-Herrero, Andres

    2017-04-01

    The growth of exposed population to floods, the expansion in allocation of economical activities to flood-prone areas and the rise of extraordinary event frequency over the last few decades, have resulted in an increase of flash flood-related casualties and economic losses. The increase in these losses at an even higher rate than the increase of magnitude and frequency of extreme events, underline that the vulnerability of societies exposed is a key aspect to be considered. Vulnerability is defined as the conditions determined by physical, social, economic and environmental factors or processes which increase the susceptibility of a community to the impact of hazards such as floods, being flash floods one of the natural hazards with the greatest capacity to generate risk. In recent years, numerous papers have deal with the assessment of the social dimension of vulnerability. However, economic factors are often a neglected aspect in traditional risk assessments which mainly focus on structural measures and flood damage models. In this context, the aim of this research is to identify those economic characteristics which render people vulnerable to flash flood hazard, and consider whether these characteristics are identifiable as local patterns at regional level. The result of this task is an Economic Vulnerability Index (EVI) based on susceptibility profiles of the population per township. These profiles are obtained by Hierarchical Segmentation and Latent Class Cluster Analysis of economic information provided by different public institutional databases. The methodology proposed here is implemented in the region of Castilla y León (94,230 km2), placed in Central-Northern Spain. Townships included in this study meet two requirements: i) urban areas are potentially affected by flash floods (i.e. villages are crossed by rivers or streams with a longitudinal slope higher than 0.01 m m-1); ii) urban areas are affected by an area with low or exceptional probability of

  15. Vulnerability Assessment for a Complex Structure Using Vibration Response Induced by Impact Load

    International Nuclear Information System (INIS)

    Park, Jeongwon; Park, Junhong; Koo, Man Hoi

    2014-01-01

    This work presents a vulnerability assessment procedure for a complex structure using vibration characteristics. The structural behavior of a three-dimensional framed structure subjected to impact forces was predicted using the spectral element method. The Timoshenko beam function was applied to simulate the impact wave propagations induced by a high-velocity projectile at relatively high frequencies. The interactions at the joints were analyzed for both flexural and longitudinal wave propagations. Simulations of the impact energy transfer through the entire structure were performed using the transient displacement and acceleration responses obtained from the frequency analysis. The kill probabilities of the crucial components for an operating system were calculated as a function of the predicted acceleration amplitudes according to the acceptable vibration levels. Following the proposed vulnerability assessment procedure, the vulnerable positions of a three-dimensional combat vehicle with high possibilities of damage generation of components by impact loading were identified from the estimated vibration responses

  16. Vulnerability of the Nile Delta coastal areas to inundation by sea level rise.

    Science.gov (United States)

    Hassaan, M A; Abdrabo, M A

    2013-08-01

    Sea level changes are typically caused by several natural phenomena, including ocean thermal expansion, glacial melt from Greenland and Antarctica. Global average sea level is expected to rise, through the twenty-first century, according to the IPCC projections by between 0.18 and 0.59 cm. Such a rise in sea level will significantly impact coastal area of the Nile Delta, consisting generally of lowland and is densely populated areas and accommodates significant proportion of Egypt's economic activities and built-up areas. The Nile Delta has been examined in several previous studies, which worked under various hypothetical sea level rise (SLR) scenarios and provided different estimates of areas susceptible to inundation due to SLR. The paper intends, in this respect, to identify areas, as well as land use/land cover, susceptible to inundation by SLR based upon most recent scenarios of SLR, by the year 2100 using GIS. The results indicate that about 22.49, 42.18, and 49.22 % of the total area of coastal governorates of the Nile Delta would be susceptible to inundation under different scenarios of SLR. Also, it was found that 15.56 % of the total areas of the Nile Delta that would be vulnerable to inundation due to land subsidence only, even in the absence of any rise in sea level. Moreover, it was found that a considerable proportion of these areas (ranging between 32.32 and 53.66 %) are currently either wetland or undeveloped areas. Furthermore, natural and/or man-made structures, such as the banks of the International Coastal Highway, were found to provide unintended protection to some of these areas. This suggests that the inundation impact of SLR on the Nile Delta is less than previously reported.

  17. Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data

    Directory of Open Access Journals (Sweden)

    Marta Béjar-Pizarro

    2017-08-01

    Full Text Available Landslides are widespread natural hazards that generate considerable damage and economic losses worldwide. Detecting terrain movements caused by these phenomena and characterizing affected urban areas is critical to reduce their impact. Here we present a fast and simple methodology to create maps of vulnerable buildings affected by slow-moving landslides, based on two parameters: (1 the deformation rate associated to each building, measured from Sentinel-1 SAR data, and (2 the building damage generated by the landslide movement and recorded during a field campaign. We apply this method to Arcos de la Frontera, a monumental town in South Spain affected by a slow-moving landslide that has caused severe damage to buildings, forcing the evacuation of some of them. Our results show that maximum deformation rates of 4 cm/year in the line-of-sight (LOS of the satellite, affects La Verbena, a newly-developed area, and displacements are mostly horizontal, as expected for a planar-landslide. Our building damage assessment reveals that most of the building blocks in La Verbena present moderate to severe damages. According to our vulnerability scale, 93% of the building blocks analysed present high vulnerability and, thus, should be the focus of more in-depth local studies to evaluate the serviceability of buildings, prior to adopting the necessary mitigation measures to reduce or cope with the negative consequences of this landslide. This methodology can be applied to slow-moving landslides worldwide thanks to the global availability of Sentinel-1 SAR data.

  18. Insular Area energy vulnerability, Puerto Rico, US Virgin Islands. Technical Appendix 1

    International Nuclear Information System (INIS)

    Stern, M.; Willard, E.E.; Efferding, S.

    1994-05-01

    This report was prepared in response to Section 1406 of the Energy Policy Act of 1992 (P.L. 192-486). The Act directed the Department of Energy (DOE) to ''conduct a study of the implications of the unique vulnerabilities of the insular areas to an oil supply disruption,'' and to ''outline how the insular areas shall gain access to vital oil supplies during times of national emergency.'' The Act defines the insular areas to be the US Virgin Islands and Puerto Rico in the Caribbean, and Guam, American Samoa, the Commonwealth of the Northern Mariana Islands (CNMI), and Palau in the Pacific. This report is the analysis of Puerto Rico and the US Virgin Islands. In the study, ''unique vulnerabilities'' were defined as susceptibility to: (1) more frequent or more likely interruptions of oil supplies compared to the mainland, and/or (2) disproportionately larger or more likely economic losses in the event of an oil supply disruption. In order to asses unique vulnerabilities, the study examined in the insular areas' experience during past global disruptions of oil supplies and during local emergencies caused by natural disasters. The effects of several possible future global disruptions and local emergencies were also analyzed. Analyses were based on historical data, simulations using energy and economic models, and interviews with officials in the insular governments and the energy industry

  19. Insular Area energy vulnerability, Puerto Rico, US Virgin Islands. Technical Appendix 1

    Energy Technology Data Exchange (ETDEWEB)

    Stern, M.; Willard, E.E.; Efferding, S. [Ensys Energy & Systems, Inc., Flemington, NJ (United States)

    1994-05-01

    This report was prepared in response to Section 1406 of the Energy Policy Act of 1992 (P.L. 192-486). The Act directed the Department of Energy (DOE) to ``conduct a study of the implications of the unique vulnerabilities of the insular areas to an oil supply disruption,`` and to ``outline how the insular areas shall gain access to vital oil supplies during times of national emergency.`` The Act defines the insular areas to be the US Virgin Islands and Puerto Rico in the Caribbean, and Guam, American Samoa, the Commonwealth of the Northern Mariana Islands (CNMI), and Palau in the Pacific. This report is the analysis of Puerto Rico and the US Virgin Islands. In the study, ``unique vulnerabilities`` were defined as susceptibility to: (1) more frequent or more likely interruptions of oil supplies compared to the mainland, and/or (2) disproportionately larger or more likely economic losses in the event of an oil supply disruption. In order to asses unique vulnerabilities, the study examined in the insular areas` experience during past global disruptions of oil supplies and during local emergencies caused by natural disasters. The effects of several possible future global disruptions and local emergencies were also analyzed. Analyses were based on historical data, simulations using energy and economic models, and interviews with officials in the insular governments and the energy industry.

  20. Climate Change Impact: The Experience of the Coastal Areas of Bangladesh Affected by Cyclones Sidr and Aila

    Directory of Open Access Journals (Sweden)

    Russell Kabir

    2016-01-01

    Full Text Available Bangladesh is considered one of the countries most at risk to the effects of climate change and its coastal area is most vulnerable. This study tries to explore the experiences of cyclones Sidr and Aila affected people living in the coastal areas of Bangladesh. This study was conducted in the cyclone Sidr affected Amtali Upazila of Barguna District and in the cyclone Aila affected Koyra Upazila of Khulna District. Primary data collection was done using Focus Group Interview and then a thematic analysis approach was used for analysis. Three core themes emerged from the analysis and they are, firstly, impacts of climate change on the socioeconomic condition of the people, secondly, the impact on the health status of the population, and finally the impact on vulnerable people. Findings show that the effects of climate change have serious consequences on the livelihood patterns of the affected population and on their overall health status. As a result, the unfavorable health condition of these affected people makes them more vulnerable to various emerging diseases.

  1. Mapping human vulnerability to climate change in the Brazilian Amazon: The construction of a municipal vulnerability index.

    Science.gov (United States)

    Menezes, Júlia Alves; Confalonieri, Ulisses; Madureira, Ana Paula; Duval, Isabela de Brito; Santos, Rhavena Barbosa Dos; Margonari, Carina

    2018-01-01

    Vulnerability, understood as the propensity to be adversely affected, has attained importance in the context of climate change by helping to understand what makes populations and territories predisposed to its impacts. Conditions of vulnerability may vary depending on the characteristics of each territory studied-social, environmental, infrastructural, public policies, among others. Thus, the present study aimed to evaluate what makes the municipalities of the state of Amazonas, Brazil, vulnerable to climate change in the context of the largest tropical forest in the world, and which regions of the State are the most susceptible. A Municipal Vulnerability Index was developed, which was used to associate current socio-environmental characteristics of municipalities with climate change scenarios in order to identify those that may be most affected by climate change. The results showed that poor adaptive capacity and poverty had the most influence on current vulnerability of the municipalities of Amazonas with the most vulnerable areas being the southern, northern, and eastern regions of the state. When current vulnerability was related to future climate change projections, the most vulnerable areas were the northern, northeastern, extreme southern, and southwestern regions. From a socio-environmental and climatic point of view, these regions should be a priority for public policy efforts to reduce their vulnerability and prepare them to cope with the adverse aspects of climate change.

  2. Mapping human vulnerability to climate change in the Brazilian Amazon: The construction of a municipal vulnerability index.

    Directory of Open Access Journals (Sweden)

    Júlia Alves Menezes

    Full Text Available Vulnerability, understood as the propensity to be adversely affected, has attained importance in the context of climate change by helping to understand what makes populations and territories predisposed to its impacts. Conditions of vulnerability may vary depending on the characteristics of each territory studied-social, environmental, infrastructural, public policies, among others. Thus, the present study aimed to evaluate what makes the municipalities of the state of Amazonas, Brazil, vulnerable to climate change in the context of the largest tropical forest in the world, and which regions of the State are the most susceptible. A Municipal Vulnerability Index was developed, which was used to associate current socio-environmental characteristics of municipalities with climate change scenarios in order to identify those that may be most affected by climate change. The results showed that poor adaptive capacity and poverty had the most influence on current vulnerability of the municipalities of Amazonas with the most vulnerable areas being the southern, northern, and eastern regions of the state. When current vulnerability was related to future climate change projections, the most vulnerable areas were the northern, northeastern, extreme southern, and southwestern regions. From a socio-environmental and climatic point of view, these regions should be a priority for public policy efforts to reduce their vulnerability and prepare them to cope with the adverse aspects of climate change.

  3. Community vulnerability to health impacts of wildland fire ...

    Science.gov (United States)

    Identifying communities vulnerable to adverse health effects from exposure to wildfire smoke may help prepare responses, increase the resilience to smoke and improve public health outcomes during smoke days. We developed a Community Health-Vulnerability Index (CHVI) based on factors known to increase the risks of health effects from air pollution and wildfire smoke exposures. These factors included county prevalence rates for asthma in children and adults, chronic obstructive pulmonary disease, hypertension, diabetes, obesity, percent of population 65 years of age and older, and indicators of socioeconomic status including poverty, education, income and unemployment. Using air quality simulated for the period between 2008 and 2012 over the continental U.S. we also characterized the population size at risk with respect to the level and duration of exposure to fire-originated fine particulate matter (fire-PM2.5) and CHVI. We estimate that 10% of the population (30.5 million) lived in the areas where the contribution of fire-PM2.5 to annual average ambient PM2.5 was high (>1.5 µg m3) and that 10.3 million individuals experienced unhealthy air quality levels for more than 10 days due to smoke. Using CHVI we identified the most vulnerable counties and determined that these communities experience more smoke exposures in comparison to less vulnerable communities. We describe the development of an index of community vulnerability for the health effects of smoke based o

  4. Groundwater vulnerability mapping of Qatar aquifers

    Science.gov (United States)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  5. Methodology for the Detection of Residential Vulnerable Areas - the Case of Barcelona

    Science.gov (United States)

    Cornado, Cossima; Garcia-Almirall, Pilar; Vima, Sara; Vila Busqued, Gemma; Uzqueda, Angel

    2017-10-01

    In a context of a shifting environmental, economic and social paradigm, European cities face a situation that is at the same time challenge and opportunity: the need for urban rehabilitation of the vulnerable degraded socio residential fabric. Public administrations in big cities and metropolitan areas are confronted with both the undercurrent need of actualization of the built stock and the rise of urban residential vulnerability. The city of Barcelona, as many others, is the result of multiple phenomena with high urban and social consequences. The socio spatial integration of immigrant population, the touristic rise and gentrification processes are current situations simultaneously taking place in the city. In parallel, a framework of economic crisis in which public investments in urban and social matters decrease, provides a temporal juncture that results into an increase of social polarization and socio economic inequality that becomes evident and expressed in the territory. This research focuses in the case of Barcelona, and presents a methodology based on a system of indicators elaborated through the exploitation of statistical data complemented with very specific data supplied by the Barcelona City Council. The accurate knowledge of socio demographic, socioeconomic and residential and urban characteristics is crucial in order to define the very complex urban dynamics that describe in the city neighbourhoods and areas. Residential vulnerability is defined as an assembly of objective conditions that relate to residential space and indicate situations of social discrimination and structural disadvantage of the population, related to a specific time and context. Thus, it is relevant to analyse the concentration of certain indicators of vulnerability in specific places or neighbourhoods, to contrast its effect on the socio-residential situation and its temporal evolution in order to identify tendencies. The present study contributes to the identification of data

  6. Drought vulnerability assessment: The case of wheat farmers in Western Iran

    Science.gov (United States)

    Zarafshani, Kiumars; Sharafi, Lida; Azadi, Hossein; Hosseininia, Gholamhossein; De Maeyer, Philippe; Witlox, Frank

    2012-12-01

    Drought, as a natural and slow-onset phenomenon, creates numerous damages to agricultural communities. As a drought prone area in the Middle East, Iran has currently launched a crisis management approach to mitigate the harmful impacts of drought. However, thus far studies indicate that effective drought management strategies should be designed based upon vulnerability management which can increase farmers' ability to challenge the impacts. The purpose of this study was to assess drought vulnerability across three drought intensities (very high, extremely high, and critical) areas in Western Iran. Accordingly, a survey study was applied and 370 wheat farmers who all experienced drought during 2007-2009 were selected through a multi-stage stratified random sampling method. Face to face interviews were used to collect data on vulnerability indices from the farmers. Me-Bar and Valdez's vulnerability formula was applied to assess the vulnerability of wheat farmers during drought. Results revealed that the farmers' vulnerability is influenced mainly by economic, socio-cultural, psychological, technical, and infrastructural factors. The results also indicated that the farmers in Sarpole-Zahab township were most vulnerable compared to those in the Kermanshah township as the least vulnerable. Accordingly, some conclusions and recommendations are drawn for both policy-makers and practitioners who often must prioritize limited resources in the design vulnerability-reducing interventions.

  7. Intrinsic vulnerability map of underground waters in an area of 60 km around the Tricastin CNPE - Final report

    International Nuclear Information System (INIS)

    2011-01-01

    The authors report the updating of the non-saturated area (ZNS), and therefore of the vulnerability, by means of a recent improvement of knowledge of alluvial sheet piezometry in the south of the Tricastin nuclear power plant site, and the harmonization of this locally updated map with previous versions of the vulnerability map (2007 and 2009), in order to produce an updated vulnerability map for an area of 60 km around the Tricastin nuclear power plant. Thus, they firstly report the updating of the thickness grid of non saturated area by means of a processing of the piezometric map, and secondly a calculation of the simplified vulnerability

  8. A Vulnerability Evaluation of the Phreatic Water in the Plain Area of the Junggar Basin, Xinjiang Based on the VDEAL Model

    Directory of Open Access Journals (Sweden)

    Ruiliang Jia

    2014-11-01

    Full Text Available A VDEAL (V is the lithology of the vadose zone, D is the groundwater depth, E is the degree of groundwater exploitation, A is the aquifer characteristics and L is the land use pattern. model, which is suitable for a vulnerability evaluation of the groundwater in arid inland areas, and that is based on the GOD (G is the groundwater status, O is overburden feature and D is groundwater depth method and DRASTIC (D is the depth of water-table, R is the net recharge, A is the aquifer media, S is the soil media, T is the topography, I is the impact of the vadose and C is the conductivity of the aquifer. model is proposed in this paper. Five indicators were selected by reference to the DRAV (D is the depth of water-table, R is the net recharge, A is the aquifer media and V is the impact of the vadose. and VLDA (V is the lithology of the vadose zone , L is the land use pattern, D is the groundwater depth and A is the aquifer characteristics and. models, namely, the lithology of the vadose zone (V, the groundwater depth (D, the degree of groundwater exploitation (E, the aquifer characteristics (A and the land use pattern (L. According to monitoring data from 2003 and 2011, the variations of phreatic water quality in the plain area of the Junggar Basin were divided into three types: the water quality may have deteriorated, be unchanged or improved. Four groups of indicator weights were configured to calculate the vulnerability index using the VDEAL model. The changes of phreatic water quality were then compared against the vulnerability index. The normalized weights of V, D, E, A, and L were respectively 0.15, 0.25, 0.10, 0.10, and 0.40; this is according to the principle that the sampling sites of deteriorated water quality are generally distributed in a high-vulnerability region, and the sites of unchanged and improved water quality are distributed in middle vulnerability, low vulnerability and invulnerable regions. The evaluation results of phreatic

  9. Climate change and Public health: vulnerability, impacts, and adaptation

    Science.gov (United States)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change

  10. Vulnerability Assessment of Mangrove Habitat to the Variables of the Oceanography Using CVI Method (Coastal Vulnerability Index) in Trimulyo Mangrove Area, Genuk District, Semarang

    Science.gov (United States)

    Ahmad, Rifandi Raditya; Fuad, Muhammad

    2018-02-01

    Some functions of mangrove areas in coastal ecosystems as a green belt, because mangrove serves as a protector of the beach from the sea waves, as a good habitat for coastal biota and for nutrition supply. Decreased condition or degradation of mangrove habitat caused by several oceanographic factors. Mangrove habitats have some specific characteristics such as salinity, tides, and muddy substrates. Considering the role of mangrove area is very important, it is necessary to study about the potential of mangrove habitat so that the habitat level of mangrove habitat in the east coast of Semarang city is known. The purpose of this research is to obtain an index and condition of habitat of mangrove habitat at location of research based on tidal, salinity, substrate type, coastline change. Observation by using purposive method and calculation of habitat index value of mangrove habitat using CVI (Coastal Vulnerability Index) method with scores divided into 3 groups namely low, medium and high. The results showed that there is a zone of research belonging to the medium vulnerability category with the most influential variables is because there is abrasion that sweeps the mangrove substrate. Trimulyo mangrove habitat has high vulnerable variable of tidal frequency, then based on value variable Salinity is categorized as low vulnerability, whereas for mangrove habitat vulnerability based on variable type of substrate belong to low and medium vulnerability category. The CVI values of mangrove habitats divided into zones 1; 2; and 3 were found to varying values of 1.54; 3.79; 1.09, it indicates that there is a zone with the vulnerability of mangrove habitat at the study site belonging to low and medium vulnerability category.

  11. [Heat vulnerability assessment in Jinan city: a comparison between residents living in urban centers and urban-fringe areas].

    Science.gov (United States)

    Wan, Fangjun; Xin, Zheng; Zhou, Lin; Bai, Li; Wang, Yongming; Gu, Shaohua; Liu, Shouqin; Li, Mengmeng; Sang, Shaowei; Zhang, Ji; Liu, Qiyong

    2014-06-01

    To find out the differences in regional characteristics of heat vulnerability between people living in urban centers and urban-fringe areas of Jinan city so as to provide basis for the development of adaptation measures to heat. A cross-sectional survey on heat vulnerability was conducted in urban center and urban-fringe areas of Jinan city, using a self-designed questionnaire among 801 residents at the age of 16 years or older in August 2013. Data of 23 indicators related to heat vulnerability were collected and aggregated to 7 dimensions:health and medical insurance, social networks, heat perception and adaptive behavior, economic status, resources, living environment and working environment. An index score was calculated using a balanced weighted average approach for each dimension, ranging from 0 to 1, with the closer to 1 as greater vulnerability. The scores on heat perception and adaptive behavior, economic status, resources and working environment dimensions for urban-fringe areas were 0.42,0.63,0.55 and 0.62, statistically significantly higher than the urban center area of 0.41,0.51,0.26 and 0.41. Scores of living environment, social networks and health/medical insurance dimensions for urban center area were 0.57,0.49 and 0.31, which were all higher than the urban-fringe areas of 0.50,0.46 and 0.25, with differences statistically significant. Residents living in the urban center might be more vulnerable to heat in terms of living environment, health/medical insurance and social networks while residents living in the urban-fringe areas might more be vulnerable in terms of heat perception and adaptive behavior, economic status, life resources and working environment. These facts indicated that heat vulnerability among residents could be quite different, even at a fine geographic sale. We would thus suggest that intervention strategies on protecting people from heat, should be more targeted.

  12. Results of the round table "Impact of natural and man-made hazards on urban areas"

    Science.gov (United States)

    Bostenaru-Dan, Maria; Olga Gociman, Cristina; Hostiuc, Constantin; Mihaila, Marina; Gheorghe (Popovici), Diana Alexandra; Anghelache, Mirela Adriana; Dutu, Andreea; Tascu-Stavre, Miroslav

    2015-04-01

    , vulnerability and impact in recent events 8. Investigation o urban morphology for better estimation of urban vulnerability (interaction between neighbouring buildings, the influence of the position of a building in the historical centre, ...) 9. Investigation of urban morphology to assess postdisaster accesibility of strategical buildings, the role of the urban pattern for emergency vehicles 11. Quantifying models of vulnerability through questionnaires based on point numbers - the role of statistics 12. Interactions between the urban systems which can increase/decrease vulnerability 13. The approach difference in the impact on protected urban areas as compared on common urban areas. 14. Keeping the memory in reconstruction/reshape efforts after disasters, the role of heritage habitat.

  13. User friendly tools to target vulnerable areas at watershed scale: evaluation of the soil vulnerability and conductivity claypan indices

    Science.gov (United States)

    One finding of the Conservation Effects Assessment Program (CEAP) watershed studies was that Best Management practices (BMPs) were not always installed where most needed: in many watersheds, only a fraction of BMPs were implemented in the most vulnerable areas. While complex computer simulation mode...

  14. Analysis of Environmental Vulnerability in The Landslide Areas (Case Study: Semarang Regency)

    Science.gov (United States)

    Hani'ah; Firdaus, H. S.; Nugraha, A. L.

    2017-12-01

    The Land conversion can increase the risk of landslide disaster in Semarang Regency caused by human activity. Remote sensing and geographic information system to be used in this study to mapping the landslide areas because satellite image data can represent the object on the earth surface in wide area coverage. Satellite image Landsat 8 is used to mapping land cover that processed by supervised classification method. The parameters to mapping landslide areas are based on land cover, rainfall, slope, geological factors and soil types. Semarang Regency have the minimum value of landslide is 1.6 and the maximum value is 4.3, which is dominated by landslide prone areas about 791.27 km2. The calculation of the environmental vulnerability index in the study area is based on Perka BNPB No. 2/2012. Accumulation score of environmental vulnerability index is moderate value, that means environment condition must be considered, such as vegetation as ground cover and many others aspects. The range of NDVI value shows that density level in conservation areas (0.030 - 0.844) and conservation forest (0.045 - 0.849), which rarely until high density level. The results of this study furthermore can be assessed to reduce disaster risks from landslide as an effort of disaster preventive.

  15. Importance of biometrics to addressing vulnerabilities of the U.S. infrastructure

    Science.gov (United States)

    Arndt, Craig M.; Hall, Nathaniel A.

    2004-08-01

    Human identification technologies are important threat countermeasures in minimizing select infrastructure vulnerabilities. Properly targeted countermeasures should be selected and integrated into an overall security solution based on disciplined analysis and modeling. Available data on infrastructure value, threat intelligence, and system vulnerabilities are carefully organized, analyzed and modeled. Prior to design and deployment of an effective countermeasure; the proper role and appropriateness of technology in addressing the overall set of vulnerabilities is established. Deployment of biometrics systems, as with other countermeasures, introduces potentially heightened vulnerabilities into the system. Heightened vulnerabilities may arise from both the newly introduced system complexities and an unfocused understanding of the set of vulnerabilities impacted by the new countermeasure. The countermeasure's own inherent vulnerabilities and those introduced by the system's integration with the existing system are analyzed and modeled to determine the overall vulnerability impact. The United States infrastructure is composed of government and private assets. The infrastructure is valued by their potential impact on several components: human physical safety, physical/information replacement/repair cost, potential contribution to future loss (criticality in weapons production), direct productivity output, national macro-economic output/productivity, and information integrity. These components must be considered in determining the overall impact of an infrastructure security breach. Cost/benefit analysis is then incorporated in the security technology deployment decision process. Overall security risks based on system vulnerabilities and threat intelligence determines areas of potential benefit. Biometric countermeasures are often considered when additional security at intended points of entry would minimize vulnerabilities.

  16. Evaluating medical convenience in ethnic minority areas of Southwest China via road network vulnerability: a case study for Dehong autonomous prefecture.

    Science.gov (United States)

    Wei, Xiaoyan; Liu, Xuejun; Cheng, Liang; Sun, Lele; Pan, Yingying; Zong, Wenwen

    2017-11-28

    Southwest China is home to more than 30 ethnic minority groups. Since most of these populations reside in mountainous areas, convenient access to medical services is an important metric of how well their livelihoods are being protected. This paper proposes a medical convenience index (MCI) and computation model for mountain residents, taking into account various conditions including topography, geology, and climate. Data on road networks were used for comprehensive evaluation from three perspectives: vulnerability, complexity, and accessibility. The model is innovative for considering road network vulnerability in mountainous areas, and proposing a method of evaluating road network vulnerability by measuring the impacts of debris flows based on only links. The model was used to compute and rank the respective MCIs for settlements of each ethnic population in the Dehong Dai and Jingpo Autonomous Prefecture of Yunnan Province, in 2009 and 2015. Data on the settlements over the two periods were also used to analyze the spatial differentiation of medical convenience levels within the study area. The medical convenience levels of many settlements improved significantly. 80 settlements were greatly improved, while another 103 showed slight improvement.Areas with obvious improvement were distributed in clusters, and mainly located in the southwestern part of Yingjiang County, northern Longchuan County, eastern Lianghe County, and the region where Lianghe and Longchuan counties and Mang City intersect. Development of the road network was found to be a major contributor to improvements in MCI for mountain residents over the six-year period.

  17. [Spatial and temporal changes of the ecological vulnerability in a serious soil erosion area, Southern China.

    Science.gov (United States)

    Yao, Xiong; Yu, Kun Yong; Liu, Jian; Yang, Su Ping; He, Ping; Deng, Yang Bo; Yu, Xin Yan; Chen, Zhang Hao

    2016-03-01

    Research on eco-environment vulnerability assessment contributes to the ecological environmental conservation and restoration. With Changting County as the study area, this paper selec-ted 7 indicators including slope, soil type, multi-year average precipitation, elevation deviate degree, normalized difference vegetation index, population density and land use type to build ecological vulnerability assessment system by using multicollinearity diagnostics analysis approach. The quantitative assessment of ecological vulnerability in 1999, 2006 and 2014 was calculated by using entropy weight method and comprehensive index method. The changes of the temporal-spatial distribution of ecological vulnerability were also analyzed. The results showed that the ecological vulnerability level index (EVLI) decreased overall but increased locally from 1999 to 2014. The average EVLI values in 1999, 2006 and 2014 were 0.4533±0.1216, 0.4160±0.1111 and 0.3916±0.1139, respectively, indicating that the ecological vulnerability in Changting County was at the moderate grade. The EVLI decreased from 2.92 in 1999 to 2.38 in 2006 and 2.13 in 2014. The spatial distribution of the ecological vulnerability was high inside but low outside. The high vulnerability areas were distributed mainly in Hetian Town and Tingzhou Town, where the slope was less than 15° and the altitude was lower than 500 m. During the study period, Sanzhou Town had the largest decreasing range of EVLI while Tingzhou Town had the lowest.

  18. Hurricane & Tropical Storm Impacts over the South Florida Metropolitan Area: Mortality & Government

    Science.gov (United States)

    Colon Pagan, I. C.

    2007-12-01

    Since 1985, the South Florida Metropolitan area (SFMA), which covers the counties of Miami-Dade, Broward, and Palm Beach, has been directly affected by 9 tropical cyclones: four tropical storms and 5 hurricanes. This continuous hurricane and tropical storm activity has awakened the conscience of the communities, government, and private sector, about the social vulnerability, in terms of age, gender, ethnicity, and others. Several factors have also been significant enough to affect the vulnerability of the South Florida Metropolitan area, like its geographic location which is at the western part of the Atlantic hurricane track, with a surface area of 6,137 square miles, and elevation of 15 feet. And second, from the 2006 Census estimate, this metropolitan area is the 7th most populous area in the United States supporting almost 1,571 individuals per square mile. Mortality levels due to hurricanes and tropical storms have fluctuated over the last 21 years without any signal of a complete reduction, a phenomenon that can be related to both physical characteristics of the storms and government actions. The average annual death count remains almost the same from 4.10 between 1985 and 1995 to 4 from 1996 to 2006. However, the probability of occurrence of a direct impact of an atmospheric disturbance has increase from 0.3 to 0.6, with an average of three hurricane or tropical storm direct impacts for every five. This analysis suggests an increasing problem with regard to atmospheric disturbances-related deaths in the South Florida Metropolitan area. In other words, despite substantial increases in population during the last 21 years, the number of tropical cyclone-related deaths is not declining; it's just being segregated among more storms. Gaps between each impact can be related to mortality levels. When that time increases in five years or more, such as Bob and Andrew or Irene and Katrina, or decreases in weeks or months, such as Harvey and Irene or Katrina and Wilma

  19. Recent Advances in Climate Impacts, Vulnerability, and Adaptation Studies in California

    Science.gov (United States)

    Franco, G.; Cayan, D. R.; Moser, S. C.; Hanemann, M.; Pittiglio, S.

    2010-12-01

    The State of California is committed to preparing periodic climate change impacts and adaptation assessments to inform and develop policy in the State. The most recent assessment was released late in 2009 and a new vulnerability and adaptation assessment is underway for release in late 2011. Both assessments use IPCC climate simulations that were statistically downscaled to a horizontal resolution of about 12 Km. The 2009 California assessment attempted to translate some impacts and adaptation options into monetary terms which introduced additional uncertainties. The 2011 California assessment combines a set of coordinated statewide and regional/local studies because many adaptation options, though informed by state and national policies, will be implemented at regional and local levels. The 2011 assessment expands the number of climate simulations that are employed in order to form a fuller estimate of the potential envelope of climate change and its impacts in the state. It also introduces a subset of dynamically downscaled scenarios to understand how well statistical relationships, developed using historical data, hold up in future climate regimes. Investigations are on-going to translate the ensemble of climate simulations and to begin to attach probabilities to the scenarios using subjective and objective techniques. In addition to advances in climate simulations and downscaling techniques, the new vulnerability and adaptation assessment also increasingly integrates social science approaches to assessing vulnerabilities and adaptation options. This presentation will illustrate results from the 2009 assessment and describe the design and initial implementation of the 2011 assessment.

  20. A model for assessing the systemic vulnerability in landslide prone areas

    Directory of Open Access Journals (Sweden)

    S. Pascale

    2010-07-01

    Full Text Available The objectives of spatial planning should include the definition and assessment of possible mitigation strategies regarding the effects of natural hazards on the surrounding territory. Unfortunately, however, there is often a lack of adequate tools to provide necessary support to the local bodies responsible for land management. This paper deals with the conception, the development and the validation of an integrated numerical model for assessing systemic vulnerability in complex and urbanized landslide-prone areas. The proposed model considers this vulnerability not as a characteristic of a particular element at risk, but as a peculiarity of a complex territorial system, in which the elements are reciprocally linked in a functional way. It is an index of the tendency of a given territorial element to suffer damage (usually of a functional kind due to its interconnections with other elements of the same territorial system. The innovative nature of this work also lies in the formalization of a procedure based on a network of influences for an adequate assessment of such "systemic" vulnerability.

    This approach can be used to obtain information which is useful, in any given situation of a territory hit by a landslide event, for the identification of the element which has suffered the most functional damage, ie the most "critical" element and the element which has the greatest repercussions on other elements of the system and thus a "decisive" role in the management of the emergency.

    This model was developed within a GIS system through the following phases:

    1. the topological characterization of the territorial system studied and the assessment of the scenarios in terms of spatial landslide hazard. A statistical method, based on neural networks was proposed for the assessment of landslide hazard;

    2. the analysis of the direct consequences of a scenario event on the system;

    3. the definition of the

  1. Trampling Impacts on Thermotolerant Vegetation of Geothermal Areas in New Zealand

    Science.gov (United States)

    Burns, Bruce R.; Ward, Jonet; Downs, Theresa M.

    2013-12-01

    Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.

  2. Trampling impacts on thermotolerant vegetation of geothermal areas in New Zealand.

    Science.gov (United States)

    Burns, Bruce R; Ward, Jonet; Downs, Theresa M

    2013-12-01

    Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.

  3. Groundwater vulnerability to pollution mapping of Ranchi district using GIS

    Science.gov (United States)

    Krishna, R.; Iqbal, J.; Gorai, A. K.; Pathak, G.; Tuluri, F.; Tchounwou, P. B.

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D), net recharge ( R), aquifer media ( A), soil media ( S), topography or slope ( T), impact of vadose zone ( I) and hydraulic Conductivity( C)] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  4. Groundwater vulnerability to pollution mapping of Ranchi district using GIS.

    Science.gov (United States)

    Krishna, R; Iqbal, J; Gorai, A K; Pathak, G; Tuluri, F; Tchounwou, P B

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D ), net recharge ( R ), aquifer media ( A ), soil media ( S ), topography or slope ( T ), impact of vadose zone ( I ) and hydraulic Conductivity( C )] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  5. Food Vulnerability and Alluvial Farming for Food Security in Central Dry Zone Area of Myanmar

    Science.gov (United States)

    Boori, M. S.; Choudhary, K.; Evers, M.; Kupriyanov, A.

    2017-10-01

    The central dry zone area of Myanmar is the most water stressed and also one of the most food insecure regions in the country. In the Dry Zone area, the total population is 10.1 million people in 54 townships, in which approximately 43 % live in below poverty line and 40-50 % of the rural population is landless. Agriculture is the most important economic sector in Myanmar as it is essential for national food security and a major source of livelihood for its people. In this region the adverse effects of climate change such as late or early onset of monsoon season, longer dry spells, erratic rainfall, increasing temperature, heavy rains, stronger typhoons, extreme spatial-temporal variability of rainfall, high intensities, limited rainfall events in the growing season, heat stress, drought, flooding, sea water intrusion, land degradation, desertification, deforestation and other natural disasters are believed to be a major constraint to food insecurity. For food vulnerability, we use following indicators: slope, precipitation, vegetation, soil, erosion, land degradation and harvest failure in ArcGIS software. The erosion is influenced by rainfall and slope, while land degradation is directly related to vegetation, drainage and soil. While harvest failure can be generate by rainfall and flood potential zones. Results show that around 45 % study area comes under very high erosion danger level, 70 % under average harvest failure, 59 % intermediate land degradation area and the overall around 45 % study area comes under insecure food vulnerability zone. Our analysis shows an increase in alluvial farming by 1745.33 km2 since 1988 to reduce the insecure food vulnerability. Food vulnerability map is also relevant to increased population and low income areas. The extreme climatic events are likely increase in frequency and magnitude of serious drought periods and extreme floods. Food insecurity is an important thing that must be reviewed because it relates to

  6. FOOD VULNERABILITY AND ALLUVIAL FARMING FOR FOOD SECURITY IN CENTRAL DRY ZONE AREA OF MYANMAR

    Directory of Open Access Journals (Sweden)

    M. S. Boori

    2017-10-01

    Full Text Available The central dry zone area of Myanmar is the most water stressed and also one of the most food insecure regions in the country. In the Dry Zone area, the total population is 10.1 million people in 54 townships, in which approximately 43 % live in below poverty line and 40–50 % of the rural population is landless. Agriculture is the most important economic sector in Myanmar as it is essential for national food security and a major source of livelihood for its people. In this region the adverse effects of climate change such as late or early onset of monsoon season, longer dry spells, erratic rainfall, increasing temperature, heavy rains, stronger typhoons, extreme spatial-temporal variability of rainfall, high intensities, limited rainfall events in the growing season, heat stress, drought, flooding, sea water intrusion, land degradation, desertification, deforestation and other natural disasters are believed to be a major constraint to food insecurity. For food vulnerability, we use following indicators: slope, precipitation, vegetation, soil, erosion, land degradation and harvest failure in ArcGIS software. The erosion is influenced by rainfall and slope, while land degradation is directly related to vegetation, drainage and soil. While harvest failure can be generate by rainfall and flood potential zones. Results show that around 45 % study area comes under very high erosion danger level, 70 % under average harvest failure, 59 % intermediate land degradation area and the overall around 45 % study area comes under insecure food vulnerability zone. Our analysis shows an increase in alluvial farming by 1745.33 km2 since 1988 to reduce the insecure food vulnerability. Food vulnerability map is also relevant to increased population and low income areas. The extreme climatic events are likely increase in frequency and magnitude of serious drought periods and extreme floods. Food insecurity is an important thing that must be reviewed

  7. Climate change impact and vulnerability assessment of forests in the Indian Western Himalayan region: A case study of Himachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    Sujata Upgupta

    2015-01-01

    Full Text Available Climate change impact and vulnerability assessment at state and regional levels is necessary to develop adaptation strategies for forests in the biogeographically vital Himalayan region. The present study assesses forest ecosystem vulnerability to climate change across Himachal Pradesh and presents the priority districts for vulnerability reduction under ‘current climate’ and ‘future climate’ scenarios. Vulnerability of forests under ‘current climate’ scenario is assessed by adopting indicator-based approach, while the vulnerability under ‘future climate’ scenario is assessed using climate and vegetation impact models. Based on the vulnerability index estimated to present the vulnerability of forests under current and projected climate change impacts representing climate driven vulnerability, five districts – Chamba, Kangra, Kullu, Mandi and Shimla are identified as priority forest districts for adaptation planning. Identifying vulnerable forest districts and forests will help policy makers and forest managers to prioritize resource allocation and forest management interventions, to restore health and productivity of forests and to build long-term resilience to climate change.

  8. Land tenure insecurity, vulnerability to climate-induced disaster and opportunities for redress in southern Africa

    Directory of Open Access Journals (Sweden)

    Tigere Chagutah

    2013-02-01

    Full Text Available Land tenure is an important variable impacting on vulnerability to climate-related disaster. Land tenure insecurity is widespread in southern Africa and manifests itself in a number of ways that accentuate vulnerability to climate change impacts. Insecure tenure is seen to heighten vulnerability against growing demand for land for residential purposes and working space in urban areas while in the rural areas insecure tenure militates against diversified livelihoods and hinders investment in appropriate technologies and uptake of sound environmental management practices. Using the focused synthesis method, this article (1 maps the intersections between land tenure insecurity and vulnerability to climate-induced disaster in southern Africa; and (2 identifies the opportunities tenure reforms hold for vulnerability reduction in a region predicted to suffer widespread impacts from climate change. The paper contends that land tenure is a critical component of the milieu of factors – economic, social, cultural, institutional, political and even psychological – that are known to shape vulnerability and determine the environment that people live in. The study finds that land tenure reforms can help to reduce vulnerability and enhance community resilience to climate change. In this regard, the article outlines how tenure reforms can help build diverse household livelihoods, improve environmental management, particularly in the rural areas, and encourage investment in robust housing and safe neighbourhoods among the urban poor – all of which are integral to the region’s response to climate change.

  9. Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain

    NARCIS (Netherlands)

    Lesschen, J.P.; Kok, K.; Verburg, P.H.; Cammeraat, L.H.

    2007-01-01

    Abandonment of agricultural land is one of the main changes in Mediterranean land use. To mitigate runoff and erosion from abandoned land, it is necessary to identify locations that are vulnerable to erosion as a result of land abandonment. The objective of our study was to identify vulnerable areas

  10. A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes

    International Nuclear Information System (INIS)

    Kermanshah, A.; Derrible, S.

    2016-01-01

    The purpose of this study is to provide a geographical and multi-criteria vulnerability assessment method to quantify the impacts of extreme earthquakes on road networks. The method is applied to two US cities, Los Angeles and San Francisco, both of which are susceptible to severe seismic activities. Aided by the recent proliferation of data and the wide adoption of Geography Information Systems (GIS), we use a data-driven approach using USGS ShakeMaps to determine vulnerable locations in road networks. To simulate the extreme earthquake, we remove road sections within “very strong” intensities provided by USGS. Subsequently, we measure vulnerability as a percentage drop in four families of metrics: overall properties (length of remaining system); topological indicators (betweenness centrality); accessibility; and travel demand using Longitudinal Employment Household Dynamics (LEHD) data. The various metrics are then plotted on a Vulnerability Surface (VS), from which the area can be assimilated to an overall vulnerability indicator. This VS approach offers a simple and pertinent method to capture the impacts of extreme earthquake. It can also be useful to planners to assess the robustness of various alternative scenarios in their plans to ensure that cities located in seismic areas are better prepared to face severe earthquakes. - Highlights: • Developed geographical and multi-criteria vulnerability assessment method. • Quantify the impacts of extreme earthquakes on transportation networks. • Data-driven approach using USGS ShakeMaps to determine vulnerable locations. • Measure vulnerability as a percentage drop in four families of metrics: ○Overall properties. ○Topological indicators. ○Accessibility. ○Travel demand using Longitudinal Employment Household Dynamics (LEHD) data. • Developed Vulnerability Surface (VS), a new pragmatic vulnerability indicator.

  11. Flood vulnerability analysis for inland medium-sized cities: Guang’an as an example

    OpenAIRE

    Liang, Ting

    2017-01-01

    Vulnerability studies look into the impact of hazard events on socio-ecological systems. Socio-ecological vulnerability is a very complex subject because it is not only a technical matter but also a social problem. Precise assessment of socio-ecological vulnerability can help people successfully reduce potential losses caused by disasters as well as provide decision support for decision makers to take different urban planning strategies in areas of different vulnerability levels when making d...

  12. Roads at risk - the impact of debris flows on road network reliability and vulnerability in southern Norway

    Science.gov (United States)

    Meyer, Nele Kristin; Schwanghart, Wolfgang; Korup, Oliver

    2014-05-01

    Norwegian's road network is frequently affected by debris flows. Both damage repair and traffic interruption generate high economic losses and necessitate a rigorous assessment of where losses are expected to be high and where preventive measures should be focused on. In recent studies, we have developed susceptibility and trigger probability maps that serve as input into a hazard calculation at the scale of first-order watersheds. Here we combine these results with graph theory to assess the impact of debris flows on the road network of southern Norway. Susceptibility and trigger probability are aggregated for individual road sections to form a reliability index that relates to the failure probability of a link that connects two network vertices, e.g., road junctions. We define link vulnerability as a function of traffic volume and additional link failure distance. Additional link failure distance is the extra length of the alternative path connecting the two associated link vertices in case the network link fails and is calculated by a shortest-path algorithm. The product of network reliability and vulnerability indices represent the risk index. High risk indices identify critical links for the Norwegian road network and are investigated in more detail. Scenarios demonstrating the impact of single or multiple debris flow events are run for the most important routes between seven large cities in southern Norway. First results show that the reliability of the road network is lowest in the central and north-western part of the study area. Road network vulnerability is highest in the mountainous regions in central southern Norway where the road density is low and in the vicinity of cities where the traffic volume is large. The scenarios indicate that city connections that have their shortest path via routes crossing the central part of the study area have the highest risk of route failure.

  13. Climate Change Impacts on Migration in the Vulnerable Countries

    Science.gov (United States)

    An, Nazan; Incealtin, Gamze; Kurnaz, M. Levent; Şengün Ucal, Meltem

    2014-05-01

    This work focuses on the economic, demographic and environmental drivers of migration related with the sustainable development in underdeveloped and developed countries, which are the most vulnerable to the climate change impacts through the Climate-Development Modeling including climate modeling and panel logit data analysis. We have studied some countries namely Bangladesh, Netherlands, Morocco, Malaysia, Ethiopia and Bolivia. We have analyzed these countries according to their economic, demographic and environmental indicators related with the determinants of migration, and we tried to indicate that their conditions differ according to all these factors concerning with the climate change impacts. This modeling covers some explanatory variables, which have the relationship with the migration, including GDP per capita, population, temperature and precipitation, which indicate the seasonal differences according to the years, the occurrence of natural hazards over the years, coastal location of countries, permanent cropland areas and fish capture which represents the amount of capturing over the years. We analyzed that whether there is a relationship between the migration and these explanatory variables. In order to achieve sustainable development by preventing or decreasing environmental migration due to climate change impacts or related other factors, these countries need to maintain economic, social, political, demographic, and in particular environmental performance. There are some significant risks stemming from climate change, which is not under control. When the economic and environmental conditions are considered, we have to regard climate change to be the more destructive force for those who are less defensible against all of these risks and impacts of uncontrolled climate change. This work was supported by the BU Research Fund under the project number 6990. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  14. Climate change: are we all vulnerable?: Reconsidering inequalities

    International Nuclear Information System (INIS)

    Magnan, Alexandre

    2013-01-01

    This bibliographical note presents a book in which the author reviews two generally accepted ideas: first, the poorest communities would be the most vulnerable to climate change due to their weak adaptation capacities, and second, such an adaptation would only be an issue of projection on a long term. Based on his works on coastal areas and on his experience on issues of vulnerability and adaptation to climate change he shows that all societies are potentially vulnerable. He uses the notion of 'impact chains', introduces three global parameters for these chains (temperatures, sea level, and precipitation regime), and outlines the always increasing complexity of causes-consequences relationships. He discusses two key concepts: vulnerability as the degree at which a system might be affected by climate changes, and the adaptation capacity which is developed by societies to reduce their vulnerability to environmental changes

  15. Groundwater vulnerability assessment in karstic aquifers using COP method.

    Science.gov (United States)

    Bagherzadeh, Somayeh; Kalantari, Nasrollah; Nobandegani, Amir Fadaei; Derakhshan, Zahra; Conti, Gea Oliveri; Ferrante, Margherita; Malekahmadi, Roya

    2018-05-02

    Access to safe and reliable drinking water is amongst the important indicators of development in each society, and water scarcity is one of the challenges and limitations affecting development at national and regional levels and social life and economic activity areas. Generally, there are two types of drinking water sources: the first type is surface waters, including lakes, rivers, and streams and the second type is groundwaters existing in aquifers. Amongst aquifers, karst aquifers play an important role in supplying water sources of the world. Therefore, protecting these aquifers from pollution sources is of paramount importance. COP method is amongst the methods to investigate the intrinsic vulnerability of this type of aquifers, so that areas susceptible to contamination can be determined before being contaminated and these sources can be protected. In the present study, COP method was employed in order to spot the regions that are prone to contamination in the region. This method uses the properties of overlying geological layers above the water table (O factor), the concentration of flow (C factor), and precipitation (P factor) over the aquifer, as the parameters to assess the intrinsic vulnerability of groundwater resources. In this regard, geographical information system (GIS) and remote sensing (RS) were utilized to prepare the mentioned factors and the intrinsic vulnerability map was obtained. The results of COP method indicated that the northwest and the west of the region are highly and very vulnerable. This study indicated that regions with low vulnerability were observed in eastern areas, which accounted for 15.6% of the area. Moderate vulnerability was 40% and related to the northeast and southeast of the area. High vulnerability was 38.2% and related to western and southwestern regions. Very high vulnerability was 6.2% and related to the northwest of the area. By means of the analysis of sensitivity of the model, it was determined that the focus

  16. An uncertainty-based framework to quantifying climate change impacts on coastal flood vulnerability: case study of New York City.

    Science.gov (United States)

    Zahmatkesh, Zahra; Karamouz, Mohammad

    2017-10-17

    The continued development efforts around the world, growing population, and the increased probability of occurrence of extreme hydrologic events have adversely affected natural and built environments. Flood damages and loss of lives from the devastating storms, such as Irene and Sandy on the East Coast of the USA, are examples of the vulnerability to flooding that even developed countries have to face. The odds of coastal flooding disasters have been increased due to accelerated sea level rise, climate change impacts, and communities' interest to live near the coastlines. Climate change, for instance, is becoming a major threat to sustainable development because of its adverse impacts on the hydrologic cycle. Effective management strategies are thus required for flood vulnerability reduction and disaster preparedness. This paper is an extension to the flood resilience studies in the New York City coastal watershed. Here, a framework is proposed to quantify coastal flood vulnerability while accounting for climate change impacts. To do so, a multi-criteria decision making (MCDM) approach that combines watershed characteristics (factors) and their weights is proposed to quantify flood vulnerability. Among the watershed characteristics, potential variation in the hydrologic factors under climate change impacts is modeled utilizing the general circulation models' (GCMs) outputs. The considered factors include rainfall, extreme water level, and sea level rise that exacerbate flood vulnerability through increasing exposure and susceptibility to flooding. Uncertainty in the weights as well as values of factors is incorporated in the analysis using the Monte Carlo (MC) sampling method by selecting the best-fitted distributions to the parameters with random nature. A number of low impact development (LID) measures are then proposed to improve watershed adaptive capacity to deal with coastal flooding. Potential range of current and future vulnerability to flooding is

  17. GIS-based analysis of tourist impact in mid-mountain protected natural area, Gorce National Park, Poland

    Science.gov (United States)

    Tomczyk, Aleksandra

    2010-05-01

    mountainous protected areas: Gorce National Park (GPN). Data for the study came from two main sources: A) existing materials - topographic and thematic maps, DEM, orthophotos B) field acquired data - the following variables were recorded along the tourist trails and roads: (1) trail width (width of trampled vegetation cover); (2) trail incision; (3) surface type; (4) vegetation communities; (5) infrastructure; (6) level of impact (from minimal to serve impact); (7) other indicator of tourist activity like litters, "informal" tracks etc. Results. In case of Gorce National Park environmental vulnerability is mostly controlled by topographic factors (i.e. slope and aspect) and in less degree by vegetation cover and soil types. The most vulnerable areas concentrate in the north part of the Park, in the zone of hillslopes. Valley floors and upper parts of the ridges are more resistant to degradation, mainly due to lower value of slopes. The highest potential tourist capacity is along the main ridges of Gorce Mountains. Also meadows and pastures are highly resistant to tourist impact. Although overall environmental susceptibility in Gorce National Park is rather low, a lot of roads and trails lead through less resistant areas. In consequence, they have substantial impact on environment and cause severe degradation of plant communities and soil cover. Data delivered by this study can be helpful for Park managers to promote some areas which are more resilient and, in such a way, to better protect of vulnerable parts of Parks. Activities causing heavier impact (i.e. horse riding, biking) would be rather allowed in more resistant parts of park. Also some of the forest roads should be not used for timber carting, because heavy tractors cause large impact on ground and should not be used in prone areas.

  18. Development and Application of Urban Landslide Vulnerability Assessment Methodology Reflecting Social and Economic Variables

    Directory of Open Access Journals (Sweden)

    Yoonkyung Park

    2016-01-01

    Full Text Available An urban landslide vulnerability assessment methodology is proposed with major focus on considering urban social and economic aspects. The proposed methodology was developed based on the landslide susceptibility maps that Korean Forest Service utilizes to identify landslide source areas. Frist, debris flows are propagated to urban areas from such source areas by Flow-R (flow path assessment of gravitational hazards at a regional scale, and then urban vulnerability is assessed by two categories: physical and socioeconomic aspect. The physical vulnerability is related to buildings that can be impacted by a landslide event. This study considered two popular building structure types, reinforced-concrete frame and nonreinforced-concrete frame, to assess the physical vulnerability. The socioeconomic vulnerability is considered a function of the resistant levels of the vulnerable people, trigger factor of secondary damage, and preparedness level of the local government. An index-based model is developed to evaluate the life and indirect damage under landslide as well as the resilience ability against disasters. To illustrate the validity of the proposed methodology, physical and socioeconomic vulnerability levels are analyzed for Seoul, Korea, using the suggested approach. The general trend found in this study indicates that the higher population density areas under a weaker fiscal condition that are located at the downstream of mountainous areas are more vulnerable than the areas in opposite conditions.

  19. Climate Change Vulnerability Assessment for Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

  20. Developing a Climate-Induced Social Vulnerability Index for Urban Areas: A Case Study of East Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carvalhaes, Thomaz M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Census American Community Survey 2008-2012 data are used to construct a spatially explicit Climate-Induced Social Vulnerability Index (CSVI) for the East Tennessee area. This CSVI is a combination of a Social Vulnerability Index (SVI) and a Climate Index. A method is replicated and adapted to derive a custom SVI by Census tract for the counties participating in the East Tennessee Index, and a Climate Index is developed for the same area based on indicators for climate hazards. The resulting datasets are exported as a raster to be integrated and combined within the Urban Climate Adaptation Tool (Urban-CAT) to act as an indicator for communities which may be differentially vulnerable to changes in climate. Results for the SVI are mapped separately from the complete CSVI in this document as results for the latter are in development.

  1. GIS Fuzzy Expert System for the assessment of ecosystems vulnerability to fire in managing Mediterranean natural protected areas.

    Science.gov (United States)

    Semeraro, Teodoro; Mastroleo, Giovanni; Aretano, Roberta; Facchinetti, Gisella; Zurlini, Giovanni; Petrosillo, Irene

    2016-03-01

    A significant threat to the natural and cultural heritage of Mediterranean natural protected areas (NPAs) is related to uncontrolled fires that can cause potential damages related to the loss or a reduction of ecosystems. The assessment and mapping of the vulnerability to fire can be useful to reduce landscape damages and to establish priority areas where it is necessary to plan measures to reduce the fire vulnerability. To this aim, a methodology based on an interactive computer-based system has been proposed in order to support NPA's management authority for the identification of vulnerable hotspots to fire through the selection of suitable indicators that allow discriminating different levels of sensitivity (e.g. Habitat relevance, Fragmentation, Fire behavior, Ecosystem Services, Vegetation recovery after fire) and stresses (agriculture, tourism, urbanization). In particular, a multi-criteria analysis based on Fuzzy Expert System (FES) integrated in a GIS environment has been developed in order to identify and map potential "hotspots" of fire vulnerability, where fire protection measures can be undertaken in advance. In order to test the effectiveness of this approach, this approach has been applied to the NPA of Torre Guaceto (Apulia Region, southern Italy). The most fire vulnerable areas are the patch of century-old forest characterized by high sensitivity and stress, and the wetlands and century-old olive groves due to their high sensitivity. The GIS fuzzy expert system provides evidence of its potential usefulness for the effective management of natural protected areas and can help conservation managers to plan and intervene in order to mitigate the fire vulnerability in accordance with conservation goals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Evaluation of intrinsic groundwater vulnerability to pollution: COP method for pilot area of Carrara hydrogeological system (Northern Tuscany, Italy)

    Science.gov (United States)

    Baldi, B.; Guastaldi, E.; Rossetto, R.

