WorldWideScience

Sample records for area treated effluent

  1. 200 Area treated effluent disposal facility operational test report

    International Nuclear Information System (INIS)

    This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met

  2. 300 Area Treated Effluent Disposal Facility (TEDF) Hazards Assessment

    International Nuclear Information System (INIS)

    This document establishes the technical basis in support of emergency planning activities for the 300 Area Treated Effluent Disposal Facility. The technical basis for project-specific Emergency Action Levels and Emergency Planning Zone is demonstrated

  3. Subproject L-045H 300 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The ''300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations

  4. 200 Area Treated Effluent Disposal Facility (TEDF) Effluent Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    BROWN, M.J.

    2000-05-18

    This Sampling and Analysis Plan (SAP) has been developed to comply with effluent monitoring requirements at the 200 Area Treated Effluent Disposal Facility (TEDF), as stated in Washington State Waste Discharge Permit No. ST 4502 (Ecology 2000). This permit, issued by the Washington State Department of Ecology (Ecology) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216, is an April 2000 renewal of the original permit issued on April 1995.

  5. Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities

    International Nuclear Information System (INIS)

    This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments

  6. Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time

  7. Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    CJ Chou; VG Johnson

    2000-04-04

    The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time.

  8. Effluent variability study for the 200 area treated effluent disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C.J., Westinghouse Hanford

    1996-07-12

    The variability of permitted constituents in grab samples and 24-hr composites of liquid effluent discharged to the Treated Effluent Disposal Facility (TEDF) in the 200 East Area of the Hanford Site was evaluated for the period July 1995 through April 1996. The variability study was required as a condition of the wastewater discharge permit issued by the State of Washington Department of Ecology. Results of the statistical evaluation indicated that (1) except for iron, and possibly chloride, there is a very low probability of exceeding existing permit limits, (2) seasonal effects related to intake water quality account for the variability in several chemical constituents and (3) sample type (grab vs 24-hr composite) have little if any effect on monthly mean constituent concentrations.

  9. Verification of best available technology for the 300 Area Treated Effluent Disposal Facility (310 Facility)

    International Nuclear Information System (INIS)

    This compilation of Project L-045H reference materials documents that the 300 Area Treated Effluent Disposal Facility (TEDF, also designated the 310 Facility) was designed, built, and will be operated in accordance with the best available technology (BAT) identified in the Engineering Summary Report. The facility is intended for treatment of 300 Area process sewer wastewater. The following unit operations for 300 Area process sewer water treatment are specified as: influent receipt; iron co-precipitation and sludge handling for removal of heavy metals and initial suspended solids; ion exchanged for removal of mercury and other heavy metals; ultraviolet (UV)/peroxide treatment for destruction of organic compounds, cyanide, coliforms, sulfide, and nitrite; and effluent discharge to the Columbia River with pH monitoring/control capability

  10. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought

  11. Source term development for the 300 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    A novel method for developing a source term for radiation and hazardous material content of sludge processing equipment and barrels in a new waste water treatment facility is presented in this paper. The 300 Area Treated Effluent Disposal Facility (TEDF), located at the Hanford Site near Richland, Washington, will treat process sewer waste water from the 300 Area and discharge a permittable effluent flow into the Columbia River. A process information and hazards analysis document needed a process flowsheet detailing the concentrations of radionuclides, inorganics, and organics throughout the process, including the sludge effluent flow. A hazards analysis for a processing facility usually includes a flowsheet showing the process, materials, heat balances, and instrumentation for that facility. The flow sheet estimates stream flow quantities, activities, compositions, and properties. For the 300 Area TEDF, it was necessary to prepare the flow sheet with all of the information so that radiation doses to workers could be estimated. The noble method used to develop the 300 Area TEDF flowsheet included generating recycle factors. To prepare each component in the flowsheet, precipitation, destruction, and two recycle factors were developed. The factors were entered into a spreadsheet and provided a method of estimating the steady-state concentrations of all of the components in the facility. This report describes how the factors were developed, explains how they were used in developing the flowsheet, and presents the results of using these values to estimate radiation doses for personnel working in the facility. The report concludes with a discussion of the effect of estimates of radioactive and hazardous material concentrations on shielding design and the need for containment features for equipment in the facility

  12. Readiness plan, Hanford 300 Area Treated Effluent Disposal Facility: Revision 1

    International Nuclear Information System (INIS)

    The 300 Area Treated Effluent Disposal Facility (TEDF) is designed for the collection, treatment, and eventual disposal of liquid waste from the 300 Area Process Sewer (PS) system. The PS currently discharges water to the 300 Area Process Trenches. Facilities supported total 54 buildings, including site laboratories, inactive buildings, and support facilities. Effluent discharges to the process sewer from within these facilities include heating, ventilation, and air conditioning systems, heat exchangers, floor drains, sinks, and process equipment. The wastewaters go through treatment processes that include iron coprecipitation, ion exchange and ultraviolet oxidation. The iron coprecipitation process is designed to remove general heavy metals. A series of gravity filters then complete the clarification process by removing suspended solids. Following the iron coprecipitation process is the ion exchange process, where a specific resin is utilized for the removal of mercury. The final main unit operation is the ultraviolet destruction process, which uses high power ultraviolet light and hydrogen peroxide to destroy organic molecules. The objective of this readiness plan is to provide the method by which line management will prepare for a Readiness Assessment (RA) of the TEDF. The self-assessment and RA will assess safety, health, environmental compliance and management readiness of the TEDF. This assessment will provide assurances to both WHC and DOE that the facility is ready to start-up and begin operation

  13. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  14. Water quality of treated sewage effluent in a rural area of the upper Thames Basin, southern England, and the impacts of such effluents on riverine phosphorus concentrations

    Science.gov (United States)

    Neal, Colin; Jarvie, Helen P.; Neal, Margaret; Love, Alison J.; Hill, Linda; Wickham, Heather

    2005-03-01

    Data for water quality surveys of effluent from sewage treatment works (STWs) in the rural Kennet/Dun sub-catchments of the upper Thames Basin are presented to characterize treated sewage effluent. Water quality determinand relationships with boron (B) are presented to provide information that can be used, with stream water quality information, to assess the relative inputs of treated sewage effluent pollutants to streams in rural areas. The approach is based on three points: (1) information on sewage effluent and agricultural pollution is of concern in relation to the management of UK lowland river systems in rural environments; (2) the lack of detailed information on sewage runoff chemistry and flow means that direct assessment of sewage effluent pollution to surface waters cannot be gauged; (3) B provides a clear chemically conservative marker of sewage sources in surface and ground waters. Three types of relationship to B were observed. Firstly, determinands such as Na, Cl, soluble reactive phosphorus (SRP) and NO 3 showed a positive linear relationship with B and there is a near zero intercept; these components are essentially derived from sewage sources. Secondly, Mg and SO 4 show linear relationships with B, but there is a non-zero intercept; these components have both a sewage component and a background component linked to water supplies from surface and groundwater sources. Thirdly, there are determinands that show no relationship with boron. In this study, an erratic pattern was observed for ammonium. This probably reflects the variable removal of this pollutant from sewage sources. Near constant concentrations of components such as Ca and alkalinity, which come from the background aquifer sources, were also found. SRP and B relationships for rivers in the upper Thames Basin showed the potential importance of (a) removal processes in the stream/groundwater for SRP derived from STW effluent inputs and (b) tertiary P stripping at the STWs on river water SRP

  15. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    International Nuclear Information System (INIS)

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water

  16. Areas permitted for irrigation, storage, evaporation, and disposal of treated sewage effluent in the upper Carson River Basin, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of areas permitted for irrigation, storage, evaporation, and disposal of treated sewage effluent in the Upper Carson River Basin, California...

  17. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements

  18. Hanford Site Treated Effluent Disposal Facility process flow sheet

    International Nuclear Information System (INIS)

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process

  19. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    International Nuclear Information System (INIS)

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information

  20. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information.

  1. Treated effluent disposal system process control computer software requirements and specification

    International Nuclear Information System (INIS)

    The software requirements for the monitor and control system that will be associated with the effluent collection pipeline system known as the 200 Area Treated Effluent Disposal System is covered. The control logic for the two pump stations and specific requirements for the graphic displays are detailed

  2. BIOLOGICAL TREATING TECHNOLOGY TO REMOVE PHENOLS IN FCCU EFFLUENT

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Baesd on the survey in 1997 fiscal year, we have been making a further survey and study together with 中国石油(Petro China) at Liaohe Refinery since 1998 fiscal year, aiming at the transfer of Japanese waste water treating technologies to China.   Scope is as follows:   (1) Demonstration of a new waste water treating technology, a kind of biological treating methods (Fluidized bed biological treatment), to eliminate phenols in FCCU effluent.   (2) Recommendation of eliminating pollutant and reducing total effluent by improving the operation.    1 Fluidized bed biological treatment 1.1 What is fluidized bed biological treatment   Fluidized bed biological treatment is the process to treat waste water as follows:   (1) To put biologically inert granular matters (fluidized carrier) into an aeration tank;   (2) Homogeneously and entirely to fluidize the particles in the tank to form highly active biofilm on the surface of each particle;   (3) To contact organic substances with these microorganisms to purify the waste water.   The surface area of the particle per unit volume is about ten times as large as that in conventional biofilm treatment process. In addition, no blockade of the filler (carrier) may be caused. Accordingly, volumetric loading of the aeration tank can be improved to attain highly efficient treatment.

  3. Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents

    OpenAIRE

    Henry-Silva Gustavo Gonzaga; Camargo Antonio Fernando Monteiro

    2006-01-01

    The effluents from fish farming can increase the quantity of suspended solids and promote the enrichment of nitrogen and phosphorus in aquatic ecosystems. In this context, the aim of this work was to evaluate the efficiency of three species of floating aquatic macrophytes (Eichhornia crassipes, Pistia stratiotes and Salvinia molesta) to treat effluents from Nile tilapia culture ponds. The effluent originated from a 1,000-m² pond stocked with 2,000 male Nile tilapia Oreochromis niloticus. The ...

  4. Process for treating effluent from a supercritical water oxidation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.M.; Shapiro, C.

    1995-12-31

    The present invention relates generally to a method for treating and recycling the effluent from a supercritical water oxidation reactor and more specifically to a method for treating and recycling the effluent by expanding the effluent without extensive cooling. Supercritical water oxidation is the oxidation of fuel, generally waste material, in a body of water under conditions above the thermodynamic critical point of water. The current state of the art in supercritical water oxidation plant effluent treatment is to cool the reactor effluent through heat exchangers or direct quench, separate the cooled liquid into a gas/vapor stream and a liquid/solid stream, expand the separated effluent, and perform additional purification on gaseous, liquid, brine and solid effluent. If acid gases are present, corrosion is likely to occur in the coolers. During expansion, part of the condensed water will revaporize. Vaporization can damage the valves due to cavitation and erosion. The present invention expands the effluent stream without condensing the stream. Radionuclides and suspended solids are more efficiently separated in the vapor phase. By preventing condensation, the acids are kept in the much less corrosive gaseous phase thereby limiting the damage to treatment equipment. The present invention also reduces the external energy consumption, by utilizing the expansion step to also cool the effluent.

  5. Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents

    Directory of Open Access Journals (Sweden)

    Henry-Silva Gustavo Gonzaga

    2006-01-01

    Full Text Available The effluents from fish farming can increase the quantity of suspended solids and promote the enrichment of nitrogen and phosphorus in aquatic ecosystems. In this context, the aim of this work was to evaluate the efficiency of three species of floating aquatic macrophytes (Eichhornia crassipes, Pistia stratiotes and Salvinia molesta to treat effluents from Nile tilapia culture ponds. The effluent originated from a 1,000-m² pond stocked with 2,000 male Nile tilapia Oreochromis niloticus. The treatment systems consisted of 12 experimental tanks, three tanks for each macrophyte species, and three control tanks (without plants. Water samples were collected from the: (i fish pond source water, (ii effluent from fish pond and (iii effluents from the treatment tanks. The following water variables were evaluated: turbidity, total and dissolved nitrogen, ammoniacal-N, nitrate-N, nitrite-N, total phosphorus and dissolved phosphorus. E. crassipes and P. stratiotes were more efficient in total phosphorus removal (82.0% and 83.3%, respectively and total nitrogen removal (46.1% and 43.9%, respectively than the S. molesta (72.1% total phosphorus and 42.7% total nitrogen and the control (50.3% total phosphorus and 22.8% total nitrogen, indicating that the treated effluents may be reused in the aquaculture activity.

  6. Cytotoxicity assays to evaluate tannery effluents treated by photoelectrooxidation.

    Science.gov (United States)

    Jaeger, N; Moraes, J P; Klauck, C R; Gehlen, G; Rodrigues, M A S; Ziulkoski, A L

    2015-12-01

    The advanced oxidation process (AOP) is used to increase the treatment efficiency of effluents however, it is necessary to compare the toxicity of treated and untreated effluents to evaluate if the decontamination process does not cause any biological harm. Cultured cells have been previously used to assess the genotoxic and cytotoxic potential of various compounds. Hence, the aim of this work was to assess the applicability of cytotoxicity assays to evaluate the toxicity related to the AOP treatment. Samples of an industrial effluent were collected after their treatment by a conventional method. Cytotoxicity of standard and AOP treated effluents was assessed in CRIB and HEp-2 cell line using the MTT and neutral red assays. We observed decrease at cell viability in the both assays (50% MTT and 13% NRU) when cells were exposed to the AOP treatment in the highest concentration. Thus, cytotoxic assays in cultured cells can be explored as an useful method to evaluate toxicity as well as to optimize effluents treatment process. PMID:26628242

  7. Biodegradability and toxicity assessment of bleach plant effluents treated anaerobically.

    Science.gov (United States)

    Chaparro, T R; Botta, C M; Pires, E C

    2010-01-01

    As part of an experimental project on the treatment of bleach plant effluents the results of biodegradability and toxicity assessment of effluents from a bench-scale horizontal anaerobic immobilized bioreactor (HAIB) are discussed in this paper. The biodegradability of the bleach plant effluents from a Kraft pulp mill treated in the HAIB was evaluated using the modified Zahn-Wellens test. The inoculum came from a pulp mill wastewater treatment plant and the dissolved organic carbon (DOC) was used as the indicator of organic matter removal. The acute and chronic toxicity removal during the anaerobic treatment was estimated using Daphnia similis and Ceriodaphnia silvestrii respectively. Moreover, the evaluation of chromosome aberrations (CA), micronucleus frequencies (MN) and mitotic index (IM) in Allium cepa cells were used as genotoxicity indicators. The results indicate that the effluents from the anaerobic reactor are amenable to aerobic polishing. Acute and chronic toxicity were reduced by 90 and 81%, respectively. The largest CA and MN incidence in the meristematic cells of A. cepa were observed after exposure to the raw bleach plant effluent. The HAIB was able to reduce the acute and chronic toxicity as well as chromosome aberrations and the occurrence of micronucleus. PMID:20861545

  8. Constructed wetlands to help recovery of effluent dominated streams: application to ozonated and non ozonated treated effluents

    OpenAIRE

    Mezzanotte, V; Canobbio, S; Malpei, F.

    2012-01-01

    The paper reports the results of comparative trials carried out at demonstrative and pilot scale using constructed wetlands for the final polishing of treated effluents (ozonated and non ozonated) which are discharged into a small stream, often dry, whose flow is chiefly made of the effluents themselves. The effluents fed to experimental constructed wetlands had comparable quality for the chief parameters. The removal percent was higher in the case of ozonated effluents for total ...

  9. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  10. 200 Area TEDF effluent sampling and analysis plan

    International Nuclear Information System (INIS)

    This sampling analysis sets forth the effluent sampling requirements, analytical methods, statistical analyses, and reporting requirements to satisfy the State Waste Discharge Permit No. ST4502 for the Treated Effluent Disposal Facility. These requirements are listed below: Determine the variability in the effluent of all constituents for which enforcement limits, early warning values and monitoring requirements; demonstrate compliance with the permit; and verify that BAT/AKART (Best Available Technology/All know and Reasonable Treatment) source, treatment, and technology controls are being met

  11. 200 area effluent treatment facility opertaional test report

    International Nuclear Information System (INIS)

    This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting

  12. 200 area effluent treatment facility opertaional test report

    Energy Technology Data Exchange (ETDEWEB)

    Crane, A.F.

    1995-10-26

    This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting.

  13. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    HALGREN DL

    2010-03-12

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  14. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    International Nuclear Information System (INIS)

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft2) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  15. Alfred pilot wetland to treat municipal lagoon effluent - case study

    International Nuclear Information System (INIS)

    A constructed wetland demonstration system has been built to polish the municipal lagoon effluent from the village of Alfred. The treatment lagoons have an annual discharge in the spring and have currently reached maximum capacity; inhibiting further population growth or expansion of the local agri-food industries. The demonstration wetland system is designed to treat 15% of the municipal lagoon influent, that is, 155 m3 /day or 23,250 m3 /year. A three year monitoring program (2000-2002) was put in place to evaluate the wetland as a cost effective means to treat municipal lagoon wastewater for the village of Alfred. The 2000 and 2001 monitoring seasons have been completed, and the 2002 monitoring season will operate between June and October 2002. At the completion of the three year monitoring program the Alfred wetland system will be evaluated for its ability to polish the municipal lagoon effluent to meet the Spring/Summer/Fall discharge criteria, set by the Ontario Ministry of the Environment (MOE), for the receiving water body (Azatica Brook). As phosphorus is the most difficult element to remove down to MOE guidelines, the Alfred research wetland includes slag phosphorus adsorption filters and a vegetated filter as phosphorus polishing systems. Once the wetland system is approved by the MOE, the village of Alfred will be able to increase its capacity for municipal wastewater treatment. Constructed wetlands are still considered innovative systems in Ontario and government ministries (MOE, OMAFRA) are insisting upon 3-4 years of monitoring data for each constructed wetland system established. There is a clear need for monitoring data to be gathered on established systems, and for this data to be evaluated with the goal of developing reliable design guidelines. Ultimately this should result in having constructed wetlands recognised as viable wastewater treatment options in Ontario. With fewer grant programs for rural municipalities, cost effective systems such as

  16. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  17. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    International Nuclear Information System (INIS)

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, 'operating' treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  18. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD and total suspended solids (TSS were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM coupled with four-factor three-level Box-Behnken experimental design (BBD. The experimental results were analyzed by Pareto analysis of variance (ANOVA and second order polynomial mathematical models were developed with high correlation of efficiency (R2 for COD, TSS removal and electrical energy consumption (EEC. The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 % and TSS (93 % with EEC of 2.40 Wh, which were confirmed by validation experiments.

  19. Request for modification of 200 Area effluent treatment facility final delisting

    Energy Technology Data Exchange (ETDEWEB)

    BOWMAN, R.C.

    1998-11-19

    A Delisting Petition submitted to the U.S. Environmental Protection Agency in August 1993 addressed effluent to be generated at the 200 Area Effluent Treatment Facility from treating Hanford Facility waste streams. This Delisting Petition requested that 71.9 million liters per year of treated effluent, bearing the designation 'F001' through 'F005', and/or 'F039' that is derived from 'F001' through 'F005' waste, be delisted. On June 13, 1995, the U.S. Environmental Protection Agency published the final rule (Final Delisting), which formally excluded 71.9 million liters per year of 200 Area Effluent Treatment Facility effluent from ''being listed as hazardous wastes'' (60 FR 31115 now promulgated in 40 CFR 261). Given the limited scope, it is necessary to request a modification of the Final Delisting to address the management of a more diverse multi-source leachate (F039) at the 200 Area Effluent Treatment Facility. From past operations and current cleanup activities on the Hanford Facility, a considerable amount of both liquid and solid Resource Conservation and Recovery Act of 1976 regulated mixed waste has been and continues to be generated. Ultimately this waste will be treated as necessary to meet the Resource Conservation and Recovery Act Land Disposal Restrictions. The disposal of this waste will be in Resource Conservation and Recovery Act--compliant permitted lined trenches equipped with leachate collection systems. These operations will result in the generation of what is referred to as multi-source leachate. This newly generated waste will receive the listed waste designation of F039. This waste also must be managed in compliance with the provisions of the Resource Conservation and Recovery Act.

  20. Request for modification of 200 Area effluent treatment facility final delisting

    International Nuclear Information System (INIS)

    A Delisting Petition submitted to the U.S. Environmental Protection Agency in August 1993 addressed effluent to be generated at the 200 Area Effluent Treatment Facility from treating Hanford Facility waste streams. This Delisting Petition requested that 71.9 million liters per year of treated effluent, bearing the designation 'F001' through 'F005', and/or 'F039' that is derived from 'F001' through 'F005' waste, be delisted. On June 13, 1995, the U.S. Environmental Protection Agency published the final rule (Final Delisting), which formally excluded 71.9 million liters per year of 200 Area Effluent Treatment Facility effluent from ''being listed as hazardous wastes'' (60 FR 31115 now promulgated in 40 CFR 261). Given the limited scope, it is necessary to request a modification of the Final Delisting to address the management of a more diverse multi-source leachate (F039) at the 200 Area Effluent Treatment Facility. From past operations and current cleanup activities on the Hanford Facility, a considerable amount of both liquid and solid Resource Conservation and Recovery Act of 1976 regulated mixed waste has been and continues to be generated. Ultimately this waste will be treated as necessary to meet the Resource Conservation and Recovery Act Land Disposal Restrictions. The disposal of this waste will be in Resource Conservation and Recovery Act--compliant permitted lined trenches equipped with leachate collection systems. These operations will result in the generation of what is referred to as multi-source leachate. This newly generated waste will receive the listed waste designation of F039. This waste also must be managed in compliance with the provisions of the Resource Conservation and Recovery Act

  1. Ecotoxicity of raw and treated effluents generated by a veterinary medicine industry

    OpenAIRE

    Bianca de Souza Maselli; Luis Augusto Visani de Luna; Joice de Oliveira Palmeira; Sandro Babosa; Luiz Alberto Beijo; Gisela de Aragão Umbuzeiro; Fábio Kummrow

    2013-01-01

    Effluents from veterinary pharmaceutical industries that formulate medicines are mainly generated during the washing of equipment. The aim of this work was to evaluate the acute toxicity to Daphnia similis and chronic toxicity to Ceriodaphnia dubia of raw and treated effluents generated by a veterinary pharmaceutical industry. The industrial effluent treatment system comprises a step of chemical treatment (coagulation-sedimentation forced) followed by aerobic biological treatment (activated s...

  2. A mesocosm approach for detecting stream invertebrate community responses to treated wastewater effluent

    International Nuclear Information System (INIS)

    The discharge of wastewater from sewage treatment plants is one of the most common forms of pollution to river ecosystems, yet the effects on aquatic invertebrate assemblages have not been investigated in a controlled experimental setting. Here, we use a mesocosm approach to evaluate community responses to exposure to different concentrations of treated wastewater effluents over a two week period. Multivariate analysis using Principal Response Curves indicated a clear, dose-effect response to the treatments, with significant changes in macroinvertebrate assemblages after one week when exposed to 30% effluent, and after two weeks in the 15% and 30% effluent treatments. Treatments were associated with an increase in nutrient concentrations (ammonium, sulfate, and phosphate) and reduction of dissolved oxygen. These findings indicate that exposure to wastewater effluent cause significant changes in abundance and composition of macroinvertebrate taxa and that effluent concentration as low as 5% can have detectable ecological effects. - Highlights: ► Stream invertebrate communities are altered by exposure to wastewater effluent. ► Principal Response Curves indicate a dose-effect response to effluent treatment. ► Biotic quality indices decline with increasing effluent concentration and exposure time. ► Effluent concentrations as low as 5% have detectable ecological effects. - Exposure to treated effluent in a stream mesocosm caused a dose-dependent response in the aquatic invertebrate community and led to declines in biological quality indices.

  3. Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME)

    OpenAIRE

    Wong Pui Wah; Nik Meriam Sulaiman; Meenakshisundaram Nachiappan; Balaraman Varadaraj

    2002-01-01

    Treatment of palm oil mill effluent (POME) has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water....

  4. An evaluation of the application of treated sewage effluents in Las Tablas de Daimiel National Park, Central Spain

    Science.gov (United States)

    Navarro, Vicente; García, Beatriz; Sánchez, David; Asensio, Laura

    2011-04-01

    SummaryAt the present time there is not enough information available to develop a quantitative model on how inundation takes place in the 1490 ha area of Tablas de Daimiel National Park (Central Spain) located upstream of Morenillo Dam. Given that it is the most important area in the Park from an ecological standpoint, this is a major concern, as it has not been possible to assess the potential effectiveness of the interventions geared towards improving its current state. As a result, it is not feasible to simulate the hydrologic response to the application of treated sewage effluents, an initiative recently implemented by the Public Administration responsible for water management in the Guadiana River Basin, where the Park is located. To help solve this problem, a simplified model of the hydrologic behaviour of the system has been developed focusing on the characterisation of the main trends of the inundation process. Field data from 12 drying processes were used to identify the model parameters. Later, the evolution of the system was examined after the application of treated sewage effluents, assuming the hypothesis of a dry climate. The results show that the 10 Mm 3 of available effluents is sufficient to improve from 2 ha to 60 ha the inundation condition of the areas considered to be high-priority. This therefore demonstrates that, from a hydrologic point of view, it is highly advisable to use treated sewage effluents.

  5. Ecotoxicity of raw and treated effluents generated by a veterinary medicine industry

    Directory of Open Access Journals (Sweden)

    Bianca de Souza Maselli

    2013-08-01

    Full Text Available Effluents from veterinary pharmaceutical industries that formulate medicines are mainly generated during the washing of equipment. The aim of this work was to evaluate the acute toxicity to Daphnia similis and chronic toxicity to Ceriodaphnia dubia of raw and treated effluents generated by a veterinary pharmaceutical industry. The industrial effluent treatment system comprises a step of chemical treatment (coagulation-sedimentation forced followed by aerobic biological treatment (activated sludge process. Five samplings campaigns were performed from October 2011 to July 2012. The raw effluent samples showed high acute and chronic toxicity (acute: fourth sampling with EC50 - 48-h of <0.001% and chronic: third sampling with IC50 - 7-d of <0.0001%. The chemically treated effluent samples were the most toxic with EC50 - 48-h between <0.001 and 0.1% and IC50 - 7-d between 0.00001 and 0.0001%. This increase in toxicity is probably related to the use of aluminum sulfate as flocculating agent. The biological treatment led to a small reduction in toxicity of the effluents. The selected ecotoxicological tests were adequate for detecting the effluent toxicity and useful for evaluating the efficiency of the steps of the effluent treatment. Improvements in the industrial wastewater treatment system should be implemented in order to reduce the observed toxicity of the final effluent.

  6. Optimizing nitrate removal in woodchip beds treating aquaculture effluents

    DEFF Research Database (Denmark)

    von Ahnen, Mathis; Pedersen, Per Bovbjerg; Hoffmann, Carl Christian;

    2016-01-01

    Nitrate is typically removed from aquaculture effluents using heterotrophic denitrification reactors. Heterotrophic denitrification reactors, however, require a constant input of readily available organic carbon (C) sources which limits their application in many aquaculture systems for practical ...... as it presents an alternative method for removing nitrates from aquaculture effluents especially for less intensive fish farms. Furthermore, it shows how this method can be optimized to yield higher removal rates of nitrate.......Nitrate is typically removed from aquaculture effluents using heterotrophic denitrification reactors. Heterotrophic denitrification reactors, however, require a constant input of readily available organic carbon (C) sources which limits their application in many aquaculture systems for practical...... (HCO3 -) inlet concentration (0.50-1.59 g HCO3 -/l) on the removal rate of NO3 -N, and additional organic and inorganic nutrients, in effluent deriving from an experimental recirculating aquaculture system (RAS).Volumetric NO3 -N removal rates ranged from 5.20 ± 0.02 to 8.96 ± 0.19 g/m3/day and were...

  7. Nile tilapia culture on domestic effluent treated in stabilization ponds.

    Directory of Open Access Journals (Sweden)

    Clovis Matheus Pereira

    2009-03-01

    Full Text Available The performance and filet quality of tilapias (Oreochromis niloticus culture in effluent stabilization lagoons was tested at the densities of 3 fish/m2 (T3, 7 fish/m2 (T2 and 7 fish/m2 in clean water + diet (T1 with 3 repetitions in tanks of 2.57m2 and 0.60m of water column with supplemental aeration. Fish culture in clean water plus diet (T1 presented the highest growth. The higher density T3 (7/m2 compared to T2 (3/m2 did not result in any difference of total production (p > 0.05 but this was compensated by the increased individual fish growth rate at lower density. The conditions that sustain fish survival culture with ETE effluent were attested by the high survival (> 90% under both treatments, but only 10% of the water samples from T2 and T3 N-total ammonium was favorable for fish growth (< 2.0mg/L. The rearing system improved the effluent quality, reducing the total organic nitrogen and the solids in suspension. The faecal coliforms, Salmonella sp. and Staphylococcus aureus from the effluent and fish were verified to be within the standards laid down by the World Health Organization (WHO.

  8. Exposure of composite tannery effluent on snail, Pila globosa: A comparative assessment of toxic impacts of the untreated and membrane treated effluents.

    Science.gov (United States)

    Bhattacharya, Priyankari; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-04-01

    Effluent from tannery industries can significantly affect the aquatic environment due to the presence of a variety of recalcitrant components. The present study focuses on a comparative assessment of the toxic impacts of an untreated tannery effluent and membrane treated effluents using snail, Pila globosa as an aquatic model. Composite tannery effluent collected from a common effluent treatment plant was selected as the untreated effluent. To investigate the effect of treated effluents on the aquatic organism the effluent was treated by two ways, viz. a single stage microfiltration (MF) using ceramic membrane and a two-step process involving MF followed by reverse osmosis (RO). The whole body tissue, gonad and mantle of P. globosa were subjected to enzyme assays like superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GSH-GPx), glutathione S- transferase (GST), etc. for assessing toxic impact. Changes in the biochemical parameters like protein, carbohydrate and amino acid were observed including histological studies of gonad and mantle tissue upon treatment with tannery effluents. To examine potential DNA damage due to the exposure of the effluent, comet assay was conducted. The study revealed that with an exposure to the untreated effluent, activity of the antioxidant enzymes increased significantly while the protein and carbohydrate content reduced largely in the whole body tissue, gonad as well as mantle tissues of P. globosa. Histological study indicated considerable damage in the gonad and mantle tissues following exposure to the untreated effluent. Comet assay using hemolymph of P. globosa following exposure to tannery effluent, showed significant genotoxicity. Interestingly, compared to the untreated effluent, damaging effect was reduced in molluscs tissues when exposed to MF treated effluent and even lesser when exposed to MF+RO treated effluent. Apart from the reduced activities of oxidative stress enzymes, the

  9. On the infiltration process in treated effluents spreading basins

    Science.gov (United States)

    Loewy, A.; Weisbrod, N.; Lev, O.; Lazarovitch, N.

    2009-12-01

    Secondary treated effluents originating from the Dan Region in Israel are sent to tertiary treatment that uses Soil Aquifer Treatment (SAT) for purification within the vadose zone. The SAT is based on intermittent flooding (1-2 days) and drying (2-3 days) cycles in spreading basins constructed at the surface of a 40-m deep vadose zone. The site is located in the natural sand dunes north to the city of Ashdod, above the Israeli Coastal Plain Aquifer. The study aim is to investigate the physical and chemical processes that occur within the upper 2 meters of the spreading basins’ sandy soil profiles during the cyclic SAT operation. We explored two 2-m profiles about 50 m apart. In addition to ponding depth, continuous measurements of volumetric water content (VWC), temperature, electrical conductivity (EC) and oxidation-reduction potential at 8 different depths within the first profile were recorded. Data were collected in 15-min resolution during infiltration events for 3 months. Measurements in the second profile have been collected for a few weeks now and also include air pressure measurements. Additionally, soil samples were taken from both profiles to determine hydraulic parameters. Preliminary results indicate that the infiltration rate in the first profile is about 72 cm day-1, a low rate compared to what would be expected from a sandy profile. The VWC changes along this profile during the flooding stage imply percolation in the form of a double wetting front. First, the wetting front proceeds from the surface downward until effective saturation of 0.55. Second, the wetting front proceeds from 2-m upwards until effective saturation of 0.7 is reached. We assume the presence of a local lower hydraulic conductivity layer or a local perched water table at a depth of 4-5 m (perched above a deeper low hydraulic conductivity layer). This layer may cause the observed double wetting front. This combined with approximately 30% of entrapped air within the pores may be

  10. Particulate COD balance of particulate cod in eletrocuagulation/flotation reactor treating tannery effluent

    OpenAIRE

    Rodrigo Babora Borri; Renata Medici Frayne Cuba; Francisco Javier Cuba Teran

    2012-01-01

    Mass balance or particulate organic matter was studied in terms of COD, by means of electrocoagulation/flotation (ECF) reactor treating tannery effluent. Reactor was operated in fill and draw (batch) mode. Operating in hydraulic residence time of 65 minutes, ECF reactor reached 55 % COD removal. Although volatile solids were also removed from liquid phase (removal of 40%), fixed solids concentration, and hence total solids concentration, showed to be higher in withdrawn effluent than in ECF’s...

  11. A study on triple-membrane-separator (TMS) process to treat aqueous effluents containing uranium

    International Nuclear Information System (INIS)

    An effective process incorporated with the novel membrane separation technology was developed to recover uranium from the filtrate effluent of uranium dioxide conversion processes. The prominent feature of the process is that it utilizes separation characteristics of three different types of membranes as follow: separation of uranium species from effluent of high fluoride content by ultrafiltration membrane, separation of uranium species from effluent of low fluoride content by reverse osmosis membrane, precipitation of uranium species with hydrogen peroxide, and filtration of uranium bearing precipitates by microfiltration membrane. The process is simple and feasible for treatment of liquid waste containing both soluble and suspended uranium species. The recovery of uranium can be as high as 95% and the treated effluents meet the current environmental standards. 4 refs., 8 figs., 1 tab

  12. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent

    International Nuclear Information System (INIS)

    Highlights: ► We assessed the phytoremediation ability of a polyculture constructed wetland (PCW) to treat boron (B) from mine effluent. ► B in mine effluent decreased from 187 mg l−1 to 123 mg l−1 (32% removal rate) through the PCW. ► Estimated methane production, energy yields and electrical energy yields of the PCW increased with biomass production. ► Cattails accumulated more than 250 mg kg−1 B and common reed accumulated 38 mg kg−1 B at the end of the experiment. -- Abstract: This study focuses on describing the ability of a small-scale, subsurface-flow-polyculture-constructed wetland (PCW) to treat boron (B) mine effluent from the world's largest borax mine (Kırka, Turkey) under field conditions. This application is among the first effluent treatment methods of this type in both Turkey and the world. This study represents an important resource on how subsurface-flow-constructed wetlands could be used to treat B mine effluents in the field conditions. To this end, an experimental wetland was vegetated with common reed (Phragmites australis) and cattails (Typha latifolia), and mine effluent was moved through the wetland. The results of the present study show that B concentrations of the mine effluent decreased from 187 to 123 mg l−1 (32% removal rate) on average. The T. latifolia individuals absorbed a total of 250 mg kg−1 whereas P. australis in the PCW absorbed a total of 38 mg kg−1 B during the research period

  13. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent

    Energy Technology Data Exchange (ETDEWEB)

    Türker, Onur Can [Faculty of Science and Letters, Department of Biology, Aksaray University, Aksaray (Turkey); Böcük, Harun, E-mail: hbocuk@anadolu.edu.tr [Faculty of Science, Department of Biology, Anadolu University, Eskişehir (Turkey); Yakar, Anıl [Faculty of Science, Department of Biology, Anadolu University, Eskişehir (Turkey)

    2013-05-15

    Highlights: ► We assessed the phytoremediation ability of a polyculture constructed wetland (PCW) to treat boron (B) from mine effluent. ► B in mine effluent decreased from 187 mg l{sup −1} to 123 mg l{sup −1} (32% removal rate) through the PCW. ► Estimated methane production, energy yields and electrical energy yields of the PCW increased with biomass production. ► Cattails accumulated more than 250 mg kg{sup −1} B and common reed accumulated 38 mg kg{sup −1} B at the end of the experiment. -- Abstract: This study focuses on describing the ability of a small-scale, subsurface-flow-polyculture-constructed wetland (PCW) to treat boron (B) mine effluent from the world's largest borax mine (Kırka, Turkey) under field conditions. This application is among the first effluent treatment methods of this type in both Turkey and the world. This study represents an important resource on how subsurface-flow-constructed wetlands could be used to treat B mine effluents in the field conditions. To this end, an experimental wetland was vegetated with common reed (Phragmites australis) and cattails (Typha latifolia), and mine effluent was moved through the wetland. The results of the present study show that B concentrations of the mine effluent decreased from 187 to 123 mg l{sup −1} (32% removal rate) on average. The T. latifolia individuals absorbed a total of 250 mg kg{sup −1} whereas P. australis in the PCW absorbed a total of 38 mg kg{sup −1} B during the research period.