    2009-04-01

    During the characterization of the Apuan Alps groundwater body ( "Corpo Idrico Sotterraneo Significativo", briefly CISS) (Regione Toscana, 2007) the intrinsic vulnerability has been evaluated for Carrara hydrogeological system (Northern Tuscany, Italy) by means of COP method, developed within COST 620 European Action (Zwalhlen, 2003). This system is both characterized by large data availability and it is considered an highly risky zone since groundwater protection problems (turbidity of the tapped spring waters and hydrocarbons contamination) and anthropic activity (marble quarries). The study area, 20 Km2large, has high relief energy, with elevations ranging from 5 to 1700 m amsl in almost 5 km. Runoff is scarce except during heavy rainfall; due to the presence of carbonate rocks infiltration is high: groundwater discharge at 155-255 m amsl. The area is located in the north-western part of Apuan Alps Metamorphic Complex, characterized by carbonate and non-carbonate rocks belonging to the non-metamorphic Tuscan Units (Carnic-Oligocene), Mesozoic Succession, Middle-Triassic Succession, and metamorphic Paleozoic rocks. The main geological structure of the area is the Carrara Syncline, constituted prevalently by dolostones, marbles and cherty limestones. These carbonate formations define several moderately to highly productive hydrogeological units, characterized by fissured and karst flow. Hydrogeological system may be subdivided in two different subsets, because of both geo-structural set up and area conformation. However, these are hydrogeologically connected since anisotropy and fractures of karst groundwater. The southern boundary of Carrara hydrogeological system shows important dammed springs, defined by low productive units of Massa Unit (Cambriano?-Carnic). COP methodology for evaluating intrinsic vulnerability of karst groundwater is based on three main factors for the definition of vulnerability itself: COPIndex = C (flow Concentration) *O (Overlying layers

  3. Impact of social vulnerability on the outcomes of predialysis chronic kidney disease patients in an interdisciplinary center

    Directory of Open Access Journals (Sweden)

    Luciana dos Santos Tirapani

    2015-03-01

    Full Text Available Introduction: Numerous studies examined the associations between socio-demographic, economic and individual factors and chronic kidney disease (CKD outcomes and observed that the associations were complex and multifactorial. Socioeconomic factors can be evaluated by a model of social vulnerability (SV. Objective: To analyze the impact of SV on the outcomes of predialysis patients. Methods: Demographic, clinical and laboratory data were collected from a cohort of patients with predialysis stage 3 to 5 who were treated by an interdisciplinary team (January 2002 and December 2009 in Minas Gerais, Brazil. Factor, cluster and discriminant analysis were performed in sequence to identify the most important variables and develop a model of SV that allowed for classification of the patients as vulnerable or non-vulnerable. Cox regression was performed to examine the impact of SV on the outcomes of mortality and need for renal replacement therapy (RRT. Results: Of the 209 patients examined, 29.4% were classified as vulnerable. No significance difference was found between the vulnerable and non-vulnerable groups regarding either mortality (log rank: 0.23 or need for RRT (log rank: 0.17. In the Cox regression model, the hazard ratios (HRs for the unadjusted and adjusted impact of SV on mortality were found to be 1.87 (confidence interval [CI]: 0.64-5.41 and 1.47 (CI: 0.35-6.0, respectively, and the unadjusted and adjusted impact of need for RRT to be 1.85 (CI: 0.71-4.8 and 2.19 (CI: 0.50-9.6, respectively. Conclusion: These findings indicate that SV did not influence the outcomes of patients with predialysis CKD treated in an interdisciplinary center.

  4. Multi-dimensional flood vulnerability assessment using data envelopment analysis

    Science.gov (United States)

    Zahid, Zalina; Saharizan, Nurul Syuhada; Hamzah, Paezah; Hussin, Siti Aida Sheikh; Khairi, Siti Shaliza Mohd

    2017-11-01

    Malaysia has been greatly impacted by flood during monsoon seasons. Even though flood prone areas are well identified, assessment on the vulnerability of the disaster is lacking. Assessment of flood vulnerability, defined as the potential for loss when a disaster occurs, is addressed in this paper. The focus is on the development of flood vulnerability measurement in 11 states in Peninsular Malaysia using a non-parametric approach of Data Envelopment Analysis. Scores for three dimensions of flood vulnerability (Population Vulnerability, Social Vulnerability and Biophysical) were calculated using secondary data of selected input and output variables across an 11-year period from 2004 to 2014. The results showed that Johor and Pahang were the most vulnerable to flood in terms of Population Vulnerability, followed by Kelantan, the most vulnerable to flood in terms of Social Vulnerability and Kedah, Pahang and Terengganu were the most vulnerable to flood in terms of Biophysical Vulnerability among the eleven states. The results also showed that the state of Johor, Pahang and Kelantan to be most vulnerable across the three dimensions. Flood vulnerability assessment is important as it provides invaluable information that will allow the authority to identify and develop plans for flood mitigation and to reduce the vulnerability of flood at the affected regions.

  5. Intrinsic vulnerability assessment of shallow aquifers of the sedimentary basin of southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Saheed A. Oke

    2018-03-01

    Full Text Available The shallow groundwater of the multi-layered sedimentary basin aquifer of southwestern Nigeria was assessed based on its intrinsic vulnerability property. The vulnerability evaluation involves determining the protective cover and infiltration condition of the unsaturated zone in the basin. This was achieved using the PI (P stands for protective cover effectiveness of the overlying lithology and I indicates the degree of infiltration bypass vulnerability method of the European vulnerability approach. The PI method specifically measures the protection cover and the degree to which the protective cover is bypassed. Intrinsic parameters assessed were the subsoil, lithology, topsoil, recharge and fracturing for the protective cover. The saturated hydraulic conductivity of topsoil, infiltration processes and the lateral surface and subsurface flow were evaluated for the infiltration bypassed. The results show moderate to very low vulnerability areas. Low vulnerability areas were characterised by lithology with massive sandstone and limestone, subsoils of sandy loam texture, high slopes and high depth to water table. The moderate vulnerability areas were characterised by high rainfall and high recharge, low water table, unconsolidated sandstones and alluvium lithology. The intrinsic vulnerability properties shown in vulnerability maps will be a useful tool in planning and monitoring land use activities that can be of impact in groundwater pollution.

  6. GIS-based evaluation of groundwater vulnerability in the Russeifa area, Jordan

    OpenAIRE

    El-Naqa, Ali; Hammouri, Nezar; Kuisi, Mustafa

    2006-01-01

    In recent years, groundwater quality has been deteriorating in many parts of Jordan as result of agriculture expansion, solid waste disposal, and industrialization. A preliminary assessment of vulnerability to groundwater contamination in Russeifa watershed area was undertaken because of the presence of the largest solid waste disposal site in Jordan, which is known as Russeifa landfill. The major geological and hydrogeological factors that affect and control groundwater contamination were in...

  7. Using fuzzy logic to determine the vulnerability of marine species to climate change.

    Science.gov (United States)

    Jones, Miranda C; Cheung, William W L

    2018-02-01

    Marine species are being impacted by climate change and ocean acidification, although their level of vulnerability varies due to differences in species' sensitivity, adaptive capacity and exposure to climate hazards. Due to limited data on the biological and ecological attributes of many marine species, as well as inherent uncertainties in the assessment process, climate change vulnerability assessments in the marine environment frequently focus on a limited number of taxa or geographic ranges. As climate change is already impacting marine biodiversity and fisheries, there is an urgent need to expand vulnerability assessment to cover a large number of species and areas. Here, we develop a modelling approach to synthesize data on species-specific estimates of exposure, and ecological and biological traits to undertake an assessment of vulnerability (sensitivity and adaptive capacity) and risk of impacts (combining exposure to hazards and vulnerability) of climate change (including ocean acidification) for global marine fishes and invertebrates. We use a fuzzy logic approach to accommodate the variability in data availability and uncertainties associated with inferring vulnerability levels from climate projections and species' traits. Applying the approach to estimate the relative vulnerability and risk of impacts of climate change in 1074 exploited marine species globally, we estimated their index of vulnerability and risk of impacts to be on average 52 ± 19 SD and 66 ± 11 SD, scaling from 1 to 100, with 100 being the most vulnerable and highest risk, respectively, under the 'business-as-usual' greenhouse gas emission scenario (Representative Concentration Pathway 8.5). We identified 157 species to be highly vulnerable while 294 species are identified as being at high risk of impacts. Species that are most vulnerable tend to be large-bodied endemic species. This study suggests that the fuzzy logic framework can help estimate climate vulnerabilities and risks

  8. Mining Bug Databases for Unidentified Software Vulnerabilities

    Energy Technology Data Exchange (ETDEWEB)

    Dumidu Wijayasekara; Milos Manic; Jason Wright; Miles McQueen

    2012-06-01

    Identifying software vulnerabilities is becoming more important as critical and sensitive systems increasingly rely on complex software systems. It has been suggested in previous work that some bugs are only identified as vulnerabilities long after the bug has been made public. These vulnerabilities are known as hidden impact vulnerabilities. This paper discusses the feasibility and necessity to mine common publicly available bug databases for vulnerabilities that are yet to be identified. We present bug database analysis of two well known and frequently used software packages, namely Linux kernel and MySQL. It is shown that for both Linux and MySQL, a significant portion of vulnerabilities that were discovered for the time period from January 2006 to April 2011 were hidden impact vulnerabilities. It is also shown that the percentage of hidden impact vulnerabilities has increased in the last two years, for both software packages. We then propose an improved hidden impact vulnerability identification methodology based on text mining bug databases, and conclude by discussing a few potential problems faced by such a classifier.

  9. Tsunami vulnerability and damage assessment in the coastal area of Rabat and Salé, Morocco

    Directory of Open Access Journals (Sweden)

    A. Atillah

    2011-12-01

    Full Text Available This study, a companion paper to Renou et al. (2011, focuses on the application of a GIS-based method to assess building vulnerability and damage in the event of a tsunami affecting the coastal area of Rabat and Salé, Morocco. This approach, designed within the framework of the European SCHEMA project (www.schemaproject.org is based on the combination of hazard results from numerical modelling of the worst case tsunami scenario (inundation depth based on the historical Lisbon earthquake of 1755 and the Portugal earthquake of 1969, together with vulnerability building types derived from Earth Observation data, field surveys and GIS data. The risk is then evaluated for this highly concentrated population area characterized by the implementation of a vast project of residential and touristic buildings within the flat area of the Bouregreg Valley separating the cities of Rabat and Salé. A GIS tool is used to derive building damage maps by crossing layers of inundation levels and building vulnerability. The inferred damage maps serve as a base for elaborating evacuation plans with appropriate rescue and relief processes and to prepare and consider appropriate measures to prevent the induced tsunami risk.

  10. Playing It Safe: Assessing Cumulative Impact and Social Vulnerability through an Environmental Justice Screening Method in the South Coast Air Basin, California

    Directory of Open Access Journals (Sweden)

    Justin Scoggins

    2011-05-01

    Full Text Available Regulatory agencies, including the U.S. Environmental Protection Agency (US EPA and state authorities like the California Air Resources Board (CARB, have sought to address the concerns of environmental justice (EJ advocates who argue that chemical-by-chemical and source-specific assessments of potential health risks of environmental hazards do not reflect the multiple environmental and social stressors faced by vulnerable communities. We propose an Environmental Justice Screening Method (EJSM as a relatively simple, flexible and transparent way to examine the relative rank of cumulative impacts and social vulnerability within metropolitan regions and determine environmental justice areas based on more than simply the demographics of income and race. We specifically organize 23 indicator metrics into three categories: (1 hazard proximity and land use; (2 air pollution exposure and estimated health risk; and (3 social and health vulnerability. For hazard proximity, the EJSM uses GIS analysis to create a base map by intersecting land use data with census block polygons, and calculates hazard proximity measures based on locations within various buffer distances. These proximity metrics are then summarized to the census tract level where they are combined with tract centroid-based estimates of pollution exposure and health risk and socio-economic status (SES measures. The result is a cumulative impacts (CI score for ranking neighborhoods within regions that can inform diverse stakeholders seeking to identify local areas that might need targeted regulatory strategies to address environmental justice concerns.

  11. IPCC Climate Change 2013: Impacts, Adaptation and Vulnerability: Key findings and lessons learned

    Science.gov (United States)

    Giorgi, Filippo; Field, Christopher; Barros, Vicente

    2014-05-01

    The Working Group II contribution to the Fifth Assessment Report of the Intergivernmental Panel on Climate Change, Impacts, Adaptation and Vulnerability, will be completed and approved in March 2014. It includes two parts, Part A covering Global and Sectoral Aspects, and Part B, covering Regional Aspects. The WGII report spans a very broad range of topics which are approached in a strong interdisciplinary context. It highlights how observed impacts of climate change are now widespread and consequential, particularly for natural systems, and can be observed on all continents and across the oceans. Vulnerability to climate change depends on interactions with non-climatic stressors and inequalities, resulting in highly differential risks associated with climate change. It is also found that adaptation is already occurring across scales and is embedded in many planning processes. Continued sustained warming thrughout the 21st century will exacerbate risks and vulnerabilities across multiple sectors, such as freshwater resources, terrestrial and inland water systems, coastal and marine systems, food production, human health, security and livelihood. The report stresses how risks and vulnerabilities need to be assessed within a multi-stressor and regionally specific context, and can be reduced and managed by adopting climate-resilient pathwyas combining suitable adaptation and mitigation options with synergies and tradeoffs occurring both within and across regions. The Working group II report includes a large number of Chapters (30) and contributors (310 including authors and review editors), with expertise in a broad range of disciplines, from the physical science to the impact and socio-economic sciences. The communication across chapters and disciplines has been a challenge, and will continue to be one as the Global Change problem will increasingly require a fully integrated and holistic approach. Note that text on this abstract is not approved at the time its

  12. Analysis of flood vulnerability in urban area; a case study in deli watershed

    Science.gov (United States)

    Indrawan, I.; Siregar, R. I.

    2018-03-01

    Based on the National Disaster Management Agency of Indonesia, the distribution of disasters and victims died until the year 2016 is the largest flood disaster. Deli River is a river that has the greatest flood potential through Medan City. In Deli Watershed, flow discharge affected by the discharge from its tributaries, the high rainfall intensity and human activity. We should anticipate reducing and preventing the occurrence of losses due to flood damage. One of the ways to anticipate flood disaster is to predict which part of urban area is would flood. The objective of this study is to analyze the flood inundation areas due to overflow of Deli River through Medan city. Two-dimensional modeling by HEC-RAS 5.0.3 is a widely used hydraulic software tool developed by the U.S Army Corps of Engineers, which combined with the HEC-HMS for hydrological modeling. The result shows flood vulnerability in Medan by a map to present the spot that vulnerable about flood. The flooded area due to the overflowing of Deli River consists of seven sub districts, namely Medan Johor, Medan Selayang, Medan Kota, Medan Petisah, Medan Maimun, Medan Perjuangan and Medan Barat.

  13. Development of a heat vulnerability index for New York State.

    Science.gov (United States)

    Nayak, S G; Shrestha, S; Kinney, P L; Ross, Z; Sheridan, S C; Pantea, C I; Hsu, W H; Muscatiello, N; Hwang, S A

    2017-12-01

    The frequency and intensity of extreme heat events are increasing in New York State (NYS) and have been linked with increased heat-related morbidity and mortality. But these effects are not uniform across the state and can vary across large regions due to regional sociodemographic and environmental factors which impact an individual's response or adaptive capacity to heat and in turn contribute to vulnerability among certain populations. We developed a heat vulnerability index (HVI) to identify heat-vulnerable populations and regions in NYS. Census tract level environmental and sociodemographic heat-vulnerability variables were used to develop the HVI to identify heat-vulnerable populations and areas. Variables were identified from a comprehensive literature review and climate-health research in NYS. We obtained data from 2010 US Census Bureau and 2011 National Land Cover Database. We used principal component analysis to reduce correlated variables to fewer uncorrelated components, and then calculated the cumulative HVI for each census tract by summing up the scores across the components. The HVI was then mapped across NYS (excluding New York City) to display spatial vulnerability. The prevalence rates of heat stress were compared across HVI score categories. Thirteen variables were reduced to four meaningful components representing 1) social/language vulnerability; 2) socioeconomic vulnerability; 3) environmental/urban vulnerability; and 4) elderly/ social isolation. Vulnerability to heat varied spatially in NYS with the HVI showing that metropolitan areas were most vulnerable, with language barriers and socioeconomic disadvantage contributing to the most vulnerability. Reliability of the HVI was supported by preliminary results where higher rates of heat stress were collocated in the regions with the highest HVI. The NYS HVI showed spatial variability in heat vulnerability across the state. Mapping the HVI allows quick identification of regions in NYS that could

  14. Socio-economic vulnerability of coastal communities in southern Thailand: the development of adaptation strategies

    Science.gov (United States)

    Willroth, P.; Massmann, F.; Wehrhahn, R.; Revilla Diez, J.

    2012-08-01

    The tsunami of December 2004 impacted large areas of Thailand's coastline and caused severe human and economic losses. The recovery period revealed differences in the vulnerabilities of communities affected. An understanding of the causal factors of vulnerability is crucial for minimising the negative effects of future threats and developing adaptive capacities. This paper analyses the vulnerabilities and the development of adaptation strategies in the booming tourist area of Khao Lak and in the predominantly fishing and agricultural area of Ban Nam Khem through a comprehensive vulnerability framework. The results show that social networks played a crucial role in coping with the disaster. Social cohesion is important for strengthening the community and developing successful adaptation strategies. The development of tourism and the turning away from traditional activities have a significant positive influence on the income situation, but create a dependency on a single business sector. It could be shown that households generating their income in the tourism sector were vulnerable unless they had diversified their income previously. Income diversification decreased the vulnerability in the study areas. Adaptation strategies and processes developed in the aftermath clearly address these issues.

  15. Forecasting Areas Vulnerable to Forest Conversion in the Tam Dao National Park Region, Vietnam

    Directory of Open Access Journals (Sweden)

    Duong Dang Khoi

    2010-04-01

    Full Text Available Tam Dao National Park (TDNP is a remaining primary forest that supports some of the highest levels of biodiversity in Vietnam. Forest conversion due to illegal logging and agricultural expansion is a major problem that is hampering biodiversity conservation efforts in the TDNP region. Yet, areas vulnerable to forest conversion are unknown. In this paper, we predicted areas vulnerable to forest changes in the TDNP region using multi-temporal remote sensing data and a multi-layer perceptron neural network (MLPNN with a Markov chain model (MLPNN-M. The MLPNN-M model predicted increasing pressure in the remaining primary forest within the park as well as on the secondary forest in the surrounding areas. The primary forest is predicted to decrease from 18.03% in 2007 to 15.10% in 2014 and 12.66% in 2021. Our results can be used to prioritize locations for future biodiversity conservation and forest management efforts. The combined use of remote sensing and spatial modeling techniques provides an effective tool for monitoring the remaining forests in the TDNP region.

  16. Influence of impact speed on head and brain injury outcome in vulnerable road user impacts to the car hood.

    Science.gov (United States)

    Fredriksson, Rikard; Zhang, Liying; Boström, Ola; Yang, King

    2007-10-01

    EuroNCAP and regulations in Europe and Japan evaluate the pedestrian protection performance of cars. The test methods are similar and they all have requirements for the passive protection of the hood area at a pedestrian to car impact speed of 40 km/h. In Europe, a proposal for a second phase of the regulation mandates a brake-assist system along with passive requirements. The system assists the driver in optimizing the braking performance during panic braking, resulting in activation only when the driver brakes sufficiently. In a European study this was estimated to occur in about 50% of pedestrian accidents. A future system for brake assistance will likely include automatic braking, in response to a pre-crash sensor, to avoid or mitigate injuries of vulnerable road users. An important question is whether these systems will provide sufficient protection, or if a parallel, passive pedestrian protection system will be necessary. This study investigated the influence of impact speed on head and brain injury risk, in impacts to the carhood. One car model was chosen and a rigid adjustable plate was mounted under the hood. Free-flying headform impacts were carried out at 20 and 30 km/h head impact velocities at different under-hood distances, 20 to 100 mm; and were compared to earlier tests at 40 km/h. The EEVC WG17 adult pedestrian headform was used for non-rotating tests and a Hybrid III adult 50th percentile head was used for rotational tests where linear and rotational acceleration was measured. Data from the rotational tests was used as input to a validated finite element model of the human head, the Wayne State University Head Injury Model (WSUHIM). The model was utilized to assess brain injury risk and potential injury mechanism in a pedestrian-hood impact. Although this study showed that it was not necessarily true that a lower HIC value reduced the risk for brain injury, it appeared, for the tested car model, under-hood distances of 60 mm in 20 km/h and 80 mm

  17. Assessing species vulnerability to climate change

    Science.gov (United States)

    Pacifici, Michela; Foden, Wendy B.; Visconti, Piero; Watson, James E. M.; Butchart, Stuart H. M.; Kovacs, Kit M.; Scheffers, Brett R.; Hole, David G.; Martin, Tara G.; Akçakaya, H. Resit; Corlett, Richard T.; Huntley, Brian; Bickford, David; Carr, Jamie A.; Hoffmann, Ary A.; Midgley, Guy F.; Pearce-Kelly, Paul; Pearson, Richard G.; Williams, Stephen E.; Willis, Stephen G.; Young, Bruce; Rondinini, Carlo

    2015-03-01

    The effects of climate change on biodiversity are increasingly well documented, and many methods have been developed to assess species' vulnerability to climatic changes, both ongoing and projected in the coming decades. To minimize global biodiversity losses, conservationists need to identify those species that are likely to be most vulnerable to the impacts of climate change. In this Review, we summarize different currencies used for assessing species' climate change vulnerability. We describe three main approaches used to derive these currencies (correlative, mechanistic and trait-based), and their associated data requirements, spatial and temporal scales of application and modelling methods. We identify strengths and weaknesses of the approaches and highlight the sources of uncertainty inherent in each method that limit projection reliability. Finally, we provide guidance for conservation practitioners in selecting the most appropriate approach(es) for their planning needs and highlight priority areas for further assessments.

  18. Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model

    International Nuclear Information System (INIS)

    Sahoo, Satiprasad; Dhar, Anirban; Kar, Amlanjyoti

    2016-01-01

    Environmental management of an area describes a policy for its systematic and sustainable environmental protection. In the present study, regional environmental vulnerability assessment in Hirakud command area of Odisha, India is envisaged based on Grey Analytic Hierarchy Process method (Grey–AHP) using integrated remote sensing (RS) and geographic information system (GIS) techniques. Grey–AHP combines the advantages of classical analytic hierarchy process (AHP) and grey clustering method for accurate estimation of weight coefficients. It is a new method for environmental vulnerability assessment. Environmental vulnerability index (EVI) uses natural, environmental and human impact related factors, e.g., soil, geology, elevation, slope, rainfall, temperature, wind speed, normalized difference vegetation index, drainage density, crop intensity, agricultural DRASTIC value, population density and road density. EVI map has been classified into four environmental vulnerability zones (EVZs) namely: ‘low’, ‘moderate’ ‘high’, and ‘extreme’ encompassing 17.87%, 44.44%, 27.81% and 9.88% of the study area, respectively. EVI map indicates that the northern part of the study area is more vulnerable from an environmental point of view. EVI map shows close correlation with elevation. Effectiveness of the zone classification is evaluated by using grey clustering method. General effectiveness is in between “better” and “common classes”. This analysis demonstrates the potential applicability of the methodology. - Highlights: • Environmental vulnerability zone identification based on Grey Analytic Hierarchy Process (AHP) • The effectiveness evaluation by means of a grey clustering method with support from AHP • Use of grey approach eliminates the excessive dependency on the experience of experts.

  19. Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Satiprasad [School of Water Resources, Indian Institute of Technology Kharagpur (India); Dhar, Anirban, E-mail: anirban.dhar@gmail.com [Department of Civil Engineering, Indian Institute of Technology Kharagpur (India); Kar, Amlanjyoti [Central Ground Water Board, Bhujal Bhawan, Faridabad, Haryana (India)

    2016-01-15

    Environmental management of an area describes a policy for its systematic and sustainable environmental protection. In the present study, regional environmental vulnerability assessment in Hirakud command area of Odisha, India is envisaged based on Grey Analytic Hierarchy Process method (Grey–AHP) using integrated remote sensing (RS) and geographic information system (GIS) techniques. Grey–AHP combines the advantages of classical analytic hierarchy process (AHP) and grey clustering method for accurate estimation of weight coefficients. It is a new method for environmental vulnerability assessment. Environmental vulnerability index (EVI) uses natural, environmental and human impact related factors, e.g., soil, geology, elevation, slope, rainfall, temperature, wind speed, normalized difference vegetation index, drainage density, crop intensity, agricultural DRASTIC value, population density and road density. EVI map has been classified into four environmental vulnerability zones (EVZs) namely: ‘low’, ‘moderate’ ‘high’, and ‘extreme’ encompassing 17.87%, 44.44%, 27.81% and 9.88% of the study area, respectively. EVI map indicates that the northern part of the study area is more vulnerable from an environmental point of view. EVI map shows close correlation with elevation. Effectiveness of the zone classification is evaluated by using grey clustering method. General effectiveness is in between “better” and “common classes”. This analysis demonstrates the potential applicability of the methodology. - Highlights: • Environmental vulnerability zone identification based on Grey Analytic Hierarchy Process (AHP) • The effectiveness evaluation by means of a grey clustering method with support from AHP • Use of grey approach eliminates the excessive dependency on the experience of experts.

  20. Crossing physical simulations of snow conditions and a geographic model of ski area to assess ski resorts vulnerability

    Science.gov (United States)

    François, Hugues; Spandre, Pierre; Morin, Samuel; George-Marcelpoil, Emmanuelle; Lafaysse, Matthieu; Lejeune, Yves

    2016-04-01

    In order to face climate change, meteorological variability and the recurrent lack of natural snow on the ground, ski resorts adaptation often rely on technical responses. Indeed, since the occurrence of episodes with insufficient snowfalls in the early 1990's, snowmaking has become an ordinary practice of snow management, comparable to grooming, and contributes to optimise the operation of ski resorts. It also participates to the growth of investments and is associated with significant operating costs, and thus represents a new source of vulnerability. The assessment of the actual effects of snowmaking and of snow management practices in general is a real concern for the future of the ski industry. The principal model use to simulate snow conditions in resorts, Ski Sim, has also been moving this way. Its developers introduced an artificial input of snow on ski area to complete natural snowfalls and considered different organisations of ski lifts (lower and upper zones). However the use of a degree-day model prevents them to consider the specific properties of artificial snow and the impact of grooming on the snowpack. A first proof of concept in the French Alps has shown the feasibility and the interest to cross the geographic model of ski areas and the output of the physically-based reanalysis of snow conditions SAFRAN - Crocus (François et al., CRST 2014). Since these initial developments, several ways have been explored to refine our model. A new model of ski areas has been developed. Our representation is now based on gravity derived from a DEM and ski lift localisation. A survey about snow management practices also allowed us to define criteria in order to model snowmaking areas given ski areas properties and tourism infrastructures localisation. We also suggest to revisit the assessment of ski resort viability based on the "one hundred days rule" based on natural snow depth only. Indeed, the impact of snow management must be considered so as to propose

  1. Impacts of Climatic Hazards on the Small Wetland Ecosystems (ponds: Evidence from Some Selected Areas of Coastal Bangladesh

    Directory of Open Access Journals (Sweden)

    Lucy Faulkner

    2013-04-01

    Full Text Available Most climate related hazards in Bangladesh are linked to water. The climate vulnerable poor—the poorest and most marginalized communities living in remote villages along Bangladesh’s coastal zone that are vulnerable to climate change impacts and who possess low adaptive capacity are most affected by lack of access to safe water sources. Many climate vulnerable poor households depend on small isolated wetlands (ponds for daily drinking water needs and other domestic requirements, including cooking, bathing and washing. Similarly, the livelihoods of many of these households also depend on access to ponds due to activities of small-scale irrigation for rice farming, vegetable farming and home gardening. This is particularly true for those poorest and most marginalized communities living in Satkhira, one of the most vulnerable coastal districts in south-west Bangladesh. These households rely on pond water for vegetable farming and home gardening, especially during winter months. However, these pond water sources are highly vulnerable to climate change induced hazards, including flooding, drought, salinity intrusion, cyclone and storm surges, erratic rainfall patterns and variations in temperature. Cyclone Sidr and Cyclone Aila, which hit Bangladesh in 2007 and 2009 respectively, led to a significant number of such ponds being inundated with saline water. This impacted upon and resulted in wide scale implications for climate vulnerable poor households, including reduced availability of safe drinking water, and safe water for health and hygiene practices and livelihood activities. Those households living in remote areas and who are most affected by these climate impacts are dependent on water being supplied through aid, as well as travelling long distances to collect safe water for drinking purposes.

  2. Vulnerability, impacts and adaptation : climate information needs for energy managers

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, M. [Environment Canada, Fredericton, NB (Canada). Adaptation and Impacts Research Division

    2007-07-01

    The future potential of hydropower and the vulnerability of the energy sector in Canada and North America was discussed with particular reference to climate information needs for managers regarding vulnerability, impacts and adaptation. The presentation discussed power line climate design criteria as well as a case study of the 1998 ice storm. Power output at Niagara Falls and on the St. Lawrence River were presented. Fossil fuels, electricity, renewable energy, transmission and transportation, and extreme climate and energy were discussed. Charts were provided to depict the 2001 heat wave and power demand; a summary of climate scenario requirements; the mean electricity demand and mean temperature during 1994 to 2000 in Ontario; runoff sensitivity; and accumulated freezing rain and transmission lines during the January ice storm of 1998. A chart on sources of uncertainty was also provided with reference to measurement error; variability; model structure; and scaling and aggregation. tabs., figs.

  3. Vulnerability, impacts and adaptation : climate information needs for energy managers

    International Nuclear Information System (INIS)

    Mirza, M.

    2007-01-01

    The future potential of hydropower and the vulnerability of the energy sector in Canada and North America was discussed with particular reference to climate information needs for managers regarding vulnerability, impacts and adaptation. The presentation discussed power line climate design criteria as well as a case study of the 1998 ice storm. Power output at Niagara Falls and on the St. Lawrence River were presented. Fossil fuels, electricity, renewable energy, transmission and transportation, and extreme climate and energy were discussed. Charts were provided to depict the 2001 heat wave and power demand; a summary of climate scenario requirements; the mean electricity demand and mean temperature during 1994 to 2000 in Ontario; runoff sensitivity; and accumulated freezing rain and transmission lines during the January ice storm of 1998. A chart on sources of uncertainty was also provided with reference to measurement error; variability; model structure; and scaling and aggregation. tabs., figs

  4. Reconsidering the risk assessment concept: Standardizing the impact description as a building block for vulnerability assessment

    Directory of Open Access Journals (Sweden)

    K. Hollenstein

    2005-01-01

    Full Text Available Risk assessments for natural hazards are becoming more widely used and accepted. Using an extended definition of risk, it becomes obvious that performant procedures for vulnerability assessments are vital for the success of the risk concept. However, there are large gaps in knowledge about vulnerability. To alleviate the situation, a conceptual extension of the scope of existing and new models is suggested. The basis of the suggested concept is a stadardization of the output of hazard assessments. This is achieved by defining states of the target objects that depend on the impact and at the same time affect the object's performance characteristics. The possible state variables can be related to a limited set of impact descriptors termed generic impact description interface. The concept suggests that both hazard and vulnerability assessment models are developed according to the specification of this interface, thus facilitating modularized risk assessments. Potential problems related to the application of the concept include acceptance issues and the lacking accuracy of transformation of outputs of existing models. Potential applications and simple examples for adapting existing models are briefly discussed.

  5. Women, Human-Wildlife Conflict, and CBNRM: Hidden Impacts and Vulnerabilities in Kwandu Conservancy, Namibia

    Directory of Open Access Journals (Sweden)

    Kathryn Elizabeth Khumalo

    2015-01-01

    Full Text Available Community-based natural resource management (CBNRM programmes are designed to ensure that rural residents benefit from conservation initiatives. But where human-wildlife conflict threatens life and livelihood, wildlife impacts can undermine the goals of CBNRM. Based on research on women′s experiences in Namibia′s Kwandu Conservancy, we examine both the visible and hidden impacts of human-wildlife conflict. In Kwandu Conservancy, the effects of human-wildlife conflict are ongoing, reaching beyond direct material losses to include hidden impacts such as persistent worries about food insecurity, fears for physical safety, and lost investments. Existing vulnerabilities related to poverty and marital statuses make some women more susceptible to wildlife impacts, and less able to recover from losses or to access compensation. This process may actually deepen the vulnerability of women whose economic status is already marginal. Because the benefits of wildlife conservation accrue at multiple scales, we recommend that the cost of human-wildlife conflict be better distributed, with additional resources for prevention and compensation made available for conservancy residents.

  6. Modelling social vulnerability in sub-Saharan West Africa using a geographical information system

    Directory of Open Access Journals (Sweden)

    Olanrewaju Lawal

    2015-05-01

    Full Text Available In recent times, disasters and risk management have gained significant attention, especially with increasing awareness of the risks and increasing impact of natural and other hazards especially in the developing world. Vulnerability, the potential for loss of life or property from disaster, has biophysical or social dimensions. Social vulnerability relates to societal attributes which has negative impacts on disaster outcomes. This study sought to develop a spatially explicit index of social vulnerability, thus addressing the dearth of research in this area in sub-Saharan Africa. Nineteen variables were identified covering various aspects. Descriptive analysis of these variables revealed high heterogeneity across the South West region of Nigeria for both the state and the local government areas (LGAs. Feature identification using correlation analysis identified six important variables. Factor analysis identified two dimensions, namely accessibility and socioeconomic conditions, from this subset. A social vulnerability index (SoVI showed that Ondo and Ekiti have more vulnerable LGAs than other states in the region. About 50% of the LGAs in Osun and Ogun have a relatively low social vulnerability. Distribution of the SoVI shows that there are great differences within states as well as across regions. Scores of population density, disability and poverty have a high margin of error in relation to mean state scores. The study showed that with a geographical information system there are opportunities to model social vulnerability and monitor its evolution and dynamics across the continent.

  7. Applicability of vulnerability maps

    International Nuclear Information System (INIS)

    Andersen, L.J.; Gosk, E.

    1989-01-01

    A number of aspects to vulnerability maps are discussed: the vulnerability concept, mapping purposes, possible users, and applicability of vulnerability maps. Problems associated with general-type vulnerability mapping, including large-scale maps, universal pollutant, and universal pollution scenario are also discussed. An alternative approach to vulnerability assessment - specific vulnerability mapping for limited areas, specific pollutant, and predefined pollution scenario - is suggested. A simplification of the vulnerability concept is proposed in order to make vulnerability mapping more objective and by this means more comparable. An extension of the vulnerability concept to the rest of the hydrogeological cycle (lakes, rivers, and the sea) is proposed. Some recommendations regarding future activities are given

  8. Future Extreme Event Vulnerability in the Rural Northeastern United States

    Science.gov (United States)

    Winter, J.; Bowen, F. L.; Partridge, T.; Chipman, J. W.

    2017-12-01

    Future climate change impacts on humans will be determined by the convergence of evolving physical climate and socioeconomic systems. Of particular concern is the intersection of extreme events and vulnerable populations. Rural areas of the Northeastern United States have experienced increased temperature and precipitation extremes, especially over the past three decades, and face unique challenges due to their physical isolation, natural resources dependent economies, and high poverty rates. To explore the impacts of future extreme events on vulnerable, rural populations in the Northeast, we project extreme events and vulnerability indicators to identify where changes in extreme events and vulnerable populations coincide. Specifically, we analyze future (2046-2075) maximum annual daily temperature, minimum annual daily temperature, maximum annual daily precipitation, and maximum consecutive dry day length for Representative Concentration Pathways (RCP) 4.5 and 8.5 using four global climate models (GCM) and a gridded observational dataset. We then overlay those projections with estimates of county-level population and relative income for 2060 to calculate changes in person-events from historical (1976-2005), with a focus on Northeast counties that have less than 250,000 people and are in the bottom income quartile. We find that across the rural Northeast for RCP4.5, heat person-events per year increase tenfold, far exceeding decreases in cold person-events and relatively small changes in precipitation and drought person-events. Counties in the bottom income quartile have historically (1976-2005) experienced a disproportionate number of heat events, and counties in the bottom two income quartiles are projected to experience a greater heat event increase by 2046-2075 than counties in the top two income quartiles. We further explore the relative contributions of event frequency, population, and income changes to the total and geographic distribution of climate change

  9. Perspectives on plant vulnerabilities ampersand other plant and containment improvements

    International Nuclear Information System (INIS)

    LaChance, J.; Kolaczkowski, A.; Kahn, J.

    1996-01-01

    The primary goal of the Individual Plant Examination (IPE) Program was for licensees to identify plant-unique vulnerabilities and actions to address these vulnerabilities. A review of these vulnerabilities and plant improvements that were identified in the IPEs was performed as part of the IPE Insights Program sponsored by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this effort was to characterize the identified vulnerabilities and the impact of suggested plant improvements. No specific definition for open-quotes vulnerabilityclose quotes was provided in NRC Generic Letter 88-20 or in the subsequent NRC IPE submittal guidance documented in NUREG-1335. Thus licensees were left to use their own definitions. Only 20% of the plants explicitly stated that they had vulnerabilities. However, most licensees identified other plant improvements to address issues not explicitly classified as vulnerabilities, but pertaining to areas in which overall plant safety could potentially be increased. The various definitions of open-quotes vulnerabilityclose quotes used by the licensees, explicitly identified vulnerabilities, proposed plant improvements to address these vulnerabilities, and other plant improvements are summarized and discussed

  10. Hydrologic vulnerability of tribal reservation lands across the U.S.

    Science.gov (United States)

    Jones, C., Jr.; Leibowitz, S. G.; Sawicz, K. A.; Comeleo, R. L.; Stratton, L. E.

    2017-12-01

    We apply the hydrologic landscapes (HL) concept to assess the hydrologic vulnerability to climate of the United States (U.S.) with special emphasis on tribal lands. The basic assumption of the HL approach is that catchments that share similar physical and climatic characteristics are expected to have similar hydrologic characteristics. We map climate vulnerability by integrating a retrospective analysis of historical climate and hydrology into the HL approach, comparing this baseline of variability with future projections of temperature, precipitation, potential evapotranspiration, snow accumulation, climatic moisture, surplus water, and seasonality of the water surplus. Projections that are not within two standard deviations of the historical decadal average contribute to the vulnerability index for each metric. This allows stakeholders and/or water resource managers to understand the potential impacts of future conditions. The resulting vulnerability maps show that temperature and potential evapotranspiration are consistently projected to have high vulnerability indices across the U.S. including all tribal reservations. Precipitation vulnerability is not as spatially-uniform as temperature. Most areas with snow are projected to experience significant changes in future snow accumulation. The seasonality vulnerability map shows that mountainous areas in the West are most prone to changes in seasonality. This paper illustrates how the HL approach can help assess climatic and hydrologic vulnerability for disadvantaged groups across the U.S. By combining the HL concept and climate vulnerability analyses, we provide an approach that can assist tribal resource managers to perform vulnerability assessments and adaptation plans, which is a major priority for the tribes nationwide.

  11. Vulnerability assessment: A comparison of three different city sizes in the coastal area of Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Wiwandari Handayani

    2017-12-01

    Full Text Available Considering the importance of connecting urbanization phenomena and vulnerability assessments, this paper aims to explore vulnerability assessment in three different city sizes in the northern coast of Central Java province of Indonesia. It compares the vulnerability levels of the three cities based on their sizes (that is, levels of urbanization. It uses the most current secondary data from the lowest administrative levels, called as kelurahan (urban village, for its assessment. There are two indexes used to indicate their vulnerability levels, namely exposure and sensitivity index (ESI and adaptive capacity index (ACI. By combining the ESI and ACI, the study found that the kelurahans in Tegal (the medium sized city have similar vulnerability levels. The kelurahans in Semarang (as the big city have more combination of vulnerability levels—indicating that the city has various sensitivity, exposure, as well as adaptive capacity among its kelurahans. In Lasem (the small sized city, due to limitations imposed by adaptation—mostly because of lack of public services and high dependency on primary economic sectors—all of its kelurahans were found to be vulnerable. The study therefore concluded that the bigger a city is, the more the different areas of that city will have varying levels of vulnerability, leading to a high propensity of vulnerability among its inhabitants. On the other hand, the smaller a city is, the less capacity it will have in reducing its emerging vulnerability challenges.

  12. Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals

    Science.gov (United States)

    Foden, Wendy B.; Butchart, Stuart H. M.; Stuart, Simon N.; Vié, Jean-Christophe; Akçakaya, H. Resit; Angulo, Ariadne; DeVantier, Lyndon M.; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D.; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A.; Hughes, Adrian F.; O’Hanlon, Susannah E.; Garnett, Stephen T.; Şekercioğlu, Çagan H.; Mace, Georgina M.

    2013-01-01

    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11–15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability

  13. Assessing the Vulnerability of Agriculture to Climate Change in Jordan

    Science.gov (United States)

    Khresat, Sa'eb; Shraidaeh, Fadi; Maddat, Amer

    2015-04-01

    Climate change represents one of the greatest environmental, social and economic threats facing Jordan. In particular, the combined effects of climate change and water scarcity threaten to affect food and water resources that are critical for livelihoods in Jordan. This is especially true for those communities who live in the dryland area in the country and who rely wholly on rain-fed agriculture. The exact nature and extent of the impact of climate change on temperature and precipitation distribution pattern remain uncertain and it is the poor and vulnerable who will be the most susceptible to climate change adverse effects. A vulnerability assessment of rain fed agriculture to climate change and variability in semi-arid parts of Jordan was conducted in 2014. The purpose of this study is to assess the vulnerability and resilience of the most vulnerable groups where rainfed and irrigated agriculture is practiced. Also, the study focused on quantifying the impacts on agricultural productivity in response to climate change. This will help policymakers and researchers better understand and anticipate the likely impacts of climate change on agriculture and on vulnerable communities in Jordan. Also, it will provide them with tools to identify and implement appropriate adaptation strategies. The data used includes; Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5 adopted by the IPCC for its fifth Assessment Report (AR5). Those pathways were used for climate modeling. A decision support system (DSSAT) for agricultural production was used to assess the impact of climate changes on agricultural production. This approach was used for the Identification of climate change risk and their impacts on Agriculture. Outputs from models are used to assess the vulnerability of farmers and crops to climate and socio-economic change by estimating their sensitivity and capacity to adapt to external factors as a means of identifying what causes the differences in their

  14. Comparative studies of groundwater vulnerability assessment

    Science.gov (United States)

    Maria, Rizka

    2018-02-01

    Pollution of groundwater is a primary issue because aquifers are susceptible to contamination from land use and anthropogenic impacts. Groundwater susceptibility is intrinsic and specific. Intrinsic vulnerability refers to an aquifer that is susceptible to pollution and to the geological and hydrogeological features. Vulnerability assessment is an essential step in assessing groundwater contamination. This approach provides a visual analysis for helping planners and decision makers to achieve the sustainable management of water resources. Comparative studies are applying different methodologies to result in the basic evaluation of the groundwater vulnerability. Based on the comparison of methods, there are several advantages and disadvantages. SI can be overlaid on DRASTIC and Pesticide DRASTIC to extract the divergence in sensitivity. DRASTIC identifies low susceptibility and underestimates the pollution risk while Pesticide DRASTIC and SI represents better risk and is recommended for the future. SINTACS method generates very high vulnerability zones with surface waters and aquifer interactions. GOD method could be adequate for vulnerability mapping in karstified carbonate aquifers at small-moderate scales, and EPIK method can be used for large scale. GOD method is suitable for designing large area such as land management while DRASTIC has good accuracy and more real use in geoenvironmental detailed studies.

  15. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    Science.gov (United States)

    Fabri, M.-C.; Pedel, L.; Beuck, L.; Galgani, F.; Hebbeln, D.; Freiwald, A.

    2014-06-01

    Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in 2009 (Aamp/Comex). Qualitative information was extracted from four other cruises (two Marum/Comex cruises in 2009 and 2011 and two Ifremer cruises in 1995 and 2010) to support the previous observations in the Cassidaigne and Lacaze-Duthiers canyons. All the species, fishing impacts and litter recognized in the video films recorded from 180 to 700 m depth were mapped using GIS. The abundances and distributions of benthic fishing resources (marketable fishes, Aristeidae, Octopodidae), Vulnerable Marine Species, trawling scars and litter of 17 canyons were calculated and compared, as was the open slope between the Stoechades and Toulon canyons. Funiculina quadrangularis was rarely observed, being confined for the most part to the Marti canyon and, I. elongata was abundant in three canyons (Bourcart, Marti, Petit-Rhône). These two cnidarians were encountered in relatively low abundances, and it may be that they have been swept away by repeated trawling. The Lacaze-Duthiers and Cassidaigne canyons comprised the highest densities and largest colony sizes of scleractinian cold-water corals, whose distribution was mapped in detail. These colonies were often seen to be entangled in fishing lines. The alcyonacean Callogorgia verticillata was observed to be highly abundant in the Bourcart canyon and less abundant in several other canyons. This alcyonacean was also severely affected by bottom fishing gears and is proposed as a Vulnerable Marine Species. Our studies on anthropogenic

  16. Vulnerability to the transmission of human visceral leishmaniasis in a Brazilian urban area.

    Science.gov (United States)

    Toledo, Celina Roma Sánchez de; Almeida, Andréa Sobral de; Chaves, Sergio Augusto de Miranda; Sabroza, Paulo Chagastelles; Toledo, Luciano Medeiros; Caldas, Jefferson Pereira

    2017-05-15

    To analyze the determinants for the occurrence of human visceral leishmaniasis linked to the conditions of vulnerability. This is an ecological study, whose spatial analysis unit was the Territorial Analysis Unit in Araguaína, State of Tocantins, Brazil, from 2007 to 2012. We have carried out an analysis of the sociodemographic and urban infrastructure situation of the municipality. Normalized primary indicators were calculated and used to construct the indicators of vulnerability of the social structure, household structure, and urban infrastructure. From them, we have composed a vulnerability index. Kernel density estimation was used to evaluate the density of cases of human visceral leishmaniasis, based on the coordinates of the cases. Bivariate global Moran's I was used to verify the existence of spatial autocorrelation between the incidence of human visceral leishmaniasis and the indicators and index of vulnerability. Bivariate local Moran's I was used to identify spatial clusters. We have observed a pattern of centrifugal spread of human visceral leishmaniasis in the municipality, where outbreaks of the disease have progressively reached central and peri-urban areas. There has been no correlation between higher incidences of human visceral leishmaniasis and worse living conditions. Statistically significant clusters have been observed between the incidences of human visceral leishmaniasis in both periods analyzed (2007 to 2009 and 2010 to 2012) and the indicators and index of vulnerability. The environment in circumscribed areas helps as protection factor or increases the local vulnerability to the occurrence of human visceral leishmaniasis. The use of methodology that analyzes the conditions of life of the population and the spatial distribution of human visceral leishmaniasis is essential to identify the most vulnerable areas to the spread/maintenance of the disease. Analisar determinantes para a ocorrência da leishmaniose visceral humana vinculados

  17. Vulnerability of Australian agriculture to climate change: sequencing impacts over IPCC trajectories for adaptation planning

    International Nuclear Information System (INIS)

    Mallawaarachchi, Thilak; Hodges, Andrew; Wicks, Santhi; Kokic, Phil; Nelson, Rohan

    2007-01-01

    Full text: Full text: Agricultural systems are susceptible to adverse effects of climate change, including climate variability and extremes. While the degree of vulnerability is a function of the magnitude and the rate of variation in climate exposure, agricultural systems with a stronger adaptive capacity are likely to be less vulnerable to climate change. In preparing the agriculture sector for ongoing climate change, adaptation planning to moderate potential impacts and to take advantage of opportunities, has emerged as an effective strategic response. Global climate change scenarios developed by the IPCC indicate that changes in climate may alter the production potential of agriculture across many regions. Wide regional variability in productivity, extensive land use and the dominance in rural economies across Australia could expose agriculture to considerable risks from climate change impacts. In many cases these risks could cascade across a range of sectors and vary overtime, reflecting the capacity of exposed enterprises to adapt to a changing climate by taking advantage of opportunities. Effective planning of adaptation responses will require integrated assessments of regional vulnerability to climate risks over IPCC projection trajectories. In this paper, we present a method for estimating and mapping vulnerability to climate risks at the regional level, and apply this method to examine the vulnerability of Australian agriculture to climate change, focusing on case studies drawn from dryland broadacre and irrigated horticulture industries. In developing a conceptual framework for assessing vulnerability and adaptation options, the paper provides a review of key approaches used globally for the assessment of vulnerability to climate change in agriculture. It presents an approach to link global climate change scenario-based projections for assessing economic impacts on industries and regions through a process that maps climate risks to factors contributing

  18. The impact of high penetration of wind energy on the vulnerability of power systems

    Energy Technology Data Exchange (ETDEWEB)

    EL-Arroudi, K.; Joos, G.; McGillis, D. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering

    2006-07-01

    This paper examined the impact of higher penetrations of wind energy installations on the vulnerability of power systems. Vulnerability was defined in terms of migration of system states based on the contingencies that might occur. It was noted that both the penetration levels and physical locations of wind energy installations in power systems have a strong influence on system vulnerability. A methodology was proposed to analyze the impacts of wind energy on power system vulnerability through the construction of a decision-tree classification model at the point of common coupling (PCC) bus. The aim of the model was to determine planning criteria for wind power interconnection and to ensure that design concepts are adequate and secure. The model was built by simulating a pre-specified range of system contingencies to generate patterns at the PCC bus. Actual measurements were then compared against known patterns, from which the stress levels of disturbances were estimated. Stress levels were defined in terms of the performance level measures delineated by National Electricity Reliability Council (NERC) planning standards. The methodology is a non-parametric learning technique able to produce classifiers about given problems in order to deduce information from new, unobserved cases. A case study consisting of a 4-machine system with a total generation of 2295 MW was presented where wind-based generation accounted for 450 MW. The decision-tree classifier was constructed by simulating 120 events generated by combinations of contingencies; seasonal wind patterns and different wind production levels per season. Results showed that with a knowledge of the total penetration level and location of wind power installations, it is possible to estimate the effect of wind energy on the vulnerability of a power system. 12 refs., 6 figs.

  19. Spatial Supermarket Redlining and Neighborhood Vulnerability: A Case Study of Hartford, Connecticut.

    Science.gov (United States)

    Zhang, Mengyao; Debarchana, Ghosh

    2016-02-01

    The disinclination of chain supermarkets to locate or pull out existing stores from impoverished neighborhoods is termed as "supermarket redlining". This paper attempts to map and understand the spatial effects of potential supermarket redlining on food vulnerability in urban disadvantaged neighborhoods of Hartford, Connecticut. Using a combination of statistical and spatial analysis functions, we first, built a Supermarket Redlining Index (SuRI) from five indicators such as sales volume, employee count, accepts food coupons from federally assisted programs, and size and population density of the service area to rank supermarkets in the order of their importance. Second, to understand the effect of redlining, a Supermarket Redlining Impact Model (SuRIM) was built with eleven indicators describing both the socioeconomic and food access vulnerabilities. The interaction of these vulnerabilities would identify the final outcome: neighborhoods where the impact of supermarket redlining would be critical. Results mapped critical areas in the inner-city of Hartford where if a nearby supermarket closes or relocates to a suburb with limited mitigation efforts to gill the grocery gap, a large number of minority, poor, and disadvantaged residents will experience difficulties to access healthy food leading to food insecurity or perhaps a food desert. We also suggest mitigation efforts to reduce the impact of large supermarket closures.

  20. Vulnerability and fragility risk indices for non-renewable resources.

    Science.gov (United States)

    Miller, Anne E; Steele, Nicholas; Tobin, Benjamin W

    2018-06-02

    Protected areas are tasked with mitigating impacts to a wide range of invaluable resources. These resources are often subject to a variety of potential natural and anthropogenic impacts that require monitoring efforts and management actions to minimize the degradation of these resources. However, due to insufficient funding and staff, managers often have to prioritize efforts, leaving some resources at higher risk to impact. Attempts to address this issue have resulted in numerous qualitative and semi-quantitative frameworks for prioritization based on resource vulnerability. Here, we add to those methods by modifying an internationally standardized vulnerability framework, quantify both resource vulnerability, susceptibility to human disturbance, and fragility, susceptibility to natural disturbance. This modified framework quantifies impacts through a six-step process: identifying the resource and management objectives, identifying exposure and sensitivity indicators, define scoring criteria for each indicator, collect and compile data, calculate indices, and prioritize sites for mitigations. We applied this methodology to two resource types in Grand Canyon National Park (GRCA): caves and fossil sites. Three hundred sixty-five cave sites and 127 fossil sites in GRCA were used for this analysis. The majority of cave and fossil sites scored moderate to low vulnerability (0-6 out of 10 points) and moderate to low fragility for fossils. The percentage of sites that fell in the high-priority range was 5.5% for fossils and 21.9% for caves. These results are consistent with the known state of these resources and the results present a tool for managers to utilize to prioritize monitoring and management needs.

  1. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hereil Pierre-Louis

    2015-01-01

    Full Text Available Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  2. Health Impacts of Climate Change in Pacific Island Countries: A Regional Assessment of Vulnerabilities and Adaptation Priorities.

    Science.gov (United States)

    McIver, Lachlan; Kim, Rokho; Woodward, Alistair; Hales, Simon; Spickett, Jeffery; Katscherian, Dianne; Hashizume, Masahiro; Honda, Yasushi; Kim, Ho; Iddings, Steven; Naicker, Jyotishma; Bambrick, Hilary; McMichael, Anthony J; Ebi, Kristie L

    2016-11-01

    Between 2010 and 2012, the World Health Organization Division of Pacific Technical Support led a regional climate change and health vulnerability assessment and adaptation planning project, in collaboration with health sector partners, in 13 Pacific island countries-Cook Islands, Federated States of Micronesia, Fiji, Kiribati, Marshall Islands, Nauru, Niue, Palau, Samoa, Solomon Islands, Tonga, Tuvalu, and Vanuatu. We assessed the vulnerabilities of Pacific island countries to the health impacts of climate change and planned adaptation strategies to minimize such threats to health. This assessment involved a combination of quantitative and qualitative techniques. The former included descriptive epidemiology, time series analyses, Poisson regression, and spatial modeling of climate and climate-sensitive disease data, in the few instances where this was possible; the latter included wide stakeholder consultations, iterative consensus building, and expert opinion. Vulnerabilities were ranked using a "likelihood versus impact" matrix, and adaptation strategies were prioritized and planned accordingly. The highest-priority climate-sensitive health risks in Pacific island countries included trauma from extreme weather events, heat-related illnesses, compromised safety and security of water and food, vector-borne diseases, zoonoses, respiratory illnesses, psychosocial ill-health, non-communicable diseases, population pressures, and health system deficiencies. Adaptation strategies relating to these climate change and health risks could be clustered according to categories common to many countries in the Pacific region. Pacific island countries are among the most vulnerable in the world to the health impacts of climate change. This vulnerability is a function of their unique geographic, demographic, and socioeconomic characteristics combined with their exposure to changing weather patterns associated with climate change, the health risks entailed, and the limited capacity

  3. Vulnerability Assessment of Environmental and Climate Change Impacts on Water Resources in Al Jabal Al Akhdar, Sultanate of Oman

    Directory of Open Access Journals (Sweden)

    Mohammed Saif Al-Kalbani

    2014-10-01

    Full Text Available Climate change and its consequences present one of the most important threats to water resources systems which are vulnerable to such changes due to their limited adaptive capacity. Water resources in arid mountain regions, such as Al Jabal Al Akhdar; northern Sultanate of Oman, are vulnerable to the potential adverse impacts of environmental and climate change. Besides climatic change, current demographic trends, economic development and related land use changes are exerting pressures and have direct impacts on increasing demands for water resources and their vulnerability. In this study, vulnerability assessment was carried out using guidelines prepared by United Nations Environment Programme (UNEP and Peking University to evaluate four components of the water resource system: water resources stress, water development pressure, ecological health, and management capacity. The calculated vulnerability index (VI was high, indicating that the water resources are experiencing levels of stress. Ecosystem deterioration was the dominant parameter and management capacity was the dominant category driving the vulnerability on water resources. The vulnerability assessment will support policy and decision makers in evaluating options to modify existing policies. It will also help in developing long-term strategic plans for climate change mitigation and adaptation measures and implement effective policies for sustainable water resources management, and therefore the sustenance of human wellbeing in the region.

  4. The Utility of Vulnerability and Social Capital Theories in Studying the Impact of Hurricane Katrina on the Elderly

    Science.gov (United States)

    Durant, Thomas J., Jr.

    2011-01-01

    The definition of a disaster is followed by an explanation of vulnerability and social capital theories. The importance of using a sound theoretical framework and the utility and efficacy of vulnerability and social capital theories in studying the impact of natural disasters on the elderly population are emphasized and discussed. The conclusion…

  5. Áreas vulnerables en el centro de Madrid

    Directory of Open Access Journals (Sweden)

    Agustín Hernández Aja

    2007-07-01

    This document shows an vulnerability analysis of the central area of Madrid taken it as the field of APE-00.01. Its objective is to delimit “vulnerable areas” so there can be evaluated the opportunities for interve trough them and then define the best tools in detriment of their vulnerability reasons. To determinate those areas we have developed a sociodemographic analysis where we have found those units of population with vulnerable values. Once determinated, we have synthetize them to define them as easy drafts that makes understandable the work area for later on establish a vulnerable areas catalogue with spatial homogeneity and significant size. The basic nucleus of the análisis has been the sociodemographic fact, based on homogeneus data sources for all the area so they could be referenced to specific spacial areas. In each case has been advised other possible indicators of vulnerability including a signifier selection of thrm on the fifth chapter.

  6. Intensifying Insecurities: The impact of climate change on vulnerability to human trafficking in the Indian Sundarbans

    Directory of Open Access Journals (Sweden)

    Nicole Molinari

    2017-04-01

    Full Text Available Despite an enormous amount of attention paid to the factors that shape vulnerability to human trafficking, such as poverty and a lack of economic opportunity, the debate of evidence for what enables these factors to exist in the first place is relatively less explored. Presently, discussions of the relationship between climate change and human insecurity have been marginal to broader debates about vulnerability to trafficking. This paper argues that this signifies a gap in our understanding of the underlying drivers that push individuals and communities into situations where vulnerability to trafficking amplifies, but also that increase the pull of risky migration pathways and exploitative work situations. This paper proceeds by examining and problematising dominant conceptualisations of vulnerability in human trafficking and climate change discourses. Next, it presents a case study of the Sundarbans region of India to highlight how climate change impacts compound and exacerbate the same factors that shape vulnerability to human trafficking—including environmental degradation, loss of livelihood, destitution, and forced migration. Lastly, it argues for enhanced attention to climate change-related insecurity as evidence of vulnerability to trafficking and outlines what such insights can bring to anti-trafficking efforts.

  7. Climate change vulnerability to agrarian ecosystem of small Island: evidence from Sagar Island, India

    Science.gov (United States)

    Mandal, S.; Satpati, L. N.; Choudhury, B. U.; Sadhu, S.

    2018-04-01

    The present study assessed climate change vulnerability in agricultural sector of low-lying Sagar Island of Bay of Bengal. Vulnerability indices were estimated using spatially aggregated biophysical and socio-economic parameters by applying principal component analysis and equal weight method. The similarities and differences of outputs of these two methods were analysed across the island. From the integration of outputs and based on the severity of vulnerability, explicit vulnerable zones were demarcated spatially. Results revealed that life subsistence agriculture in 11.8% geographical area (2829 ha) of the island along the western coast falls under very high vulnerable zone (VHVZ VI of 84-99%) to climate change. Comparatively higher values of exposure (0.53 ± 0.26) and sensitivity (0.78 ± 0.14) subindices affirmed that the VHV zone is highly exposed to climate stressor with very low adaptive capacity (ADI= 0.24 ± 0.16) to combat vulnerability to climate change. Hence, food security for a population of >22 thousands comprising >3.7 thousand agrarian households are highly exposed to climate change. Another 17% area comprising 17.5% population covering 20% villages in north-western and eastern parts of the island also falls under high vulnerable (VI= 61%-77%) zone. Findings revealed large spatial heterogeneity in the degree of vulnerability across the island and thus, demands devising area specific planning (adaptation and mitigation strategies) to address the climate change impact implications both at macro and micro levels.

  8. Sensitivity Analysis of DRASTIC Model in Vulnerability Assessment of Shahrood Alluvial Aquifer

    Directory of Open Access Journals (Sweden)

    Shadi Abolhasan Almasi

    2017-07-01

    Full Text Available Groundwater vulnerability assessment is typically accomplished as a management tool to protect groundwater resources. In this research, the DRASTIC model which is an empirical one used for evaluating the potential of an aquifer for pollution was employed to evaluate the vulnerability of Shahrood alluvial aquifer. Moreover, the sensitivity of the model paramneters was assessed to identify the ones with greatest effect on vulnerability. The model layers including depth to groundwater table level, recharge, aquifer media, topography, impact of unsaturated zone, and hydraulic conductivity were prepared and classified in the ArcGIS software based on analyses of both the available data and the layer of surface soil texture using Aster satellite images. Once the vulnerability index was calculated, the sensitivity map of Shahroud aquifer vulnerability was analyzed using the two parameter removal and single parameter sensitivity methods. These were further verified by textural analysis of soil samples from different parts of the region. The layers with appropriate weights were overlaid and the DRASTIC index of the aquifer was estimated at 28 to 148. The highest vulnerability was detected in the northern margins and southwestern parts of the aquifer while other parts were characterized by medium to low vulnerability. The low nitrogen concentration observed in the farm areas and its rise to 45 mg/l in the northern stretches of the aquifer bear witness to the accuracy of the zoning rendered by the DRASTIC model. Based on the vulnerability map of Sharoud aquifer, it was found that 1.6% of the aquifer’s area has a very high vulnerability or potential for pollution followed by 10%, 28.8%, and 18.9% of the area were identified as having high, medium and low potentials for pollution, respecytively. The remaining (i.e., 40.5% was found to have no risk of pollution.

  9. Climate variability and climate change vulnerability and adaptation. Workshop summary

    International Nuclear Information System (INIS)

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-01-01

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country's vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations

  10. Climate variability and climate change vulnerability and adaptation. Workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, N.; Cirillo, R.R. [Argonne National Lab., IL (United States); Dixon, R.K. [U.S. Country Studies Program, Washington, DC (United States)] [and others

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  11. Assessing the Impacts of Decadal Socio-Agro-Hydro Climatic Variations on Agricultural Vulnerability over India

    Science.gov (United States)

    Mohanty, M. P.; Sharma, T.; Ghosh, S.; Karmakar, S.

    2017-12-01

    Among both rice and wheat producing countries, India holds one of the major global shares in terms of production. However, with rising population, economic variability, and increasing food demand, it has become indispensable to strategically assess the food security of the nation, particularly under changing climatic conditions. This can be achieved by improving knowledge on the impacts of climate change on crop growth and yield through understanding the current status of agricultural vulnerability and quantifying its decadal changes. The present research focuses on assessing the observed decadal changes in agricultural vulnerability over India, at a district-scale. In the study, the deliberation of multiple climatic, hydrologic, agricultural indicators will majorly facilitate evaluating their direct/indirect influence on the crop production. In addition, a set of socio-economic indicators will also be considered to understand the attribution of these factors on the change in agricultural vulnerability. Here, these indicators will be integrated into a multivariate data envelopment analysis (DEA) framework to derive relative efficiency of each unit or district in crop production, which will be further transformed into a well-grounded agricultural vulnerability map. It has become essential to understand the influence of these indicators on agriculture, given that the extended periods of excessive/no rainfall or high/low temperature can alter the water cycle and hence cause stress on the agroecosystem. Likewise, change in the population density, main and marginal cultivators, main and marginal agriculture labours, improvement in management practices, or increase in power supply for agricultural use, can directly affect the food security of the region. Hence, this study will undoubtedly assist the decision-makers/strategists by highlighting the agriculturally vulnerable regions over India. Consequently, it will reassure the farmers to define bottom-up approaches in

  12. A Comparative Study on Physical Vulnerability of Urban Area against Natural Hazards: Importance of Health Promoting Approach in Civil Engineering.

    Science.gov (United States)

    Ahadnezhad Reveshty, Mohsen; Kamelifar, Mohammad Javad; Ranjbarnia, Behzad; Pashaiifar, Alireza

    2014-01-01

    Estimation of urban vulnerability to earthquakes can be consid-ered as an Ill-structured problem in urban in both unplanned and planned areas. Multi-criteria evaluation (MCE) provides a way to integrate different spatial data layers in a geographic information system to create composite maps representing risk. We utilized MCE in a raster Geographic Information System (GIS) to evaluate risk in vulnerable tissues of Tabriz, Iran zone. In this MCE physical risk factors and sub-factors were included and were weighted by experts. Afterward data entered to GIS and then the layers of the criteria were exported. The obtained results were entered to IDRISI and fuzzified. Ultimately the final map of physical vulnerability was outputted by overlaying order. Vulnerable tissues are highly consistent to non-official areas. However, the planned area which is called Valiasr is in low risky condition and this condition is desirable in crisis times. Here, we observe the preference of physical pre-planning operations. The links between urban planning and health are many and varied. Environmental, social and economic conditions in cities can have both positive and negative influences on human health and centre. Urban planning and related professions play an important role in shaping those conditions.

  13. A Comparative Study on Physical Vulnerability of Urban Area against Natural Hazards: Importance of Health Promoting Approach in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Mohsen Ahadnezhad Reveshty

    2014-07-01

    Full Text Available Background: Estimation of urban vulnerability to earthquakes can be considered as an Ill-structured problem in urban in both unplanned and planned ar-eas. Multi-criteria evaluation (MCE provides a way to integrate different spatial data layers in a geographic information system to create composite maps representing risk. We utilized MCE in a raster Geographic Information System (GIS to evaluate risk in vulnerable tissues of Tabriz, Iran zone. Methods: In this MCE physical risk factors and sub-factors were included and were weighted by experts. Afterward data entered to GIS and then the layers of the criteria were exported. The obtained results were entered to IDRISI and fuzzified. Ultimately the final map of physical vulnerability was outputted by overlaying order. Results: Vulnerable tissues are highly consistent to non-official areas. How-ever, the planned area which is called Valiasr is in low risky condition and this condition is desirable in crisis times. Here, we observe the preference of physical pre-planning operations. Conclusion: The links between urban planning and health are many and varied. Environmental, social and economic conditions in cities can have both positive and negative influences on human health and centre. Urban planning and related professions play an important role in shaping those conditions.

  14. Vulnerability analysis for a drought Early Warning System

    Science.gov (United States)

    Angeluccetti, Irene; Demarchi, Alessandro; Perez, Francesca

    2014-05-01

    Early Warning Systems (EWS) for drought are often based on risk models that do not, or marginally, take into account the vulnerability factor. The multifaceted nature of drought (hydrological, meteorological, and agricultural) is source of coexistence for different ways to measure this phenomenon and its effects. The latter, together with the complexity of impacts generated by this hazard, causes the current underdevelopment of drought EWS compared to other hazards. In Least Developed Countries, where drought events causes the highest numbers of affected people, the importance of correct monitoring and forecasting is considered essential. Existing early warning and monitoring systems for drought produced at different geographic levels, provide only in a few cases an actual spatial model that tries to describe the cause-effect link between where the hazard is detected and where impacts occur. Integrate vulnerability information in such systems would permit to better estimate affected zones and livelihoods, improving the effectiveness of produced hazard-related datasets and maps. In fact, the need of simplification and, in general, of a direct applicability of scientific outputs is still a matter of concern for field experts and early warning products end-users. Even if the surplus of hazard related information produced right after catastrophic events has, in some cases, led to the creation of specific data-sharing platforms, the conveyed meaning and usefulness of each product has not yet been addressed. The present work is an attempt to fill this gap which is still an open issue for the scientific community as well as for the humanitarian aid world. The study aims at conceiving a simplified vulnerability model to embed into an existing EWS for drought, which is based on the monitoring of vegetation phenological parameters and the Standardized Precipitation Index, both produced using free satellite derived datasets. The proposed vulnerability model includes (i) a

  15. Data management for geospatial vulnerability assessment of interdependencies in US power generation

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.Y.; Scown, C.D.; Soibelman, L.; Matthews, H.S.; Garrett, J.H.; Dodrill, K.; McSurdy, S. [Carnegie Mellon University, Pittsburgh, PA (United States). Dept. of Civil & Environmental Engineering

    2009-09-15

    Critical infrastructures maintain our society's stability, security, and quality of life. These systems are also interdependent, which means that the disruption of one infrastructure system can significantly impact the operation of other systems. Because of the heavy reliance on electricity production, it is important to assess possible vulnerabilities. Determining the source of these vulnerabilities can provide insight for risk management and emergency response efforts. This research uses data warehousing and visualization techniques to explore the interdependencies between coal mines, rail transportation, and electric power plants. By merging geospatial and nonspatial data, we are able to model the potential impacts of a disruption to one or more mines, rail lines, or power plants, and visually display the results using a geographical information system. A scenario involving a severe earthquake in the New Madrid Seismic Zone is used to demonstrate the capabilities of the model when given input in the form of a potentially impacted area. This type of interactive analysis can help decision makers to understand the vulnerabilities of the coal distribution network and the potential impact it can have on electricity production.

  16. California GAMA Program: A Contamination Vulnerability Assessment for the Bakersfield Area

    International Nuclear Information System (INIS)

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-01-01

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MTBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey (USGS), the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2003, LLNL carried out this vulnerability study in the groundwater basin that underlies Bakersfield, in the southern San Joaquin Valley. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements help determine the recharge water

  17. Sustainable Sourcing of Global Agricultural Raw Materials: Assessing Gaps in Key Impact and Vulnerability Issues and Indicators.

    Directory of Open Access Journals (Sweden)

    Nathaniel P Springer

    Full Text Available Understanding how to source agricultural raw materials sustainably is challenging in today's globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly--depending largely on the stakeholder perspective--as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 "integrated" issues--24 impact issues and 36 vulnerability issues--that are composed of 318 "component" issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent

  18. Sustainable Sourcing of Global Agricultural Raw Materials: Assessing Gaps in Key Impact and Vulnerability Issues and Indicators.

    Science.gov (United States)

    Springer, Nathaniel P; Garbach, Kelly; Guillozet, Kathleen; Haden, Van R; Hedao, Prashant; Hollander, Allan D; Huber, Patrick R; Ingersoll, Christina; Langner, Megan; Lipari, Genevieve; Mohammadi, Yaser; Musker, Ruthie; Piatto, Marina; Riggle, Courtney; Schweisguth, Melissa; Sin, Emily; Snider, Sara; Vidic, Nataša; White, Aubrey; Brodt, Sonja; Quinn, James F; Tomich, Thomas P

    2015-01-01

    Understanding how to source agricultural raw materials sustainably is challenging in today's globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly--depending largely on the stakeholder perspective--as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 "integrated" issues--24 impact issues and 36 vulnerability issues--that are composed of 318 "component" issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent them. Issues in the

  19. Vulnerability assessment to frost disaster in dieng volcanic highland using spatial multi-criteria evaluation

    Science.gov (United States)

    Pradana, A.; Rahmanu, Y. A.; Prabaningrum, I.; Nurafifa, I.; Hizbaron, D. R.

    2018-04-01

    Dieng Volcanic Highland is one of frost disaster prone area which is very unique phenomenon in tropical region. Frost indicated by appearance of frozen dew or ice layer on the ground or vegetation surface due air inversion and cold temperatures during midnight in dry season. Appearance of frost significantly causes plant damage and losses on agricultural land, while the impacts were strongly influenced by level of vulnerability within agricultural communities. This study aims to analyze the impact of frost on agricultural land in Dieng, to identify characteristics of physical, social, economic vulnerability and coping capacity of agricultural communities to frost disaster in Dieng, and to estimate total vulnerability of frost disasters in Dieng through SMCE scenario. Research was conducted in Dieng Village, Wonosobo and Dieng Kulon Village, Banjarnegara. Method to assess vulnerability level is performed by Spatial Multi Criteria Evaluation (SMCE) method using ILWIS software through a combination of physical, social, and economic vulnerability regarding frost hazard, as well as coping capacity of farmers. Data collected by interview within different agricultural plots using questionnaire and in-depth interview method on frost affected agricultural land. Impact of frost mostly causes damage on potato agricultural land than any other types of commodities, such as carrot, leek or cabbage. Losses varies in range of 0 million to 55 million rupiah, at most events in range of 10 million to 15 million rupiah during frost season on July-August-September. Main factors determining vulnerability comes from crop losses, preparedness effort, and type of commodity. Agricultural land dominated by high level physical vulnerability (95.37 percent), high level social vulnerability (70.79 percent), moderate level economic vulnerability (79.23 percent) and moderate level coping capacity (73.18 percent). All five scenarios indicated that level of total vulnerability vary only from

  20. Study of groundwater vulnerability to pollution using the DRASTIC method coupled with a geographic information system (GIS): application to groundwater Beni Amir, Morocco

    Science.gov (United States)

    Knouz, Najat; Boudhar, Abdelghani; Bachaoui, El Mostafa

    2016-04-01

    Fresh water is the condition of all life on Earth for its vital role in the survival of living beings and in the social, economic and technological development. The Groundwater, as the surface water, is increasingly threatened by agricultural and industrial pollution. In this respect, the groundwater vulnerability assessment to pollution is a very valuable tool for resource protection, management of its quality and uses it in a sustainable way. The main objective of this study is the evaluation of groundwater vulnerability to pollution of the study area, Beni Amir, located in the first irrigated perimeter of Morocco, Tadla, using the DRASTIC method (depth to water, net recharge, aquifer media, soil media, Topography, impact of Vadose zone and hydraulic conductivity), and assessing the impact of each parameter on the DRASTIC vulnerability index by a sensitivity analysis. This study also highlights the role of geographic information systems (GIS) in assessing vulnerability. The Vulnerability index is calculated as the sum of product of ratings and weights assigned to each of the parameter DRASTIC. The results revealed four vulnerability classes, 7% of the study area has a high vulnerability, 31% are moderately vulnerable, 57% have a low vulnerability and 5% are of very low vulnerability.

  1. Roads and associated structures: infrastructure impacts, vulnerabilities and design considerations for future climate change

    International Nuclear Information System (INIS)

    Tighe, S.L.; Lapp, D.

    2009-01-01

    This paper provides a summary of the findings from the literature scan, directed at identifying engineering literature that relates to road and associated infrastructure vulnerabilities in light of climate change. The scan was carried out over the course of several weeks in late 2007/early 2008. Although many Canadian transportation agencies are thinking about the potential vulnerabilities and associated engineering impacts, very few agencies have completed any formal analysis at this time. A few agencies currently have some on-going activities that are expected to be completed in 2008, but the majority have not started to examine the engineering aspects of how the change will need to be addressed in design, construction and maintenance. Although climate change and it's impact on transportation and specifically roads and associated structures is appearing in various reports and documents across Canada, available detailed information on engineering impacts was limited to nonexistent. This paper includes a brief introduction and background on climate change in general and the related predicted impacts on road infrastructure and associated structures, with primary focus on bridges. These sections are followed by project scope and objectives and methodology of assessment. The summary of findings provides some more specific details and has been prepared using available public agency documents that were located during the aforementioned search. Finally a few closing comments are provided. (author)

  2. Impact, adaptation and vulnerability of natural and human systems in Europe

    International Nuclear Information System (INIS)

    Martin, Eric; Salas y Melia, David; Delire, Christine; Lemonsu, Aude; Masson, Valery; Badeau, Vincent; Gattuso, Jean-Pierre; Pigeon, Gregoire; Regimbeau, Mathieu; Viguie, Vincent

    2015-01-01

    This article analyses the observed and projected impacts of climate change on human and natural systems, their vulnerability and adaptation options. It provides insight into the main results related to hydrology, agriculture, natural ecosystems, transport, energy, tourism, infrastructures, health and social aspects. This article presents the main results concerning Europe that were compiled in the contribution of Working Group II to the IPCC fifth assessment report published in 2014. Several studies focused on mainland France are also presented, without claiming to be exhaustive. (authors)

  3. Groundwater Vulnerability Map for South Africa | Musekiwa | South ...

    African Journals Online (AJOL)

    Vulnerability of groundwater is a relative, non-measurable and dimensionless property which is based on the concept that some land areas are more vulnerable to groundwater contamination than others. Maps showing groundwater vulnerability assist with the identification of areas more susceptible to contamination than ...

  4. Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact

    International Nuclear Information System (INIS)

    Huang, Kuo-Ching; Huang, Thomas C C

    2014-01-01

    Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred

  5. Social vulnerability of unaccompanied migrant children: a view from the urban area of Altar, Sonora, Mexico

    Directory of Open Access Journals (Sweden)

    Mario Alexander Cabrera Duarte

    2016-06-01

    Full Text Available This article is the result of research carried out by the authors on the social vulnerability of unaccompanied migrant children in the urban area of Altar, Sonora, during the years 2010-2011. The main techniques used for data collection were participant observation and semi-structured interview. The results offered are limited to evidence the social vulnerability suffered by unaccompanied migrant children, by making use of the services of food, accommodation and health. Which exposes them to a number of risks, such as food shortages, the loss of their few belongings, the drug, the physical, the suffering of diseases and limited access to medical care aggressions.

  6. Variation of the anthropic vulnerability in Ribeirão das Pedras watershed in Campinas/SP - Brazil.

    Science.gov (United States)

    Damame, Desirée; Longo, Regina; Ribeiro, Admilson; Fengler, Felipe

    2015-04-01

    anthropogenic vulnerability in the study area took place mainly by the real estate growth that the area has suffered in recent years, due to the large enhancement of the region , both for businesses and homes , as for industrial area. It was found that the distribution of anthropogenic vulnerability for 2009 was 19% too low, 33% low, 40 % moderate , high 8% and 0% too high. 2014 was obtained by dividing the current scenario is as follows: 10% very low , low 31% , moderate 50% , 9% and 0% high too high, meaning that there was an increase in high vulnerability points and moderate and still , a very significant decrease for low and very low vulnerability , revealing the strong environmental impact that the area has been suffering . Thus, we can conclude that the housing boom in large areas impacts the vulnerability of a watershed , which will certainly affect both the areas of forest / native fragments , and subsequently the quality of life of the surrounding population. In the specific case of Ribeirão das Pedras watershed , knowing the strong agricultural occupation of the area , it is known that the increased fragility still imply large losses for food production in the region.

  7. Modeling Coastal Vulnerability through Space and Time.

    Science.gov (United States)

    Hopper, Thomas; Meixler, Marcia S

    2016-01-01

    Coastal ecosystems experience a wide range of stressors including wave forces, storm surge, sea-level rise, and anthropogenic modification and are thus vulnerable to erosion. Urban coastal ecosystems are especially important due to the large populations these limited ecosystems serve. However, few studies have addressed the issue of urban coastal vulnerability at the landscape scale with spatial data that are finely resolved. The purpose of this study was to model and map coastal vulnerability and the role of natural habitats in reducing vulnerability in Jamaica Bay, New York, in terms of nine coastal vulnerability metrics (relief, wave exposure, geomorphology, natural habitats, exposure, exposure with no habitat, habitat role, erodible shoreline, and surge) under past (1609), current (2015), and future (2080) scenarios using InVEST 3.2.0. We analyzed vulnerability results both spatially and across all time periods, by stakeholder (ownership) and by distance to damage from Hurricane Sandy. We found significant differences in vulnerability metrics between past, current and future scenarios for all nine metrics except relief and wave exposure. The marsh islands in the center of the bay are currently vulnerable. In the future, these islands will likely be inundated, placing additional areas of the shoreline increasingly at risk. Significant differences in vulnerability exist between stakeholders; the Breezy Point Cooperative and Gateway National Recreation Area had the largest erodible shoreline segments. Significant correlations exist for all vulnerability (exposure/surge) and storm damage combinations except for exposure and distance to artificial debris. Coastal protective features, ranging from storm surge barriers and levees to natural features (e.g. wetlands), have been promoted to decrease future flood risk to communities in coastal areas around the world. Our methods of combining coastal vulnerability results with additional data and across multiple time

  8. Prioritising watersheds on the basis of regional flood susceptibility and vulnerability in mountainous areas through the use of indicators

    Science.gov (United States)

    Rogelis, Carolina; Werner, Micha

    2013-04-01

    Settlements in peri-urban areas of many cities in mountainous areas such as in the Andes are susceptible to hazards such as flash floods and debris flows. Additionally these settlements are in many cases informal and thus vulnerable to such hazards, resulting in significant risk. Such watersheds are often quiet small, and generally there is little or no information from gauges to help characterise risk. To help identify watersheds in which flood management measures are to be targeted, a rapid assessment of risk is required. In this paper a novel approach is presented where indicators of susceptibility and vulnerability to flash floods were used to prioritize 106 mountain watersheds in Bogotá (Colombia). Variables recognized in literature to determine the dominant processes both in susceptibility and vulnerability to flash floods were used to construct the indicators. Susceptibility was considered to increase with flashiness and the possibility of debris flow events occurring. This was assessed through the use of an indicator composed of a morphometric indicator and a land use indicator. The former was constructed using morphological variables recognized in literature to significantly influence flashiness and occurrence of debris flows; the latter was constructed in terms of percentage of vegetation cover, urban area and bare soil. The morphometric indicator was compared with the results of a debris flow propagation algorithm to assess its capacity in indentifying the morphological conditions of a watershed that make it able to transport debris flows. Propagation was carried out through the use of the Modified Single Flow Direction algorithm, following previous identification of source areas by applying thresholds identified in the area-slope curve of the watersheds and empirical thresholds. Results show that the morphometric variables can be grouped in four categories: size, shape, hypsometry and energy, with the energy the component found to best explain the

  9. Macroeconomic Vulnerability in Developing Countries: Approaches and Issues

    OpenAIRE

    Anuradha Seth; Amr Ragab

    2012-01-01

    Economic vulnerability is approached from micro- and macroeconomic perspectives. While the microeconomic perspective is concerned with the impact of shocks on the well-being of individual households, the macroeconomic perspective focuses on the impact of these shocks on economic growth. This paper reviews the literature on macroeconomic vulnerability and finds that there is no single approach to understanding macroeconomic vulnerability in the context of financial and economic crises in devel...

  10. Stabilization of Upland Agriculture under El Nino-Induced Climate Risk: Impact Assessment and Mitigation Measures in Thailand

    OpenAIRE

    Suwanabatr, Bhibhatra; Mekhora, Thamrong

    2002-01-01

    This study focused on the impacts on vulnerable areas in five provinces and five regions in Thailand. The findings indicated that events caused by El Nino induced weather changes had some impacts on the stabilization of upland agriculture in those vulnerable areas. Broadly speaking, severe drought and a long period of water shortages were experienced by some of the vulnerable areas in Northeast and Central Thailand. Some areas experienced a decrease of corn yield while others experienced comp...

  11. Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea.

    Science.gov (United States)

    Lauria, V; Garofalo, G; Fiorentino, F; Massi, D; Milisenda, G; Piraino, S; Russo, T; Gristina, M

    2017-08-14

    Deep-sea coral assemblages are key components of marine ecosystems that generate habitats for fish and invertebrate communities and act as marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to human impacts such as fishing. They are an indicator of vulnerable marine ecosystems (VMEs), therefore their conservation is essential to preserve marine biodiversity. In the Mediterranean Sea deep-sea coral habitats are associated with commercially important crustaceans, consequently their abundance has dramatically declined due to the effects of trawling. Marine spatial planning is required to ensure that the conservation of these habitats is achieved. Species distribution models were used to investigate the distribution of two critically endangered octocorals (Funiculina quadrangularis and Isidella elongata) in the central Mediterranean as a function of environmental and fisheries variables. Results show that both species exhibit species-specific habitat preferences and spatial patterns in response to environmental variables, but the impact of trawling on their distribution differed. In particular F. quadrangularis can overlap with fishing activities, whereas I. elongata occurs exclusively where fishing is low or absent. This study represents the first attempt to identify key areas for the protection of soft and compact mud VMEs in the central Mediterranean Sea.

  12. Rockfall vulnerability assessment for reinforced concrete buildings

    Science.gov (United States)

    Mavrouli, O.; Corominas, J.

    2010-10-01

    The vulnerability of buildings to the impact of rockfalls is a topic that has recently attracted increasing attention in the scientific literature. The quantification of the vulnerability, when based on empirical or heuristic approaches requires data recorded from historical rockfalls, which are not always available. This is the reason why appropriate alternatives are required. The use of analytical and numerical models can be one of them. In this paper, a methodology is proposed for the analytical evaluation of the vulnerability of reinforced concrete buildings. The vulnerability is included in the risk equation by incorporating the uncertainty of the impact location of the rock block and the subsequent damage level. The output is a weighted vulnerability that ranges from 0 to 1 and expresses the potential damage that a rock block causes to a building in function of its velocity and size. The vulnerability is calculated by the sum of the products of the probability of block impact on each element of the building and its associated damage state, the latter expressed in relative recovery cost terms. The probability of exceeding a specific damage state such as non-structural, local, partial, extensive or total collapse is also important for the quantification of risk and to this purpose, several sets of fragility curves for various rock diameters and increasing velocities have been prepared. An example is shown for the case of a simple reinforced concrete building and impact energies from 0 to 4075 kJ.

  13. GIS Based Measurement and Regulatory Zoning of Urban Ecological Vulnerability

    Directory of Open Access Journals (Sweden)

    Xiaorui Zhang

    2015-07-01

    Full Text Available Urban ecological vulnerability is measured on the basis of ecological sensitivity and resilience based on the concept analysis of vulnerability. GIS-based multicriteria decision analysis (GIS-MCDA methods are used, supported by the spatial analysis tools of GIS, to define different levels of vulnerability for areas of the urban ecology. These areas are further classified into different types of regulatory zones. Taking the city of Hefei in China as the empirical research site, this study uses GIS-MCDA, including the index system, index weights and overlay rules, to measure the degree of its ecological vulnerability on the GIS platform. There are eight indices in the system. Raking and analytical hierarchy process (AHP methods are used to calculate index weights according to the characteristics of the index system. The integrated overlay rule, including selection of the maximum value, and weighted linear combination (WLC are applied as the overlay rules. In this way, five types of vulnerability areas have been classified as follows: very low vulnerability, low vulnerability, medium vulnerability, high vulnerability and very high vulnerability. They can be further grouped into three types of regulatory zone of ecological green line, ecological grey line and ecological red line. The study demonstrates that ecological green line areas are the largest (53.61% of the total study area and can be intensively developed; ecological grey line areas (19.59% of the total area can serve as the ecological buffer zone, and ecological red line areas (26.80% cannot be developed and must be protected. The results indicate that ecological green line areas may provide sufficient room for future urban development in Hefei city. Finally, the respective regulatory countermeasures are put forward. This research provides a scientific basis for decision-making around urban ecological protection, construction and sustainable development. It also provides theoretical method

  14. An AHP-derived method for mapping the physical vulnerability of coastal areas at regional scales

    Directory of Open Access Journals (Sweden)

    G. Le Cozannet

    2013-05-01

    Full Text Available Assessing coastal vulnerability to climate change at regional scales is now mandatory in France since the adoption of recent laws to support adaptation to climate change. However, there is presently no commonly recognised method to assess accurately how sea level rise will modify coastal processes in the coming decades. Therefore, many assessments of the physical component of coastal vulnerability are presently based on a combined use of data (e.g. digital elevation models, historical shoreline and coastal geomorphology datasets, simple models and expert opinion. In this study, we assess the applicability and usefulness of a multi-criteria decision-mapping method (the analytical hierarchy process, AHP to map physical coastal vulnerability to erosion and flooding in a structured way. We apply the method in two regions of France: the coastal zones of Languedoc-Roussillon (north-western Mediterranean, France and the island of La Réunion (south-western Indian Ocean, notably using the regional geological maps. As expected, the results show not only the greater vulnerability of sand spits, estuaries and low-lying areas near to coastal lagoons in both regions, but also that of a thin strip of erodible cliffs exposed to waves in La Réunion. Despite gaps in knowledge and data, the method is found to provide a flexible and transportable framework to represent and aggregate existing knowledge and to support long-term coastal zone planning through the integration of such studies into existing adaptation schemes.

  15. Integrated flash flood vulnerability assessment: Insights from East Attica, Greece

    Science.gov (United States)

    Karagiorgos, Konstantinos; Thaler, Thomas; Heiser, Micha; Hübl, Johannes; Fuchs, Sven

    2016-10-01

    In the framework of flood risk assessment, vulnerability is a key concept to assess the susceptibility of elements at risk. Besides the increasing amount of studies on flash floods available, in-depth information on vulnerability in Mediterranean countries was missing so far. Moreover, current approaches in vulnerability research are driven by a divide between social scientists who tend to view vulnerability as representing a set of socio-economic factors, and natural scientists who view vulnerability in terms of the degree of loss to an element at risk. Further, vulnerability studies in response to flash flood processes are rarely answered in the literature. In order to close this gap, this paper implemented an integrated vulnerability approach focusing on residential buildings exposed to flash floods in Greece. In general, both physical and social vulnerability was comparable low, which is interpreted as a result from (a) specific building regulations in Greece as well as general design principles leading to less structural susceptibility of elements at risk exposed, and (b) relatively low economic losses leading to less social vulnerability of citizens exposed. The population show high risk awareness and coping capacity to response to natural hazards event and in the same time the impact of the events are quite low, because of the already high use of local protection measures. The low vulnerability score for East Attica can be attributed especially to the low physical vulnerability and the moderate socio-economic well-being of the area. The consequence is to focus risk management strategies mainly in the reduction of the social vulnerability. By analysing both physical and social vulnerability an attempt was made to bridge the gap between scholars from sciences and humanities, and to integrate the results of the analysis into the broader vulnerability context.

  16. Assessment of Intrinsic Vulnerability to Contamination for the Alluvial Aquifer in El-Fayoum Depression Using the Drastic Method

    International Nuclear Information System (INIS)

    Ahmed, M.A.

    2012-01-01

    Intrinsic vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and land use planning. The vulnerability for the alluvial aquifer in El-Fayoum depression was assessed by applying the Drastic model as well as utilizing sensitivity analyses to evaluate the reliability of this model. This method uses seven parameters including climatic, geological, and hydrogeological conditions controlling the seepage of pollutant substances to groundwater. Vulnerability maps were produced by applying the Generic and Agricultural models according to the Drastic charter. The resulting agricultural Drastic vulnerability map indicates that 23.3%, 22.7% and 12.4% of El-Fayoum depression is under low, low-moderate and moderately high vulnerability of groundwater contamination, respectively, while 41.6% of the area of study can be designated as an area of moderate vulnerability of groundwater contamination. Resulting maps revealed that the potential for polluting groundwater with agricultural chemicals is greater than with Generic Drastic index pollutants. Depth to water table parameter inflicted the largest impact on the intrinsic vulnerability of the alluvial aquifer in El-Fayoum depression. Both the map removal and single-parameter sensitivity analyses indicated that the vulnerability index is the least sensitive to the removal of the recharge and hydraulic conductivity parameters but is highly sensitive to the removal of depth to water parameter.

  17. A Heat Vulnerability Index and Adaptation Solutions for Pittsburgh, Pennsylvania.

    Science.gov (United States)

    Bradford, Kathryn; Abrahams, Leslie; Hegglin, Miriam; Klima, Kelly

    2015-10-06

    With increasing evidence of global warming, many cities have focused attention on response plans to address their populations' vulnerabilities. Despite expected increased frequency and intensity of heat waves, the health impacts of such events in urban areas can be minimized with careful policy and economic investments. We focus on Pittsburgh, Pennsylvania and ask two questions. First, what are the top factors contributing to heat vulnerability and how do these characteristics manifest geospatially throughout Pittsburgh? Second, assuming the City wishes to deploy additional cooling centers, what placement will optimally address the vulnerability of the at risk populations? We use national census data, ArcGIS geospatial modeling, and statistical analysis to determine a range of heat vulnerability indices and optimal cooling center placement. We find that while different studies use different data and statistical calculations, all methods tested locate additional cooling centers at the confluence of the three rivers (Downtown), the northeast side of Pittsburgh (Shadyside/Highland Park), and the southeast side of Pittsburgh (Squirrel Hill). This suggests that for Pittsburgh, a researcher could apply the same factor analysis procedure to compare data sets for different locations and times; factor analyses for heat vulnerability are more robust than previously thought.

  18. Developing a Composite Aquifer Vulnerability Assessment Model Combining DRASTIC with Agricultural Land Use in Choushui River Alluvial Fan, Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Hsieh, Chih-Heng; Tsai, Cheng-Bin

    2017-04-01

    Aquifer vulnerability assessment is considered to be an effective tool in controlling potential pollution which is critical for groundwater management. The Choushui River alluvial fan, located in central Taiwan, is an agricultural area with complex crop patterns and various irrigation schemes, which increased the difficulties in groundwater resource management. The aim of this study is to propose an integrated methodology to assess shallow groundwater vulnerability by including land-use impact on groundwater potential pollution. The original groundwater vulnerability methodology, DRASTIC, was modified by adding a land-use parameter in order to assess groundwater vulnerability under intense agricultural activities. To examine the prediction capacity of pollution for the modified DRASTIC model, various risk categories of contamination potentials were compared with observed nitrate-N obtained from groundwater monitoring network. It was found that for the original DRASTIC vulnerability map, some areas with low nitrate-N concentrations are covered within the high vulnerability areas, especially in the northern part of mid-fan areas, where rice paddy is the main crop and planted for two crop seasons per year. The low nitrate-N contamination potential of rice paddies may be resulted from the denitrification in the reduced root zone. By reducing the rating for rice paddies, the modified model was proved to be capable of increasing the precise of prediction in study area. The results can provide a basis for groundwater monitoring network design and effective preserve measures formulation in the mixed agricultural area. Keyword:Aquifer Vulnerability, Groundwater, DRASTIC, Nitrate-N

  19. Intrinsic vulnerability assessment of Sette Comuni Plateau aquifer (Veneto Region, Italy).

    Science.gov (United States)

    Cucchi, Franco; Franceschini, Giuliana; Zini, Luca; Aurighi, Marina

    2008-09-01

    Maps illustrating the different degrees of vulnerability within a given area are integral to environmental protection and management policies. The assessment of the intrinsic vulnerability of karst areas is difficult since the type and stage of karst development and the related underground discharge behavior are difficult to determine and quantify. Geographic Information Systems techniques are applied to the evaluation of the vulnerability of an aquifer in the alpine karst area of the Sette Comuni Plateau, in the Veneto Region of northern Italy. The water resources of the studied aquifer are of particular importance to the local communities. This aquifer must therefore be protected from both inappropriate use as well as possible pollution. The SINTACS and SINTACS P(RO) K(ARST) vulnerability assessment methods have been utilized here to create the vulnerability map. SINTACS P(RO) K(ARST) is an adaptation of the parametric managerial model (SINTACS) to karst hydrostructures. The vulnerability map reveals vast zones (81% of the analyzed areas) with a high degree of vulnerability. The presence of well-developed karst structures in these highly vulnerable areas facilitate water percolation, thereby enhancing the groundwater vulnerability risk. Only 1.5 of the studied aquifer have extremely high-vulnerability levels, however these areas include all of the major springs utilized for human consumption. This vulnerability map of the Sette Comuni Plateau aquifer is an indispensable tool for both the effective management of water resources and as support to environmental planning in the Sette Comuni Plateau area.

  20. An asset-based approach to vulnerability: the case of small-scale fishing areas in Cameroon and Nigeria.

    Science.gov (United States)

    Chiwaula, Levison S; Witt, Rudolf; Waibel, Hermann

    2011-01-01

    This paper analyses vulnerability to poverty of rural small-scale fishing communities using cross-section data from 295 households in Cameroon and 267 in Nigeria. We propose a vulnerability measure that incorporates the idea of asset poverty into the concept of expected poverty, which allows decomposing expected poverty into expected structural-chronic, structural-transient, and stochastic-transient poverty. The findings show that most households in our study areas are expected to be structurally-chronic and structurally-transient poor. This underlines the importance of asset formation for long-term poverty reduction strategies. Further refinements are possible with longitudinal data and information about future states of nature.

  1. Drought, Agriculture, and Labor: Understanding Drought Impacts and Vulnerability in California

    Science.gov (United States)

    Greene, C.

    2015-12-01

    Hazardous drought impacts are a product of not only the physical intensity of drought, but also the economic, social, and environmental characteristics of the region exposed to drought. Drought risk management requires understanding the complex links between the physical and human dimensions of drought. Yet, there is a research gap in identifying and explaining the socio-economic complexities of drought in the context of the first world, especially for economic and socially marginal groups who rely on seasonal and temporary jobs. This research uses the current drought in California as a case study to identify the socioeconomic impacts of drought on farmworker communities in California's San Joaquin Valley, with a specific focus on the relationship between drought and agricultural labor. Through both a narrative analysis of drought coverage in newspaper media, drought policy documents, and interviews with farmworkers, farmers, community based organizations, and government officials in the San Joaquin Valley, this research aims to highlight the different understandings and experiences of the human impacts of drought and drought vulnerability in order to better inform drought risk planning and policy.

  2. Mapping social-ecological vulnerability to inform local decision making.

    Science.gov (United States)

    Thiault, Lauric; Marshall, Paul; Gelcich, Stefan; Collin, Antoine; Chlous, Frédérique; Claudet, Joachim

    2018-04-01

    An overarching challenge of natural resource management and biodiversity conservation is that relationships between people and nature are difficult to integrate into tools that can effectively guide decision making. Social-ecological vulnerability offers a valuable framework for identifying and understanding important social-ecological linkages, and the implications of dependencies and other feedback loops in the system. Unfortunately, its implementation at local scales has hitherto been limited due at least in part to the lack of operational tools for spatial representation of social-ecological vulnerability. We developed a method to map social-ecological vulnerability based on information on human-nature dependencies and ecosystem services at local scales. We applied our method to the small-scale fishery of Moorea, French Polynesia, by combining spatially explicit indicators of exposure, sensitivity, and adaptive capacity of both the resource (i.e., vulnerability of reef fish assemblages to fishing) and resource users (i.e., vulnerability of fishing households to the loss of fishing opportunity). Our results revealed that both social and ecological vulnerabilities varied considerably through space and highlighted areas where sources of vulnerability were high for both social and ecological subsystems (i.e., social-ecological vulnerability hotspots) and thus of high priority for management intervention. Our approach can be used to inform decisions about where biodiversity conservation strategies are likely to be more effective and how social impacts from policy decisions can be minimized. It provides a new perspective on human-nature linkages that can help guide sustainability management at local scales; delivers insights distinct from those provided by emphasis on a single vulnerability component (e.g., exposure); and demonstrates the feasibility and value of operationalizing the social-ecological vulnerability framework for policy, planning, and participatory

  3. Coastal vulnerability index for the Tabasco State coast, Mexico

    Directory of Open Access Journals (Sweden)

    Juan Carlos Nuñez Gómez

    2016-11-01

    Full Text Available Sea level rise is one of the most serious events that will impact low-lying lands, as is the case of most of Tabasco State. Historically, the State of Tabasco has been repeatedly impacted by extreme floods, the most recent one occurring in 2007. However, recent studies have shown that coastal erosion is the effect that most directly has impacted the Tabasco’s coastline, as this has even modified soil strata; this is also related to extreme hydrometeorological events associated with environmental changes and changes in the salinity gradient off the coast. In such a situation, future changes in the coastline are almost certain. Tabasco’s coastline has been recognized as one of the most vulnerable zones in the country since Mexico’s first national communication to the UNFCCC in 1997. Therefore, it is important to evaluate the vulnerability of this zone. The purpose of this study was to estimate the vulnerability of the Tabasco’s coastline by applying the coastal vulnerability index method (IVM using a geographic information system (GIS. This method has been successfully applied in several different places around the world including Canada, the United State, Spain and Indonesia. This model is suitable for the local conditions of Tabasco coast, as the input variables it requires (including waves, tides, sea level, coastal slope, erosion rates and geomorphology are available for the study area, thus allowing the possibility of estimating the coast’s vulnerability based on local data. Results from map algebra operations showed that the zones of very high or high vulnerability encompass a six-kilometer stretch around the Sánchez Magallanes community, near the del Carmen lagoon in the municipality of H. Cárdenas, Tabasco. This is due to the high-waves regime and other conditions associated to the coastal dune geomorphology as well as the unconsolidated fine sediments prevailing therein. Other high vulnerability zones are found just in front

  4. A socioeconomic profile of vulnerable land to desertification in Italy.

    Science.gov (United States)

    Salvati, Luca

    2014-01-01

    Climate changes, soil vulnerability, loss in biodiversity, and growing human pressure are threatening Mediterranean-type ecosystems which are increasingly considered as a desertification hotspot. In this region, land vulnerability to desertification strongly depends on the interplay between natural and anthropogenic factors. The present study proposes a multivariate exploratory analysis of the relationship between the spatial distribution of land vulnerability to desertification and the socioeconomic contexts found in three geographical divisions of Italy (north, center and south) based on statistical indicators. A total of 111 indicators describing different themes (demography, human settlements, labor market and human capital, rural development, income and wealth) were used to discriminate vulnerable from non-vulnerable areas. The resulting socioeconomic profile of vulnerable areas in northern and southern Italy diverged significantly, the importance of demographic and economic indicators being higher in southern Italy than in northern Italy. On the contrary, human settlement indicators were found more important to discriminate vulnerable and non-vulnerable areas in northern Italy, suggesting a role for peri-urbanization in shaping the future vulnerable areas. An in-depth knowledge of the socioeconomic characteristics of vulnerable land may contribute to scenarios' modeling and the development of more effective policies to combat desertification. © 2013 Elsevier B.V. All rights reserved.

  5. Vulnerability of European freshwater catchments to climate change.

    Science.gov (United States)

    Markovic, Danijela; Carrizo, Savrina F; Kärcher, Oskar; Walz, Ariane; David, Jonathan N W

    2017-09-01

    Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies. © 2017 John Wiley & Sons Ltd.

  6. Aren't we all vulnerable: why do vulnerability analysis?

    Energy Technology Data Exchange (ETDEWEB)

    Moench, Marcus

    2011-11-15

    The idea of 'vulnerability' is widely-used shorthand for the disproportionate impacts that climate change will have on high-risk groups and fragile ecosystems. Decision makers increasingly want to target adaptation funding to those people and environments most affected by climate change. They must also be able to monitor the effectiveness of their investments. Vulnerability analysis is sometimes presented as the solution to these wants and needs — but existing approaches are often of little use: at best, they reiterate what we already know; at worst, they are used to justify entrenched agendas. To be truly useful as a basis for dialogue, action and accountability, the meaning of 'vulnerability' must be clarified and the methods for analysing it greatly strengthened. This means establishing standard, replicable approaches that differentiate between the roles and exposure of stakeholders, systems and institutions.

  7. Observed changes and future trends in vulnerability to natural hazards for mountain communities

    Science.gov (United States)

    Puissant, A.; Gazo, A.; Débonnaire, N.; Moravek, A.; Aguejdad, R.; -P., Malet J.; B., Martin

    2015-04-01

    Since 50 years, mountain areas are affected by important landcover and landuse changes characterized by the decrease of pastoral activities, reforestation or urbanization with the development of tourism activities and infrastructures. These natural and anthropogenic transformations have an impact on the socio-economic activities but also on the exposure of the communities to natural hazards. In the context of the ANR Project SAMCO which aims at enhancing the overall resilience of societies on the impacts of mountain risks, the objective of this research was to analyse landcover/use changes and to model future changes to assess the impacts of such change and to analyse trajectory of the vulnerability of mountain communities. For this research, an experiment is performed for two mountain areas of the French Alps (Barcelonnette Basin, Vars Basin). Changes in landcover and landuse are characterized over the period 1956-2010 for the two communities at two spatial scales (catchment, municipality). Four scenarios of landcover and landuse development (based on the Prelude European Project) are proposed for the period 2050 and 2100. Based on these scenarios, the evolution of vulnerability is estimated by using the Potential Damage Index method proposed by Puissant et al. (2013).

  8. Assessing vulnerability

    NARCIS (Netherlands)

    Hellmuth, M.; Kabat, P.

    2003-01-01

    It is in the shantytowns and rural villages of the Third World that floods and droughts strike hardest and deepest. Vulnerability to the vagaries of climate depends not only on location, but, crucially, on the capacity of the victims to cope with the impacts of extreme weather. So, where are the

  9. Assessment of the intrinsic vulnerability to groundwater contamination in lahore, pakistan

    International Nuclear Information System (INIS)

    Mahmood, K.; Khan, R.M.; Ashfaq, M.; Ahsan, A.

    2015-01-01

    This study was intended to map intrinsic vulnerability of groundwater contamination in Lahore using GIS based DRASTIC model. The final output of DRASTIC model was reclassified into three equal interval classes, corresponding to low, moderate and high vulnerability regions. Most of the study area was found to have low to moderate vulnerability, with 27.48% area of low, 66.48% of moderate and only 6.04% area of high vulnerability. Most of the drinking water wells are installed in the residential area of the city, which shows low chances of contamination due to deep water table and almost no recharge. However, an industrial drain is located in the high vulnerable area in the southeastern part of the study area. The previous studies are in agreement with vulnerability zones. Further to remove any doubt in the suitability of assigned weight, map removal sensitivity analysis had been carried out. The assessment of the sensitivity analysis had been made through visual as well as quantitative methods. Priority order for contribution of the parameters in the vulnerability for the study area is D>I>C>R>A>T>S. (author)

  10. A Conceptual Framework for Vulnerability Assessment of Climate Change Impact on Critical Oil and Gas Infrastructure in the Niger Delta

    Directory of Open Access Journals (Sweden)

    Justin Udie

    2018-02-01

    Full Text Available The impact of climate change on the Niger Delta is severe, as extreme weather events have inflicted various degrees of stress on critical oil/gas infrastructure. Typically, assets managers and government agencies lack a clear framework for evaluating the vulnerability of these systems. This paper presents a participatory framework for the vulnerability assessment of critical oil/gas infrastructure to climate change impacts in the Niger Delta context. Through a critical review of relevant literature and triangulating observational and exploratory data from the field, this paper has developed a conceptual framework with three elements: (1 a preliminary scoping activity; (2 the vulnerability assessment; and (3 mainstreaming the results into institutional asset management codes. Scoping involves the definition of research aims and objectives, review of prevailing climate burdens and impacts, exploratory investigation, screening for new (planned assets and selection of relevant infrastructure. The emphasis on screening for planned infrastructure is to facilitate the incorporation of sustainable adaptive capacities into the original design of identified systems. A conceptual framework for vulnerability assessment is presented as a robust systematic iterative model for the evaluation of selected assets using an appropriate methodology. In this study, analytic hierarchy process (AHP is applied while mainstreaming as part of the research framework is emphasised to aid commercial implementation from an expert-based perspective. The study recommends the use of other suitable methodologies and systematic approaches to test the flexibility of the framework.

  11. Vulnerability of Karangkates dams area by means of zero crossing analysis of data magnetic

    Energy Technology Data Exchange (ETDEWEB)

    Sunaryo,, E-mail: sunaryo@ub.ac.id, E-mail: sunaryo.geofis.ub@gmail.com; Susilo, Adi [Geophysics Program Study, Physics Dept., Sciences Faculty, University of Brawijaya, Malang (Indonesia)

    2015-04-24

    Study with entitled Vulnerability Karangkates Dam Area By Means of Zero Crossing Analysis of Data Magnetic has been done. The study was aimed to obtain information on the vulnerability of two parts area of Karangkates dams, i.e. Lahor dam which was inaugurated in 1977 and Sutami dam inaugurated in 1981. Three important things reasons for this study are: 1). The dam age was 36 years old for Lahor dam and 32 years old for Sutami dam, 2). Geologically, the location of the dams are closed together to the Pohgajih local shear fault, Selorejo local fault, and Selorejo limestone-andesite rocks contact plane, and 3). Karangkates dams is one of the important Hydro Power Plant PLTA with the generating power of about 400 million KWH per year from a total of about 29.373MW installed in Indonesia. Geographically, the magnetic data acquisition was conducted at coordinates (112.4149oE;-8.2028oS) to (112.4839oE;-8.0989oS) by using Proton Precession Magnetometer G-856. Magnetic Data acquisition was conducted in the radial direction from the dams with diameter of about 10 km and the distance between the measurements about 500m. The magnetic data acquisition obtained the distribution of total magnetic field value in the range of 45800 nT to 44450 nT. Residual anomalies obtained by doing some corrections, including diurnal correction, International Geomagnetic Reference Field (IGRF) correction, and reductions so carried out the distribution of the total magnetic field value in the range of -650 nT to 700 nT. Based on the residual anomalies, indicate the presence of 2 zones of closed closures dipole pairs at located in the west of the Sutami dam and the northwest of the Lahor dam from 5 total zones. Overlapping on the local geological map indicated the lineament of zero crossing patterns in the contour of residual anomaly contour with the Pohgajih shear fault where located at about 4 km to the west of the Sutami dam approximately and andesite-limestone rocks contact where located

  12. Economic vulnerability to sea-level rise along the northern U.S. Gulf Coast

    Science.gov (United States)

    Thatcher, Cindy A.; Brock, John C.; Pendleton, Elizabeth A.

    2013-01-01

    The northern Gulf of Mexico coast of the United States has been identified as highly vulnerable to sea-level rise, based on a combination of physical and societal factors. Vulnerability of human populations and infrastructure to projected increases in sea level is a critical area of uncertainty for communities in the extremely low-lying and flat northern gulf coastal zone. A rapidly growing population along some parts of the northern Gulf of Mexico coastline is further increasing the potential societal and economic impacts of projected sea-level rise in the region, where observed relative rise rates range from 0.75 to 9.95 mm per year on the Gulf coasts of Texas, Louisiana, Mississippi, Alabama, and Florida. A 1-m elevation threshold was chosen as an inclusive designation of the coastal zone vulnerable to relative sea-level rise, because of uncertainty associated with sea-level rise projections. This study applies a Coastal Economic Vulnerability Index (CEVI) to the northern Gulf of Mexico region, which includes both physical and economic factors that contribute to societal risk of impacts from rising sea level. The economic variables incorporated in the CEVI include human population, urban land cover, economic value of key types of infrastructure, and residential and commercial building values. The variables are standardized and combined to produce a quantitative index value for each 1-km coastal segment, highlighting areas where human populations and the built environment are most at risk. This information can be used by coastal managers as they allocate limited resources for ecosystem restoration, beach nourishment, and coastal-protection infrastructure. The study indicates a large amount of variability in index values along the northern Gulf of Mexico coastline, and highlights areas where long-term planning to enhance resiliency is particularly needed.

  13. Vulnerability analysis methods for road networks

    Science.gov (United States)

    Bíl, Michal; Vodák, Rostislav; Kubeček, Jan; Rebok, Tomáš; Svoboda, Tomáš

    2014-05-01

    Road networks rank among the most important lifelines of modern society. They can be damaged by either random or intentional events. Roads are also often affected by natural hazards, the impacts of which are both direct and indirect. Whereas direct impacts (e.g. roads damaged by a landslide or due to flooding) are localized in close proximity to the natural hazard occurrence, the indirect impacts can entail widespread service disabilities and considerable travel delays. The change in flows in the network may affect the population living far from the places originally impacted by the natural disaster. These effects are primarily possible due to the intrinsic nature of this system. The consequences and extent of the indirect costs also depend on the set of road links which were damaged, because the road links differ in terms of their importance. The more robust (interconnected) the road network is, the less time is usually needed to secure the serviceability of an area hit by a disaster. These kinds of networks also demonstrate a higher degree of resilience. Evaluating road network structures is therefore essential in any type of vulnerability and resilience analysis. There are a range of approaches used for evaluation of the vulnerability of a network and for identification of the weakest road links. Only few of them are, however, capable of simulating the impacts of the simultaneous closure of numerous links, which often occurs during a disaster. The primary problem is that in the case of a disaster, which usually has a large regional extent, the road network may remain disconnected. The majority of the commonly used indices use direct computation of the shortest paths or time between OD (origin - destination) pairs and therefore cannot be applied when the network breaks up into two or more components. Since extensive break-ups often occur in cases of major disasters, it is important to study the network vulnerability in these cases as well, so that appropriate

  14. Indicators for Tracking European Vulnerabilities to the Risks of Infectious Disease Transmission due to Climate Change

    Directory of Open Access Journals (Sweden)

    Jonathan E. Suk

    2014-02-01

    Full Text Available A wide range of infectious diseases may change their geographic range, seasonality and incidence due to climate change, but there is limited research exploring health vulnerabilities to climate change. In order to address this gap, pan-European vulnerability indices were developed for 2035 and 2055, based upon the definition vulnerability = impact/adaptive capacity. Future impacts were projected based upon changes in temperature and precipitation patterns, whilst adaptive capacity was developed from the results of a previous pan-European study. The results were plotted via ArcGISTM to EU regional (NUTS2 levels for 2035 and 2055 and ranked according to quintiles. The models demonstrate regional variations with respect to projected climate-related infectious disease challenges that they will face, and with respect to projected vulnerabilities after accounting for regional adaptive capacities. Regions with higher adaptive capacities, such as in Scandinavia and central Europe, will likely be better able to offset any climate change impacts and are thus generally less vulnerable than areas with lower adaptive capacities. The indices developed here provide public health planners with information to guide prioritisation of activities aimed at strengthening regional preparedness for the health impacts of climate change. There are, however, many limitations and uncertainties when modeling health vulnerabilities. To further advance the field, the importance of variables such as coping capacity and governance should be better accounted for, and there is the need to systematically collect and analyse the interlinkages between the numerous and ever-expanding environmental, socioeconomic, demographic and epidemiologic datasets so as to promote the public health capacity to detect, forecast, and prepare for the health threats due to climate change.