  14. Effect of treated tannery effluent with domestic wastewater and amendments on growth and yield of cotton.

    Science.gov (United States)

    Jagathjothi, N; Amanullah, M Mohamed; Muthukrishnan, P

    2013-11-15

    Pot culture and field experiments were carried out at the Common Effluent Treatment Plant (CETP), Dindigul during kharif 2011-12 to investigate the influence of irrigation of treated tannery effluent along with domestic wastewater on growth, yield attributes and yield of cotton. The pot culture was in a factorial completely randomized design and field experiment laid out in factorial randomized block design with four replications. The results revealed that the mixing proportion of 25% Treated Tannery Effluent (TTE)+75% domestic wastewater (DWW) application recorded taller plants, higher dry matter production, number of sympodial branches plant(-1), number of fruiting points plant(-1), number of bolls plant(-1) and seed cotton yield with yield reduction of 15.28 and 16.11% compared to normal water irrigation under pot culture and field experiment, respectively. Regarding amendments, gypsum application registered higher seed cotton yield followed by VAM. PMID:24511705

  15. Irrigational impact of untreated and treated brewery-distillery effluent on seed germination of marigold (Tagetes erecta L.).

    Science.gov (United States)

    Sharma, Anuradha; Malaviya, Piyush

    2016-01-01

    Current study presents the effect of irrigation with different concentrations (20, 40, 60, 80 and 100%) of untreated and treated brewery-distillery effluent on germination behaviour of marigold (Tagetes erecta L. var. Pusa Basanti). The 100% untreated effluent showed acidic pH (4.80) and higher values of BOD (1500.00 mg l(-1)), COD (4000.00 mg l(-1)), chloride (1742.20 mg l(-1)), TSS (900.00 mg l(-1)) as compared to that of treated effluent. Tagetes seeds were exposed to different concentrations of effluent and the results revealed maximum values of germination parameters viz., percent germination, peak value, germination value, germination index, speed of germination and vigour index at 20% untreated and 60% treated effluent concentrations, whereas the values for negative germination parameters viz., delay index, germination period and percent inhibition were minimum at 20% untreated and 60% treated effluent concentrations. PMID:26930868

  16. E. coli Regrowth in a Constructed Wetland Receiving Treated Sewage Effluent: A Threat to Human Health?

    Science.gov (United States)

    Constructed wetlands are used throughout the world to filter toxins from treated wastewater and to increase wildlife habitat. Bird and mammal excretions result in background levels of enteric bacteria in any natural wetland, but regrowth of bacteria in wastewater effluent can further increase microb...

  17. Chromium accumulation in submerged aquatic plants treated with tannery effluent at Kanpur, India.

    Science.gov (United States)

    Gupta, Kiran; Gaumat, Sumati; Mishra, Kumkum

    2011-09-01

    Aquatic macrophytes have been widely studied because of their capability of absorbing contaminants from water and their subsequent use in biomonitoring. This study presents a comparison of Cr accumulating potential of submerged aquatic plants viz Vallisneria spiralis and Hydrilla verticillata. These plants were treated with various concentrations of treated tannery effluent collected from UASB, Jajmau, Kanpur under repeated exposure in controlled laboratory conditions in order to assess their maximum bioaccumulation potential. The maximum accumulation of 385.6 and 201.6 microg g(-1) dry weight was found in roots of V. spiralis and the whole plants of H. verticillata, respectively at 100% concentration after 9th day of effluent exposure. The chlorophyll and protein content of both species decreased with increase in effluent concentration and duration. At highest concentration and duration a maximum reduction of 67.4 and 62.66% in total chlorophyll content, 9.97 and 4.66% in carotenoid content and 62.66 and 59.36% in protein content was found in V. spiralis and H. verticillata respectively. Anatomical studies in both V. spiralis and H. verticillata was carried out to assess the effects of metal accumulation within the plants. Changes in the anatomical structures of both plants exhibits the capacity of these species to act as indicator of effluent toxicity. The high accumulation potential of Cr by both plants revealed their capability to remove pollutants from effluent. PMID:22319874

  18. Particulate COD balance of particulate cod in eletrocuagulation/flotation reactor treating tannery effluent

    Directory of Open Access Journals (Sweden)

    Rodrigo Babora Borri

    2012-04-01

    Full Text Available Mass balance or particulate organic matter was studied in terms of COD, by means of electrocoagulation/flotation (ECF reactor treating tannery effluent. Reactor was operated in fill and draw (batch mode. Operating in hydraulic residence time of 65 minutes, ECF reactor reached 55 % COD removal. Although volatile solids were also removed from liquid phase (removal of 40%, fixed solids concentration, and hence total solids concentration, showed to be higher in withdrawn effluent than in ECF’s influent. This was assigned to NaCl added in order to enhance conductivity in wastewater.

  19. Effects of treated sewage effluent on immune function in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Hoeger, Birgit [Environmental Toxicology, University of Konstanz, P.O. Box X918, D-78457 Constance (Germany); Heuvel, Michael R. van den [Forest Research, Private Bag 3020, Sala St., Rotorua (New Zealand); Hitzfeld, Bettina C. [Swiss Agency for the Environment, Forests and Landscape (SAEFL), Substances, Soil, Biotechnology Division, Section Substances, 3003 Bern (Switzerland); Dietrich, Daniel R. [Environmental Toxicology, University of Konstanz, P.O. Box X918, D-78457 Constance (Germany)]. E-mail: daniel.dietrich@uni-konstanz.de

    2004-12-20

    In this study, the immune reactions of rainbow trout (Oncorhynchus mykiss) were examined, after exposure to 10, 30 and 70% of tertiary-treated municipal sewage effluent for 27 days. Exposures were conducted concurrently with and without an immune challenge using intraperitoneal injections of inactivated Aeromonas salmonicida salmonicida. Due to the time required to prepare and analyse samples, fish sampling was conducted over two consecutive days. There was no trout mortality for any of the experimental treatments. The exposure to effluent increased in vitro lymphocyte proliferation, decreased circulating lymphocytes and increased degrading erythrocytes in peripheral blood samples. Circulating lymphocytes were only decreased in the sham-injected, but not in the A. salmonicida-injected group. In addition to effluent effects, circulating lymphocytes and lymphocyte proliferation were decreased on day 2 of sampling as compared to day 1. Concentration-dependent degradation of erythrocytes was only observed on day 2 of sampling. Capture and removal of trout on day 1 of sampling presumably caused low-level stress that affected some results on day 2. Oxidative burst, phagocytosis, lysozyme, leucocyte populations other than lymphocytes and A. salmonicida-specific IgM production were not affected by exposure to effluent, and of these parameters, only oxidative burst and total leucocytes showed sampling day effects. From these results it can be observed, that with the exception of oxidative burst, those variables affected by effluent exposure were also significantly changed by the low-level sampling stress imposed by staggered sampling. Elevated liver mixed-function oxygenase activity as measured by 7-ethoxyresorufin-O-deethylase activity, and increased bile polycyclic aromatic hydrocarbon (PAH) metabolites were observed in response to sewage effluent exposure. As both PAHs and stress are known immune suppressors, it is difficult to conclude whether or not changes in immune

  20. Effects of treated sewage effluent on immune function in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    In this study, the immune reactions of rainbow trout (Oncorhynchus mykiss) were examined, after exposure to 10, 30 and 70% of tertiary-treated municipal sewage effluent for 27 days. Exposures were conducted concurrently with and without an immune challenge using intraperitoneal injections of inactivated Aeromonas salmonicida salmonicida. Due to the time required to prepare and analyse samples, fish sampling was conducted over two consecutive days. There was no trout mortality for any of the experimental treatments. The exposure to effluent increased in vitro lymphocyte proliferation, decreased circulating lymphocytes and increased degrading erythrocytes in peripheral blood samples. Circulating lymphocytes were only decreased in the sham-injected, but not in the A. salmonicida-injected group. In addition to effluent effects, circulating lymphocytes and lymphocyte proliferation were decreased on day 2 of sampling as compared to day 1. Concentration-dependent degradation of erythrocytes was only observed on day 2 of sampling. Capture and removal of trout on day 1 of sampling presumably caused low-level stress that affected some results on day 2. Oxidative burst, phagocytosis, lysozyme, leucocyte populations other than lymphocytes and A. salmonicida-specific IgM production were not affected by exposure to effluent, and of these parameters, only oxidative burst and total leucocytes showed sampling day effects. From these results it can be observed, that with the exception of oxidative burst, those variables affected by effluent exposure were also significantly changed by the low-level sampling stress imposed by staggered sampling. Elevated liver mixed-function oxygenase activity as measured by 7-ethoxyresorufin-O-deethylase activity, and increased bile polycyclic aromatic hydrocarbon (PAH) metabolites were observed in response to sewage effluent exposure. As both PAHs and stress are known immune suppressors, it is difficult to conclude whether or not changes in immune

  1. Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater.

    Science.gov (United States)

    Kim, Kyoung-Yeol; Yang, Wulin; Ye, Yaoli; LaBarge, Nicole; Logan, Bruce E

    2016-05-01

    Anaerobic fluidized membrane bioreactors (AFMBRs) have been mainly developed as a post-treatment process to produce high quality effluent with very low energy consumption. The performance of an AFMBR was examined using the effluent from a microbial fuel cell (MFC) treating domestic wastewater, as a function of AFMBR hydraulic retention times (HRTs) and organic matter loading rates. The MFC-AFMBR achieved 89±3% removal of the chemical oxygen demand (COD), with an effluent of 36±6mg-COD/L over 112days operation. The AFMBR had very stable operation, with no significant changes in COD removal efficiencies, for HRTs ranging from 1.2 to 3.8h, although the effluent COD concentration increased with organic loading. Transmembrane pressure (TMP) was low, and could be maintained below 0.12bar through solids removal. This study proved that the AFMBR could be operated with a short HRT but a low COD loading rate was required to achieve low effluent COD. PMID:26921870

  2. Potential of domestic sewage effluent treated as a source of water and nutrients in hydroponic lettuce

    Directory of Open Access Journals (Sweden)

    Renata da Silva Cuba

    2015-07-01

    Full Text Available The search for alternative sources of water for agriculture makes the use of treated sewage sludge an important strategy for achieving sustainability. This study evaluated the feasibility of reusing treated sewage effluent as alternative source of water and nutrients for the hydroponic cultivation of lettuce (Lactuca sativa L. The experiment was conducted in the greenhouse of the Center for Agricultural Sciences - UFSCar, in Araras, SP. The cultivation took place from February to March 2014. The hydroponic system used was the Nutrient Film Technique, and included three treatments: 1 water supply and mineral fertilizers (TA; 2 use of effluent treated and complemented with mineral fertilizers based on results of previous chemical analysis (TRA; and 3 use of treated effluent (TR. The applied experimental design was four randomly distributed blocks. We evaluated the fresh weight, nutritional status, the microbiological quality of the culture, and the amount of mineral fertilizers used in the treatments. The fresh weights were subjected to analysis of variance and means were compared by the Tukey test at 5% probability. Only the TR treatment showed a significant difference in the evaluated variables, as symptoms of nutritional deficiencies in plants and significant reduction in fresh weights (p <0.01 were found. There was no detectable presence of Escherichia coli in any treatment, and it was possible to use less of some fertilizers in the TRA treatment compared to TA.

  3. Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: An outdoor pilot-scale study.

    Science.gov (United States)

    Van Den Hende, Sofie; Beelen, Veerle; Julien, Lucie; Lefoulon, Alexandra; Vanhoucke, Thomas; Coolsaet, Carlos; Sonnenholzner, Stanislaus; Vervaeren, Han; Rousseau, Diederik P L

    2016-10-01

    To replace costly mechanical aeration by photosynthetical aeration, upflow anaerobic sludge blanket (UASB) effluent of food-industry was treated in an outdoor MaB-floc raceway pond. Photosynthetic aeration was sufficient for nitrification, but the raceway effluent quality was below current discharge limits, despite the high hydraulic retention time (HRT) of 35days. Hereafter, conventional activated sludge (CAS) effluent of food-industry was treated in this pond to recover phosphorus. The two-day HRT results in a more realistic pond area, but the phosphorus removal efficiency was low (20%). High biomass productivities were obtained, i.e. 31.3 and 24.9ton total suspended solids hapond(-1)year(-1) for UASB and CAS effluent, respectively. Bioflocculation enabled successful harvesting of CAS effluent-fed MaB-flocs by settling and filtering at 150-250μm to 22.7% total solids. To conclude, MaB-floc raceway ponds cannot be recommended as the sole treatment for these food-industry effluents, but huge potential lies in added-value biomass production. PMID:27450127

  4. FISH COUGH RESPONSE - A METHOD FOR EVALUATING QUALITY OF TREATED COMPLEX EFFLUENTS

    Science.gov (United States)

    Bluegill sunfish (Lepomis macrochirus) showed increases in cough frequency commensurate with effluent concentration when exposed for 24 h to different industrial and municipal effluents. Effluents known to be toxic caused steadily increasing cough rates in the fish as effluent co...

  5. Characterization of organic membrane foulants in a forward osmosis membrane bioreactor treating anaerobic membrane bioreactor effluent.

    Science.gov (United States)

    Ding, Yi; Tian, Yu; Li, Zhipeng; Liu, Feng; You, Hong

    2014-09-01

    In this study, two aerobic forward osmosis (FO) membrane bioreactors (MBR) were utilized to treat the effluent of mesophilic (35°C) and atmospheric (25°C) anaerobic MBRs, respectively. The results showed that the FO membrane process could significantly improve the removal efficiencies of N and P. Meanwhile, the flux decline of the FOMBR treating effluent of mesophilic AnMBR (M-FOMBR) was higher than that treating effluent of atmospheric AnMBR (P-FOMBR). The organic membrane foulants in the two FOMBRs were analyzed to understand the membrane fouling behavior in FO processes. It was found that the slightly increased accumulation of protein-like substances into external foulants did not cause faster flux decline in P-FOMBR than that in M-FOMBR. However, the quantity of organic matter tended to deposit or adsorb into FO membrane pores in P-FOMBR was less than that in M-FOMBR, which was accordance with the tendency of membrane fouling indicated by flux decline. PMID:24976492

  6. Reproductive responses of male fathead minnows exposed to wastewater treatment plant effluent, effluent treated with XAD8 resin, and an environmentally relevant mixture of alkylphenol compounds

    Science.gov (United States)

    Barber, L.B.; Lee, K.E.; Swackhamer, D.L.; Schoenfuss, H.L.

    2007-01-01

    On-site, continuous-flow experiments were conducted during August and October 2002 at a major metropolitan wastewater treatment plant (WWTP) to determine if effluent exposure induced endocrine disruption as manifested in the reproductive competence of sexually mature male fathead minnows (Pimephales promelas). The fathead minnows were exposed in parallel experiments to WWTP effluent and WWTP effluent treated with XAD8 macroreticular resin to remove the hydrophobic-neutral fraction which contained steroidal hormones, alkylphenolethoxylates (APEs), and other potential endocrine disrupting compounds (EDCs). The effluent composition varied on a temporal scale and the continuous-flow experiments captured the range of chemical variability that occurred during normal WWTP operations. Exposure to WWTP effluent resulted in vitellogenin induction in male fathead minnows, with greater response in October than in August. Concentrations of ammonia, APEs, 17??-estradiol, and other EDCs also were greater in October than in August, reflecting a change in effluent composition. In the October experiment, XAD8 treatment significantly reduced vitellogenin induction in the male fathead minnows relative to the untreated effluent, whereas in August, XAD8 treatment had little effect. During both experiments, XAD8 treatment removed greater than 90% of the APEs. Exposure of fish to a mixture of APEs similar in composition and concentration to the WWTP effluent, but prepared in groundwater and conducted at a separate facility, elicited vitellogenin induction during both experiments. There was a positive relation between vitellogenin induction and hepatosomatic index (HSI), but not gonadosomatic index (GSI), secondary sexual characteristics index (SSCI), or reproductive competency. In contrast to expectations, the GSI and SSCI increased in males exposed to WWTP effluent compared to groundwater controls. The GSI, SSCI, and reproductive competency were positively affected by XAD8 treatment of

  7. Cultivation of Azolla microphylla biomass on secondary-treated Delhi municipal effluents

    Energy Technology Data Exchange (ETDEWEB)

    Arora, A.; Saxena, S. [Indian Agricultural Research Institute, New Delhi (India). Centre for Conservation of Blue Green Algae

    2005-07-01

    Study was conducted on recycling municipal wastewaters for cultivation of Azolla microphylla biomass, which is used for inoculation into paddy fields as N biofertiliser and has other applications as green manure, animal feed and biofilter. Secondary-treated municipal wastewaters were collected from Wazirabad sewage treatment plant in New Delhi during all four seasons and tested for reactive P and heavy metal content. The reactive P levels in effluents ranged between 1-2 ppm and levels of heavy metals like Cd, Pb, Ni, Zn, Fe and Mn were well below permissible limits. A. microphylla was grown in sewage effluents and its dilutions prepared with tapwater. It showed good growth potential on sewage effluents. Doubling times during September and December months compared well with those on Espinase and Watanabe (E and W) medium and tapwater. Dried Azolla biomass produced on sewage waters did not show presence of toxic heavy metals Cd, Cr and Pb. However, levels of P in dried biomass cultivated on sewage effluents were lower as compared to those from E and W medium and tapwater. The biomass produced can be used for inoculating paddy fields or for other applications and polished wastewaters can be recycled for irrigation purposes. (author)

  8. Evaluation of toxicity and removal of color in textile effluent treated with electron beam

    International Nuclear Information System (INIS)

    The textile industry is among the main activities Brazil, being relevant in number of jobs, quantity and diversity of products and mainly by the volume of water used in industrial processes and effluent generation. These effluents are complex mixtures which are characterized by the presence of dyes, surfactants, metal sequestering agents, salts and other potentially toxic chemicals for the aquatic biota. Considering the lack of adequate waste management to these treatments, new technologies are essential in highlighting the advanced oxidation processes such as ionizing radiation electron beam. This study includes the preparation of a standard textile effluent chemical laboratory and its treatment by electron beam from electron accelerator in order to reduce the toxicity and intense staining resulting from Cl. Blue 222 dye. The treatment caused a reduction in toxicity to exposed organisms with 34.55% efficiency for the Daphnia similis micro crustacean and 47.83% for Brachionus plicatilis rotifer at a dose of 2.5 kGy. The Vibrio fischeri bacteria obtained better results after treatment with a dose of 5 kGy showing 57.29% efficiency. Color reduction was greater than 90% at a dose of 2.5 kGy. This experiment has also carried out some preliminary tests on the sensitivity of the D. similis and V. fischeri organisms to exposure of some of the products used in this bleaching and dyeing and two water reuse simulations in new textile processing after the treating the effluent with electron beam. (author)

  9. QUALITY CHARACTERIZATION OF EFFLUENT TREATED BY SEWAGE STABILIZATION PONDS AT UNESP CAMPUS IN BOTUCATU,SP.

    Directory of Open Access Journals (Sweden)

    IVAN FERNANDES DE SOUZA

    2012-11-01

    Full Text Available This study observed effluent quality at UNESP, Botucatu campus, SP, Rubião Júnior District, treated by sewage stabilization pond system. Effluent quality was analysed by determining physico-chemical parameters as well as chemical species. Quality effluent and residue sampling were monthly observed from March, 2004 to November 2004, within rainy and dry seasons, aiming at detecting possible changes within treatment system. Air temperature and effluent temperatures, hydrogen potential, conductivity, turbidity, settleable solids, oil and grease, chemical and biochemical oxygen demands, total organic carbon, ammonia nitrogen were sampled. Results showed no significant differences in system behaviour between collecting points and dry or rainy periods. Data on temperature did not show sharp restricitons on pond metabolic processes for critical temperatures were not reached. pH, settleable solids, oil and grease, turbidity, conductivity, total organic carbon and ammonia nitrogen indicated the efficiency of the system as well as its trends. Chemical and biochemical oxigen interfered on organic load due to atypical period, showing possible relationship to Campus activities and variations due to biodegradability of organic matter

  10. Treated sewage effluent (water) potential to be used for horticultural production in Botswana

    Science.gov (United States)

    Emongor, V. E.; Ramolemana, G. M.

    Botswana being semi-arid and arid country, the provision of drinking water and water for agricultural production is becoming increasingly scarce and expensive. Measures that can augment the available sources of water or measures that can reduce the demand on potable water should be given serious consideration. Horticulturists have incorporated new technology into many of their production programs, which has enabled them to grow more horticultural crops with less water; however, more effort is needed. Techniques such as drip irrigation, sensors, growing plants with low water requirements, timing and scheduling of irrigation to the growth needs of the plant, mulching, and establishing a minimum water quality standard for horticultural crops must be used to stretch agricultural water supplies. Recycling agricultural water and using treated municipal sewage effluent is a viable option for increasing horticultures’ future water supply in Botswana. Agriculture wastewater and sewage effluents often contain significant quantities of heavy metals and other substances that may be toxic to people but beneficial to horticultural crops. However, before sewage effluent can be used for commercial production of vegetables and fruits, research must be undertaken to determine whether there is accumulation of heavy metals and faecal coliforms in the edible portion of the horticultural produce which may be detrimental to human health 15-20 years later. Research must be undertaken to assess the impact of sewage effluent on soil physical, chemical properties and environment after continued use.

  11. Membrane filtration coupled with chemical precipitation to treat recirculating aquaculture system effluents.

    Science.gov (United States)

    Yang, Ling; Zhou, Hongde; Moccia, Richard

    2006-01-01

    Effluents from recirculating aquaculture systems (RAS) contain high concentrations of nitrogen and phosphorous wastes and thus often require proper treatment to prevent potential detrimental impacts on receiving water bodies. The purpose of this study was to evaluate the feasibility of membrane filtration coupled with chemical precipitation as a pretreatment step with emphasis on phosphorus removal from RAS effluents. Chemical precipitation tests were conducted by adding magnesium chloride and alum at different chemical concentrations and pH values, respectively. Crossflow, flat-sheet membrane filtration modules were used to examine the effects of transmembrane pressure and crossflow velocity in terms of solid/liquid separation efficiency and permeate flux decline. The results showed that membrane filtration can effectively separate the phosphorus precipitates after chemical precipitation. The total phosphorus in the treated effluent was reduced to less than 0.05 mg L(-1) with a removal efficiency of more than 90%. However, much lower removal efficiencies were obtained for total organic carbon (TOC), total nitrogen, and turbidity. It was concluded that membrane filtration coupled with chemical precipitation can become an effective, compact treatment technology to meet the stringent regulatory requirements for RAS effluent discharge. PMID:17071913

  12. Reuse of Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes

    OpenAIRE

    Valentina Buscio; María García-Jiménez; Mercè Vilaseca; Victor López-Grimau; Martí Crespi; Carmen Gutiérrez-Bouzán

    2016-01-01

    The reactive dye Cibacron Yellow S-3R was selected to evaluate the feasibility of combining nanofiltration membranes with electrochemical processes to treat textile wastewater. Synthetic dyeing effluents were treated by means of two nanofiltration membranes, Hydracore10 and Hydracore50. Up to 98% of dye removal was achieved. The influence of salt concentration and pH on membrane treatment was studied. The best dye removal yield was achieved at pH 3 in the presence of 60 g/L of NaCl. After the...

  13. Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME

    Directory of Open Access Journals (Sweden)

    Wong Pui Wah

    2002-11-01

    Full Text Available Treatment of palm oil mill effluent (POME has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water. The proposed treatment will also ensure the industry to meet a more stringent discharge standard in terms of the BOD, COD and nitrogen values. In this study membrane ultrafiltration is used as the tertiary treatment method. Before the actual membrane operation was conducted, the samples were pre-treated using three separate method namely filtration, centrifugation and coagulation. It was found that the combination of filtrationultrafiltration treatment POME produced the best-treated sample quality in terms of pollutant contents elimination, namely % BOD, % COD and % nitrogen removal.

  14. Computer software design description for the Treated Effluent Disposal Facility (TEDF), Project L-045H, Operator Training Station (OTS)

    International Nuclear Information System (INIS)

    The Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) is a computer-based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS)

  15. Prevalence of enteropathogenic bacteria in treated effluents and receiving water bodies and their potential health risks.

    Science.gov (United States)

    Teklehaimanot, Giorgis Z; Genthe, B; Kamika, I; Momba, M N B

    2015-06-15

    The failure of wastewater treatment plants to produce effluents of a high microbiological quality is a matter of great concern in terms of water resource pollution. A more serious concern is that this water source is used by communities in developing countries for multiple purposes, which include drinking, recreation and agriculture. The current study investigated the prevalence and potential health risks of enteropathogenic bacteria (Salmonella typhimurium, Shigella dysenteriae and Vibrio cholerae) in the treated effluents of three selected South African Wastewater Treatment Works as well as their receiving water bodies. Culture-based and polymerase chain reaction techniques were used to detect and identify the pathogenic bacteria. The conventional methods revealed that of the 272 water samples collected, 236 samples (86.8%) tested presumptively positive for Salmonella spp., 220 samples (80.9%) for Shigella spp. and 253 samples (93.0%) for V. cholerae. Molecular test results indicated that out of the randomly selected presumptive positive samples (145), zero to 60% of samples were positive for S. typhimurium and S. dysenteriae and 20% to 60% for V. cholerae. For the health risk assessment, the daily combined risk of S. typhimurium, S. dysenteriae and V. cholerae infection was above the lowest acceptable risk limit of 10(-4) as estimated by the World Health Organization for drinking water. This study showed that the target treated wastewater effluents and their receiving water bodies could pose a potential health risk to the surrounding communities. PMID:25777950

  16. Treated Wastewater Effluent as a Source of Microbial Pollution of Surface Water Resources

    Science.gov (United States)

    Naidoo, Shalinee; Olaniran, Ademola O.

    2013-01-01

    Since 1990, more than 1.8 billion people have gained access to potable water and improved sanitation worldwide. Whilst this represents a vital step towards improving global health and well-being, accelerated population growth coupled with rapid urbanization has further strained existing water supplies. Whilst South Africa aims at spending 0.5% of its GDP on improving sanitation, additional factors such as hydrological variability and growing agricultural needs have further increased dependence on this finite resource. Increasing pressure on existing wastewater treatment plants has led to the discharge of inadequately treated effluent, reinforcing the need to improve and adopt more stringent methods for monitoring discharged effluent and surrounding water sources. This review provides an overview of the relative efficiencies of the different steps involved in wastewater treatment as well as the commonly detected microbial indicators with their associated health implications. In addition, it highlights the need to enforce more stringent measures to ensure compliance of treated effluent quality to the existing guidelines. PMID:24366046

  17. CURRENT-VOLTAGE CURVES FOR TREATING EFFLUENT CONTAINING HEDP: DETERMINATION OF THE LIMITING CURRENT

    Directory of Open Access Journals (Sweden)

    T. Scarazzato

    2015-12-01

    Full Text Available Abstract Membrane separation techniques have been explored for treating industrial effluents to allow water reuse and component recovery. In an electrodialysis system, concentration polarization causes undesirable alterations in the ionic transportation mechanism. The graphic construction of the current voltage curve is proposed for establishing the value of the limiting current density applied to the cell. The aim of this work was to determine the limiting current density in an electrodialysis bench stack, the function of which was the treatment of an electroplating effluent containing HEDP. For this, a system with five compartments was used with a working solution simulating the rinse waters of HEDP-based baths. The results demonstrated correlation between the regions defined by theory and the experimental data.

  18. Study on pH increment of treated effluent during storage

    International Nuclear Information System (INIS)

    The pH increment of a treated effluent during storage was a concern since it violates one of the water quality parameter when discharging to the environment. This study was aimed at investigating the root cause of the increase. It was hypothesized that the main cause of the increase of the pH in the holding pond was mainly due to the growth of algae through photosynthesis process with the present of sunlight. The study verified this assumption and several proposals to mitigate the situations have been suggested. Among others, it included using chemical solution to destroy the algae, control the growth of algae using the bacteria as recommended such as Aqua Clear freeze-dried bacteria and enzymes and to build the cover for the pond to prevent the sunlight from reaching the effluent

  19. Reuse of Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes

    Directory of Open Access Journals (Sweden)

    Valentina Buscio

    2016-06-01

    Full Text Available The reactive dye Cibacron Yellow S-3R was selected to evaluate the feasibility of combining nanofiltration membranes with electrochemical processes to treat textile wastewater. Synthetic dyeing effluents were treated by means of two nanofiltration membranes, Hydracore10 and Hydracore50. Up to 98% of dye removal was achieved. The influence of salt concentration and pH on membrane treatment was studied. The best dye removal yield was achieved at pH 3 in the presence of 60 g/L of NaCl. After the membrane filtration, the concentrate containing high dye concentration was treated by means of an electrochemical process at three different current densities: 33, 83, and 166 mA/cm2. Results showed a lineal relationship between treatment time and applied current density. Both permeates and electrochemically-decoloured effluents were reused in new dyeing processes (100% of permeate and 70% of decoloured concentrates. Dyed fabrics were evaluated with respect to original dyeing. Colour differences were found to be into the acceptance range.

  20. Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) System Configuration Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.L. Jr.

    1994-06-01

    The Treated Effluent Disposal Facility Operator Training Station (TEDF OTS) is a computer based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS). It consists of PC compatible computers and a Programmable Logic Controller (PLC) designed to emulate the responses of various plant components connected to or under the control of the CCS. The system trains operators by simulating the normal operation but also has the ability to force failures of different equipment allowing the operator to react and observe the events. The paper describes organization, responsibilities, system configuration management activities, software, and action plans for fully utilizing the simulation program.

  1. Facility effluent monitoring plan for K Area Spent Fuel. Revision 1

    International Nuclear Information System (INIS)

    The scope of this document includes program plans for monitoring and characterizing radioactive and nonradioactive hazardous materials discharged in the K Area effluents. This FEMP includes complete documentation for both airborne and liquid effluent monitoring systems that monitor radioactive and nonradioactive hazardous pollutants that could be discharged to the environment under routine and/or upset conditions. This documentation is provided for each K Area facility that uses, generates, releases, or manages significant quantities of radioactive and nonradioactive hazardous materials that could impact public and employee safety and the environment. This FEW describes the airborne and liquid effluent paths and the associated sampling and monitoring systems of the K Area facilities. Sufficient information is provided on the effluent characteristics and the effluent monitoring systems so that a compliance assessment against requirements may be performed. Adequate details are supplied such that radioactive and hazardous material source terms may be related to specific effluent streams which are, in turn, related to discharge points and finally compared to the effluent monitoring system capability

  2. Simulation of Groundwater Mound Resulting from Proposed Artificial Recharge of Treated Sewage Effluent Case study – Gaza waste water treatment plant, Palestine

    OpenAIRE

    Aish, Adnan Mousa

    2010-01-01

    Mounding of the groundwater table beneath recharge sources is of concern as the raised water table approaches closely to near-surface facilities or features. The shape and height of the mound depend on several factors including the recharge rate, hydraulic conductivity and thickness of the aquifer. The objective of this paper is to evaluate the suitability of the study area for a rapid infiltration system of treated wastewater effluent without causing excessive mounding of the water table. A ...

  3. Effluent quality of a conventional activated sludge and a membrane bioreactor system treating hospital wastewater

    International Nuclear Information System (INIS)

    Two lab scale wastewater treatment plants treating hospital wastewater in parallel were compared in terms of performance characteristics. One plant consisted of a conventional activated sludge system (CAS) and comprised In anoxic and aerobic compartment followed by a settling tank with recycle loop. The second pilot plant was a -late membrane bioreactor (MBR). The wastewater as obtained from the hospital had a variable COD (Chemical Oxygen Demand) ranging from 250 to 2300 mg/L. Both systems were operated at a similar hydraulic residence time of 12 hours. The reference conventional activated sludge system did not meet the regulatory standard for effluent COD of 125 mg /L most of the time. Its COD removal efficiency was 88%. The plate MBR delivered an effluent with a COD value of 50 mg/L or less, and attained an efficiency of 93%. The effluent contained no suspended particles. In addition, the MBR resulted in consistent operational parameters with a flux remaining around 8 -10 L/m/sup 2/.h and a trans membrane pressure <0.1 bar without the need for backwash or chemical cleaning. The CAS and the MBR system performed equally good in terms of TAN removal and EE2 removal. The CAS system typically decreased bacterial groups for about 1 log unit, whereas the MBR decreased these groups for about 3 log units. Enterococci were decreased below the detection limit in the MBR and indicator organisms such as fecal coliforms were decreased for 1.4 log units in the CAS system compared to a 3.6 log removal in the MBR. (author)

  4. Performance of hybrid constructed wetland systems for treating septic tank effluent

    Institute of Scientific and Technical Information of China (English)

    CUI Li-hua; LIU Wen; ZHU Xi-zhen; MA Mei; HUANG Xi-hua; XIA Yan-yang

    2006-01-01

    The integrated wetland systems were constructed by combining horizontal-flow and vertical-flow bed, and their purification efficiencies for septic tank effluent were detected when the hydraulic retention time (HRT) was 1 d, 3 d, 5 d under different seasons.The results showed that the removal efficiencies of the organics, phosphorus were steady in the hybrid systems, but the removal efficiency of total nitrogen was not steady due to high total nitrogen concentration in the septic tank effluent. The average removal rates of COD (chemical oxygen demand) were 89%, 87%, 83%, and 86% in summer, autumn, winter and spring, respectively, and it was up to 88%, 85%, 73%, and 74% for BOD5 (5 d biochemical oxygen demand) removal rate in four seasons. The average removal rates of TP (total phosphorous) could reach up to 97%, 98%, 95%, 98% in four seasons, but the removal rate of TN (total nitrogen)was very low. The results of this study also indicated that the capability of purification was the worst in winter. Cultivating with plants could improve the treated effluent quality from the hybrid systems. The results of the operation of the horizontal-flow and vertical-flow cells (hybrid systems) showed that the removal efficiencies of the organics, TP and TN in horizontal-flow and vertical-flow cells were improved significantly with the extension of HRT under the same season. The removal rate of 3 d HRT was obviously higher than that of 1 d HRT, and the removal rate of 5 d HRT was better than that of 3 d HRT, but the removal efficiency was not very obvious with the increment of HRT. Therefore, 3 d HRT might be recommended in the actual operation of the hybrid systems for economic and technical reasons.

  5. Toxicity effects of nickel electroplating effluents treated by photoelectrooxidation in the industries of the Sinos River Basin.

    Science.gov (United States)

    Benvenuti, T; Rodrigues, Mas; Arenzon, A; Bernardes, A M; Zoppas-Ferreira, J

    2015-05-01

    The Sinos river Basin is an industrial region with many tanneries and electroplating plants in southern Brazil. The wastewater generated by electroplating contains high loads of salts and metals that have to be treated before discharge. After conventional treatment, this study applied an advanced oxidative process to degrade organic additives in the electroplating bright nickel baths effluent. Synthetic rinsing water was submitted to physical-chemical coagulation for nickel removal. The sample was submitted to ecotoxicity tests, and the effluent was treated by photoelectrooxidation (PEO). The effects of current density and treatment time were evaluated. The concentration of total organic carbon (TOC) was 38% lower. The toxicity tests of the effluent treated using PEO revealed that the organic additives were partially degraded and the concentration that is toxic for test organisms was reduced. PMID:26270209

  6. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  7. Toxicity assessment of tannery effluent treated by an optimized photo-Fenton process.