  15. Indicators for tracking European vulnerabilities to the risks of infectious disease transmission due to climate change.

    Science.gov (United States)

    Suk, Jonathan E; Ebi, Kristie L; Vose, David; Wint, Willy; Alexander, Neil; Mintiens, Koen; Semenza, Jan C

    2014-02-21

    A wide range of infectious diseases may change their geographic range, seasonality and incidence due to climate change, but there is limited research exploring health vulnerabilities to climate change. In order to address this gap, pan-European vulnerability indices were developed for 2035 and 2055, based upon the definition vulnerability = impact/adaptive capacity. Future impacts were projected based upon changes in temperature and precipitation patterns, whilst adaptive capacity was developed from the results of a previous pan-European study. The results were plotted via ArcGISTM to EU regional (NUTS2) levels for 2035 and 2055 and ranked according to quintiles. The models demonstrate regional variations with respect to projected climate-related infectious disease challenges that they will face, and with respect to projected vulnerabilities after accounting for regional adaptive capacities. Regions with higher adaptive capacities, such as in Scandinavia and central Europe, will likely be better able to offset any climate change impacts and are thus generally less vulnerable than areas with lower adaptive capacities. The indices developed here provide public health planners with information to guide prioritisation of activities aimed at strengthening regional preparedness for the health impacts of climate change. There are, however, many limitations and uncertainties when modeling health vulnerabilities. To further advance the field, the importance of variables such as coping capacity and governance should be better accounted for, and there is the need to systematically collect and analyse the interlinkages between the numerous and ever-expanding environmental, socioeconomic, demographic and epidemiologic datasets so as to promote the public health capacity to detect, forecast, and prepare for the health threats due to climate change.

  16. Extending Vulnerability Assessment to Include Life Stages Considerations.

    Science.gov (United States)

    Hodgson, Emma E; Essington, Timothy E; Kaplan, Isaac C

    2016-01-01

    Species are experiencing a suite of novel stressors from anthropogenic activities that have impacts at multiple scales. Vulnerability assessment is one tool to evaluate the likely impacts that these stressors pose to species so that high-vulnerability cases can be identified and prioritized for monitoring, protection, or mitigation. Commonly used semi-quantitative methods lack a framework to explicitly account for differences in exposure to stressors and organism responses across life stages. Here we propose a modification to commonly used spatial vulnerability assessment methods that includes such an approach, using ocean acidification in the California Current as an illustrative case study. Life stage considerations were included by assessing vulnerability of each life stage to ocean acidification and were used to estimate population vulnerability in two ways. We set population vulnerability equal to: (1) the maximum stage vulnerability and (2) a weighted mean across all stages, with weights calculated using Lefkovitch matrix models. Vulnerability was found to vary across life stages for the six species explored in this case study: two krill-Euphausia pacifica and Thysanoessa spinifera, pteropod-Limacina helicina, pink shrimp-Pandalus jordani, Dungeness crab-Metacarcinus magister and Pacific hake-Merluccius productus. The maximum vulnerability estimates ranged from larval to subadult and adult stages with no consistent stage having maximum vulnerability across species. Similarly, integrated vulnerability metrics varied greatly across species. A comparison showed that some species had vulnerabilities that were similar between the two metrics, while other species' vulnerabilities varied substantially between the two metrics. These differences primarily resulted from cases where the most vulnerable stage had a low relative weight. We compare these methods and explore circumstances where each method may be appropriate.

  17. Vulnerability of social-ecological system to climate change in Mongolia

    Science.gov (United States)

    Kakinuma, K.; Yanagawa, A.; Sasaki, T.; Kanae, S.

    2017-12-01

    Coping with future climate changes are one of the most important issues in the world. IPCC (2014) suggested that vulnerability and exposure of social-ecological systems to extreme climatic events (hazard) determine the impact of climate changes. Although the schematic framework is widely accepted, there are high uncertainty of vulnerability of social and ecological systems and it makes difficult to examine it in empirical researches. Our objective is to assess the climate change impact on the social-ecological system in Mongolia. We review researches about trends of climate (Hazard), vegetation, pastoral mobility (Vulnerability) and livestock distribution (Exposure) across Mongolia Climate trends are critical for last several decades and thus hazard may be increasing in Mongolia. Temperature is increasing with high confidence in all regions. Precipitation are slightly decreasing with medium confidence across the country, especially in northern and central regions. Exposure would also be increasing especially in northern, central and western regions, because livestock population are concentrating these regions after 1990. Generally, less productive ecosystems (e.g. few plant productivity and less species richness) are vulnerable to extreme climatic events such as drought. In that sense, southern region may be more vulnerable to climate changes than other regions. However, if we focus on pastoral mobility forms for drought, we get contractive conclusions. Pastoralists in southern region keep mobility to variable and scarce vegetation while pastoralists in northern region less mobile because of stable and much vegetation. Exclusive managements in northern region is able to maximized the number of livestock only under stable precipitation regimes. But at the same time, it is difficult to escape from hazardous areas when it is drought. Thus, in term of rangeland management, northern region would be more vulnerable to increase of drought intensity. Although northern and

  18. ICMPv6 RA Flooding Vulnerability Research

    Directory of Open Access Journals (Sweden)

    Linas Jočys

    2016-06-01

    Full Text Available ICMPv6 is the newest version of internet control message protocol, whose main purpose is to send error message indicating packet processing failure. It is know that ICMPv6 is technologically vulnerable. One of those vulnerabilities is the ICMPv6 RA flooding vulnerability, which can lead to systems in Local Area Network slow down or full stop. This paper will discuss Windows (XP, 7, 8.1 and Linux Ubuntu 14 operating systems resistance to RA flooding attack research and countermeasures to minimize this vulnerability.

  19. Integrated assessment for establishing an oil environmental vulnerability map: case study for the Santos Basin region, Brazil.

    Science.gov (United States)

    Romero, A F; Abessa, D M S; Fontes, R F C; Silva, G H

    2013-09-15

    The growth of maritime transport and oil exploitation activities may increase the risk of oil spills. Thus, plans and actions to prevent or mitigate impacts are needed to minimize the effects caused by oil. However, tools used worldwide to support contingency plans have not been integrated, thus leading to failure in establishing priority areas. This investigation aimed to develop indices of environmental vulnerability to oil (IEVO), by combining information about environmental sensibility to oil and results of numerical modeling of spilled oil. To achieve that, a case study concerning to oil spills scenarios in a subtropical coastal area was designed, and IEVOs were calculated and presented in maps, in order to make the information about the areas' vulnerability more easily visualized. For summer, the extension of coastline potentially affected by oil was approximately 150 km, and most of the coastline presented medium to high vulnerability. For winter, 230 km coastline would be affected, from which 75% were classified as medium to high vulnerability. Thus, IEVO maps allowed a rapid and clearer interpretation of the vulnerability of the mapped region, facilitating the planning process and the actions in response to an oil spill. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. 5; Chapter

    Science.gov (United States)

    Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles; hide

    2015-01-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work

  1. Measuring vulnerability to disaster displacement

    Science.gov (United States)

    Brink, Susan A.; Khazai, Bijan; Power, Christopher; Wenzel, Friedemann

    2015-04-01

    Large scale disasters can cause devastating impacts in terms of population displacement. Between 2008 and 2013, on average 27 million people were displaced annually by disasters (Yonetani 2014). After large events such as hurricane Katrina or the Port-au-Prince earthquake, images of inadequate public shelter and concerns about large scale and often inequitable migration have been broadcast around the world. Population displacement can often be one of the most devastating and visible impacts of a natural disaster. Despite the importance of population displacement in disaster events, measures to understand the socio-economic vulnerability of a community often use broad metrics to estimate the total socio-economic risk of an event rather than focusing on the specific impacts that a community faces in a disaster. Population displacement is complex and multi-causal with the physical impact of a disaster interacting with vulnerability arising from the response, environmental issues (e.g., weather), cultural concerns (e.g., expectations of adequate shelter), and many individual factors (e.g., mobility, risk perception). In addition to the complexity of the causes, population displacement is difficult to measure because of the wide variety of different terms and definitions and its multi-dimensional nature. When we speak of severe population displacement, we may refer to a large number of displaced people, an extended length of displacement or associated difficulties such as poor shelter quality, risk of violence and crime in shelter communities, discrimination in aid, a lack of access to employment or other difficulties that can be associated with large scale population displacement. We have completed a thorough review of the literature on disaster population displacement. Research has been conducted on historic events to understand the types of negative impacts associated with population displacement and also the vulnerability of different groups to these impacts. We

  2. A synthesized biophysical and social vulnerability assessment for Taiwan

    Science.gov (United States)

    Lee, Yung-Jaan

    2017-11-01

    Taiwan, located in the Western Pacific, is a country that is one of the most vulnerable to disasters that are associated with the changing climate; it is located within the Ring of Fire, which is the most geologically active region in the world. The environmental and geological conditions in Taiwan are sensitive and vulnerable to such disasters. Owing to increasing urbanization in Taiwan, floods and climate-related disasters have taken an increasing toll on human lives. As global warming accelerates the rising of sea levels and increasing of the frequency of extreme weather events, disasters will continue to affect socioeconomic development and human conditions. Under such circumstances, researchers and policymakers alike must recognize the importance of providing useful knowledge concerning vulnerability, disaster recovery and resilience. Strategies for reducing vulnerability and climate-related disaster risks and for increasing resilience involve preparedness, mitigation and adaptation. In the last two decades, extreme climate events have caused severe flash floods, debris flows, landslides, and other disasters and have had negative effects of many sectors, including agriculture, infrastructure and health. Since climate change is expected to have a continued impact on socio-economic development, this work develops a vulnerability assessment framework that integrates both biophysical and social vulnerability and supports synthesized vulnerability analyses to identify vulnerable areas in Taiwan. Owing to its geographical, geological and climatic features, Taiwan is susceptible to earthquakes, typhoons, droughts and various induced disasters. Therefore, Taiwan has the urgent task of establishing a framework for assessing vulnerability as a planning and policy tool that can be used to identify not only the regions that require special attention but also hotspots in which efforts should be made to reduce vulnerability and the risk of climate-related disaster. To

  3. Free and Open Source Software for land degradation vulnerability assessment

    Science.gov (United States)

    Imbrenda, Vito; Calamita, Giuseppe; Coluzzi, Rosa; D'Emilio, Mariagrazia; Lanfredi, Maria Teresa; Perrone, Angela; Ragosta, Maria; Simoniello, Tiziana

    2013-04-01

    Nowadays the role of FOSS software in scientific research is becoming increasingly important. Besides the important issues of reduced costs for licences, legality and security there are many other reasons that make FOSS software attractive. Firstly, making the code opened is a warranty of quality permitting to thousands of developers around the world to check the code and fix bugs rather than rely on vendors claims. FOSS communities are usually enthusiastic about helping other users for solving problems and expand or customize software (flexibility). Most important for this study, the interoperability allows to combine the user-friendly QGIS with the powerful GRASS-GIS and the richness of statistical methods of R in order to process remote sensing data and to perform geo-statistical analysis in one only environment. This study is focused on the land degradation (i.e. the reduction in the capacity of the land to provide ecosystem goods and services and assure its functions) and in particular on the estimation of the vulnerability levels in order to suggest appropriate policy actions to reduce/halt land degradation impacts, using the above mentioned software. The area investigated is the Basilicata Region (Southern Italy) where large natural areas are mixed with anthropized areas. To identify different levels of vulnerability we adopted the Environmentally Sensitive Areas (ESAs) model, based on the combination of indicators related to soil, climate, vegetation and anthropic stress. Such indicators were estimated by using the following data-sources: - Basilicata Region Geoportal to assess soil vulnerability; - DESERTNET2 project to evaluate potential vegetation vulnerability and climate vulnerability; - NDVI-MODIS satellite time series (2000-2010) with 250m resolution, available as 16-day composite from the NASA LP DAAC to characterize the dynamic component of vegetation; - Agricultural Census data 2010, Corine Land Cover 2006 and morphological information to assess

  4. Developing Vulnerability Analysis Method for Climate Change Adaptation on Agropolitan Region in Malang District

    Science.gov (United States)

    Sugiarto, Y.; Perdinan; Atmaja, T.; Wibowo, A.

    2017-03-01

    Agriculture plays a strategic role in strengthening sustainable development. Based on agropolitan concept, the village becomes the center of economic activities by combining agriculture, agro-industry, agribusiness and tourism that able to create high value-added economy. The impact of climate change on agriculture and water resources may increase the pressure on agropolitan development. The assessment method is required to measure the vulnerability of area-based communities in the agropolitan to climate change impact. An analysis of agropolitan vulnerability was conducted in Malang district based on four aspects and considering the availability and distribution of water as the problem. The indicators used to measure was vulnerability component which consisted of sensitivity and adaptive capacity and exposure component. The studies earned 21 indicators derived from the 115 village-based data. The results of vulnerability assessments showed that most of the villages were categorised at a moderate level. Around 20% of 388 villages were categorized at high to very high level of vulnerability due to low level of agricultural economic. In agropolitan region within the sub-district of Poncokusumo, the vulnerability of the villages varies between very low to very high. The most villages were vulnerable due to lower adaptive capacity, eventhough the level of sensitivity and exposure of all villages were relatively similar. The existence of water resources was the biggest contributor to the high exposure of the villages in Malang district, while the reception of credit facilities and source of family income were among the indicators that lead to high sensitivity component.

  5. Assessment of intrinsic vulnerability of an alluvial aquifer under anthropogenic pressure: cross comparison of 4 index-based groundwater vulnerability mapping models within the Biguglia lagoon watershed (Corsica, France).

    Science.gov (United States)

    Jaunat, Jessy; Huneau, Frédéric; Garel, Emilie; Devos, Alain; Lejeune, Olivier

    2016-04-01

    KEYWORDS: Alluvial aquifer, Vulnerability mapping, Index-based methods, DRASTIC, SINTACS, SI, GOD The geographical position of the Biguglia lagoon watershed south of the Bastia city (80 000 inhabitants), lead to a highly vulnerable hydrosystem setting. This littoral plain is the unique territory available for the urbanisation and for the agriculture activities (cattle breeding). All the activities developed are likely to have a qualitative impact on water infiltration and therefore on groundwater, which is in hydraulic connection with the lagoon system. Beyond this ecological issue, groundwater of this watershed is intensively used as drinking water supply. It appears essential to control the long-term groundwater quality of the Biguglia plain which is the major economic zone of Corsica. Achievement of this issue requires the identification of the areas where the alluvial aquifer is mostly vulnerable to anthropogenic activities. The results given by 4 of the most popular index-based vulnerability mapping methods (DRASTIC, SI, SINTACS and GOD) are compared. The water table, net recharge, aquifer and soils properties, topography, vadose zone and land uses have been precisely mapped and numerically translated in GIS with a 25m precision. 4 final maps were finally compiled according to the weighting factors of each methods. Hydrochemical investigations were also carried out on 30 sampling points (major ions and anthropogenic tracers) to evaluate the effect of anthropogenic activities on groundwater quality and also to validate the results of the vulnerability mapping. A comparison between the parametric models shows a significant agreement between the DRASTIC, SINTACS and SI results (2% to 5% of the total area in very low vulnerability class, 10% to 13% in low vulnerability, 16% to 23% in medium vulnerability, 31% to 53% in high vulnerability and 14% to 23% in very high vulnerability). The two first methods are quite similar, which explains the proximity of the

  6. Dynamic Changes of Landscape Pattern and Vulnerability Analysis in Qingyi River Basin

    Science.gov (United States)

    Li, Ziwei; Xie, Chaoying; He, Xiaohui; Guo, Hengliang; Wang, Li

    2017-11-01

    Environmental vulnerability research is one of the core areas of global environmental change research. Over the past 10 years, ecologically fragile zones or transition zones had been significantly affected by environmental degradation and climate change and human activities. In this paper, we analyzed the spatial and temporal changes of landscape pattern and landscape vulnerability degree in Qingyi River Basin by calculating the landscape sensitivity index and landscape restoration degree index based on Landsat images of 2005, 2010 and 2015. The results showed that: (1) The top conversion area was farmland, woodland and grassland area decreased, city land and rural residential land increased fastest. (2) The fragility of the landscape pattern along the Qingyi River gradually increased between 2005 and 2015, the downstream area was influenced by the influence of human activities. (3) Landscape pattern changes and fragility are mainly affected by urbanization. These findings are helpful for understanding the evolution of landscape pattern as well as urban ecology, which both have significant implications for urban planning and minimize the potential environmental impacts of urbanization in Qingyi River Basin.

  7. Community vulnerability to health impacts of wildland fire smoke exposure

    Science.gov (United States)

    Identifying communities vulnerable to adverse health effects from exposure to wildfire smoke may help prepare responses, increase the resilience to smoke and improve public health outcomes during smoke days. We developed a Community Health-Vulnerability Index (CHVI) based on fact...

  8. Quantifying human vulnerability in rural areas: case study of Tutova Hills (Eastern Romania)

    Science.gov (United States)

    Stângă, I. C.; Grozavu, A.

    2012-06-01

    This paper aims to assess the vulnerability at regional level, the model and the proposed indicators being explicitly intended for an essentially rural region, in this case-Tutova Hills (Eastern Romania). Five categories of variables were taken into account to define the vulnerability components: rural habitat, demographic features, agriculture, environmental quality and emergency situations. For each one, five variables were analyzed and ranked based on the level of determination or subordination. In order to ensure the flexibility of the model and to avoid the criteria duplication in assessing vulnerability, only a single indicator of each category was retained and included in analysis: total number of inhabitants, dependency ratio, weight of arable land on slope categories, weight of land under forestry and road accessibility of villages. The selected indicators were mathematically processed in order to maximize their relevance and to unitary express the results in the spread 0-1. Also, values of each indicator were grouped into four classes, corresponding to the level of vulnerability: low, medium, high and very high. A general index was obtained through the integration of vulnerability factors in an equation based on the geometric mean. Spatial analysis was based on features of the MicroImages TNTmips 7.3. software, which allow the vulnerability mapping. This approach argues and states that vulnerability assessment through indicator-based methods can be made only according to the level and scale of analysis and related to natural or human conditions of a region.

  9. The stress-vulnerability model how does stress impact on mental illness at the level of the brain and what are the consequences?

    Science.gov (United States)

    Goh, Cindy; Agius, Mark

    2010-06-01

    The stress -vulnerability model (Zubin et al. 1977) is an extremely useful model for identifying and treating relapses of mental illness. We accept that human persons carry genetic and other predisposition to mental illness. However, the question arises as to how stress impacts on a person in order to cause mental illness to develop. Furthermore there arises the issue as to what other effects such stress has on the human body beyond the human brain. Our aim was to research and integrate the current literature in order to establish how stress impacts on the brain at the cellular level, and to establish whether there are other consequences for the human body brought about by the impact of stress on the human brain. Literature Search, using pubmed. We have identified much literature on how stress affects biological mechanisms within the brain, and how it relates to biological vulnerabilities carried by different individuals. We have identified communalities in how the interplay between stress and vulnerability occurs in different disease processes.

  10. Assessing vulnerability to drought: identifying underlying factors across Europe

    Science.gov (United States)

    Urquijo, Julia; Gonzalez Tánago, Itziar; Ballesteros, Mario; De Stefano, Lucia

    2015-04-01

    Drought is considered one of the most severe and damaging natural hazards in terms of people and sectors affected and associated losses. Drought is a normal and recurrent climatic phenomenon that occurs worldwide, although its spatial and temporal characteristics vary significantly among climates. In the case of Europe, in the last thirty years, the region has suffered several drought events that have caused estimated economic damages over a €100 billion and have affected almost 20% of its territory and population. In recent years, there has been a growing awareness among experts and authorities of the need to shift from a reactive crisis approach to a drought risk management approach, as well as of the importance of designing and implementing policies, strategies and plans at country and river basin levels to deal with drought. The identification of whom and what is vulnerable to drought is a central aspect of drought risk mitigation and planning and several authors agree that societal vulnerability often determines drought risk more than the actual precipitation shortfalls. The final aim of a drought vulnerability assessment is to identify the underlying sources of drought impact, in order to develop policy options that help to enhance coping capacity and therefore to prevent drought impact. This study identifies and maps factors underlying vulnerability to drought across Europe. The identification of factors influencing vulnerability starts from the analysis of past drought impacts in four European socioeconomic sectors. This analysis, along with an extensive literature review, led to the selection of vulnerability factors that are both relevant and adequate for the European context. Adopting the IPCC model, vulnerability factors were grouped to describe exposure, sensitivity and adaptive capacity. The aggregation of these components has resulted in the mapping of vulnerability to drought across Europe at NUTS02 level. Final results have been compared with

  11. Building vulnerability to hydro-geomorphic hazards: Estimating damage probability from qualitative vulnerability assessment using logistic regression

    Science.gov (United States)

    Ettinger, Susanne; Mounaud, Loïc; Magill, Christina; Yao-Lafourcade, Anne-Françoise; Thouret, Jean-Claude; Manville, Vern; Negulescu, Caterina; Zuccaro, Giulio; De Gregorio, Daniela; Nardone, Stefano; Uchuchoque, Juan Alexis Luque; Arguedas, Anita; Macedo, Luisa; Manrique Llerena, Nélida

    2016-10-01

    The focus of this study is an analysis of building vulnerability through investigating impacts from the 8 February 2013 flash flood event along the Avenida Venezuela channel in the city of Arequipa, Peru. On this day, 124.5 mm of rain fell within 3 h (monthly mean: 29.3 mm) triggering a flash flood that inundated at least 0.4 km2 of urban settlements along the channel, affecting more than 280 buildings, 23 of a total of 53 bridges (pedestrian, vehicle and railway), and leading to the partial collapse of sections of the main road, paralyzing central parts of the city for more than one week. This study assesses the aspects of building design and site specific environmental characteristics that render a building vulnerable by considering the example of a flash flood event in February 2013. A statistical methodology is developed that enables estimation of damage probability for buildings. The applied method uses observed inundation height as a hazard proxy in areas where more detailed hydrodynamic modeling data is not available. Building design and site-specific environmental conditions determine the physical vulnerability. The mathematical approach considers both physical vulnerability and hazard related parameters and helps to reduce uncertainty in the determination of descriptive parameters, parameter interdependency and respective contributions to damage. This study aims to (1) enable the estimation of damage probability for a certain hazard intensity, and (2) obtain data to visualize variations in damage susceptibility for buildings in flood prone areas. Data collection is based on a post-flood event field survey and the analysis of high (sub-metric) spatial resolution images (Pléiades 2012, 2013). An inventory of 30 city blocks was collated in a GIS database in order to estimate the physical vulnerability of buildings. As many as 1103 buildings were surveyed along the affected drainage and 898 buildings were included in the statistical analysis. Univariate and

  12. Spatial econometric model of natural disaster impacts on human migration in vulnerable regions of Mexico.

    Science.gov (United States)

    Saldaña-Zorrilla, Sergio O; Sandberg, Krister

    2009-10-01

    Mexico's vast human and environmental diversity offers an initial framework for comprehending some of the prevailing great disparities between rich and poor. Its socio-economic constructed vulnerability to climatic events serves to expand this understanding. Based on a spatial econometric model, this paper tests the contribution of natural disasters to stimulating the emigration process in vulnerable regions of Mexico. Besides coping and adaptive capacity, it assesses the effects of economic losses due to disasters as well as the adverse production and trade conditions of the 1990s on emigration rates in 2000 at the municipality level. Weather-related disasters were responsible for approximately 80 per cent of economic losses in Mexico between 1980 and 2005, mostly in the agricultural sector, which continues to dominate many parts of the country. It is dramatic that this sector generates around only four per cent of gross domestic product but provides a livelihood to about one-quarter of the national population. It is no wonder, therefore, that most emigration from this country arises in vulnerable rural areas.

  13. GIS Analysis of Flood Vulnerable Areas In Benin- Owena River Basin, Nigeria

    Directory of Open Access Journals (Sweden)

    Adebayo Oluwasegun Hezekiah

    2017-07-01

    Full Text Available The frequency and intensity of flood disasters have become serious issues in the national development process of Nigeria as flood disasters have caused serious environmental damages, loss of human lives and other heavy economic losses;  putting the issue of disaster reduction and risk management higher on the policy agenda of affected governments, multilateral agencies and NGOs. The starting point of concrete flood disaster mitigation efforts is to identify the areas with higher risk levels and fashion out appropriate preventive and response mechanisms. This research paper explored the potentials of Geographic Information System (GIS in data capture, processing and analysis in identifying flood-prone areas for the purpose of planning for disaster mitigation and preparedness, using Benin-Owena river basin of Nigeria as a unit of analysis. The data used in this study were obtained from FORMECU and were entered and use to develop a flood risk information system. Analysis and capability of the developed system was illustrated and shown graphically. The research showed that over one thousand settlements harbouring over ten million people located in the study area are at grave risk of flooding.   Key words: Flood, Risk, Vulnerability, Geographical Information System (GIS, River -Basin

  14. Diagnostics for liquid dispersion due to a high-speed impact with accident or vulnerability assessment application

    International Nuclear Information System (INIS)

    Jepsen, Richard A; O'Hern, Timothy; Demosthenous, Byron; Bystrom, Ed; Nissen, Mark; Romero, Edward; Yoon, Sam S

    2009-01-01

    The high-speed impact and subsequent dispersion of a large liquid slug is of interest for assessing vulnerability of structures when subjected to such an event. The Weber number associated with such liquid impacts is generally between 10 5 and 10 8 . Because of the experiment scale and destructive nature of these high-energy impacts, most traditional diagnostics are difficult to implement. Therefore, unique diagnostics were employed in several tests to gather information on impact force, spreading instability, slug break-up, ejection velocity, droplet deformation and spray characteristics. Measurement techniques discussed here include high-speed photometrics, particle image velocimetry (PIV), TrackEye particle analysis, speckle correlation, single-pass schlieren imaging, phase Doppler particle analyzer (PDPA) and load cell measurements as applied to large-scale, high-speed liquid impacts

  15. Two key concepts of the society-climate change interface: vulnerability and adaptation

    International Nuclear Information System (INIS)

    Magnan, Alexandre

    2010-06-01

    Vulnerability and adaptation are two inseparable concepts, each being dependent on the other. Although they are extremely sensitive to the contextual specificities of particular areas, vulnerability reduction and adaptation strategies can only be developed at the interface between different spatial and temporal scales. This leads us to assert that faced with a common threat - climate change -, different types of vulnerability and adaptation exist. The aim of this text is to provide an overview of two concepts that can no longer be ignored in discussions on climate change: vulnerability and adaptation. These are two pillars for analysing both the potential impact of climate change on societies and regions, and also their ability to live with these consequences. We will begin by describing how the interdependence of these two concepts explains the position(s) of present and future societies in the face of climate change impacts. We will then show that they share certain determinants that may themselves provide an appropriate framework for analysis. Finally, we will insist on the fact that these two concepts nevertheless remain extremely difficult to grasp, as they require a multi-scalar and multi-temporal approach to regions, which also explains why they are a relevant response to the challenges posed by climate change. The conclusion will call for wider discussion, reiterating that since their nature is fundamentally linked to the diversity and specificities of regions and societies, we must accept the idea that faced with the same threat - climate change - there are different types of vulnerability and adaptation. (author)

  16. Assessing vulnerability of giant pandas to climate change in the Qinling Mountains of China.

    Science.gov (United States)

    Li, Jia; Liu, Fang; Xue, Yadong; Zhang, Yu; Li, Diqiang

    2017-06-01

    Climate change might pose an additional threat to the already vulnerable giant panda ( Ailuropoda melanoleuca ). Effective conservation efforts require projections of vulnerability of the giant panda in facing climate change and proactive strategies to reduce emerging climate-related threats. We used the maximum entropy model to assess the vulnerability of giant panda to climate change in the Qinling Mountains of China. The results of modeling included the following findings: (1) the area of suitable habitat for giant pandas was projected to decrease by 281 km 2 from climate change by the 2050s; (2) the mean elevation of suitable habitat of giant panda was predicted to shift 30 m higher due to climate change over this period; (3) the network of nature reserves protect 61.73% of current suitable habitat for the species, and 59.23% of future suitable habitat; (4) current suitable habitat mainly located in Chenggu, Taibai, and Yangxian counties (with a total area of 987 km 2 ) was predicted to be vulnerable. Assessing the vulnerability of giant panda provided adaptive strategies for conservation programs and national park construction. We proposed adaptation strategies to ameliorate the predicted impacts of climate change on giant panda, including establishing and adjusting reserves, establishing habitat corridors, improving adaptive capacity to climate change, and strengthening monitoring of giant panda.

  17. Reducing vulnerability among pastoralists in Northern Kenya

    International Development Research Centre (IDRC) Digital Library (Canada)

    CCAA

    vulnerability among pastoralist communities in Mandera and Turkana in Northern Kenya, led by the Kenyan NGO ... to understand how people have experienced droughts and other ... norms and gender roles may make them more or less vulnerable, ... and see direct impacts on the resources they depend on for their.

  18. Vulnerability of marine habitats to the invasive green alga Caulerpa racemosa var. cylindracea within a marine protected area.

    Science.gov (United States)

    Katsanevakis, Stelios; Issaris, Yiannis; Poursanidis, Dimitris; Thessalou-Legaki, Maria

    2010-08-01

    The relative vulnerability of various habitat types to Caulerpa racemosa var. cylindracea invasion was investigated in the National Marine Park of Zakynthos (Ionian Sea, Greece). The density of C. racemosa fronds was modelled with generalized additive models for location, scale and shape (GAMLSS), based on an information theory approach. The species was present in as much as 33% of 748 randomly placed quadrats, which documents its aggressive establishment in the area. The probability of presence of the alga within randomly placed 20 x 20 cm quadrats was 83% on 'matte morte' (zones of fibrous remnants of a former Posidonia oceanica bed), 69% on rocky bottoms, 86% along the margins of P. oceanica meadows, 10% on sandy/muddy substrates, and 6% within P. oceanica meadows. The high frond density on 'matte morte' and rocky bottoms indicates their high vulnerability. The lowest frond density was observed within P. oceanica meadows. However, on the margins of P. oceanica meadows and within gaps in fragmented meadows relative high C. racemosa densities were observed. Such gaps within meadows represent spots of high vulnerability to C. racemosa invasion.

  19. DOE contractor vulnerability analysis: DPA or MAIT

    International Nuclear Information System (INIS)

    Six, D.E.; Nichols, D.H.

    1980-01-01

    Two vulnerability analysis techniques, Diversion Path Analysis (DPA) and Matrix Analysis of the Insider Threat (MAIT), were applied by EG and G Idaho, Inc. Safeguards and Security to the same item accountable SNM storage area at INEL. Technical and cost data for each methodology were collected and compared. A recommendation that MAIT be utilized for future vulnerability analyses of item accountable SNM storage and use areas operated by EG and G Idaho for DOE-ID resulted. Unclassified results of the two techniques and MAIT/DPA technical and cost comparisons will be presented which show that MAIT can be used for vulnerability analyses to comply with Department of Energy (DOE) requirements

  20. Assessment of prey vulnerability through analysis of wolf movements and kill sites.

    Science.gov (United States)

    Bergman, Eric J; Garrott, Robert A; Creel, Scott; Borkowski, John J; Jaffe, Rosemary; Watson, E G R

    2006-02-01

    Within predator-prey systems behavior can heavily influence spatial dynamics, and accordingly, the theoretical study of how spatial dynamics relate to stability within these systems has a rich history. However, our understanding of these behaviors in large mammalian systems is poorly developed. To address the relationship between predator selection patterns, prey density, and prey vulnerability, we quantified selection patterns for two fine-scale behaviors of a recovering wolf (Canis lupus) population in Yellowstone National Park, Wyoming, USA. Wolf spatial data were collected between November and May from 1998-1999 until 2001-2002. Over four winters, 244 aerial locations, 522 ground-based telemetry locations, 1287 km of movement data from snow tracking, and the locations of 279 wolf kill sites were recorded. There was evidence that elk (Cervus elaphus) and bison (Bison bison) densities had a weak effect on the sites where wolves traveled and made kills. Wolf movements showed a strong selection for geothermal areas, meadows, and areas near various types of habitat edges. Proximity to edge and habitat class also had a strong influence on the locations where elk were most vulnerable to predation. There was little evidence that wolf kill sites differed from the places where wolves traveled, indicating that elk vulnerability influenced where wolves selected to travel. Our results indicate that elk are more vulnerable to wolves under certain conditions and that wolves are capable of selecting for these conditions. As such, vulnerability plays a central role in predator-prey behavioral games and can potentially impact the systems to which they relate.

  1. GIS-based Spatial Multi-criteria Analysis: A vulnerability Assessment Model for the Protected Areas of Vietnam. GI_Forum|GI_Forum 2015 – Geospatial Minds for Society|

    OpenAIRE

    Nghiem, Quynh Huong

    2016-01-01

    The establishment and management of protected areas has become a universally accepted way to conserve biodiversity, and the wide range of goods and services they offer. Using the environmental vulnerability index (EVI), devised by the South Pacific Applied Geoscience Commission (SOPAC) and the United Nations Environment Program (UNEP) as the theoretical framework, a vulnerability assessment model was developed and used to assess the vulnerability of Bach Ma National Park. The model utilizes s...

  2. A novel method of sensitivity analysis testing by applying the DRASTIC and fuzzy optimization methods to assess groundwater vulnerability to pollution: the case of the Senegal River basin in Mali

    Science.gov (United States)

    Souleymane, Keita; Zhonghua, Tang

    2017-08-01

    Vulnerability to groundwater pollution in the Senegal River basin was studied by two different but complementary methods: the DRASTIC method (which evaluates the intrinsic vulnerability) and the fuzzy method (which assesses the specific vulnerability by taking into account the continuity of the parameters). The validation of this application has been tested by comparing the connection in groundwater and distribution of different established classes of vulnerabilities as well as the nitrate distribution in the study area. Three vulnerability classes (low, medium and high) have been identified by both the DRASTIC method and the fuzzy method (between which the normalized model was used). An integrated analysis reveals that high classes with 14.64 % (for the DRASTIC method), 21.68 % (for the normalized DRASTIC method) and 18.92 % (for the fuzzy method) are not the most dominant. In addition, a new method for sensitivity analysis was used to identify (and confirm) the main parameters which impact the vulnerability to pollution with fuzzy membership. The results showed that the vadose zone is the main parameter which impacts groundwater vulnerability to pollution while net recharge contributes least to pollution in the study area. It was also found that the fuzzy method better assesses the vulnerability to pollution with a coincidence rate of 81.13 % versus that of 77.35 % for the DRASTIC method. These results serve as a guide for policymakers to identify areas sensitive to pollution before such sites are used for socioeconomic infrastructures.

  3. Bayesian modeling to assess populated areas impacted by radiation from Fukushima

    Science.gov (United States)

    Hultquist, C.; Cervone, G.

    2017-12-01

    Citizen-led movements producing spatio-temporal big data are increasingly important sources of information about populations that are impacted by natural disasters. Citizen science can be used to fill gaps in disaster monitoring data, in addition to inferring human exposure and vulnerability to extreme environmental impacts. As a response to the 2011 release of radiation from Fukushima, Japan, the Safecast project began collecting open radiation data which grew to be a global dataset of over 70 million measurements to date. This dataset is spatially distributed primarily where humans are located and demonstrates abnormal patterns of population movements as a result of the disaster. Previous work has demonstrated that Safecast is highly correlated in comparison to government radiation observations. However, there is still a scientific need to understand the geostatistical variability of Safecast data and to assess how reliable the data are over space and time. The Bayesian hierarchical approach can be used to model the spatial distribution of datasets and flexibly integrate new flows of data without losing previous information. This enables an understanding of uncertainty in the spatio-temporal data to inform decision makers on areas of high levels of radiation where populations are located. Citizen science data can be scientifically evaluated and used as a critical source of information about populations that are impacted by a disaster.

  4. Coastal vulnerability: climate change and natural hazards perspectives

    Science.gov (United States)

    Romieu, E.; Vinchon, C.

    2009-04-01

    Introduction Studying coastal zones as a territorial concept (Integrated coastal zone management) is an essential issue for managers, as they have to consider many different topics (natural hazards, resources management, tourism, climate change…). The recent approach in terms of "coastal vulnerability" studies (since the 90's) is the main tool used nowadays to help them in evaluating impacts of natural hazards on coastal zones, specially considering climate change. This present communication aims to highlight the difficulties in integrating this concept in risk analysis as it is usually practiced in natural hazards sciences. 1) Coastal vulnerability as a recent issue The concept of coastal vulnerability mainly appears in the International panel on climate change works of 1992 (IPCC. 2001), where it is presented as essential for climate change adaptation. The concept has been defined by a common methodology which proposes the assessment of seven indicators, in regards to a sea level rise of 1m in 2100: people affected, people at risk, capital value at loss, land at loss, wetland at loss, potential adaptation costs, people at risk assuming this adaptation. Many national assessments have been implemented (Nicholls, et al. 1995) and a global assessment was proposed for three indicators (Nicholls, et al. 1999). The DINAS-Coast project reuses this methodology to produce the DIVA-tool for coastal managers (Vafeidis, et al. 2004). Besides, many other methodologies for national or regional coastal vulnerability assessments have been developed (review by (UNFCCC. 2008). The use of aggregated vulnerability indicators (including geomorphology, hydrodynamics, climate change…) is widespread: the USGS coastal vulnerability index is used worldwide and was completed by a social vulnerability index (Boruff, et al. 2005). Those index-based methods propose a vulnerability mapping which visualise indicators of erosion, submersion and/or socio economic sensibility in coastal zones

  5. Capacity assessment of concrete containment vessels subjected to aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Andonov, Anton, E-mail: anton.andonov@mottmac.com; Kostov, Marin; Iliev, Alexander

    2015-12-15

    Highlights: • An approach to assess the containment capacity to aircraft impact via fragility curves is proposed. • Momentum over Area was defined as most suitable reference parameter to describe the aircraft load. • The effect of the impact induced damages on the containment pressure capacity has been studied. • The studied containment shows no reduction of the pressure capacity for the investigated scenarios. • The effectiveness of innovative protective structure against aircraft impact has been evaluated. - Abstract: The paper describes the procedure and the results from the assessment of the vulnerability of a generic pre-stressed containment structure subjected to a large commercial aircraft impact. Impacts of Boeing 737, Boeing 767 and Boeing 747 have been considered. The containment vulnerability is expressed by fragility curves based on the results of a number of nonlinear dynamic analyses. Three reference parameters have been considered as impact intensity measure in the fragility curve definition: peak impact force (PIF), peak impact pressure (PIP) and Momentum over Area (MoA). Conclusions on the most suitable reference parameter as well on the vulnerability of such containment vessels are drawn. The influence of the aircraft impact induced damages on the containment ultimate pressure capacity is also assessed and some preliminary conclusions on this are drawn. The paper also addresses a conceptual design of a protective structure able to decrease the containment vulnerability and provide a preliminary assessment of the applicability of such concept.

  6. Capacity assessment of concrete containment vessels subjected to aircraft impact

    International Nuclear Information System (INIS)

    Andonov, Anton; Kostov, Marin; Iliev, Alexander

    2015-01-01

    Highlights: • An approach to assess the containment capacity to aircraft impact via fragility curves is proposed. • Momentum over Area was defined as most suitable reference parameter to describe the aircraft load. • The effect of the impact induced damages on the containment pressure capacity has been studied. • The studied containment shows no reduction of the pressure capacity for the investigated scenarios. • The effectiveness of innovative protective structure against aircraft impact has been evaluated. - Abstract: The paper describes the procedure and the results from the assessment of the vulnerability of a generic pre-stressed containment structure subjected to a large commercial aircraft impact. Impacts of Boeing 737, Boeing 767 and Boeing 747 have been considered. The containment vulnerability is expressed by fragility curves based on the results of a number of nonlinear dynamic analyses. Three reference parameters have been considered as impact intensity measure in the fragility curve definition: peak impact force (PIF), peak impact pressure (PIP) and Momentum over Area (MoA). Conclusions on the most suitable reference parameter as well on the vulnerability of such containment vessels are drawn. The influence of the aircraft impact induced damages on the containment ultimate pressure capacity is also assessed and some preliminary conclusions on this are drawn. The paper also addresses a conceptual design of a protective structure able to decrease the containment vulnerability and provide a preliminary assessment of the applicability of such concept.

  7. Nitrogen Cycling In Latin America and : Drivers, Impacts And Vulnerabilities

    Science.gov (United States)

    Ometto, J. P.; Bustamante, M.; Forti, M. C.; Peres, T.; Stein, A. F.; Jaramillo, V.; Perez, C.; Pinho, P. F.; Ascarrunz, N.; Austin, A.; Martinelli, L. A.

    2015-12-01

    Latin America is at a crossroads where a balance should be found between production of the major agricultural commodities, reasonable and planned urbanization and conservation of its natural ecosystems and associated goods and services. Most of the natural biological fixation of the globe occurs in forests of Latin America. On the other hand, Latin America has one of the highest rate of deforestation in the world, and one of the highest increases in the use of nitrogen fertilizers. A better understanding of the responses of the N cycle to human impacts will allow better conservation of biodiversity and natural resources, with an improvement in food security and more effective land use choices in biofuel development. Latin America is a unique region in multiple aspects, and particularly relevant for this proposal are the broad climatic gradient and economic patterns that include a diverse range of natural ecosystems and socio-economic development pathways. Additionally, the region is impaired by the lack of information on actual impacts of human activity on N cycling across this diverse range of ecosystems. Finally, the large expanse of tropical ecosystems and reservoirs of biodiversity juxtaposed with an intense economic incentive for development make our understanding of human impacts in this context particularly important for global change research in the region. An evaluation of current and predicted changes in climate and land use on nitrogen stocks and fluxes in the region what is being develop by the Nnet network (Nitrogen Cycling In Latin America: Drivers, Impacts And Vulnerabilities ). This presentation will bring the latest results of this integrative initiative in Latin America, focusing on the nitrogen budget associated to provision of ecosystem services and climate change.

  8. Vulnerable Genders, Vulnerable Loves

    DEFF Research Database (Denmark)

    Schleicher, Marianne

    2015-01-01

    This chapter analyses religious reflections on vulnerable genders and vulnerable loves from the Hebrew Bible to early Rabbinic literature. It is based on theories by inter alia Donna Haraway on complex identities, Turner and Maryanski on love as a prerequisite for survival, Michel Foucault...... on gathering knowledge and its often unpremeditated effect of recognition and inclusion, and Judith Butler on cultural intelligibility and subversion from within. With these theories as a departing point for the analysis, the chapter links the vulnerability of complex identities with the vulnerability...... of cultures which leads to the overall understanding that culture can accommodate complex identities associated with individual and cultural vulnerability as long as the overall survival of the culture is not threatened. This understanding questions the feasibility of the ethical position of thinkers...

  9. A Study of the Impact of Peak Demand on Increasing Vulnerability of Cascading Failures to Extreme Contingency Events

    Energy Technology Data Exchange (ETDEWEB)

    Vyakaranam, Bharat GNVSR; Vallem, Mallikarjuna R.; Nguyen, Tony B.; Samaan, Nader A.; Berscheid, Alan P.; Makarov, Yuri V.; Diao, Ruisheng

    2017-10-02

    The vulnerability of large power systems to cascading failures and major blackouts has become evident since the Northeast blackout in 1965. Based on analyses of the series of cascading blackouts in the past decade, the research community realized the urgent need to develop better methods, tools, and practices for performing cascading-outage analysis and for evaluating mitigations that are easily accessible by utility planning engineers. PNNL has developed the Dynamic Contingency Analysis Tool (DCAT) as an open-platform and publicly available methodology to help develop applications that aim to improve the capabilities of power planning engineers to assess the impact and likelihood of extreme contingencies and potential cascading events across their systems and interconnections. DCAT analysis will help identify potential vulnerabilities and allow study of mitigation solutions to reduce the risk of cascading outages in technically sound and effective ways. Using the DCAT capability, we examined the impacts of various load conditions to identify situations in which the power grid may encounter cascading outages that could lead to potential blackouts. This paper describes the usefulness of the DCAT tool and how it helps to understand potential impacts of load demand on cascading failures on the power system.

  10. Modeling groundwater vulnerability to pollution using Optimized DRASTIC model

    International Nuclear Information System (INIS)

    Mogaji, Kehinde Anthony; Lim, Hwee San; Abdullar, Khiruddin

    2014-01-01

    The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring the potential of the analytic hierarchy process (AHP) technique as a decision support model to optimize the CDM algorithm. The AHP technique was utilized to compute the normalized weights for the seven parameters of the CDM to generate an optimized DRASTIC model (ODM) algorithm. The DRASTIC parameters integrated with the ODM algorithm predicted which among the study areas is more likely to become contaminated as a result of activities at or near the land surface potential. Five vulnerability zones, namely: no vulnerable(NV), very low vulnerable (VLV), low vulnerable (LV), moderate vulnerable (MV) and high vulnerable (HV) were identified based on the vulnerability index values estimated with the ODM algorithm. Results show that more than 50% of the area belongs to both moderate and high vulnerable zones on the account of the spatial analysis of the produced ODM-based groundwater vulnerability prediction map (GVPM).The prediction accuracy of the ODM-based – GVPM with the groundwater pH and manganese (Mn) concentrations established correlation factors (CRs) result of 90 % and 86 % compared to the CRs result of 62 % and 50 % obtained for the validation accuracy of the CDM – based GVPM. The comparative results, indicated that the ODM-based produced GVPM is more reliable than the CDM – based produced GVPM in the study area. The study established the efficacy of AHP as a spatial decision support technique in enhancing environmental decision making with particular reference to future groundwater vulnerability assessment

  11. Mapping the Drivers of Climate Change Vulnerability for Australia's Threatened Species.

    Directory of Open Access Journals (Sweden)

    Jasmine R Lee

    Full Text Available Effective conservation management for climate adaptation rests on understanding the factors driving species' vulnerability in a spatially explicit manner so as to direct on-ground action. However, there have been only few attempts to map the spatial distribution of the factors driving vulnerability to climate change. Here we conduct a species-level assessment of climate change vulnerability for a sample of Australia's threatened species and map the distribution of species affected by each factor driving climate change vulnerability across the continent. Almost half of the threatened species assessed were considered vulnerable to the impacts of climate change: amphibians being the most vulnerable group, followed by plants, reptiles, mammals and birds. Species with more restricted distributions were more likely to show high climate change vulnerability than widespread species. The main factors driving climate change vulnerability were low genetic variation, dependence on a particular disturbance regime and reliance on a particular moisture regime or habitat. The geographic distribution of the species impacted by each driver varies markedly across the continent, for example species impacted by low genetic variation are prevalent across the human-dominated south-east of the country, while reliance on particular moisture regimes is prevalent across northern Australia. Our results show that actions to address climate adaptation will need to be spatially appropriate, and that in some regions a complex suite of factors driving climate change vulnerability will need to be addressed. Taxonomic and geographic variation in the factors driving climate change vulnerability highlights an urgent need for a spatial prioritisation of climate adaptation actions for threatened species.

  12. Vulnerability to Climate Change in Rural Nicaragua

    Science.gov (United States)

    Byrne, T. R.; Townshend, I.; Byrne, J. M.; McDaniel, S. A.

    2013-12-01

    While there is a growing recognition of the impact that climate change may have on human development, there has been a shift in focus from an impacts-led assessment approach towards a vulnerability-led assessment approach. This research operationalizes the IPCC's definition of vulnerability in a sub-national assessment to understand how different factors that shape vulnerability to climate change vary spatially across rural Nicaragua. The research utilizes the Food and Agriculture Organization of the United Nations' (FAO UN) CropWat model to evaluate how the annual yield of two of Nicaragua's staple crops may change under projected changes in temperature and precipitation. This analysis of agricultural sensitivity under exposure to climate change is then overlain with an indicator-based assessment of adaptive capacity in rural Nicaraguan farming households. Adaptive capacity was evaluated using household survey data from the 2001 National Household Survey on Living Standards Measurement, which was provided to us by the FAO UN. The result is a map representing current vulnerability to future climate change, and can serve as a basis for targeting policy interventions in rural Nicaragua.

  13. THE METHOD FOR IDENTIFYING THE MOST VULNERABLE AREAS CAUSED BY EXOGENOUS PROCESSES UNDER ARIDIFICATION/HUMIDIFICATION (BASED ON GIS AND RS

    Directory of Open Access Journals (Sweden)

    D. A. Chupina

    2017-01-01

    Full Text Available The paper presents the method of identifying the most vulnerable territories under exogenous processes caused by aridification/humidification. It is based on the assumption that some forms and types of relief increase resistance of terrestrial ecosystems to external influences, while other kinds of relief make them vulnerable. The relationship between landscape and moistening (ground and climatic is of great importance to plains which have groundwater close to the surface. We have used morphometric analysis to divide the territory into hydromorphic and automorphic landscapes. Hydromorphic territories are those that are affected by additional surface moistening and groundwater, while automorphic landscapes are less dependent on groundwater under normal atmospheric moisture. The territory is ranked according to the degree of vulnerability by expert evaluation method. The developed approach is based entirely on using GIS software (ArcGIS 10.2.1 and processing the DEM SRTM. As a result, two models of vulnerability of natural terrestrial ecosystems to exogenic processes on Baraba Plain (Western Siberia have been created for both aridification and humidification cases. The opportunity to estimate the vulnerability is the novel feature for these models of terrestrial ecosystems, in both regional and local scales. The results obtained confirm the existing ideas about the discrete mosaic character of changes in spatial landscape patterns in the area under consideration. For the southern part of Western Siberia where farming is risky the assessment of the potential degree of vulnerability for ecosystems under conditions of increasing climate aridity and extremes is relevant.

  14. Social Vulnerability to Natural Hazards in Urban Systems. An Application in Santo Domingo (Dominican Republic

    Directory of Open Access Journals (Sweden)

    Eleonora Giovene di Girasole

    2017-11-01

    Full Text Available The concept of risk has become increasingly complex, and has been used not only in relation to the natural features of a region, but also to its socio-economic context. In this conceptualization, the latter directly influences the capacity of a community to cope with, recover from, and adapt to natural hazards. Conceiving vulnerability as a measure of a socio-ecological system’s resilience, and at the same time, as a multidimensional variable that changes in space and time, makes the study of the different ways in which natural hazards impact on society all the more urgent. This is particularly true for developing countries, where risk related to natural hazards affects populations and areas that must deal with stress conditions, such as humanitarian, social and military emergencies. This article presents a methodology for the analysis of social vulnerability, defined and experimented in the context of the international cooperation project “Estudio de la amenaza sísmica y vulnerabilidad física del Gran Santo Domingo”. The methodology, implemented through the employment of a Geographic Information System, led to the elaboration of a “Social Vulnerability Index” and a “Social Vulnerability Map”. These seek to describe the current condition of vulnerability of the city of Santo Domingo de Guzmán (Distrito Nacional in the Dominican Republic (DR, and are used to define context-related vulnerability scenarios, as well as to indicate the adequate set of mitigation objectives and actions. The results highlight the importance of using social vulnerability study as the point of departure for defining seismic-risk mitigation policies, emergency management, and territorial planning in order to reduce the impacts of disasters.

  15. LOCAL SITE CONDITIONS INFLUENCING EARTHQUAKE INTENSITIES AND SECONDARY COLLATERAL IMPACTS IN THE SEA OF MARMARA REGION - Application of Standardized Remote Sensing and GIS-Methods in Detecting Potentially Vulnerable Areas to Earthquakes, Tsunamis and Other Hazards.

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2011-01-01

    Full Text Available The destructive earthquake that struck near the Gulf of Izmit along the North Anatolian fault in Northwest Turkey on August 17, 1999, not only generated a local tsunami that was destructive at Golcuk and other coastal cities in the eastern portion of the enclosed Sea of Marmara, but was also responsible for extensive damage from collateral hazards such as subsidence, landslides, ground liquefaction, soil amplifications, compaction and underwater slumping of unconsolidated sediments. This disaster brought attention in the need to identify in this highly populated region, local conditions that enhance earthquake intensities, tsunami run-up and other collateral disaster impacts. The focus of the present study is to illustrate briefly how standardized remote sensing techniques and GIS-methods can help detect areas that are potentially vulnerable, so that disaster mitigation strategies can be implemented more effectively. Apparently, local site conditions exacerbate earthquake intensities and collateral disaster destruction in the Marmara Sea region. However, using remote sensing data, the causal factors can be determined systematically. With proper evaluation of satellite imageries and digital topographic data, specific geomorphologic/topographic settings that enhance disaster impacts can be identified. With a systematic GIS approach - based on Digital Elevation Model (DEM data - geomorphometric parameters that influence the local site conditions can be determined. Digital elevation data, such as SRTM (Shuttle Radar Topography Mission, with 90m spatial resolution and ASTER-data with 30m resolution, interpolated up to 15 m is readily available. Areas with the steepest slopes can be identified from slope gradient maps. Areas with highest curvatures susceptible to landslides can be identified from curvature maps. Coastal areas below the 10 m elevation susceptible to tsunami inundation can be clearly delineated. Height level maps can also help locate

  16. The Climate Change Vulnerability and Risk Management Matrix for the Coastal Zone of The Gambia

    Directory of Open Access Journals (Sweden)

    Joshua Amuzu

    2018-02-01

    Full Text Available Global Climate Change is one of the dire challenges facing the international community today. Coastal zones are vulnerable to its impacts. An effective approach with long-term prospects in addressing climate change impacts is it’s mainstreaming into development agenda of sectoral policies. A comprehensive risk and vulnerability assessment is a pre-requisite to ensure that the right adaptive response is taken for effective integration into developmental plans. The objective of this study is to evaluate and prioritize risks, vulnerability and adaptation issues of current and anticipated impacts of climate change on the coastal zone of The Gambia. The study will also give a methodological contribution for assessing risks, vulnerability and adaptation from the sub-national to local levels. The relevance of this study will be to create a link between the sub-national and local levels in order to facilitate the integration and mainstreaming of climate change into sectoral and local policies for more climate-resilient communities. This will aid in the promotion of strategic investment of constrained developmental resources to actualize successfully dynamic coping strategies, elude ‘maladaptation’ and less compelling responsive measures. A purposive expert sampling technique was used in selecting respondents for the study. The findings of the study reveal that by the end of the 21st century, the climatic variables likely to have the highest impact on the coastal zone of The Gambia are ‘increased flood severity’ and ‘increased temperature’. The coastal zone of The Gambia showed a high vulnerability to these climate change variables. The suggested adaptive response in addressing the impacts of increased flood intensity in the study area includes; improving regulations for restricting agriculture and livestock grazing activities to improve land cover; strengthening of early-warning systems, among others. The suggested adaptive response in

  17. Urban Vulnerability in Bantul District, Indonesia—Towards Safer and Sustainable Development

    Directory of Open Access Journals (Sweden)

    R. Rijanta

    2012-08-01

    Full Text Available Assuring safer and sustainable development in seismic prone areas requires predictive measurements, i.e., hazard, vulnerability and risk assessment. This research aims to assess urban vulnerability due to seismic hazard through a risk based spatial plan. The idea is to indicate current and future potential losses due to specified hazards with given spatial and temporal units. Herein, urban vulnerability refers to the classic separation between social and physical vulnerability assessments. The research area covers six sub-districts in Bantul, Indonesia. It experienced 6.2 Mw earthquakes on May, 27th, 2006 and suffered a death toll of 5700, economic losses of up to 3.1 billion US$ and damage to nearly 80% of a 508 km2 area. The research area experienced the following regional issues: (1 seismic hazard; (2 rapid land conversion and (3 domination of low-income group. This research employs spatial multi criteria evaluations (SMCE for social vulnerability (SMCE-SV and for physical vulnerability (SMCE-PV. The research reveals that (1 SMCE-SV and SMCE-PV are empirically possible to indicate the urban vulnerability indices; and (2 integrating the urban vulnerability assessment into a spatial plan requires strategic, technical, substantial and procedural integration. In summary, without adequate knowledge and political support, any manifestation towards safer and sustainable development will remain meager and haphazard.