    Science.gov (United States)

    Borba, Fernando Henrique; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando Rodolfo; Manenti, Diego Ricieri; Bergamasco, Rosangela; Mora, Nora Diaz

    2013-01-01

    In this work, an optimized photo-Fenton process was applied to remove pollutants from tannery industrial effluent (TIE) with its final toxicity level being assessed by a lettuce-seed-based bioassay test. A full 33 factorial design was applied for the optimization of long-term photo-Fenton experiments. The oPtimum conditions of the photo-Fenton process were attained at concentration values of 0.3 g Fe(2+) L(-1) and 20 g H2O2 L(-1) and pH3, for 120 min UV irradiation time. Reactor operating parameter (ROP) effects on the removal of chemical oxygen demand, colour, turbidity, total suspended solids and total volatile solids were evaluated, suggesting that a broad range of ROP values are also suitable to give results very near to those of the photo-Fenton experiments under optimal conditions. Based on the low calculated median lethal dose (LD50) values from a lettuce-seed-based bioassay test, we suggest that recalcitrant substances are present in treated TIE samples. A possible cause of the high toxicity level could partly be attributed to the nitrate concentration, which was not completely abated by the photo-Fenton process. Apart from this, the photo-Fenton process can be used as a part of an industrial effluent treatment system in order to abate high organic pollutant loads. PMID:23837315

  8. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-01-01

    Full Text Available Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF; average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  9. Comparison of six sewage effluents treated with different treatment technologies-Population level responses in the harpacticoid copepod Nitocra spinipes

    International Nuclear Information System (INIS)

    Since conventional treatment technologies may fail in removing many micro-pollutants, there is currently a focus on the potential of additional treatment technologies for improved sewage treatment. The aim of the present study was to evaluate six different effluents from Henriksdal Sewage Treatment Plant in Stockholm, Sweden. The effluents were; conventionally treated effluent (chemical phosphorous removal in combination with an activated sludge process, including biological nitrogen removal and a sand filter), with additional treatments individually added to the conventional treatment; active carbon filtration, ozonation at 5 mg l-1, ozonation at 15 mg l-1, ozonation at 5 mg l-1 + moving bed biofilm reactor and irradiation with ultraviolet radiation + hydrogen peroxide. The evaluation was done by characterizing and comparing the effluents using a Lefkovitch matrix model based on a life cycle test with the harpacticoid copepod Nitocra spinipes, combined with analysis of juvenile development and survival over time. The conventionally treated effluent resulted in the most negative effects, leading to the conclusion that all additional treatments in the present study created effluents with less negative impacts on the copepod populations. The ozone treatments with the low dose treatment in particular, resulted in the overall least negative effects. Moving bed biofilm reactor combined with ozone did not improve the quality of the effluent in the sense that slightly more negative effects on the population abundance were seen for this treatment technology compared to ozonation alone. The active carbon treatment had more negative effects than the ozone treatments, most of which could possibly be explained by removal of essential metal ions. The effluent which was treated with ultraviolet radiation + hydrogen peroxide resulted in few developmental and survival effects over time, but still showed negative effects on the population level. Matrix population modeling proved a

  10. Chemical composition of Clarias Lazera (cuv and val., 1840) as an indicator of fish raising in treated sewage effluents

    International Nuclear Information System (INIS)

    The present study is one of the pioneer studies dealing with the possibility of growing fish in treated sewage water in Sudan. Khartoum sewage treatment plant - Green Belt area - was the main study site for this work, where fish was some how introduced to the canal which receives water from the last stage of treatment. Fish have reached large sizes and numbers, they are highly consumed by people of the area and widely marketed in the nearby localities. So this study aimed to discuss the potential health associated with the utilization of such fish for food, throwing light, on the advantages and disadvantages of fish culture in treated sewage effluent. The research was directed towards the study of the chemical composition of Clarias lazera (Cuv. and Val., 1840) (Garmout fish) being the only fish species in the area during the course of this study . Fish samples were collected from the Green Belt and the White Nile at the vicinity of Jebel Aulia reservoir which was taken as a control area for (April 1995 - April 1996). Basic biology was studies for each specimen, the concentrations of some of the hazardous and potentially hazardous heavy metals were investigated in the flesh of 30, randomly selected fish samples from both study sites, beside the major chemical body constituents : fats, proteins, moisture and ash in all specimens, to determine the quality of the flesh> Data obtained was analyzed, trying to correlate fish chemical composition to the surrounding environment. Treated sewage-fish showed higher weights and lengths than natural water-fish from the White Nile. Most of the hazardous metals investigated in the muscle tissues of treated sewage-fish were found to be of insignificant variation from that of natural water-fish (Mercury and Lead). They were found to be at lower levels than what is recommended by the International Agencies human consumption. The essential micronutrients for fish like Copper, Ferric (Iron) and Zinc showed significantly higher levels

  11. Physico-chemical analysis of industrial effluents from Kotri site area

    International Nuclear Information System (INIS)

    A number of industries are located in Kotri site area. The effluents are either used for agricultural purposes or end in K.B. Feedar, which is a main source of water to Kalri Lake, which is subsequently pumped to Karachi for drinking purposes. The water samples from three industrial units Colgate, Atlas and Ali Enterprises together with drain I and drain II throwing their effluents in agricultural land near Qadinshoro village and general effluents of whole site industrial area before discharging to K.B. Feedar were collected. The samples were examined for temperature, visibility, pH, conductivity, residue (total, filterable, non filterable, volatile and fixed), hardness, dissolved oxygen, chemical oxygen demand and metal ion contents. The analyses were carried out by standard methods. Metal ions were determined using atomic absorption spectrometer. Copper, cobalt, iron, cadmium and zinc were determined after preconcentration by complexation and solvent extraction. The pH of the effluents varied between 4 to 10.8 with high conductivity and low dissolved oxygen. The metal contents were within the permissible limits for effluents recommended by Pakistan EPA quality standards. (author)

  12. Cause and effect relationship between foam formation and treated wastewater effluents in a transboundary river

    Science.gov (United States)

    Ruzicka, Katerina; Gabriel, Oliver; Bletterie, Ulrike; Winkler, Stefan; Zessner, Matthias

    The occurrence of foam at weirs in a lowland river in Austria and shortly after the Austrian border with Hungary, as well as, the associated protests from Hungarian locals led to investigations concerning the reasons for foam formation. Three aspects were the main subject of investigation, namely, (i) to assess the dimension of the appearing foam, (ii) to evaluate the reasons for the formation of foam, and (iii) to set abatement-measures. A 1 year monitoring programme included a close network of surface water sampling sites, as well as, the sampling of thirteen municipal and industrial wastewater treatment plants along the river stretch. In addition to classical parameters (physical and chemical) the surface tension and tensides were analysed. Constant observation of foam formation in Hungary was achieved by the installation of an online webcam with combined data recording, which resulted in the development of a seven-stage foam index (0-6) for semi quantitative assessment of foam formation on the river. Also, the effluents of the wastewater treatment plants that were considered were the subject of standardised foaming tests. The basis of the tests was to detect, (i) foam on the sample and, (ii) the dilution of a sample at which no more foam could be observed. The dilution factor was used to calculate the foam potential of an effluent, which is an size for the potential volume of river water that may be foamed by waste water treatment plants’ effluents. The spatial distribution of foam along the river stretch, as well as, the results of the foam tests allowed the identification of three tanneries as the main contributors to foam, although wastewater from these tanneries is treated at wastewater treatment plants by the best available technology (biological treatment with nitrification and denitrification, sludge retention time >20 days, temperature in the activated sludge tank >20 °C). The implementation of an accepted degree of foam formation was desirable to

  13. Polishing of treated palm oil mill effluent (POME) from ponding system by electrocoagulation process.

    Science.gov (United States)

    Bashir, Mohammed J K; Mau Han, Tham; Jun Wei, Lim; Choon Aun, Ng; Abu Amr, Salem S

    2016-01-01

    As the ponding system used to treat palm oil mill effluent (POME) frequently fails to satisfy the discharge standard in Malaysia, the present study aimed to resolve this problem using an optimized electrocoagulation process. Thus, a central composite design (CCD) module in response surface methodology was employed to optimize the interactions of process variables, namely current density, contact time and initial pH targeted on maximum removal of chemical oxygen demand (COD), colour and turbidity with satisfactory pH of discharge POME. The batch study was initially designed by CCD and statistical models of responses were subsequently derived to indicate the significant terms of interactive process variables. All models were verified by analysis of variance showing model significances with Prob > F removal of colour and turbidity with COD removal of 75.4%. The pH of post-treated POME of 7.6 was achieved, which is suitable for direct discharge. These predicted outputs were subsequently confirmed by insignificant standard deviation readings between predicted and actual values. This optimum condition also permitted the simultaneous removal of NH3-N, and various metal ions, signifying the superiority of the electrocoagulation process optimized by CCD. PMID:27232407

  14. Closure report for CAU 93: Area 6 steam cleaning effluent ponds, Nevada Test Site. Volume 1

    International Nuclear Information System (INIS)

    The Steam Cleaning Effluent Ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site. The SCEPs are evaporation basins formerly used for the disposal of untreated liquid effluent discharged from steam cleaning activities associated with Buildings 6-623 and 6-800. This closure report documents the strategy and analytical results that support the clean closure or closure in place of each of the components within CAU 93. In addition, the report documents all deviations from the approved closure plan and provides rationale for all deviations

  15. Closure report for CAU 93: Area 6 steam cleaning effluent ponds, Nevada Test Site. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Steam Cleaning Effluent Ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site. The SCEPs are evaporation basins formerly used for the disposal of untreated liquid effluent discharged from steam cleaning activities associated with Buildings 6-623 and 6-800. This closure report documents the strategy and analytical results that support the clean closure or closure in place of each of the components within CAU 93. In addition, the report documents all deviations from the approved closure plan and provides rationale for all deviations.

  16. Analysis of bacteria, parasites, and heavy metals in lettuce (Lactuca sativa) and rocket salad (Eruca sativa L.) irrigated with treated effluent from a biological wastewater treatment plant.

    Science.gov (United States)

    Nikaido, Meire; Tonani, Karina A A; Julião, Fabiana C; Trevilato, Tânia M B; Takayanagui, Angela M M; Sanches, Sérgio M; Domingo, José L; Segura-Muñoz, Susana I

    2010-06-01

    This study aimed to evaluate the viability of using treated residuary water from the Biological Wastewater Treatment Plant of Ribeirão Preto to grow vegetables, through the characterization and quantification of parasites, coliforms, and heavy metals. Three equal cultivation areas were prepared. The first was irrigated with treated/chlorinated (0.2 mg L(-1)) wastewater, the second one with treated wastewater without chlorination, and the third site with potable water, which was the control group. The presence of Hymenolepis nana, Enterobius vermicularis, nematode larvae, and Entamoeba coli was verified in lettuce (Lactuca sativa) samples. Although nematode larvae were observed in rocket salad (Eruca sativa L.), no significant differences were found between the number of parasites and type of irrigation water used. No significant differences were found between the number of fecal coliforms in vegetables and the different types of irrigation. However, the vegetables irrigated with treated effluent without chlorination showed higher levels of fecal coliforms. The risk of pathogens is reduced with bleach addition to the treated effluent at 0.2 mg/L. Concentration of heavy metals in vegetables does not mean significant risks to human health, according with the parameters recommended by the World Health Organization. PMID:19639268

  17. Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area-An application towards phycoremediation.

    Science.gov (United States)

    Balaji, S; Kalaivani, T; Sushma, B; Pillai, C Varneetha; Shalini, M; Rajasekaran, C

    2016-08-01

    Phycoremediation ability of microalgae namely Oscillatoria acuminate and Phormidium irrigum were validated against the heavy metals from tannery effluent of Ranipet industrial area. The microalgae species were cultured in media containing tannery effluent in two different volumes and the parameters like specific growth rate, protein content and antioxidant enzyme activities were estimated. FTIR spectroscopy was carried out to know the sorption sites interaction. The antioxidant enzymes namely superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) contents were increased in microalgae species indicating the free radical scavenging mechanism under heavy metal stress. SOD activity was 0.502 and 0.378 units/gram fresh weight, CAT activity was 1.36 and 0.256 units/gram fresh weight, GSH activity was 1.286 and 1.232 units/gram fresh weight respectively in the effluent treated microalgae species. Bio sorption efficiency for Oscillatoria acuminate and Phormidium irrigum was 90% and 80% respectively. FTIR analysis revealed the interaction of microalgae species with chemical groups present in the tannery effluent. From the results, the microalgae Oscillatoria acuminate possess high antioxidant activity and bio sorption efficiency when compared to Phormidium irrigum and hence considered useful in treating heavy metals contaminated effluents. PMID:26587690

  18. Effects of spray-irrigated treated effluent on water quantity and quality, and the fate and transport of nitrogen in a small watershed, New Garden Township, Chester County, Pennsylvania

    Science.gov (United States)

    Schreffler, Curtis L.; Galeone, Daniel G.; Veneziale, John M.; Olson, Leif E.; O'Brien, David L.

    2005-01-01

    An increasing number of communities in Pennsylvania are implementing land-treatment systems to dispose of treated sewage effluent. Disposal of treated effluent by spraying onto the land surface, instead of discharging to streams, may recharge the ground-water system and reduce degradation of stream-water quality. The U.S. Geological Survey (USGS), in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP) and the Chester County Water Resources Authority (CCWRA) and with assistance from the New Garden Township Sewer Authority, conducted a study from October 1997 through December 2001 to assess the effects of spray irrigation of secondary treated sewage effluent on the water quantity and quality and the fate and transport of nitrogen in a 38-acre watershed in New Garden Township, Chester County, Pa. On an annual basis, the spray irrigation increased the recharge to the watershed. Compared to the annual recharge determined for the Red Clay Creek watershed above the USGS streamflow-gaging station (01479820) near Kennett Square, Pa., the spray irrigation increased annual recharge in the study watershed by approximately 8.8 in. (inches) in 2000 and 4.3 in. in 2001. For 2000 and 2001, the spray irrigation increased recharge 65-70 percent more than the recharge estimates determined for the Red Clay Creek watershed. The increased recharge was equal to 30-39 percent of the applied effluent. The spray-irrigated effluent increased base flow in the watershed. The magnitude of the increase appeared to be related to the time of year when the application rates increased. During the late fall through winter and into the early spring period, when application rates were low, base flow increased by approximately 50 percent over the period prior to effluent application. During the early spring through summer to the late fall period, when application rates were high, base flow increased by approximately 200 percent over the period prior to effluent application

  19. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    International Nuclear Information System (INIS)

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced

  20. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, M.C.F. E-mail: mariacristinafm@uol.com.br; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I

    2004-10-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced.

  1. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    Science.gov (United States)

    Moraes, M. C. F.; Romanelli, M. F.; Sena, H. C.; Pasqualini da Silva, G.; Sampa, M. H. O.; Borrely, S. I.

    2004-09-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced.

  2. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  3. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    International Nuclear Information System (INIS)

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS

  4. Ecotoxicity of raw and treated effluents generated by a veterinary pharmaceutical company: a comparison of the sensitivities of different standardized tests.

    Science.gov (United States)

    Maselli, Bianca de S; Luna, Luis A V; Palmeira, Joice de O; Tavares, Karla P; Barbosa, Sandro; Beijo, Luiz A; Umbuzeiro, Gisela A; Kummrow, Fábio

    2015-05-01

    Pharmaceutical effluents have recently been recognized as an important contamination source to aquatic environments and the toxicity related to the presence of antibiotics in effluents has attracted great attention. Conventionally, these effluents have been treated using physico-chemical and aerobic biological processes, usually with low rates of pharmaceuticals removal. Due to the complexity of effluents, it is impossible to determine all pharmaceuticals and their degradation products using analytical methods. Ecotoxicity tests with different organisms may be used to determine the effect level of effluents and thus their environmental impacts. The objective of this work was to compare the sensitivities of five ecotoxicity tests using aquatic and terrestrial organisms to evaluate the toxicity of effluents from the production of veterinary medicines before and after treatment. Raw and chemically treated effluent samples were highly toxic to aquatic organisms, achieving 100,000 toxic units, but only few of those samples presented phytotoxicity. We observed a reduction in the toxicity in the biologically treated effluent samples, which were previously chemically pre-treated, however the toxicity was not eliminated. The rank of test organisms' reactions levels was: Daphnia similis > Raphidocelis subcapitata > Aliivibrio fischeri > Allium cepa ~ Lactuca sativa. Effluent treatment employed by the evaluated company was only partially efficient at removing the effluent toxicity, suggesting potential risks to biota. The acute toxicity test with D. similis proved to be the most sensitive for both raw and treated effluents and is a suitable option for further characterization and monitoring of pharmaceutical effluents. PMID:25682103

  5. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing

    2012-12-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  6. Valuation and modelling of helminth eggs removal in baffled and unbaffled ponds treating anaerobic effluent.

    Science.gov (United States)

    von Sperling, M; Chernicharo, C A L; Soares, A M E; Zerbini, A M

    2003-01-01

    The paper evaluates and models helminth eggs removal in a combined UASB (Upflow Anaerobic Sludge Blanket) reactor-maturation pond system (one baffled and one unbaffled pond in parallel). The system is comprised of demonstration-scale units, treating actual domestic sewage from Itabira city, Brazil. The paper addresses the following points: (i) removal of helminth eggs from the wastewater in the system; (ii) comparison of the observed removal efficiency with the predictions using the Ayres et al. model; (iii) accumulation of helminth eggs in the sludge; (iv) viability of eggs in the sludge; (v) distribution of helminth species in the sludge. The removal efficiency of helminth eggs from the wastewater in both ponds was 100% for most of the time (0 counts in the final effluent). The predictions of helminth eggs removal according to the Ayres et al. model can be considered reasonable. After one year of operation, 88% of the eggs in the sludge remained viable. Helminth eggs counts in the sludge tended to decrease along the baffled pond length (from first to last compartment). The prevailing helminth species found in the sludge from both ponds was Ascaris lumbricoides. PMID:14510201

  7. Parasitic and bacterial contamination in collards using effluent from treated domestic wastewater in Chiang Mai, Thailand.

    Science.gov (United States)

    Keawvichit, R; Wongworapat, K; Putsyainant, P; Silprasert, A; Karnchanawong, S

    2001-01-01

    Thailand often has inadequate water supply for agriculture during the dry season. The reuse of treated wastewater treatment plants could solve this problem. Treatment of domestic wastewater of Chiang Mai municipality by the aerated lagoon system (AL) releases more than 25,000 m3 of treated water everyday. The reuse of wastewater in agriculture is an efficient use of water, especially in tropical countries or in drought zones. The objective of this study is to demonstrate the possibility of using treated wastewater in growing edible vegetables, ie collards (kale), without pathogenic parasite and bacterial contamination. Collards (Brassica oleracea var acephala) were grown using either the treated wastewater from the aerated lagoon system (AL) or ground water (GW). Three cropping times were scheduled in February, May and July, 2000. Samples of water from AL system and GW were taken two times per month (the consecutive weeks) from February to July and examined for bacteria and parasites. Irrigation water (IW) that was normally used in agriculture was also collected, at the same time of the AL and GW collection, for bacteria and parasite investigation. A soil sample was taken before and after each crop for parasite examination. Collards were also collected at the end of the crop for parasite investigation. The results showed that GW seems to be a clean water since no pathogenic bacteria were found although small amount of Escherichia coli was noted in May. For AL and IW, similar number and types of bacteria were found. They were Aeromonas sobria, A. hydrophila, E. coli, Citrobacter freundii, Pseudomonas aeruginosa, non-pathogenic type of Vibrio cholerae. The small number of Salmonella enteritidis gr E was found in AL in April. After investigating 12 samples in 6 months of each kind of water, ie GW, Al, and IW, no parasite was found. Only unidentified free living nematodes were found in IW but those parasites are non pathogenic. A small number of unidentified free

  8. Soil plutonium and cesium in stream channels and banks of Los Alamos liquid effluent-receiving areas

    International Nuclear Information System (INIS)

    Stream channel sediments and adjacent bank soils found in three intermittent streams used for treated liquid effluent disposal at Los Alamos, New Mexico were sampled to determine the distribution of 238Pu, sup(239,240)Pu and 137Cs. Radionuclide concentrations and inventories were determined as functions of distance downstream from the waste outfall and from the center of the stream channel, soil sampling depth, stream channel-bank physiography, and the waste use history of each disposal area. Radionuclide concentrations in channel sediments were inversely related to distances up to 10 km downstream from the outfalls. For sites receiving appreciable waste effluent additions, contaminant concentrations in bank soils decreased with perpendicular distances greater than 0.38 m from the stream channel, and with stream bank sampling depths greater than 20-40 cm. Concentrations and total inventories of radionuclides in stream bank soils generally decreased as stream bank height increased. Inventory estimates of radionuclides in channel sediments exhibited coefficients of variation that ranged 0.41-2.6, reflecting the large variation in radionuclide concentrations at each site. Several interesting temporal relationships of these radionuclides in intermittent streams were gleaned from the varying waste use histories of the three effluent-receiving areas. Eleven years after liquid wastes were added to one canyon, the major radionuclide inventories were found in the stream bank soils, unlike most of the other currently-used receiving areas. A period of time greater than 6 yr seems to be required before the plutonium in liquid wastes currently added to the canyon is approximately equilibrated with the plutonium in the bank soils. These observations are discussed relative to waste management practices in these southwestern intermittent streams. (author)

  9. Ecotoxicological studies with newly hatched larvae of Concholepas concholepas (Mollusca, Gastropoda): bioassay with secondary-treated kraft pulp mill effluents.

    Science.gov (United States)

    Manríquez, Patricio H; Llanos-Rivera, Alejandra; Galaz, Sylvana; Camaño, Andrés

    2013-12-01

    The Chilean abalone or "loco" (Concholepas concholepas, Bruguière 1789) represent the most economically important marine recourse exploited from inner inshore Management and Exploitation Areas for Benthic Resources along the Chilean coast. In this study, newly-hatched larvae of C. concholepas were investigated as a potential model species for marine ecotoxicological studies. The study developed a behavioral standard protocol for assessing the impact that kraft pulp mill effluents after secondary treatment have on C. concholepas larvae. Under controlled laboratory conditions, newly-hatched larvae were exposed to a series of different concentrations of kraft pulp mill effluents with secondary treatment (Pinus spp. and Eucalyptus spp.), potassium dichromate as standard reference toxicant and effluent-free control conditions. Regardless of the type of effluent the results indicated that diluted kraft pulp effluent with secondary treatment had reduced effect on larval survival. Low larval survivals were only recorded when they were exposed to high concentrations of the reference toxicant. This suggests that C. concholepas larval bioassay is a simple method for monitoring the effects of kraft pulp mill effluents with secondary treatment discharged into the sea. The results indicated that dilution of ca. 1% of the effluent with an elemental chlorine free (ECF) secondary treatment is appropriate for achieving low larval mortalities, such as those obtained under control conditions with filtered seawater, and to minimize their impact on early ontogenetic stages of marine invertebrates such as newly-hatched larvae of C. concholepas. The methodological aspects of toxicological testing and behavioral responses described here with newly-hatched larvae of C. concholepas can be used to evaluate in the future the potential effects of other stressful conditions as other pollutants or changes in seawater pH associated with ocean acidification. PMID:24099753

  10. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.

    Science.gov (United States)

    Greenway, M

    2003-01-01

    From a botanical perspective the major difference between waste stabilisation ponds and wetlands is the dominance of algae or floating plants in the former and emergent plants in the latter. Algae, floating and submerged plants remove nutrients directly from the water column whereas emergent species remove nutrients from the sediment. Water depth is a crucial factor in determining which plant types will become established. Surface flow constructed wetlands offer the greatest potential to grow a wide variety of different types of macrophytes. In assessing the suitability of plant species for nutrient removal, consideration must be given not only to nutrient uptake for growth but also storage of nutrients as plant biomass. A survey of macrophytes in 15 surface flow constructed wetlands treating secondary effluent was conducted in Queensland; 63 native species and 14 introduced species were found. Emergent species have been able to tolerate deeper water than in their natural environment and permanent waterlogging. All species grew well in the higher nutrient enriched wastewater. Submerged, floating leaved-attached and free floating species had the highest tissue nutrient content, followed by aquatic creepers. All these species remove nutrients from the water column. Emergent species had lower nutrient content but a greater biomass and were therefore able to store more nutrients per unit area of wetland. In order to maximise the efficiency of constructed wetlands for nutrient removal, a range of species should be used. Native species should be selected in preference to introduced/exotic species. PMID:14510202

  11. Quarterly sampling of the wetlands along the old F Area effluent ditch: August 1994

    International Nuclear Information System (INIS)

    In August 1994, well point water and near-surface water samples were collected to characterize tritium and volatile organic compounds (VOC) in the wetlands along the old F-Area effluent ditch south of 643-E (old burial ground). The August sampling event was the third in a series of eight events. Groundwater flow paths suggest that compounds detected in water table wells around 643-E migrate towards the old F-Area effluent ditch and Fourmile Branch. Recent analytical results from well point and near-surface water sampling in the wetlands that comprise the old F-Area effluent ditch have shown that tritium and small quantities of VOCs are outcropping in the area. For this study, seven locations along the old F-Area effluent ditch were selected to be sampled. Well point samples were collected from all seven locations and near-surface water samples were collected at four locations. A secondary objective of this project was to compare VOC concentrations between the well points installed to depths of 6 to 8 ft and the near-surface water sampling buckets installed to depths of 1 to 2 ft. Based on differences in tritium concentrations at each location, it was determined that the sampling devices intercepted different groundwater flow paths. This negated direct comparison of analytical results between devices. However, when VOC concentrations measured at each well point and bucket location were normalized, based on the percent differences observed in tritium concentrations at that location, the resulting well point and bucket VOC concentrations were comparable in most cases. These results are consistent with the results from the three previous sampling events, and suggest that volatilization losses of VOCs from the buckets may be negligible. Since the results from the two sampling methodologies are not directly comparable, further sampling of the buckets is not planned

  12. Toxicity to Daphnia magna and Vibrio fischeri of Kraft bleach plant effluents treated by catalytic wet-air oxidation.

    Science.gov (United States)

    Pintar, Albin; Besson, Michèle; Gallezot, Pierre; Gibert, Janine; Martin, Dominique

    2004-01-01

    Two Kraft-pulp bleaching effluents from a sequence of treatments which include chlorine dioxide and caustic soda were treated by catalytic wet-air oxidation (CWAO) at T=463 K in trickle-bed and batch-recycle reactors packed with either TiO2 extrudates or Ru(3 wt%)/TiO2 catalyst. Chemical analyses (TOC removal, color, HPLC) and bioassays (48-h and 30-min acute toxicity tests using Daphnia magna and Vibrio fischeri, respectively) were used to get information about the toxicity impact of the starting effluents and of the treated solutions. Under the operating conditions, complex organic compounds are mostly oxidized into carbon dioxide and water, along with short-chain carboxylic acids. Bioassays were found as a complement to chemical analyses for ensuring the toxicological impact on the ecosystem. In spite of a large decrease of TOC, the solutions of end products were all more toxic to Daphnia magna than the starting effluents by factors ranging from 2 to 33. This observation is attributed to the synergistic effects of acetic acid and salts present in the solutions. On the other hand, toxicity reduction with respect to Vibrio fischeri was achieved: detoxification factors greater than unity were measured for end-product solutions treated in the presence of the Ru(3 wt%)/TiO2 catalyst, suggesting the absence of cumulative effect for this bacteria, or a lower sensitivity to the organic acids and salts. Bleach plant effluents treated by the CWAO process over the Ru/TiO2 catalyst were completely biodegradable. PMID:14675640

  13. Aquifer storage and recovery of treated sewage effluent in the middle east

    KAUST Repository

    Maliva,, Robert G.

    2011-01-01

    Treated sewage effluent (TSE) is becoming a critical resource in arid parts of the world. The high costs of desalinated potablewater and the depletion of fresh groundwater resources necessitate increased use of TSE as an important component of water resource management throughout the Middle East. TSE can replace potable-quality water in irrigation, with the latter becoming too valuable a resource to use for irrigation purposes. In urban regions of theMiddle East and North Africa, excess TSE is often available because of seasonal variations in demand and supply or that the development of reuse infrastructure has not kept pace with population growth, concomitant water use and TSE generation. Aquifer storage and recovery (ASR) technology provides an opportunity to store large volumes of TSE for later beneficial use. Natural attenuation processes that occur during underground storage in an ASR system can also act to improve the quality of stored water and thus provide an opportunity to \\'polish\\' already high-quality TSE. Aquifers containing brackish water or those depleted from over-pumping are present throughout much of the Middle East. These aquifers could potentially be used as storage zones for ASR systems. However, currently available hydrogeologic data are insufficient for assessment of potential system performance. Other key design issues are the selection of ASR system locations and storage zones so that TSE will not enter potable water supplies, and ensuring that the ASR systems will be readily integrated into existing or planned sewage treatment, TSE transmission and reuse infrastructure. © King Fahd University of Petroleum and Minerals 2010.

  14. Eoetvoesia caeni gen. nov., sp. nov., isolated from an activated sludge system treating coke plant effluent.

    Science.gov (United States)

    Felföldi, Tamás; Vengring, Anita; Kéki, Zsuzsa; Márialigeti, Károly; Schumann, Peter; Tóth, Erika M

    2014-06-01

    A novel bacterium, PB3-7B(T), was isolated on phenol-supplemented inorganic growth medium from a laboratory-scale wastewater purification system that treated coke plant effluent. 16S rRNA gene sequence analysis revealed that strain PB3-7B(T) belonged to the family Alcaligenaceae and showed the highest pairwise sequence similarity to Parapusillimonas granuli Ch07(T) (97.5%), Candidimonas bauzanensis BZ59(T) (97.3%) and Pusillimonas noertemannii BN9(T) (97.2%). Strain PB3-7B(T) was rod-shaped, motile and oxidase- and catalase-positive. The predominant fatty acids were C(16 : 0), C(17 : 0) cyclo, C(19 : 0) cyclo ω8c and C(14 : 0) 3-OH, and the major respiratory quinone was Q-8. The G+C content of the genomic DNA of strain PB3-7B(T) was 59.7 mol%. The novel bacterium can be distinguished from closely related type strains based on its urease activity and the capacity for assimilation of glycerol and amygdalin. On the basis of the phenotypic, chemotaxonomic and molecular data, strain PB3-7B(T) is considered to represent a new genus and species, for which the name Eoetvoesia caeni gen. nov., sp. nov. is proposed. The type strain of Eoetvoesia caeni is PB3-7B(T) ( = DSM 25520(T) = NCAIM B 02512(T)). PMID:24585374

  15. Characterization of secondary treated effluents for tertiary membrane filtration and water recycling

    KAUST Repository

    Ayache, C.

    2012-06-01

    This study evaluates the impacts of water quality from three different secondary effluents on low pressure membrane fouling. Effluent organic matter (EfOM) has been reported by previous studies as responsible for membrane fouling. However, the contribution of the different components of EfOM to membrane fouling is still not well understood. In order to improve and optimize treatment processes, characterization and quantification of the organic matter are important. The characterization methods used in this study are liquid chromatography coupled with an organic detector (LC-OCD) and excitation emission matrix fluorescence spectroscopy (EEM). A bench-scale hollow fibre membrane system was used to identify the type of fouling depending on the feed water quality. Results showed no measurable dissolved organic carbon removal by the membranes for the three secondary effluents. Biopolymers and humic-like substances found in different proportions in the three effluents were partially retained by the membranes and were identified to contribute significantly to the flux decline of the low pressure membranes. The observed fouling was determined to be reversible by hydraulic backwashing for two effluents and only by chemical cleaning for the third effluent. © IWA Publishing 2012.

  16. Accumulation of metals and histopathology in Oreochromis niloticus exposed to treated NNPC Kaduna (Nigeria) petroleum refinery effluent

    Energy Technology Data Exchange (ETDEWEB)

    Onwumere, B.G.; Oladimeji, A.A. (Ahmadu Bello Univ., Zaria (Nigeria))

    1990-04-01

    Accumulation of heavy metals and histopathology were observed in Oreochromis niloticus exposed to treated petroleum refinery effluent from the Nigerian National Petroleum Corporation, Kaduna. Analysis of fish metal burden showed that the fish concentrated trace metals a thousand times above the levels existing in the exposure medium. Some metals were preferentially accumulated more than others and the accumulation was, in decreasing order, Pb, Fe, Zn, Cu, Mn, Cr, Ni, and Cd. Whole fish metal burden was lower in fish from which the gill, liver, and kidney had been removed, suggesting that these organs accumulated the metals more than other tissues. Hemorrhaging of fins was observed in all treatment concentrations except that of the control, and fish exposed to 40 and 50% effluent were most affected. Erosion of the caudal fin was also observed in fish exposed to 40 and 50% effluent. Examination of the organs for histopathology revealed damages to the gills. Gills with edematous fused lamellae congested with blood were observed. No histopathological damage was observed in the liver and kidney. The extent of metal accumulation and histopathological damage were directly related to the effluent concentrations.

  17. Effective removal of effluent organic matter (EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer.

    Science.gov (United States)

    Yang, Wenlan; Li, Xuchun; Pan, Bingcai; Lv, Lu; Zhang, Weiming

    2013-09-01

    Effluent organic matter (EfOM) is a complex matrix of organic substance mainly from bio-treated sewage effluent and is considered as the main constraint to further advanced treatment. Here a recyclable aminated hyper-cross-linked polymeric adsorbent (NDA-802) featured with aminated functional groups, large specific surface area, and sufficient micropore region was synthesized for effective removal of EfOM from the bio-treated coking wastewater (BTCW), and its removal characteristics was investigated. It was found that hydrophobic fraction was the main constituent (64.8% of DOC) in EfOM of BTCW, and the hydrophobic-neutral fraction had the highest SUVA level (7.06 L mg(-1) m(-1)), which were significantly different from that in the domestic wastewater. Column adsorption experiments showed that NDA-802 exhibited much higher removal efficiency of EfOM than other polymeric adsorbents D-301, XAD-4, and XAD-7, and the efficiency could be readily sustained according to continuous 28-cycle batch adsorption-regeneration experiments. Moreover, dissolved organic matter (DOM) fractionation and excitation-emission matrix (EEM) fluorescence spectroscopy study indicated that NDA-802 showed attractive adsorption preference as well as high removal efficiency of hydrophobic and aromatic compounds. Possibly ascribed to the presence of functional aminated groups, relatively large specific surface area and micropore region of the unique polymer, NDA-802 possesses high and sustained efficiency for the removal of EfOM, and provides a potential alternative for the advanced treatment. PMID:23774187

  18. Estimation of Chromium in Effluents from Tanneries of Korangi Industrial Area

    Directory of Open Access Journals (Sweden)

    *R. Parveen

    2013-03-01

    Full Text Available The samples were collected from the tanneries located in Korangi industrial area, have high chromium concentration exceeding the tolerable limit.The effluents from tanneries are directly disposed off into streams without any treatment or ineffective method are used for treatment. The concentration of chromium was found to be 18.57-.170.12 ppm in residue and 15.20-185.50 ppm in filtrate of korangi industrial effluent in 2011. The conductance varies from 6.7 to 175 S/m which shows the high concentration of ionic species. The pH of samples was found to be mostly alkaline (7.0-8.9 except in T1 of January.

  19. Impact of ozonation on ecotoxicity and endocrine activity of tertiary treated wastewater effluent.

    Science.gov (United States)

    Altmann, Dominik; Schaar, Heidemarie; Bartel, Cordula; Schorkopf, Dirk Louis P; Miller, Ingrid; Kreuzinger, Norbert; Möstl, Erich; Grillitsch, Britta

    2012-07-01

    Tertiary wastewater treatment plant effluent before and after ozonation (0.6-1.1g O₃/g DOC) was tested for aquatic ecotoxicity in a battery of standardised microbioassays with green algae, daphnids, and zebrafish eggs. In addition, unconjugated estrogen and 17β-hydroxyandrogen immunoreactive substances were quantified by means of enzyme immunoassays, and endocrine effects were analysed in a 21-day fish screening assay with adult male and female medaka (Oryzias latipes). Ozonation decreased estrogen-immunoreactivity by 97.7±1.2% and, to a lesser extent, androgen-immunoreactivity by 56.3±16.5%. None of the short-term exposure ecotoxicity tests revealed any adverse effects of the tertiary effluent, neither before nor after the ozonation step. Similarly in the fish screening assay, reproductive fitness parameters showed no effects attributed to micropollutants, and no detrimental effects of the effluents were observed. Based on the presented screening, ozonation effectively reduced steroid hormone levels in the wastewater treatment plant effluent without increasing the effluent's ecotoxicity. PMID:22551818

  20. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.

    Science.gov (United States)

    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min

    2016-03-01

    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents. PMID:26578375

  1. Evaluation of a hybrid anaerobic biofilm reactor treating winery effluents and using grape stalks as biofilm carrier.

    Science.gov (United States)

    Wahab, Mohamed Ali; Habouzit, Frédéric; Bernet, Nicolas; Jedidi, Naceur; Escudié, Renaud

    2016-07-01

    Wine production processes generate large amount of both winery wastewater and solid wastes. Furthermore, working periods, volumes and pollution loads greatly vary over the year. Therefore, it is recommended to develop a low-cost treatment technology for the treatment of winery effluents taking into account the variation of the organic loading rate (OLR). Accordingly, we have investigated the sequential operation of an anaerobic biofilm reactor treating winery effluents and using grape stalks (GSs) as biofilm carrier with an OLR ranging from 0.65 to 27 gCOD/L/d. The result showed that, during the start-up with wastewater influent, the chemical oxygen demand (COD) removal rate ranged from 83% to 93% and was about 91% at the end of the start-up period that lasted for 40 days. After 3 months of inactivity period of the reactor (no influent feeding), we have succeeded in restarting-up the reactor in only 15 days with a COD removal of 82% and a low concentration of volatile fatty acids (1 g/L), which confirms the robustness of the reactor. As a consequence, GSs can be used as an efficient carrier support, allowing a fast reactor start-up, while the biofilm conserves its activity during a non-feeding period. The proposed hybrid reactor thus permits to treat both winery effluents and GSs. PMID:26652186

  2. Evaluation of ion exchange resins for the removal of dissolved organic matter from biologically treated paper mill effluent.

    Science.gov (United States)

    Bassandeh, Mojgan; Antony, Alice; Le-Clech, Pierre; Richardson, Desmond; Leslie, Greg

    2013-01-01

    In this study, the efficiency of six ion exchange resins to reduce the dissolved organic matter (DOM) from a biologically treated newsprint mill effluent was evaluated and the dominant removal mechanism of residual organics was established using advanced organic characterisations techniques. Among the resins screened, TAN1 possessed favourable Freundlich parameters, high resin capacity and solute affinity, closely followed by Marathon MSA and Marathon WBA. The removal efficiency of colour and lignin residuals was generally good for the anion exchange resins, greater than 50% and 75% respectively. In terms of the DOM fractions removal measured through liquid chromatography-organic carbon and nitrogen detector (LC-OCND), the resins mainly targeted the removal of humic and fulvic acids of molecular weight ranging between 500 and 1000 g mol(-1), the portion expected to contribute the most to the aromaticity of the effluent. For the anion exchange resins, physical adsorption operated along with ion exchange mechanism assisting to remove neutral and transphilic acid fractions of DOM. The column studies confirmed TAN1 being the best of those screened, exhibited the longest mass transfer zone and maximum treatable volume of effluent. The treatable effluent volume with 50% reduction in dissolved organic carbon (DOC) was 4.8 L for TAN1 followed by Marathon MSA - 3.6L, Marathon 11 - 2.0 L, 21K-XLT - 1.5 L and Marathon WBA - 1.2 L. The cation exchange resin G26 was not effective in DOM removal as the maximum DOC removal obtained was only 27%. The resin capacity could not be completely restored for any of the resins; however, a maximum restoration up to 74% and 93% was achieved for TAN1 and Marathon WBA resins. While this feasibility study indicates the potential option of using ion exchange resins for the reclamation of paper mill effluent, the need for improving the regeneration protocols to restore the resin efficiency is also identified. Similarly, care should be taken

  3. Application of isolated bacterial consortium in UMBR for detoxification of textile effluent: comparative analysis of resultant oxidative stress and genotoxicity in catfish (Heteropneustes fossilis) exposed to raw and treated effluents.

    Science.gov (United States)

    Banerjee, Priya; Sarkar, Sandeep; Dey, Tanmoy Kumar; Bakshi, Madhurima; Swarnakar, Snehasikta; Mukhopadhayay, Aniruddha; Ghosh, Sourja

    2014-08-01

    A bacterial consortium isolated from activated sludge was identified to be Bacillus sp., Pseudomonas sp., Shigella sp. and E. coli. and was found capable of 98.62 % decolourization of highly toxic textile effluent, when applied in an ultrafiltration (UF) membrane bioreactor (UMBR). Ceramic capillary UF membranes prepared over low cost support proved to be highly efficient in adverse experimental conditions. The UMBR permeate and untreated textile effluent (40 % (v/v)) was then used to treat Heteropneustes fossilis for a comparative assessment of their toxicity. Micronucleus count in peripheral blood erythrocytes and comet assay carried out in liver and gill cells showed significantly lower nuclear and tissue specific DNA damage respectively in organisms exposed to membrane permeate and was further supported by considerably lower oxidative stress response enzyme activities in comparison to raw effluent treated individuals. The results indicate efficient detoxification of textile effluent by the UMBR treatment using the isolated bacterial consortium. PMID:24804625

  4. Application of electron beam irradiation combined to conventional treatment to treat industrial effluents

    Science.gov (United States)

    Duarte, C. L.; Sampa, M. H. O.; Rela, P. R.; Oikawa, H.; Cherbakian, E. H.; Sena, H. C.; Abe, H.; Sciani, V.

    2000-03-01

    A preliminary study to combine electron beam irradiation process with biological treatment was carried out. Experiments were conducted using samples from a governmental wastewater treatment plant (WTP) that receives about 20% of industrial wastewater, with the objective of destroying the refractory organic pollutants and to obtain a better performance of this plant. Samples from five different steps of WTP were collected and irradiated in the electron beam accelerator in a batch system with 5.0, 10.0 and 20.0 kGy doses. The main results showed a removal of 99% of all organic compound analysed in the industrial receiver unit (IRU) effluent and in the coarse bar screen (CBS) effluent with a 20 kGy dose, and for the medium bar screen (MBS) and primary sedimentation (PS) effluent a 10 kGy dose was sufficient. In the case of final effluent (FE), a dose of 5 kGy removed the remaining organic compounds and dyes present after biological treatment.

  5. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sangchul, E-mail: sangchul.hwang@upr.edu [Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Martinez, Diana [Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Perez, Priscilla [Department of Biology, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Rinaldi, Carlos [Department of Chemical Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico)

    2011-12-15

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP{sub Fe-surf}) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that {approx}8.7% of ENP{sub Fe-surf} applied were present in the effluent stream. The stable presence of ENP{sub Fe-surf} was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP{sub Fe-surf} deteriorated the effluent water quality at a statistically significant level (p < 0.05) with respect to soluble chemical oxygen demand, turbidity, and apparent color. This implied that ENP{sub Fe-surf} would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: > Surfactant-coated engineered iron oxide nanoparticles (ENP{sub Fe-surf}) were assessed. > Effluent quality was analyzed from a sequencing batch reactor with ENP{sub Fe-surf}. > {approx}8.7% of ENP{sub Fe-surf} applied was present in the effluent. > ENP{sub Fe-surf} significantly (p < 0.05) deteriorated the effluent water quality. > Stable fraction of ENP{sub Fe-surf} will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  6. Simulation of subsurface storage and recovery of treated effluent injected in a saline aquifer, St. Petersburg, Florida

    Science.gov (United States)

    Yobbi, D.K.

    1996-01-01

    The potential for subsurface storage and recovery of treated effluent into the uppermost producing zone (zone A) of the Upper Floridan aquifer in St. Petersburg, Florida, is being studied by the U.S. Geological Survey, in cooperation with the city of St. Petersburg and the Southwest Florida Water Management District. A measure of the success of this practice is the recovery efficiency, or the quantity of water relative to the quantity injected, that can be recovered before the water that is withdrawn fails to meet water-quality standards. The feasibility of this practice will depend upon the ability of the injected zone to receive, store, and discharge the injected fluid. A cylindrical model of ground-water flow and solute transport, incorporating available data on aquifer properties and water quality, was developed to determine the relation of recovery efficiency to various aquifer and fluid properties that could prevail in the study area. The reference case for testing was a base model considered representative of the saline aquifer underlying St. Petersburg. Parameter variations in the tests represent possible variations in aquifer conditions in the area. The model also was used to study the effect of various cyclic injection and withdrawal schemes on the recovery efficiency of the well and aquifer system. A base simulation assuming 15 days of injection of effluent at a rate of 1.0 million gallons per day and 15 days of withdrawal at a rate of 1.0 million gallons per day was used as reference to compare changes in various hydraulic and chemical parameters on recovery efficiency. A recovery efficiency of 20 percent was estimated for the base simulation. For practical ranges of hydraulic and fluid properties that could prevail in the study area, the model analysis indicates that (1) the greater the density contrast between injected and resident formation water, the lower the recovery efficiency, (2) recovery efficiency decreases significantly as dispersion

  7. Performance of pilot-scale vertical flow constructed wetlands with and without the emergent macrophyte Spartina alterniflora treating mariculture effluent

    Directory of Open Access Journals (Sweden)

    Wilson Treger Zydowicz Sousa

    2011-04-01

    Full Text Available Vertical flow constructed wetlands, planted with and without Spartina alterniflora, were tested for the treatment of mariculture wastewater. Wetlands with and without the emergent macrophyte produced reductions of 89 and 71% for inorganic solids, 82 and 96% for organic solids, 51 and 63% for total nitrogen, 82 and 92% for ammoniacal nitrogen, 64 and 59% for orthophosphate, and 81 and 89% for turbidity, respectively. Wetlands with S. alterniflora showed denitrification tendencies, while wetlands without S. alterniflora had higher oxygen levels leading to nitrification. The results suggest the fundamental role of oxygen controlling the purification processes as well as the potential of constructed wetlands to treat mariculture effluents.

  8. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    International Nuclear Information System (INIS)

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENPFe-surf) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that ∼8.7% of ENPFe-surf applied were present in the effluent stream. The stable presence of ENPFe-surf was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENPFe-surf deteriorated the effluent water quality at a statistically significant level (p Fe-surf would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: → Surfactant-coated engineered iron oxide nanoparticles (ENPFe-surf) were assessed. → Effluent quality was analyzed from a sequencing batch reactor with ENPFe-surf. → ∼8.7% of ENPFe-surf applied was present in the effluent. → ENPFe-surf significantly (p Fe-surf will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  9. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993

  10. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  11. Temporal and spatial changes of microbial community in an industrial effluent receiving area in Hangzhou Bay.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Zheng, Wei; Wen, Donghui

    2016-06-01

    Anthropogenic activities usually contaminate water environments, and have led to the eutrophication of many estuaries and shifts in microbial communities. In this study, the temporal and spatial changes of the microbial community in an industrial effluent receiving area in Hangzhou Bay were investigated by 454 pyrosequencing. The bacterial community showed higher richness and biodiversity than the archaeal community in all sediments. Proteobacteria dominated in the bacterial communities of all the samples; Marine_Group_I and Methanomicrobia were the two dominant archaeal classes in the effluent receiving area. PCoA and AMOVA revealed strong seasonal but minor spatial changes in both bacterial and archaeal communities in the sediments. The seasonal changes of the bacterial community were less significant than those of the archaeal community, which mainly consisted of fluctuations in abundance of a large proportion of longstanding species rather than the appearance and disappearance of major archaeal species. Temperature was found to positively correlate with the dominant bacteria, Betaproteobacteria, and negatively correlate with the dominant archaea, Marine_Group_I; and might be the primary driving force for the seasonal variation of the microbial community. PMID:27266302

  12. [Single-stage autotrophic nitrogen removal reactor with self-generated granular sludge for treating sludge dewatering effluent].

    Science.gov (United States)

    Cao, Jian-ping; Du, Bing; Liu, Yin; Qin, Yong-sheng

    2009-10-15

    Single-stage autotrophic nitrogen removal (SANR) has been observed in a long-term operated nitrosation air-lift reactor for treating digested sludge dewatering effluent from sewage wastewater treatment plant. A kind of so called self-generated granular sludge which undertake the SANR reaction has oriented formed. The performance of SANR reactor cultivated above sludge for treating sludge dewatering effluent has been tested and better results have been reached. When the influent total nitrogen (TN) was kept about 350 mg/L (mainly ammonium nitrogen), the average TN removal efficiency and nitrogen removal load were 74.8% (maximum 86.92%) and 0.68 kg x (m3 x d)(-1) [maximum 0.9 kg x (m3 x d)(-1)] respectively. The operation stability and nitrogen removal efficiency have been enforced after adding a certain quantity powered activated carbon. The influent ammonium concentration, nitrogen load and aeration rate have a great effect on SANR reactor as well as the influent organic compound, pH, alkalinity have a relatively low effect. The parameters such as the ratios of aeration rate/deltaTN, aeration rate/deltaNH4+ -N, deltaALK/deltaTN can be used for better controlling the reaction. PMID:19968119

  13. Treatment of cosmetic effluent in different configurations of ceramic UF membrane based bioreactor: Toxicity evaluation of the untreated and treated wastewater using catfish (Heteropneustes fossilis).

    Science.gov (United States)

    Banerjee, Priya; Dey, Tanmoy Kumar; Sarkar, Sandeep; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-03-01

    Extensive usage of pharmaceutical and personal care products (PPCPs) and their discharge through domestic sewage have been recently recognized as a new generation environmental concern which deserves more scientific attention over the classical environmental pollutants. The major issues of this type of effluent addressed in this study were its colour, triclosan and anionic surfactant (SDS) content. Samples of cosmetic effluent were collected from different beauty treatment salons and spas in and around Kolkata, India and treated in bioreactors containing a bacterial consortium isolated from activated sludge samples collected from a common effluent treatment plant. Members of the consortium were isolated and identified as Klebsiella sp., Pseudomonas sp., Salmonella sp. and Comamonas sp. The biotreated effluent was subjected to ultrafiltration (UF) involving indigenously prepared ceramic membranes in both side-stream and submerged mode. Analysis of the MBR treated effluent revealed 99.22%, 98.56% and 99.74% removal of colour, triclosan and surfactant respectively. Investigation of probable acute and chronic cyto-genotoxic potential of the untreated and treated effluents along with their possible participation in triggering oxidative stress was carried out with Heteropneustes fossilis (Bloch). Comet formation recorded in both liver and gill cells and micronucleus count in peripheral erythrocytes of individuals exposed to untreated effluent increased with duration of exposure and was significantly higher than those treated with UF permeates which in turn neared control levels. Results of this study revealed successful application of the isolated bacterial consortium in MBR process for efficient detoxification of cosmetic effluent thereby conferring the same suitable for discharge and/or reuse. PMID:26714296

  14. F/H Area ETF effluent (H-016 outfall) Ceriodaphnia survival/reproduction test, test date: December 12, 1990

    International Nuclear Information System (INIS)

    This toxicity test was conducted to determine if the effluent from the F/H area of Savannah River Plant, affects the survival or reproduction of the test organisms during a seven day period. The test involved exposing the text organisms ceriodaphnia, to a series of dilutions of the effluent. At each dilution the survival and reproduction of ten test organisms was recorded. Each effluent dilution was compared to a control set of test organisms. Survival data were analyzed by Fisher's Exact Test and the Trimmed Spearman-Karber method to determine the effluent concentration necessary to cause statistically significant (p=0.05) mortality. Reproduction data was analyzed for normality, homogeneity of variance and equality of replicates among dilutions to determine appropriate statistical test for analysis of statistical differences in reproduction among dilutions. Results are summarized

  15. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    OpenAIRE

    Jin Wang; Qaisar Mahmood; Jiang-Ping Qiu; Yin-Sheng Li; Yoon-Seong Chang; Li-Na Chi; Xu-Dong Li

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and...

  16. Pacific Northwest National Laboratory 300 area facility liquid effluent monitoring: 1994 and 1995 field tests

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Thompson, C.J.; Damberg, E.G.; Ballinger, M.Y.

    1997-07-01

    Pacific Northwest National Laboratory Effluent Management Services manages liquid waste streams from some of the 300 Area buildings on the Hanford Site near Richland, Washington, to ensure liquid discharges to the Columbia River are in compliance with permit requirements. The buildings are owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory. In fiscal year (FY) 1994 and FY 1995, three field tests were conducted to gather information that could be used to (1) increase the understanding of 300 Area building liquid waste streams based on the characterization and monitoring data collected during calendar year (CY) 1994 and CY 1995 and (2) establish improved methods for evaluating facility releases. The three field tests were (1) an evaluation of a continuous monitoring/event-triggered sampling system, (2) a volatile organic compound hold-time study, and (3) an investigation of the dilution and retention properties of the 300 Area process sewer. The results from the first field test showed that future characterization and monitoring of 300 Area facility liquid waste streams could benefit significantly from augmenting continuous monitoring with event-triggered sampling. Current continuous-monitoring practices (i.e., monitoring of pH, conductivity, and flow) cannot detect discharges of organic pollutants. Effluent control effectiveness would be enhanced by incorporating a continuous total organic carbon analyzer in the system to detect events involving releases of organic compounds. In the second field test, sample hold times were shown to have a significant effect on volatile organic compound data. Samples analyzed in the field within 1 hour of collection generally had 1.5 to 3 times higher volatile organic compound concentrations than those analyzed 1.5 to 4 weeks later at on-site and off-site laboratories, respectively. The number of volatile organic compounds detected also decreased with increasing hold times.

  17. The status of radiation process to treat industrial effluents in Brazil

    International Nuclear Information System (INIS)

    The use of ionising radiation has great ecological and technological advantages, especially when compared to physiochemical and biological methods. It has great efficiency to destroy microorganism and it breaks down organic compounds, generating substances that are easily biodegraded and it is not necessary to add chemical compounds. The Radiation Technology Centre - CTR at the Institute for Energetic and Nuclear Research (IPEN) started in 1992 marked the development of an alternative technology for wastewater and industrial effluent treatment, mainly for the degradation of pollutants using the radiation from a high-energy electron beam. This technology has been extensively studied by many research centres. The objective of this programme in Brazil is to use the existing gamma and electron beam to study the removal and degradation efficiency of toxic and refractory pollutants (organic compounds mainly from industrial origins) and the disinfecting of pathogenic micro-organisms in wastewater, industrial effluents and sludge. This programme also embraces the design and construction of a wastewater treatment pilot plant in the IPEN electron beam facility. Its function is to develop and test water irradiation devices, to test in continuous run the degradation of pollutants and inactivation of microorganism and to perform economical feasibility study to scale up for a movable demonstration plant to operate on a commercial basis. (author)

  18. Integration of biological method and membrane technology in treating palm oil mill effluent

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yejian; YAN Li; QIAO Xiangli; CHI Lina; NIU Xiangjun; MEI Zhijian; ZHANG Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.

  19. Integration of biological method and membrane technology in treating palm oil mill effluent.

    Science.gov (United States)

    Zhang, Yejian; Yan, Li; Qiao, Xiangli; Chi, Lina; Niu, Xiangjun; Mei, Zhijian; Zhang, Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water. PMID:18575108

  20. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent

    Energy Technology Data Exchange (ETDEWEB)

    Satyawali, Yamini [TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070 (India); Balakrishnan, Malini, E-mail: malinib@teri.res.in [TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070 (India); Energy and Resources Institute (TERI), Darbari Seth Block, India Habitat Center, Lodhi Road, New Delhi 110003 (India)

    2009-10-15

    This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8 L reactor was equipped with a submerged 30 {mu}m nylon mesh filter with 0.05 m{sup 2} filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m{sup -3} d{sup -1}. PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh.

  1. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent

    International Nuclear Information System (INIS)

    This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8 L reactor was equipped with a submerged 30 μm nylon mesh filter with 0.05 m2 filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m-3 d-1. PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh.

  2. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent.

    Science.gov (United States)

    Satyawali, Yamini; Balakrishnan, Malini

    2009-10-15

    This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8L reactor was equipped with a submerged 30 microm nylon mesh filter with 0.05 m(2) filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m(-3)d(-1). PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh. PMID:19467782

  3. Whole toxicity removal for industrial and domestic effluents treated with electron beam radiation, evaluated with Vibrio fischeri, Daphnia similis and Poecilia reticulata

    International Nuclear Information System (INIS)

    Several studies have been performed in order to apply ionizing radiation to treat real complexes effluents from different sources, at IPEN. This paper shows the results of such kind of application devoted to influents and effluents from Suzano Wastewater Treatment Plant, Sao Paulo, Suzano WTP, from SABESP. The purpose of the work was to evaluate the radiation technology according to ecotoxicological aspects. The evaluation was carried out on the toxicity bases which included three sampling sites as follows: complex industrial effluents; domestic sewage mixed to the industrial discharge (GM) and final secondary effluent. The tested-organisms for toxicity evaluation were: the marine bacteria Vibrio fischeri, the microcrustacean Daphnia similis and the guppy Poecilia reticulata. The fish tests were applied only for secondary final effluents. The results demonstrated the original acute toxicity levels as well as the efficiency of electron beam for its reduction. An important acute toxicity removal was achieved: from 75% up to 95% with 50 kGy (UNA), 20 kGy (GM) and 5.0 kGy for the final effluent. The toxicity removal was a consequence of several organic solvents decomposed by radiation and acute toxicity reduction was about 95%. When the toxicity was evaluated for fish the radiation efficiency reached from 40% to 60%. The hypothesis tests showed a statistical significant removal in the developed studies condition. No residual hydrogen peroxide was found after 5.0 kGy was applied to final effluent. (author)

  4. STUDY ON TREATING ALKALI EXTRACTION -STAGE EFFLUENT FOR COLOR REMOVAL BY MICRO-ELECTROLYSIS METHOD

    Institute of Scientific and Technical Information of China (English)

    Xianying Xiao; Zhonghao Chen; Yuancai Chen

    2004-01-01

    The micro-electrolysis technology was applied in the decolorizing treatment of bleaching E-stage effluent and the influencing factors were discussed in this paper. The initial pH and the retention time were main factors influencing the color removal rate, in addition, adding air and enough pH for neutralization were necessary for the treatment. The test showed that the decolorizing result was efficient by micro-electrolysis treatment when adding air, initial pH was 3, 20 minutes of reaction time, the final pH10 for neutralization. The color removal rate was up to 90%. The chance of ultraviolet absorption spectrum also demonstrated the mechanism of color removal in the wastewater treatment.

  5. Westinghouse Hanford Company effluent discharges and solid waste management report for calendar year 1989: 200/600 Areas

    International Nuclear Information System (INIS)

    This report presents calendar year 1989 radiological and nonradiological effluent discharge data from facilities in the 200 Areas and the 600 Area of the Hanford Site. Both summary and detailed effluent data are presented. In addition, radioactive and nonradioactive solid waste storage and disposal data for calendar year 1989 are furnished. Where appropriate, comparisons to previous years are made. The intent of the report is to demonstrate compliance of Westinghouse Hanford Company-operated facilities with administrative control values for radioactive constituents and applicable guidelines and standards (including Federal permit limits) for nonradioactive constituents. 11 refs., 20 tabs

  6. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2014-05-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE.

  7. Changes in water quality of treated sewage effluents by their receiving environments in Tablas de Daimiel National Park, Spain.

    Science.gov (United States)

    Sanchez-Ramos, David; Sánchez-Emeterio, Gema; Florín Beltrán, Máximo

    2016-04-01

    The Tablas de Daimiel National Park (TDNP), a floodplain wetland located in the Upper Guadiana Basin (central Spain), receives pollution from wastewater treatment plants (WWTPs) discharging their treated sewage effluents (TSEs) to tributary channels to the wetland. The TSEs suffer transformations on their way to the TDNP, but the water quality is controlled only at the point of discharge. In this work, we analyse the change in water quality of the TSE from four urban WWTPs in the surroundings of the TDNP (Alcázar de San Juan, Daimiel, Manzanares and Villarrubia de los Ojos towns). The water samples were taken at the outlet of the plants and in the receiving environments, to analyse the water quality transformation of the TSE. The different discharge configurations of each WWTP have been related with the water quality transformation of their TSE, to interpret the influence of the hydro-geomorphology in the improvement or deterioration of the water quality of TSE. We found that the discharge of TSE into slow flow channels with macrophyte vegetation facilitates water self-purification but, with time, the accumulation of sludge in the beds of the effluents tends to be the cause of the deterioration of the water quality. PMID:25982982

  8. Effect of feed strategy on methane production and performance of an AnSBBR treating effluent from biodiesel production.

    Science.gov (United States)

    Lovato, Giovanna; Bezerra, Roberto A; Rodrigues, José A D; Ratusznei, Suzana M; Zaiat, Marcelo

    2012-04-01

    The aim of this work was to investigate the effect of different feeding times (2, 4 and 6 h) and applied volumetric organic loads (4.5, 6.0 and 7.5 gCOD L(-1) day(-1)) on the performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) treating effluent from biodiesel production. Polyurethane foam cubes were used as inert support in the reactor, and mixing was accomplished by recirculating the liquid phase. The effect of feeding time on reactor performance showed to be more pronounced at higher values of applied volumetric organic loads (AVOLs). Highest organic material removal efficiencies achieved at AVOL of 4.5 gCOD L(-1) day(-1) were 87 % at 4-h feeding against 84 % at 2-h and 6-h feeding. At AVOL of 6.0 gCOD L(-1) day(-1), highest organic material removal efficiencies achieved with 4-h and 6-h feeding were 84 %, against 71 % at 2-h feeding. At AVOL of 7.5 gCOD L(-1) day(-1), organic material removal efficiency achieved with 4-h feeding was 77 %. Hence, longer feeding times favored minimization of total volatile acids concentration during the cycle as well as in the effluent, guaranteeing process stability and safety. PMID:22373928

  9. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    International Nuclear Information System (INIS)

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance (1H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE

  10. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents.

    Science.gov (United States)

    Jordan, Mark A; Welsh, David T; John, Richard; Catterall, Kylie; Teasdale, Peter R

    2013-02-01

    Representative and fast monitoring of wastewater influent and effluent biochemical oxygen demand (BOD) is an elusive goal for the wastewater industry and regulatory bodies alike. The present study describes a suitable assay, which incorporates activated sludge as the biocatalyst and ferricyanide as the terminal electron acceptor for respiration. A number of different sludges and sludge treatments were investigated, primarily to improve the sensitivity of the assay. A limit of detection (LOD) (2.1 mg BOD₅ L⁻¹) very similar to that of the standard 5-day BOD₅ method was achieved in 4 h using raw influent sludge that had been cultured overnight as the biocatalyst. Reducing the microbial concentration was the most effective means to improve sensitivity and reduce the contribution of the sludge's endogenous respiration to total ferricyanide-mediated (FM) respiration. A strong and highly significant relationship was found (n = 33; R = 0.96; p treatment plant (WWTP) influent and treated effluent, as well as several grey water samples. The activated sludge FM-BOD assay presented here is an exceptional surrogate method to the standard BOD₅ assay, providing representative, same-day BOD analysis of WWTP samples with a comparable detection limit, a 4-fold greater analytical range and much faster analysis time. The industry appeal of such an assay is tremendous given that ~90% of all BOD₅ analysis is dedicated to measurement of WWTP samples, for which this assay is specifically designed. PMID:23200506

  11. Nitrogen polishing in a fully anoxic anammox MBBR treating mainstream nitritation-denitritation effluent.

    Science.gov (United States)

    Regmi, Pusker; Holgate, Becky; Miller, Mark W; Park, Hongkeun; Chandran, Kartik; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B

    2016-03-01

    As nitrogen discharge limits are becoming more stringent, short-cut nitrogen systems and tertiary nitrogen polishing steps are gaining popularity. For partial nitritation or nitritation-denitritation systems, anaerobic ammonia oxidation (anammox) polishing may be feasible to remove residual ammonia and nitrite from the effluent. Nitrogen polishing of mainstream nitritation-denitritation system effluent via anammox was studied at 25°C in a fully anoxic moving bed bioreactor (MBBR) (V = 0.45 m(3) ) over 385 days. Unlike other anammox based processes, a very fast startup of anammox MBBR was demonstrated, despite nitrite limited feeding conditions (influent nitrite = 0.7 ± 0.59 mgN/L, ammonia = 6.13 ± 2.86 mgN/L, nitrate = 3.41 ± 1.92 mgN/L). The nitrogen removal performance was very stable within a wide range of nitrogen inputs. Anammox bacteria (AMX) activity up to 1 gN/m(2) /d was observed which is comparable to other biofilm-based systems. It is generally believed that nitrate production limits nitrogen removal through AMX metabolism. However, in this study, anammox MBBR demonstrated ammonia, nitrite, and nitrate removal at limited chemical oxygen demand (COD) availability. AMX and heterotrophs contributed to 0.68 ± 0.17 and 0.32 ± 0.17 of TIN removal, respectively. It was speculated that nitrogen removal might be aided by denitratation which could be due to heterotrophs or the recently discovered ability for AMX to use short-chain fatty acids to reduce nitrate to nitrite. This study demonstrates the feasibility of anammox nitrogen polishing in an MBBR is possible for nitritation-denitration systems. PMID:26333200

  12. Application of heterogeneous catalytic ozonation as a tertiary treatment of effluent of biologically treated tannery wastewater.

    Science.gov (United States)

    Huang, Guangdao; Pan, Feng; Fan, Guofeng; Liu, Guoguang

    2016-07-01

    The present study employed a Mn-Cu/Al2O3 heterogeneous catalytic ozonation process for tertiary treatment of actual tannery wastewater, focusing on its feasibility in that application. The primary factors affecting the removal efficiency of organic pollutants were investigated, including catalyst dosage, ozone dosage, and initial pH value. The experimental results showed that the addition of a Mn-Cu/Al2O3 catalyst improved the removal efficiency of chemical oxygen demand (COD) during ozonation, which initiated a 29.3% increase for COD removal, compared to ozonation alone after 60 min. The optimum pH, catalyst dosage, and ozone dosage were determined to be 7.0, 2.0 g/L, and 0.3 g/h, respectively. Under these conditions, following 60 min of reaction, the COD removal efficiency and the concentration in effluent were 88%, and 17 mg/L, respectively. In addition, the presence of tert-butanol (a well known hydroxyl radical scavenger) strongly inhibited COD removal via Mn-Cu/Al2O3 catalytic ozonation, indicating that the Mn-Cu/Al2O3 catalytic ozonation process follows a hydroxyl radical (OH·) reaction mechanism. The Mn-Cu/Al2O3 catalyst exhibited good stability and reusability. Finally, the kinetic analysis revealed that the apparent reaction rate constant of COD removal with the Mn-Cu/Al2O3 catalytic ozonation system (0.0328 min(-1)) was 2.3 times that of an ozonation system alone (0.0141 min(-1)). These results demonstrated that the catalytic ozonation using Mn-Cu/Al2O3 is an effective and promising process for tertiary treatment of tannery effluent in biological systems. PMID:27088814

  13. Transition plan: Project C-018H, 200-E Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    The purpose of this transition plan is to ensure an orderly transfer of project information to operations to satisfy Westinghouse Hanford Company (WHC) operational requirements and objectives, and ensure safe and efficient operation of Project C-018H, the 200-E Area Effluent Treatment Facility (ETF). This plan identifies the deliverables for Project C-018H upon completion of construction and turnover to WHC for operations, and includes acceptance criteria to objectively assess the adequacy of the contract deliverables in relation to present requirements. The scope of this plan includes a general discussion of the need for complete and accurate design basis documentation and design documents as project deliverables. This plan also proposes that a configuration management plan be prepared to protect and control the transferred design documents and reconstitute the design basis and design requirements, in the event that the deliverables and project documentation received from the contractor are less than adequate at turnover

  14. Effect of organic load on the performance and methane production of an AnSBBR treating effluent from biodiesel production.

    Science.gov (United States)

    Bezerra, Roberto Antonio; Rodrigues, José Alberto Domingues; Ratusznei, Suzana Maria; Canto, Catarina Simone Andrade; Zaiat, Marcelo

    2011-09-01

    Currently, there is an increasing demand for the production of biodiesel and, consequently, there will be an increasing need to treat wastewaters resulting from the production process of this biofuel. The main objective of this work was, therefore, to investigate the effect of applied volumetric organic load (AVOL) on the efficiency, stability, and methane production of an anaerobic sequencing batch biofilm reactor applied to the treatment of effluent from biodiesel production. As inert support, polyurethane foam cubes were used in the reactor and mixing was accomplished by recirculating the liquid phase. Increase in AVOL resulted in a drop in organic matter removal efficiency and increase in total volatile acids in the effluent. AVOLs of 1.5, 3.0, 4.5 and 6.0 g COD L(-1) day(-1) resulted in removal efficiencies of 92%, 81%, 67%, and 50%, for effluent filtered samples, and 91%, 80%, 63%, and 47%, for non-filtered samples, respectively, whereas total volatile acids concentrations in the effluent amounted to 42, 145, 386 and 729 mg HAc L(-1), respectively. Moreover, on increasing AVOL from 1.5 to 4.5 g COD L(-1) day(-1) methane production increased from 29.5 to 55.5 N mL CH(4) g COD(-1). However, this production dropped to 36.0 N mL CH(4) g COD(-1) when AVOL was increased to 6.0 g COD L(-1) day(-1), likely due to the higher concentration of volatile acids in the reactor. Despite the higher concentration of volatile acids at the highest AVOL, alkalinity supplementation to the influent, in the form of sodium bicarbonate, at a ratio of 0.5-1.3 g NaHCO(3) g COD (fed) (-1) , was sufficient to maintain the pH near neutral and guarantee process stability during reactor operation. PMID:21494753

  15. Prevalence of Antimicrobial Resistant and Virulent Salmonella spp. in Treated Effluent and Receiving Aquatic Milieu of Wastewater Treatment Plants in Durban, South Africa

    Directory of Open Access Journals (Sweden)

    Ejovwokoghene C. Odjadjare

    2015-08-01

    Full Text Available In this study, we evaluated the impact of treated wastewater effluent from two wastewater treatment plants on the physicochemical parameters and Salmonella spp. load of receiving rivers. Presumptive Salmonella spp. were obtained at all sampled points including the discharge points, with counts ranging from 0 to 4.14 log cfu/mL at both plants. Turbidity, chemical and biological oxygen demand were found to be high and mostly above the required limit for treated wastewater discharge. However, recorded nitrate and phosphate values were very low. Of the 200 confirmed Salmonella spp. isolates recovered from the treated effluent and receiving surface waters, 93% harbored the spiC gene, 84% harbored the misL gene, and 87.5% harbored the orfL gene while 87% harbored the pipD gene. The antibiotic resistance profile revealed that the isolates were resistant to sulfamethoxazole, nalidixic acid and streptomycin, but susceptible to quinolones and third generation β-lactams. These results indicate that in South Africa treated effluents are still a major source of contamination of rivers with pathogens such as Salmonella. Appropriate steps by the regulatory authorities and workers at the treatment plants are needed to enforce stipulated guidelines in order to prevent pollution of surface water resources due to the discharge of poorly treated effluents.

  16. Prevalence of Antimicrobial Resistant and Virulent Salmonella spp. in Treated Effluent and Receiving Aquatic Milieu of Wastewater Treatment Plants in Durban, South Africa.

    Science.gov (United States)

    Odjadjare, Ejovwokoghene C; Olaniran, Ademola O

    2015-08-01

    In this study, we evaluated the impact of treated wastewater effluent from two wastewater treatment plants on the physicochemical parameters and Salmonella spp. load of receiving rivers. Presumptive Salmonella spp. were obtained at all sampled points including the discharge points, with counts ranging from 0 to 4.14 log cfu/mL at both plants. Turbidity, chemical and biological oxygen demand were found to be high and mostly above the required limit for treated wastewater discharge. However, recorded nitrate and phosphate values were very low. Of the 200 confirmed Salmonella spp. isolates recovered from the treated effluent and receiving surface waters, 93% harbored the spiC gene, 84% harbored the misL gene, and 87.5% harbored the orfL gene while 87% harbored the pipD gene. The antibiotic resistance profile revealed that the isolates were resistant to sulfamethoxazole, nalidixic acid and streptomycin, but susceptible to quinolones and third generation β-lactams. These results indicate that in South Africa treated effluents are still a major source of contamination of rivers with pathogens such as Salmonella. Appropriate steps by the regulatory authorities and workers at the treatment plants are needed to enforce stipulated guidelines in order to prevent pollution of surface water resources due to the discharge of poorly treated effluents. PMID:26295245

  17. Potential impact of low-level radioactive effluents from Chongqing Fuling nuclear power plant to the Three Gorges Reservoir area

    International Nuclear Information System (INIS)

    Based on the radioactive source term of Chongqing Fuling Nuclear Power Plant in normal operating conditions, the hydrological data of Three Gorges Reservoir area nearby the site, and the aquatic environmental model calculations of radionuclide distribution from low-level radioactive waste, the radiation effects from liquid radioactive effluents to aquatic organisms in the Three Gorges Reservoir area were assessed with ERICA model, the impact to drinking water of downstream residents and agricultural production of coastal areas were analyzed. The results are as follows: (1) There will be no unacceptable impacts on aquatic organism in population and individuals levels from low-level radioactive liquid effluents of Chongqing Fuling Nuclear Power Plant; (2) There will be no adverse affect on the safety of drinking water of downstream residents; (3) There will be no adverse affect on agricultural irrigation from Chongqing Fuling Nuclear power plant on the nearest area including Fuling District, Fengdu County and other coastal areas of the Three Gorges Reservoir. (authors)

  18. Isolation of a salt tolerant laccase secreting strain of Trichoderma sp. NFCCI-2745 and optimization of culture conditions and assessing its effectiveness in treating saline phenolic effluents.

    Science.gov (United States)

    Divya, L M; Prasanth, G K; Sadasivan, C

    2013-12-01

    Most of the hazardous pollutants are phenolic in nature and persists in the environment. The ability of laccases to oxidize phenolic compounds and reduce molecular oxygen to water has led to intensive studies of these enzymes. Therefore the fungal strains with high laccase activity and substrate affinity that can tolerate harsh environmental conditions have a potential for biotechnological applications. Salt tolerant laccase secreting fungi can be utilized in treatment of saline and phenolic rich industrial effluents such as coir effluent and textile effluent that needed to be diluted several fold before microbial treatment. This is the first study describing the isolation and optimization of a salt tolerant strain of Trichoderma sp. potential for industrial applications. The fungus was identified based on morphological characteristics and was subsequently confirmed with molecular techniques and deposited at National Fungal Culture Collections of India (NFCCI) under the Accession No. Trichoderma viride NFCCI 2745. In contrast to other laccase secreting fungi, light conditions did not exert much influence on laccase production of this strain and salinity enhanced its laccase secretion. The fungus effectively removed the phenolic content of the textile effluent, coir-ret liquor and wood processing effluent within 96 hr of incubation. The tolerance of the fungus to high salinity and phenolic compounds makes this strain ideal for treating saline and phenolic rich industrial effluents. PMID:24649671

  19. 200 Area effluent treatment facility process control plan 98-02

    International Nuclear Information System (INIS)

    This Process Control Plan (PCP) provides a description of the background information, key objectives, and operating criteria defining Effluent Treatment Facility (ETF) Campaign 98-02 as required per HNF-IP-0931 Section 37, Process Control Plans. Campaign 98-62 is expected to process approximately 18 millions gallons of groundwater with an assumption that the UP-1 groundwater pump will be shut down on June 30, 1998. This campaign will resume the UP-1 groundwater treatment operation from Campaign 97-01. The Campaign 97-01 was suspended in November 1997 to allow RCRA waste in LERF Basin 42 to be treated to meet the Land Disposal Restriction Clean Out requirements. The decision to utilize ETF as part of the selected interim remedial action of the 200-UP-1 Operable Unit is documented by the Declaration of the Record of Decision, (Ecology, EPA and DOE 1997). The treatment method was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Hanford Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement or TPA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP)

  20. 200 Area effluent treatment facility process control plan 98-02

    Energy Technology Data Exchange (ETDEWEB)

    Le, E.Q.