  18. Spatio-temporal earthquake risk assessment for the Lisbon Metropolitan Area - A contribution to improving standard methods of population exposure and vulnerability analysis

    Science.gov (United States)

    Freire, Sérgio; Aubrecht, Christoph

    2010-05-01

    The recent 7.0 M earthquake that caused severe damage and destruction in parts of Haiti struck close to 5 PM (local time), at a moment when many people were not in their residences, instead being in their workplaces, schools, or churches. Community vulnerability assessment to seismic hazard relying solely on the location and density of resident-based census population, as is commonly the case, would grossly misrepresent the real situation. In particular in the context of global (climate) change, risk analysis is a research field increasingly gaining in importance whereas risk is usually defined as a function of hazard probability and vulnerability. Assessment and mapping of human vulnerability has however generally been lagging behind hazard analysis efforts. Central to the concept of vulnerability is the issue of human exposure. Analysis of exposure is often spatially tied to administrative units or reference objects such as buildings, spanning scales from the regional level to local studies for small areas. Due to human activities and mobility, the spatial distribution of population is time-dependent, especially in metropolitan areas. Accurately estimating population exposure is a key component of catastrophe loss modeling, one element of effective risk analysis and emergency management. Therefore, accounting for the spatio-temporal dynamics of human vulnerability correlates with recent recommendations to improve vulnerability analyses. Earthquakes are the prototype for a major disaster, being low-probability, rapid-onset, high-consequence events. Lisbon, Portugal, is subject to a high risk of earthquake, which can strike at any day and time, as confirmed by modern history (e.g. December 2009). The recently-approved Special Emergency and Civil Protection Plan (PEERS) is based on a Seismic Intensity map, and only contemplates resident population from the census as proxy for human exposure. In the present work we map and analyze the spatio-temporal distribution of

  19. Assessing the Agricultural Vulnerability for India under Changing Climate

    Science.gov (United States)

    Sharma, Tarul; Vardhan Murari, Harsha; Karmakar, Subhankar; Ghosh, Subimal; Singh, Jitendra

    2016-04-01

    Global climate change has proven to show majorly negative impacts for the far future. These negative impacts adversely affect almost all the fields including agriculture, water resources, tourism, and marine ecosystem. Among these, the effects on agriculture are considered to be of prime importance since its regional impacts can directly affect the global food security. Under such lines, it becomes essential to understand how climate change directs agricultural production for a region along with its vulnerability. In India, rice and wheat are considered as major staple diet and hence understanding its production loss/gain due to regional vulnerability to climate change becomes necessary. Here, an attempt has been made to understand the agricultural vulnerability for rice and wheat, considering yield as a function of temperature and precipitation during growing period. In order to accomplish this objective, the ratio of actual to potential evapo-transpiration has been considered which serves as a reliable indicator; with more this ratio towards unity, less vulnerable will be the region. The current objective needs an integration of climatic, hydrological and agricultural parameters; that can be achieved by simulating a climate data driven hydrologic (Variable Infiltration Capacity, VIC) model and a crop (Decision Support System for Agrotechnology Transfer, DSSAT) model. The proposed framework is an attempt to derive a crop vulnerability map that can facilitate in strategizing adaption practices which can reduce the adverse impacts of climate change in future.

  20. Climate Change Vulnerability Analysis of Baluran National Park

    Directory of Open Access Journals (Sweden)

    Beny Harjadi

    2016-12-01

    Full Text Available Every ecosystem has a different level of susceptibility to environmental disturbances it receives, both from natural factors or anthropogenic disturbance. National Park (NP Baluran is one national park that has a representation of a complete ecosystem that includes upland forest ecosystems, lowland forests, coastal forests, mangroves, savanna and evergreen forest. The objective of this study is to get a formula calculation of vulnerability analysis of constant and dynamic factors. Baluran NP vulnerability assessment to climate change done by looking at the dynamic and fixed factors. Vulnerability remains a vulnerability factor to the condition of the original (control, whereas vulnerability is the vulnerability of the dynamic change factors which affected the condition from the outside. Constant Vulnerability (CV in  Baluran NP dominated resistant conditions (61%, meaning that the geomorphology and other fixed factors (slope and slope direction/aspect, then the condition in Baluran NP sufficiently resilient to climate change. Dynamic Vulnerability (DV is the vulnerability of an area or areas that change because of pressure from external factors. DV is influenced by climatic factors (WI = Wetness Index, soil (SBI = Soil Brightness Index, and vegetation (GI = Greenness Index. DV in  Baluran NP from 1999 to 2010 shifted from the original category of being (84.76% and shifted to the susceptible (59.88%.  The role of remote sensing for the analysis of raster digital system, while the geographic information system to display the results of cartographic maps.

  1. Assessing intrinsic and specific vulnerability models ability to indicate groundwater vulnerability to groups of similar pesticides: A comparative study

    Science.gov (United States)

    Douglas, Steven; Dixon, Barnali; Griffin, Dale W.

    2018-01-01

    With continued population growth and increasing use of fresh groundwater resources, protection of this valuable resource is critical. A cost effective means to assess risk of groundwater contamination potential will provide a useful tool to protect these resources. Integrating geospatial methods offers a means to quantify the risk of contaminant potential in cost effective and spatially explicit ways. This research was designed to compare the ability of intrinsic (DRASTIC) and specific (Attenuation Factor; AF) vulnerability models to indicate groundwater vulnerability areas by comparing model results to the presence of pesticides from groundwater sample datasets. A logistic regression was used to assess the relationship between the environmental variables and the presence or absence of pesticides within regions of varying vulnerability. According to the DRASTIC model, more than 20% of the study area is very highly vulnerable. Approximately 30% is very highly vulnerable according to the AF model. When groundwater concentrations of individual pesticides were compared to model predictions, the results were mixed. Model predictability improved when concentrations of the group of similar pesticides were compared to model results. Compared to the DRASTIC model, the AF model more accurately predicts the distribution of the number of contaminated wells within each vulnerability class.

  2. A study on eco-environmental vulnerability of mining cities: a case study of Panzhihua city of Sichuan province in China

    Science.gov (United States)

    Shao, Huaiyong; Xian, Wei; Yang, Wunian

    2009-07-01

    The large-scale and super-strength development of mineral resources in mining cities in long term has made great contributions to China's economic construction and development, but it has caused serious damage to the ecological environment even ecological imbalance at the same time because the neglect of the environmental impact even to the expense of the environment to some extent. In this study, according to the characteristics of mining cities, the scientific and practical eco-environmental vulnerability evaluation index system of mining cities had been established. Taking Panzhihua city of Sichuan province as an example, using remote sensing and GIS technology, applying various types of remote sensing image (TM, SPOT5, IKONOS) and Statistical data, the ecological environment evaluation data of mining cities was extracted effectively. For the non-linear relationship between the evaluation indexes and the degree of eco-environmental vulnerability in mining cities, this study innovative took the evaluation of eco-environmental vulnerability of the study area by using artificial neural network whose training used SCE-UA algorithm that well overcome the slow learning and difficult convergence of traditional neural network algorithm. The results of ecoenvironmental vulnerability evaluation of the study area were objective, reasonable and the credibility was high. The results showed that the area distribution of five eco-environmental vulnerability grade types was basically normal, and the overall ecological environment situation of Panzhihua city was in the middle level, the degree of eco-environmental vulnerability in the south was higher than the north, and mining activities were dominant factors to cause ecoenvironmental damage and eco-environmental Vulnerability. In this study, a comprehensive theory and technology system of regional eco-environmental vulnerability evaluation which included the establishment of eco-environmental vulnerability evaluation index

  3. Modelling homogeneous regions of social vulnerability to malaria in Rwanda.

    Science.gov (United States)

    Bizimana, Jean Pierre; Kienberger, Stefan; Hagenlocher, Michael; Twarabamenye, Emmanuel

    2016-03-31

    Despite the decline in malaria incidence due to intense interventions, potentials for malaria transmission persist in Rwanda. To eradicate malaria in Rwanda, strategies need to expand beyond approaches that focus solely on malaria epidemiology and also consider the socioeconomic, demographic and biological/disease-related factors that determine the vulnerability of potentially exposed populations. This paper analyses current levels of social vulnerability to malaria in Rwanda by integrating a set of weighted vulnerability indicators. The paper uses regionalisation techniques as a spatially explicit approach for delineating homogeneous regions of social vulnerability to malaria. This overcomes the limitations of administrative boundaries for modelling the trans-boundary social vulnerability to malaria. The utilised approach revealed high levels of social vulnerability to malaria in the highland areas of Rwanda, as well as in remote areas where populations are more susceptible. Susceptibility may be due to the populations' lacking the capacity to anticipate mosquito bites, or lacking resilience to cope with or recover from malaria infection. By highlighting the most influential indicators of social vulnerability to malaria, the applied approach indicates which vulnerability domains need to be addressed, and where appropriate interventions are most required. Interventions to improve the socioeconomic development in highly vulnerable areas could prove highly effective, and provide sustainable outcomes against malaria in Rwanda. This would ultimately increase the resilience of the population and their capacity to better anticipate, cope with, and recover from possible infection.

  4. Vulnerability in north- central Vietnam

    DEFF Research Database (Denmark)

    Casse, Thorkil; Milhøj, Anders; Nguyen, Thao Phuong

    2015-01-01

    This article examines changes in livelihood strategies in response to flooding. It does so on the basis of a household survey which was undertaken in three provinces in north central Vietnam. All households in the survey were regularly affected by flooding, but only poor households experience a l...... the impact of flooding in the provinces. The article ends by looking at the vulnerability-resilience debate concluding that the poorer households could enter a vulnerability loop, unless new strategies to cope with natural hazards are suggested....

  5. Legal physician-assisted dying in Oregon and the Netherlands: evidence concerning the impact on patients in "vulnerable" groups.

    Science.gov (United States)

    Battin, Margaret P; van der Heide, Agnes; Ganzini, Linda; van der Wal, Gerrit; Onwuteaka-Philipsen, Bregje D

    2007-10-01

    Debates over legalisation of physician-assisted suicide (PAS) or euthanasia often warn of a "slippery slope", predicting abuse of people in vulnerable groups. To assess this concern, the authors examined data from Oregon and the Netherlands, the two principal jurisdictions in which physician-assisted dying is legal and data have been collected over a substantial period. The data from Oregon (where PAS, now called death under the Oregon Death with Dignity Act, is legal) comprised all annual and cumulative Department of Human Services reports 1998-2006 and three independent studies; the data from the Netherlands (where both PAS and euthanasia are now legal) comprised all four government-commissioned nationwide studies of end-of-life decision making (1990, 1995, 2001 and 2005) and specialised studies. Evidence of any disproportionate impact on 10 groups of potentially vulnerable patients was sought. Rates of assisted dying in Oregon and in the Netherlands showed no evidence of heightened risk for the elderly, women, the uninsured (inapplicable in the Netherlands, where all are insured), people with low educational status, the poor, the physically disabled or chronically ill, minors, people with psychiatric illnesses including depression, or racial or ethnic minorities, compared with background populations. The only group with a heightened risk was people with AIDS. While extralegal cases were not the focus of this study, none have been uncovered in Oregon; among extralegal cases in the Netherlands, there was no evidence of higher rates in vulnerable groups. Where assisted dying is already legal, there is no current evidence for the claim that legalised PAS or euthanasia will have disproportionate impact on patients in vulnerable groups. Those who received physician-assisted dying in the jurisdictions studied appeared to enjoy comparative social, economic, educational, professional and other privileges.

  6. Tsunami vulnerability assessment in the western coastal belt in Sri Lanka

    Science.gov (United States)

    Ranagalage, M. M.

    2017-12-01

    26th December 2004 tsunami disaster has caused massive loss of life, damage to coastal infrastructures and disruption to economic activities in the coastal belt of Sri Lanka. Tsunami vulnerability assessment is a requirement for disaster risk and vulnerability reduction. It plays a major role in identifying the extent and level of vulnerabilities to disasters within the communities. There is a need for a clearer understanding of the disaster risk patterns and factors contributing to it in different parts of the coastal belt. The main objective of this study is to investigate tsunami vulnerability assessment of Moratuwa Municipal council area in Sri Lanka. We have selected Moratuwa area due to considering urbanization pattern and Tsunami hazards of the country. Different data sets such as one-meter resolution LiDAR data, orthophoto, population, housing data and road layer were employed in this study. We employed tsunami vulnerability model for 1796 housing units located there, for a tsunami scenario with a maximum run-up 8 meters. 86% of the total land area affected by the tsunami in 8 meters scenarios. Additionally, building population has been used to estimate population in different vulnerability levels. The result shows that 32% of the buildings have extremely critical vulnerability level, 46% have critical vulnerability level, 22% have high vulnerability level, and 1% have a moderate vulnerability. According to the population estimation model results, 18% reside building with extremely critical vulnerability, 43% with critical vulnerability, 36% with high vulnerability and 3% belong to moderate vulnerability level. The results of the study provide a clear picture of tsunami vulnerability. Outcomes of this analysis can use as a valuable tool for urban planners to assess the risk and extent of disaster risk reduction which could be achieved via suitable mitigation measures to manage the coastal belt in Sri Lanka.

  7. Ice-Wedge Polygon Formation Impacts Permafrost Carbon Storage and Vulnerability to Top-Down Thaw in Arctic Coastal Plain Soils

    Science.gov (United States)

    Jastrow, J. D.; Matamala, R.; Ping, C. L.; Vugteveen, T. W.; Lederhouse, J. S.; Michaelson, G. J.; Mishra, U.

    2017-12-01

    Ice-wedge polygons are ubiquitous, patterned ground features throughout Arctic coastal plains and river deltas. The progressive expansion of ice wedges influences polygon development and strongly affects cryoturbation and soil formation. Thus, we hypothesized that polygon type impacts the distribution and composition of soil organic carbon (C) stocks across the landscape and that such information can improve estimates of permafrost C stocks vulnerable to active layer thickening and increased decomposition due to climatic change. We quantified the distribution of soil C across entire polygon profiles (2-m depth) for three developmental types - flat-centered (FCP), low-centered (LCP), and high-centered (HCP) polygons (3 replicates of each) - formed on glaciomarine sediments within and near the Barrow Environmental Observatory at the northern tip of Alaska. Active layer thickness averaged 45 cm and did not vary among polygon types. Similarly, active layer C stocks were unaffected by polygon type, but permafrost C stocks increased from FCPs to LCPs to HCPs despite greater ice volumes in HCPs. These differences were due to a greater presence of organic horizons in the upper permafrost of LCPs and, especially, HCPs. On average, C stocks in polygon interiors were double those of troughs, on a square meter basis. However, HCPs were physically smaller than LCPs and FCPs, which affected estimates of C stocks at the landscape scale. Accounting for the number of polygons per unit area and the proportional distribution of troughs versus interiors, we estimated permafrost C stocks (2-m depth) increased from 259 Mg C ha-1 in FCPs to 366 Mg C ha-1 in HCPs. Active layer C stocks did not differ among polygon types and averaged 328 Mg C ha-1. We used our detailed polygon profiles to investigate the impact of active layer deepening as projected by Earth system models under future climate scenarios. Because HCPs have a greater proportion of upper permafrost C stocks in organic horizons

  8. Impacts, adaptation and vulnerability to global environmental change: challenges and pathways for an action-oriented research agenda for middle-income and low-income countries

    NARCIS (Netherlands)

    Lahsen, M.; Sanchez-Rodriguez, R.; Lankao, P.R.; Dube, P.; Leemans, R.; Gaffney, O.; Mirza, M.; Pinho, P.; Osman-Elasha, B.; Smith, M.S.

    2010-01-01

    The socio-economic impacts of environmental stresses associated with global environmental change depend to a large extent on how societies organize themselves. Research on climate-related societal impacts, vulnerability and adaptation is currently underdeveloped, prompting international global

  9. Projections of tsunami inundation area coupled with impacts of sea level rise in Banda Aceh, Indonesia

    Science.gov (United States)

    Tursina, Syamsidik, Kato, Shigeru

    2017-10-01

    In a long term, sea level rise is anticipated to give devastating effects on Banda Aceh, as one of the coastal cities in the northern tip of Sumatra. The growth of the population and buildings in the city has come to the stage where the coastal area is vulnerable to any coastal hazard. Some public facilities and settlements have been constructed and keep expanding in the future. According to TOPEX/POSEIDON satellite images, 7 mm/year the sea level has been risen between 1992 and 2015 in this area. It is estimated that in the next 100 years, there will be 700 mm additional sea level rise which will give a setback more over to a rather flat area around the coast. This research is aim at investigating the influence of sea level rise toward the tsunami inundation on the land area particularly the impacts on Banda Aceh city. Cornell Multigrid Coupled Tsunami Model (COMCOT) simulation numerically generated tsunami propagation. Topography and bathymetry data were collected from GEBCO and updated with the available nautical chart (DISHIDROS, JICA, and field measurements). Geological movement of the underwater fault was generated using Piatanesi and Lorito of 9.15 Mw 2004 multi-fault scenario. The inundation area produced by COMCOT revealed that the inundation area was expanded to several hundred meters from the shoreline. To investigate the impacts of tsunami wave on Banda Aceh, the inundation area were digitized and analyzed with Quantum GIS spatial tools. The Quantum GIS analyzed inundations area affected by the projected tsunami. It will give a new tsunami-prone coastal area map induced by sea level rise in 100 years.

  10. Sustainable management of agriculture activity on areas with soil vulnerability to compaction trough a developed decision support system (DSS)

    Science.gov (United States)

    Moretto, Johnny; Fantinato, Luciano; Rasera, Roberto

    2017-04-01

    One of the main environmental effects of agriculture is the negative impacts on areas with soil vulnerability to compaction and undersurface water derived from inputs and treatment distributions. A solution may represented from the "Precision Farming". Precision Farming refers to a management concept focusing on (near-real time) observation, measurement and responses to inter- and intra-variability in crops, fields and animals. Potential benefits may include increasing crop yields and animal performance, cost and labour reduction and optimisation of process inputs, all of which would increase profitability. At the same time, Precision Farming should increase work safety and reduce the environmental impacts of agriculture and farming practices, thus contributing to the sustainability of agricultural production. The concept has been made possible by the rapid development of ICT-based sensor technologies and procedures along with dedicated software that, in the case of arable farming, provides the link between spatially-distributed variables and appropriate farming practices such as tillage, seeding, fertilisation, herbicide and pesticide application, and harvesting. Much progress has been made in terms of technical solutions, but major steps are still required for the introduction of this approach over the common agricultural practices. There are currently a large number of sensors capable of collecting data for various applications (e.g. Index of vegetation vigor, soil moisture, Digital Elevation Models, meteorology, etc.). The resulting large volumes of data need to be standardised, processed and integrated using metadata analysis of spatial information, to generate useful input for decision-support systems. In this context, a user-friendly IT applications has been developed, for organizing and processing large volumes of data from different types of remote sensing and meteorological sensors, and for integrating these data into user-friendly farm management support

  11. Vulnerability-attention analysis for space-related activities

    Science.gov (United States)

    Ford, Donnie; Hays, Dan; Lee, Sung Yong; Wolfsberger, John

    1988-01-01

    Techniques for representing and analyzing trouble spots in structures and processes are discussed. Identification of vulnerable areas usually depends more on particular and often detailed knowledge than on algorithmic or mathematical procedures. In some cases, machine inference can facilitate the identification. The analysis scheme proposed first establishes the geometry of the process, then marks areas that are conditionally vulnerable. This provides a basis for advice on the kinds of human attention or machine sensing and control that can make the risks tolerable.

  12. Assessment of groundwater vulnerability using DRASTIC Model and GIS : A case study of two sub-districts in Banda Aceh city, Indonesia

    Science.gov (United States)

    Machdar, I.; Zulfikar, T.; Rinaldi, W.; Alfiansyah, Y.

    2018-03-01

    This present study assessed the groundwater vulnerability to protect aquifer in part of Banda Aceh City (the sub-district of Banda Raya and Lueng Bata), Indonesia. The study provides an additional tool for local planner and manager as for managing and protecting groundwater resources. The study area covers 1,164 ha and total population was estimated around 50,000 inhabitants. DRASTIC model in a GIS (Geographic Information System) environment was used in this study to generate vulnerability maps. The maps were created by applied seven criteria as standard in DRASTIC approach, i.e. depth to groundwater, recharge, aquifer type, soil properties, topography, impact of the vadose zone, and hydraulic conductivity. The vulnerability maps provides five categories of vulnerability, i.e. less, low, medium, high, and very high. It was found that the village areas, labelled with the high groundwater pollution potential, are mainly in the area of Lamlagang and the part of Geuce Kaye Jatoe and Geuce Komplek (Banda Raya sub-district) and the part of Batoh and Suka Damai (Lueng Bata sub-distric) This study prompts that the DRASTIC approach is helpful and efficient instrument for assessing groundwater vulnerability. The generated map can be an effective tool for local administrators in groundwater management as well.

  13. Exploring vulnerability and adaptation to climate change of communities in the forest zone of Cameroon.

    NARCIS (Netherlands)

    Bele, M.Y.; Tiani, A.M.; Somorin, O.A.; Sonwa, D.J.

    2013-01-01

    Understanding vulnerability to the impacts of global environmental change and identifying adaptation measures to cope with these impacts require localized investigations that can help find actual and exact answers to the questions about who and what are vulnerable, to what are they vulnerable, how

  14. Urban Vulnerability Assessment Using AHP

    Directory of Open Access Journals (Sweden)

    Alireza Rezaei

    2018-01-01

    Full Text Available Purpose. Physical expansion of urban areas and cities is of great importance nowadays. Irreparable damages will thus be caused by lack of proper planning against natural disasters. Crisis management will therefore guide through prevention, preparedness, disaster relief, and recovery by planning an appropriate program. Methodology. Principal processes of crisis management against earthquake in Iran were evaluated and discussed. Multicriteria earthquake crisis management was then proposed by means of Analytic Hierarchy Process (AHP. Vulnerability of 19 urban areas in Qazvin city was studied and analyzed as a case study. Three main criteria were considered as “physical dimensions and physical vulnerability texture,” “the amount of urban texture responsibility to aid after crisis,” and “possibility of city reversibility after the crisis.” These criteria were divided into 20 subcriteria which were prioritized by a questionnaire survey. Findings. “High population density,” “urban texture of old and repairable buildings,” “lack of relief and medical services,” “a few organic texture areas,” “sidewalks with less than 6 meters width in the region,” and “lack of open spaces in the area” were concluded to be the most important reasons causing high vulnerability of urban texture in Qazvin city.

  15. A method to the impact assessment of the returning grazing land to grassland project on regional eco-environmental vulnerability

    International Nuclear Information System (INIS)

    Shao, Huaiyong; Sun, Xiaofei; Wang, Haoxue; Zhang, Xiaoxue; Xiang, Zhiying; Tan, Rui; Chen, Xuanyi; Xian, Wei; Qi, Jiaguo

    2016-01-01

    The Chinese government has conducted the Returning Grazing Land to Grassland Project (RGLGP) across large portions of grasslands from western China since 2003. In order to explore and understand the impact in the grassland's eco-environment during the RGLGP, we utilized Projection Pursuit Model (PPM) and Geographic Information System (GIS) to develop a spatial assessment model to examine the ecological vulnerability of the grassland. Our results include five indications: (1) it is practical to apply the spatial PPM on ecological vulnerability assessment for the grassland. This methodology avoids creating an artificial hypothesis, thereby providing objective results that successfully execute a multi-index assessment process and analysis under non-linear systems in eco-environments; (2) the spatial PPM is not only capable of evaluating regional eco-environmental vulnerability in a quantitative way, but also can quantitatively demonstrate the degree of effect in each evaluation index for regional eco-environmental vulnerability; (3) the eco-environment of the Xianshui River Basin falls into the medium range level. The normalized difference vegetation index (NDVI) and land use cover and change (LUCC) crucially influence the Xianshui River Basin's eco-environmental vulnerability. Generally, in the Xianshui River Basin, regional eco-environmental conditions improved during 2000 and 2010. The RGLGP positively affected NDVI and LUCC structure, thereby promoting the enhancement of the regional eco-environment; (4) the Xianshui River Basin divides its ecological vulnerability across different levels; therefore our study investigates three ecological regions and proposes specific suggestions for each in order to assist in eco-environmental protection and rehabilitation; and lastly that (5) the spatial PPM established by this study has the potential to be applied on all types of grassland eco-environmental vulnerability assessments under the RGLGP and under the similar

  16. A method to the impact assessment of the returning grazing land to grassland project on regional eco-environmental vulnerability

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Huaiyong, E-mail: huaiyongshao@163.com [Key Laboratory of Geoscience Spatial Information Technology, Ministry of Land and Resources of China, Chengdu University of Technology, Chengdu 610059, Sichuan (China); Center for Global Change and Earth Observations, Michigan State University, East Lansing 48823, MI (United States); Sun, Xiaofei; Wang, Haoxue; Zhang, Xiaoxue [Key Laboratory of Geoscience Spatial Information Technology, Ministry of Land and Resources of China, Chengdu University of Technology, Chengdu 610059, Sichuan (China); Xiang, Zhiying [School of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang (China); Tan, Rui; Chen, Xuanyi [Key Laboratory of Geoscience Spatial Information Technology, Ministry of Land and Resources of China, Chengdu University of Technology, Chengdu 610059, Sichuan (China); Xian, Wei [College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan (China); Qi, Jiaguo [Center for Global Change and Earth Observations, Michigan State University, East Lansing 48823, MI (United States)

    2016-01-15

    The Chinese government has conducted the Returning Grazing Land to Grassland Project (RGLGP) across large portions of grasslands from western China since 2003. In order to explore and understand the impact in the grassland's eco-environment during the RGLGP, we utilized Projection Pursuit Model (PPM) and Geographic Information System (GIS) to develop a spatial assessment model to examine the ecological vulnerability of the grassland. Our results include five indications: (1) it is practical to apply the spatial PPM on ecological vulnerability assessment for the grassland. This methodology avoids creating an artificial hypothesis, thereby providing objective results that successfully execute a multi-index assessment process and analysis under non-linear systems in eco-environments; (2) the spatial PPM is not only capable of evaluating regional eco-environmental vulnerability in a quantitative way, but also can quantitatively demonstrate the degree of effect in each evaluation index for regional eco-environmental vulnerability; (3) the eco-environment of the Xianshui River Basin falls into the medium range level. The normalized difference vegetation index (NDVI) and land use cover and change (LUCC) crucially influence the Xianshui River Basin's eco-environmental vulnerability. Generally, in the Xianshui River Basin, regional eco-environmental conditions improved during 2000 and 2010. The RGLGP positively affected NDVI and LUCC structure, thereby promoting the enhancement of the regional eco-environment; (4) the Xianshui River Basin divides its ecological vulnerability across different levels; therefore our study investigates three ecological regions and proposes specific suggestions for each in order to assist in eco-environmental protection and rehabilitation; and lastly that (5) the spatial PPM established by this study has the potential to be applied on all types of grassland eco-environmental vulnerability assessments under the RGLGP and under the

  17. Large-scale experiments for the vulnerability analysis of buildings impacted and intruded by fluviatile torrential hazard processes

    Science.gov (United States)

    Sturm, Michael; Gems, Bernhard; Fuchs, Sven; Mazzorana, Bruno; Papathoma-Köhle, Maria; Aufleger, Markus

    2016-04-01

    In European mountain regions, losses due to torrential hazards are still considerable high despite the ongoing debate on an overall increasing or decreasing trend. Recent events in Austria severely revealed that due to technical and economic reasons, an overall protection of settlements in the alpine environment against torrential hazards is not feasible. On the side of the hazard process, events with unpredictable intensities may represent overload scenarios for existent protection structures in the torrent catchments. They bear a particular risk of significant losses in the living space. Although the importance of vulnerability is widely recognised, there is still a research gap concerning its assessment. Currently, potential losses at buildings due to torrential hazards and their comparison with reinstatement costs are determined by the use of empirical functions. Hence, relations of process intensities and the extent of losses, gathered by the analysis of historic hazard events and the information of object-specific restoration values, are used. This approach does not represent a physics-based and integral concept since relevant and often crucial processes, as the intrusion of the fluid-sediment-mixture into elements at risk, are not considered. Based on these findings, our work is targeted at extending these findings and models of present risk research in the context of an integral, more physics-based vulnerability analysis concept. Fluviatile torrential hazard processes and their impacts on the building envelope are experimentally modelled. Material intrusion processes are thereby explicitly considered. Dynamic impacts are gathered quantitatively and spatially distributed by the use of a large set of force transducers. The experimental tests are accomplished with artificial, vertical and skewed plates, including also openings for material intrusion. Further, the impacts on specific buildings within the test site of the work, the fan apex of the Schnannerbach

  18. Vulnerability and risk of deltaic social-ecological systems exposed to multiple hazards.

    Science.gov (United States)

    Hagenlocher, Michael; Renaud, Fabrice G; Haas, Susanne; Sebesvari, Zita

    2018-08-01

    Coastal river deltas are hotspots of global change impacts. Sustainable delta futures are increasingly threatened due to rising hazard exposure combined with high vulnerabilities of deltaic social-ecological systems. While the need for integrated multi-hazard approaches has been clearly articulated, studies on vulnerability and risk in deltas either focus on local case studies or single hazards and do not apply a social-ecological systems perspective. As a result, vulnerabilities and risks in areas with strong social and ecological coupling, such as coastal deltas, are not fully understood and the identification of risk reduction and adaptation strategies are often based on incomplete assumptions. To overcome these limitations, we propose an innovative modular indicator library-based approach for the assessment of multi-hazard risk of social-ecological systems across and within coastal deltas globally, and apply it to the Amazon, Ganges-Brahmaputra-Meghna (GBM), and Mekong deltas. Results show that multi-hazard risk is highest in the GBM delta and lowest in the Amazon delta. The analysis reveals major differences between social and environmental vulnerability across the three deltas, notably in the Mekong and the GBM deltas where environmental vulnerability is significantly higher than social vulnerability. Hotspots and drivers of risk vary spatially, thus calling for spatially targeted risk reduction and adaptation strategies within the deltas. Ecosystems have been identified as both an important element at risk as well as an entry point for risk reduction and adaptation strategies. Copyright © 2018. Published by Elsevier B.V.

  19. Methodological framework, analytical tool and database for the assessment of climate change impacts, adaptation and vulnerability in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Skougaard Kaspersen, P.; Halsnaes, K.; Gregg, J.; Drews, M.

    2012-12-15

    In this report we provide recommendations about how more consistent studies and data can be provided based on available modelling tools and data for integrated assessment of climate change risks and adaptation options. It is concluded that integrated assessments within this area requires the use of a wide range of data and models in order to cover the full chain of elements including climate modelling, impact, risks, costs, social issues, and decision making. As an outcome of this activity a comprehensive data and modelling tool named Danish Integrated Assessment System (DIAS) has been developed, this may be used by researchers within the field. DIAS has been implemented and tested in a case study on urban flooding caused by extreme precipitation in Aarhus, and this study highlights the usefulness of integrating data, models, and methods from several disciplines into a common framework. DIAS is an attempt to describe such a framework with regards to integrated analysis of climate impacts and adaptation. The final product of the DTU KFT project ''Tool for Vulnerability analysis'' is NOT a user friendly Climate Adaptation tool ready for various types of analysis that may directly be used by decision makers and consultant on their own. Rather developed methodology and collected/available data can serve as a starting point for case specific analyses. For this reason alone this work should very much be viewed as an attempt to coordinate research, data and models outputs between different research institutes from various disciplines. It is unquestionable that there is a future need to integrate information for areas not yet included, and it is very likely that such efforts will depend on research projects conducted in different climate change adaptation areas and sectors in Denmark. (Author)

  20. Social Protection and Vulnerability to Climate Shocks: a Panel Data ...

    African Journals Online (AJOL)

    ' autonomous adaptation by reducing vulnerability to climatic shocks. This paper examines the role of the Productive Safety Net Program in reducing vulnerability to climate related shocks and its impacts on autonomous adaptation strategies ...

  1. Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks

    International Nuclear Information System (INIS)

    Ouyang, Min

    2016-01-01

    Infrastructure systems are usually spatially distributed in a wide area and are subject to many types of hazards. For each type of hazards, modeling their direct impact on infrastructure components and analyzing their induced system-level vulnerability are important for identifying mitigation strategies. This paper mainly studies spatially localized attacks that a set of infrastructure components located within or crossing a circle shaped spatially localized area is subject to damage while other components do not directly fail. For this type of attacks, taking interdependent power and gas systems in Harris County, Texas, USA as an example, this paper proposes an approach to exactly identify critical locations in interdependent infrastructure systems and make pertinent vulnerability analysis. Results show that (a) infrastructure interdependencies and attack radius largely affect the position of critical locations; (b) spatially localized attacks cause less vulnerability than equivalent random failures; (c) in most values of attack radius critical locations identified by considering only node failures do not change when considering both node and edge failures in the attack area; (d) for many values of attack radius critical locations identified by topology-based model are also critical from the flow-based perspective. - Highlights: • We propose a method to identify critical locations in interdependent infrastructures. • Geographical interdependencies and attack radius largely affect critical locations. • Localized attacks cause less vulnerability than equivalent random failures. • Whether considering both node and edge failures affects critical locations. • Topology-based critical locations are also critical from flow-based perspective.

  2. [Rationale and knowledge for the universal implementation of sanitation in areas of social vulnerability].

    Science.gov (United States)

    Juliano, Ester Feche Guimarães de Arruda; Feuerwerker, Laura Camargo Macruz; Coutinho, Sonia Maria Viggiani; Malheiros, Tadeu Fabrício

    2012-11-01

    The adoption of principles of equality and universality stipulated in legislation for the sanitation sector requires discussions on innovation. The existing model was able to meet sanitary demands, but was unable to attend all areas causing disparities in vulnerable areas. The universal implementation of sanitation requires identification of the know-how that promotes it and analysis of the model adopted today to establish a new method. Analysis of how different viewpoints on the restructuring process is necessary for the definition of public policy, especially in health, and understanding its complexities and importance in confirming social practices and organizational designs. These are discussed to contribute to universal implementation of sanitation in urban areas by means of a review of the literature and practices in the industry. By way of conclusion, it is considered that accepting a particular concept or idea in sanitation means choosing some effective interventions in the network and on the lives of individual users, and implies a redefinition of the space in which it exercises control and management of sewerage networks, such that connected users are perceived as groups with different interests.

  3. Climatic vulnerability of the world’s freshwater and marine fishes

    Science.gov (United States)

    Comte, Lise; Olden, Julian D.

    2017-10-01

    Climate change is a mounting threat to biological diversity, compromising ecosystem structure and function, and undermining the delivery of essential services worldwide. As the magnitude and speed of climate change accelerates, greater understanding of the taxonomy and geography of climatic vulnerability is critical to guide effective conservation action. However, many uncertainties remain regarding the degree and variability of climatic risk within entire clades and across vast ecosystem boundaries. Here we integrate physiological estimates of thermal sensitivity for 2,960 ray-finned fishes with future climatic exposure, and demonstrate that global patterns of vulnerability differ substantially between freshwater and marine realms. Our results suggest that climatic vulnerability for freshwater faunas will be predominantly determined by elevated levels of climatic exposure predicted for the Northern Hemisphere, whereas marine faunas in the tropics will be the most at risk, reflecting their higher intrinsic sensitivity. Spatial overlap between areas of high physiological risk and high human impacts, together with evidence of low past rates of evolution in upper thermal tolerance, highlights the urgency of global conservation actions and policy initiatives if harmful climate effects on the world’s fishes are to be mitigated in the future.

  4. Rural Nevada and climate change: vulnerability, beliefs, and risk perception.

    Science.gov (United States)

    Safi, Ahmad Saleh; Smith, William James; Liu, Zhnongwei

    2012-06-01

    In this article, we present the results of a study investigating the influence of vulnerability to climate change as a function of physical vulnerability, sensitivity, and adaptive capacity on climate change risk perception. In 2008/2009, we surveyed Nevada ranchers and farmers to assess their climate change-related beliefs, and risk perceptions, political orientations, and socioeconomic characteristics. Ranchers' and farmers' sensitivity to climate change was measured through estimating the proportion of their household income originating from highly scarce water-dependent agriculture to the total income. Adaptive capacity was measured as a combination of the Social Status Index and the Poverty Index. Utilizing water availability and use, and population distribution GIS databases; we assessed water resource vulnerability in Nevada by zip code as an indicator of physical vulnerability to climate change. We performed correlation tests and multiple regression analyses to examine the impact of vulnerability and its three distinct components on risk perception. We find that vulnerability is not a significant determinant of risk perception. Physical vulnerability alone also does not impact risk perception. Both sensitivity and adaptive capacity increase risk perception. While age is not a significant determinant of it, gender plays an important role in shaping risk perception. Yet, general beliefs such as political orientations and climate change-specific beliefs such as believing in the anthropogenic causes of climate change and connecting the locally observed impacts (in this case drought) to climate change are the most prominent determinants of risk perception. © 2012 Society for Risk Analysis.

  5. Confined aquifer vulnerability induced by a pumping well in a leakage area

    Directory of Open Access Journals (Sweden)

    X. Meng

    2015-05-01

    Full Text Available Due to the pollution of shallow groundwater and the rapid development of society and economy which consume more freshwater, the exploitation of confined groundwater is steadily increasing in north China. Therefore, the rapid decline of the confined groundwater head increases the risk of confined aquifer pollution by leaky recharge from shallow aquifers. In this paper, a quantitative method for assessing confined aquifer vulnerability to contamination due to pumping has been developed. This method is based on the shallow and confined groundwater flow model and the advection and dispersion in the aquitard, including sorption. The cumulative time for the pollutant concentration at the top boundary of confined aquifer exceeding the maximum allowable level is defined as the confined aquifer vulnerability index, which can be obtained by numerically solving the solute transport equation. A hypothetical example is chosen as a case study to illustrate the whole process. The results indicate that the proposed method is a practical and reasonable assessment method of confined aquifer vulnerability.

  6. Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico.

    Science.gov (United States)

    Esperón-Rodríguez, Manuel; Bonifacio-Bautista, Martín; Barradas, Víctor L

    2016-03-01

    Climate change effects are expected to be more severe for some segments of society than others. In Mexico, climate variability associated with climate change has important socio-economic and environmental impacts. From the central mountainous region of eastern Veracruz, Mexico, we analyzed data of total annual precipitation and mean annual temperature from 26 meteorological stations (1922-2008) and from General Circulation Models. We developed climate change scenarios based on the observed trends with projections to 2025, 2050, 2075, and 2100, finding considerable local climate changes with reductions in precipitation of over 700 mm and increases in temperature of ~9°C for the year 2100. Deforested areas located at windward were considered more vulnerable, representing potential risk for natural environments, local communities, and the main crops cultivated (sugarcane, coffee, and corn). Socio-economic vulnerability is exacerbated in areas where temperature increases and precipitation decreases.

  7. SENSITIVITY ANALYSIS OF ORDERED WEIGHTED AVERAGING OPERATOR IN EARTHQUAKE VULNERABILITY ASSESSMENT

    Directory of Open Access Journals (Sweden)

    M. Moradi

    2013-09-01

    Full Text Available The main objective of this research is to find the extent to which the minimal variability Ordered Weighted Averaging (OWA model of seismic vulnerability assessment is sensitive to variation of optimism degree. There are a variety of models proposed for seismic vulnerability assessment. In order to examine the efficiency of seismic vulnerability assessment models, the stability of results could be analysed. Seismic vulnerability assessment is done to estimate the probable losses in the future earthquake. Multi-Criteria Decision Making (MCDM methods have been applied by a number of researchers to estimate the human, physical and financial losses in urban areas. The study area of this research is Tehran Metropolitan Area (TMA which has more than eight million inhabitants. In addition, this paper assumes that North Tehran Fault (NTF is activated and caused an earthquake in TMA. 1996 census data is used to extract the attribute values for six effective criteria in seismic vulnerability assessment. The results demonstrate that minimal variability OWA model of Seismic Loss Estimation (SLE is more stable where the aggregated seismic vulnerability degree has a lower value. Moreover, minimal variability OWA is very sensitive to optimism degree in northern areas of Tehran. A number of statistical units in southern areas of the city also indicate considerable sensitivity to optimism degree due to numerous non-standard buildings. In addition, the change of seismic vulnerability degree caused by variation of optimism degree does not exceed 25 % of the original value which means that the overall accuracy of the model is acceptable.

  8. Exploring the impact of the 2008 global food crisis on food security among vulnerable households in rural South Africa.

    Science.gov (United States)

    Nawrotzki, Raphael J; Robson, Kristin; Gutilla, Margaret J; Hunter, Lori M; Twine, Wayne; Norlund, Petra

    2014-04-01

    Recurring food crises endanger the livelihoods of millions of households in developing countries around the globe. Owing to the importance of this issue, we explore recent changes in food security between the years 2004 and 2010 in a rural district in Northeastern South Africa. Our study window spans the time of the 2008 global food crises and allows the investigation of its impacts on rural South African populations. Grounded in the sustainable livelihood framework, we examine differences in food security trajectories among vulnerable sub populations. A unique panel data set of 8,147 households, provided by the Agincourt Health and Demographic Surveillance System (Agincourt HDSS), allows us to employ a longitudinal multilevel modeling approach to estimate adjusted growth curves for the differential change in food security across time. We observe an overall improvement in food security that leveled off after 2008, most likely resulting from the global food crisis. In addition, we discover significant differences in food security trajectories for various sub populations. For example, female-headed households and those living in areas with better access to natural resources differentially improved their food security situation, compared to male-headed households and those households with lower levels of natural resource access. However, former Mozambican refugees witnessed a decline in food security. Therefore, poverty alleviation programs for the Agincourt region should work to improve the food security of vulnerable households, such as former Mozambican refugees.

  9. US command improvements and command vulnerability

    International Nuclear Information System (INIS)

    Ball, D.; Bethe, H.A.; Blair, B.G.; Bracken, P.; Carter, A.B.; Dickinson, H.; Garwin, R.L.; Holloway, D.; Kendall, H.W.

    1988-01-01

    In essence, the United States still relies on the strategic command system erected during the 1960s and 1970s, but as we have seen, this system suffers from a number of serious weaknesses. Among these the authors emphasized the vulnerability of vital communications even before any warheads impact directly on U.S. targets, as well as the systems; heavy reliance on a relatively small number of limited-endurance aircraft as command posts and radio relays. This paper focuses on the committed improvement program, assess its impact on command vulnerability, and offer suggestions for further command improvements designed to enhance crisis stability and to facilitate ware termination should deterrence fail. The reader should note that this chapter is rather more technical than the remainder of this book

  10. Angolan reality from the social vulnerability: experiences in rural communes de Belas

    Directory of Open Access Journals (Sweden)

    João Francisco-Cardoso

    2016-09-01

    Full Text Available Rural education and vulnerable groups associated with disadvantages which are schools of secondary education in Angolan communities, constitute the main elements addressed in this article within a social context characterized by the government's willingness to mitigate impacts of underdevelopment in rural areas. The Angolan government promotes programs to address the problems of social reintegration and advocates rebuilding the social, economic and administrative fabric, where education emerges as one of its most relevant policies.

  11. Development of groundwater pesticide exposure modeling scenarios for vulnerable spring and winter wheat-growing areas.

    Science.gov (United States)

    Padilla, Lauren; Winchell, Michael; Peranginangin, Natalia; Grant, Shanique

    2017-11-01

    Wheat crops and the major wheat-growing regions of the United States are not included in the 6 crop- and region-specific scenarios developed by the US Environmental Protection Agency (USEPA) for exposure modeling with the Pesticide Root Zone Model conceptualized for groundwater (PRZM-GW). The present work augments the current scenarios by defining appropriately vulnerable PRZM-GW scenarios for high-producing spring and winter wheat-growing regions that are appropriate for use in refined pesticide exposure assessments. Initial screening-level modeling was conducted for all wheat areas across the conterminous United States as defined by multiple years of the Cropland Data Layer land-use data set. Soil, weather, groundwater temperature, evaporation depth, and crop growth and management practices were characterized for each wheat area from publicly and nationally available data sets and converted to input parameters for PRZM. Approximately 150 000 unique combinations of weather, soil, and input parameters were simulated with PRZM for an herbicide applied for postemergence weed control in wheat. The resulting postbreakthrough average herbicide concentrations in a theoretical shallow aquifer were ranked to identify states with the largest regions of relatively vulnerable wheat areas. For these states, input parameters resulting in near 90 th percentile postbreakthrough average concentrations corresponding to significant wheat areas with shallow depth to groundwater formed the basis for 4 new spring wheat scenarios and 4 new winter wheat scenarios to be used in PRZM-GW simulations. Spring wheat scenarios were identified in North Dakota, Montana, Washington, and Texas. Winter wheat scenarios were identified in Oklahoma, Texas, Kansas, and Colorado. Compared to the USEPA's original 6 scenarios, postbreakthrough average herbicide concentrations in the new scenarios were lower than all but Florida Potato and Georgia Coastal Peanuts of the original scenarios and better

  12. Social vulnerability in the flood-prone anthropogenic landscape of Northern Italy

    Science.gov (United States)

    Roder, Giulia; Sofia, Giulia; Wu, Zhifeng; Tarolli, Paolo

    2017-04-01

    The practices for reducing the impacts of floods are becoming more and more advanced, centred to the communities and reached out to vulnerable populations. Vulnerable individuals are characterised by different social and economic attributes that can alter their capacity to cope with disaster events. The Social Vulnerability Index (Cutter et al. 2003) provides an empirical basis to compare social variances in different spatial scenarios and environmental threats. This methodology has been readjusted to the flood-prone anthropogenic landscape of Northern Italy adapted to the societal and historical construction of this area. In fact, the fifteen census variables used have been contextualised by examining the economic crisis, the modification of the labour force, the gendered life expectancy, the immigration among much more. At a general consideration, the unstable economic status, the population growth, age, and ethnicity are the major social attributes affecting the residents of the floodplain. The cluster analysis performed by the calculation of univariate LISA ratifies the spatial distribution of the index (Moran's I of 0.39 showing a positive correlation) finding the main high-high clusters in the Western and the outlet of the Po River basin. This basin includes one-third of the Italian population and this anthropogenic footprint has consistently modified the basin natural and geological environment (Carminati and Martinelli 2002) to the point that the hydraulic system will be dramatically altered in the future (Dankers and Feyen 2008). The spatial identification and the inclusion of vulnerable people into the risk management planning process have been widely discussed in the Sendai Framework for Disaster Risk Reduction. For this reason, we analysed the flood risk resulting from the combination of high vulnerable areas with the highest flood hazard scenario. The hazard map, finalised in May 2015, has been provided by ISPRA Institute with a three-class flood

  13. Vulnerability analysis of a PWR to an external event

    International Nuclear Information System (INIS)

    Aruety, S.; Ilberg, D.; Hertz, Y.

    1980-01-01

    The Vulnerability of a Nuclear Power Plant (NPP) to external events is affected by several factors such as: the degree of redundancy of the reactor systems, subsystems and components; the separation of systems provided in the general layout; the extent of the vulnerable area, i.e., the area which upon being affected by an external event will result in system failure; and the time required to repair or replace the systems, when allowed. The present study offers a methodology, using Probabilistic Safety Analysis, to evaluate the relative importance of the above parameters in reducing the vulnerability of reactor safety systems. Several safety systems of typical PWR's are analyzed as examples. It was found that the degree of redundancy and physical separation of the systems has the most prominent effect on the vulnerability of the NPP

  14. Assessment of groundwater vulnerability and sensitivity to pollution ...

    African Journals Online (AJOL)

    Groundwater pollution caused by human activity is a serious environmental problem in cities. Pollution vulnerability assessment of groundwater resources provides information on how to protect areas vulnerable to pollution. The present study is a detailed investigation of the potential for groundwater contamination through ...

  15. Methamphetamine use and dependence in vulnerable female populations.

    Science.gov (United States)

    Kittirattanapaiboon, Phunnapa; Srikosai, Soontaree; Wittayanookulluk, Apisak

    2017-07-01

    The study reviews recent publications on methamphetamine use and dependence women in term of their epidemic, physical health impact, psychosocial impacts, and also in the identified vulnerable issues. Studies of vulnerable populations of women are wide ranging and include sex workers, sexual minorities, homeless, psychiatric patients, suburban women, and pregnant women, in which amphetamine type stimulants (ATSs) are the most commonly reported illicit drug used among them. The prenatal exposure of ATS demonstrated the small for gestational age and low birth weight; however, more research is needed on long-term studies of methamphetamine-exposed children. Intimate partner violence (IPV) is commonly reported by female methamphetamine users as perpetrators and victims. However, statistics and gendered power dynamics suggest that methamphetamine-related IPV indicates a higher chance of femicide. Methamphetamine-abusing women often have unresolved childhood trauma and are introduced to ATS through families or partners. Vulnerable populations of women at risk of methamphetamine abuse and dependence. Impacts on their physical and mental health, IPV, and pregnancy have been reported continuing, which guide that empowering and holistic substance abuse are necessary for specific group.

  16. [Socioeconomic vulnerability and obesity in Chilean schoolchildren attending first grade: comparison between 2009 and 2013].

    Science.gov (United States)

    Herrera, Juan Carlos; Lira, Mariana; Kain, Juliana

    2017-12-01

    Although obesity is related to socioeconomic level, studies are inconclusive. To determine obesity risk according to socioeconomic vulnerability among Chilean children (1st grade) in 2009 and 2013 and assess its change during that period, by sex and geographical area. Cross-sectional study (N = 175,462 in 2009) and (N = 189,055 in 2013) which included: weight, height, rural / urban, gender and vulnerability obtained from JUNAEB's survey. BMI Z, % obesity and 3 categories of vulnerability (very vulnerable, moderate, non-vulnerable) were determined. For the descriptive analyses, we used t tests and for predictor variables (2 categories of vulnerability) and outcome (obesity) by sex and area, we used %2. Logistic regression models determined OR to develop obesity by. % obesity was 19.6% and 24.1% in 2009 and 2013, higher in boys. In urban and rural areas respectively, OR to develop obesity were: 0.85 (0.82-0.88) and 0.70 (0.64-0.75) in the most vulnerable students and 0.94 (0.91-0.97) and 0.81 (0.74-0.88) in those with moderate vulnerability in 2009 and 0.96 (0.93-0.98) and 0.89 (0.82-0.96) in the most vulnerable students and 0.99 (0.96-1.02) and 0.94 (0.86-1.02) in students with moderate vulnerability in 2013. The highest increase in obesity was observed among the most vulnerable group from rural areas (16, 6 to 24.3%). vulnerability. The non-vulnerable group had the highest % obesity. Although the most vulnerable students in rural areas had the lowest obesity risk in both years, the highest increase in obesity during the period, occurred in that group.

  17. Assessment of groundwater contamination risk in an agricultural area in north Italy

    Directory of Open Access Journals (Sweden)

    Georgios Bartzas

    2015-09-01

    Full Text Available In the present study a specific approach is followed, considering the Pesticide DRASTIC and Susceptibility index (SI methods and a GIS framework, to assess groundwater vulnerability in the agricultural area of Albenga, in north Italy. The results indicate “high” to “very high” vulnerability to groundwater contamination along the coastline and the middle part of the Albenga plain, for almost 49% and 56% of the total study area for Pesticide DRASTIC and SI methods, respectively. These sensitive regions depict characteristics such as shallow depth to groundwater, extensive deposits of alluvial silty clays, flat topography and intensive agricultural activities. The distribution of nitrates concentration in groundwater in the study area is slightly better correlated with the SI (0.728 compared to Pesticide DRASTIC (0.693, thus indicating that both methods are characterized by quite good accuracy. Sensitivity analysis was also performed to acknowledge statistical uncertainty in the estimation of each parameter used, assess its impact and thus identify the most critical parameters that require further investigation in the future. Depth to water is the parameter that exhibited the largest impact on the Pesticide DRASTIC vulnerability index followed by the impact of the vadose zone and topography. On the other hand, the SI method is more sensitive to the removal of the topography parameter followed by the aquifer media and the depth to water parameters.

  18. Water vulnerabilities for existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were

  19. Accounting for Landscape Heterogeneity Improves Spatial Predictions of Tree Vulnerability to Drought

    Science.gov (United States)

    Schwantes, A. M.; Parolari, A.; Swenson, J. J.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.; Pelak, N. F., III; Porporato, A. M.

    2017-12-01

    Globally, as climate change continues, forest vulnerability to droughts and heatwaves is increasing, but vulnerability differs regionally and locally depending on landscape position. However, most models used in forecasting forest responses to heatwaves and droughts do not incorporate relevant spatial processes. To improve predictions of spatial tree vulnerability, we employed a non-linear stochastic model of soil moisture dynamics across a landscape, accounting for spatial differences in aspect, topography, and soils. Our unique approach integrated plant hydraulics and landscape processes, incorporating effects from lateral redistribution of water using a topographic index and radiation and temperature differences attributable to aspect. Across a watershed in central Texas we modeled dynamic water stress for a dominant tree species, Juniperus ashei. We compared our results to a detailed spatial dataset of drought-impacted areas (>25% canopy loss) derived from remote sensing during the severe 2011 drought. We then projected future dynamic water stress through the 21st century using climate projections from 10 global climate models under two scenarios, and compared models with and without landscape heterogeneity. Within this watershed, 42% of J. ashei dominated systems were impacted by the 2011 drought. Modeled dynamic water stress tracked these spatial patterns of observed drought-impacted areas. Total accuracy increased from 59%, when accounting only for soil variability, to 73% when including lateral redistribution of water and radiation and temperature effects. Dynamic water stress was projected to increase through the 21st century, with only minimal buffering from the landscape. During the hotter and more severe droughts projected in the 21st century, up to 90% of the watershed crossed a dynamic water stress threshold associated with canopy loss in 2011. Favorable microsites may exist across a landscape where trees can persist; however, if future droughts are

  20. Measuring the consequences of wildfires in a Bayesian network with vulnerability and exposure indicators

    Science.gov (United States)

    Papakosta, Panagiota; Botzler, Sebastian; Krug, Kai; Straub, Daniel

    2013-04-01

    Mediterranean climate type areas have always been experiencing fire events. However, population growth and expansion of urban centers into wildland areas during the 20th century (expansion of wildland-urban interface) has increased the threat to humans and their activities. Life and property losses, damage on infrastructure and crops, and forest degradation are some of the damages caused by wildfires. Although fires repeatedly occur along the Mediterranean basin, not all areas have experienced severe consequences. The extent of damage by wildfires is influenced by several factors, such as population density, vegetation type, topography, weather conditions and social preparedness [1]. Wildfire consequence estimation by means of vulnerability and exposure indicators is an essential part of wildfire risk analysis. Vulnerability indicators express the conditions that increase the susceptibility of a site to the impact of wildfires and exposure indicators describe the elements at risk [2],[3]. Appropriate indicators to measure wildfire vulnerability and exposure can vary with scale and site. The consequences can be classified into economic, social, environmental and safety, and they can be tangible (human life losses, buildings damaged) or intangible (damage of cultural heritage site). As a consequence, a variety of approaches exist and there is a lack of generalized unified easy-to-implement methodologies. In this study we present a methodology for measuring consequences of wildfires in a Mediterranean area in the mesoscale (1 km² spatial resolution). Vulnerability and exposure indicators covering all consequence levels are identified and their interrelations are stressed. Variables such as building materials, roofing type, and average building values are included in the economic vulnerability level. Safety exposure is expressed by population density, demographic structure, street density and distance to closest fire station. Environmental vulnerability of protected

  1. Impact of performance interdependencies on structural vulnerability: A systems perspective of storm surge risk to coastal residential communities

    International Nuclear Information System (INIS)

    Hatzikyriakou, Adam; Lin, Ning

    2017-01-01

    Interaction between residential structures during natural hazards can lead to interdependencies in their performance. During storm surge, for example, structures can affect the performance of inland buildings by generating damaging waterborne debris or by beneficially dampening surge loads. Quantifying the impact of this interaction on structural vulnerability is critical for risk assessment and informed decision-making. In this study we present and implement two general modeling approaches for investigating such interdependencies. The first method is to condition the vulnerability of a structure on the performance of neighboring buildings using a Markov model. The second uses a marginal model to account for correlation between damage observations when estimating a structure's vulnerability to the hazard. Both approaches are implemented using a case study of an impacted coastal community during Hurricane Sandy (2012). Findings indicate that a structure's performance during storm surge is strongly dependent on the damage state of the structure immediately seaward. Furthermore, considering the correlated damage states of buildings increases statistical uncertainty when relating structural performance to hazard intensity. Motivated by these findings, we propose a more coordinated approach to coastal risk mitigation which considers the effects of interdependencies on insurance pricing, structural design, mitigation strategies and community resilience. - Highlights: • Interaction between residential structures leads to performance interdependencies. • Interdependencies during storm surge are due to debris and structural shielding. • Markov model treats interdependencies as an additional demand parameter. • Marginal model incorporates damage correlation into regression estimation. • System behavior should be considered in community risk and resilience.