    1998-01-30

    This Process Control Plan (PCP) provides a description of the background information, key objectives, and operating criteria defining Effluent Treatment Facility (ETF) Campaign 98-02 as required per HNF-IP-0931 Section 37, Process Control Plans. Campaign 98-62 is expected to process approximately 18 millions gallons of groundwater with an assumption that the UP-1 groundwater pump will be shut down on June 30, 1998. This campaign will resume the UP-1 groundwater treatment operation from Campaign 97-01. The Campaign 97-01 was suspended in November 1997 to allow RCRA waste in LERF Basin 42 to be treated to meet the Land Disposal Restriction Clean Out requirements. The decision to utilize ETF as part of the selected interim remedial action of the 200-UP-1 Operable Unit is documented by the Declaration of the Record of Decision, (Ecology, EPA and DOE 1997). The treatment method was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Hanford Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement or TPA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP).

  1. The Impact of Different Proportions of a Treated Effluent on the Biotransformation of Selected Micro-Contaminants in River Water Microcosms

    Directory of Open Access Journals (Sweden)

    Karsten Nödler

    2014-10-01

    Full Text Available Attenuation of micro-contaminants is a very complex field in environmental science and evidence suggests that biodegradation rates of micro-contaminants in the aqueous environment depend on the water matrix. The focus of the study presented here is the systematic comparison of biotransformation rates of caffeine, carbamazepine, metoprolol, paracetamol and valsartan in river water microcosms spiked with different proportions of treated effluent (0%, 0.1%, 1%, and 10%. Biotransformation was identified as the dominating attenuation process by the evolution of biotransformation products such as atenolol acid and valsartan acid. Significantly decreasing biotransformation rates of metoprolol were observed at treated effluent proportions ≥0.1% whereas significantly increasing biotransformation rates of caffeine and valsartan were observed in the presence of 10% treated effluent. Potential reasons for the observations are discussed and the addition of adapted microorganisms via the treated effluent was suggested as the most probable reason. The impact of additional phosphorus on the biodegradation rates was tested and the experiments revealed that phosphorus-limitation was not responsible.

  2. Facility effluent monitoring plan for K area spent fuel storage basin

    International Nuclear Information System (INIS)

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400. 1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in WHC-EP-0438-1, A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the second revision to the original annual report. Long-range integrity of the effluent monitoring system shall be ensured with updates of this report whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  3. Hyporheic Zone Management: Nitrate Removal from Treated Wastewater Effluent using an Engineered Hyporheic Zone as a Bioreactor

    Science.gov (United States)

    Esteban, M.; Herzog, S.; Jones, Z.; Sharp, J.

    2014-12-01

    The hyporheic zone (HZ) is a natural bioreactor within streambed sediments. The dynamic interface of streamwater and groundwater creates a diverse microbial community that has potential to provide substantial contaminant removal. However, insufficient water exchange between the stream and the HZ is often a limiting factor for improved streamwater quality. Modular subsurface hydraulic conductivity (K) modifications with the addition of organic carbon substrates have been proposed as a means to increase hyporheic exchange and enhance natural water treatment via denitrification. Subsurface K modification flow paths are well understood from previous computer modeling and tracer testing studies, but treatment capabilities have yet to be tested in physical systems. This research applied chemical and molecular biological techniques to investigate nitrate removal and microbial community structure in a bench-scale stream simulation with subsurface K and carbon modifications. The system received treated wastewater effluent containing soluble nitrogen primarily in the form of nitrate at concentrations fluctuating from 4-7mg/L. To gain insight into denitrification potential and relative microbial activity along hyporheic flow paths, profiles of nitrate fate, total bacterial presence and the density of the denitrification genes (nirS and nirK) were quantified spatially. Nitrate tests showed a decrease from ~7mg/L in the influent to less than 1mg/L along hyporheic flowpaths. This was accompanied by an increase in 16S rRNA copies (representative of total bacterial biomass) from approximately 200000 gene copies in the influent zone to 630000 gene copies in the effluent zone. Also, the bacterial communities had a greater presence in the upper 6cm of the sediment layer with nirS amplifying 4-5 cycles earlier than nirK in the PCR analysis. The nirS gene concentration was nearly an order of magnitude greater in the effluent zone than the carbon modified zone, suggesting that leached

  4. Isotopic and hydrochemical study of the effect of tannery effluents on groundwater quality in Kasur area

    International Nuclear Information System (INIS)

    Isotopic and conventional techniques were employed to study groundwater recharge mechanism, and the effect of tannery effluents on the quality of groundwater in Kasur area. Water samples were collected from hand pumps, deep wells and pond water. The physico-chemical parameters were measured in the field and stable isotopes of H/sup 2/ and O/sup 18/ were analysed by using GD-150 gas source isotope ratio mass spectrometer. Depleted isotopic contents of delta H/sup 2/ and delta O/sup 18/ characterize canal recharge, enriched isotopic values are associated with rain recharge and intermediate values show the mixing of water from different sources. The shallow groundwater has depleted isotopic values and is being recharged by the canal. However, isotopic signature of shallow groundwater in the surroundings of the pond has been modified by the seepage of the pond water. The deuterium excess values are low showing the effect of evaporated pond water and these values increase as the distance from the pond increases. Electrical conductivity values and chloride contents decrease along the depth. The deep groundwater that can be termed as the native groundwater is being recharged by rains at piedmont area/bedrock outcrops. Results indicate that the quality of shallow groundwater has been deteriorated in the vicinity of stagnant pond water but quality of deep groundwater is good. Chromium is absent in groundwater, its penetration is limited up to a maximum depth of 10 meters. (author)

  5. Prevalence of Antimicrobial Resistant and Virulent Salmonella spp. in Treated Effluent and Receiving Aquatic Milieu of Wastewater Treatment Plants in Durban, South Africa

    OpenAIRE

    Ejovwokoghene C. Odjadjare; Ademola O. Olaniran

    2015-01-01

    In this study, we evaluated the impact of treated wastewater effluent from two wastewater treatment plants on the physicochemical parameters and Salmonella spp. load of receiving rivers. Presumptive Salmonella spp. were obtained at all sampled points including the discharge points, with counts ranging from 0 to 4.14 log cfu/mL at both plants. Turbidity, chemical and biological oxygen demand were found to be high and mostly above the required limit for treated wastewater discharge. However, re...

  6. Processing of particulate organic carbon associated with secondary-treated pulp and paper mill effluent in intertidal sediments: a 13C pulse-chase experiment.

    Science.gov (United States)

    Oakes, Joanne M; Ross, Donald J; Eyre, Bradley D

    2013-01-01

    To determine the benthic transformation pathways and fate of carbon associated with secondary-treated pulp and paper mill (PPM) effluent, (13)C-labeled activated sludge biomass (ASB) and phytoplankton (PHY) were added, separately, to estuarine intertidal sediments. Over 28 days, (13)C was traced into sediment organic carbon, fauna, seagrass, bacteria, and microphytobenthos and into fluxes of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) from inundated sediments, and carbon dioxide (CO2(g)) from exposed sediments. There was greater removal of PHY carbon from sediments (~85% over 28 days) compared to ASB (~75%). Although there was similar (13)C loss from PHY and ASB plots via DIC (58% and 56%, respectively) and CO2(g) fluxes (<1%), DOC fluxes were more important for PHY (41%) than ASB (12%). Faster downward transport and loss suggest that fauna prefer PHY, due to its lability and/or toxins associated with ASB; this may account for different carbon pathways. Secondary-treated PPM effluent has lower oxygen demand than primary-treated effluent, but ASB accumulation may contribute to sediment anoxia, and respiration of ASB and PHY-derived DOC may make the water column more heterotrophic. This highlights the need to optimize secondary-treatment processes to control the quality and quantity of organic carbon associated with PPM effluent. PMID:24261917

  7. Acute effects of chlorpyryphos-ethyl and secondary treated effluents on acetylcholinesterase and butyrylcholinesterase activities in Carcinus maenas

    Institute of Scientific and Technical Information of China (English)

    Jihene Ghedira; Jamel Jebali; Zied Bouraoui; Mohamed Banni; Lassaad Chouba; Hamadi Boussetta

    2009-01-01

    The acute effects of commercial formulation of chlorpyrifos-ethyl (Dursban(r)) and the secondary treated industrial/urban effluent (STIUE) exposure on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities in hepatopancreas and gills of Mediterranean crab Carcinus maenas were investigated. After 2 d of exposure to chlorpyriphos-ethyl, the AChE activity was inhibited in both organs at concentrations of 3.12 and 7.82 μg/L, whereas the BuChE was inhibited only at higher concentration 7.82 μg/L of commercial preparation Dursban(r). The exposure of crabs to Dursban(r) (3.12 μg/L) showed a significant decrement of AChE activity at 24 and 48 h, whereas the BuChE was inhibited only after 24 h and no inhibition for both enzymes was observed after 72 h. Moreover, a significant repression of AChE activity was observed in both organs of C. maenas exposed to 5% of STIUE. Our experiments indicated that the measurement of AChE activity in gills and hepatopancreas of C. meanas would be useful biomarker of organophosphorous (OP) and of neurotoxic effects of STIUE in Tunisia.

  8. Flotation technique with coagulant and polymer application applied to the post-treatment of effluents from anaerobic reactor treating sewage.

    Science.gov (United States)

    Reali, A P; Penetra, R G; de Carvalho, M E

    2001-01-01

    This paper presents the results of a study performed with a lab-scale batch DAF unit fed with previously coagulated (with FeCl3 and/or cationic polymer) effluent from a pilot-scale expanded bed anaerobic reactor treating domestic sewage. The association between ferric chloride and polymers was studied, aimed at sludge reduction. Ferric chloride dosages ranging from 15 to 65 mg.l-1, and polymer dosages from 0.25 to 7.0 mg.l-1 were investigated. Flocculation conditions were kept constant: 20 min of time (Tf) and 80 s-1 of mean velocity gradient (Gf). Air requirement was kept to 19.0 g of air.m-3 wastewater, using 20% recycle ratio and saturation pressure at 450 kPa. When the anaerobic reactor was operating at steady state conditions, it was possible to reduce the FeCl3 dosage from 65 to 30 mg.l-1 after applying 0.4 mg.l-1 of non-ionic polymer, before the DAF process. For these dosages, 79% COD removal (residual of 23 mg.l-1), 86% total phosphate removal (residual of 0.9 mg.l-1) and 98% turbidity removal (residual of 2.6 NTU) were observed. Furthermore, the use of adequate polymer together with 30 mgFeCl3.l-1 leads to the production of high rising rate flocs. PMID:11575086

  9. Superiority of solar Fenton oxidation over TiO2 photocatalysis for the degradation of trimethoprim in secondary treated effluents.

    Science.gov (United States)

    Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D

    2013-01-01

    The overall aim of this work was to examine the degradation of trimethoprim (TMP), which is an antibacterial agent, during the application of two advanced oxidation process (AOP) systems in secondary treated domestic effluents. The homogeneous solar Fenton process (hv/Fe(2+)/H2O2) and heterogeneous photocatalysis with titanium dioxide (TiO2) suspensions were tested. It was found that the degradation of TMP depends on several parameters such as the amount of iron salt and H2O2, concentration of TiO2, pH of solution, solar irradiation, temperature and initial substrate concentration. The optimum dosages of Fe(2+) and H2O2 for homogeneous ([Fe(2+)] = 5 mg L(-1), [H2O2] = 3.062 mmol L(-1)) and TiO2 ([TiO2] = 3 g L(-1)) for heterogeneous photocatalysis were established. The study indicated that the degradation of TMP during the solar Fenton process is described by a pseudo-first-order reaction and the substrate degradation during the heterogeneous photocatalysis by the Langmuir-Hinshelwood kinetics. The toxicity of the treated samples was evaluated using a Daphnia magna bioassay and was finally decreased by both processes. The results indicated that solar Fenton is more effective than the solar TiO2 process, yielding complete degradation of the examined substrate within 30 min of illumination and dissolved organic carbon (DOC) reduction of about 44% whereas the respective values for the TiO2 process were ∼70% degradation of TMP within 120 min of treatment and 13% DOC removal. PMID:23508150

  10. Quarterly sampling of the wetlands along the old F-Area effluent ditch: August 1994. Revision 1

    International Nuclear Information System (INIS)

    In August 1994, well point water and near-surface water samples were collected to further characterize tritium and volatile organic compounds in the Wetlands along the old F-Area effluent ditch south of 643-E at the Savannah River Plant. Well point samples were collected from seven locations and near-surface water samples were collected at four locations. Results of the August 1994 sampling event further support findings that tritium and volatile organic compounds are outcropping in the Wetlands near the old F-area effluent ditch. Four analytes (1,2-dichloroethylene, trichloroethylene, tritium, and vinyl chloride) were detected at least once at concentrations above the primary Drinking Water Standards or the Maximum Contaminant Levels. Five analytes (the above chemicals plus tetrachloroethylene) were detected at least once in the near-surface water samples at concentrations greater than the method detection limit

  11. Control of biological growth in recirculating cooling systems using treated secondary effluent as makeup water with monochloramine.

    Science.gov (United States)

    Chien, Shih-Hsiang; Chowdhury, Indranil; Hsieh, Ming-Kai; Li, Heng; Dzombak, David A; Vidic, Radisav D

    2012-12-01

    was used as compared to in-situ-formed monochloramine. Adjustment of biocide dose to maintain monochloramine residual above 3mg/L is needed to achieve successful biological growth control in recirculating cooling systems using secondary-treated municipal effluent as the only source of makeup water. PMID:23063442

  12. Combination of physico-chemical analysis, Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay/nuclear abnormalities tests for cyto-genotoxicity assessments of treated effluents discharged from textile industries.

    Science.gov (United States)

    Hemachandra, Chamini K; Pathiratne, Asoka

    2016-09-01

    Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure. PMID:27209118

  13. Use of diatom assemblages as biomonitor of the impact of treated uranium mining effluent discharge on a stream: case study of the Ritord watershed (Center-West France)

    OpenAIRE

    Herlory, O.; Bonzom, J. M.; Gilbin, R.; Frelon, S.; Fayolle, S.; Delmas, F.; Coste, M.

    2013-01-01

    The rehabilitation of French former uranium mining sites has not prevented the contamination of the surrounding aquatic ecosystems with metal elements. This study assesses the impact of the discharge of treated uranium mining effluents on periphytic diatom communities to evaluate their potential of bioindication. A 7-month survey was conducted on the Ritord watercourse to measure the environmental conditions of microalgae, the non-taxonomic attributes of periphyton (photosynthesis and biomass...

  14. Sampling and analysis of soil from the old F-Area effluent ditch and its surrounding wetlands

    International Nuclear Information System (INIS)

    Four surface soil samples were collected from the wetlands at the old F-Area effluent ditch. All samples were collected near shallow well point locations except FHB012, which was collected from the effluent ditch stream sediment. Samples were analyzed for metals, Target Compound List volatile organic compounds, and gross radiological indicators. Barium, beryllium, and zinc were detected in all four samples and antimony was detected in three of four samples. These metals occur naturally in the wetland soils at the SRS. Comparisons of metals concentrations were male to concentration ranges taken from background wetland soil samples. These comparison, showed that barium and beryllium concentrations were within expected ranges while zinc and antimony concentrations were elevated above expected concentration ranges. Volatile organic compounds were detected in all four samples. Detected compounds included acetone, 2-butanone, chloromethane, cis-1,2-dichloroethene, and toluene. The only radionuclide detected in a significant quantities was tritium which was detected in all four samples

  15. Design and Operational Aspects of Common Effluent Treatment Plant in GIDA Project Area of Gorakhpur (U. P.,

    Directory of Open Access Journals (Sweden)

    Amit Prakash Choudhary

    2014-03-01

    Full Text Available In order to minimize environmental pollution due to the small and medium-scale industries, cleaner production technologies and waste minimization are being encouraged in India. Collective treatment at a centralized facility, known as the CETP, is considered as a viable treatment solution, to overcome the constraints associated with effluent treatment in small to medium enterprises. Ever since the inception of Gorakhpur Industrial Development Authority (GIDA in 1989, some 159 industries have come up in GIDA Project Area. However, most of the units, being small scale industries, do not have their wastewater treatment units. Besides, there is no satisfactory arrangement of wastewater treatment in large scale industries also, even though they have established their own Effluent Treatment Plants (ETP‟s. This is a major cause of pollution of Ami River in the region. In this paper, the design and operational aspects of a Common Effluent Treatment Plant (CETP for large scale industries belonging to textile sector namely, M/s Lari Textiles and Dyeing Ltd., M/s Ambey Processors and M/s Bathwal Udyog Pvt. Ltd. worked out. The design parameters have been looked into and the quantitative and qualitative aspects of effluent treatment required by CETP are also studied. The analysis of operational cost of various CETP technologies has been carried out and the comparisons are made on the basis of life cycle cost analysis of 30 years. It is revealed that the combination of UASB reactor and Facultative Waste Stabilization Pond ((FPU is the least cost feasible treatment technology for CETP. Accordingly, the sizing parameters of UASB reactor and Facultative Waste Stabilization Pond (FPU are worked out and the annual saving in cost by energy recovery through biogas generation is found out. It is expected that the establishment of CETP in GIDA Project Area will be a step forward towards environmental protection and would go a long way in saving Ami River from the

  16. Process and device for treating a liquid effluent coming from an industrial facility such as nuclear power reactor

    International Nuclear Information System (INIS)

    The liquid effluent from a nuclear power reactor is heated in a heat exchanger to boil off some of its water content and the remaining liquid is fed into the top of a reactor together with gaseous or liquid fuel which is burned therein, producing a mixture of hot gas and dry oxidized solid particles which are separated in a cyclone. The hot gas is fed from the top of cyclone through the heat exchanger and discharged via a filter. The upper part of the heat exchanger is connected to the top of the reactor to recycle any non condensable gases and combust any organic fraction in the liquid effluent

  17. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than ∼1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network

  18. Biofouling of microfilters at the Savannah River Site F/H-Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    The F/H-Effluent Treatment Facility uses state-of-the-art water treatment processes to remove contaminants from low-level radioactive wastewater at the Savannah River Site. The plant replaces seepage basins that were closed to comply with the 1984 amendments to the Resource Conservation and Recovery Act (RCRA). The facility removes both radioactive and nonradioactive contaminants from the effluents orginating from onsite waste management facilities. The unit processes involve filtration, ion exchange, activated carbon absorption, and reverse osmosis. The filtration step is prone to considerable fouling, reducing the overall throughput of the facility. The filters utilized in the process are Norton Ceraflo trademark ceramic microfilters. It was discovered that bacteria were primarily responsible for the severe filter fouling. Inorganic fouling was also observed, but was not normally as severe as the bacterial fouling. The bacteria densities necessary to induce severe fouling were not significantly higher than those often found in surface water streams. Diversion of waste streams containing the highest quantity of bacteria, and various methods of source reduction were implemented, which dramatically improved the filter performance. Addition of aluminum nitrate at low pH further improved the filter performance

  19. Biofouling of microfilters at the Savannah River Site F/H-area effluent treatment facility

    International Nuclear Information System (INIS)

    The F/H-Effluent Treatment Facility uses state-of-the-art water treatment processes to remove contaminants from low-level radioactive wastewater at the Savannah River Site, The plant replaces seepage basins that were closed to comply with the 1984 amendments to the Resource Conservation and Recovery Act (RCRA). The facility removes both radioactive and nonradioactive contaminants from the effluents originating from onsite waste management facilities. The unit processes involve filtration, ion exchange, activated carbon absorption, and reverse osmosis. The filtration step is prone to considerable fouling, reducing the overall throughput of the facility. The Filters utilized in the process are Norton Ceraflo ceramic microfilters. It was discovered that bacteria were primarily responsible for the severe filter fouling. Inorganic fouling was also observed, but was not normally as severe as the bacterial fouling. The bacteria densities necessary to induce severe fouling were not significantly higher than those often found in surface water streams. Diversion of waste streams containing the highest quantity of bacteria, and various methods of source reduction were implemented, which dramatically unproved the filter performance. Addition of aluminum nitrate at low pH further improved the filter performance. (author)

  20. Impact of Shrimp Farm Effluent on Water Quality in Coastal Areas of the World Heritage-Listed Ha Long Bay

    Directory of Open Access Journals (Sweden)

    Thuyet D. Bui

    2012-01-01

    Full Text Available Problem statement: Shrimp farming has rapidly developed in coastal areas of the World Heritage-listed Ha Long Bay since the last decade. Effluent discharged from shrimp farms with high levels of nutrient waste may cause eutrophication in receiving waterways. Therefore, assessing water quality at tidal creeks receiving shrimp farm effluent in coastal areas of Ha Long Bay supports environmental protection and decision making for sustainable development of the region. Approach: Water samples were collected at 3 different locations for spatial assessment: inside sections of creeks directly receiving farm effluent (IEC, from main creeks adjacent to points of effluent discharge outside concentrated shrimp farms (OEC and a few kilometers away from shrimp farm (ASF. Samples were taken on 3 occasions for temporal assessment. Parameters related to nutrient waste from shrimp farms, including: Total Ammonia Nitrogen (TAN, Nitrite-Nitrogen (NO2-N, Nitrate-Nitrogen (NO3-N, Total Phosphorus (TP, Dissolved Orthophosphate (PO4-P, Biochemical Oxygen Demand (BOD, Chemical Oxygen Demand (COD, Total Suspended Solid (TSS, Chlorophyll-a (Chl-a, Temperature, Salinity, pH and Dissolved Oxygen (DO were determined using standard methods. Results: There were statistically significant differences in the concentrations of TAN, NO2-N, NO3-N, TP, PO4-P, BOD, COD and Chl-a among IEC, OEC, ASF and the levels of these parameters increased after shrimp crops, especially after the main shrimp crop of the season in North Vietnam. The concentrations of TAN, NO3-N, TP, BOD, COD, Chl-a, TSS at IEC sites were higher than recommended for protecting aquatic ecosystems. Principal Component Analysis (PCA efficiently summarized patterns of co-variation in water quality parameters among locations and study times. Conclusion/Recommendations: The findings of this study indicate that greater awareness of the environmental impacts of shrimp farms is required if this industry is to be sustainable

  1. Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater

    OpenAIRE

    García-Diéguez, Carlos; Bernard, Olivier; ROCA, ENRIQUE

    2013-01-01

    International audience The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that t...

  2. Whole-body monitor, hand-feet monitor, gaseous effluent, area monitor

    International Nuclear Information System (INIS)

    The following gaseous (iodine, noble gases and aerosols) effluents monitoring equipment developed by INVAP may be installed in any nuclear facility with a ventilation system that expels air through a chimney. Should the facility fail to have such a ventilation system - hence the extraction chimney - INVAP can offer an alternative system: a portable gaseous-effluent measuring equipment which can be installed, for example, in the hall of the reactor. Basically, the system consists of forcing, by means of an aspiration pump, a known and fixed air flow fraction from the chimney (or the hall) and to retain the aerosols continuously in a glass microfiber filter. Aerosols are thus measured according to a specially-designed geometry which confronts the filter with the plastic scintillator. The gas thus obtained is free from aerosols. It then passes through a carbon-activated filter which retains iodine. This filter has a coaxial geometry, lodging inside an INa (Tl) gamma radiation-sensitive scintillator. Both scintillators are optically coupled to their respective photomultipliers. Their pulses are processed with a load preamplifier and a discriminating amplifier in order to store them in counters to be periodically read by the intelligent controller. Actual monitoring will be carried out by means of independent measuring channels for iodine and aerosols, with each channel featuring remote reading and alarms (for instance, at the Control Room). Data thus acquired will be processed by an intelligent controller (INVAP Mod. SAPP-09) which will perform the following functions: - Calculation and unit conversion in order to inform in a TRC total and incremental activity released by the installation during a pre-set period established by the operator. - Calculation, including statistical errors, to determine whether incremental alarm values and pre-set totals are adequate or whether they have been exceeded, providing the results. - Process-control operations (counting failure

  3. Toxicities of sediments below 10 effluent outfalls to near-coastal areas of the Gulf of Mexico

    International Nuclear Information System (INIS)

    The chemical quality and toxicities of sediments collected in the receiving waters below 10 wastewater outfalls to Northwest Florida coastal areas were evaluated at multiple stations during 1994--1996. Eight types of toxicity tests using 11 test species were used to assess acute and chronic toxicity of the sediments collected below industrial, municipal, power generation and pulp mill outfalls. The primary objectives of the study were to evaluate the relative ability of different assessment procedures to detect toxicity and to provide some much-needed perspective on the impact of major point sources on sediment quality in Gulf of Mexico estuaries. The major chemical contaminants were heavy metals and PAHs. Acute and chronic toxicities were noted. Results of tests with sediment collected at the same location but several months later often differed. The most sensitive species were mysids and an estuarine amphipod. The least sensitive species were fish and macrophyte seedlings. There was poor correlation of effluent toxicity to sediment toxicity in the receiving water. Toxicity of the effluents was greater than that of the sediments. Overall, the unavailability of relevant chronic toxicity methods, uncertain criteria for choice of control stations, lack of guidance on frequency of testing and the dynamic physical and chemical characteristics of sediments are factors that need consideration if sediment monitoring is to be part of the NPDES regulatory process

  4. Resource Conservation and Recovery Act industrial site environmental restoration site characterization plan. Area 6 Steam Cleaning Effluent Ponds

    International Nuclear Information System (INIS)

    This plan presents the strategy for the characterization of the Area 6 South and North Steam Cleaning Effluent Ponds (SCEPs) at the Nevada Test Site (NTS) to be conducted for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration Division (ERD). The purposes of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste (IDW). The scope of the characterization may include excavation, drilling, and sampling of soil in and around both ponds; sampling of the excavated material; in situ sampling of the soil at the bottom and on the sides of the excavations as well as within subsurface borings; and conducting sample analysis for both characterization and waste management purposes. Contaminants of concern include RCRA-regulated VOCs and metals

  5. Dissolved organic matter from treated effluent of a major wastewater treatment plant: characterization and influence on copper toxicity.

    Science.gov (United States)

    Pernet-Coudrier, Benoît; Clouzot, Ludiwine; Varrault, Gilles; Tusseau-Vuillemin, Marie-Hélène; Verger, Alain; Mouchel, Jean-Marie

    2008-09-01

    A combination of reverse osmosis (RO) concentration and DAX-8/XAD-4 resin adsorption techniques is used to isolate the various constituents of urban dissolved organic matter (DOM) from inorganic salts. Three fractions: hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) accounting respectively for 35%, 20% and 45% of extracted carbon, are isolated from effluents of a major French wastewater treatment plant. This atypical DOC distribution, in comparison with natural water where the HPO fraction dominates, shows the significance of HPI fraction which often gets neglected because of extraction difficulties. A number of analytical techniques (elemental, spectroscopic: UV, FTIR) allow highlighting the weak aromaticity of wastewater effluent DOM (EfOM) due to fewer degradation and condensation processes and the strong presence of proteinaceous structures indicative of intense microbial activity. Copper toxicity in the presence of DOM is estimated using an acute toxicity test on Daphnia Magna (Strauss). Results reveal the similar protective role of each EfOM fraction compared to reference Suwannee river fulvic acid despite lower EfOM aromaticity (i.e. specific UV absorbance). The environmental implications of these results are discussed with respect to the development of site-specific water quality criteria. PMID:18632131

  6. Radiological effluent and onsite area monitoring report for the Nevada Test Site (January 1986-December 1986)

    International Nuclear Information System (INIS)

    This report documents the environmental surveillance program at the Nevada Test Site as conducted by the Department of Energy (DOE) onsite radiological safety contractor from January 1986 through December 1986. It presents results and evaluations of radioactivity measurements in air and water, and of direct gamma radiation exposure rates. It establishes relevant correlations between the data recorded and DOE concentration guides (CG's). External gamma exposure levels and radioactivity in air and water on the Nevada Test Site were low compared to DOE guidelines. The highest average gross beta concentration in air was 0.005% of the DOE concentration guide (CG). The highest average Pu-239 concentration was 7.7% of the standard. The highest average tritium concentration was 0.39% of the standard. Kr-85 concentrations increased slightly from CY-1985 to CY-1986. Xe-133 remained nondetectable with some exceptions. The highest average gross beta concentration in potable water remained within the applicable standard for drinking water. The highest average Pu-239 concentration from contaminated waters was 0.0005% of the concentration guide. The highest average tritium concentration in noncontaminated water was 6% of the level for drinking water required by the National Interim Primary Drinking Water Regulation. The amounts of tritium-bearing effluent released to contaminated waste ponds was calculated and reported to DOE Headquarters. Gamma radiation measurements were roughly the same in CY-1986 relative to the previous year. All surveillance results from the Radioactive Waste Management Site (RWMS) indicate that no detectable releases of radioactive materials occurred in that network in 1986. 29 refs., 14 figs., 23 tabs

  7. Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed with pre-treated sewage.

    Science.gov (United States)

    Viruela, Alexandre; Murgui, Mónica; Gómez-Gil, Tao; Durán, Freddy; Robles, Ángel; Ruano, María Victoria; Ferrer, José; Seco, Aurora

    2016-10-01

    With the aim of assessing the potential of microalgae cultivation for water resource recovery (WRR), the performance of three 0.55m(3) flat-plate photobioreactors (PBRs) was evaluated in terms of nutrient removal rate (NRR) and biomass production. The PBRs were operated outdoor (at ambient temperature and light intensity) using as growth media the nutrient-rich effluent from an AnMBR fed with pre-treated sewage. Solar irradiance was the most determining factor affecting NRR. Biomass productivity was significantly affected by temperatures below 20°C. The maximum biomass productivity (52.3mgVSS·L(-1)·d(-1)) and NRR (5.84mgNH4-N·L(-1)·d(-1) and 0.85mgPO4-P·L(-1)·d(-1)) were achieved at solar irradiance of 395μE·m(-2)·s(-1), temperature of 25.5°C, and HRT of 8days. Under these conditions, it was possible to comply with effluent nutrient standards (European Directive 91/271/CEE) when the nutrient content in the influent was in the range of 40-50mgN·L(-1) and 6-7mg P·L(-1). PMID:27394990

  8. Coupling in vitro and in vivo neurochemical-based assessments of wastewater effluents from the Maumee River Area of Concern (AOC)

    Science.gov (United States)

    Here we utilize in vivo and in vitro approaches to study whether real world effluents released in the Maumee River (Toledo, OH) Area of Concern (AOC) contain neuroactive substances that may impair fish reproduction and behavior. Our approaches help extend the concept of endocrine...

  9. Long-term evaluation of different strategies of cationic polyelectrolyte dosage to control fouling in a membrane bioreactor treating refinery effluent.

    Science.gov (United States)

    Alkmim, Aline R; da Costa, Paula R; Moser, Priscila B; França Neta, Luzia S; Santiago, Vânia M J; Cerqueira, Ana C; Amaral, Míriam C S

    2016-04-01

    In this article, the long-term use of cationic polyelectrolyte to improve the sludge filterability and to control membrane fouling in bioreactor membrane while treating refinery effluents have been evaluated in pilot scale. Corrective and preventive cationic polyelectrolyte dosages have been added to the membrane bioreactor (MBR) to evaluate the membrane fouling mitigation in both strategies. The results have confirmed that the use of the Membrane performance enhancer (MPE) increased the sludge filterability and reduced the membrane fouling. During the monitoring period, stress events occurred due to the increase in oil and grease and phenol concentrations in the MBR feeds. The preventive use of cationic polyelectrolyte allowed for a more effective and stable sludge filterability, with lower cationic polyelectrolyte consumption and without decreasing MBR's overall pollutant removal performance. PMID:26508453

  10. IN VITRO IDENTIFICATION OF ANDROGENIC AND ESTROGENIC ACTIVITY FROM CONCENTRATED ANIMAL FEEDLOT OPERATIONS (CAFO) AND TERTIARY-TREATED SEWAGE EFFLUENT SAMPLES

    Science.gov (United States)

    Fish living in ecosystems contaminated with human or domestic animal effluents have been shown to display reproductive alterations. Recent research with effluent from cattle feeding operations in the US, for example, have associated morphological alterations in fish collected fr...

  11. Identification and antimicrobial resistance prevalence of pathogenic Escherichia coli strains from treated wastewater effluents in Eastern Cape, South Africa.

    Science.gov (United States)

    Adefisoye, Martins A; Okoh, Anthony I

    2016-02-01

    Antimicrobial resistance (AMR) is a global problem impeding the effective prevention/treatment of an ever-growing array of infections caused by pathogens; a huge challenge threatening the achievements of modern medicine. In this paper, we report the occurrence of multidrug resistance (MDR) in Escherichia coli strains isolated from discharged final effluents of two wastewater treatment facilities in the Eastern Cape Province of South Africa. Standard disk diffusion method was employed to determine the antibiotic susceptibility profile of 223 polymerase chain reaction (PCR)-confirmed E. coli isolates against 17 common antibiotics in human therapy and veterinary medicine. Seven virulence associated and fourteen antibiotic resistance genes were also evaluated by molecular methods. Molecular characterization revealed five pathotypes of E. coli in the following proportions: enterotoxigenic ETEC (1.4%), enteropathogenic EPEC (7.6%), enteroaggregative EAEC (7.6%), neonatal meningitis (NMEC) (14.8%), uropathogenic (41.7%), and others (26.9%). Isolates showed varying (1.7-70.6%) degrees of resistance to 15 of the test antibiotics. Multidrug resistance was exhibited by 32.7% of the isolates, with the commonest multiple antibiotic-resistant phenotype (MARP) being AP-T-CFX (12 isolates), while multiple antibiotic-resistant indices (MARI) estimated are 0.23 (Site 1) and 0.24 (Site 2). Associated antibiotic resistance genes detected in the isolates include: strA (88.2%), aadA (52.9%), cat I (15%), cmlA1 (4.6%), blaTEM (56.4%), tetA (30.4%), tetB (28.4%), tetC (42.2%), tetD (50%), tetK (11.8%), and tetM (68.6%). We conclude that municipal wastewater effluents are important reservoirs for the dissemination of potentially pathogenic E. coli (and possibly other pathogens) and antibiotic resistance genes in the aquatic milieu of the Eastern Cape and a risk to public health. PMID:26758686

  12. Inactivation of Escherichia coli in a baffled pond with attached growth: treating anaerobic effluent under the Sahelian climate.

    Science.gov (United States)

    Moumouni, D A; Andrianisa, H A; Konaté, Y; Ndiaye, A; Maïga, A H

    2016-01-01

    This study aimed to investigate and understand the zero-level detection of Escherichia coli (E. coli) at the outlet of an improved waste stabilization pond. Wastewaters were collected from the International Institute for Water and Environmental Engineering (2iE) campus and were subjected to biological treatment. The system included two-stage Anaerobic Reactors followed by a Baffled Pond (AR-BP) with recycled plastic media as a medium for attached growth and a control pond (CP). Three vertical baffles were installed, giving four compartments in the baffled pond (BP). The research was conducted on the pilot scale from March to July 2014, by monitoring E. coli, pH, temperature, dissolved oxygen (DO) and chlorophyll-a in each compartment and at different depths. The results show that E. coli concentrations were lower in top layers of all compartments with an undetectable level in the last compartment up to 0.60 m deep. E. coli mean removal efficiencies and decay rates were achieved by significant difference in BP (4.5 log-units, 9.1 day(-1)) and CP (1.1 log-units, 1.1 day(-1)). Higher values of pH (≥9), temperature (≥32°C), DO (≥ 8 mg/L) and chlorophyll-a (≥ 1000 µg/L) were observed at the surface of BP, whereas lower values were shown at the bottom. Sedimentation combined with the synergetic effects of the physicochemical parameters and environmental factors would be responsible for the inactivation of E. coli in BP. It was concluded that the AR-BP could be applied as an alternative low-cost wastewater treatment technology for developing countries and recommended for reuse of their effluent for restricted peri-urban irrigation. PMID:26496019

  13. Biotic survey of Los Alamos radioactive liquid-effluent receiving areas

    International Nuclear Information System (INIS)

    A preliminary study was completed of the vegetation and small mammal communities and associated climatology in three canyon liquid waste receiving areas at the Los Alamos Scientific Laboratory. Data were gathered on plant and animal composition, distribution, and biomass, along with air temperature, humidity, and precipitation, as a function of elevation and where data were available with season. Initial studies of the understory vegetation in the spring of 1974 indicate grass species to be dominant at higher elevations, with forb species becoming dominant at lower elevations. Generally, the highest total mass estimates for standing green vegetation were obtained in the study sites located in the upper portions of the canyons where precipitation is greatest, and where the terrain and intermittent stream flow result in a wetter habitat. Fourteen species of small mammals were trapped or observed in canyon study areas during two trapping sessions of May--June 1974 and December 1974--February 1975. A greater number of species and the highest rodent biomass estimates in the spring were generally associated with the ponderosa pine/pinion--juniper woodland in the upper reaches of the canyons, and were lowest in the pinion--juniper woodland at the lower portions of the canyons. This trend was observed in only one of the canyons during the winter season. Climatological data gathered in the three canyons since 1973 are also presented to serve as a data base for future reference

  14. Integrated management of liquid effluents at the Hanford Site

    International Nuclear Information System (INIS)

    This poster session illustrates the integrated approach that the Hanford Site has taken in managing high-priority liquid effluent streams. These waste waters are produced from a variety of process- and utility-related sources. The Hanford Site approach to management of liquid effluents focusses on eliminating the source, reusing where possible, and treating and disposing of the water that cannot be eliminated or recycled prior to disposal. Thirteen of the high-priority waste water streams have been or will be eliminated by the end of 1995. Some of these streams have been eliminated as the result of shutting down the associated operation. However, the elimination of other streams has been the result of process modifications, equipment substitutions, or recycling. Several of the waste water streams will receive treatment at the individual generating facility before being discharged into a new industrial sewer (the 200 Area Treated Effluent Disposal Facility). The industrial sewer will collect treated streams from various plants in the 200 Areas and dispose of the clean effluent at two uncontaminated new 20,235-square meter (5-acre) ponds permitted by Washington State. Finally, condensate from the 200 Areas tank waste evaporator and waste water from operations in the 300 Area will be treated at two end-of-the-pipe treatment facilities. The 200 Area Effluent Treatment Facility will treat condensate (a Resource Conservation and Recovery Act of 1976 (1)-listed waste) from the tank waste evaporator, thereby allowing the waste to be delisted prior to disposal. The treated effluent will be pumped to a state-approved land disposal site selected to maximize the migration time to the river. This disposal site allows for the decay of tritium, which will be present in the condensate but cannot be removed using current technologies

  15. Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods.