  2. Identification and ranking of environmental threats with ecosystem vulnerability distributions.

    NARCIS (Netherlands)

    Zijp, Michiel C; Huijbregts, Mark A J; Schipper, Aafke M; Mulder, Christian; Posthuma, Leo

    2017-01-01

    Responses of ecosystems to human-induced stress vary in space and time, because both stressors and ecosystem vulnerabilities vary in space and time. Presently, ecosystem impact assessments mainly take into account variation in stressors, without considering variation in ecosystem vulnerability. We

  3. The French fire protection concept. Vulnerability analysis

    International Nuclear Information System (INIS)

    Kaercher, M.

    1998-01-01

    The French fire protection concept is based on a principle of three levels of defence in depth: fire prevention, fire containing and fire controlling. Fire prevention is based on arrangements which prevent the fire from starting or which make difficult for the fire to start. Fire containing is based on design measures so that the fire will have no impact on the safety of the installation. For fire controlling, equipment nad personnel are on duty in order to detect, to fight and to gain control over the fire as early as possible. The French fire protection concept gives priority to fire containing based on passive structural measures. All buildings containing safety equipment are divided into fire compartments (or fire areas) and fire cells (or fire zones). Basically, a compartment houses safety equipment belonging to one division (or train) so that the other division is always available to reach the plant safe shut down or to mitigate an accident. Because there is a large number of fire compartments and fire cells, deviations from the general principle can be observed. To this reason the RCC-I (Design and Construction Rules applicable for fire protection) requires to implement an assessment of the principle of division. This assessment is called vulnerability analysis. The vulnerability analysis is usually performed at the end of the project, before erection. It is also possible to perform a vulnerability analysis in an operating nuclear power plant in the scope of a fire safety upgrading programme. In the vulnerability analysis, the functional failure of all the equipment (except for those protected by a qualified fire barrier, designed or able to withstand the fire consequences) within the fire compartment or cell, where the fire breaks out, is postulated. The potential consequences for the plant safety are analysed

  4. Vulnerability

    Science.gov (United States)

    Taback, I.

    1979-01-01

    The discussion of vulnerability begins with a description of some of the electrical characteristics of fibers before definiting how vulnerability calculations are done. The vulnerability results secured to date are presented. The discussion touches on post exposure vulnerability. After a description of some shock hazard work now underway, the discussion leads into a description of the planned effort and some preliminary conclusions are presented.

  5. FUEL CASK IMPACT LIMITER VULNERABILITIES

    International Nuclear Information System (INIS)

    Leduc, D.; England, J.; Rothermel, R.

    2009-01-01

    Cylindrical fuel casks often have impact limiters surrounding just the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and maintaining lower peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) impacts. Large casks are often certified by analysis only because of the costs associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 Spent Fuel Containment Cask found problems with the design of the impact limiter attachment system. Assumptions in the original Safety Analysis for Packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs

  6. Indicator-based model to assess vulnerability to landslides in urban areas. Case study of Husi city (Eastern Romania)

    Science.gov (United States)

    Grozavu, Adrian; Ciprian Margarint, Mihai; Catalin Stanga, Iulian

    2013-04-01

    In the last three or four decades, vulnerability evolved from physical fragility meanings to a more complex concept, being a key element of risk assessment. In landslide risk assessment, there are a large series of studies regarding landslide hazard, but far fewer researches focusing on vulnerability measurement. Furthermore, there is still no unitary understanding on the methodological framework, neither any internationally agreed standard for landslide vulnerability measurements. The omnipresent common element is the existence of elements at risk, but while some approaches are limited to exposure, other focus on the degree of losses (human injuries, material damages and monetary losses, structural dysfunctions etc.). These losses are differently assessed using both absolute and relative values on qualitative or quantitative scales and they are differently integrated to provide a final vulnerability value. This study aims to assess vulnerability to landslides at local level using an indicator-based model applied to urban areas and tested for Husi town (Eastern Romania). The study region is characterized by permeable and impermeable alternating sedimentary rocks, monoclinal geological structure and hilly relief with impressive cuestas, continental temperate climate, and precipitation of about 500 mm/year, rising to 700 m and even more in some rainy years. The town is a middle size one (25000 inhabitants) and it had an ascending evolution in the last centuries, followed by an increasing human pressure on lands. Methodologically, the first step was to assess the landslide susceptibility and to identify in this way those regions within which any asset would be exposed to landslide hazards. Landslide susceptibility was assessed using the logistic regression approach, taking into account several quantitative and qualitative factors (elements of geology, morphometry, rainfall, land use etc.). The spatial background consisted in the Digital Elevation Model and all derived

  7. Vulnerability Assessment, Climate Change Impacts and Adaptation Measures in Slovenia

    Science.gov (United States)

    Cegnar, T.

    2010-09-01

    In relation to the priority tasks of the climate change measures, the Republic of Slovenia estimates that special attention needs to be devoted to the following sectors in general: - sectors that currently indicate a strong vulnerability for the current climate variability (for instance, agriculture), - sectors where the vulnerability for climate change is increased by current trends (for instance, urban development, use of space), - sectors where the adaptation time is the longest and the subsequent development changes are connected with the highest costs (for instance, use of space, infrastructural objects, forestry, urban development, building stock). Considering the views of Slovenia to the climate change problem in Europe and Slovenia, priority measures and emphasis on future adaptation to climate change, the Republic of Slovenia has especially exposed the following action areas: - sustainable and integrated management of water sources for water power production, prevention of floods, provision of water for the enrichment of low flow rates, and preservation of environmental function as well as provision of water for other needs; - sustainable management of forest ecosystems, adjusted to changes, for the provision of their environmental function as well as being a source of biomass, wood for products for the conservation of carbon, and carbon sinks; - spatial planning as one of the important preventive instruments for the adaptation to climate change through the processes of integral planning of spatial and urban development; - sustainable use and preservation of natural wealth and the preservation of biodiversity as well as ecosystem services with measures and policies that enable an enhanced resistance of ecosystems to climate change, and the role of biological diversity in integral adaptation measures; - informing and awareness on the consequences of climate change and adaptation possibilities. For years, the most endangered sectors have been agriculture and

  8. Groundwater vulnerability assessment: from overlay methods to statistical methods in the Lombardy Plain area

    Directory of Open Access Journals (Sweden)

    Stefania Stevenazzi

    2017-06-01

    Full Text Available Groundwater is among the most important freshwater resources. Worldwide, aquifers are experiencing an increasing threat of pollution from urbanization, industrial development, agricultural activities and mining enterprise. Thus, practical actions, strategies and solutions to protect groundwater from these anthropogenic sources are widely required. The most efficient tool, which helps supporting land use planning, while protecting groundwater from contamination, is represented by groundwater vulnerability assessment. Over the years, several methods assessing groundwater vulnerability have been developed: overlay and index methods, statistical and process-based methods. All methods are means to synthesize complex hydrogeological information into a unique document, which is a groundwater vulnerability map, useable by planners, decision and policy makers, geoscientists and the public. Although it is not possible to identify an approach which could be the best one for all situations, the final product should always be scientific defensible, meaningful and reliable. Nevertheless, various methods may produce very different results at any given site. Thus, reasons for similarities and differences need to be deeply investigated. This study demonstrates the reliability and flexibility of a spatial statistical method to assess groundwater vulnerability to contamination at a regional scale. The Lombardy Plain case study is particularly interesting for its long history of groundwater monitoring (quality and quantity, availability of hydrogeological data, and combined presence of various anthropogenic sources of contamination. Recent updates of the regional water protection plan have raised the necessity of realizing more flexible, reliable and accurate groundwater vulnerability maps. A comparison of groundwater vulnerability maps obtained through different approaches and developed in a time span of several years has demonstrated the relevance of the

  9. Assessment of human-natural system characteristics influencing global freshwater supply vulnerability

    Science.gov (United States)

    Padowski, Julie C.; Gorelick, Steven M.; Thompson, Barton H.; Rozelle, Scott; Fendorf, Scott

    2015-10-01

    Global freshwater vulnerability is a product of environmental and human dimensions, however, it is rarely assessed as such. Our approach identifies freshwater vulnerability using four broad categories: endowment, demand, infrastructure, and institutions, to capture impacts on natural and managed water systems within the coupled human-hydrologic environment. These categories are represented by 19 different endogenous and exogenous characteristics affecting water supply vulnerability. By evaluating 119 lower per capita income countries (Yemen and Djibouti nearly as vulnerable. Surprising similarities in vulnerability were also found among geographically disparate nations such as Vietnam, Sri Lanka, and Guatemala. Determining shared patterns of freshwater vulnerability provides insights into why water supply vulnerabilities are manifested in human-water systems at the national scale.

  10. Rural communities’ vulnerability to farmland poverty in varied ecological settings of northwest Ethiopia

    Directory of Open Access Journals (Sweden)

    Menberu Teshome

    2018-01-01

    Full Text Available Environmental and climate changes are among the serious threats to the world’s land resources in the 21st Century. Particularly, in the developing countries the impact inevitably goes as the continuing toll on agricultural production, human lives, and properties. It is also a driving force of poverty and impediment of overall economic development in many less developed nations, like Ethiopia. Therefore, this paper assesses the rural communities’ vulnerability to farmland poverty in different ecological settings of northwest Ethiopia. Data were collected from 525 randomly selected farming households using questionnaire. Meteorological data were collected from Global Weather Data for soil and water assessment tool (SWAT from 1979 to 2010. Rainfall and temperature trends were characterized using simple linear regression model. Rural communities’ vulnerability to farmland poverty was determined using livelihood vulnerability index (LVI. Indices were constructed using simple and weighted average approaches to measure farmlands’ exposure, sensitivity and adaptive capacity. Overall communities’ levels of vulnerability to farmlands poverty were found to be 0.76 in the lowland, 0.57 in the flat highland and 0.51 in the midland areas. In almost all indicators the lowland (Abay Valley is more vulnerable to farmland-related troubles as the biophysical and socio-economic contexts were found to be the worst there. Communities and government and non-government officials have observed significant negative impacts of drought and extreme weather events on farmlands, pasturelands with declining availability, productivity and quality of farmlands. This study suggests education and research interventions for enhancing community-based participatory integrated watershed management approach supported with best indigenous knowledge and farmers’ practices. Adaptation interventions should also consider local communities’ resource capacity (low

  11. Can social and educational markers predict risk for future health vulnerabilities? A population health approach for vulnerable young people on the Central Coast of NSW Australia

    OpenAIRE

    Bradfield, Sarah

    2018-01-01

    Introduction: Lifestyle choices, social and environmental factors impact 60% of health outcomes, while health system impacts 10%. Why then, do we continue to focus on health as the place for early intervention with young people?Young people become vulnerable through a combination of their circumstances, stages of development and barriers to participation. Vulnerabilities can be a combination of health (physical, mental health, substance use), educational (disengagement from school) and social...

  12. Vulnerability Situations associated with Flash Flood Casualties in the United States

    Science.gov (United States)

    Terti, G.; Ruin, I.; Anquetin, S.; Gourley, J. J.

    2015-12-01

    In the United States (U.S.) flash flooding (FF hereafter) is one of the leading cause of weather-related deaths. Because FF events can be distinguished from riverine floods by their fast response to rainfall and resulting impacts signature, analyzing FF-specific impact datasets seems a good way to identify the juxtaposition of social and physical circumstances leading to those impacts. This communication focuses on conceptual and methodological developments allowing testing hypotheses on FF-specific vulnerability factors through the analysis of human impact datasets. We hypothesize that the intersection of the spatio-temporal context of the FF phenomena with the distribution of people and their characteristics across space and time reveals various paths of vulnerability through the expression of different accidents' circumstances (i.e., vehicle-related, inside buildings, open-air, campsites). We argue that vulnerability and the resulting impacts vary dynamically throughout the day according to the location/situation under concern. In order to test FF-specific contextual vulnerability factors at the scale of the continental US, 1075 fatalities reported between 1996 and 2014 in the Storm Data publication of the U.S. National Climatic Data Center (NCDC) are analyzed to statistically explore the timing, the duration and the location of the FF event, and the age and gender of the victims and the circumstance (i.e. location/activity) of their death. In this objective, a re-classification of the individual fatality circumstances and a discretization of the time in qualitative time-steps are performed to obtain possible trends and patterns in the occurrence of fatalities in certain circumstances and time (e.g., day vs night). The findings highlight the importance of situation-specific assessment of FF fatalities to guide the development of FF-specific vulnerability and impacts prediction modeling. Such analysis can provide valuable knowledge when the National Weather

  13. The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB V1.0) Contribution to CMIP6

    Science.gov (United States)

    Ruane, Alex C.; Teichmann, Claas; Arnell, Nigel W.; Carter, Timothy R.; Ebi, Kristie L.; Frieler, Katja; Goodess, Clare M.; Hewitson, Bruce; Horton, Radley; Kovats, R. Sari; hide

    2016-01-01

    This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decisionmakers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs (observational datasets) and indicated user needs for the gridding and processing of model output.

  14. A GIS Approach to Identifying Socially and Medically Vulnerable Older Adult Populations in South Florida.

    Science.gov (United States)

    Hames, Elizabeth; Stoler, Justin; Emrich, Christopher T; Tewary, Sweta; Pandya, Naushira

    2017-11-10

    We define, map, and analyze geodemographic patterns of socially and medically vulnerable older adults within the tri-county region of South Florida. We apply principal components analysis (PCA) to a set of previously identified indicators of social and medical vulnerability at the census tract level. We create and map age-stratified vulnerability scores using a geographic information system (GIS), and use spatial analysis techniques to identify patterns and interactions between social and medical vulnerability. Key factors contributing to social vulnerability in areas with higher numbers of older adults include age, large household size, and Hispanic ethnicity. Medical vulnerability in these same areas is driven by disease burden, access to emergency cardiac services, availability of nursing home and hospice beds, access to home health care, and available mental health services. Age-dependent areas of social vulnerability emerge in Broward County, whereas age-dependent areas of medical vulnerability emerge in Palm Beach County. Older-adult social and medical vulnerability interact differently throughout the study area. Spatial analysis of older adult social and medical vulnerability using PCA and GIS can help identify age-dependent pockets of vulnerability that are not easily identifiable in a populationwide analysis; improve our understanding of the dynamic spatial organization of health care, health care needs, access to care, and outcomes; and ultimately serve as a tool for health care planning. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Vulnerability and Hydrogeologic Risk of the Guarani Aquifer System in the outcropping area located in Rivera Uruguay

    International Nuclear Information System (INIS)

    Montano, J.; Collazo, P.; Auge, M.

    2004-01-01

    The Project named Vulnerability and Hydrogeologic Risk of the Guarani Aquifer System in the outcropping area located in Rivera, Uruguay is developed by the Faculty of Science University of the Republic, together with the Faculty of Natural and Exact Sciences of the University of Buenos Aires, and it is financed by the Guarani Fund of Universities - Project for the Environmental Protection and Sustainable Development of the Guarani Aquifer System. This project has the aim of researching the characteristics and the hydrogeologic behavior of the Guarani Aquifer in the North portion of Uruguay, Department of Rivera (outcropping area). Moreover, to propose measures directed to their preservation through their sustainable use. The Hydrogeologic Study of the Guarani Aquifer System in this area will contribute not only with the best knowledge in its dynamics, but also helping to take measures in the water management and to avoid potential risks of contamination [es

  16. Vulnerability Assessment of Water Supply Systems: Status, Gaps and Opportunities

    Science.gov (United States)

    Wheater, H. S.

    2015-12-01

    Conventional frameworks for assessing the impacts of climate change on water resource systems use cascades of climate and hydrological models to provide 'top-down' projections of future water availability, but these are subject to high uncertainty and are model and scenario-specific. Hence there has been recent interest in 'bottom-up' frameworks, which aim to evaluate system vulnerability to change in the context of possible future climate and/or hydrological conditions. Such vulnerability assessments are generic, and can be combined with updated information from top-down assessments as they become available. While some vulnerability methods use hydrological models to estimate water availability, fully bottom-up schemes have recently been proposed that directly map system vulnerability as a function of feasible changes in water supply characteristics. These use stochastic algorithms, based on reconstruction or reshuffling methods, by which multiple water supply realizations can be generated under feasible ranges of change in water supply conditions. The paper reports recent successes, and points to areas of future improvement. Advances in stochastic modeling and optimization can address some technical limitations in flow reconstruction, while various data mining and system identification techniques can provide possibilities to better condition realizations for consistency with top-down scenarios. Finally, we show that probabilistic and Bayesian frameworks together can provide a potential basis to combine information obtained from fully bottom-up analyses with projections available from climate and/or hydrological models in a fully integrated risk assessment framework for deep uncertainty.

  17. Epidemiology of health and vulnerability among children orphaned and made vulnerable by HIV/AIDS in sub-Saharan Africa.

    Science.gov (United States)

    Andrews, Gail; Skinner, Donald; Zuma, Khangelani

    2006-04-01

    The HIV/AIDS epidemic in sub-Saharan Africa has already orphaned a generation of children, and it is projected that by 2010, 18 million African children under the age of 18 are likely to be orphans from this single cause (UNICEF, 2005, The state of the Worlds Children: Childhood under threat. New York: UNICEF). Results from a Kellogg funded OVC project (Skinner et al., 2004, Definition of orphaned and vulnerable children. Cape Town: HSRC) supported the construct that the loss of either or both parents would indicate a situation of likely vulnerability of children. A key problem in the literature on the impact of orphanhood on the well-being of children, families and communities, is that the focus of assertions and predictions is often on the negative impact on 'AIDS orphans', or households. There are hardly any studies that compare the experiences of orphans with non-orphans. This paper thus attempts to fill that gap. It uses epidemiological data to explore the epidemiology of health and vulnerability of children within the context of AIDS in sub-Saharan Africa. Because of data limitations, only the following aspects are examined: (i) orphan status; (ii) household structure (in particular, grandparent headedness and female-headedness); (iii) illness of parents; (iv) poverty; and (v) access to services, especially schooling, health, social services. While recognizing the limitations of the analysis, data presented in this paper indicates that orphans in sub-Saharan Africa are more vulnerable than non-orphans. The authors conclude with some suggestions for policy makers and programme implementers, highlighting the importance of focusing on interventions that will have maximum impact on the health and well-being of children.

  18. Collision and displacement vulnerability among marine birds of the California Current System associated with offshore wind energy infrastructure

    Science.gov (United States)

    Adams, Josh; Kelsey, Emily C.; Felis, Jonathan J.; Pereksta, David M.

    2016-10-27

    With growing climate change concerns and energy constraints, there is an increasing need for renewable energy sources within the United States and globally. Looking forward, offshore wind-energy infrastructure (OWEI) has the potential to produce a significant proportion of the power needed to reach our Nation’s renewable energy goal. Offshore wind-energy sites can capitalize open areas within Federal waters that have persistent, high winds with large energy production potential. Although there are few locations in the California Current System (CCS) where it would be acceptable to build pile-mounted wind turbines in waters less than 50 m deep, the development of technology able to support deep-water OWEI (>200 m depth) could enable wind-energy production in the CCS. As with all human-use of the marine environment, understanding the potential impacts of wind-energy infrastructure on the marine ecosystem is an integral part of offshore wind-energy research and planning. Herein, we present a comprehensive database to quantify marine bird vulnerability to potential OWEI in the CCS (see https://doi.org/10.5066/F79C6VJ0). These data were used to quantify marine bird vulnerabilities at the population level. For 81 marine bird species present in the CCS, we created three vulnerability indices: Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability. Population Vulnerability was used as a scaling factor to generate two comprehensive indicies: Population Collision Vulnerability (PCV) and Population Displacement Vulnerability (PDV). Within the CCS, pelicans, terns (Forster’s [Sterna forsteri], Caspian [Hydroprogne caspia], Elegant [Thalasseus elegans], and Least Tern [Sternula antillarum]), gulls (Western [Larus occidentalis] and Bonaparte’s Gull [Chroicocephalus philadelphia]), South Polar Skua (Stercorarius maccormicki), and Brandt’s Cormorant (Phalacrocorax penicillatus) had the greatest PCV scores. Brown Pelican (Pelicanus occidentalis

  19. Remote Sensing-based Models of Soil Vulnerability to Compaction and Erosion from Off-highway Vehicles

    Science.gov (United States)

    Villarreal, M. L.; Webb, R. H.; Norman, L.; Psillas, J.; Rosenberg, A.; Carmichael, S.; Petrakis, R.; Sparks, P.

    2014-12-01

    Intensive off-road vehicle use for immigration, smuggling, and security of the United States-Mexico border has prompted concerns about long-term human impacts on sensitive desert ecosystems. To help managers identify areas susceptible to soil erosion from vehicle disturbances, we developed a series of erosion potential models based on factors from the Revised Universal Soil Loss Equation (RUSLE), with particular focus on the management factor (P-factor) and vegetation cover (C-factor). To better express the vulnerability of soils to human disturbances, a soil compaction index (applied as the P-factor) was calculated as the difference in saturated hydrologic conductivity (Ks) between disturbed and undisturbed soils, which was then scaled up to remote sensing-based maps of vehicle tracks and digital soils maps. The C-factor was improved using a satellite-based vegetation index, which was better correlated with estimated ground cover (r2 = 0.77) than data derived from regional land cover maps (r2 = 0.06). RUSLE factors were normalized to give equal weight to all contributing factors, which provided more management-specific information on vulnerable areas where vehicle compaction of sensitive soils intersects with steep slopes and low vegetation cover. Resulting spatial data on vulnerability and erosion potential provide land managers with information to identify critically disturbed areas and potential restoration sites where off-road driving should be restricted to reduce further degradation.

  20. Identifying Population Vulnerable to Extreme Heat Events in San Jose, California.

    Science.gov (United States)

    Rivera, A. L.

    2016-12-01

    The extreme heat days not only make cities less comfortable for living but also they are associated with increased morbidity and mortality. Mapping studies have demonstrated spatial variability in heat vulnerability. A study conducted between 2000 and 2011 in New York City shows that deaths during heat waves was more likely to occur in black individuals, at home in census tracts which received greater public assistance. This map project intends to portray areas in San Jose California that are vulnerable to extreme heat events. The variables considered to build a vulnerability index are: land surface temperature, vegetated areas (NDVI), and people exposed to these area (population density).

  1. Climate Vulnerability and Human Migration in Global Perspective

    Science.gov (United States)

    Grecequet, Martina; DeWaard, Jack; Hellmann, Jessica J.; Abel, Guy J.

    2018-01-01

    The relationship between climate change and human migration is not homogenous and depends critically on the differential vulnerability of population and places. If places and populations are not vulnerable, or susceptible, to climate change, then the climate–migration relationship may not materialize. The key to understanding and, from a policy perspective, planning for whether and how climate change will impact future migration patterns is therefore knowledge of the link between climate vulnerability and migration. However, beyond specific case studies, little is known about this association in global perspective. We therefore provide a descriptive, country-level portrait of this relationship. We show that the negative association between climate vulnerability and international migration holds only for countries least vulnerable to climate change, which suggests the potential for trapped populations in more vulnerable countries. However, when analyzed separately by life supporting sector (food, water, health, ecosystem services, human habitat, and infrastructure) and vulnerability dimension (exposure, sensitivity, and adaptive capacity), we detect evidence of a relationship among more, but not the most, vulnerable countries. The bilateral (i.e., country-to-country) migration show that, on average, people move from countries of higher vulnerability to lower vulnerability, reducing global risk by 15%. This finding is consistent with the idea that migration is a climate adaptation strategy. Still, ~6% of bilateral migration is maladaptive with respect to climate change, with some movement toward countries with greater climate change vulnerability. PMID:29707262

  2. Climate Vulnerability and Human Migration in Global Perspective.

    Science.gov (United States)

    Grecequet, Martina; DeWaard, Jack; Hellmann, Jessica J; Abel, Guy J

    2017-05-01

    The relationship between climate change and human migration is not homogenous and depends critically on the differential vulnerability of population and places. If places and populations are not vulnerable, or susceptible, to climate change, then the climate-migration relationship may not materialize. The key to understanding and, from a policy perspective, planning for whether and how climate change will impact future migration patterns is therefore knowledge of the link between climate vulnerability and migration. However, beyond specific case studies, little is known about this association in global perspective. We therefore provide a descriptive, country-level portrait of this relationship. We show that the negative association between climate vulnerability and international migration holds only for countries least vulnerable to climate change, which suggests the potential for trapped populations in more vulnerable countries. However, when analyzed separately by life supporting sector (food, water, health, ecosystem services, human habitat, and infrastructure) and vulnerability dimension (exposure, sensitivity, and adaptive capacity), we detect evidence of a relationship among more, but not the most, vulnerable countries. The bilateral (i.e., country-to-country) migration show that, on average, people move from countries of higher vulnerability to lower vulnerability, reducing global risk by 15%. This finding is consistent with the idea that migration is a climate adaptation strategy. Still, ~6% of bilateral migration is maladaptive with respect to climate change, with some movement toward countries with greater climate change vulnerability.

  3. [Vulnerability of eco-economy in northern slope region of Tianshan Mountains].

    Science.gov (United States)

    Wu, Jian-zhai; Li, Bo; Zhang, Xin-shi; Zhao, Wen-wu; Jiang, Guang-hui

    2008-04-01

    Based on the theoretical meaning of vulnerability, a vulnerability assessment of eco-econom in fifteen counties in the northern slope region of Tianshan Mountains was conducted. The ecosystem services change to land use was regarded as the impact, and based on the fourteen indices from resource holding, society development, and economy development statistic data, the adaptive ability was evaluated by using the methods of analytic hierarchy process (AHP) and fuzzy synthetic evaluation. On the basis of assessment results of impact and adaptive capacity, the fifteen counties were divided into five classes under the assessment principles, and the district with higher-class number was of more vulnerability. The first class included Usu City and Changji City, the second class included Hutubi County, Miquan County, Fukang City, Jimsar County, Qitai County and Mori Kazak Autonomous County, the third class included Karamay City and Urumqi City, the fourth class included Kuitun City and Shawan County, and the fifth class included Jinghe County, Shihezi City and Manas County. The vulnerability reflected the level of eco-environment change and socioeconomic development, and the vulnerability assessment could be a good way to ensure the sustainable development. Aiming to decrease the vulnerability, various districts belonging to different class of vulnerability should establish relevant tactics according to the vulnerability factors to accelerate the region's sustainable development.

  4. The changing climate and human vulnerability in north-central Namibia

    Directory of Open Access Journals (Sweden)

    Margaret N. Angula

    2016-01-01

    Full Text Available North-central Namibia is more vulnerable to effects of climate change and variability. Combined effects of environmental degradation, social vulnerability to poverty and a changing climate will compromise subsistence farming in north-central Namibia (NCN. This will make subsistence and small-scale farmers in the region more vulnerable to projected changes in the climate system. Thus, the aim of this article was to examine factors contributing to subsistence farmers’ vulnerability to impacts of climate change. The article further discusses different aspects of human vulnerability and existing adaptation strategies in response to impacts of climate related disasters experienced over the past three to four decades in NCN. Qualitative and quantitative research approaches and methodology were employed to obtain information from subsistence farmers in north-central Namibia. The sociodemographic characteristics of Ohangwena, Oshana and Omusati Region reveals high levels of unemployment, high adult and elderly population and high dependency on agricultural livelihood system. These indicators help understand levels of household vulnerability. The study concludes that households interviewed revealed low levels of adaptive capacity due to exposure to climate risks and combined effects of social, political and cultural factors. This article provided an understanding that is required to inform the adaptation pathways relevant for NCN.

  5. Spatio-temporal changes of exposure and vulnerability to floods in China

    Directory of Open Access Journals (Sweden)

    Yan-Jun Wang

    2014-12-01

    Full Text Available A socio-economic data set on China's historical flood losses for the period 1984–2012 was compiled to analyze the exposed population, economy, and crop area as well as the vulnerabilities of the population and economy to floods. The results revealed that the exposed population was approximately 126 persons km−2 per year when taking China as a whole; in terms of the economy, potential losses due to floods were estimated to be approximately 1.49 million CN¥ km−2 and the crop area exposed to floods covered 153 million hm2 per year. China's total exposure to floods significantly increased over the analysis period. The areas that showed the higher exposure were mainly located along the east coast. The population's vulnerability to floods showed a significantly increasing trend, however, the economic vulnerability showed a decreasing trend. The populations and economies that were most vulnerable to floods were in Hunan, Anhui, Chongqing, Jiangxi, and Hubei provinces. The municipalities of Shanghai, Beijing, and Tianjin showed the lowest vulnerabilities to floods.

  6. Environmental Groundwater Vulnerability Assessment in Urban Water Mines (Porto, NW Portugal

    Directory of Open Access Journals (Sweden)

    Maria José Afonso

    2016-11-01

    Full Text Available A multidisciplinary approach was developed to estimate urban groundwater vulnerability to contamination combining hydrogeology, hydrogeochemistry, subterranean hydrogeotechnics, groundwater ecotoxicology and isotope tracers. Paranhos and Salgueiros spring waters in Porto City were used as a case study. Historical and current vulnerability scenarios were compared using hydrogeological GIS-based modelling. Potential contamination sources were mapped around the spring galleries. Most of these were point sources and their potential contamination load was moderate. The ecotoxicological assessment indicated a low acute toxicity potential. Groundwater radionuclides appeared to be mainly controlled by geological factors and biomineralisation. Vulnerability maps suggest that most of the area has a moderate to low vulnerability to contamination. However, some surface sources such as sewage systems cause contamination and contribute to increased vulnerability. This integrated approach was demonstrated to be adequate for a better knowledge of urban hydrogeological processes and their dynamics, and highlighted the importance of a vulnerability assessment in urban areas.

  7. Satellite monitoring of urban sprawl and assessment of its potential environmental impact in the Greater Toronto Area between 1985 and 2005.

    Science.gov (United States)

    Furberg, Dorothy; Ban, Yifang

    2012-12-01

    This research investigates urban sprawl in the Greater Toronto Area (GTA) between 1985 and 2005 and the nature of the resulting landscape fragmentation, particularly with regard to the Oak Ridges Moraine (ORM), an ecologically important area for the region. Six scenes of Landsat TM imagery were acquired in summer of 1985, 1995, and 2005. These images and their texture measures were classified into eight land cover classes with very satisfactory final overall accuracies (93-95 %). Analysis of the classifications indicated that urban areas grew by 20 % between 1985 and 1995 and by 15 % between 1995 and 2005. Landscape fragmentation due to spatio-temporal land cover changes was evaluated using urban compactness indicators and landscape metrics, and results from the latter were used to draw conclusions about probable environmental impact. The indicator results showed that urban proportions increased in nearly all areas outside of the metropolitan center, including on portions of the ORM. The landscape metrics reveal that low density urban areas increased significantly in the GTA between 1985 and 2005, mainly at the expense of agricultural land. The metric results indicate increased vulnerability and exposure to adverse effects for natural and semi-natural land cover through greater contrast and lowered connectivity. The degree of urban perimeter increased around most environmentally significant areas in the region. Changes like these negatively impact species and the regional water supply in the GTA. Further investigation into specific environmental impacts of urban expansion in the region and which areas on the ORM are most at risk is recommended.

  8. Constructing the Indicators of Assessing Human Vulnerability to Industrial Chemical Accidents: A Consensus-based Fuzzy Delphi and Fuzzy AHP Approach.

    Science.gov (United States)

    Fatemi, Farin; Ardalan, Ali; Aguirre, Benigno; Mansouri, Nabiollah; Mohammadfam, Iraj

    2017-04-10

    Industrial chemical accidents have been increased in developing countries. Assessing the human vulnerability in the residents of industrial areas is necessary for reducing the injuries and causalities of chemical hazards. The aim of this study was to explore the key indicators for the assessment of human vulnerability in the residents living near chemical installations. The indicators were established in the present study based on the Fuzzy Delphi method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP). The reliability of FDM and FAHP was calculated. The indicators of human vulnerability were explored in two sets of social and physical domains. Thirty-five relevant experts participated in this study during March-July 2015. According to experts, the top three indicators of human vulnerability according to the FDM and FAHP were vulnerable groups, population density, and awareness. Detailed sub-vulnerable groups and awareness were developed based on age, chronic or severe diseases, disability, first responders, and residents, respectively. Each indicator and sub-indicator was weighted and ranked and had an acceptable consistency ratio. The importance of social vulnerability indicators are about 7 times more than physical vulnerability indicators. Among the extracted indicators, vulnerable groups had the highest weight and the greatest impact on human vulnerability. however, further research is needed to investigate the applicability of established indicators and generalizability of the results to other studies. Fuzzy Delphi; Fuzzy AHP; Human vulnerability; Chemical hazards.

  9. Impact of Char Livelihood Program (CLP of Char land Dwellers around the Char Areas in Sirajgonj District of Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammad Anamul Haque

    2017-12-01

    Full Text Available In an attempt to address the impact of Char Livelihood Program (CLP of Char land dwellers, this study is carried out to examine the livelihood and income generation activities of the people of Bangala Char in Sirajgonj District, due to intervention of Char Livelihood Program (CLP by the DFID of United Kingdom (UK. The research question of the study was whether and to what extent the Char Livelihood Program (CLP brings any changes in the livelihood and income generation activities of the people of Bangala Char. Two areas have been studied, one area is under the intervention of the project (Bangala Char as program intervention area another is not under the program intervention (Sonatoni Char as control area. Both areas have been chosen of the vicinity of similar characteristics and geographical location for the ease of addressing the problems and analytical comparison. The study uses semi-structured questionnaire for household interview both for the program intervention and the control area as random sampling basis. This study a total of 96 households’ interviews conducted of the study areas among them 48 households from Bangala Char and 48 households from the Sonatoni Char (control area. Primary data collected from house hold respondent and secondary data were used from published and unpublished sources. Four variables are access to land, income and assets , food security and vulnerability identified and the analysis shows that access to land resources among the char dwellers has established legal ownership and entitlement of land and resolve the crisis of permanent settlement which bring change in livelihood in terms of access to land resources to some extent. The islands of char dwellers are in general disadvantaged with respect to their mainland counterparts in terms of physical isolation and vulnerability to flooding and erosion have created seasonal migration and higher dependency on traditional money lenders for accessing credit supply

  10. Drought vulnerability assesssment and mapping in Morocco

    Science.gov (United States)

    Imani, Yasmina; Lahlou, Ouiam; Bennasser Alaoui, Si; Naumann, Gustavo; Barbosa, Paulo; Vogt, Juergen

    2014-05-01

    Drought vulnerability assessment and mapping in Morocco Authors: Yasmina Imani 1, Ouiam Lahlou 1, Si Bennasser Alaoui 1 Paulo Barbosa 2, Jurgen Vogt 2, Gustavo Naumann 2 1: Institut Agronomique et Vétérinaire Hassan II (IAV Hassan II), Rabat Morocco. 2: European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Ispra, Italy. In Morocco, nearly 50% of the population lives in rural areas. They are mostly small subsistent farmers whose production depends almost entirely on rainfall. They are therefore very sensitive to drought episodes that may dramatically affect their incomes. Although, as a consequence of the increasing frequency, length and severity of drought episodes in the late 90's, the Moroccan government decided, to move on from a crisis to a risk management approach, drought management remains in practice mainly reactive and often ineffective. The lack of effectiveness of public policy is in part a consequence of the poor understanding of drought vulnerability at the rural community level, which prevents the development of efficient mitigation actions and adaptation strategies, tailored to the needs and specificities of each rural community. Thus, the aim of this study is to assess and map drought vulnerability at the rural commune level in the Oum Er-Rbia basin which is a very heterogeneous basin, showing a big variability of climates, landscapes, cropping systems and social habits. Agricultural data collected from the provincial and local administrations of Agriculture and socio-economic data from the National Department of Statistics were used to compute a composite vulnerability index (DVI) integrating four different components: (i) the renewable natural capacity, (ii) the economic capacity, (iii) human and civic resources, and (iv) infrastructure and technology. The drought vulnerability maps that were derived from the computation of the DVI shows that except very specific areas, most of the Oum er Rbia

  11. A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers.

    Science.gov (United States)

    Kazakis, Nerantzis; Spiliotis, Mike; Voudouris, Konstantinos; Pliakas, Fotios-Konstantinos; Papadopoulos, Basil

    2018-04-15

    Groundwater constitutes the primary source of fresh water for >1.2 billion people living in coastal zones. However, the threat of seawater intrusion is widespread in coastal aquifers mainly due to overexploitation of groundwater. In the present study, a modified fuzzy multicriteria categorization into non-ordered categories method was developed in order to modify the standard GALDIT method and assess seawater intrusion vulnerability in a coastal aquifer of northern Greece. The method is based on six parameters: groundwater occurrence, aquifer hydraulic conductivity, groundwater level, distance from the shore, impact of the existing status of seawater intrusion, and aquifer thickness. Initially, the original method was applied and revealed a zone of high vulnerability running parallel to the coastline and covering an area of 8.6km 2 . The modified GALDIT-F method achieved higher discretization of vulnerability zones which is essential to build a rational management plan to prevent seawater intrusion. The GALDIT-F approach also distinguished an area of the aquifer that is influenced by geothermal fluids. In total, twenty-five categories were produced corresponding to different vulnerability degrees according to the initial method (High, Moderate, Low) as well as the area influenced by geothermal fluids. Finally, a road map was developed in order to adapt management strategies to GALDIT-F categories and prevent and mitigate seawater intrusion. The proposed management strategies of the coastal aquifer include managed aquifer recharge (MAR) implementation, reallocation of existing wells, optimization of pumping rates during the hydrological year, and a detailed monitoring plan. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evaluating the impact of climate on forest vulnerability to fires

    Directory of Open Access Journals (Sweden)

    Živanović Stanimir

    2015-01-01

    Full Text Available The assessment of the threat of forest fires usually includes identification of factors and quantification of risk levels. This work presents an approach to modeling the risk of forest fires caused by climate impacts. Climate Impact Assessment is based on the significance of air temperature, rainfall and relative air humidity. The analysis is based on the meteorological data obtained from 26 meteorological stations in Serbia for the period from 1981 to 2010. The analysis is used to predict the areas where the expected rate of fire is high. The method is simple; it describes the key variables for the risk under climate impacts and the spatial pattern of risk. It is suitable for operational use by authorized services. The risk of forest fire is classified as negligible, small, medium and large. The database and analysis results were used to build the matrix of risk assessment of forest fires in Serbia. A great part of the territory of Serbia is relatively highly sensitive to forest fires. The lowest consequences of climate impacts are visible in the areas of Kopaonik and Zlatibor. In Serbia, there is no place where there is a negligible risk of fire. Further research, especially in terms of the relationship between climate change and the adaptive capacity of existing forest ecosystems, species and existing genotypes, is urgently needed in Serbia.

  13. Conservation on international boundaries: the impact of security barriers on selected terrestrial mammals in four protected areas in Arizona, USA.

    Directory of Open Access Journals (Sweden)

    Jamie W McCallum

    Full Text Available Several thousand terrestrial protected areas (PAs lie on international boundaries. Because international boundaries can be focal points for trade, illegal activity and development, such PAs can be vulnerable to a range of anthropogenic threats. There is an increasing trend towards the erection of international boundary infrastructure (including fences, barriers and ditches in many parts of the world, which may reduce the risk of these anthropogenic threats to some PAs. However this may restrict home range and access to resources for some native species. We sought to understand the impacts of these two different types of threat by using camera traps to measure the activity level of humans, native and invasive mammals in four US PAs on the Mexican international boundary. Comparisons were made between treatment areas with barriers and those without. Results showed that puma and coati were more likely to appear in treatment areas without barriers, whereas humans were not observed more frequently in one treatment area over another. The suggestion is that the intermittent fencing present in this part of the world does affect some native species, but does not necessarily restrict the movement of humans (including illegal migrants, who may negatively impact native species.

  14. Assessment of agricultural drought vulnerability in the Philippines using remote sensing and GIS-based techniques

    International Nuclear Information System (INIS)

    Macapagal, Marco D.; Olivares, Resi O.; Perez, Gay Jane P.

    2015-01-01

    Drought is a recurrent extreme climate event that can cause crop damage and yield loss, thereby inflicting negative socioeconomic impacts all over the world. According to several climate studies, drought events may be more frequent and more severe as global warming progresses. As an agricultural country, the Philippines is highly susceptible to adverse impacts of drought using remotely sensed information and geographic processing techniques. An agricultural drought vulnerability map identifying croplands that are least vulnerable, moderately vulnerable, and most vulnerable to crop water-related stress, was developed. Vulnerability factors, including land use system, irrigation support. Available soil-water holding capacity, as well as satellite-derived evapotranspiration and rainfall, were taken into consideration in classifying and mapping agricultural drought vulnerability at a national level. (author)

  15. Assessing and managing freshwater ecosystems vulnerable to global change

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Birge, Hannah E.; Drakare, Stina; McKie, Brendan G.; Johnson, Richard K.

    2014-01-01

    Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.

  16. Eosinophilia and biotoxin exposure in bottlenose dolphins (Tursiops truncatus) from a coastal area impacted by repeated mortality events

    International Nuclear Information System (INIS)

    Schwacke, Lori H.; Twiner, Michael J.; De Guise, Sylvain; Balmer, Brian C.; Wells, Randall S.; Townsend, Forrest I.; Rotstein, David C.; Varela, Rene A.; Hansen, Larry J.; Zolman, Eric S.; Spradlin, Trevor R.

    2010-01-01

    Bottlenose dolphins (Tursiops truncatus) inhabiting coastal waters in the northern Gulf of Mexico have been impacted by recurrent unusual mortality events over the past few decades. Several of these mortality events along the Florida panhandle have been tentatively attributed to poisoning from brevetoxin produced by the dinoflagellate Karenia brevis. While dolphins in other regions of the Florida coast are often exposed to K. brevis blooms, large-scale dolphin mortality events are relatively rare and the frequency and magnitude of die-offs along the Panhandle raise concern for the apparent vulnerability of dolphins in this region. We report results from dolphin health assessments conducted near St. Joseph Bay, Florida, an area impacted by 3 unusual die-offs within a 7-year time span. An eosinophilia syndrome, manifested as an elevated blood eosinophil count without obvious cause, was observed in 23% of sampled dolphins. Elevated eosinophil counts were associated with decreased T-lymphocyte proliferation and increased neutrophil phagocytosis. In addition, indication of chronic low-level exposure to another algal toxin, domoic acid produced by the diatom Pseudo-nitzschia spp., was determined. Previous studies of other marine mammal populations exposed recurrently to Pseudo-nitzschia blooms have suggested a possible link between the eosinophilia and domoic acid exposure. While the chronic eosinophilia syndrome could over the long-term produce organ damage and alter immunological status and thereby increase vulnerability to other challenges, the significance of the high prevalence of the syndrome to the observed mortality events in the St. Joseph Bay area is unclear. Nonetheless, the unusual immunological findings and concurrent evidence of domoic acid exposure in this sentinel marine species suggest a need for further investigation to elucidate potential links between chronic, low-level exposure to algal toxins and immune health.

  17. Eosinophilia and biotoxin exposure in bottlenose dolphins (Tursiops truncatus) from a coastal area impacted by repeated mortality events

    Energy Technology Data Exchange (ETDEWEB)

    Schwacke, Lori H., E-mail: Lori.Schwacke@noaa.gov [National Oceanic and Atmospheric Administration, National Ocean Service, Center for Human Health Risks, 331 Fort Johnson Road, Charleston, SC 29412 (United States); Twiner, Michael J. [National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412 (United States); De Guise, Sylvain [University of Connecticut, Department of Pathobiology and Veterinary Science, 61 North Eagleville Road, U-89, Storrs, CT 06269 (United States); Balmer, Brian C.; Wells, Randall S. [Chicago Zoological Society, c/o Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236 (United States); Townsend, Forrest I. [Bayside Hospital for Animals, 251 N.E. Racetrack Road, Fort Walton Beach, FL 32547 (United States); Rotstein, David C. [National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Marine Mammal Health and Stranding Response Program, 1315 East West Highway, Silver Spring, MD 20910 (United States); Varela, Rene A. [Ocean Embassy Inc, 6433 Pinecastle Blvd, Ste 2, Orlando, FL 32809 (United States); Hansen, Larry J. [National Oceanic and Atmospheric Administration, National Marine Fisheries Service Southeast Fisheries Science Center,101 Pivers Island Road, Beaufort, NC 28516 (United States); Zolman, Eric S. [National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412 (United States); Spradlin, Trevor R. [National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Marine Mammal Health and Stranding Response Program, 1315 East West Highway, Silver Spring, MD 20910 (United States); and others

    2010-08-15

    Bottlenose dolphins (Tursiops truncatus) inhabiting coastal waters in the northern Gulf of Mexico have been impacted by recurrent unusual mortality events over the past few decades. Several of these mortality events along the Florida panhandle have been tentatively attributed to poisoning from brevetoxin produced by the dinoflagellate Karenia brevis. While dolphins in other regions of the Florida coast are often exposed to K. brevis blooms, large-scale dolphin mortality events are relatively rare and the frequency and magnitude of die-offs along the Panhandle raise concern for the apparent vulnerability of dolphins in this region. We report results from dolphin health assessments conducted near St. Joseph Bay, Florida, an area impacted by 3 unusual die-offs within a 7-year time span. An eosinophilia syndrome, manifested as an elevated blood eosinophil count without obvious cause, was observed in 23% of sampled dolphins. Elevated eosinophil counts were associated with decreased T-lymphocyte proliferation and increased neutrophil phagocytosis. In addition, indication of chronic low-level exposure to another algal toxin, domoic acid produced by the diatom Pseudo-nitzschia spp., was determined. Previous studies of other marine mammal populations exposed recurrently to Pseudo-nitzschia blooms have suggested a possible link between the eosinophilia and domoic acid exposure. While the chronic eosinophilia syndrome could over the long-term produce organ damage and alter immunological status and thereby increase vulnerability to other challenges, the significance of the high prevalence of the syndrome to the observed mortality events in the St. Joseph Bay area is unclear. Nonetheless, the unusual immunological findings and concurrent evidence of domoic acid exposure in this sentinel marine species suggest a need for further investigation to elucidate potential links between chronic, low-level exposure to algal toxins and immune health.

  18. Identificação de indivíduos vulneráveis no entorno de um hospital universitário: conectando vulnerabilidade, solidariedade e saúde Identification of vulnerable individuals in the area surrounding a university hospital: connecting vulnerability, solidarity and healthcare

    Directory of Open Access Journals (Sweden)

    Hellen Cristina Sthal

    2011-07-01

    Full Text Available No entorno de um hospital universitário do interior do estado de São Paulo há pessoas dormindo, se alimentando ou descansando nos gramados e arredores, permanecendo nestes locais durante horas. Este estudo objetivou identificar e caracterizar indivíduos vulneráveis em área externa deste hospital, oferecendo ajuda. A coleta dos dados foi realizada no período de novembro de 2007 a outubro de 2008, semanalmente, em dias e horários sorteados. Identificaram-se pessoas que permaneciam nesses locais, sendo entrevistados 52 sujeitos. Esses indivíduos são, predominantemente, do sexo feminino (67,3%, brancos (51,9%, casados (59,6%, com escolaridade de até quatro anos de estudo (44,2% e sem profissão definida (84,6%. A maioria aguardava o horário do ônibus da prefeitura de seu município de origem; o tempo médio de espera foi de aproximadamente 90 minutos e grande parte dos sujeitos apresentou necessidades durante os períodos de espera. Foi oferecida ajuda a 15 pessoas que referiram necessidades no momento da entrevista. Concluiu-se que esses indivíduos se encontram em situação de vulnerabilidade individual, social e programática, destacando-se a vulnerabilidade sócio-econômica, apresentam capacidade de autodeterminação reduzida, submetendo-se a condições desfavoráveis por dependerem dos serviços públicos.In the area around a university hospital in the interior of São Paulo state people are found sleeping, eating or resting on the lawns and surrounding areas, and they linger in such sites for hours. This study sought to identify and characterize vulnerable individuals in the area around the hospital by offering help. Data were collected from November 2007 to October 2008, on a weekly basis and on randomly selected days and times. The people found in these places were identified, and 52 subjects were interviewed. The individuals were, predominantly, females (67.3%, white (51.9%, married (59.6%, had attended school for up to

  19. Vulnerability of marginal seas to sea level rise

    Science.gov (United States)

    Gomis, Damia; Jordà, Gabriel

    2017-04-01

    Sea level rise (SLR) is a serious thread for coastal areas and has a potential negative impact on society and economy. SLR can lead for instance to land loss, beach reduction, increase of the damage of marine storms on coastal infrastructures and to the salinization of underground water streams. It is well acknowledged that future SLR will be inhomogeneous across the globe, with regional differences of up to 100% with respect to global mean sea level (GMSL). Several studies have addressed the projections of SLR at regional scale, but most of them are based on global climate models (GCMs) that have a relatively coarse spatial resolution (>1°). In marginal seas this has proven to be a strong limitation, as their particular configurations require spatial resolutions that are not reachable by present GCMs. A paradigmatic case is the Mediterranean Sea, connected to the global ocean through the Strait of Gibraltar, a narrow passage of 14 km width. The functioning of the Mediterranean Sea involves a variety of processes including an overturning circulation, small-scale convection and a rich mesoscale field. Moreover, the long-term evolution of Mediterranean sea level has been significantly different from the global mean during the last decades. The observations of present climate and the projections for the next decades have lead some authors to hypothesize that the particular characteristics of the basin could allow Mediterranean mean sea level to evolve differently from the global mean. Assessing this point is essential to undertake proper adaptation strategies for the largely populated Mediterranean coastal areas. In this work we apply a new approach that combines regional and global projections to analyse future SLR. In a first step we focus on the quantification of the expected departures of future Mediterranean sea level from GMSL evolution and on the contribution of different processes to these departures. As a result we find that, in spite of its particularities

  20. Identification and ranking of environmental threats with ecosystem vulnerability distributions.

    Science.gov (United States)

    Zijp, Michiel C; Huijbregts, Mark A J; Schipper, Aafke M; Mulder, Christian; Posthuma, Leo

    2017-08-24

    Responses of ecosystems to human-induced stress vary in space and time, because both stressors and ecosystem vulnerabilities vary in space and time. Presently, ecosystem impact assessments mainly take into account variation in stressors, without considering variation in ecosystem vulnerability. We developed a method to address ecosystem vulnerability variation by quantifying ecosystem vulnerability distributions (EVDs) based on monitoring data of local species compositions and environmental conditions. The method incorporates spatial variation of both abiotic and biotic variables to quantify variation in responses among species and ecosystems. We show that EVDs can be derived based on a selection of locations, existing monitoring data and a selected impact boundary, and can be used in stressor identification and ranking for a region. A case study on Ohio's freshwater ecosystems, with freshwater fish as target species group, showed that physical habitat impairment and nutrient loads ranked highest as current stressors, with species losses higher than 5% for at least 6% of the locations. EVDs complement existing approaches of stressor assessment and management, which typically account only for variability in stressors, by accounting for variation in the vulnerability of the responding ecosystems.

  1. A Move in the Security Measurement Stalemate: Elo-Style Ratings to Quantify Vulnerability

    DEFF Research Database (Denmark)

    Pieters, Wolter; van der Ven, Sanne H.G.; Probst, Christian W.

    2012-01-01

    One of the big problems of risk assessment in information security is the quantification of risk-related properties, such as vulnerability. Vulnerability expresses the likelihood that a threat agent acting against an asset will cause impact, for example, the likelihood that an attacker will be ab...... to its application to children solving math problems. It provides an innovative and sound way to quantify vulnerability in models of (information) security.......One of the big problems of risk assessment in information security is the quantification of risk-related properties, such as vulnerability. Vulnerability expresses the likelihood that a threat agent acting against an asset will cause impact, for example, the likelihood that an attacker will be able......-interprets security from the field of Item Response Theory. By observing the success of threat agents against assets, one can rate the strength of threats and controls, and predict the vulnerability of systems to particular threats. The application of Item Response Theory to the field of risk is new, but analogous...

  2. An atmospheric vulnerability assessment framework for environment management and protection based on CAMx.

    Science.gov (United States)

    Zhang, Yang; Shen, Jing; Li, Yu

    2018-02-01

    This paper presents an atmospheric vulnerability assessment framework based on CAMx that should be helpful to assess potential impacts of changes in human, atmospheric environment, and social economic elements of atmospheric vulnerability. It is also a useful and effective tool that can provide policy-guidance for environmental protection and management to reduce the atmospheric vulnerability. The developed framework was applied to evaluate the atmospheric environment vulnerability of 13 cities in the Beijing-Tianjin-Hebei (BTH) region for verification. The results indicated that regional disparity of the atmospheric vulnerability existed in the study site. More specifically, the central and southern regions show more atmospheric environment vulnerability than the northern regions. The impact factors of atmospheric environment vulnerability in the BTH region mainly derived from increasing population press, frequently unfavorable meteorological conditions, extensive economic growth of secondary industry, increased environmental pollution, and accelerating population aging. The framework shown in this paper is an interpretative and heuristic tool for a better understanding of atmospheric vulnerability. This framework can also be replicated at different spatial and temporal scales using context-specific datasets to straightly support environmental managers with decision-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Coastal erosion vulnerability and risk assessment focusing in tourism beach use.

    Science.gov (United States)

    Alexandrakis, George

    2016-04-01

    It is well established that the global market for tourism services is a key source of economic growth. Especially among Mediterranean countries, the tourism sector is one of the principal sectors driving national economies. With the majority of the mass tourism activities concentrated around coastal areas, coastal erosion, inter alia, poses a significant threat to coastal economies that depend heavily on revenues from tourism. The economic implications of beach erosion were mainly focused in the cost of coastal protection measures, instead of the revenue losses from tourism. For this, the vulnerability of the coast to sea level rise and associated erosion, in terms of expected land loss and economic activity need to be identified. To achieve this, a joint environmental and economic evaluation approach of the problem can provide a managerial tool to mitigate the impact of beach erosion in tourism, through realistic cost-benefit scenarios for planning alternative protection measures. Such a multipurpose tool needs to consider social, economic and environmental factors, which relationships can be better understood when distributed and analyzed along the geographical space. The risk assessment is implemented through the estimation of the vulnerability and exposure variables of the coast in two scales. The larger scale estimates the vulnerability in a regional level, with the use environmental factors with the use of CVI. The exposure variable is estimated by the use of socioeconomic factors. Subsequently, a smaller scale focuses on highly vulnerable beaches with high social and economic value. The assessment of the natural processes to the environmental characteristics of the beach is estimated with the use of the Beach Vulnerability Index (BVI) method. As exposure variable, the value of beach width that is capitalized in revenues is implemented through a hedonic pricing model. In this econometric modelling, Beach Value is related with economic and environmental

  4. A conceptual framework towards more holistic freshwater conservation planning through incorporation of stream connectivity and thermal vulnerability

    Science.gov (United States)

    Ramulifho, P. A.; Rivers-Moore, N. A.; Dallas, H. F.; Foord, S. H.

    2018-01-01

    The thermal regime of rivers plays an important role in the overall health and composition of aquatic ecosystems, and together with flow, is recognised as one of the most influential abiotic drivers of aquatic ecosystem processes affecting species distribution. Changes in thermal conditions in aquatic systems are driven by on-going human-induced climate change, hydrological, regional and structural factors. Here, we quantified the impact of instream impoundments on the natural longitudinal connectivity and estimated thermal vulnerability of catchments based on the functional relationship between changing temperature and the profile gradient of rivers in the eastern portion of South Africa. We identified catchments that are most vulnerable to thermal stress based on cold-water adapted species' tolerance to thermal changes. More than half of all studied catchments include rivers that are relatively intact longitudinally, with notable exceptions being rivers in the central portion of the study area. Thermal condition of high elevation sites is more heavily impacted by impoundments and consequently thermal vulnerability of these sites are higher. Blephariceridae and Notonemouridae, the most thermophobic families, are likely to become locally threatened or extinct, in the absence of connectivity. The quantification of stream connectivity and vulnerability of organisms to thermal changes in river systems are important decision making tools for effective adaptive and holistic conservation planning strategies.

  5. Reactor sabotage vulnerability and vital-equipment identification

    International Nuclear Information System (INIS)

    Boudreau, J.M.; Haarman, R.A.

    1982-01-01

    Two ongoing programs at Los Alamos, the Vital Area Analysis Program and the Reactor Sabotage Vulnerability Program, are discussed. The Laboratory has been providing the Nuclear Regulatory Commission with technical support in identifying the vital areas at nuclear power plants through the use of sabotage fault trees. This procedure is being expanded to provide support for the Reactor Sabotage Vulnerability Assessment Program. A re-examination of some of the original system modeling assumptions, including a survey of the applicable research, is underway. A description of the survey work and the computerized data bases being used is provided. This program is expected to result in refinements in the existing procedures

  6. Vulnerability of Forests in India: A National Scale Assessment.

    Science.gov (United States)

    Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N H

    2017-09-01

    Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.

  7. Spatial Analysis of Human Exposure and Vulnerability to Coastal ...

    African Journals Online (AJOL)

    Disasters in coastal cities have shown an ever-increasing frequency of occurrence. Population growth and urbanisation have increased the vulnerability of properties and societies in coastal flood-prone areas. Analysis of human exposure and vulnerability is one of the main strategies used to determine the necessary ...

  8. Vulnerability assessment in a participatory approach to design and implement community based adaptation to drought in the Peruvian Andes

    Science.gov (United States)

    Lasage, Ralph; Muis, Sanne; Sardella, Carolina; van Drunen, Michiel; Verburg, Peter; Aerts, Jeroen

    2015-04-01

    The livelihoods of people in the Andes are expected to be affected by climate change due to their dependence on glacier meltwater during the growing season. The observed decrease in glacier volume over the last few decades is likely to accelerate during the current century, which will affect water availability in the region. This paper presents the implementation of an approach for the participatory development of community-based adaptation measures to cope with the projected impacts of climate change, which was implemented jointly by the local community and by a team consisting of an NGO, Peruvian ministry of environment, research organisations and a private sector organisation. It bases participatory design on physical measurements, modelling and a vulnerability analysis. Vulnerability to drought is made operational for households in a catchment of the Ocoña river basin in Peru. On the basis of a household survey we explore how a vulnerability index (impacts divided by the households' perceived adaptive capacity) can be used to assess the distribution of vulnerability over households in a sub catchment. The socio-economic factors water entitlement, area of irrigated land, income and education are all significantly correlate with this vulnerability to drought. The index proved to be appropriate for communicating about vulnerability to climate change and its determining factors with different stakeholders. The water system research showed that the main source of spring water is local rainwater, and that water use efficiency in farming is low. The adaptation measures that were jointly selected by the communities and the project team aimed to increase water availability close to farmland, and increase water use efficiency, and these will help to reduce the communities vulnerability to drought.

  9. Beyond exposure, sensitivity and adaptive capacity: A response based ecological framework to assess species climate change vulnerability

    Science.gov (United States)

    Fortini, Lucas B.; Schubert, Olivia

    2017-01-01

    As the impacts of global climate change on species are increasingly evident, there is a clear need to adapt conservation efforts worldwide. Species vulnerability assessments (VAs) are increasingly used to summarize all relevant information to determine a species’ potential vulnerability to climate change and are frequently the first step in informing climate adaptation efforts. VAs commonly integrate multiple sources of information by utilizing a framework that distinguishes factors relevant to species exposure, sensitivity, and adaptive capacity. However, this framework was originally developed for human systems, and its use to evaluate species vulnerability has serious practical and theoretical limitations. By instead defining vulnerability as the degree to which a species is unable to exhibit any of the responses necessary for persistence under climate change (i.e., toleration of projected changes, migration to new climate-compatible areas, enduring in microrefugia, and evolutionary adaptation), we can bring VAs into the realm of ecological science without applying borrowed abstract concepts that have consistently challenged species-centric research and management. This response-based framework to assess species vulnerability to climate change allows better integration of relevant ecological data and past research, yielding results with much clearer implications for conservation and research prioritization.

  10. Impact Assessment of Its Applications for Vulnerable Road Users

    NARCIS (Netherlands)

    Scholliers, J.; Noort, M. van; Johansson, C.; Mans, D.; Silla, A.; Bell, D.; Hancox, G.; Leden, L.; Giannelos, I.; Bax, B.; Malone, K.

    2016-01-01

    The EU-sponsored VRUITS project has prioritized ITS applications which have a potential to improve the safety, mobility and comfort of vulnerable road users (VRUs) and performed a quantitative safety, mobility and comfort assessment for the 10 most promising systems. The assessment methodology

  11. Impact assessment of ITS applications for vulnerable road users.

    NARCIS (Netherlands)

    Scholliers, J. Noort, M. van Johansson, C. Mans, D. Silla, A. Bell, D. Hancox, G. Leden, L. Giannelos, I. Bax, B. & Malone, K.

    2017-01-01

    The EU-sponsored VRUITS project has prioritized ITS applications which have a potential to improve the safety, mobility and comfort of vulnerable road users (VRUs) and performed a quantitative safety, mobility and comfort assessment for the 10 most promising systems. The assessment methodology

  12. Vulnerability Factors and Effectiveness of Disaster Mitigation Measures in the Bangladesh Coast

    Science.gov (United States)

    Hossain, Md. Nazir; Paul, Shitangsu Kumar

    2018-05-01

    The major objective of this paper is to identify the vulnerability factors and examine the effectiveness of disaster mitigation measures undertaken by individuals, government and non-government organisations to mitigate the impacts of cyclones in the Bangladesh coast experiencing from Cyclone Aila. The primary data were collected from two villages of southwestern coastal areas of Bangladesh using questionnaire survey and interviews of the key informants. The data were analysed using the descriptive and inferential statistics. This paper reveals that the disaster management measures have a significant role to lessen the impacts of the cyclonic event, especially in pre-disaster preparedness, cyclone warning message dissemination, evacuation and post-disaster rehabilitation. The households, who have access to shelter, find weather forecast regularly and adopted pre-disaster awareness measures are relatively less susceptible to hazard's impacts. The disaster management measures undertaken by individuals and GOs and NGOs help coastal people to save their lives and property from the negative impacts of cyclones. The analysis shows that the NGOs' role is more effective and efficient than the GOs in cyclone disaster management. This paper identifies distance to shelter, participation in disaster training, efficient warning, etc. as the influential factors of vulnerability cyclones. The analysis finds the households as less affected who have adopted disaster preparedness measures. However, this paper concludes that the effective and proper disaster management and mitigation measures are very crucial to shield the lives and properties of the Bangladeshi coastal people.

  13. Vulnerability Factors and Effectiveness of Disaster Mitigation Measures in the Bangladesh Coast

    Science.gov (United States)

    Hossain, Md. Nazir; Paul, Shitangsu Kumar

    2018-01-01

    The major objective of this paper is to identify the vulnerability factors and examine the effectiveness of disaster mitigation measures undertaken by individuals, government and non-government organisations to mitigate the impacts of cyclones in the Bangladesh coast experiencing from Cyclone Aila. The primary data were collected from two villages of southwestern coastal areas of Bangladesh using questionnaire survey and interviews of the key informants. The data were analysed using the descriptive and inferential statistics. This paper reveals that the disaster management measures have a significant role to lessen the impacts of the cyclonic event, especially in pre-disaster preparedness, cyclone warning message dissemination, evacuation and post-disaster rehabilitation. The households, who have access to shelter, find weather forecast regularly and adopted pre-disaster awareness measures are relatively less susceptible to hazard's impacts. The disaster management measures undertaken by individuals and GOs and NGOs help coastal people to save their lives and property from the negative impacts of cyclones. The analysis shows that the NGOs' role is more effective and efficient than the GOs in cyclone disaster management. This paper identifies distance to shelter, participation in disaster training, efficient warning, etc. as the influential factors of vulnerability cyclones. The analysis finds the households as less affected who have adopted disaster preparedness measures. However, this paper concludes that the effective and proper disaster management and mitigation measures are very crucial to shield the lives and properties of the Bangladeshi coastal people.

  14. Analysis of inland crude oil spill threats, vulnerabilities, and emergency response in the midwest United States.

    Science.gov (United States)

    Brody, Thomas M; Di Bianca, Paisly; Krysa, Jan

    2012-10-01

    Although coastal oil spills tend to be highly publicized, crude oil spills in the United States affect inland areas relatively often. Spills to inland areas often affect sensitive environments and can have greater impacts to health and welfare than spills to coastal areas. For these reasons, the authors investigated inland crude oil spill threats, vulnerabilities, and emergency response in the midwestern U.S. states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. These states work with the Region 5 Offices of the U.S. Environmental Protection Agency. Region 5's geospatial data in the Inland Sensitivity Atlas were turned into metrics indicating inland crude oil spill threats and vulnerabilities among the Region's sub-watersheds. These threats and vulnerabilities were weighted using data from the National Response Center and the Department of Energy's Environmental Restoration Priority System. The locations of the Region's emergency responders were geocoded in GIS. The GIS calculated the emergency response times to the Region's sub-watersheds. The resulting scatter plots are connected to the sub-watersheds in the map so stakeholders can (1) see the outlying sub-watersheds of concern and (2) better understand how reducing threats and better response time can reduce the risk of inland crude oil spills. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.

  15. Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species?

    Science.gov (United States)

    Hukin, D; Cochard, H; Dreyer, E; Le Thiec, D; Bogeat-Triboulot, M B

    2005-08-01

    Populus euphratica is a poplar species growing in arid regions of Central Asia, where its distribution remains nevertheless restricted to river-banks or to areas with an access to deep water tables. To test whether the hydraulic architecture of this species differs from that of other poplars with respect to this ecological distribution, the vulnerability to cavitation of P. euphratica was compared with that of P. alba and of P. trichocarpa x koreana. The occurrence of a potential hydraulic segmentation through cavitation was also investigated by assessing the vulnerability of roots, stems, and leaf mid-rib veins. Cryo-scanning electron microscopy (cryo-SEM) was used to assess the level of embolism in fine roots and leaf mid-ribs and a low pressure flowmeter (LPFM) was used for stems and main roots. The cryo-SEM technique was validated against LPFM measurements on paired samples. In P. alba and P. trichocarpa x koreana, leaf mid-ribs were more vulnerable to cavitation than stems and roots. In P. euphratica, leaf mid-ribs and stems were equally vulnerable and, contrary to what has been observed in other species, roots were significantly less vulnerable than shoots. P. euphratica was by far the most vulnerable. The water potential inducing 50% loss of conductivity in stems was close to -0.7 MPa, against approximately -1.45 MPa for the two others species. Such a large vulnerability was confirmed by recording losses of conductivity during a gradual drought. Moreover, significant stem embolism was recorded before stomatal closure, indicating the lack of an efficient safety margin for hydraulic functions in this species. Embolism was not reversed by rewatering. These observations are discussed with respect to the ecology of P. euphratica.

  16. Assessing the Impact of Asian Longhorned Beetle in Worcester, MA: Thermal Effects, Community Responses, and Future Vulnerability

    Science.gov (United States)

    Elmes, Arthur Francis Marett

    initiative in terms of juvenile tree mortality rates - a critical indicator of long-term urban forest success. Results indicate that tree stewardship variables such as renter proportion and number of trees planted per property are strong predictors of tree mortality. Tree species was shown to be strong predictor of mortality, with ornamental trees showing lower mortality rates than shade deciduous or conifers. Finally, Chapter four investigates the potential risk of further ALB infestation in the Worcester area, using a circuit theory dispersal model, which uses an analogy with electrical circuits to predict the dispersal of random-walkers across a heterogeneous landscape. The results indicate that impervious surfaces such as roads, sidewalks, and parking lots, as well as proximity to existing trees are facilitators of ALB movement. Circuit-based dispersal maps highlight the importance of narrow dispersal corridors connecting larger areas of potential dispersal. Dispersal potential was combined with ALB habitat suitability measured with Mahalanobis typicality, yielding a hybrid map of ALB infestation risk. These map products are valuable both as contributions to the understanding of invasive species movement in novel environments, and as tools for land managers attempting to eradicate ALB, such as the USDA Animal and Plant Health Inspection Service. This dissertation investigates three elements of the ALB infestation of Worcester, providing a holistic explanation of the impacts, recovery, and vulnerability of Worcester's urban forest.

  17. Social Vulnerability to Climate Change and the Architecture of Entitlements

    International Nuclear Information System (INIS)

    Adger, W.N.; Kelly, P.M.

    1999-01-01

    The objective of this paper is to outline a conceptual model of vulnerability to climate change as the first step in appraising and understanding the social and economic processes which facilitate and constrain adaptation. Vulnerability as defined here pertains to individuals and social groups. It is the state of individuals, of groups, of communities defined in terms of their ability to cope with and adapt to any external stress placed on their livelihoods and well-being. This proposed approach puts the social and economic well-being of society at the centre of the analysis, thereby reversing the central focus of approaches to climate impact assessment based on impacts on and the adaptability of natural resources or ecosystems and which only subsequently address consequences for human well-being. The vulnerability or security of any group is determined by the availability of resources and, crucially, by the entitlement of individuals and groups to call on these resources. This perspective extends the concept of entitlements developed within neoclassical and institutional economics. Within this conceptual framework, vulnerability can be seen as a socially-constructed phenomenon influenced by institutional and economic dynamics. The study develops proxy indicators of vulnerability related to the structure of economic relations and the entitlements which govern them, and shows how these can be applied to a District in coastal lowland Vietnam. This paper outlines the lessons of such an approach to social vulnerability for the assessment of climate change at the global scale. We argue that the socio-economic and biophysical processes that determine vulnerability are manifest at the local, national, regional and global level but the state of vulnerability itself is associated with a specific population. Aggregation one level to another is therefore not appropriate and global-scale analysis is meaningful only in so far as it deals with the vulnerability of the global

  18. NATURAL HAZARD ASSESSMENT OF SW MYANMAR - A CONTRIBUTION OF REMOTE SENSING AND GIS METHODS TO THE DETECTION OF AREAS VULNERABLE TO EARTHQUAKES AND TSUNAMI / CYCLONE FLOODING

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2009-01-01

    Full Text Available Myanmar, formerly Burma, is vulnerable to several natural hazards, such as earthquakes, cyclones, floods, tsunamis and landslides. The present study focuses on geomorphologic and geologic investigations of the south-western region of the country, based on satellite data (Shuttle Radar Topography Mission-SRTM, MODIS and LANDSAT. The main objective is to detect areas vulnerable to inundation by tsunami waves and cyclone surges. Since the region is also vulnerable to earthquake hazards, it is also important to identify seismotectonic patterns, the location of major active faults, and local site conditions that may enhance ground motions and earthquake intensities. As illustrated by this study, linear, topographic features related to subsurface tectonic features become clearly visible on SRTM-derived morphometric maps and on LANDSAT imagery. The GIS integrated evaluation of LANDSAT and SRTM data helps identify areas most susceptible to flooding and inundation by tsunamis and storm surges. Additionally, land elevation maps help identify sites greater than 10 m in elevation height, that would be suitable for the building of protective tsunami/cyclone shelters.

  19. An assessment of fire vulnerability for aged electrical relays

    International Nuclear Information System (INIS)

    Vigil, R.A.; Nowlen, S.P.

    1995-03-01

    There has been some concern that, as nuclear power plants age, protective measures taken to control and minimize the impact of fire may become ineffective, or significantly less effective, and hence result in an increased fire risk. One objective of the Fire Vulnerability of Aged Electrical Components Program is to assess the effects of aging and service wear on the fire vulnerability of electrical equipment. An increased fire vulnerability of components may lead to an overall increase in fire risk to the plant. Because of their widespread use in various electrical safety systems, electromechanical relays were chosen to be the initial components for evaluation. This test program assessed the impact of operational and thermal aging on the vulnerability of these relays to fire-induced damage. Only thermal effects of a fire were examined in this test program. The impact of smoke, corrosive materials, or fire suppression effects on relay performance were not addressed in this test program. The purpose of this test program was to assess whether the fire vulnerability of electrical relays increased with aging. The sequence followed for the test program was to: identify specific relay types, develop three fire scenarios, artificially age several relays, test the unaged and aged relays in the fire exposure scenarios, and compare the results. The relays tested were Agastat GPI, General Electric (GE) HMA, HGA, and HFA. At least two relays of each type were artificially aged and at least two relays of each type were new. Relays were operationally aged by cycling the relay under rated load for 2,000 operations. These relays were then thermally aged for 60 days with their coil energized

  20. [Integrated assessment of eco-environmental vulnerability in Pearl River Delta based on RS and GIS].

    Science.gov (United States)

    Xu, Qing-Yong; Huang, Mei; Liu, Hong-Sheng; Yan, Hui-Min

    2011-11-01

    Based on the remote sensing data and with the help of geographic information system, an integrated assessment was conducted on the eco-environmental vulnerability of Pearl River Delta in 2004-2008. Spatial principal component analysis was used to generate the evaluation indicators, and analytic hierarchy process (AHP) was applied to determine the weights of the evaluation factors. The reasons causing the vulnerability of the eco- environment in Pearl River Delta were discussed. In the study area, its middle part was the most vulnerable region, occupying 34.0% of the total, eastern part was the moderately vulnerable region, accounting for 25.5%, and western part was the lightly and slightly vulnerable areas, accounting for 28.7 and 11.8%, respectively. Totally, the moderately and lightly vulnerable areas occupied 54.2%, indicating that a majority of the Delta was under moderate and light vulnerability. The natural factors affecting the eco-environmental vulnerability of the Delta were altitude, heavy rain days, water and soil erosion rate, flooded infield rate, normalized difference vegetation index (ND VI) and landscape diversity index, whereas the human factors were population density, waste discharge per unit area, exhaust emission per unit area, land use change, chemical fertilization intensity, pesticide application intensity, amount of motor vehicles possessed by ten thousands people, and index of environmental protection investment. The main characteristics of the extremely and heavily vulnerable regions were low altitude, high frequency of flood disaster, large flooded infield, serious vegetation degradation, high pollution level and low environment protection investment index.

  1. When it happens again: impact of future San Francisco Bay area earthquakes

    Science.gov (United States)

    Zoback, M.; Boatwright, J.; Kornfield, L.; Scawthorn, C.; Rojahn, C.

    2005-12-01

    San Francisco Bay area earthquakes, like major floods and hurricanes, have the potential for massive damage to dense urban population centers concentrated in vulnerable zones-along active faults, in coastal regions, and along major river arteries. The recent destruction of Hurricane Katrina does have precedent in the destruction following the 1906 "San Francisco" earthquake and fire in which more than 3000 people were killed and 225,000 were left homeless in San Francisco alone, a city of 400,000 at the time. Analysis of a comprehensive set of damage reports from the magnitude (M) 7.9 1906 earthquake indicates a region of ~ 18,000 km2 was subjected to shaking of Modified Mercalli Intensity of VIII or more - motions capable of damaging even modern, well-built structures; more than 60,000 km2 was subjected to shaking of Intensity VII or greater - the threshold for damage to masonry and poorly designed structures. By comparison, Katrina's hurricane force winds and intense rainfall impacted an area of ~100,000 km2 on the Gulf Coast. Thus, the anticipated effects of a future major Bay Area quake to lives, property, and infrastructure are comparable in scale to Katrina. Secondary hazards (levee failure and flooding in the case of Katrina and fire following the 1906 earthquake) greatly compounded the devastation in both disasters. A recent USGS-led study concluded there is a 62% chance of one or more damaging (M6.7 or greater) earthquakes striking the greater San Francisco Bay area over the next 30 years. The USGS prepared HAZUS loss estimates for the 10 most likely forecast earthquakes which range in size from a M6.7 event on a blind thrust to the largest anticipated event, a M7.9 repeat of the 1906 earthquake. The largest economic loss is expected for a repeat of the 1906 quake. Losses in the Bay region for this event are nearly double those predicted for a M6.9 rupture of the entire Hayward Fault in the East Bay. However, because of high density of population along the

  2. A Multi-area Model of a Physical Protection System for a Vulnerability Assessment

    International Nuclear Information System (INIS)

    Jang, Sung Soon; Yoo, Ho Sik

    2008-01-01

    A physical protection system (PPS) integrates people, procedures and equipment for the protection of assets or facilities against theft, sabotage or other malevolent human attacks. Among critical facilities, nuclear facilities and nuclear weapon sites require the highest level of PPS. After the September 11, 2001 terrorist attacks, international communities, including the IAEA, have made substantial efforts to protect nuclear material and nuclear facilities. These efforts include the Nuclear Security Fund established by the IAEA in 2002 and the Global Initiative to Combat Nuclear Terrorism which is launched by the USA and Russia in 2006. Without a regular assessment, the PPS might waste valuable resources on unnecessary protection or, worse yet, fail to provide adequate protection at critical points of a facility. Due to the complexity of protection systems, the assessment usually requires computer modeling techniques. Several Codes were developed to model and analyze a PPS. We also devised and implemented new analysis method and named it as Systematic Analysis of physical Protection Effectiveness (SAPE). A SAPE code consumes much time to analyze a PPS over a large area in detail. It is because SAPE uses meshes of an equal size for the analysis of a 2D map. The analysis is more accurate when the meshes of a smaller size are used. However, the analysis time is roughly proportional to the exponential of the number of meshes. Thus, the speed and accuracy is in a trade-off relation. In the paper, we suggest a multi-area model of a PPS for a vulnerability assessment to solve this problem. Using multi areas with different scales, we can accurately analyze a PPS near a target and can analyze it over a large area rather roughly

  3. Socio-Economic Vulnerability to Climate Change in California

    Science.gov (United States)

    Heberger, M. G.; Cooley, H.; Moore, E.; Garzon, C.

    2011-12-01

    The western United States faces a range of impacts from global climate change, including increases in extreme heat, wildfires, and coastal flooding and erosion; changes are also likely to occur in air quality, water availability, and the spread of infectious diseases. To date, a great deal of research has been done to forecast the physical effects of climate change, while less attention has been given to the factors make different populations more or less vulnerable to harm from such changes. For example, mortality rates from Hurricane Audrey, which struck the coast of Louisiana in 1957, were more than eight times higher among blacks than among whites. While disaster events may not discriminate, impacts on human populations are shaped by "intervening conditions" that determine the human impact of the flood and the specific needs for preparedness, response, and recovery. In this study, we analyze the potential impacts of climate change by using recent downscaled climate model outputs, creating a variety of statistics and visualizations to communicate potential impacts to community groups and decision makers, after several meetings with these groups to ask, "What types of information are most useful to you for planning?" We relate climate impacts to social vulnerability - defined as the intersection of the exposure, sensitivity, and adaptive capacity of a person or group of people - with a focus on the U.S. state of California. Understanding vulnerability factors and the populations that exhibit these factors are critical for crafting effective climate change policies and response strategies. It is also important to the emerging study of climate justice, which is the concept that no group of people should disproportionately bear the burden of climate impacts or the costs of mitigation and adaptation.

  4. A flood vulnerability index for coastal cities and its use in assessing climate change impacts

    NARCIS (Netherlands)

    Balica, S.F.; Wright, N.G.; Van der Meulen, F.

    2012-01-01

    Worldwide, there is a need to enhance our understanding of vulnerability and to develop methodologies and tools to assess vulnerability. One of the most important goals of assessing coastal flood vulnerability, in particular, is to create a readily understandable link between the theoretical

  5. Social vulnerability assessment using spatial multi-criteria analysis (SEVI model) and the Social Vulnerability Index (SoVI model) - a case study for Bucharest, Romania

    Science.gov (United States)

    Armaş, I.; Gavriş, A.

    2013-06-01

    In recent decades, the development of vulnerability frameworks has enlarged the research in the natural hazards field. Despite progress in developing the vulnerability studies, there is more to investigate regarding the quantitative approach and clarification of the conceptual explanation of the social component. At the same time, some disaster-prone areas register limited attention. Among these, Romania's capital city, Bucharest, is the most earthquake-prone capital in Europe and the tenth in the world. The location is used to assess two multi-criteria methods for aggregating complex indicators: the social vulnerability index (SoVI model) and the spatial multi-criteria social vulnerability index (SEVI model). Using the data of the 2002 census we reduce the indicators through a factor analytical approach to create the indices and examine if they bear any resemblance to the known vulnerability of Bucharest city through an exploratory spatial data analysis (ESDA). This is a critical issue that may provide better understanding of the social vulnerability in the city and appropriate information for authorities and stakeholders to consider in their decision making. The study emphasizes that social vulnerability is an urban process that increased in a post-communist Bucharest, raising the concern that the population at risk lacks the capacity to cope with disasters. The assessment of the indices indicates a significant and similar clustering pattern of the census administrative units, with an overlap between the clustering areas affected by high social vulnerability. Our proposed SEVI model suggests adjustment sensitivity, useful in the expert-opinion accuracy.

  6. Socio-economic vulnerability to natural hazards - proposal for an indicator-based model

    Science.gov (United States)

    Eidsvig, U.; McLean, A.; Vangelsten, B. V.; Kalsnes, B.; Ciurean, R. L.; Argyroudis, S.; Winter, M.; Corominas, J.; Mavrouli, O. C.; Fotopoulou, S.; Pitilakis, K.; Baills, A.; Malet, J. P.

    2012-04-01

    Vulnerability assessment, with respect to natural hazards, is a complex process that must consider multiple dimensions of vulnerability, including both physical and social factors. Physical vulnerability refers to conditions of physical assets, and may be modeled by the intensity and magnitude of the hazard, the degree of physical protection provided by the natural and built environment, and the physical robustness of the exposed elements. Social vulnerability refers to the underlying factors leading to the inability of people, organizations, and societies to withstand impacts from the natural hazards. Social vulnerability models can be used in combination with physical vulnerability models to estimate both direct losses, i.e. losses that occur during and immediately after the impact, as well as indirect losses, i.e. long-term effects of the event. Direct impact of a landslide typically includes casualties and damages to buildings and infrastructure while indirect losses may e.g. include business closures or limitations in public services. The direct losses are often assessed using physical vulnerability indicators (e.g. construction material, height of buildings), while indirect losses are mainly assessed using social indicators (e.g. economical resources, demographic conditions). Within the EC-FP7 SafeLand research project, an indicator-based method was proposed to assess relative socio-economic vulnerability to landslides. The indicators represent the underlying factors which influence a community's ability to prepare for, deal with, and recover from the damage associated with landslides. The proposed model includes indicators representing demographic, economic and social characteristics as well as indicators representing the degree of preparedness and recovery capacity. Although the model focuses primarily on the indirect losses, it could easily be extended to include more physical indicators which account for the direct losses. Each indicator is individually

  7. Vulnerabilities, Influences and Interaction Paths: Failure Data for Integrated System Risk Analysis

    Science.gov (United States)

    Malin, Jane T.; Fleming, Land

    2006-01-01

    We describe graph-based analysis methods for identifying and analyzing cross-subsystem interaction risks from subsystem connectivity information. By discovering external and remote influences that would be otherwise unexpected, these methods can support better communication among subsystem designers at points of potential conflict and to support design of more dependable and diagnosable systems. These methods identify hazard causes that can impact vulnerable functions or entities if propagated across interaction paths from the hazard source to the vulnerable target. The analysis can also assess combined impacts of And-Or trees of disabling influences. The analysis can use ratings of hazards and vulnerabilities to calculate cumulative measures of the severity and importance. Identification of cross-subsystem hazard-vulnerability pairs and propagation paths across subsystems will increase coverage of hazard and risk analysis and can indicate risk control and protection strategies.

  8. Environmental Health Related Socio-Spatial Inequalities: Identifying “Hotspots” of Environmental Burdens and Social Vulnerability

    Science.gov (United States)

    Shrestha, Rehana; Flacke, Johannes; Martinez, Javier; van Maarseveen, Martin

    2016-01-01

    Differential exposure to multiple environmental burdens and benefits and their distribution across a population with varying vulnerability can contribute heavily to health inequalities. Particularly relevant are areas with high cumulative burdens and high social vulnerability termed as “hotspots”. This paper develops an index-based approach to assess these multiple burdens and benefits in combination with vulnerability factors at detailed intra-urban level. The method is applied to the city of Dortmund, Germany. Using non-spatial and spatial methods we assessed inequalities and identified “hotspot” areas in the city. We found modest inequalities burdening higher vulnerable groups in Dortmund (CI = −0.020 at p vulnerability, is essential to inform environmental justice debates and to mobilize local stakeholders. Locating “hotspot” areas at this detailed spatial level can serve as a basis to develop interventions that target vulnerable groups to ensure a health conducive equal environment. PMID:27409625

  9. The vulnerability of fishermen’s community and livelihood opportunity through drought and seasonal changes in border area of Indonesia-Timor Leste

    Science.gov (United States)

    Jayanti, A. D.; Fitriya, W.; Setyobudi, E.; Budhiyanti, S. A.; Suadi; Kune, S. J.

    2018-03-01

    Communities that live in coastal areas in Indonesia are affected by the ecosystem degradation because their livelihoods majority depends on ecosystem’s services. Fishermen in Timor Tengah Utara Regency depends on their livelihood on fish catches and crops. TTU Regency is known as a place with drought. Agriculture sector and fisheries play the central role of communal livelihood. This research was conducted to gain information and baseline study to support the intervention scheme reducing the vulnerable level of coastal communities. This research was conducted in Insana Utara, Biboki Moenleu and Biboki Anleu District. The social-ecological and statistic descriptive analysis were undertaken and involving 53 fishermen, 4 women groups, 11 clan’s elder and staffs of local government as the respondents. The data shows that the majority of the fishermen are small-scale fisheries commercial fishermen and possess a high level of vulnerability. The factors that are mostly affected the fishermen livelihood is the job diversification as farmers which is primarily supported by the crops and rely on the rainfall. The vulnerable context of fishermen in TTU can be reduced by optimizing and enhancing communal institution capacity and increasing the cooperation among the stakeholders and government also women participation.

  10. Cumulative Impact Assessment: Approaching Environmental Capacity in Development Area Using Environmental Impact Assessment Information

    Science.gov (United States)

    Cho, N.; Lee, M. J.; Maeng, J. H.

    2017-12-01

    Environmental impact assessment estimates the impact of development as a business unit and establishes mitigation plan. If the development is done, its economic effects can spread to the nearby areas. So that various developments can be distributed at different time intervals. The impact of the new developments can be combined with existing environmental impacts and can have a larger impact. That is, Cumulative impact assessment is needed to consider the environmental capacity of the Nearby area. Cumulative impact assessments require policy tools such as environmental impact assessment information and cumulative impact estimation models. In Korea, environmental information (water quality, air quality, etc.) of the development site is measured for environmental impact assessment and monitored for a certain period (generally 5 years) after the project. In addition, by constructing the environmental information as a spatial database, it is possible to express the environmental impact on a regional basis spatially and to intuitively use it for development site selection. Utilizing a composite model of environmental impact assessment information and Remote Sensing data for cumulative impact estimation, That can be used as a policy decision support tool that provides quantitative information for development area management, such as time series effect and sprawl phenomenon.

  11. Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    T.E. Oni

    2017-12-01

    Full Text Available Groundwater vulnerability assessment was carried out at Igbara Oke Southwestern Nigeria, with a view to classify the area into vulnerability zones, by applying the electrical resistivity method, using Schlumberger electrode arrays with maximum electrode separation (AB/2 of 65 m in (41 different locations for data acquisition. Geoelectric parameters (layer resistivity and thickness were determined from the interpreted data. The study area comprises four geoelectric layers (topsoil, lateritic layer, weathered/fractured layer and fresh basement. The geoelectric parameters of the overlying layers across the area were used to assess the vulnerability of the underlying aquifers to near-surface contaminants with the aid of vulnerability maps generated. Three models were compared by maps using geo-electrically derived models; longitudinal conductance, GOD (groundwater occurrence, overlying lithology and depth to the aquifer and GLSI (geoelectric layer susceptibility indexing. The total longitudinal conductance map shows the north central part of the study area as a weakly protected (0.1–0.19 area, while the northern and southern parts have poor protective capacity (<0.1; this is in agreement with the GOD method which shows the northern part of the study area as less vulnerable (0–0.1 while the southern part has low/moderate (0.1–0.3 vulnerability to contamination. The longitudinal conductance exaggerates the degree of susceptibility to contamination than the GOD and GLSI models. From the models, vulnerability to contamination can be considered higher at the southern part than the northern part and therefore, sources of contamination like septic tank, refuse dump should be cited far from groundwater development area. Keywords: Aquifer vulnerability, Longitudinal conductance, GOD and GLSI

  12. Mapping the vulnerability hotspots over Hindu-Kush Himalaya region to flooding disasters

    Directory of Open Access Journals (Sweden)

    Shada Elalem

    2015-06-01

    Full Text Available A disproportionate share of the global economic and human losses caused by environmental shocks is borne by people in the developing nations. The mountain region of Hindu-Kush Himalaya (HKH in South Asia is threatened by numerous flooding events annually. An efficient disaster risk reduction often needs to rest upon location-based synoptic view of vulnerability. Resolving this deficit improves the ability to take risk reduction measures in a cost-effective way, and in doing so, strengthens the resilience of societies to flooding disasters. The central aim of this research is to identify the vulnerable locations across HKH boundary from the perspective of reported history of economic and human impacts due to occurrence of flooding disasters. A detailed analysis indicates a very high spatial heterogeneity in flooding disaster occurrence in the past 6 decades. The most recent decade reported highest number of disasters and greater spatial coverage as compared to the earlier decades. The data indicates that, in general, economic impacts of flooding disasters were notably higher in Pakistan, Afghanistan and Nepal. On the other hand, vulnerability scenarios with respect to human impacts were diverse for different countries. In terms of morbidity and mortality, Bangladesh, Pakistan, Bhutan and India were detected to be most susceptible to human impacts. Although Bhutan had seen lesser number of flooding disasters, higher population living within disaster prone region make them vulnerable. In summary, complex interactions between natural and socio-economic conditions play a dominant role to define and characterize the type and magnitude of vulnerability of HKH countries to disaster occurrence and their economic and human impacts.

  13. Climate Change Impacts, Vulnerabilities and Adaption Measures for Egypt's Nile Delta

    Science.gov (United States)

    Abutaleb, Khaled Abubakr Ali; Mohammed, Asmaa Hassan El-Sayed; Ahmed, Mahmoud H. Mohamed

    2018-04-01

    During the last few decades there has been growing concern about the impacts of climate change. A significant number of institutions, research centers, universities and governments have funded projects in addition to work done by independent scholars and assessors studying this phenomenon, in particular, to identify vulnerability, mitigation and adaptation against associated risks. Egypt is among the international community which took part in numerous studies, research activities, conferences, seminars and meetings attempting to address climate change and its associated risks. Egypt is particularly concerned with the threat to the Nile Delta as it is considered a low-lying land at high risk. The aim of this paper is to review current and previous projects, technical reports and pilot studies, concerning risk assessments, mitigation, and adaptation strategies for climate change in Egypt. This, in turn, will aid in decision making regarding future funding and establishing of research related to climate change in Egypt. This paper will also highlight the weaknesses and strengths of policymakers solely relying on one or more of these studies.

  14. What's in a word? Conflicting interpretations of vulnerability in climate change research

    International Nuclear Information System (INIS)

    O'Brien, Karen; Eriksen, Siri; Schjolden, Ane; Nygaard, Lynn

    2004-01-01

    In this paper, we discuss two competing interpretations of vulnerability in the climate change literature and consider the implications for both research and policy. The first interpretation, which can be referred to as the ''end point'' approach, views vulnerability as a residual of climate change impacts minus adaptation. The second interpretation, which takes vulnerability as a ''starting point'', views vulnerability as a general characteristic generated by multiple factors and processes. Viewing vulnerability as an end point considers that adaptations and adaptive capacity determine vulnerability, whereas viewing vulnerability as a starting point holds that vulnerability determines adaptive capacity. The practical consequences of these two interpretations are illustrated through the examples of Norway and Mozambique. We show that, if the underlying causes and contexts of vulnerability are not taken into account, there is a danger of underestimating the magnitude (large), scope (social arid environmental) and urgency (high) of climate change. (author)

  15. A systematic approach towards the identification and protection of vulnerable marine ecosystems

    Science.gov (United States)

    Ardron, Jeff A.; Clark, Malcolm R.; Penney, Andrew J.; Hourigan, Thomas F.; Rowden, Ashley A.; Dunstan, Piers K.; Watling, Les; Shank, Timothy M.; Tracey, Di M.; Dunn, Matthew R.; Parker, Steven J.

    2014-01-01

    The United Nations General Assembly in 2006 and 2009 adopted resolutions that call for the identification and protection of vulnerable marine ecosystems (VMEs) from significant adverse impacts of bottom fishing. While general criteria have been produced, there are no guidelines or protocols that elaborate on the process from initial identification through to the protection of VMEs. Here, based upon an expert review of existing practices, a 10-step framework is proposed: (1) Comparatively assess potential VME indicator taxa and habitats in a region; (2) determine VME thresholds; (3) consider areas already known for their ecological importance; (4) compile information on the distributions of likely VME taxa and habitats, as well as related environmental data; (5) develop predictive distribution models for VME indicator taxa and habitats; (6) compile known or likely fishing impacts; (7) produce a predicted VME naturalness distribution (areas of low cumulative impacts); (8) identify areas of higher value to user groups; (9) conduct management strategy evaluations to produce trade-off scenarios; (10) review and re-iterate, until spatial management scenarios are developed that fulfil international obligations and regional conservation and management objectives. To date, regional progress has been piecemeal and incremental. The proposed 10-step framework combines these various experiences into a systematic approach.

  16. Considering Time-Dependency of Social Vulnerability in Crisis Modeling and Management

    Science.gov (United States)

    Aubrecht, C.; Steinnocher, K.; Freire, S.; Loibl, W.; Peters-Anders, J.; Ungar, J.

    2012-04-01

    Crisis and disaster management is much more than the immediate first-response actions following an incident. In many projects the main focus has been on the phase starting at the point when an unwanted event happens and lasting until the activities return to normal routines (i.e., ad hoc reaction rather than proactive mitigation). There has been less emphasis on the other phases of the disaster management cycle such as prevention, preparedness, recovery and reconstruction, even though those phases have a strong influence on the general status of a society and its citizens. Especially the potential of a crisis to escalate into a large-scale disaster is heavily dependent on the overall level of preparedness as well as on the planning of mitigation and response actions and their timely execution. There is a need for improved decision-making support that enables modeling of different crisis scenarios and their impacts according to chosen prevention and response actions. Vulnerability describing the status of a society with respect to an imposed hazard or potential impact is considered a strongly multidisciplinary concept. A central objective of vulnerability assessment is to provide indications where and how people - and more specifically, what kind of people - might be affected by a certain impact. Results should provide decision- and policy-makers with supporting information to target response and mitigation actions adequately. For assessment of the social dimension of vulnerability, population exposure mapping is usually considered the starting point. Integration of social structure and varying aspects of resilience further differentiate situation-specific vulnerability patterns on a local scale. In a disaster risk management context, assessment of human vulnerability has generally been lagging behind hazard analysis efforts. Accurately estimating population exposure is a key component of catastrophe loss modeling, one element of effective integrated risk analysis

  17. Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions.

    Science.gov (United States)

    Miquel, Sophie; Champ, Claire; Day, Jon; Aarts, Esther; Bahr, Ben A; Bakker, Martijntje; Bánáti, Diána; Calabrese, Vittorio; Cederholm, Tommy; Cryan, John; Dye, Louise; Farrimond, Jonathan A; Korosi, Aniko; Layé, Sophie; Maudsley, Stuart; Milenkovic, Dragan; Mohajeri, M Hasan; Sijben, John; Solomon, Alina; Spencer, Jeremy P E; Thuret, Sandrine; Vanden Berghe, Wim; Vauzour, David; Vellas, Bruno; Wesnes, Keith; Willatts, Peter; Wittenberg, Raphael; Geurts, Lucie

    2018-03-01

    Ageing is a highly complex process marked by a temporal cascade of events, which promote alterations in the normal functioning of an individual organism. The triggers of normal brain ageing are not well understood, even less so the factors which initiate and steer the neuronal degeneration, which underpin disorders such as dementia. A wealth of data on how nutrients and diets may support cognitive function and preserve brain health are available, yet the molecular mechanisms underlying their biological action in both normal ageing, age-related cognitive decline, and in the development of neurodegenerative disorders have not been clearly elucidated. This review aims to summarise the current state of knowledge of vulnerabilities that predispose towards dysfunctional brain ageing, highlight potential protective mechanisms, and discuss dietary interventions that may be used as therapies. A special focus of this paper is on the impact of nutrition on neuroprotection and the underlying molecular mechanisms, and this focus reflects the discussions held during the 2nd workshop 'Nutrition for the Ageing Brain: Functional Aspects and Mechanisms' in Copenhagen in June 2016. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). Coupling studies of cognitive ageing with studies investigating the effect of nutrition and dietary interventions as strategies targeting specific mechanisms, such as neurogenesis, protein clearance, inflammation, and non-coding and microRNAs is of high value. Future research on the impact of nutrition on cognitive ageing will need to adopt a longitudinal approach and multimodal nutritional interventions will likely need to be imposed in early-life to observe significant impact in older age. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Vulnerability and Inequality in an Increasingly Wetter World: A Namibia Case Study

    Science.gov (United States)

    Kelly, M.; Silva, J.; Mandl, D.; Sohlberg, R. A.

    2016-12-01

    Over the past two decades, Namibia has experienced increased instances of flooding that have grown in intensity and duration. Major flooding events in 2008 and 2009 displaced hundreds of thousands of people, causing thousands to remain in flood relocation camps for months at a time. Due to lack of topographic relief in the region, water tends to sit until it evaporates. Both inter-annual variability and changes in climate may lead to even greater rainfall and flooding in the future. In 2009, 29% of Namibians lived below the national poverty line (World Bank) and many make their living off of subsistence farming, as well as trading livestock. Using socio-economic data collected from the Namibia Household Income & Expenditure Survey (NHIES) reports by the Namibia Statistics Agency for the years 1993-1994, 2003-2004, and 2009-2010, and Landsat imagery for the corresponding years, we aim to characterize flood impact and flood vulnerability. Water coverage maps of Namibia were created for each time period using Landsat imagery overlain with socio-economic data to see how flooding impacts socio-variables such as income, inequality, access to livestock and grazing lands, and consumption over time. Because Namibia is not a data-rich environment, it is difficult to obtain the fine granularity of socio-data needed to put a dollar value on loss and vulnerability in flood prone areas. We hope the findings of this study will draw attention to these problems and allow us to access the data needed to more accurately characterize flood vulnerability in Namibia.

  19. Assessing Climate Vulnerabilities of Food Distribution Center Sites in Greater Boston and Their Regional Implications: Climate Adaptation Planning in Practice

    Science.gov (United States)

    Teferra, A.; Watson, C.; Douglas, E. M.

    2016-12-01

    The Metro Boston region, an area whose civic leaders have been at the forefront of climate resilience initiatives in recent years, is finalizing a flood vulnerability assessment of food distribution center sites located north of Boston, with the support of the University of Massachusetts Boston and the American Geophysical Union's Thriving Earth Exchange program. The community-scientist collaboration emerged because of the need for more local analyses of the area to inform climate resiliency policy and planning actions for the region. A significant amount of the metro region's food supply passes through two major distribution centers in the cities of Everett and Chelsea, just north of the Mystic River. The Metropolitan Area Planning Council (MAPC), on behalf of the Metro Boston Climate Preparedness Taskforce, is working with Chris Watson and Ellen Douglas of UMass Boston to build on existing analyses of the region's food system and climate vulnerabilities and to develop a report identifying flood risk exposure to the sites. The analysis brings in dynamic modeling techniques that incorporate storm surge and sea level rise projections under different climate scenarios, and aims to align methodologies with those of other regional analyses, such as Climate Ready Boston and the City of Cambridge's Vulnerability Assessment. The study is helping to inform MAPC's and the Metro Boston Climate Preparedness Taskforce's understanding of this critical food distribution infrastructure, illustrate the larger regional implications of climate impacts on food distribution in the Greater Boston area, and guide the development of site-specific strategies for addressing identified vulnerabilities.

  20. About climate changes impact on the Kazakhstan pastures

    International Nuclear Information System (INIS)

    Lebed', L.V.; Belenkova, Z.S.; Turbacheva, T.P.

    1997-01-01

    Assessment of arid pastures vulnerability situated under direct influence of regional climate change related with greenhouse effect is carried out on Northern Aral Sea area as example. Climate change variants calculated with future prospects for on Kazakhstan territory with use up-to-date models of GFDL (USA), CCCM (Canada) climate theory are used. Number of protective measures are proposed for mitigation of consequences of possible vulnerability of pastures during simultaneous impact of complex of anthropogenic and natural factors. (author)

  1. Landslide Vulnerability Assessment (LVAs: A Case Study from Kota Kinabalu, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Rodeano Roslee

    2016-12-01

    Full Text Available DOI: 10.17014/ijog.4.1.49-59The topic on Landslide Vulnerability Assessment (LVAs in Malaysia is relatively new and received little attention from geoscientists and engineers. This research paper tries to formulate the concept of LVAs by taking into account the science and socio-economic aspects. A new approach in vulnerability concept is also introduced herein. To achieve this goal, a framework was designed for assessing the LVAs. The framework was formulated semiquantitatively through the development of database for the risk elements (human and properties based on information from secondary data (technical reports, extensive review of literature, and field observations. The vulnerability parameters included in assessing LVAs are 1 physical implication (building structures, internal materials, property damage, infrastructural facilities, and stabilization actions, 2 social status (injury, fatalities, safety, loss of accommodation, and public awareness, and 3 interference on environment (affected period, daily operation, and diversity. Each considered parameter in the vulnerability assessment is allocated with a certain index value ranges from 0 (0 % damage/victims/period, 0.25 (1 - 25% damage/victims/period, 0.50 (26 - 50% damage/victims/period, 0.75 (51 - 75% damage/victims/period, and 1.00 (75 - 100% damage/victims/period. All of these parameters are compiled and analyzed with “Landslide Distribution Map” (LDM to generate a “Landslide Vulnerability Degree map (LVD”. The LDM was produced based on field studies and satellite image interpretations in order to locate the landslide locations in the studied area. Finally, three types of physical, human, and environment vulnerabilities were then classified into five classes of vulnerabilities, namely: Class 1 (< 0.20: Very Low Vulnerability; Class 2 (0.21 - 0.40: Low Vulnerability; Class 3 (0.41 - 0.60: Medium Vulnerability; Class 4 (0.61 - 0.80: High Vulnerability; and Class 5 (> 0.81: Very

  2. Temporal trends in human vulnerability to excessive heat

    Science.gov (United States)

    Sheridan, Scott C.; Allen, Michael J.

    2018-04-01

    Over recent decades, studies have examined various morbidity and mortality outcomes associated with heat exposure. This review explores the collective knowledge of the temporal trends of heat on human health, with regard to the hypothesis that humans are less vulnerable to heat events presently than in the past. Using Web of Science and Scopus, the authors identified all peer-reviewed articles that contained keywords on human impact (e.g. mortality, morbidity) and meteorological component (e.g. heat, heatwave). After sorting, a total of 71 articles, both case studies and epidemiological studies, contained explicit assessments of temporal trends in human vulnerability, and thus were used in this review. Most of the studies utilized mortality data, focused on the developed world, and showed a general decrease in heat sensitivity. Factors such as the implementation of a heat warning system, increased awareness, and improved quality of life were cited as contributing factors that led to the decreased impact of heat. Despite the overall recent decreases in heat vulnerability, spatial variability was shown, and differences with respect to health outcomes were also discussed. Several papers noted increases in heat’s impact on human health, particularly when unprecedented conditions occurred. Further, many populations, from outdoor workers to rural residents, in addition to the populations in much of the developing world, have been significantly underrepresented in research to date, and temporal changes in their vulnerability should be assessed in future studies. Moreover, continued monitoring and improvement of heat intervention is needed; with projected changes in the frequency, duration, and intensity of heat events combined with shifts in demographics, heat will remain a major public health issue moving forward.

  3. Drinking water vulnerability to climate change and alternatives for adaptation in coastal South and South East Asia.

    Science.gov (United States)

    Hoque, M A; Scheelbeek, P F D; Vineis, P; Khan, A E; Ahmed, K M; Butler, A P

    Drinking water in much of Asia, particularly in coastal and rural settings, is provided by a variety of sources, which are widely distributed and frequently managed at an individual or local community level. Coastal and near-inland drinking water sources in South and South East (SSE) Asia are vulnerable to contamination by seawater, most dramatically from tropical cyclone induced storm surges. This paper assesses spatial vulnerabilities to salinisation of drinking water sources due to meteorological variability and climate change along the (ca. 6000 km) coastline of SSE Asia. The risks of increasing climatic stresses are first considered, and then maps of relative vulnerability along the entire coastline are developed, using data from global scale land surface models, along with an overall vulnerability index. The results show that surface and near-surface drinking water in the coastal areas of the mega-deltas in Vietnam and Bangladesh-India are most vulnerable, putting more than 25 million people at risk of drinking 'saline' water. Climate change is likely to exacerbate this problem, with adverse consequences for health, such as prevalence of hypertension and cardiovascular diseases. There is a need for identifying locations that are most at risk of salinisation in order for policy makers and local officials to implement strategies for reducing these health impacts. To counter the risks associated with these vulnerabilities, possible adaptation measures are also outlined. We conclude that detailed and fine scale vulnerability assessments may become crucial for planning targeted adaptation programmes along these coasts.

  4. Localised hydrodynamics influence vulnerability of coral communities to environmental disturbances

    Science.gov (United States)

    Shedrawi, George; Falter, James L.; Friedman, Kim J.; Lowe, Ryan J.; Pratchett, Morgan S.; Simpson, Christopher J.; Speed, Conrad W.; Wilson, Shaun K.; Zhang, Zhenlin

    2017-09-01

    The movement of water can have a significant influence on the vulnerability of hermatypic corals to environmental disturbances such as cyclone damage, heat stress and anoxia. Here, we explore the relationship between small reef-scale water circulation patterns and measured differences in the abundance, composition and vulnerability of coral assemblages over decades. Changes in coral cover and community structure within Bill's Bay (Ningaloo Reef, Western Australia) over a 22-yr period, during which multiple disturbance events (including mass bleaching, anoxia, and tropical cyclones) have impacted the area, were compared with spatial variation in water residence times (WRT). We found that reef sites associated with longer water residence times (WRT >15 h) experienced higher rates of coral mortality during acute environmental disturbances compared to reef sites with shorter WRT. Shifts in coral community composition from acroporid to faviid-dominated assemblages were also more prominent at sites with long WRT compared to reef sites with shorter WRT, although shifts in community composition were also observed at sites close to shore. Interestingly, these same long-WRT sites also tended to have the fastest recovery rates so that coral cover was returned to original levels of approximately 20% over two decades. This study provides empirical evidence that spatial patterns in water circulation and flushing can influence the resilience of coral communities, thus identifying areas sensitive to emerging threats associated with global climate change.

  5. Social vulnerability assessment using spatial multi-criteria analysis (SEVI model and the Social Vulnerability Index (SoVI model – a case study for Bucharest, Romania

    Directory of Open Access Journals (Sweden)

    I. Armaș

    2013-06-01

    Full Text Available In recent decades, the development of vulnerability frameworks has enlarged the research in the natural hazards field. Despite progress in developing the vulnerability studies, there is more to investigate regarding the quantitative approach and clarification of the conceptual explanation of the social component. At the same time, some disaster-prone areas register limited attention. Among these, Romania's capital city, Bucharest, is the most earthquake-prone capital in Europe and the tenth in the world. The location is used to assess two multi-criteria methods for aggregating complex indicators: the social vulnerability index (SoVI model and the spatial multi-criteria social vulnerability index (SEVI model. Using the data of the 2002 census we reduce the indicators through a factor analytical approach to create the indices and examine if they bear any resemblance to the known vulnerability of Bucharest city through an exploratory spatial data analysis (ESDA. This is a critical issue that may provide better understanding of the social vulnerability in the city and appropriate information for authorities and stakeholders to consider in their decision making. The study emphasizes that social vulnerability is an urban process that increased in a post-communist Bucharest, raising the concern that the population at risk lacks the capacity to cope with disasters. The assessment of the indices indicates a significant and similar clustering pattern of the census administrative units, with an overlap between the clustering areas affected by high social vulnerability. Our proposed SEVI model suggests adjustment sensitivity, useful in the expert-opinion accuracy.

  6. Automating Flood Hazard Mapping Methods for Near Real-time Storm Surge Inundation and Vulnerability Assessment

    Science.gov (United States)

    Weigel, A. M.; Griffin, R.; Gallagher, D.

    2015-12-01

    Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the

  7. Assessing flash flood vulnerability using a multi-vulnerability approach

    Directory of Open Access Journals (Sweden)

    Karagiorgos Konstantinos

    2016-01-01

    Full Text Available In the framework of flood risk assessment, while the understanding of hazard and exposure has significantly improved over the last years, knowledge on vulnerability remains one of the challenges. Current approaches in vulnerability research are characterised by a division between social scientists and natural scientists. In order to close this gap, we present an approach that combines information on physical and social vulnerability in order to merge information on the susceptibility of elements at risk and society. With respect to physical vulnerability, the study is based on local-scale vulnerability models using nonlinear regression approaches. Modified Weibull distributions were fit to the data in order to represent the relationship between process magnitude and degree of loss. With respect to social vulnerability we conducted a door-to-door survey which resulted in particular insights on flood risk awareness and resilience strategies of exposed communities. In general, both physical and social vulnerability were low in comparison with other European studies, which may result from (a specific building regulations in the four Mediterranean test sites as well as general design principles leading to low structural susceptibility of elements at risk, and (b relatively low social vulnerability of citizens exposed. As a result it is shown that a combination of different perspectives of vulnerability will lead to a better understanding of exposure and capacities in flood risk management.

  8. The double tragedy of agriculture vulnerability to climate variability in Africa: How vulnerable is smallholder agriculture to rainfall variability in Ghana?

    Directory of Open Access Journals (Sweden)

    Emmanuel K. Derbile

    2016-04-01

    Full Text Available This article analysed vulnerability of smallholder agriculture to climate variability, particularly the alternating incidences of drought and heavy precipitation events in Ghana. Although there is an unmet need for understanding the linkages between climate change and livelihoods, the urgent need for climate change adaptation planning (CCAP in response to climate change makes vulnerability assessment even more compelling in development research. The data for analysis were collected from two complementary studies. These included a regional survey in the Upper West Region and an in-depth study in three selected communities in the Sissala East District. The results showed that smallholder agriculture is significantly vulnerable to climate variability in the region and that three layers of vulnerability can be identified in a ladder of vulnerability. Firstly, farmers are confronted with the double tragedy of droughts and heavy precipitation events, which adversely affect both crops and livestock. Secondly, farmers have to decide on crops for adaptation, but each option – whether indigenous crops, new early-maturing crops or genetically modified crops – predisposes farmers to a different set of risks. Finally, the overall impact is a higher-level vulnerability, namely the risk of total livelihood failure and food insecurity. The article recommended CCAP and an endogenous development (ED approach to addressing agriculture vulnerability to climate variability within the framework of decentralisation and local governance in Ghana. Keywords: Climate variability; agriculture; vulnerability; endogenous development; Ghana

  9. The Svalbard intertidal zone: a concept for the use of GIS in applied oil sensitivity, vulnerability and impact analyses

    International Nuclear Information System (INIS)

    Moe, K.A.; Skeie, G.M.; Brude, O.W.; Loevas, S.M.; Nedreboes, M.; Weslawski, J.M.

    2000-01-01

    Historical oil spills have shown that environmental damage on the seashore can be measured by acute mortality of single species and destabilisation of the communities. The biota, however, has the potential to recover over some period of time. Applied to the understanding of the fate of oil and population and community dynamics, the impact can be described by the function of the following two factors: the immediate extent and the duration of damage. A simple and robust mathematical model is developed to describe this process in the Svalbard intertidal. Based on the integral of key biological and physical factors, i.e., community specific sensitivity, oil accumulation and retention capacity of the substrate, ice-cover and wave exposure, the model is implemented by a Geographical Information System (GIS) for characterisation of the habitat's sensitivity and vulnerability. Geomorphologic maps and georeferenced biological data are used as input. Digital maps of intertidal zone are compiled, indicating the shoreline sensitivity and vulnerability in terms of coastal segments and grid aggregations. Selected results have been used in the national assessment programme of oil development in the Barents Sea for priorities in environmental impact assessments and risk analyses as well as oil spill contingency planning. (Author)

  10. Geospatial approach for assessment of biophysical vulnerability to agricultural drought and its intra-seasonal variations.