    Science.gov (United States)

    Giannakis, Stefanos; Gamarra Vives, Franco Alejandro; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2015-11-01

    In this study, wastewater from the output of three different secondary treatment facilities (Activated Sludge, Moving Bed Bioreactor and Coagulation-Flocculation) present in the municipal wastewater treatment plant of Vidy, Lausanne (Switzerland), was further treated with various oxidation processes (UV, UV/H2O2, solar irradiation, Fenton, solar photo-Fenton), at laboratory scale. For this assessment, 6 organic micropollutants in agreement with the new environmental legislation requirements in Switzerland were selected (Carbamazepine, Clarithromycin, Diclofenac, Metoprolol, Benzotriazole, Mecoprop) and monitored throughout the treatment. Also, the overall removal of the organic load was assessed. After each secondary treatment, the efficiency of the AOPs increased in the following order: Coagulation-Flocculation Bioreactor, in almost all cases. From the different combinations tested, municipal wastewater subjected to biological treatment followed by UV/H2O2 resulted in the highest elimination levels. Wastewater previously treated by physicochemical treatment demonstrated considerably inhibited micropollutant degradation rates. The degradation kinetics were determined, yielding: k (UV) photo-Fenton). Finally, the evolution of global pollution parameters (COD & TOC elimination) was followed and the degradation pathways for the effluent organic matter are discussed. PMID:26255127

  16. Characteristics of granular sludge developed in an upflow anaerobic sludge fixed-film bioreactor treating palm oil mill effluent.

    Science.gov (United States)

    Zinatizadeh, A A L; Mohamed, A R; Mashitah, M D; Abdullah, A Z; Hasnain Isa, M

    2007-08-01

    In the present study, characteristics of the granular sludge (including physical characteristics under stable conditions and process shocks arising from suspended solid overload, soluble organic overload, and high temperature; biological activity; and sludge kinetic evaluation in a batch experiment) developed in an upflow anaerobic sludge blanket fixed-film reactor for palm oil mill effluent (POME) treatment was investigated. The main aim of this work was to provide suitable understanding of POME anaerobic digestion using such a granular sludge reactor, particularly with respect to granule structure at various operating conditions. The morphological changes in granular sludge resulting from various operational conditions was studied using scanning electron microscopy and transmission electron microscopy images. It was shown that the developed granules consisted of densely packed rod- (Methanosaeta-like microorganism; predominant) and cocci- (Methanosarsina) shaped microorganisms. Methanosaeta aggregates functioned as nucleation centers that initiated granule development of POME-degrading granules. Under the suspended solid overload condition, most of the granules were covered with a thin layer of fiberlike suspended solids, so that the granule color changed to brown and the sludge volume index also increased to 24.5 from 12 to 15 mL/g, which caused a large amount of sludge washout. Some of the granules were disintegrated because of an acidified environment, which originated from acidogenesis of high influent organic load (29 g chemical oxygen demand [COD]/L d). At 60 degrees C, the rate of biomass washout increased, as a result of disintegration of the outer layer of the granules. In the biological activity test, approximately 95% COD removal was achieved within 72 hours, with an initial COD removal rate of 3.5 g COD/L d. During POME digestion, 275 mg calcium carbonate/L bicarbonate alkalinity was produced per 1000 mg COD(removed)/ L. A consecutive reaction kinetic

  17. Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperature.

    Science.gov (United States)

    Luostarinen, Sari; Luste, Sami; Valentín, Lara; Rintala, Jukka

    2006-05-01

    On-site post-treatment of anaerobically pre-treated dairy parlour wastewater (DPWWe; 10 degrees C) and mixture of kitchen waste and black water (BWKWe; 20 degrees C) was studied in moving bed biofilm reactors (MBBR). The focus was on removal of nitrogen and of residual chemical oxygen demand (COD). Moreover, the effect of intermittent aeration and continuous vs. sequencing batch operation was studied. All MBBRs removed 50-60% of nitrogen and 40-70% of total COD (CODt). Complete nitrification was achieved, but denitrification was restricted by lack of carbon. Nitrogen removal was achieved in a single reactor by applying intermittent aeration. Continuous and sequencing batch operation provided similar nitrogen and COD removal, wherefore simpler continuous feeding may be preferred for on-site applications. Combination of pre-treating upflow anaerobic sludge blanket (UASB) -septic tank and MBBR removed over 92% of CODt, 99% of biological oxygen demand (BOD7), and 65-70% of nitrogen. PMID:16647521

  18. Water quality transformation of treated sewage effluents in their receiving environments around the Tablas de Daimiel National Park (Spain)

    OpenAIRE

    Sanchez Ramos, David; Sanchez Emeterio, Gema; Florin Beltran, Maximo

    2014-01-01

    The Tablas de Daimiel National Park (TDNP) is a floodplain wetland located in the Upper Guadiana Basin (central Spain). The TDNP is one of the core areas of the Mancha Húmeda Biosphere Reserve, declared in 1980 by UNESCO. When flooded, the wetland covers 1928 ha surface, as a result of the inputs from Gigüela and Guadiana Rivers, together with groundwater discharge from the West Mancha aquifer. However, groundwater discharge to the wetland is decreasing, since the aquifer suffers intensive gr...

  19. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina. Final report on macroinvertebrate stream assessments for F/H area ETF effluent discharge, July 1987--February 1990

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1991-10-01

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F?H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

  20. Delisting petition for 300-M saltstone (treated F006 sludge) from the 300-M liquid effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-04

    This petition seeks exclusion for stabilized and solidified sludge material generated by treatment of wastewater from the 300-M aluminum forming and metal finishing processes. The waste contains both hazardous and radioactive components and is classified as a mixed waste. The objective of this petition is to demonstrate that the stabilized sludge material (saltstone), when properly disposed, will not exceed the health-based standards for the hazardous constituents. This petition contains sampling and analytical data which justify the request for exclusion. The results show that when the data are applied to the EPA Vertical and Horizontal Spread (VHS) Model, health-based standards for all hazardous waste constituents will not be exceeded during worst case operating and environmental conditions. Disposal of the stabilized sludge material in concrete vaults will meet the requirements pertaining to Waste Management Activities for Groundwater Protection at the Savannah River Site in Aiken, S.C. Documents set forth performance objectives and disposal options for low-level radioactive waste disposal. Concrete vaults specified for disposal of 300-M saltstone (treated F006 sludge) assure that these performance objectives will be met.

  1. Advanced treatment of residual nitrogen from biologically treated coke effluent by a microalga-mediated process using volatile fatty acids (VFAs) under stepwise mixotrophic conditions.

    Science.gov (United States)

    Ryu, Byung-Gon; Kim, Woong; Heo, Sung-Woon; Kim, Donghyun; Choi, Gang-Guk; Yang, Ji-Won

    2015-09-01

    This work describes the development of a microalga-mediated process for simultaneous removal of residual ammonium nitrogen (NH4(+)-N) and production of lipids from biologically treated coke effluent. Four species of green algae were tested using a sequential mixotrophic process. In the first phase-CO2-supplied mixotrophic condition-all microalgae assimilated NH4(+)-N with no evident inhibition. In second phase-volatile fatty acids (VFAs)-supplied mixotrophic condition-removal rates of NH4(+)-N and biomass significantly increased. Among the microalgae used, Arctic Chlorella sp. ArM0029B had the highest rate of NH4(+)-N removal (0.97 mg/L/h) and fatty acid production (24.9 mg/L/d) which were 3.6- and 2.1-fold higher than those observed under the CO2-supplied mixotrophic condition. Redundancy analysis (RDA) indicated that acetate and butyrate were decisive factors for increasing NH4(+)-N removal and fatty acid production. These results demonstrate that microalgae can be used in a sequential process for treatment of residual nitrogen after initial treatment of activated sludge. PMID:25881553

  2. Evaluation of the antibiotic activity and genetic mutation of microorganisms in the effluent treated with the electron-beam from waste-water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hun; Nam, Ji Hyun; Shin, Ji Hye; Yun, Seo Yeon; Cho, Young Cheol; Oh, Kyoung hee [Chungbuk National University, Cheongju (Korea, Republic of)

    2011-04-15

    In this study, the residual concentrations and activities of antibiotics after UV or gamma-ray treatments were estimated, and the effect of irradiation of UV, gamma-ray, or electron beam was estimated on the survivability and less mutagenic effect on bacteria. The changes of bacterial communities and radiation resistant population in the effluent treated with UV and electron-beam were analyzed. The gamma-ray irradiation was more effective than UV in degradation of antibiotics. The extent of mutagenicity of electron-beam irradiation was less than those of UV or gamma-ray irradiations. The application of election-beam to the wastewater treatment system showed the high efficiency of destroying and removal effects on bacterial cells. The selective increase in population of radiation resistant bacteria was not observed. These results indicate that the application of ionizing radiation to the processes of wastewater treatment system will be suitable than UV irradiation because of its degradability of variable antibiotics, high removal rate of harmful bacteria, less mutagenicity of bacteria, and low selective effect on radiation resistant bacteria

  3. Effect of solids retention time on membrane fouling intensity in two-stage submerged anaerobic membrane bioreactors treating palm oil mill effluent.

    Science.gov (United States)

    Annop, S; Sridang, P; Puetpaiboon, U; Grasmick, A

    2014-01-01

    Submerged anaerobic membrane bioreactors (SAnMBRs) treating palm oil mill effluent were analysed in terms of membrane fouling dynamics when working at three different sludge retention times (SRTs of 15, 30 and 60 d). The average permeate flux was fixed at 2.4 L x m(-2) x h(-1). During operation, the membrane was regenerated by using two steps: membrane wiping during each experiment as soon as trans-membrane pressure reached 125-130 mbars, and complete membrane cleaning including backwash and chemical cleaning at the end of each experiment when analysing the membrane surface and foulant material. Whatever the SRT, the cake formation was the dominant effect on membrane fouling dynamics. The concentration of suspended solids in the SAnMBRs, depending on the SRT, was then a determining criterion. Scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy indicated that fouled membrane surfaces were covered with a cake layer containing organic and inorganic elements whose concentrations were higher when working at a higher SRT; the higher concentrations of such elements gave to the cake layer a denser and more compact structure. In these experiments, the soluble fractions played a secondary role because of the dominant effect of cake layer structuring. PMID:25145221

  4. Evaluation of the antibiotic activity and genetic mutation of microorganisms in the effluent treated with the electron-beam from waste-water treatment plant

    International Nuclear Information System (INIS)

    In this study, the residual concentrations and activities of antibiotics after UV or gamma-ray treatments were estimated, and the effect of irradiation of UV, gamma-ray, or electron beam was estimated on the survivability and less mutagenic effect on bacteria. The changes of bacterial communities and radiation resistant population in the effluent treated with UV and electron-beam were analyzed. The gamma-ray irradiation was more effective than UV in degradation of antibiotics. The extent of mutagenicity of electron-beam irradiation was less than those of UV or gamma-ray irradiations. The application of election-beam to the wastewater treatment system showed the high efficiency of destroying and removal effects on bacterial cells. The selective increase in population of radiation resistant bacteria was not observed. These results indicate that the application of ionizing radiation to the processes of wastewater treatment system will be suitable than UV irradiation because of its degradability of variable antibiotics, high removal rate of harmful bacteria, less mutagenicity of bacteria, and low selective effect on radiation resistant bacteria

  5. 300 area TEDF permit compliance monitoring plan

    Energy Technology Data Exchange (ETDEWEB)

    BERNESKI, L.D.

    1998-11-20

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease.

  6. 300 area TEDF permit compliance monitoring plan

    International Nuclear Information System (INIS)

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease

  7. Mitigation of solid waste and reuse of effluent from paint and varnish automotive and industrial treated by irradiation at electron beam accelerator

    International Nuclear Information System (INIS)

    One of the most representative industrial segments is the polymeric coatings for house paint, automotive, industrial, marine, maintenance, and repainting markets. The general consumption of paint market in 2010 was 438,364 103 gallons of paint, in Brazil. However, when produce paints and varnishes, various kinds of solid wastes and liquid effluent are generated. The present research focus on the effluent from resins, water base paint and paint for electrophoresis, automotive industry, and general industrial coatings. The goal of this study is to use ionizing radiation to destroy the pollutants allowing the use of part of effluent as reuse water, and the rest discarded within the specified requirements. Actual industrial effluent samples were irradiated at Electron beam Accelerator applying absorbed doses of 10 kGy, 30 kGy and 50 kGy. The results, in this preliminary stage, showed a reduction of organic compounds and suspended solids. (author)

  8. Exposure of fish to biologically treated bleached-kraft effluent; 1: Biochemical, physiological and pathological assessment of Rocky Mountain whitefish (Prosopium williamsoni) and longnose sucker (Catostomus catostomus)

    Energy Technology Data Exchange (ETDEWEB)

    Kloepper-Sams, P.J.; Owens, J.W. (Procter Gamble Co., Cincinnati, OH (United States)); Swanson, S.M. (SENTAR Consultants Ltd., Calgary, Alberta (Canada)); Marchant, T. (Univ. of Saskatchewan, Saskatoon (Canada). Dept. of Biology); Schryer, R. (SENTAR Consultants Ltd., Saskatoon, Saskatchewan (Canada))

    1994-09-01

    A suite of biochemical, physiological, and pathological measures was used to assess possible effects of exposure to bleached-kraft mill effluent (BKME) on wild longnose sucker (Catostomus catostomus=LS) and mountain whitefish (Prosopium williamsoni=MW) in the Wapiti/Smoke River system, as compared to similar populations in a reference river system without BKME inputs. Individual fish body burden data were examined for correlations between chemical exposure and biological response. General incidence of gross pathology and histopathology showed no relationship with exposure to BKME, and no neoplastic or preneoplastic lesions were observed in either exposed or reference fish. The few significant differences observed in LS blood parameters were not correlated with exposure to BKME and appeared to reflect habitat gradients. Liver somatic indexes were higher for female BKME-exposed LS, but were not significantly different in male LS nor in MW. Some differences in circulating sex steroid levels were observed in LS exposed to BKME (but not in MW, the species with higher contaminant body burdens). Steroid profile differences may have been related to natural differences in duration of spawning periods in the two fish populations. Other measures of reproductive capacity (relative gonad size, fecundity, young-of-the-year) showed no reductions in exposed fish. The detoxification enzyme cytochrome P4501A was induced in both species, with greater induction in MW than in LS. MW P4501A induction correlated well with some BKME exposure measures, but not with liver or gonad weights, pathology, reproductive capacity, or population-level parameters. Increased liver size and apparent differences in sex steroid profiles in LS did not translate to other health effects or population-level effects. Thus, exposure to this biologically treated BKME produced one consistent biochemical marker of exposure in the two fish species that was not associated with any adverse effects on fish health.

  9. Evaluation of toxicity and removal of color in textile effluent treated with electron beam; Avaliacao da toxicidade e remocao da cor de um efluente textil tratado com feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Aline Viana de

    2015-07-01

    The textile industry is among the main activities Brazil, being relevant in number of jobs, quantity and diversity of products and mainly by the volume of water used in industrial processes and effluent generation. These effluents are complex mixtures which are characterized by the presence of dyes, surfactants, metal sequestering agents, salts and other potentially toxic chemicals for the aquatic biota. Considering the lack of adequate waste management to these treatments, new technologies are essential in highlighting the advanced oxidation processes such as ionizing radiation electron beam. This study includes the preparation of a standard textile effluent chemical laboratory and its treatment by electron beam from electron accelerator in order to reduce the toxicity and intense staining resulting from Cl. Blue 222 dye. The treatment caused a reduction in toxicity to exposed organisms with 34.55% efficiency for the Daphnia similis micro crustacean and 47.83% for Brachionus plicatilis rotifer at a dose of 2.5 kGy. The Vibrio fischeri bacteria obtained better results after treatment with a dose of 5 kGy showing 57.29% efficiency. Color reduction was greater than 90% at a dose of 2.5 kGy. This experiment has also carried out some preliminary tests on the sensitivity of the D. similis and V. fischeri organisms to exposure of some of the products used in this bleaching and dyeing and two water reuse simulations in new textile processing after the treating the effluent with electron beam. (author)

  10. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: a two-dimensional flow cell study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng

    2016-02-01

    During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.

  11. Enhancing the decolorizing and degradation ability of bacterial consortium isolated from textile effluent affected area and its application on seed germination.

    Science.gov (United States)

    Mahmood, Rashid; Sharif, Faiza; Ali, Sikander; Hayyat, Muhammad Umar

    2015-01-01

    A bacterial consortium BMP1/SDSC/01 consisting of six isolates was isolated from textile effected soil, sludge, and textile effluent from Hudiara drain near Nishat Mills Limited, Ferozepur Road, Lahore, Pakistan. It was selected because of being capable of degrading and detoxifying red, green, black, and yellow textile dyes. The pH and supplements were optimized to enhance the decolorization ability of the selected consortium. The results indicated that decolorizing ability of consortium for the red, green, black, and yellow dyes was higher as compared to individual strains. The consortium was able to decolorize 84%, 84%, 85%, 85%, and 82% of 200 ppm of red, green, black, yellow, and mixed dyes within 24 h while individual strain required 72 h. On supplementing urea, the consortium decolorized 87, 86, 89, 86, and 83%, respectively, while on supplementing sodium chloride the consortium decolorized 93, 94, 93, 94, and 89% of red, green, black, yellow, and mixed dyes, respectively, which was maximum while in the presence of ascorbic acid and ammonium chloride it showed intermediate results. The effect of untreated and treated dyes was investigated on Zea mays L. (maize) and Sorghum vulgare Pers. (sorghum). This study will help to promote an efficient biotreatment of textile effluents. PMID:25654132

  12. Enhancing the Decolorizing and Degradation Ability of Bacterial Consortium Isolated from Textile Effluent Affected Area and Its Application on Seed Germination

    Directory of Open Access Journals (Sweden)

    Rashid Mahmood

    2015-01-01

    Full Text Available A bacterial consortium BMP1/SDSC/01 consisting of six isolates was isolated from textile effected soil, sludge, and textile effluent from Hudiara drain near Nishat Mills Limited, Ferozepur Road, Lahore, Pakistan. It was selected because of being capable of degrading and detoxifying red, green, black, and yellow textile dyes. The pH and supplements were optimized to enhance the decolorization ability of the selected consortium. The results indicated that decolorizing ability of consortium for the red, green, black, and yellow dyes was higher as compared to individual strains. The consortium was able to decolorize 84%, 84%, 85%, 85%, and 82% of 200 ppm of red, green, black, yellow, and mixed dyes within 24 h while individual strain required 72 h. On supplementing urea, the consortium decolorized 87, 86, 89, 86, and 83%, respectively, while on supplementing sodium chloride the consortium decolorized 93, 94, 93, 94, and 89% of red, green, black, yellow, and mixed dyes, respectively, which was maximum while in the presence of ascorbic acid and ammonium chloride it showed intermediate results. The effect of untreated and treated dyes was investigated on Zea mays L. (maize and Sorghum vulgare Pers. (sorghum. This study will help to promote an efficient biotreatment of textile effluents.

  13. Estimating nitrogen and phosphorus saturation point for Eichhornia crassipes (Mart. Solms and Salvinia molesta Mitchell in mesocosms used to treating aquaculture effluent

    Directory of Open Access Journals (Sweden)

    Matheus Nicolino Peixoto Henares

    2014-12-01

    Full Text Available AIM: To evaluate the growth of Eichhornia crassipes (Mart. Solms and Salvinia molesta Mitchell in tanks used for treating aquaculture effluent and compare the results with literature data in order to estimate the nutrients saturation point. METHODS: An experiment with six rectangular fiberglass tanks were separated in two treatments, inflow and outflow (higher and lower nutrient concentration, and the two macrophytes above cited was carried out during 50 days. A floating quadrat with 0.25 m² of E. crassipes and S. molesta at inflow and outflow of the tanks was collected weekly for fresh mass measurement. At the beginning and end of the experiment samples of macrophytes were oven-dried at 60 ºC until constant weight to determine the dry mass. Dry mass of plants was estimated by a simple linear regression analysis between fresh mass and dry mass (DM. RESULTS: The N and P concentrations were significantly higher (P<0.05 in the inflow (mean of 0.66 mg L-1 and 233.6 mg L-1, respectively than in the outflow of the tanks (mean of 0.38 mg L-1 and 174.7 mg L-1, respectively. However, no significantly different plant growth was observed for either higher or lower concentration. For both higher and lower nutrient concentrations, the biomass gain for E. crassipes was, respectively, 428.5 and 402.7 g DM.m². For S. molesta, biomass gain was 135.2 and 143.1 g DM.m², in the higher and lower concentrations, respectively. Others studies reported high growth of E. crassipes and S. molesta in concentrations of nitrogen (0.14 - 0.18 mg L-1 and phosphorus (14.2 - 77.0 mg L-1 lower than this study. CONCLUSION: The comparison of E. crassipes and S. molesta growth in this study with others allow us to assume that the saturation point of E. crassipes should be 0.26 mg L-1 of nitrogen and 77 mg L-1 of phosphorus and for S. molesta below 0.19 mg L-1 of nitrogen and 15.1 mg L-1 of phosphorus.

  14. Assessment of Nelumbo nucifera and Hydrilla verticillata in the treatment of pharmaceutical industry effluent from 24 Parganas, West Bengal

    Directory of Open Access Journals (Sweden)

    Shamba Chatterjee

    2014-10-01

    Full Text Available Modern day technologies employed in industrialization and unhygienic lifestyle of mankind has led to a severe environmental menace resulting in pollution of freshwater bodies. Pharmaceutical industry effluents cause eutrophication and provide adequate nutrients for growth of pathogenic bacteria. This study has been conducted with aquatic plants water lotus (Nelumbo nucifera and hydrilla (Hydrilla verticillata with an novel aim to treat pharmaceutical industry effluents showing the outcome of the experiments carried out with the effluents collected from rural areas of 24 Parganas, West Bengal, India. Determination of pH, solid suspend, BOD5, NH3-N, MPN and coliform test were used for this notioned purpose. Pharmaceutical waste effluent water treated with water lotus showed less pH, solid suspend, DO, BOD, NH3-N, MPN and coliform bacteria than hydrilla treatment when compared to the control. In conclusion, water lotus is found to be more efficient in treatment of pharmaceutical industry effluent waste water than hydrilla.

  15. REUSE OF TREATED WASTEWATER IN AGRICULTURE: SOLVING WATER DEFICIT PROBLEMS IN ARID AREAS (REVIEW

    Directory of Open Access Journals (Sweden)

    Faissal AZIZ

    2014-12-01

    Full Text Available In the arid and semiarid areas, the availability and the management of irrigation water have become priorities of great importance. The successive years of drought, induced by climate change and population growth, increasingly reduced the amount of water reserved for agriculture. Consequently, many countries have included wastewater reuse as an important dimension of water resources planning. In the more arid areas wastewater is used in agriculture, releasing high resource of water supplies. In this context, the present work is a review focusing the reuse of treated wastewater in agriculture as an important strategy for solving water deficit problems in arid areas. Much information concerning the wastewater reuse in different regions of the world and in Morocco, the different wastewater treatment technologies existing in Morocco were discussed. The review focused also the fertilizing potential of wastewater in agriculture, the role of nutrients and their concentrations in wastewater and their advantages effects on plant growth and yield.

  16. Hydrogeochemical transport modeling of the infiltration of tertiary treated wastewater in a dune area, Belgium

    OpenAIRE

    Vandenbohede, A.; Wallis, I.; Van Houtte, E.; Van RANST, E.

    2013-01-01

    Managed artificial recharge (MAR) is a well-established practice for augmentation of depleted groundwater resources or for environmental benefit. At the St-André MAR site in the Belgian dune area, groundwater resources are optimised through re-use of highly treated wastewater by means of infiltration ponds. The very high quality of the infiltration water sets this system apart from other MAR systems. The low total dissolved solid (TDS) content in the infiltration water (less than 50 mg/L) com...

  17. The treatment of effluents

    International Nuclear Information System (INIS)

    For several years the French Atomic Energy Commission has been studying with interest problems presented by radio-active effluents. Since high activities have not yet received a definite solution we will deal only, in this paper, with the achievements and research concerning low and medium activity effluents. In the field of the achievements, we may mention the various effluent treatment stations which have been built in France; a brief list will be given together with an outline of their main new features. Thus in particular the latest treatment stations put into operation (Grenoble, Fontenay-aux-Roses, Cadarache) will be presented. From all these recent achievements three subjects will be dealt with in more detail. 1 - The workshop for treating with bitumen the sludge obtained after concentration of radionuclides. 2 - The workshop for treating radioactive solid waste by incineration. 3 - A unit for concentrating radio-active liquid effluents by evaporation. In the field of research, several topics have been undertaken, a list will be given. In most cases the research concerns the concentration of radionuclides with a view to a practical and low cost storage, a concentration involving an efficient decontamination of the aqueous liquids in the best possible economic conditions. For improving the treatments leading to the concentration of nuclides, our research has naturally been concerned with perfecting the treatments used in France: coprecipitation and evaporation. In our work we have taken into account in particular two conditions laid down in the French Centres. 1 - A very strict sorting out of the effluents at their source in order to limit in each category the volume of liquid to be dealt with. 2 - The necessity for a very complete decontamination due to the high population density in our country. In the last past we present two original methods for treating liquid effluents. 1 - The use of ion-exchange resins for liquids containing relatively many salts. The

  18. ifferential Gene Expression in Zebrafish (Danio rerio Following Exposure to Gaseous Diffusion Plant Effluent and Effluent Receiving Stream Water

    Directory of Open Access Journals (Sweden)

    Ben F. Brammell

    2010-01-01

    Full Text Available Problem statement: The expression of six genes known to serve as bioindicators of environmental stress were examined using real-time quantitative PCR in liver tissue extracted from zebrafish (Danio rerio, Hamilton exposed to effluent and effluent containing stream water associated with the Paducah Gaseous Diffusion Plant (PGDP. Approach: The PGDP, the only active uranium enrichment facility in the US, is located in western Kentucky and discharges treated effluents into several surrounding streams. Environmentally relevant concentrations of several heavy metals and polychlorinated biphenyls (PCBs can be found in effluents emerging from the plant as well as in receiving streams. Fish were exposed in the laboratory to water from both effluents and downstream areas as well as to water from an upstream reference site. Expression of six genes known to be altered by metal and/or PCB exposure was quantified at both 7 and 14 day time points. Results: Transcription of the biomarker enzyme cytochrome P4501A1 (CYP1A1 was significantly elevated in fish exposed to one plant effluent at both the 7 (16 fold and 14 (10 fold day time points. Sediment PCB levels from this site were the highest observed in the study, indicating PCBs may be contributing to the elevated CYP1A1 mRNA. Additionally, catalase, an enzyme responsible for hydrogen peroxide detoxification and known to be impacted by metal contamination, demonstrated significant alterations in expression in the effluent containing the highest concentrations of most metals observed in this study. Interestingly, despite the presence of metal levels consistent with the induction of metallothionein in other studies, no metallothionein induction was observed. All other stress biomarker encoding genes were likewise unaffected by effluent water exposure. Conclusion/Recommendations: These results indicate that contaminant levels observed in this system altered transcription of catalase and CYP1A1 but failed to

  19. Monitoring of effluent discharged from MINT's premise

    International Nuclear Information System (INIS)

    Active laboratories at the MINT's main complex are equipped with active sinks for discharging of radioactively contaminated aqueous liquid. Subsequently, the effluent is collected in tasks prior to transferring to the Collection Tanks at the Low Level Effluent Treatment Plant, Waste Management Centre. The need to treat or vice-versa of the effluent depends on the analysis carried out on the effluent. Generally, treated effluent is discharged to the environment once they meet the criteria / requirements as set by the laws. This paper discusses the criteria used in the analysis of the effluent and the readings obtained in a certain period of time. In addition, it has been observed in the drop of application of radioactive materials in recent years. (Author)

  20. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    Directory of Open Access Journals (Sweden)

    Marchetti Leonardo

    2006-04-01

    Full Text Available Abstract Background Olive mill wastewater (OMW is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter

  1. Variation in the area of islets of langerhans in sodium cyclamate treated rats

    International Nuclear Information System (INIS)

    To observe the effects of sodium cyclamate on islets of langerhans in rats pancreas. Study Design: Laboratory based randomized control trial. Duration of study: Anatomy Department, Army Medical College Rawalpindi, in collaboration with National Institute of Health (NIH), Islamabad, from March to May 2014. Material and Methods: Twenty male and twenty female Sprauge dawley rats weighing 175-205 gms were used in the experiment. Half male and half female rats were randomly divided in two groups (control group C and experimental group E, n=20 animals in each group). Group C served as control group in which rats were given normal diet. Group E served as experimental group and was given sodium cyclamate 60mg/kg/day through oral gavage tube for two months. Animals were dissected. Pancreas was examined and weighed. Slides were made after processing the organ for histological study. Area of islets of langerhans was calculated by image j software. Results were analyzed on SPSS version 20. Results: The mean weight of pancreas in control and experimental group was 0.75 gm (SD ± 0.094) and 0.805 gm (SD ± 0.068) respectively. It was significantly higher (p = 0.043) in experimental group. The area of islet of langerhans in control and experimental group was 15285.40 µm2 (IQR: 9881.08 - 23001.35) and 33213.50 µm2 (IQR: 21258.05-45879.18) respectively. There was an increase in area in experimental group (p = 0.014). Conclusion: Sodium cyclamate affects the histomorphology of endocrine pancreas by increasing the area of islets of langerhans in treated group. (author)

  2. Whole toxicity removal for industrial and domestic effluents treated with electron beam radiation, evaluated with Vibrio fischeri, Daphnia similis and Poecilia reticulata; Reducao da toxicidade aguda de efluentes industriais e domesticos tratados por irradiacao com feixe de eletrons, avaliada com as especies Vibrio fischeri, Daphnia similis and Poecilia reticulata

    Energy Technology Data Exchange (ETDEWEB)

    Borrely, Sueli Ivone

    2001-07-01

    Several studies have been performed in order to apply ionizing radiation to treat real complexes effluents from different sources, at IPEN. This paper shows the results of such kind of application devoted to influents and effluents from Suzano Wastewater Treatment Plant, Sao Paulo, Suzano WTP, from SABESP. The purpose of the work was to evaluate the radiation technology according to ecotoxicological aspects. The evaluation was carried out on the toxicity bases which included three sampling sites as follows: complex industrial effluents; domestic sewage mixed to the industrial discharge (GM) and final secondary effluent. The tested-organisms for toxicity evaluation were: the marine bacteria Vibrio fischeri, the microcrustacean Daphnia similis and the guppy Poecilia reticulata. The fish tests were applied only for secondary final effluents. The results demonstrated the original acute toxicity levels as well as the efficiency of electron beam for its reduction. An important acute toxicity removal was achieved: from 75% up to 95% with 50 kGy (UNA), 20 kGy (GM) and 5.0 kGy for the final effluent. The toxicity removal was a consequence of several organic solvents decomposed by radiation and acute toxicity reduction was about 95%. When the toxicity was evaluated for fish the radiation efficiency reached from 40% to 60%. The hypothesis tests showed a statistical significant removal in the developed studies condition. No residual hydrogen peroxide was found after 5.0 kGy was applied to final effluent. (author)

  3. Electrocoagulation for the treatment of textile industry effluent--a review.

    Science.gov (United States)

    Khandegar, V; Saroha, Anil K

    2013-10-15

    Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. PMID:23892280

  4. Partial alpha decontamination proceeding of an aqueous effluent

    International Nuclear Information System (INIS)

    The invention concerns a partial alpha decontamination proceeding of an aqueous effluent having, at least one polluting element chosen among copper, zinc, tantalum, gold, actinides or lanthanides. This proceeding consists on putting in contact the aqueous effluent with a silica gel and to separate the contaminated effluent from the silica gel having fixed one of these polluting elements already mentioned; the effluent to treat has a ph value higher or equal to 3. This proceeding can be applied to the treatment of effluents coming from spent fuels reprocessing plants and technological effluents coming from nuclear power plants. (N.C.). 6 refs

  5. Assessment of physicochemical parameters and prevalence of virulent and multiple-antibiotic-resistant Escherichia coli in treated effluent of two wastewater treatment plants and receiving aquatic milieu in Durban, South Africa.

    Science.gov (United States)

    Pillay, Leanne; Olaniran, Ademola O

    2016-05-01

    The poor operational status of some wastewater treatment plants often result in the discharge of inadequately treated effluent into receiving surface waters. This is of significant public health concern as there are many informal settlement dwellers (ISDs) that rely on these surface waters for their domestic use. This study investigated the treatment efficiency of two independent wastewater treatment plants (WWTPs) in Durban, South Africa and determined the impact of treated effluent discharge on the physicochemical and microbial quality of the receiving water bodies over a 6-month period. Presumptive Escherichia coli isolates were identified using biochemical tests and detection of the mdh gene via PCR. Six major virulence genes namely eae, hly, fliC, stx1, stx2, and rfbE were also detected via PCR while antibiotic resistance profiles of the isolates were determined using Kirby-Bauer disc diffusion assay. The physicochemical parameters of the wastewater samples ranged variously between 9 and 313.33 mg/L, 1.52 and 76.43 NTUs, and 6.30 and 7.87 for COD, turbidity, and pH respectively, while the E. coli counts ranged between 0 and 31.2 × 10(3) CFU/ml. Of the 200 selected E. coli isolates, the hly gene was found in 28 %, fliC in 20 %, stx2 in 17 %, eae in 14 %, with stx1 and rfbE in only 4 % of the isolates. Notable resistance was observed toward trimethoprim (97 %), tetracycline (56 %), and ampicillin (52.5 %). These results further highlight the poor operational status of these WWTPs and outline the need for improved water quality monitoring and enforcement of stringent guidelines. PMID:27037695

  6. Ultratrace Determination of Cr(VI and Pb(II by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    Directory of Open Access Journals (Sweden)

    Jameel Ahmed Baig

    2013-01-01

    Full Text Available Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI and lead (Pb(II by dispersive liquid-liquid microextraction (DLLME using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS. For the current study, ammonium pyrrolidine dithiocarbamate (APDC, carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI and Pb(II were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, were 96%. The proposed method was successfully applied to the determination of Cr(VI and Pb(II at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method.

  7. Occurrence of synthetic musk fragrances in effluent and non-effluent impacted environments.

    Science.gov (United States)

    Chase, Darcy A; Karnjanapiboonwong, Adcharee; Fang, Yu; Cobb, George P; Morse, Audra N; Anderson, Todd A

    2012-02-01

    Synthetic musk fragrances (SMFs) are considered micropollutants and can be found in various environmental matrices near wastewater discharge areas. These emerging contaminants are often detected in wastewater at low concentrations; they are continuously present and constitute a constant exposure source. Objectives of this study were to investigate the environmental fate, transport, and transformation of SMFs. Occurrence of six polycyclic musk compounds (galaxolide, tonalide, celestolide, phantolide, traseolide, cashmeran) and two nitro musk compounds (musk xylene and musk ketone) was monitored in wastewater, various surface waters and their sediments, as well as groundwater, soil cores, and plants from a treated wastewater land application site. Specifically, samples were collected quarterly from (1) a wastewater treatment plant to determine initial concentrations in wastewater effluent, (2) a storage reservoir at a land application site to determine possible photolysis before land application, (3) soil cores to determine the amount of sorption after land application and groundwater recharge to assess lack thereof, (4) a lake system and its sediment to assess degradation, and (5) non-effluent impacted local playa lakes and sediments to assess potential sources of these compounds. All samples were analyzed using gas chromatography coupled with mass spectrometry (GC-MS). Data indicated that occurrence of SMFs in effluent-impacted environments was detectable at ng/L and ng/g concentrations, which decreased during transport throughout wastewater treatment and land application. However, unexpected concentrations, ng/L and ng/g, were also detected in playa lakes not receiving treated effluent. Additionally, soil cores from land application sites had ng/g concentrations, and SMFs were detected in plant samples at trace levels. Galaxolide and tonalide were consistently found in all environments. Information on occurrence is critical to assessing exposure to these potential

  8. Methanization of industrial liquid effluents; Methanisation des effluents industriels liquides

    Energy Technology Data Exchange (ETDEWEB)

    Frederic, S.; Lugardon, A. [Societe Naskeo Environnement, 92 - Levallois-Perret (France)

    2007-09-15

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  9. Possible Use of Treated Wastewater as Irrigation Water at Urban Green Area

    Directory of Open Access Journals (Sweden)

    Elif Bozdoğan

    2014-08-01

    Full Text Available Ever increasing demands for fresh water resources have brought the reuse of treated wastewater into agendas. Wastewater has year-long potential to be used as an irrigation water source. Therefore, treated wastewater is used as irrigation water over agricultural lands and urban landscapes, as process water in industrial applications, as back-up water in environmental applications in water resources and wetlands of dry regions. The present study was conducted to investigate the possible use of domestic wastewater treated through pilot-scale constructed wetland of Adana-Karaisalı with dominant Mediterranean climate in irrigation of marigold (Tagetes erecta, commonly used over urban landscapes. Experiments were carried out between the dates May-November 2008 for 7 months with fresh water and treated wastewater. Plant growth parameters (plant height, plant diameter, number of branches and flowering parameters (number of flowers, flower diameter, flower pedicle thickness were monitored in monthly basis. Results revealed positive impacts of treated wastewater irrigations on plant growth during the initial 5 months between May-September but negative impacts in October and November. Similarly, treated wastewater irrigations had positive impacts on flowering parameters during the initial 3 months but had negative impacts during the subsequent 4 months. Such a case indicated shortened visual efficiencies of marigold. Therefore, treated wastewater can be used as an alternative water resource in irrigation of annual flowers, but better results can be attained by mixing treated wastewater with fresh water at certain ratios.

  10. Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge.

    Science.gov (United States)

    De la Cruz, N; Giménez, J; Esplugas, S; Grandjean, D; de Alencastro, L F; Pulgarín, C

    2012-04-15

    This study focuses on the removal of 32 selected micropollutants (pharmaceuticals, corrosion inhibitors and biocides/pesticides) found in an effluent coming from a municipal wastewater treatment plant (MWTP) based on activated sludge. Dissolved organic matter was present, with an initial total organic carbon of 15.9 mg L(-1), and a real global quantity of micropollutants of 29.5 μg L(-1). The treatments tested on the micropollutants removal were: UV-light emitting at 254 nm (UV(254)) alone, dark Fenton (Fe(2+,3+)/H(2)O(2)) and photo-Fenton (Fe(2+,3+)/H(2)O(2)/light). Different irradiation sources were used for the photo-Fenton experiences: UV(254) and simulated sunlight. Iron and H(2)O(2) concentrations were also changed in photo-Fenton experiences in order to evaluate its influence on the degradation. All the experiments were developed at natural pH, near neutral. Photo-Fenton treatments employing UV(254), 50 mg L(-1) of H(2)O(2), with and without adding iron (5 mg L(-1) of Fe(2+) added or 1.48 mg L(-1) of total iron already present) gave the best results. Global percentages of micropollutants removal achieved were 98 and a 97% respectively, after 30 min of treatments. As the H(2)O(2) concentration increased (10, 25 and 50 mg L(-1)), best degradations were observed. UV(254), Fenton, and photo-Fenton under simulated sunlight gave less promising results with lower percentages of removal. The highlight of this paper is to point out the possibility of the micropollutants degradation in spite the presence of DOM in much higher concentrations. PMID:22305640

  11. Methanization of industrial liquid effluents

    International Nuclear Information System (INIS)

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  12. Qualidade da água de um córrego sob influência de efluente tratado de abate bovino Water quality of a stream under influence of cattle slaughter treated effluent

    Directory of Open Access Journals (Sweden)

    Michael S. Thebaldi

    2011-03-01

    Full Text Available As agroindústrias figuram entre as maiores fontes poluidoras das águas no Brasil, em função da grande quantidade de resíduos produzidos, contendo substâncias orgânicas, nutrientes, sólidos, óleos e graxas. O objetivo deste trabalho foi analisar o efeito do lançamento de efluente de abate de bovinos sobre a qualidade da água do Córrego Jurubatuba, em Anápolis, GO. As amostras de efluente e a água foram obtidas em seis diferentes dias e em quatro posições, em relação ao ponto de lançamento: P1 - na saída do efluente tratado, antes do lançamento no córrego; P2 - 50 m à montante do ponto de descarga; P3 - 50 m à jusante do ponto de descarga e P4 - 120 m à jusante do ponto de descarga. Analisaram-se as concentrações de OD, DBO, DQO, amônia, nitrito e nitrato. Os valores de DBO em todos os pontos de coleta no Córrego Jurubatuba foram superiores aos padrões descritos na Resolução do CONAMA nº 357/2005 para cursos de água da classe 2. O lançamento de efluente no Córrego Jurubatuba elevou os valores de DBO e DQO no ponto P3, enquanto no ponto P4 foi semelhante aos valores obtidos antes do lançamento de efluente. As concentrações de oxigênio dissolvido, amônia, nitrito e nitrato, não sofreram alterações significativas no córrego.Agroindustrial systems are among the largest sources of water pollution in Brazil, due to the large amount of waste produced, containing organic substances, nutrients, solids, oils and fats. This study aimed to analyze the effect of release of cattle slaughter treated effluent on the water quality of the Jurubatuba Stream in the municipality of Anápolis, GO. The effluent and stream water samples were obtained at six different days and at four positions in relation to the point of discharge: P1 - the discharge of the treated wastewater, before launching it into the stream; P2 - upstream, 50 m away from the discharge point; P3 - downstream, 50 m away from the discharge point; and P4

  13. 炼油厂酸性水罐排放气恶臭治理技术工业应用%Application of Odor Treatment Technology in Treating Effluent Gas From Sour Water Tanks in Refineries

    Institute of Scientific and Technical Information of China (English)

    王海波; 廖昌建; 刘忠生; 戴金玲

    2013-01-01

    Successful application of "the diesel low temperature critical absorption and lye desulfurization " odor treatment technology in treating effluent gas from sour water tanks was introduced. The rate of oil gas recovery was as high as 95%. Treated gas can be in full compliance with the emission limit of Emission standard of air pollutant for bulk gasoline terminals and Emission standards for odor pollutants. The amount of oil and gas recovery can reach more than 300 t/a, this technology has obvious economic benefit and social benefit.%  全面介绍了“柴油低温临界吸收-碱液脱硫”恶臭治理技术在某炼油厂酸性水罐排放气治理上的成功应用。装置的油气回收率高达95%。排放气经过治理后完全符合《储油库大气污染物排放标准》和《恶臭污染物排放标准》污染物排放限值的要求。装置年回收油气量可达300 t以上,该技术具有明显的经济效益和社会效益。

  14. Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer.

    Science.gov (United States)

    Yetilmezsoy, Kaan; Sapci-Zengin, Zehra

    2009-07-15

    Magnesium ammonium phosphate hexahydrate (MgNH(4)PO(4).6H(2)O, MAP) precipitation was studied on up-flow anaerobic sludge blanket (UASB) pretreated poultry manure wastewater in a lab-scale batch study. To recover high strength of ammonium nitrogen (NH(4)(+)-N=1318 mg/L) from UASB effluent, three combinations of chemicals including MgCl(2).6H(2)O+KH(2)PO(4), MgSO(4).7H(2)O+NaHPO(4).7H(2)O, and MgO+85% H(3)PO(4) were first applied at the stoichiometric ratio (Mg(2+):NH(4)(+)-N:PO(4)(3-)-P=1:1:1) and at different pH levels ranging from 4.45 to 11. Preliminary test results indicated that maximum NH(4)(+)-N removal, as well as maximum chemical oxygen demand (COD) and color reductions, were obtained as 85.4%, 53.3% and 49.8% at pH 9.0 with the addition of MgCl(2).6H(2)O+KH(2)PO(4), respectively. The paired experimental data obtained from batch studies were statistically evaluated by a non-parametric Mann-Whitney test and a two-sample t-test. Based on the previous results, another batch experiments were then performed at pH 9.0 using MgCl(2).6H(2)O+KH(2)PO(4) for different molar ratios applied as overdose (1.2:1:1, 1.5:1:1, 1:1:1.2, 1:1:1.5) and underdose (0.5:1:1, 0.8:1:1, 1:1:0.5, 1:1:0.8). In the final step, the fertility of the MAP precipitate as struvite was also tested on the growth of three test plants including purslane (Portulaca oleracea), garden cress (Lepidum sativum) and grass (Lolium perenne). Findings of this experimental study clearly confirmed the recovering of NH(4)(+)-N from UASB pretreated poultry manure wastewater by MAP precipitation, and also the application of recovered MAP sludge as a valuable slow release fertilizer for agricultural use. PMID:19097699

  15. Possible Use of Treated Wastewater as Irrigation Water at Urban Green Area

    OpenAIRE

    Elif Bozdoğan

    2014-01-01

    Ever increasing demands for fresh water resources have brought the reuse of treated wastewater into agendas. Wastewater has year-long potential to be used as an irrigation water source. Therefore, treated wastewater is used as irrigation water over agricultural lands and urban landscapes, as process water in industrial applications, as back-up water in environmental applications in water resources and wetlands of dry regions. The present study was conducted to investigate the possible use of ...

  16. Distribution of polycyclic aromatic hydrocarbons (PAHs) in sewage effluent, continental and coastal waters from the Northwestern Mediterrean Sea: Comparison between two contrasted catchment areas (Marseilles Bay and Vermeille coast)

    Science.gov (United States)

    Guigue, Catherine; Ferretto, Nicolas; Méjanelle, Laurence; Tedetti, Marc; Ghiglione, Jean-François; Goutx, Madeleine

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAHs) were analysed from sewage treatment plant waters and surface waters collected in continental (rivers), harbour and off-shore marine sites from Marseilles Bay and Vermeille coastal areas between 2009 and 2013 (Northwestern Mediterranean Sea, France). After collection, water samples were first filtered on glass fiber filters, then PAHs from the dissolved phase were extracted using liquid-liquid or solid phase extraction (SPE) methods, while those from particles were treated according to Bligh and Dyer method. After a possible purification step, extracts were analysed by gas chromatography coupled to mass spectrometry (GC-MS). Regardless of the study area, dissolved and particulate PAH (18 parents + alkylated homologues) concentration averages were 150.2 ± 140.5 ng l-1and 39.4 ± 71.2 ng l-1, respectively. Interestingly, the concentration in dissolved PAHs was on average 3.8 higher than the concentration in particulate PAHs. In addition, a gradient of PAH concentrations was observed from coastal waters with the highest values in harbours and outlet sewage effluents and the lowest values in off-shore marine waters. Intermediate concentrations were recorded in continental waters. In the Marseilles Bay, dissolved PAH concentrations were significantly higher and associated to increased signatures of unburned and combusted fossil fuels, mainly from heating, during the cold period (November-April). In contrast, unburned petroleum signature dominated in the warm period (May-October), emphasizing the intense shipping traffic and urban/industrial activities occurring in one of the largest Mediterranean harbour and city. Conversely, in the Vermeille coastal waters, dissolved PAH concentrations were higher during the warm period when particulate PAHs displayed the lowest concentrations, suggesting a seasonal related partition between dissolved and particulate PAHs. In addition, in the Vermeille coastal waters, PAHs were dominated by

  17. Clinical Observation of Vascular Dementia Treated by Surrounding-acupuncture of the CT-located Area

    Institute of Scientific and Technical Information of China (English)

    LUN Xin; FENG Bi-fang; RONG Li; YANG Wen-hui

    2003-01-01

    Purpose To observe the clinical effect of "Surrounding Needling Technigue through CT Location" in treating vascular dementia. Method Fifty cases of vascular dementia were randomly divided into surrounding Needling Technigue through CT location and routine acupuncture groups, 25 cases in each group,and were given surrounding Needling Technigue through CT location and routine acupuncture respectively. Results The effective rates in surrounding Needling Technigue through CT location and routine acupuncture groups were 88% and 60% respectively, and there was significant difference between the two groups, P < 0.01.Conclusion Therapeutic effect of surrounding Needling Technigue through CT location in treating vascular dementia was satisfactory, and better than that of routine acupuncture.

  18. Plant and soil modifications by continuous surface effluent application

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M.J.; Levien, R. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. of Solos; Mohrdieck, F.G.; Rodrigues, N.R. [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao; Flores, A.I.P.

    1993-12-31

    In order to study the effects on soil and plants of the liquid effluent generated by a the Integrated Liquid Effluent Treatment System of a large Brazilian petrochemical complex, a field study was conducted in four areas which received the effluent and compared to control sites. This work presents some results of this study. 12 refs., 1 fig., 3 tabs.

  19. Evaluation of waste stabilization ponds effluent efficiency on the growth and nutritive characteristics of cluster beans (cyamopsis tetragonoloba l.) taub

    International Nuclear Information System (INIS)

    South Asian countries including Pakistan are facing chronic shortage of water supply which is anticipated to be aggravated in future. These countries are agribased where the continued water supply is crucial for sustainable economy. One of the possible alternatives to overcome the problems of water scarcity is the used of treated wastewater which is gaining much importance even in the western world. The treated wastewater can be used as a liquid fertilizer which could provide dual benefits both in terms of saving of fresh water as well as inorganic fertilizers. The potential of treated effluent from waste stabilization ponds (WSP) and equivalent basal fertilizer on growth and nutritive quality of cluster beans (Cyamopsis tetragonoloba L.) Taub. was investigated under field conditions. Treated effluent significantly increased fresh weight of leaves and stems. Dry weight of stem was also significantly higher with the treatment of WSP effluent as compared to the use of basal fertilizer and fresh water. Fresh and dry fruit weights, number of seeds per fruit and fruit length were also significantly increased in WSP effluent treatment as compared to other two treatments. Treatment with WSP effluent also improved the nutritive characteristics such as crude proteins and total carbohydrates. However, total fat and ash content percentage of Cyamopsis tetragonoloba remained unaltered. The application of WSP effluent also increased NPK and organic matter content of the soil after harvesting the crop which would be helpful for succeeding crop. The study demonstrated that treated effluent can be successfully used for unrestricted irrigation in the water deficient areas of Pakistan thereby saving huge quantities of fresh water. (author)

  20. Physico-chemical treatment of coke plant effluents for control of water pollution in India

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, M.K. [Indian School of Mines, Dhanbad (India). Center of Mining Environmental

    2002-01-01

    Coal carbonizing industries in India are important and are growing every year. Large quantities of liquid effluents produced in this industry contain a large amount of suspended solids, high biochemical oxygen demand (BOD), chemical oxygen demand (COD), phenols, ammonia and other toxic substances, which are causing serious surface water pollution in the area. There is a large number of coke plants in the vicinity of Jharia Coal Field (JCF). The working principle of a coke plant and the effluents produced is described. One large coke plant was chosen to evaluate characteristics of the effluent and to suggest a proper treatment method. Present effluent treatment system was found to be inadequate and a large quantity of a very good quality coke breeze is being lost, which is also causing siltation on the riverbed in addition to surface water pollution. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. A scheme has been proposed for the treatment, which can be suitably adopted for the recycling, reuse or safe disposal of the treated effluent. Various unit process and unit operations are discussed. The process may be useful on industrial scale for various sites so as to maintain a clean environment.

  1. Effects of a surfacing effluent plume on a coastal phytoplankton community

    KAUST Repository

    Reifel, Kristen M.

    2013-06-01

    Urban runoff and effluent discharge from heavily populated coastal areas can negatively impact water quality, beneficial uses, and coastal ecosystems. The planned release of treated wastewater (i.e. effluent) from the City of Los Angeles Hyperion Wastewater Treatment Plant, located in Playa del Rey, California, provided an opportunity to study the effects of an effluent discharge plume from its initial release until it could no longer be detected in the coastal ocean. Non-metric multi-dimensional scaling analysis of phytoplankton community structure revealed distinct community groups based on salinity, temperature, and CDOM concentration. Three dinoflagellates (Lingulodinium polyedrum, Cochlodinium sp., Akashiwo sanguinea) were dominant (together >50% abundance) prior to the diversion. Cochlodinium sp. became dominant (65-90% abundance) within newly surfaced wastewater, and A. sanguinea became dominant or co-dominant as the effluent plume aged and mixed with ambient coastal water. Localized blooms of Cochlodinium sp. and A. sanguinea (chlorophyll a up to 100mgm-3 and densities between 100 and 2000cellsmL-1) occurred 4-7 days after the diversion within the effluent plume. Although both Cochlodinium sp. and A. sanguinea have been occasionally reported from California waters, blooms of these species have only recently been observed along the California coast. Our work supports the hypothesis that effluent and urban runoff discharge can stimulate certain dinoflagellate blooms. All three dinoflagellates have similar ecophysiological characteristics; however, small differences in morphology, nutrient preferences, and environmental requirements may explain the shift in dinoflagellate composition. © 2013 Elsevier Ltd.

  2. Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu

    Science.gov (United States)

    Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish

    2016-03-01

    The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.

  3. Effects of a surfacing effluent plume on a coastal phytoplankton community

    Science.gov (United States)

    Reifel, Kristen M.; Corcoran, Alina A.; Cash, Curtis; Shipe, Rebecca; Jones, Burton H.

    2013-06-01

    Urban runoff and effluent discharge from heavily populated coastal areas can negatively impact water quality, beneficial uses, and coastal ecosystems. The planned release of treated wastewater (i.e. effluent) from the City of Los Angeles Hyperion Wastewater Treatment Plant, located in Playa del Rey, California, provided an opportunity to study the effects of an effluent discharge plume from its initial release until it could no longer be detected in the coastal ocean. Non-metric multi-dimensional scaling analysis of phytoplankton community structure revealed distinct community groups based on salinity, temperature, and CDOM concentration. Three dinoflagellates (Lingulodinium polyedrum, Cochlodinium sp., Akashiwo sanguinea) were dominant (together >50% abundance) prior to the diversion. Cochlodinium sp. became dominant (65-90% abundance) within newly surfaced wastewater, and A. sanguinea became dominant or co-dominant as the effluent plume aged and mixed with ambient coastal water. Localized blooms of Cochlodinium sp. and A. sanguinea (chlorophyll a up to 100 mg m-3 and densities between 100 and 2000 cells mL-1) occurred 4-7 days after the diversion within the effluent plume. Although both Cochlodinium sp. and A. sanguinea have been occasionally reported from California waters, blooms of these species have only recently been observed along the California coast. Our work supports the hypothesis that effluent and urban runoff discharge can stimulate certain dinoflagellate blooms. All three dinoflagellates have similar ecophysiological characteristics; however, small differences in morphology, nutrient preferences, and environmental requirements may explain the shift in dinoflagellate composition.

  4. Effluent Zero Release Concept——The Brazilian Experience

    Institute of Scientific and Technical Information of China (English)

    José Carlos Mierzwa; Sandra Mara Garcia Bello; Ivanildo Hespanhol

    2006-01-01

    Water scarcity is pushing the government, industries and researchers to the development of new strategies for water and wastewater management. An approach aimed at the optimization of the water use and minimization of effluent generation was developed at the Centro Experimental ARAMAR (CEA), a nuclear research facility, located in the State of Sao Paulo,Brazil. Bench scale tests followed by a pilot plant treating effluents from some nuclear research facilities have shown the results leading to the conclusion that the effluent zero release concept is feasible. Based on the gathered data, a project of an integrated effluent treatment system focusing on water recovery and environmental effluent release reduction has been developed.

  5. Estimation of Near-Field and Far-Field Dilutions for Site Selection of Effluent Outfall in a Coastal Region - A Case Study

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, V.S.

    study, the location of outfall is to be suggested to Vapi Waste and Effluent Management Company Ltd. (VWEMCL) for the release of treated effluents. At present, VWEMCL is discharging effluents upstream of the Damanganga estuary. As a result, the entire...

  6. ANALYSIS ON EFFLUENT WATER QUALITY AND ELECTRICITY CONSUMPTION AFTER INTRODUCING ADVANCED SEWAGE TREATMENT

    Science.gov (United States)

    Shiojiri, Yasuo; Maekawa, Shunich

    We analyze effluent water quality and electricity consumption after in troducing advanced treatment in sewage treatment plant. We define 'advanced treatment ratio' as volume of treated water through advanced treatment processes divided by total volume of treated water in plant. Advanced treatment ratio represents degree of introducing advanced treatment. We build two types of equation. One represents relation between effluent water quality and advanced treatment ratio, the other between electricity consumption and advanced treatment ratio. Each equation is fitted by least squares on 808 samples: 8 fiscal years operation data of 101 plants working in Kanagawa, Tokyo, Saitama and Chiba areas, and coefficient of advanced treatment ratio is estimated. The result is as follows. (1) After introducing advanced treatment aimed at nitrogen removal, T-N in effluent water decreases by 51.3% and electricity consum ption increases by 52.2%. (2) After introducing advanced treatment aimed at phosphorus removal, T-P in effluent water decreases by 27.8%. Using the above result, we try prioritizing 71 plants in Tokyo Bay watershed about raising advanced treatment ratio, so that, in total, pollutant in effluent water decreases with minimized increase of electricity consumption.

  7. An algorithm for treating flat areas and depressions in digital elevation models using linear interpolation

    Science.gov (United States)

    Digital elevation model (DEM) data are essential to hydrological applications and have been widely used to calculate a variety of useful topographic characteristics, e.g., slope, flow direction, flow accumulation area, stream channel network, topographic index, and others. Excep...

  8. REUSE OF TREATED WASTEWATER IN AGRICULTURE: SOLVING WATER DEFICIT PROBLEMS IN ARID AREAS (REVIEW)

    OpenAIRE

    Faissal AZIZ; Farissi, Mohamed

    2014-01-01

    In the arid and semiarid areas, the availability and the management of irrigation water have become priorities of great importance. The successive years of drought, induced by climate change and population growth, increasingly reduced the amount of water reserved for agriculture. Consequently, many countries have included wastewater reuse as an important dimension of water resources planning. In the more arid areas wastewater is used in agriculture, releasing high resource of water supplies. ...

  9. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  10. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  11. Enhancing the Decolorizing and Degradation Ability of Bacterial Consortium Isolated from Textile Effluent Affected Area and Its Application on Seed Germination

    OpenAIRE

    2015-01-01

    A bacterial consortium BMP1/SDSC/01 consisting of six isolates was isolated from textile effected soil, sludge, and textile effluent from Hudiara drain near Nishat Mills Limited, Ferozepur Road, Lahore, Pakistan. It was selected because of being capable of degrading and detoxifying red, green, black, and yellow textile dyes. The pH and supplements were optimized to enhance the decolorization ability of the selected consortium. The results indicated that decolorizing ability of consortium for ...

  12. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  13. Distribution of zinc in vineyard areas treated with zinc containing phytopharmaceuticals:

    OpenAIRE

    Kerin, Danimir; Weingerl, Vesna

    2000-01-01

    Zinc concentration in vineyard soil is, in general, increased markedly by the long term application of zinc containing fungicides. The most significant source of Zn are nowadays dithiocarbamate based fungicides, e.g. Antracol. The concentration of total zinc and EDTA and ammonium lactate (AL) extractable Zn in soils are evaluated together with the concentration of Zn in different inorganic fertilizers and in fungicides. the results of the study indicate in the observed vineyard areas a long t...

  14. Intention to treat survival following liver transplantation for hepatocellular carcinoma within a donor service area

    OpenAIRE

    Charpentier, Kevin P.; Lee Cheah, Yee; Machan, Jason T.; Miner, Tom; Morrissey, Paul; Monaco, Anthony,

    2008-01-01

    Background. This study aimed to assess the impact of wait times on patient survival following liver transplantation for hepatocellular carcinoma (HCC) in a single donor service area. Patients and methods. Patients listed in the New England Organ Bank (NEOB) from 1996 to 2005 for liver transplantation with a diagnosis of HCC were identified from the United Network for Organ Sharing database. The following data were extracted: date of listing, date removed from the wait list, indication for wai...

  15. STUDY ON THE REUSE OF ZAMYAD FACTORY WASTEWATER TREATMENT PLANT EFFLUENT IN IRRIGATION

    Directory of Open Access Journals (Sweden)

    M. R. Massoudinejad, M. Manshouri, A.R. Yazdanbakhsh

    2006-10-01

    Full Text Available Considering the population increase in the cities and also the increase of per capita water consumption in these societies, the use of treated effluents for the green area irrigation has been taken into consideration. Human ever–increasing needs to green area in municipal societies and on the other hand the limitations in water supplies cause a new review in wastewater reuse. Also making use of treated effluents in irrigation has some limitations including clogging of the soil porosities, increasing of the chemicals and toxic substances to plants and increasing the probability of groundwater pollution. In this research, considering the indicators using recognition of the effluent’s quality, at the first stage compound samples of domestic wastewater treatment effluents of Zamyad Factory were taken. The samples were tested from the viewpoint of quality. Results showed that the indicator of Sodium Adsorption Ratio, Sodium Percentage, amounts of chloride, and electrical conductivity comparing to Food and Agriculture Organization and Department of the Environment of Iran standards were higher than the standard levels. Also parameters such as TDS, TSS, BOD, COD, anions and cations were in standard levels. Results also showed that the increase of some of the undesirable parameters was not related to the operation of wastewater treatment plant. Therefore, in order to make the standard effluent, different methods may be proposed and the most practical and economical one is dilution by using 50% mixing with raw water.

  16. IMPACT OF PAPER MILL EFFLUENTS ON SOIL AND VEGETATION

    OpenAIRE

    Mohan Singh Mandloi; Shatrughan Prasad Singh; Deepak Davar

    2015-01-01

    Environmental pollution poses a great health hazard to human beings, animals and plants. Pollution has also adverse effects on the land, water and its living and nonliving components. Industrial effluents, containing organic and inorganic compounds have strong influence on the development of growth of crop plants. The treated effluent was collected from OPM paper mill from its outlet. Thephysicochemical characteristics of paper mill industry effluent were measured and some were found...

  17. Recovery of Uranium (Vi) From Treated Technological Sample, El Sela Area, South Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    The extraction of uranium from aqueous nitrate solution was studied using the organic extractant tributyl phosphate or 1,4 Dioxane dissolved in different diluents. The parameters affecting the extraction and stripping of U (Vi) include types of diluents, extractants concentrations, aqueous to organic phase ratio (A/O), shaking time and stripping agents. The factors studied were followed by application of the suitable extraction system to extract U content from two fractions of the solid waste (slime and coarse size) from El Sela area, Egypt. The data obtained showed that, best results were obtained using each of the following systems; 20 % TBP dissolved in toluene, A/O 1:1, 4 min. of shaking time and 5 M HNO3 acid stripping solution, or; 5 % 1,4 Dioxane dissolved in CCl4, A/O 1:1, 5 min. of shaking time and 0.5 M HNO3 acid for the stripping process. It was recommended to wash the slime sample by acidified water to decrease the range of ph to 1 to overcome the problem of hydrolysis and precipitation of uranium. The data obtained from statistical calculations showed that, Error (%) in studied samples is less than 2 %. While, the accuracy (Δ) is less than ±3 declaring high accuracy and precision for the obtained results.

  18. Primary effluent filtration for coastal discharges

    Energy Technology Data Exchange (ETDEWEB)

    Cooper-Smith, G.D. [Yorkshire Water Services, Huddersfield (United Kingdom); Rundle, H. [The Capital Controls Group, Nottingham (United Kingdom)

    1998-12-31

    The use of a Tetra Deep Bed filter demonstration unit to treat primary effluent (Primary Effluent Filtration, PEF) was investigated. PEF proved capable of achieving the UWWTD primary standard, even when the primary stage performs poorly, but is not a cost-effective alternative to chemically assisted settlement. Results demonstrated that using a 1.5 to 2.2 mm grade medium, a filtration rate of 5 m/h, three backwashes a day and dosing 40 mg/l of PAXXL60 (a polyaluminium silicte) an average effluent quality of 20 mg/l BOD and 15 mgl/l total solid could be achieved. UV disinfection produced an effluent which complied with the Bathing Water Directive imperative requirement. A high enterovirus kill was also achieved. However, considerable additional work would be required before PEF could be considered suitable for full-scale applications. (orig.)

  19. Effect of mercury and arsenic from industrial effluents on the drinking water and comparison of the water quality of polluted and non-polluted areas: a case study of Peshawar and Lower Dir.

    Science.gov (United States)

    Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah

    2013-02-01

    The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed. PMID:22576841

  20. Effluent Treatment Facility tritium emissions monitoring

    International Nuclear Information System (INIS)

    An Environmental Protection Agency (EPA) approved sampling and analysis protocol was developed and executed to verify atmospheric emissions compliance for the new Savannah River Site (SRS) F/H area Effluent Treatment Facility. Sampling equipment was fabricated, installed, and tested at stack monitoring points for filtrable particulate radionuclides, radioactive iodine, and tritium. The only detectable anthropogenic radionuclides released from Effluent Treatment Facility stacks during monitoring were iodine-129 and tritium oxide. This paper only examines the collection and analysis of tritium oxide

  1. Waste monitoring system for effluents

    International Nuclear Information System (INIS)

    The waste monitoring system in use at Los Alamos National Laboratory's Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system

  2. Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy.

    Science.gov (United States)

    Al Aukidy, M; Verlicchi, P; Jelic, A; Petrovic, M; Barcelò, D

    2012-11-01

    This study describes an investigation on the occurrence of 27 pharmaceutical compounds, belonging to different classes, in the effluent from two wastewater treatment plants (WWTPs) and their receiving water bodies in the sensitive area of the Po Valley (northern Italy). These canals were monitored upstream and downstream of the effluent discharge points in order to evaluate the effluent impact on the quality of surface waters, commonly used for irrigation. An environmental risk assessment was also conducted by calculating the risk quotient, i.e. the ratio between measured concentration and predicted no effect concentration. Collected data show that, although average values of the selected compounds were in general higher in the effluent than in the surface waters, some compounds not detected in the WWTP effluent were detected in the receiving water (upstream as well as downstream), indicating that sources other than treated effluents are present as contaminations during extraction and analysis have to be excluded. The most critical compounds for the environment were found to be the antibiotics sulfamethoxazole, clarithromycin and azithromycin. The study shows that the potential toxicological effects of persistent micropollutants can be mitigated to some extent by a high dilution capacity, i.e. a high average flow rate in the receiving water body with respect to the effluent. PMID:22967493

  3. Detection of Tannery Effluents Induced DNA Damage in Mung Bean by Use of Random Amplified Polymorphic DNA Markers

    OpenAIRE

    Abhay Raj; Sharad Kumar; Izharul Haq; Mahadeo Kumar

    2014-01-01

    Common effluent treatment plant (CETP) is employed for treatment of tannery effluent. However, the performance of CETP for reducing the genotoxic substances from the raw effluent is not known. In this study, phytotoxic and genotoxic effects of tannery effluents were investigated in mung bean (Vigna radiata (L.) Wilczek). For this purpose, untreated and treated tannery effluents were collected from CETP Unnao (UP), India. Seeds of mung bean were grown in soil irrigated with various concentrati...

  4. Characteristics of small areas with high rates of hospital-treated self-harm: deprived, fragmented and urban or just close to hospital? A national registry study.

    LENUS (Irish Health Repository)

    O'Farrell, I B

    2014-10-15

    Previous research has shown an inconsistent relationship between the spatial distribution of hospital treated self-harm and area-level factors such as deprivation and social fragmentation. However, many of these studies have been confined to urban centres, with few focusing on rural settings and even fewer studies carried out at a national level. Furthermore, no previous research has investigated if travel time to hospital services can explain the area-level variation in the incidence of hospital treated self-harm.

  5. Biogenic treatment of uranium mill effluents

    International Nuclear Information System (INIS)

    It is necessary to treat mine/mill effluents before discharging to the environment as per the regulatory requirements. Effluents from a uranium mill normally contain 226Ra as a pollutant, which needs treatment. Normally wastewater treatment consists of lime addition to increase the pH to 10 which precipitates most contaminants except 226Ra. The current chemical treatment of 226Ra is by co-precipitation as barium-radium-sulphate by addition of barium chloride. There is a considerable concern about the long-term stability of barium-radium sludge due to re-dissolution of radium when contacted with fresh water. Adsorption can be another metal specific physio-chemical process. The most recent development in environment biotechnology is the use of microbe based bio-sorbents for the recovery of toxic metals from industrial effluent. A fungal species of Pencillium chrysogenum has been found to be a 226Ra specific biosorbent. It has been observed that up to 96% of 226Ra values can be adsorbed by chemically treated biomass of Pencillium chrysogenum from effluent containing 226Ra in the range of 400-2000 Bq m-3. Biomass in the form of granules can be used in columns, like resins, to remove 226Ra values. It is proposed that this process can replace or substitute the present barium chloride treatment of mill effluents. (author)

  6. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    International Nuclear Information System (INIS)

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System's pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System

  7. Sulphate removal from industrial effluents through barium sulphate precipitation / Swanepoel H.

    OpenAIRE

    Swanepoel, Hulde.

    2011-01-01

    The pollution of South Africa’s water resources puts a strain on an already stressed natural resource. One of the main pollution sources is industrial effluents such as acid mine drainage (AMD) and other mining effluents. These effluents usually contain high levels of acidity, heavy metals and sulphate. A popular method to treat these effluents before they are released into the environment is lime neutralisation. Although this method is very effective to raise the pH of the eff...

  8. Malaria in pregnant women in an area with sustained high coverage of insecticide-treated bed nets

    Directory of Open Access Journals (Sweden)

    Mshinda Hassan

    2008-07-01

    Full Text Available Abstract Background Since 2000, the World Health Organization has recommended a package of interventions to prevent malaria during pregnancy and its sequelae that includes the promotion of insecticide-treated bed nets (ITNs, intermittent preventive treatment in pregnancy (IPTp, and effective case management of malarial illness. It is recommended that pregnant women in malaria-endemic areas receive at least two doses of sulphadoxine-pyrimethamine in the second and third trimesters of pregnancy. This study assessed the prevalence of placental malaria at delivery in women during 1st or 2nd pregnancy, who did not receive intermittent preventive treatment for malaria (IPTp in a malaria-endemic area with high bed net coverage. Methods A hospital-based cross-sectional study was done in Ifakara, Tanzania, where bed net coverage is high. Primi- and secundigravid women, who presented to the labour ward and who reported not using IPTp were included in the study. Self-report data were collected by questionnaire; whereas neonatal birth weight and placenta parasitaemia were measured directly at the time of delivery. Results Overall, 413 pregnant women were enrolled of which 91% reported to have slept under a bed net at home the previous night, 43% reported history of fever and 62% were primigravid. Malaria parasites were detected in 8% of the placenta samples; the geometric mean (95%CI placental parasite density was 3,457 (1,060–11,271 parasites/μl in primigravid women and 2,178 (881–5,383 parasites/μl in secundigravid women. Fifteen percent of newborns weighed Conclusion The observed incidence of LBW and prevalence of placental parasitaemia at delivery suggests that malaria remains a problem in pregnancy in this area with high bed net coverage when eligible women do not receive IPTp. Delivery of IPTp should be emphasized at all levels of implementation to achieve maximum community coverage.