    Science.gov (United States)

    Sehgal, Vinay Kumar; Dhakar, Rajkumar

    2016-03-01

    The study presents a methodology to assess and map agricultural drought vulnerability during main kharif crop season at local scale and compare its intra-seasonal variations. A conceptual model of vulnerability based on variables of exposure, sensitivity, and adaptive capacity was adopted, and spatial datasets of key biophysical factors contributing to vulnerability were generated using remote sensing and GIS for Rajasthan State of India. Hazard exposure was based on frequency and intensity of gridded standardized precipitation index (SPI). Agricultural sensitivity was based on soil water holding capacity as well as on frequency and intensity of normalized difference vegetation index (NDVI)-derived trend adjusted vegetation condition index (VCITadj). Percent irrigated area was used as a measure of adaptive capacity. Agricultural drought vulnerability was derived separately for early, mid, late, and whole kharif seasons by composting rating of factors using linear weighting scheme and pairwise comparison of multi-criteria evaluation. The regions showing very low to extreme rating of hazard exposure, drought sensitivity, and agricultural vulnerability were identified at all four time scales. The results indicate that high to extreme vulnerability occurs in more than 50% of net sown area in the state and such areas mostly occur in western, central, and southern parts. The higher vulnerability is on account of non-irrigated croplands, moderate to low water holding capacity of sandy soils, resulting in higher sensitivity, and located in regions with high probability of rainfall deficiency. The mid and late season vulnerability has been found to be much higher than that during early and whole season. Significant correlation of vulnerability rating with food grain productivity, drought recurrence period, crop area damaged in year 2009 and socioeconomic indicator of human development index (HDI) proves the general soundness of methodology. Replication of this methodology

  11. Northeast and Midwest regional species and habitats at greatest risk and most vulnerable to climate impacts

    Science.gov (United States)

    Staudinger, Michelle D.; Hilberg, Laura; Janowiak, Maria; Swanton, C.O.

    2016-01-01

    The objectives of this Chapter are to describe climate change vulnerability, it’s components, the range of assessment methods being implemented regionally, and examples of training resources and tools. Climate Change Vulnerability Assessments (CCVAs) have already been conducted for numerous Regional Species of Greatest Conservation Need and their dependent 5 habitats across the Northeast and Midwest. This chapter provides a synthesis of different assessment frameworks, information on the locations (e.g., States) where vulnerability assessments were conducted, lists of individual species and habitats with their respective vulnerability rankings, and a comparison of how vulnerability rankings were determined among studies.

  12. Characteristics of areas of change and discharge of SAG with Rivera-Livramento and Quarai-Artigas.Vulnerability study in the Quarai-Artigas area influence

    International Nuclear Information System (INIS)

    Da Silva, J.; Camponogara, I.; Bessouat, C.

    2007-01-01

    This project focuses on development of the GAS vulnerability prioritization approach.It made a register of the wells (tubulado/hollow) and springs at the borderline Brazil/BR and Uruguay/UY.Using geographic information systems GIS was digitized from topographic Brazil charts at 1:25.000 scales.Were used SAD 69 and vertical Imbituba harbour (SC/BR) at UTM 57 grades WG. It was made the base map and new products one geologic and one topographic map.Were used software SPRING 4.2/INPE/Brasil.The spatial area in (R-/*L) 210.13 km2 and from (Q-A) with 244.80 km2 totalized. It was performed two fields works to determine baseline ground water quality and monitor water quality trends at 22 wells.Field parameters were made:pH, E.C., D.O., water and air temperature and the total alkalinity.At was made the analysis of major cations and anions, trace metals and REE. It was studied environmental isotopes analysis 2H, 18O and 3H too. The wells belonged to water distribution companies, to industries, domestic users and clubs.The range of pH variation was 5.16 to 7.52, from TDS 40 to 714 mg/L and alkalinity 9.26 to 267.27 mg/L.Based at TDS concentration (<1000 mg/L) the waters were considered fresh with small fluorine concentrations and chiefly calcium bicarbonate. They were made registers the point and non point source pollution. Were executed Geophysical prospection.At well were evaluated static level and from some wells were executed with GPS topographic and hand making one Digital Land Model.At (R/L) chiefly outcrops were from sedimentary rocks GAS and at (Q-A) chiefly from Serra Geral Formation. They were performed three masters staff from Brazilian students and two from Uruguayan.The vulnerability index studied from 81 wells using DRASTIC model were in the range extreme values (02 wells), high (27 wells) and vulnerable atrea values (52 wells)

  13. Ecosystem and human health impacts from increased corn production: vulnerability assessment of exposure to high nitrate concentrations in groundwater and blue baby syndrome

    Science.gov (United States)

    Garcia, V.; Cooter, E. J.

    2013-12-01

    The Renewable Fuel Standard (RFS) requires oil refiners to reach a target of 15 billion gallons of corn-based ethanol by 2022. However, there are concerns that the broad-scale use of corn as a source of ethanol may lead to unintended economic and environmental consequences. This study applies the geophysical relationships captured with linked meteorological, air quality and agriculture models to examine the impact of corn production before enactment of the RFS in 2002 and at the height of the RFS targets in 2022. In particular, we investigate the probability of high-levels of nitrate in groundwater resulting from increased corn production and then relate this vulnerability to the potential for infants to acquire Methemoglobinemia, or 'Blue Baby Syndrome'. Blue Baby Syndrome (BBS) is a potentially fatal condition that occurs when the hemoglobin (Fe2+) in an infant's red blood cells is oxidized to methemoglobin (Fe3+), preventing the uptake of oxygen from the baby's blood. Exposure to high levels of nitrate in groundwater occur near the intersection of areas where surface water can more readily leach into shallow aquifers, wells are the main source of drinking water, and high nitrogen inputs exist. We use a coupled meteorological, agricultural and air quality model to identify areas vulnerable to increased nitrate contamination and associated risk to acquiring BBS. We first verify the relationship between predictive variables (e.g., nitrogen deposition and fertilization rates, landcover, soils and aquifer type) and nitrate groundwater levels by applying a regression model to over 800 nitrate measurements taken from wells located throughout the US (Figure 1). We then apply the regression coefficients to the coupled model output to identify areas that are at an increased risk for high nitrate groundwater levels in 2022. Finally, we examine the potential change in risk for acquiring BBS resulting from increased corn production by applying an Oral Reference Dose (Rf

  14. Natural Hazards and Vulnerability in Valle de Chalco Solidaridad Estado de Mexico, Mexico. Case studies: El Triunfo, Avandaro and San Isidro

    Science.gov (United States)

    Ponce-Pacheco, A. B.; Novelo-Casanova, D. A.; Espinosa-Campos, O.; Rodriguez, F.; Huerta-Parra, M.; Reyes-Pimentel, T.; Benitez-Olivares, I.

    2010-12-01

    On February 5, 2010, occurred a fracture on a wall of the artificial water channel called “La Compañía (CC)” in the section of the municipality of Valle de Chalco Solidaridad (VCS), Estado de Mexico, Mexico. The dimensions of this fracture were 70m length, 20m wide and 5m height, and cause severe wastewater flooding that affected surrounding communities. This area was also impacted by a similar event in 2000 and 2005. In this study, we assess the social, economic, structural, and physical vulnerability to floods, earthquakes, subsidence, and landslides hazards in the communities of El Triunfo, San Isidro and Avandaro of VCS. This area is located in soil of the old Chalco Lake, and in recent decades has experienced a large population growth. Due to urban development and the overexploitation of aquifers, the zone is also exposed to subsidence up to 40 cm per year. For these reasons, CC is at present, well above ground level. In this research, we applied the methodology developed by the National Oceanic and Atmospheric Administration (NOAA) to assess vulnerability. As a first step, we established the level of exposure of the communities to the four main hazards. We also analyzed the economic and social vulnerability of the area using data collected from a field survey. From the total family houses in the studied communities, we estimated a minimum sample statistically significant and the households from this sample were selected randomly. We defined five levels of vulnerability: very low, low, moderate, high, and very high. Our results indicate that San Isidro is the community with the highest level of structural vulnerability, as for the physical vulnerability it was found that the homes most affected by flooding are those located close to CC but we did not found a direct relationship between the physical vulnerability and structural vulnerability. The main hazard to which the zone of study is exposed is flooding because its period of recurrence is about five

  15. Mapping vulnerability to multiple stressors: climate change and globalization in India

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Karen; Aandahl, Guro; Tompkins, Heather [CICERO, Oslo (NO)] (and others)

    2004-12-01

    There is growing recognition in the human dimensions research community that climate change impact studies must take into account the effects of other ongoing global changes. Yet there has been no systematic methodology to study climate change vulnerability in the context of multiple stressors. Using the example of Indian agriculture, this paper presents a methodology for investigating regional vulnerability to climate change in combination with other global stressors. This method, which relies on both vulnerability mapping and local- level case studies, may be used to assess differential vulnerability for any particular sector within a nation or region, and it can serve as a basis for targeting policy interventions. (Author)

  16. Archaeological Site Vulnerability Modelling: The Influence of High Impact Storm Events on Models of Shoreline Erosion in the Western Canadian Arctic

    Directory of Open Access Journals (Sweden)

    O’Rourke Michael J. E.

    2017-01-01

    Full Text Available Much of the Inuvialuit archaeological record is situated along shorelines of the western Canadian Arctic. These coastal sites are at substantial risk of damage due to a number of geomorphological processes at work in the region. The identification of threatened heritage remains is critical in the Mackenzie Delta, where landscape changes are taking place at an increasingly rapid pace. This paper outlines some preliminary observations from a research program directed toward identifying vulnerable archaeological remains within the Inuvialuit Settlement Region. Coastal erosion rates have been calculated for over 280 km of the Kugmallit Bay shoreline, extending along the eastern extent of Richards Island and neighbouring areas of the Tuktoyaktuk Peninsula. Helicopter surveys conducted during the 2014 field season confirmed that areas exposed to heavy erosive forces in the past continue to erode at alarming rates. Some of the calculated rates, however, have proven far too conservative. An extreme period of erosion at Toker Point in the autumn of 2013 has yielded a prime example of how increasingly volatile weather patterns can influence shoreline erosion models. It has also provided a case with which to demonstrate the value of using more recent, shorter time-interval imagery in assessing impacts to cultural landscapes.

  17. Assessing the impact of sea-level rise on a vulnerable coastal community in Accra, Ghana

    Directory of Open Access Journals (Sweden)

    Kwasi Appeaning Addo

    2013-08-01

    Full Text Available Climate change and its associated sea-level rise are expected to significantly affect vulnerable coastal communities. Although the extent of the impact will be localised, its assessment will adopt a monitoring approach that applies globally. The topography of the beach, the type of geological material and the level of human intervention will determine the extent of the area to be flooded and the rate at which the shoreline will move inland. Gleefe, a coastal community in Ghana, has experienced frequent flooding in recent times due to the increasing occurrence of storm surge and sea-level rise. This study used available geospatial data and field measurements to determine how the beach topography has contributed to the incidence of flooding at Gleefe. The topography is generally low-lying. Sections of the beach have elevations of around 1 m, which allows seawater to move inland during very high tide. Accelerated sea-level rise as predicted by the Intergovernmental Panel on Climate Change (IPCC will destroy homes of the inhabitants and inundate the Densu wetlands behind the beach. Destruction of infrastructure will render the inhabitants homeless, whilst flooding of the wetlands will destroy the habitats of migratory birds and some endangered wildlife species such as marine turtle. Effective adaptation measures should be adopted to protect this very important coastal environment, the ecology of the wetlands and the livelihoods of the community dwellers.

  18. Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia (Portugal

    Directory of Open Access Journals (Sweden)

    Paulo Fernandez

    2016-07-01

    Full Text Available Over the last decade, flood disasters have affected millions of people and caused massive economic losses. Social vulnerability assessment uses a combination of several factors to represent a population's differential access to resources and its ability to cope with and respond to hazards. In this paper, social vulnerability assessment to flood risk was applied to the third most populous Portuguese municipality. The study was developed at the neighbourhood level, allowing for social vulnerability analysis at inter civil parish, intra civil parish, and municipality scales. A geographic information system-based multicriteria decision analysis (GIS-MCDA was applied to social vulnerability and allows for an increased understanding and improved monitoring of social vulnerability over space, identifying ‘hot spots’ that require adaptation policies. Mafamude, Oliveira do Douro, Vila Nova de Gaia, and Avintes civil parishes display the greatest vulnerability to flooding. According to the most pessimistic scenario 57%–68% of the area of these civil parishes is classed at a high or very high level of social vulnerability. The GIS-MCDA helps to assess what and who is at risk, and where targeted impact-reduction strategies should be implemented. The results demonstrate the importance of an urban-scale approach instead of a river basin scale to urban flood risk management plans.

  19. Vulnerabilities in snakebites in Sao Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Rita Bertolozzi

    2015-01-01

    Full Text Available ABSTRACTOBJECTIVE To describe elements of vulnerability of victims of snakebite.METHODS This qualitative, descriptive, cross-sectional study had, as theoretical framework, the concept of vulnerability in individual, social, and programmatic dimensions. We interviewed 21 patients admitted into a hospital specialized in the care of accidents caused by venomous animals. The interviews were analyzed according to a discourse analysis technique.RESULTS Patients were mainly young men, living in remote countryside areas, where health services frequently have limited resources. We found social and individual conditions of vulnerability, such as precarious schooling, low professional qualification, housing without access to piped water, no sewage treated, and no regular garbage collection, and lack of knowledge on this health problem. Regarding the programmatic dimension, we found limited accessibility to the health services that could affect the prognosis and the frequency of sequelae and deaths.CONCLUSIONS Considering such vulnerabilities evoke the need to improve the program for control the Accidents by Venomous Animals and the training of health workers, we highlight the potential use of the concept of vulnerability, which may amplify the understanding and the recommendations for the practice and education related to snakebites.

  20. IMPACT2C: Quantifying projected impacts under 2°C warming

    Science.gov (United States)

    Jacob, D.; Kotova, L.; Impact2C Team

    2012-04-01

    Political discussions on the European goal to limit global warming to 2°C demand, that information is provided to society by the best available science on projected impacts and possible benefits. The new project IMPACT2C is supported by the European Commission's 7th Framework Programme as a 4 year large-scale integrating project. IMPACT2C is coordinated by the Climate Service Center, Helmholtz-Zentrum Geesthacht. IMPACT2C enhances knowledge, quantifies climate change impacts, and adopts a clear and logical structure, with climate and impacts modelling, vulnerabilities, risks and economic costs, as well as potential responses, within a pan-European sector based analysis. The project utilises a range of models within a multi-disciplinary international expert team and assesses effects on water, energy, infrastructure, coasts, tourism, forestry, agriculture, ecosystems services, and health and air quality-climate interactions. IMPACT2C introduces key innovations. First, harmonised socio-economic assumptions/scenarios will be used, to ensure that both individual and cross-sector assessments are aligned to the 2°C (1.5°C) scenario for both impacts and adaptation, e.g. in relation to land-use pressures between agriculture and forestry. Second, it has a core theme of uncertainty, and will develop a methodological framework integrating the uncertainties within and across the different sectors, in a consistent way. In so doing, analysis of adaptation responses under uncertainty will be enhanced. Finally, a cross-sectoral perspective is adopted to complement the sector analysis. A number of case studies will be developed for particularly vulnerable areas, subject to multiple impacts (e.g. the Mediterranean), with the focus being on cross-sectoral interactions (e.g. land use competition) and cross-cutting themes (e.g. cities). The project also assesses climate change impacts in some of the world's most vulnerable regions: Bangladesh, Africa (Nile and Niger basins), and the

  1. [Agro-household livelihood vulnerability and influence factors of ethnic villages under different geomorphology backgrounds.

    Science.gov (United States)

    Han, Wen Wen; Liu, Xiao Peng; Pei, Yin Bao; An, Qiong; Li, Yong Hong

    2016-04-22

    The vulnerability and influence factors of agro-household livelihood in Haiyuan County, Ningxia were empirically analyzed utilizing set pair analysis and obstacle degree model, based on field survey data of impoverished agro-households in 2014. Results showed that vulnerability of agro-household livelihood in Haiyuan County was high in general while it exhibited geomorphological and ethnical differences. Vulnerability of agro-households livelihood in plain areas, valleys and intermountain depression areas were lower than that in earth-rock areas, loess ridge areas and moderately high mountain landform areas. Moreover, vulnerability of agro-household livelihood was higher in mixed Hui and Han ethnic villages than in mono Hui or Han ethnic villages. The villagers' lacking of necessities and the stress of sensitive external geographical environment were considered to be the fundamental reasons of vulnerability of agro-household livelihood. The unreasonable livelihood structure and the unvariant livelihood strategy caused the long-term accumulation of livelihood vulnerabi-lity. The nature of the local environment, which was not easy to change, decreased the accessibility of poverty alleviation resources. Building a clear village water rights allocation system, the implementation of counterpart-assistance to educate impoverished families, increasing investment in improving the diversities of means of living, developing the chains of comprehensive commodity market among villages, were necessary to improve the response capability of agro-household livelihood. The management of vulnerability of agro-household livelihood should put the 'Extending Roads to Every Village Project' on a more prominent position in the 'Extending Radio and TV Broadcasting Coverage to Every Village Project'. Furthermore, the combination of meteorological disaster prevention and insurance enterprise disaster reduction should be sought, and the agricultural production insurance system should be

  2. Development of a Malicious Insider Composite Vulnerability Assessment Methodology

    National Research Council Canada - National Science Library

    King, William H

    2006-01-01

    .... There are very few vulnerability and impact models capable of providing information owners with the ability to comprehensively assess the effectiveness an organization's malicious insider mitigation strategies...

  3. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    Science.gov (United States)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for

  4. Comparison of environmental and socio-economic domains of vulnerability to flood hazards

    Science.gov (United States)

    Leidel, M.; Kienberger, S.; Lang, S.; Zeil, P.

    2009-04-01

    Socio-economic and environmental based vulnerability models have been developed within the research context of the FP6 project BRAHMATWINN. The conceptualisation of vulnerability has been defined in the project and is characterised as a function of sensitivity and adaptive capacity, where sensitivity is used to refer to systems that are susceptible to the impacts of environmental stress. Adaptive capacity is used to refer to systems or resources available to communities that could help them adapt or cope with the adverse consequences of environmental stresses in the recovery phase. In a wider context the approach reflects the wider objective and conceptualizations of the IPCC (Intergovernmental Panel on Climate Change) framework, where vulnerability is characterized as a component of overall risk. A methodology has been developed which delineates spatial units of vulnerability (VULNUS). These units share a specific common characteristic and allow the independent spatial modelling of a complex phenomena independent from administrative units and raster based approaches. An increasing detail of spatial data and complex decision problems require flexible means for scaled spatial representations, for mapping the dynamics and constant changes, and delivering the crucial information. Automated techniques of object-based image analysis (OBIA, Lang & Blaschke, 2006), capable of integrating a virtually unlimited set of spatial data sets, try to match the information extraction with our world view. To account for that, a flexible concept of manageable units is required. The term geon was proposed by Lang (2008) to describe generic spatial objects that are homogenous in terms of a varying spatial phenomena under the influence of, and partly controlled by, policy actions. The geon concept acts as a framework for the regionalization of continuous spatial information according to defined parameters of homogeneity. It is flexible in terms of a certain perception of a problem

  5. Urban Vulnerability and Climate Change in Africa

    DEFF Research Database (Denmark)

    Urbanisation and climate change are among the major challenges for sustainable development in Africa. The overall aim of this book is to present innovative approaches to vulnerability analysis and for enhancing the resilience of African cities against climate change-induced risks. Locally adapted...... explores the role of governance in successfully coping with climate-induced risks in urban areas. The book is unique in that it combines: a top-down perspective of climate change modeling with a bottom-up perspective of vulnerability assessment; quantitative approaches from engineering sciences...

  6. Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska

    Science.gov (United States)

    Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart; McGuire, A. David; Huntington, Orville; Duffy, Paul A.; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren

    2009-01-01

    This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.

  7. Proceedings of the conference days on 'Climate change impacts on coastal risks'

    International Nuclear Information System (INIS)

    Becker, M.; Meyssignac, B.; Llovel, W.; Cazenave, A.; Rogel, P.; Woppelmann, G.; Salas y Melia, D.; Morelatto, D.; Benoit, M.; Tiberi-Wadier, A.L.; Charles, E.; Thiebot, J.; Le Cozannet, G.; Pedreros, R.; Ardhuin, F.; Planton, S.; Balouin, Y.; Ferreira, O.; Ciavola, P.; Donato, V.; Walker, P.; Dubois, A.; Sedrati, M.; Menier, D.; Idier, D.; Balouin, Y.; Bohn Bertoldo, R.; Bouchette, F.; Boulahya, F.; Brivois, O.; Calvete, D.; Capo, S.; Castelle, B.; Certain, R.; Charles, E.; Chateauminois, E.; Delvallee, E.; Falques, A.; Fattal, P.; Larroude, P.; Lecacheux, S.; Garnier, R.; Hequette, A.; Maanan, M.; Mallet, C.; Maspataud, A.; Mays, C.; Oliveros, C.; Paillart, M.; Parisot, J.P.; Pedreros, R.; Poumadere, M.; Robin, N.; Ruz, M.H.; Robin, M.; Vinchon, C.; Capo, S.; Rihouey, D.; Howa, H.; Desmazes, F.; Fauque, L.; Maillet, G.; Vella, C.; Pelinovski, E.; Demory, F.; Canut, V.; Dussouillez, P.; Fleury, T.J.; Lecacheux, S.; Garcin, M.; Krien, Y.; Poisson, B.; Almar, R.; Senechal, N.; Bonneton, P.; Ennesser, Y.; Cataliotti, D.; Terrier, M.; Genovese, E.; Hallegatte, S.; Dumas, P.; Sauzeau, T.; Peret, J.; Zaninetti, J.M.; Vinchon, C.; Agenais, A.L.; Baron-Yelles, N.; Berthelier, E.; Garcin, M.; Herivaux, C.; Kuhfuss, L.; Maton, L.; Meur-Ferec, C.; Rey-Valette, H.; Charles, J.C.; Franquart, H.; Hellequin, A.P.; Marche, F.; Mazeiraud, V.; Nathan, F.; Romieu, E.; Rulleau, B.; Maton, L.; Rulleau, B.; Flanquart, H.; Balouin, Y.; Poumadere, M.; Deve, I.; Bouteau, F.; Aubie, S.; Mugica, J.; Hoareau, A.; Duvat, V.; Magnan, A.; Sergent, P.; Prevot, G.; Tissier, M.; Chazel, F.; Lannes, D.; Falques, A.; Ruessink, G.; Maspataud, A.; Ruz, M.H.; Vanhee, S.; Vanroye, C.; Elineau, S.; Duperret, A.; Mallet, P.; Caspar, R.; Bonnot-Courtois, C.; Perherin, C.; Roche, A.; Trmal, C.; Roux, I.; Pons, F.; Boura, C.; Devaux, E.; Desire, G.; Cayocca, F.; Le Hir, P.; Vinchon, C.; Andre, C.; Meur-Ferec, C.; Idier, D.; Rohmer, J.; Turpin, V.; Magnan, A.; Baillarin, F.; Galarraga, D.; Gardel, A.; Fromard, F.; Froidefond, J.M.; Lafon, V.; Proisy, C.; Walcker, R.; Mercier, F.; Pronier, O.; Dehouck, A.; Bertrand, F.; Goeldner-Gianella, L.

    2011-01-01

    This document gathers the articles of the presentations given during this conference about the climate change impacts on coastal risks: - Topic 1 - forcing changes: Regional sea level changes rebuilt for the last five decades; Sea level modeling in decennial and centennial experiments of the coupled CNRM-CERFACS model; Sea level state simulations in the Atlantic ocean between 1960 and 2100 for 3 climate change scenarios; Wave trends and characteristics variability in the Bay of Biscay from 1958 to 2001; Climate change impacts on storm events affecting the European coastline, the MICORE project; CECILE project: coastal environmental changes, impacts of sea level rise; Hydro-dynamism of a meso-tidal bay-shore in modal conditions and in storm conditions, Suscinio Bay, South-Brittany; - Topic 2 - impacts on unforeseen turns of events: VULSACO - vulnerability of sandy coastal systems in front of climate changes and anthropic pressures, methods, tools, results and lessons learnt; Climate change vulnerability with a 2DH modeling on 4 French beaches; Analysis of the 'Truc-Vert' beach (Gironde) evolution over a decennial period, link with the North Atlantic Oscillation (NAO); Impact of the reduction of the Rhone river solid fraction on the delta coastline mobility since the Little Ice Age; Mega-blocs of the eastern side of the Fos Gulf as markers of exceptional SW-oriented storms; Implementation of a multi-model approach to evaluate the Languedoc coast exposure to marine submersions in a climate change context; Continuous video observation of the littoral: multi-scales and multi-processes; - Topic 3 - Socio-economic impacts: Climate change and coastal risk evaluation in North Africa; Assessment of damage from storm surge and sea level rise to coastal cities: lessons from the Miami area; Construction and environmental protection of centre-west Atlantic coastal communities: contribution of geo-history; Consideration of climate change effects in new coastal protection schemes

  8. A framework for modeling scenario-based barrier island storm impacts

    Science.gov (United States)

    Mickey, Rangley; Long, Joseph W.; Dalyander, P. Soupy; Plant, Nathaniel G.; Thompson, David M.

    2018-01-01

    Methods for investigating the vulnerability of existing or proposed coastal features to storm impacts often rely on simplified parametric models or one-dimensional process-based modeling studies that focus on changes to a profile across a dune or barrier island. These simple studies tend to neglect the impacts to curvilinear or alongshore varying island planforms, influence of non-uniform nearshore hydrodynamics and sediment transport, irregular morphology of the offshore bathymetry, and impacts from low magnitude wave events (e.g. cold fronts). Presented here is a framework for simulating regionally specific, low and high magnitude scenario-based storm impacts to assess the alongshore variable vulnerabilities of a coastal feature. Storm scenarios based on historic hydrodynamic conditions were derived and simulated using the process-based morphologic evolution model XBeach. Model results show that the scenarios predicted similar patterns of erosion and overwash when compared to observed qualitative morphologic changes from recent storm events that were not included in the dataset used to build the scenarios. The framework model simulations were capable of predicting specific areas of vulnerability in the existing feature and the results illustrate how this storm vulnerability simulation framework could be used as a tool to help inform the decision-making process for scientists, engineers, and stakeholders involved in coastal zone management or restoration projects.

  9. Using Remotely Sensed Data to Map Urban Vulnerability to Heat

    Science.gov (United States)

    Stefanov, William L.

    2010-01-01

    This slide presentation defines remote sensing, and presents examples of remote sensing and astronaut photography, which has been a part of many space missions. The presentation then reviews the project aimed at analyzing urban vulnerability to climate change, which is to test the hypotheses that Exposure to excessively warm weather threatens human health in all types of climate regimes; Heat kills and sickens multitudes of people around the globe every year -- directly and indirectly, and Climate change, coupled with urban development, will impact human health. Using Multiple Endmember Spectral Mixing Analysis (MESMA), and the Phoenix urban area as the example, the Normalized Difference Vegetation Index (NDVI) is calculated, a change detection analysis is shown, and surface temperature is shown.

  10. Earthquake and Physical and Social Vulnerability Assessment for Settlements: Case Study Avcılar District

    Directory of Open Access Journals (Sweden)

    Görün ARUN

    2010-01-01

    Full Text Available Many settled areas in Turkey and across the globe suffer economical and social losses resulting from natural disasters such as earthquakes, floods, hurricanes and landslides. In this study, a vulnerability assessment model has been developed for earthquake prone areas in Turkey. The vulnerability assessment model includes ground factors, a building’s physical conditions, building evacuation and social (demographic and socioeconomic aspects of the settlement. The ground vulnerability factor is calculated using factors such as the earthquake zone, soil classification, land sliding and liquefaction threats. The physical vulnerability factor depends on the structural and non-structural threats of the building; the building evacuation vulnerability factor includes the position and structural system of the staircase, the width and natural illumination of the evacuation route, the size and opening of the building exit doors to the street and the distance of the building to the closest open area. The social vulnerability factor considers the age group, gender, family type, education, ownership, income etc of the building users. This vulnerability assessment model is applied to a case study - that of the Avcılar district of Istanbul. Forty different reinforced concrete residential buildings (349 apartments of 1225 people are assessed using the develop checklist. In order to evaluate the checklist and to assess the importance (relevance of vulnerability factors, a questionnaire is forwarded to various related professional groups (architecture, urban planning and civil engineering. The results of the questionnaire are examined using SPSS software with factor analysis. According to the results, most of the samples in the case study area can be classified as high vulnerable.

  11. Coastal Vulnerability and risk assessment of infrastructures, natural and cultural heritage sites in Greece.

    Science.gov (United States)

    Alexandrakis, George; Kampanis, Nikolaos

    2016-04-01

    The majority of human activities are concentrated around coastal areas, making coastline retreat, a significant threat to coastal infrastructure, thus increasing protection cost and investment revenue losses. In this study the management of coastal areas in terms of protecting coastal infrastructures, cultural and environmental heritage sites, through risk assessment analysis is been made. The scope is to provide data for spatial planning for future developments in the coastal zone and the protection of existing ones. Also to determine the impact of coastal changes related to the loss of natural resources, agricultural land and beaches. The analysis is based on a multidisciplinary approach, combining environmental, spatial and economic data. This can be implemented by integrating the assessment of vulnerability of coasts, the spatial distribution and structural elements of coastal infrastructure (transport, tourism, and energy) and financial data by region, in a spatial database. The approach is based on coastal vulnerability estimations, considering sea level rise, land loss, extreme events, safety, adaptability and resilience of infrastructure and natural sites. It is based on coupling of environmental indicators and econometric models to determine the socio-economic impact in coastal infrastructure, cultural and environmental heritage sites. The indicators include variables like the coastal geomorphology; coastal slope; relative sea-level rise rate; shoreline erosion/accretion rate; mean tidal range and mean wave height. The anthropogenic factors include variables like settlements, sites of cultural heritage, transport networks, land uses, significance of infrastructure (e.g. military, power plans) and economic activities. The analysis in performed by a GIS application. The forcing variables are determined with the use of sub-indices related to coastal geomorphology, climate and wave variables and the socioeconomics of the coastal zone. The Greek coastline in

  12. Flood vulnerability of critical infrastructure in Cork, Ireland

    Directory of Open Access Journals (Sweden)

    de Bruijn Karin M.

    2016-01-01

    Full Text Available Recent flood events in Ireland and particularly in County Cork have caused significant disruption to health service provisions, interruption of water and power supplies, and damage to roads and other transportation infrastructure, affecting the lives of hundreds of thousands of people over a prolonged period of weeks. These events clearly reveal- the vulnerability of the critical infrastructure to flooding and the dependence of society on critical infrastructure. In order to reduce the flood vulnerability and increase the resilience of the critical infrastructure networks in the future, detailed evidence-based analysis and assessment is essential. To this end a case study has been carried out on Cork City which analyses this vulnerability as it was in 2009, and as it is currently, and identifies adaptation options to reduce the future vulnerability of critical infrastructure to flooding and to build a more resilient society. This paper describes the storyline approach and CIrcle tool and their application to Cork City which focused on the analysis of the flood vulnerability of critical infrastructure and the impacts of failure of the infrastructure for other critical functions and on society.

  13. Vulnerability mapping in kelud volcano based on village information

    Science.gov (United States)

    Hisbaron, D. R.; Wijayanti, H.; Iffani, M.; Winastuti, R.; Yudinugroho, M.

    2018-04-01

    Kelud Volcano is a basaltic andesitic stratovolcano, situated at 27 km to the east of Kediri, Indonesia. Historically, Kelud Volcano has erupted with return period of 9-75 years, had caused nearly 160,000 people living in Tulungagung, Blitar and Kediri District to be in high-risk areas. This study aims to map vulnerability towards lava flows in Kediri and Malang using detailed scale. There are four major variables, namely demography, asset, hazard, and land use variables. PGIS (Participatory Geographic Information System) is employed to collect data, while ancillary data is derived from statistics information, interpretation of high resolution satellite imagery and Unmanned Aerial Vehicles (UAVs). Data were obtained from field checks and some from high resolution satellite imagery and UAVs. The output of this research is village-based vulnerability information that becomes a valuable input for local stakeholders to improve local preparedness in areas prone to improved disaster resilience. The results indicated that the highest vulnerability to lava flood disaster in Kelud Volcano is owned by Kandangan Hamlet, Pandean Hamlet and Kacangan Hamlet, because these two hamlets are in the dominant high vulnerability position of 3 out of 4 scenarios (economic, social and equal).

  14. An Evaluation of Methods for Assessing Vulnerability of Army Installations toImpacts of Climate Change on Listed and At-Risk Species

    Science.gov (United States)

    2017-07-01

    restoration , waste management, and environmental compliance (BRAC 2005). However, cli- mate change impacts have not been addressed to date. DoD concerns...mission assignments, BRAC military value attributes and installation rankings, conservation funding investments, and alternative mitigation strategy...about climate change vulnerability, but was instead based on the number of species on installations, the conservation status of these species (i.e

  15. Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model

    International Nuclear Information System (INIS)

    Wang, Bing; Liang, Xiao-Jie; Zhang, Hao; Wang, Lu; Wei, Yi-Ming

    2014-01-01

    This paper analyzes the long-term relationships between hydropower generation and climate factors (precipitation), hydropower generation capacity (installed capacity of hydropower station) to quantify the vulnerability of renewable energy production in China for the case of hydropower generation. Furthermore, this study applies Grey forecasting model to forecast precipitation in different provinces, and then sets up different scenarios for precipitation based on the IPCC Special Report on Emission Scenarios and results from PRECIS (Providing Regional Climate projections for Impacts Studies) model. The most important result found in this research is the increasing hydropower vulnerability of the poorest regions and the main hydropower generation provinces of China to climate change. Other main empirical results reveal that the impacts of climate change on the supply of hydropower generation in China will be noteworthy for the society. Different scenarios have different effects on hydropower generation, of which A2 scenario (pessimistic, high emission) has the largest. Meanwhile, the impacts of climate change on hydropower generation of every province are distinctly different, of which the Southwest part has the higher vulnerability than the average level while the central part lower. - Highlights: • The hydropower vulnerability will be enlarged with the rapid increase of hydropower capacity. • Modeling the vulnerability of hydropower in different scenarios and different provinces. • The increasing hydropower vulnerability of the poorest regions to climate change. • The increasing hydropower vulnerability of the main hydropower generation provinces. • Rainfall pattern caused by climate change would be the reason for the increasing vulnerability

  16. A knowledge integration approach to flood vulnerability

    Science.gov (United States)

    Mazzorana, Bruno; Fuchs, Sven

    2014-05-01

    Understanding, qualifying and quantifying vulnerability is an essential need for implementing effective and efficient flood risk mitigation strategies; in particular if possible synergies between different mitigation alternatives, such as active and passive measures, should be achieved. In order to combine different risk management options it is necessary to take an interdisciplinary approach to vulnerability reduction, and as a result the affected society may be willing to accept a certain degree of self-responsibility. However, due to differing mono-disciplinary approaches and regional foci undertaken until now, different aspects of vulnerability to natural hazards in general and to floods in particular remain uncovered and as a result the developed management options remain sub-optimal. Taking an even more fundamental viewpoint, the empirical vulnerability functions used in risk assessment specifically fail to capture physical principles of the damage-generating mechanisms to the build environment. The aim of this paper is to partially close this gap by discussing a balanced knowledge integration approach which can be used to resolve the multidisciplinary disorder in flood vulnerability research. Modelling techniques such as mathematical-physical modelling of the flood hazard impact to and response from the building envelope affected, and formative scenario analyses of possible consequences in terms of damage and loss are used in synergy to provide an enhanced understanding of vulnerability and to render the derived knowledge into interdisciplinary mitigation strategies. The outlined formal procedure allows for a convincing knowledge alignment of quantified, but partial, information about vulnerability as a result of the application of physical and engineering notions and valuable, but often underspecified, qualitative argumentation strings emerging from the adopted socio-economic viewpoint.

  17. Assessing local vulnerability to climate change in Ecuador.

    Science.gov (United States)

    Fernandez, Mario Andres; Bucaram, Santiago J; Renteria, Willington

    2015-01-01

    Vulnerability assessments have become necessary to increase the understanding of climate-sensitive systems and inform resource allocation in developing countries. Challenges arise when poor economic and social development combines with heterogeneous climatic conditions. Thus, finding and harmonizing good-quality data at local scale may be a significant hurdle for vulnerability research. In this paper we assess vulnerability to climate change at a local level in Ecuador. We take Ecuador as a case study as socioeconomic data are readily available. To incorporate the spatial and temporal pattern of the climatic variables we use reanalysis datasets and empirical orthogonal functions. Our assessment strategy relies on the statistical behavior of climatic and socioeconomic indicators for the weighting and aggregation mechanism into a composite vulnerability indicator. Rather than assuming equal contribution to the formation of the composite indicator, we assume that the weights of the indicators vary inversely as the variance over the cantons (administrative division of Ecuador). This approach captures the multi-dimensionality of vulnerability in a comprehensive form. We find that the least vulnerable cantons concentrate around Ecuador's largest cities (e.g. Quito and Guayaquil); however, approximately 20 % of the national population lives in other cantons that are categorized as highly and very highly vulnerable to climate change. Results also show that the main determinants of high vulnerability are the lack of land tenure in agricultural areas and the nonexistence of government-funded programs directed to environmental and climate change management.

  18. Vulnerability Analysis of Urban Drainage Systems: Tree vs. Loop Networks

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-03-01

    Full Text Available Vulnerability analysis of urban drainage networks plays an important role in urban flood management. This study analyzes and compares the vulnerability of tree and loop systems under various rainfall events to structural failure represented by pipe blockage. Different pipe blockage scenarios, in which one of the pipes in an urban drainage network is assumed to be blocked individually, are constructed and their impacts on the network are simulated under different storm events. Furthermore, a vulnerability index is defined to measure the vulnerability of the drainage systems before and after the implementation of adaptation measures. The results obtained indicate that the tree systems have a relatively larger proportion of critical hydraulic pipes than the loop systems, thus the vulnerability of tree systems is substantially greater than that of the loop systems. Furthermore, the vulnerability index of tree systems is reduced after they are converted into a loop system with the implementation of adaptation measures. This paper provides an insight into the differences in the vulnerability of tree and loop systems, and provides more evidence for development of adaptation measures (e.g., tanks to reduce urban flooding.

  19. Mapping eco-environmental vulnerability patterns: An assessment framework based on remote sensing, GIS, and AHP

    Science.gov (United States)

    Anh, N. K.; Liou, Y. A.; Li, M. H.

    2016-12-01

    The motivation for this study is assessment of the eco-environment vulnerability based on four independent determinants: hydro-meteorology, topography, land resources, and human activities. An assessment framework is proposed to assess the vulnerable eco-environment by using 16 variables with 6 of them constructed from Landsat 8 satellite images. The remaining variables were extracted from digital maps. Each variable was evaluated and spatially mapped with the aid of an analytical hierarchy process (AHP) and geographical information system (GIS). The Thua Thien - Hue Province that has been experiencing natural disasters and urbanization in the recent decades is selected as our study area. An eco-environmental vulnerability map is assorted into six vulnerable levels consisting of potential, slight, light, medium, heavy, and very heavy vulnerabilities, representing 14%, 27%, 17%, 26%, 13%, 3% of the study area, respectively. It is found that heavy and very heavy vulnerable areas appear mainly in the low and medium lands with high intensification of social-economic activities and often suffer from flooding. Tiny percentages of medium and heavy vulnerable levels occur in high land areas probably caused by agricultural practices in highlands, slash and burn cultivation and removal of natural forests with new plantation forests and these regions are usually influenced by landslides, flash flooding. Based on our results, three ecological zones requiring different development and protection solutions are proposed to restore local eco-environment toward sustainable development. Our findings support the idea that eco-environmental vulnerability is driven by anthropogenic processes and enhanced by natural disaster in the Thua Thien-Hue Province.

  20. Vulnerability

    NARCIS (Netherlands)

    Issa, Sahar; van der Molen, Irna; Stel, Nora

    2015-01-01

    This chapter reviews the literature on vulnerability. Together with Chapter 3, that offers a literature review specifically focused on resilience, it lays the conceptual foundations for the empirical chapters in this edited volume. Vulnerability symbolizes the susceptibility of a certain system to

  1. Potential of 3D City Models to assess flood vulnerability

    Science.gov (United States)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  2. Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, Southwestern Nigeria

    Science.gov (United States)

    Oni, T. E.; Omosuyi, G. O.; Akinlalu, A. A.

    2017-12-01

    Groundwater vulnerability assessment was carried out at Igbara Oke Southwestern Nigeria, with a view to classify the area into vulnerability zones, by applying the electrical resistivity method, using Schlumberger electrode arrays with maximum electrode separation (AB/2) of 65 m in (41) different locations for data acquisition. Geoelectric parameters (layer resistivity and thickness) were determined from the interpreted data. The study area comprises four geoelectric layers (topsoil, lateritic layer, weathered/fractured layer and fresh basement). The geoelectric parameters of the overlying layers across the area were used to assess the vulnerability of the underlying aquifers to near-surface contaminants with the aid of vulnerability maps generated. Three models were compared by maps using geo-electrically derived models; longitudinal conductance, GOD (groundwater occurrence, overlying lithology and depth to the aquifer) and GLSI (geoelectric layer susceptibility indexing). The total longitudinal conductance map shows the north central part of the study area as a weakly protected (0.1-0.19) area, while the northern and southern parts have poor protective capacity (septic tank, refuse dump should be cited far from groundwater development area.

  3. Flood/Typhoon vulnerability indicators of nuclear power plant in South Korea considering climate change impacts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyu Min; Jun, Kyung Soo [Sungkyunkwan Univ., Suwon (Korea, Republic of); Chung, Eun Sung [Seoul National Univ of Science and technology, Seoul (Korea, Republic of); Min, Byung Il; Suh, Kyung Suk [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The Republic of Korea lies in the principal course of the typhoon that is occurred to the Pacific Northwest. It has distinct monsoon wind, a rainy period from the East Asian Monsoon locally called 'Changma', typhoon, and while often heavy snowfalls in winter. It belongs to a relatively wet region due to much more precipitation than that of the world average. In the last 10 years, there frequently was a lot of damage due to flooding with typhoon. In particular, the damage was estimated at up to 5,000 billion KRW by the USA in 2002. Lately, after the 9.0 magnitude earthquake and resultant tsunami hit Japan on March 11, 2011, consecutively approached Typhoon Ro ke made a larger threat. Although it fortunately passed without significant impact. That is, not only typhoon and flood are one of a threat to nuclear power plant but also it could lead to overwhelming damage when it overlapped the other accident. Therefore, flood/typhoon vulnerability assessment could provide important information for the safety management of nuclear power plants. This study derived all the feasible indicators and their corresponding weights for a Flood/Typhoon Vulnerability Index (FTVI) to nuclear power plant considering climate change. In addition selection of the candidates and determination of their weights were estimated using a Delphi process, which is an advanced method for opinion measurement.

  4. Flood vulnerability: Impending danger in Sabon-Gari Minna, Niger ...

    African Journals Online (AJOL)

    This study examines the vulnerability of buildings to flooding and the danger posed at Sabo Gari area of Minna, Niger State. Sabon-Gari which is one of the 22 neighborhoods found in Minna is a highly populated area as people who cannot afford to stay in the low density areas (Government Reserve Area - G.R.A) move to ...

  5. Groundwater vulnerability to climate change: A review of the assessment methodology.

    Science.gov (United States)

    Aslam, Rana Ammar; Shrestha, Sangam; Pandey, Vishnu Prasad

    2018-01-15

    Impacts of climate change on water resources, especially groundwater, can no longer be hidden. These impacts are further exacerbated under the integrated influence of climate variability, climate change and anthropogenic activities. The degree of impact varies according to geographical location and other factors leading systems and regions towards different levels of vulnerability. In the recent past, several attempts have been made in various regions across the globe to quantify the impacts and consequences of climate and non-climate factors in terms of vulnerability to groundwater resources. Firstly, this paper provides a structured review of the available literature, aiming to critically analyse and highlight the limitations and knowledge gaps involved in vulnerability (of groundwater to climate change) assessment methodologies. The effects of indicator choice and the importance of including composite indicators are then emphasised. A new integrated approach for the assessment of groundwater vulnerability to climate change is proposed to successfully address those limitations. This review concludes that the choice of indicator has a significant role in defining the reliability of computed results. The effect of an individual indicator is also apparent but the consideration of a combination (variety) of indicators may give more realistic results. Therefore, in future, depending upon the local conditions and scale of the study, indicators from various groups should be chosen. Furthermore, there are various assumptions involved in previous methodologies, which limit their scope by introducing uncertainty in the calculated results. These limitations can be overcome by implementing the proposed approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  7. A database of volcanic hazards and their physical impacts to critical infrastructure

    Science.gov (United States)

    Wilson, Grant; Wilson, Thomas; Deligne, Natalia

    2013-04-01

    Approximately 10% of the world's population lives within 100 km of historically active volcanoes. Consequently, considerable critical infrastructure is at risk of being affected by volcanic eruptions, where critical infrastructure includes: electricity and wastewater networks; water supply systems; transport routes; communications; and buildings. Appropriate risk management strategies are required to minimise the risk to infrastructure, which necessitates detailed understanding of both volcanic hazards and infrastructure parameters and vulnerabilities. To address this, we are developing a database of the physical impacts and vulnerability of critical infrastructure observed during/following historic eruptions, placed in the context of event-specific volcanic hazard and infrastructure parameters. Our database considers: volcanic hazard parameters for each case study eruption (tephra thickness, dynamic pressure of PDCs, etc.); inventory of infrastructure elements present within the study area (geographical extent, age, etc.); the type and number of impacts and disruption caused to particular infrastructure sectors; and the quantified assessment of the vulnerability of built environments. Data have been compiled from a wide range of literature, focussing in particular on impact assessment studies which document in detail the damage sustained by critical infrastructure during a given eruption. We are creating a new vulnerability ranking to quantify the vulnerability of built environments affected by volcanic eruptions. The ranking is based upon a range of physical impacts and service disruption criteria, and is assigned to each case study. This ranking will permit comparison of vulnerabilities between case studies as well as indicate expected vulnerability during future eruptions. We are also developing hazard intensity thresholds indicating when specific damage states are expected for different critical infrastructure sectors. Finally, we have developed a data quality

  8. Climate volatility deepens poverty vulnerability in developing countries

    Science.gov (United States)

    Ahmed, Syud A.; Diffenbaugh, Noah S.; Hertel, Thomas W.

    2009-07-01

    Extreme climate events could influence poverty by affecting agricultural productivity and raising prices of staple foods that are important to poor households in developing countries. With the frequency and intensity of extreme climate events predicted to change in the future, informed policy design and analysis requires an understanding of which countries and groups are going to be most vulnerable to increasing poverty. Using a novel economic-climate analysis framework, we assess the poverty impacts of climate volatility for seven socio-economic groups in 16 developing countries. We find that extremes under present climate volatility increase poverty across our developing country sample—particularly in Bangladesh, Mexico, Indonesia, and Africa—with urban wage earners the most vulnerable group. We also find that global warming exacerbates poverty vulnerability in many nations.

  9. Climate volatility deepens poverty vulnerability in developing countries

    International Nuclear Information System (INIS)

    Ahmed, Syud A; Diffenbaugh, Noah S; Hertel, Thomas W

    2009-01-01

    Extreme climate events could influence poverty by affecting agricultural productivity and raising prices of staple foods that are important to poor households in developing countries. With the frequency and intensity of extreme climate events predicted to change in the future, informed policy design and analysis requires an understanding of which countries and groups are going to be most vulnerable to increasing poverty. Using a novel economic-climate analysis framework, we assess the poverty impacts of climate volatility for seven socio-economic groups in 16 developing countries. We find that extremes under present climate volatility increase poverty across our developing country sample-particularly in Bangladesh, Mexico, Indonesia, and Africa-with urban wage earners the most vulnerable group. We also find that global warming exacerbates poverty vulnerability in many nations.

  10. Living in Harmony with Disaster: Exploring Volcanic Hazard Vulnerability in Indonesia

    Directory of Open Access Journals (Sweden)

    Sea Eun Cho

    2016-08-01

    Full Text Available This article illustrates the multi-faceted notion of hazard vulnerability and the complicated relations a community has with a hazardous area based on a joint urban planning and design studio between Seoul National University and Diponegoro University in 2014. The study focused on an area in Central Java, Indonesia, surrounded by four active volcanic mountains, and explored the economic, environmental and social vulnerability associated with the site. Although initially the study focused on drawing up and improving the relocation plan, it was soon discovered that eliminating environmental vulnerability by relocating residents to new sites may in fact increase their economic vulnerability. This led the study to embrace the concept of living in harmony with disaster. In conclusion, the results of the study are discussed in terms recognizing environmental hazards as a vehicle for understanding local perceptions, and utilizing these perceptions to suggest mitigation measures that are more responsive to the site at risk.

  11. Expecting a boomtown? Exploring potential housing – related impacts of large scale resource developments in Darwin

    Directory of Open Access Journals (Sweden)

    Gretchen Ennis

    2013-05-01

    Full Text Available Darwin is a city in the Northern Territory of Australia expecting a ‘boomtown’ scenario due to significant natural resource developments in the Greater Darwin area. The experience of ‘booming’ has a range of impacts upon communities. Housing is a key area of impact, particularly for the most vulnerable members of a population, who may not reap the benefits of the ‘boom’. In Darwin, new resource developments will begin in the context of record high house prices, high rents and high homelessness rates. This literature review explores what is known about the housing-related impacts of boomtowns and considers the likely housing-related impacts of a boomtown scenario in Darwin. While the city’s diverse economy and population size may provide some insulation from severe boomtown impacts, housing availability and affordability is likely to be negatively impacted. The implications of this for the most vulnerable members of the greater Darwin population require careful consideration.

  12. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Science.gov (United States)

    Lapidez, J. P.; Tablazon, J.; Dasallas, L.; Gonzalo, L. A.; Cabacaba, K. M.; Ramos, M. M. A.; Suarez, J. K.; Santiago, J.; Lagmay, A. M. F.; Malano, V.

    2015-07-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH) which is the flagship disaster mitigation program of the Department of Science and Technology (DOST) of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  13. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Directory of Open Access Journals (Sweden)

    J. P. Lapidez

    2015-07-01

    Full Text Available Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH which is the flagship disaster mitigation program of the Department of Science and Technology (DOST of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948–2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  14. A Preliminary Tsunami Vulnerability Analysis for Yenikapi Region in Istanbul

    Science.gov (United States)

    Ceren Cankaya, Zeynep; Suzen, Lutfi; Cevdet Yalciner, Ahmet; Kolat, Cagil; Aytore, Betul; Zaytsev, Andrey

    2015-04-01

    One of the main requirements during post disaster recovery operations is to maintain proper transportation and fluent communication at the disaster areas. Ports and harbors are the main transportation hubs which must work with proper performance at all times especially after the disasters. Resilience of coastal utilities after earthquakes and tsunamis have major importance for efficient and proper rescue and recovery operations soon after the disasters. Istanbul is a mega city with its various coastal utilities located at the north coast of the Sea of Marmara. At Yenikapi region of Istanbul, there are critical coastal utilities and vulnerable coastal structures and critical activities occur daily. Fishery ports, commercial ports, small craft harbors, passenger terminals of intercity maritime transportation, water front commercial and/or recreational structures are some of the examples of coastal utilization which are vulnerable against marine disasters. Therefore their vulnerability under tsunami or any other marine hazard to Yenikapi region of Istanbul is an important issue. In this study, a methodology of vulnerability analysis under tsunami attack is proposed with the applications to Yenikapi region. In the study, high resolution (1m) GIS database of Istanbul Metropolitan Municipality (IMM) is used and analyzed by using GIS implementation. The bathymetry and topography database and the vector dataset containing all buildings/structures/infrastructures in the study area are obtained for tsunami numerical modeling for the study area. GIS based tsunami vulnerability assessment is conducted by applying the Multi-criteria Decision Making Analysis (MCDA). The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability parameters in the region due to two different classifications i) vulnerability of buildings/structures and ii) vulnerability of (human) evacuation

  15. The impact of the 2008 financial crisis on food security and food expenditures in Mexico: a disproportionate effect on the vulnerable.

    Science.gov (United States)

    Vilar-Compte, Mireya; Sandoval-Olascoaga, Sebastian; Bernal-Stuart, Ana; Shimoga, Sandhya; Vargas-Bustamante, Arturo

    2015-11-01

    The present paper investigated the impact of the 2008 financial crisis on food security in Mexico and how it disproportionally affected vulnerable households. A generalized ordered logistic regression was estimated to assess the impact of the crisis on households' food security status. An ordinary least squares and a quantile regression were estimated to evaluate the effect of the financial crisis on a continuous proxy measure of food security defined as the share of a household's current income devoted to food expenditures. Setting Both analyses were performed using pooled cross-sectional data from the Mexican National Household Income and Expenditure Survey 2008 and 2010. The analytical sample included 29,468 households in 2008 and 27,654 in 2010. The generalized ordered logistic model showed that the financial crisis significantly (Pcrisis significantly (Pcrisis were more profound among poorer households. The results suggest that households that were more vulnerable before the financial crisis saw a worsened effect in terms of food insecurity with the crisis. Findings were consistent with both measures of food security--one based on self-reported experience and the other based on food spending.

  16. Expanded cardiac rehabilitation in socially vulnerable patients with myocardial infarction

    DEFF Research Database (Denmark)

    Hald, Kathrine; Nielsen, Kirsten Melgaard; Nielsen, Claus Vinther

    2018-01-01

    ). The patients were defined as socially vulnerable or non-socially vulnerable according to their educational level and their social network. A complete follow-up was achieved. INTERVENTION: A socially differentiated CR intervention. The intervention consisted of standard CR and additionally a longer phase II......OBJECTIVE: Cardiac rehabilitation (CR) has been shown to reduce cardiovascular risk. A research project performed at a university hospital in Denmark offered an expanded CR intervention to socially vulnerable patients. One-year follow-up showed significant improvements concerning medicine...... compliance, lipid profile, blood pressure and body mass index when compared with socially vulnerable patients receiving standard CR. The aim of the study was to perform a long-term follow-up on the socially differentiated CR intervention and examine the impact of the intervention on all-cause mortality...

  17. Vulnerability assessments as a political creation: tsunami management in Portugal.

    Science.gov (United States)

    Pronk, Maartje; Maat, Harro; Crane, Todd A

    2017-10-01

    Vulnerability assessments are a cornerstone of contemporary disaster research. This paper shows how research procedures and the presentation of results of vulnerability assessments are politically filtered. Using data from a study of tsunami risk assessment in Portugal, the paper demonstrates that approaches, measurement instruments, and research procedures for evaluating vulnerability are influenced by institutional preferences, lines of communication, or lack thereof, between stakeholder groups, and available technical expertise. The institutional setting and the pattern of stakeholder interactions form a filter, resulting in a particular conceptualisation of vulnerability, affecting its operationalisation via existing methods and technologies and its institutional embedding. The Portuguese case reveals a conceptualisation that is aligned with perceptions prevalent in national government bureaucracies and the exclusion of local stakeholders owing to selected methodologies and assessment procedures. The decisions taken by actors involved in these areas affect how vulnerability is assessed, and ultimately which vulnerability reduction policies will be recommended in the appraisal. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  18. [Assessment of eco-environmental vulnerability of Hainan Island, China].

    Science.gov (United States)

    Huang, Bao-rong; Ouyang, Zhi-yun; Zhang, Hui-zhi; Zhang, Li-hua; Zheng, Hua

    2009-03-01

    Based on the assessment method of environmental vulnerability constructed by SOPAC and UNEP, this paper constructed an indicator system from three sub-themes including hazard, resistance, and damage to assess the eco-environmental vulnerability of Hainan Island. The results showed that Hainan Island was suffering a middling level eco-environmental hazard, and the main hazards came from some intensive human activities such as intensive agriculture, mass tourism, mining, and a mass of solid wastes thrown by islanders and tourists. Some geographical characters such as larger land area, larger altitude range, integrated geographical form, and abundant habitat types endowed Hainan Island higher resistance to environmental hazards. However, distur