  9. In situ electrocatalytic oxidation of acid violet 12 dye effluent.

    Science.gov (United States)

    Mohan, N; Balasubramanian, N

    2006-08-21

    Electrochemical treatment of organic pollutants is a promising treatment technique for substances which are recalcitrant to biodegradation. Experiments were carried out to treat acid violet 12 dye house effluent using electrochemical technique for removal color and COD reduction covering wide range in operating conditions. Ruthenium/lead/tin oxide coated titanium and stainless steel were used as anode and cathode, respectively. The influence of effluent initial concentration, pH, supporting electrolyte and the electrode material on rate of degradation has been critically examined. The results indicate that the electrochemical method can be used to treat dye house effluents. PMID:16730894

  10. Cultivo hidropônico de tomate cereja utilizando-se efluente tratado de uma indústria de sorvete Hydroponic production of cherry tomatoes using treated effluent of ice cream industry

    Directory of Open Access Journals (Sweden)

    Samuel M. M. Malheiros

    2012-10-01

    Full Text Available O objetivo deste trabalho foi avaliar o uso de doses de efluente oriundo de indústria de sorvete, na cultura do tomate cereja em relação ao consumo hídrico e no desenvolvimento vegetativo em sistema hidropônico. O delineamento experimental foi o inteiramente casualizado, com seis tratamentos e quatro repetições. Os tratamentos foram compostos pelo uso de doses de efluente (0, 25, 50, 75 e 100% com complementação de nutrientes e com o uso de 100% de efluente sem complementação nutriente. O aumento das doses de efluente na solução nutritiva proporcionou redução linear no consumo hídrico. O efluente com 25% proporcionou a melhor produtividade. A adição de até 50% de efluente de sorvete à solução nutritiva permitiu o cultivo de tomate cereja sem redução na produtividade, com melhor eficiência do uso da água na produção de matéria seca da parte aérea, produção de frutos e máxima substituição de minerais solúveis na solução nutritiva.The objective of this study was to evaluate the effect of ice cream raw effluent doses on consumption and vegetative development of cherry tomato under hydroponic system. The experiment was conducted in completely randomized design with six treatments and four replications. Treatments consisted of 5 different levels of effluent (0, 25, 50, 75 and 100% complemented with the amount of nutrient recommended for growing tomatoes and 100% of effluent without nutrient complementation. Increasing doses of effluent provided linear reduction in water consumption.Addition of effluent in proportion of 25% provided best production results. Addition up to 50% ice cream effluent to nutrient solution allowed growth of cherry tomato without yield reduction providing better efficiency of water use in terms of dry weight of shoots and fruit production as well as maximum substitution of soluble mineral fertilizers in nutrient solution.

  11. 77 FR 22061 - FTA Section 5307 Urbanized Area Formula Program: Allocation of Funding Caps for Treating Fuel and...

    Science.gov (United States)

    2012-04-12

    ... for Treating Fuel and Electric Utility Costs for Vehicle Propulsion as a Capital Maintenance Expense... treat fuel costs for vehicle operations, including utility costs for the propulsion of electrical... Appropriations Act, 2012, permits FTA to treat fuel costs for vehicle operations, including utility costs for...

  12. INEEL Liquid Effluent Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  13. Nuclear reactor effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L.; Essig, T.H. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  14. Treatment efficiency of effluent prawn culture by wetland with floating aquatic macrophytes arranged in series.

    Science.gov (United States)

    Henares, M N P; Camargo, A F M

    2014-11-01

    The efficiency of a series of wetland colonized with Eichhornia crassipes and Salvinia molesta to treat the effluent of a giant river prawn (Macrobrachium rosenbergii) broodstock pond was evaluated in this study. The experimental design was completely randomized and was performed in 9 rectangular tanks (1.6 m3) with three treatments (constructed wetlands) and three replicates. The treatment types included: a wetland colonized with E. crassipes and S. molesta (EcSm) arranged sequentially, a wetland with E. crassipes only (Ec) and a wetland with S. molesta only (Sm). The means of suspended particulate material (SPM), total inorganic nitrogen (TIN), total Kjeldahl nitrogen (TKN), P-orthophosphate (PO4-P) and total phosphorus (TP) of the treated effluents were compared using ANOVA followed by Tukey's test (Pwetlands exhibited lower SPM concentrations. The Ec wetland reduced TIN, TKN, PO4-P and TP by 46.0, 43.7, 44.4 and 43.6%, respectively. In the EcSm wetland, the reduction of TIN (23.0%), TKN (33.7%) and PO4-P (26.7%) was similar to the Sm wetland (19.8% TIN, 30.9% TKN and 23.8% PO4-P). The Ec wetland was more efficient in treating pond effluent due likely to the higher root surface of E. crassipes, which forms an extensive area favorable to retention and adsorption of debris and absorption of nutrients. PMID:25627602

  15. J.O. no. 7, text no. 18. Decree, orders, general text. Decree no. 2004-25 of the 8 january 2004 allowing the ''Commissariat a l'Energie Atomique'' to modify the nuclear installation no. 35 (INB no. 35) named radioactive liquid effluents management area of the nuclear research center of Saclay (Essonne)

    International Nuclear Information System (INIS)

    The radioactive liquid effluents management area, no. 35, has been declared by the Cea the 27 may 1964. The Cea asked for a modification authorization of this installation, the 6 june 2001. The new installation Stella will be operational on 2005-2006. This decree defines the operating conditions of the new installation. (A.L.B.)

  16. REUSE OF DAIRY WASTEWATER TREATED BY MEMBRANE BIOREACTOR AND NANOFILTRATION: TECHNICAL AND ECONOMIC FEASIBILITY

    Directory of Open Access Journals (Sweden)

    L. H. Andrade

    2015-09-01

    Full Text Available AbstractThis study evaluated the technical and economic feasibility of membrane bioreactors (MBR followed by nanofiltration (NF for dairy wastewater treatment in order to reuse the treated effluent. It was observed that the MBR efficiently removed the organic matter and color of the feed effluent; however, due to the high concentration of dissolved solids in the permeate, it was necessary to use nanofiltration as a polishing step. The final treated effluent could be reused in the industry for cooling, steam generation and cleaning of external areas. A preliminary economic analysis showed the feasibility of the proposed system. The internal rate of return was greater than or equal to 32% when membrane lifespan was at least 2 years and the depreciation time was 15 years. The total cost of the proposed treatment system ranged from R$ 9.99/m3 to R$ 6.82/m3, depending on membrane lifespan.

  17. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  18. GEOTHERMAL EFFLUENT SAMPLING WORKSHOP

    Science.gov (United States)

    This report outlines the major recommendations resulting from a workshop to identify gaps in existing geothermal effluent sampling methodologies, define needed research to fill those gaps, and recommend strategies to lead to a standardized sampling methodology.

  19. High-yield pulping effluent treatment technologies

    International Nuclear Information System (INIS)

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  20. The Use of Aquatic Macrophyte Ecotoxicological Assays in Monitoring Coastal Effluent Discharges in Southern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Burridge, T.R.; Karistianos, M.; Bidwell, J

    1999-01-01

    Germination inhibition of zoospores of the aquatic, brown algal macrophyte Ecklonia radiata was employed to assess the toxicity of sewage effluents under short to long term exposure and under modified salinity conditions. The rate of germination inhibition was determined for exposure times between 2 and 48 h in salinity modified and unmodified regimes and under reduced salinity conditions alone. The results indicated that rate of germination inhibition increased with duration of exposure to sewage effluents and to salinity reduction alone, and that response to the effluents may be enhanced under conditions of reduced salinity. Whilst the effect of primary treated effluent was primarily that of toxicity, secondary treated effluent effects appeared to be primarily that of reduced salinity although at a greater rate than would be expected for salinity reduction alone. The assay is suggested to provide a mechanism for monitoring sewage effluent quality and to monitor potential impacts of sewage effluent discharge on kelp communities in southern Australia.

  1. The Use of Aquatic Macrophyte Ecotoxicological Assays in Monitoring Coastal Effluent Discharges in Southern Australia

    International Nuclear Information System (INIS)

    Germination inhibition of zoospores of the aquatic, brown algal macrophyte Ecklonia radiata was employed to assess the toxicity of sewage effluents under short to long term exposure and under modified salinity conditions. The rate of germination inhibition was determined for exposure times between 2 and 48 h in salinity modified and unmodified regimes and under reduced salinity conditions alone. The results indicated that rate of germination inhibition increased with duration of exposure to sewage effluents and to salinity reduction alone, and that response to the effluents may be enhanced under conditions of reduced salinity. Whilst the effect of primary treated effluent was primarily that of toxicity, secondary treated effluent effects appeared to be primarily that of reduced salinity although at a greater rate than would be expected for salinity reduction alone. The assay is suggested to provide a mechanism for monitoring sewage effluent quality and to monitor potential impacts of sewage effluent discharge on kelp communities in southern Australia

  2. Evaluation of an integrated approach involving chemical and biological processes for the detoxification of gold tailings effluent in Ghana

    International Nuclear Information System (INIS)

    Chemical and bio-remediation measures for the detoxification of pollutants such as cyanide and heavy metals in mine tailings effluent have been developed over the years. The study sought to evaluate the decrease in the concentrations of Cu, Zn, Fe, Cd, As and Pb through the integration of the processes involving photo-oxidation, activated carbon, hydrogen peroxide and bacterial degradation to decontaminate wastewater from the gold ore treatment plant until release into the environment in Ghana. The levels of trace metals Cu (0.345 mg l-1), Zn (0.07 mg l-1) and Fe (0.146 mg l-1 ) in treated effluent released into natural water bodies after bacterial degradation was generally within international and local standards for effluent discharges. Except for As, the levels of Cd and Pb which are hazardous heavy metals that may pose adverse health and environmental effects were within acceptable limits. The toxicity of these metals were in the increasing order Pb < Cd < As. The anthropogenic source of As in the chemically processed arseno-pyritic rock ores of the study area and the marginal 14–49% efficiency of As of the different detoxification processes could have contributed to the high levels of As in the effluent. If optimal conditions are attained for the decontamination processes used, the multi-remediation approach could be an effective solution for the decontamination of mine tailings effluent. (au)

  3. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Shoucheng, Wen [Yangtze Univ., HuBei Jingzhou (China)

    2014-02-15

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.

  4. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    International Nuclear Information System (INIS)

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%

  5. Uso de lagoa aerada facultativa como polimento do reator anaeróbio de manta de lodo UASB no tratamento de dejetos de suínos em escala laboratorial The efficiency of an aerated pond used for treating the effluent of an UASB reactor (upflow anaerobic sludge blanket reactor treating swine manure in a lab-scale system

    Directory of Open Access Journals (Sweden)

    Fernanda Ribeiro do Carmo

    2004-06-01

    Full Text Available As atividades agroindustriais têm se voltado não somente para o aumento da produtividade, mas também para a conservação do meio ambiente. A suinocultura é, sem dúvida, uma das atividades agroindustriais mais poluidoras, principalmente no Estado de Minas Gerais. Sendo assim, objetivou-se desenvolver e operar uma Lagoa Aerada Facultativa (LAF em escala de bancada (laboratorial, e como polimento de um Reator Anaeróbio de Manta de Lodo (UASB, visando a tratar os dejetos de suínos com máxima eficiência e custo mínimo. O experimento foi conduzido no Laboratório de Análise de Água do Departamento de Engenharia (LAADEG da Universidade Federal de Lavras (UFLA, sendo composto por um tanque de acidificação e equalização (TAE, um reator anaeróbio de manta de lodo (UASB e uma lagoa aerada facultativa (LAF para polimento. As análises fisico-químicas realizadas foram: pH, DBO5, DQO T, Sólidos Totais (fixos e voláteis, Temperatura, Nitrogênio, Fósforo, Alcalinidade e Acidez Total. A unidade LAF mostrou uma eficiência média de 83 e 42% de DQO T e Nitrogênio Total, respectivamente. O sistema proporcionou remoção média de 93, 84 e 85% de DQO T, DBO5 e Sólidos Totais Voláteis, respectivamente.Nowadays the agro-industry activities have not only focused its direction to the production increasing, but also, to the environmental preservation. The swine production is amo doubt, an activity, which can be considered, one of the most pollutants, mainly in the Minas Gerais State (BRAZIL. Therefore, this research aimed at developing and operating an Upflow Anaerobic Sludge Blanket Reactor (UASB, followed by an Aerobic Facultative Pound (AFP (Lab-Scale, with the objective of treating the liquid effluent originated from swine with the maximum efficiency and lower costs. The experiment was carried out in the Laboratory of Water Analysis of the Engineering Department of the Federal University of Lavras (UFLA. The system was assembled with an

  6. Functional design criteria for Project W-252, Phase II Liquid Effluent Treatment and Disposal: Revision 1

    International Nuclear Information System (INIS)

    This document provides the functional design criteria required for the Phase 2 Liquid Effluent Treatment and Disposal Project, Project W-252. Project W-252 shall provide new facilities and existing facility modifications required to implement Best Available Technology/All Known, Available, and Reasonable Methods of Prevention, Control, and Treatment (BAT/AKART) for the 200 East Phase II Liquid Effluent Streams. The project will also provide a 200 East Area Phase II Effluent Collection System (PTECS) for connection to a disposal system for relevant effluent streams to which BAT/AKART has been applied. Liquid wastestreams generated in the 200 East Area are currently discharged to the soil column. Included in these wastestreams are cooling water, steam condensate, raw water, and sanitary wastewaters. It is the policy of the DOE that the use of soil columns to treat and retain radionuclides and nonradioactive contaminants be discontinued at the earliest practical time in favor of wastewater treatment and waste minimization. In 1989, the DOE entered into an interagency agreement with Ecology and EPA. This agreement is referred to as the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). Project W-252 is one of the projects required to achieve the milestones set forth in the Tri-Party Agreement. One of the milestones requires BAT/AKART implementation for Phase II streams by October 1997. This Functional Design Criteria (FDC) document provides the technical baseline required to initiate Project W-252 to meet the Tri-Party Agreement milestone for the application of BAT/AKART to the Phase II effluents

  7. A Comparison of Electromagnetic Induction Mapping to Measurements of Maximum Effluent Flow Depth for Assessing Flow Paths in Vegetative Treatment Areas

    Science.gov (United States)

    Vegetative treatment systems (VTSs) are one type of control structure that has shown potential to control runoff from open feedlots. To achieve maximum performance, sheet-flow over the width of the vegetative treatment area (VTA) is required. Tools, such as maps of flow paths through the VTA, are ne...

  8. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Physically Enhanced Integrated Constructed Wetland for Treating Effluent from Sewage Treatment Plant%物理强化复合人工湿地处理污水厂尾水实例

    Institute of Scientific and Technical Information of China (English)

    王正芳; 张继彪; 郑正; 周培国; 郑宾国

    2013-01-01

    The principle of physically enhanced integrated constructed wetland process and its application to advanced treatment of effluent from WWTP were introduced. The results showed that this process had advantages of low investment, excellent treatment effect, simple operation and low maintenance cost. The high removal efficiencies of NH3 - N, TN and TP were achieved. After the operation for one year, the effluent indexes met the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant ( GB 18918 -2002).%介绍了物理强化复合人工湿地的工艺原理及在深度处理污水厂尾水工程中的应用.运行结果表明:该工艺投资少,处理效果好,操作简单,维护成本低.系统对氨氮、总氮、总磷有较好的处理效果,经过一年多的运行,各项出水指标均稳定达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)的一级A标准.

  10. The effluent problem in a plutonium production centre

    International Nuclear Information System (INIS)

    The first part of the report is devoted to generalities: the geographical situation of the Marcoule Centre, the sources of radio-active effluent, methods of treating this effluent. In the second part the authors gives a detailed description of the various installations in the Radio-active Effluent Treatment Station at the Marcoule Centre, and outline the conditions governing the rejection of treated effluent into the Rhone. A few lines are given to comparisons between the results obtained from the use of these installations up till may 1959 and the expected results published by the same authors at the Brussels Conference (1956). In conclusion the authors lay down some of the essential principles, applicable to the study of new installations. (author)

  11. Curing conditions Influence on Some Engineering Properties of Lime-treated expansive Clayey Soil from Mosul Area

    Directory of Open Access Journals (Sweden)

    Suhel E. AbdulKhader

    2013-05-01

    Full Text Available The aim of this work is to study the effect of varying curing conditions, namely temperature ( 10o to 60odegrees Celsius and curing period (2 to 90 days on the unconfined compressive strength (UCS and hydraulic conductivity of lime treated clayey soil selected from Mosul city. The soil was treated with (2,4 and 6% hydrated lime. Test results showed that the UCS was increased with the increase of curing temperature especially at low curing period. On the other hand, hydraulic conductivity in treated soil has increased with temperature compared with that of untreated soil but not with a constant trend. Finally, leaching of treated soil has led to a decline in hydraulic conductivity with time, while the rate of decreasing was found to be more with samples exposed to higher temperature.      

  12. CURING CONDITIONS INFLUENCE ON SOME ENGINEERING PROPERTIES OF LIME-TREATED EXPANSIVE CLAYEY SOIL FROM MOSUL AREA

    Directory of Open Access Journals (Sweden)

    Suhael I. Abdulkader

    2013-05-01

    Full Text Available This aim of the present work is to study the effect of varying curing conditions namely temperature that was studied within rang from 10o to 60odegrees Celsius. Curing period between two to ninety days was also studied for the unconfined compressive strength (UCS & hydraulic conductivity of lime treated clayey soil selected for Mosul city. The soil was treated with (2,4 and 6% hydrated lime. Test Results showed that the UCS was increased with curing temperature increase especially at lower curing period. On the other hand, hydraulic conductivity of treated soil has increased with temperature compared with that of untreated soil but not with  constant trend. Finally, leaching of treated soil has led to a decline in hydraulic conductivity with time, while the rate of decreasing was found to be more with samples exposed to higher temperature effect.        

  13. Decreased motivation in the use of insecticide-treated nets in a malaria endemic area in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Doannio Julien

    2009-07-01

    Full Text Available Abstract Background The use of insecticide-treated nets (ITN is an important tool in the Roll Back Malaria (RBM strategy. For ITNs to be effective they need to be used correctly. Previous studies have shown that many factors, such as wealth, access to health care, education, ethnicity and gender, determine the ownership and use of ITNs. Some studies showed that free distribution and public awareness campaigns increased the rate of use. However, there have been no evaluations of the short- and long-term impact of such motivation campaigns. A study carried out in a malaria endemic area in south-western Burkina Faso indicated that this increased use declined after several months. The reasons were a combination of the community representation of malaria, the perception of the effectiveness and usefulness of ITNs and also the manner in which households are organized by day and by night. Methods PermaNet 2.0® and Olyset® were distributed in 455 compounds at the beginning of the rainy season. The community was educated on the effectiveness of nets in reducing malaria and on how to use them. To assess motivation, qualitative tools were used: one hundred people were interviewed, two hundred houses were observed directly and two houses were monitored monthly throughout one year. Results The motivation for the use of bednets decreased after less than a year. Inhabitants' conception of malaria and the inconvenience of using bednets in small houses were the major reasons. Acceptance that ITNs were useful in reducing malaria was moderated by the fact that mosquitoes were considered to be only one of several factors which caused malaria. The appropriate and routine use of ITNs was adversely affected by the functional organization of the houses, which changed as between day and night. Bednets were not used when the perceived benefits of reduction in mosquito nuisance and of malaria were considered not to be worth the inconvenience of daily use. Conclusion In

  14. Effluent treatment in the textile industry: Excluding dyes. July 1983-September 1989 (Citations from World Textile Abstracts). Report for July 1983-September 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This bibliography contains citations concerning the treatment and reuse of textile industry effluents. Effluents that contain dyes are discussed in a separate bibliography. Recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents are discussed. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. (This updated bibliography contains 322 citations, 22 of which are new entries to the previous edition.)

  15. The use of home-based therapy with ready-to-use therapeutic food to treat malnutrition in a rural area during a food crisis

    Science.gov (United States)

    When the international community declared a famine in Malawi in January 2006, emergency food aid reached only populations with pre-existing health care services. To treat the widespread childhood malnutrition in Machinga district, a rural area lacking health care facilities, in February 2006 five ou...

  16. Two stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa

    OpenAIRE

    Yadavalli, Rajasri; Heggers, Goutham Rao Venkata Naga

    2013-01-01

    Background Dairy effluents contains high organic load and unscrupulous discharge of these effluents into aquatic bodies is a matter of serious concern besides deteriorating their water quality. Whilst physico-chemical treatment is the common mode of treatment, immobilized microalgae can be potentially employed to treat high organic content which offer numerous benefits along with waste water treatment. Methods A novel low cost two stage treatment was employed for the complete treatment of dai...

  17. Performance of the freshwater shrimp Atyaephyra desmarestii as indicator of stress imposed by textile effluents

    Directory of Open Access Journals (Sweden)

    M. L. Fidalgo

    2007-04-01

    Full Text Available Textile plants consume large volumes of water and produce a great amount of wastewaters, which can be important sources of toxic discharges in receiving environments. The objective of this study was to evaluate the acute toxicity of textile effluents on the freshwater shrimp A. desmarestii. A whole effluent toxicity test procedure was used to determine the aggregate toxicity of three samples taken before and after wastewater treatment in a textile mill. The following LC50 − 48 h values (%, v/v were calculated: Untreated effluent −29% effluent (sample 1, 22% effluent (sample 2, and 47% (sample 3; Treated effluent −73% effluent (sample 1, 74% effluent (sample 2, and > 100% (sample 3. Based upon acute toxicity units (TUa = 100/LC50, untreated effluent varied from toxic in samples 1 and 3 (2.00 ≤ TUa ≤ 4.00 to very toxic in sample 2 (TUa > 4.0, whereas treated effluent varied from no toxic in sample 3 to moderately toxic in samples 1 and 2 (1.33 ≤ TUa ≤ 1.99. Despite some limitations and constraints related to innate variability of industrial effluents, our results suggested that A. desmarestii can be a promising and potential test organism for assessing toxicity of complex chemical mixtures.

  18. Modification of UHMWPE membrane with a PE/clay/PE-G-MA nano composite film to treat oily effluents; Modificacao de membrana de PEUAPM com filme nanocomposito de PEAD/argila/PE-G-MA para o tratamento de efluentes oleosos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Suelem S.L.; Silva, Caio M.B.; Leal, Tania L.; Carvalho, Laura H.; Costa, Anna R.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)], e-mail: tanlucleal@yahoo.com.br

    2011-07-01

    Interest in techniques of surface modification is evinced by the large number of studies in recent decades. In this work the internal surfaces of polymeric membranes of ultra high molecular weight polyethylene (UHMWPE) were modified by impregnation of HDPE/organoclay/PE-g-MA nanocomposite film. The addition of PE-g-MA aims to increase polymer/clay interaction and to control and/or modify surface characteristics of UHMWPE membranes, such as permeability and pore size, so as to make the membranes more efficient and/or appropriate for effluent treatment, more specifically in the treatment of oil contaminated water. The films were analyzed by infrared spectroscopy (FTIR), the modified membranes were characterized by scanning electron microscopy (SEM) and their performance (permeate flux and selectivity) were measured using distilled water and an oil in water dispersion. (author)

  19. A Conceptual Model For Effluent-Dependent Riverine Environments

    Science.gov (United States)

    Murphy, M. T.; Meyerhoff, R. D.; Osterkamp, W. R.; Smith, E. L.; Hawkins, R. H.

    2001-12-01

    The Arid West Water Quality Research Project (WQRP) is a multi-year, EPA-funded scientific endeavor directed by the Pima County, Wastewater Management Department in southern Arizona and focussed upon several interconnected ecological questions. These questions are crucial to water quality management in the arid and semi arid western US. A key component has been the ecological, hydrological and geomorphological investigation of habitat created by the discharge of treated effluent into ephemeral streams. Such environments are fundamentally different from the dry streams or rivers they displace; however, they are clearly not the perennial streams they superficially resemble. Under Arizona State regulations, such streams can bear the use designation of "Effluent Dependent Waters," or EDWs. Before this investigation, a hydrological/ecological conceptual model for these unique ecosystems had not been published. We have constructed one for general review that is designed to direct future work in the WQRP. The project investigated ten representative, yet contrasting EDW sites distributed throughout arid areas of the western US, to gather both historical and reconnaissance level field data, including in-stream and riparian, habitat and morphometric fluvial data. In most cases, the cross sectional area of the prior channel is oversized relative to the discharge of the introduced effluent. Where bed control is absent, the channels are incised downstream of the discharge point, further suggesting a disequilibrium between the channel and the regulated effluent flow. Several of the studied stream systems primarily convey storm water and are aggradational, exhibiting braided or anastomizing channels, high energy bedforms, and spatially dynamic interfluves. Active channels are formed in response to individual storm events and can be highly dynamic in both location and cross-sectional morphology. This poses a geomorphological challenge in the selection of a discharge point. We

  20. The potential of a salt-tolerant plant (Distichlis spicata cv. NyPa Forage) to treat effluent from inland saline aquaculture and provide livestock feed on salt-affected farmland.

    Science.gov (United States)

    Lymbery, Alan J; Kay, Gavin D; Doupé, Robert G; Partridge, Gavin J; Norman, Hayley C

    2013-02-15

    Dryland salinity is a major problem affecting food production from agricultural land in Australia and throughout the world. Although there is much interest in using saline groundwater to grow marine fish on salt-affected farmland, the disposal of nutrient enriched, saline aquaculture effluent is a major environmental problem. We investigated the potential of the salt-tolerant NyPa Forage plant (Distichlis spicata L. Greene var. yensen-4a) to trap nutrients from saline aquaculture effluent and subsequently to provide a fodder crop for livestock. Sub-surface flow wetlands containing NyPa Forage were constructed and their efficacy in removing total nitrogen, ammonia, nitrite/nitrate, total phosphorus and orthophosphate was monitored under different levels of nutrients and salinity. The wetlands removed 60-90% of total nitrogen loads and at least 85% of ammonia, nitrite/nitrate, total phosphorus and orthophosphate loads, with greater efficiency at high nutrient and low salinity levels. The above-ground yield, sodium, crude protein (CP) and in vitro dry matter digestibility (DMD) of NyPa Forage plants were measured after fertilisation with different nutrient levels and cropping at different frequencies. Yield of plants increased with increased nutrient, while nutritive value was greater when nutrients were applied but did not differ among nutrient levels. Yield was not affected by cropping frequency, but nutritive value was greatest when plants were cropped at intervals of 21 or 42 days. At optimum nutrient addition and cropping levels, the plants had a mean CP content of 16.7% and an in vitro DMD of 67.6%, equivalent to an energy value of 9.5 MJ kg(-1). Assuming an equivalent fibre content and voluntary food intake as grass hay, and no accumulation of other toxic minerals, these nutritive values would be sufficient for maintenance or moderate liveweight gains in dry adult sheep or cattle. PMID:23333515

  1. Metal Contamination In Plants Due To Tannery Effluent

    OpenAIRE

    Md.Farhad Ali; Umme Habiba Bodrun Naher; Md Mahamudul Hasan; Md. Aminul Islam

    2015-01-01

    Abstract This paper analyzes the determination of heavy metals named Chromium Lead and Cadmium deposited in soil as well as in the plants and vegetables due to the tanning industries of the area of Hazaribagh Dhaka. The tanneries discharge untreated tannery effluents which get mixed with the soil water of rivers and canals in this area. The determination of metals was performed for the soil that was collected from the land adjacent to the canals which bear untreated tannery effluents. The s...

  2. Effects of sewage effluents on water quality in tropical streams.

    Science.gov (United States)

    Figueroa-Nieves, Débora; McDowell, William H; Potter, Jody D; Martínez, Gustavo; Ortiz-Zayas, Jorge R

    2014-11-01

    Increased urbanization in many tropical regions has led to an increase in centralized treatment of sewage effluents. Research regarding the effects of these wastewater treatment plants (WWTPs) on the ecology of tropical streams is sparse, so we examined the effects of WWTPs on stream water quality on the Caribbean island of Puerto Rico. Nutrient concentrations, discharge, dissolved oxygen (DO), biochemical oxygen demand (CBOD), and specific UV absorbance (SUVA) at 254 nm were measured upstream from the WWTP effluent, at the WWTP effluent, and below the WWTP effluent. All parameters measured (except DO) were significantly affected by discharge of WWTP effluent to the stream. The values of SUVA at 254 nm were typically lower (<2.5 m mg L) in WWTP effluents than those measured upstream of the WWTP, suggesting that WWTP effluents are contributing labile carbon fractions to receiving streams, thus changing the chemical composition of dissolved organic carbon in downstream reaches. Effluents from WWTP contributed on average 24% to the stream flow at our tropical streams. More than 40% of the nutrient loads in receiving streams came from WWTP effluents, with the effects on NO-N and PO-P loads being the greatest. The effect of WWTPs on nutrient loads was significantly larger than the effect of flow due to the elevated nutrient concentrations in treated effluents. Our results demonstrate that inputs from WWTPs to streams contribute substantially to changes in water quality, potentially affecting downstream ecosystems. Our findings highlight the need to establish nutrient criteria for tropical streams to minimize degradation of downstream water quality of the receiving streams. PMID:25602222

  3. Integrating effluent management

    OpenAIRE

    1996-01-01

    The paper discusses a closed recycle shrimp farm in Thailand which integrates effluent management. The closed recycle system can reduce risk of heavy metals, pesticides, ammonia, and other toxic particles coming in with water from natural sources by reducing the quantity of water brought to the farm.

  4. Memory deficit in Swiss mice exposed to tannery effluent.

    Science.gov (United States)

    Rabelo, Letícia Martins; Costa E Silva, Bianca; de Almeida, Sabrina Ferreira; da Silva, Wellington Alves Mizael; de Oliveira Mendes, Bruna; Guimarães, Abraão Tiago Batista; da Silva, Anderson Rodrigo; da Silva Castro, André Luis; de Lima Rodrigues, Aline Sueli; Malafaia, Guilherme

    2016-01-01

    Although it is known that tannery effluents constitute highly toxic pollutants whose effects in humans represent public health problems in several countries, studies involving experimental mammalian models are rare. In this context, the objective of the present study was to assess the effect of the exposure to tannery effluent on the memory of male and female Swiss mice. Animals of each sex were distributed into two experimental groups: the control group, in which the animals received only drinking water and the effluent group, in which the mice received 1% of gross tannery effluent diluted in water. The animals were exposed to the effluent by gavage, oral dosing, for 15days, ensuring the administration of 0.1mL of liquid (water or effluent)/10g of body weight/day. On the 14th and 15th experimental days the animals were submitted to the object recognition test. It was observed that the new object recognition indices calculated for the animals exposed to the effluent (males and females) were significantly lower than those obtained with the control group. The exposure to tannery effluent caused memory deficit in Swiss mice in a similar way for both sexes, reinforcing previous findings that these pollutants affect the central nervous system. It contributes to the knowledge in the area by attesting harmful effects to the cognition of such animals. PMID:27063058

  5. Relationship between Real Contact Area and Adhesion Force of Plasma-Treated Rubber Sheets Against Stainless-Steel Ball

    OpenAIRE

    Kim, Jong-Hyoung; Nitta, Isami; UMEHARA, Noritsugu; Kousaka, Hiroyuki; Shimada, Mamoru; Hasegawa, Mitsuru

    2008-01-01

    The adhesion force between a chloride-isobutene-isoprene rubber (CIIR) and stainless steel ball was studied in this paper. In order to decrease the adhesion force, the CIIR rubber was treated with high-density microwave plasma employing oxygen and argon gases. The experimental results showed that the adhesion force decreases with increasing treatment time and microwave power following both oxygen and argon plasma treatments. In addition, optical measurements revealed that the real contact are...

  6. IMPACT OF THE TREATED EFFLUENT FROM SEWAGE TREATMENT STATION ON WATER QUALITY OF ITAPETININGA RIVER, SP = IMPACTO DO EFLUENTE TRATADO DA ESTAÇÃO DE TRATAMENTO DE ESGOTO NA QUALIDADE DE ÁGUA DO RIO DE ITAPETININGA, SP

    Directory of Open Access Journals (Sweden)

    Vinícius Mori Válio

    2013-01-01

    Full Text Available This study examined the impact of effluent discharge from sewage treatment plant (STP on the water quality of the Itapetininga river. Since this effluent stream is discarded in Ponte Alta stream, a tributary of the river studied. The parameters measured, monthly during one year, were Escherichia coli (NMP/100 mL, biochemical oxygen demand (BOD (mg L-1, dissolved oxygen (DO (mg L-1, total phosphorus (TP (mg L-1 and total nitrogen (TN (mg L-1, in accordance with methodologies set out by Standard Methods for the Water and Wastewater Exam. The values of E coli ranged between 385.0 ± 411.0 and 50,650.0 ± 27,477.0, and the highest values were found in the river Itapetininga after receiving the waters of the stream Ponte Alta. For BOD values ranged from 19.9 ± 8.4 to 10.4 ± 5.0 and OD between 6.0 ± 1.0 and 5.6 ± 1.5. The determination of the values of the other elements studied showed the need for treatment of domestic sewage in the river under study. = Este estudo analisou o impacto do lançamento de efluentes da estação de tratamento de esgoto (ETE sobre a qualidade da água do rio Itapetininga, SP, desde que o efluente é descartado no córrego Ponte Alta, um afluente do rio estudado. Os parâmetros, medidos mensalmente durante um ano, foram Escherichia coli (NMP/100 mL, demanda bioquímica de oxigênio (DBO (mg.L-1, oxigênio dissolvido (OD (mg.L-1, fósforo total (TP (mg.L-1 e nitrogênio total (NT (mg.L-1, de acordo com as metodologias estabelecidas pelo standard Methods para o Exame de Água e Esgoto. Os valores de E. coli variaram entre 385,0 ± 411,0 e 50.650,0 ± 27.477,0, sendo que os maiores valores no rio Itapetininga foram encontrados após receber as águas do córrego Ponte Alta. Para DBO os valores encontrados variaram de 19,9 ± 8,4 a 10,4 ± 5,0 e para OD entre 6,0 ± 1,5 e 5,6 ± 1,0. Os valores determinados de outros fatores estudados demonstraram a necessidade do tratamento de esgoto doméstico no rio em estudo.

  7. The Sequential Application of Macroalgal Biosorbents for the Bioremediation of a Complex Industrial Effluent

    OpenAIRE

    Kidgell, Joel T.; de Nys, Rocky; Paul, Nicholas A.; Roberts, David A.

    2014-01-01

    Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent t...

  8. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN

    2013-07-01

    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  9. Responds of soil enzfyme activities of degraded coastal saline wetlands to irrigation with treated paper mill effluent%造纸废水灌溉对滨海退化盐碱湿地土壤酶活性的响应

    Institute of Scientific and Technical Information of China (English)

    夏孟婧; 苗颖; 陆兆华; 谢国莉; 裴定宇

    2012-01-01

    经生物塘处理后的造纸废水矿化度低,有机物质含量高,可用来改善滨海盐碱土壤.研究了不同量(每次灌溉深度为5、10、15和20 cm)处理后的造纸废水灌溉对土壤脲酶、磷酸酶、蔗糖酶、脱氢酶和过氧化氢酶活性的影响,通过酶活性的变化来反映对土壤改良的效果并寻求最佳灌溉量.结果表明:5种土壤酶上层(0-10 cm)和中层土壤(10-20 cm)的活性大于下层土壤(20-30 cm),造纸废水灌溉没有改变土壤酶活性在不同土层的分布规律;灌溉造纸废水对土壤脲酶和磷酸酶活性的提高主要发生在表层土壤,而对蔗糖酶、脱氢酶以及过氧化氢酶活性的提高主要发生在上层和中层土壤;20 cm灌溉对下层土壤酶活性的提高最明显.5种酶活性均受温度降雨等因素影响,最大值出现在8月份.总体上,灌溉量的增加能提高酶活性的增加程度,最佳灌溉量为20 cm,土壤脲酶、磷酸酶、蔗糖酶和脱氢酶相对对照分别提高了70.0%、30.9%、56.2%、135.2%和20.84%.酶活性与土壤盐碱度和微生物代谢商(qCO2)显著负相关,与速效磷和微生物量碳显著正相关,与有机质和速效氮相关性不显著.%Yellow River Delta, which is surrounded by Bohai Sea to the north and Laizhou Bay to the east, is one of the three largest deltas in China. However, large amounts of water and salts that were brought by penetration of water in the Yellow River and encroachment of sea water resulted in the rise of groundwater level and salinization. Under the influence of strong evaporation, the soil degraded into saline soil. Currently, up to around 1670 km of land have turned into saline soil in the Yellow River Delta. Thus, it is urgent to ameliorate the saline soil for the assurance of ecological security and coordinated development of economy and ecology. Treated paper mill effluent was low in salinity and high in organic matter, and could be used to restore saline soil

  10. Effect of Flow Rate and Disc Area Increment on the Efficiency of Rotating Biological Contactor for Treating Greywater

    Directory of Open Access Journals (Sweden)

    Ashfaq Ahmed Pathan

    2015-04-01

    Full Text Available The performance of greywater treatment through RBC (Rotating Biological Contactor is related to many factors including rotational speed of disc, surface area of the media, thickness of biological film; quality and flow rate of influent. The plastic media provides surface for biological slime. The slime is rotated alternatively into the settled wastewater and then into atmosphere to provide aerobic conditions for the microorganisms. In this study the performance of RBC is investigated at different flow rates and disk areas of media by introducing additional discs on the shaft of RBC. Initially efficiency of the RBC was observed on six flow rates at the disc area of 9.78m2. Furthermore optimized three flow rates were used to augment the disk area. The efficiency of RBC system was improved significantly at disk area of 11.76m2 and flow rate of 20 L/h. Under these conditions the removal of BOD5 (Biochemical Oxygen Demand COD (Chemical Oxygen Demand and TSS (Total Suspended Solid was observed 83, 57 and 90% respectively

  11. Effect of flow rate and disc area increment on the efficiency of rotating biological contactor for treating greywater

    International Nuclear Information System (INIS)

    The performance of greywater treatment through RBC (Rotating Biological Contactor) is related to many factors including rotational speed of disc, surface area of the media, thickness of biological film; quality and flow rate of influent. The plastic media provides surface for biological slime. The slime is rotated alternatively into the settled wastewater and then into atmosphere to provide aerobic conditions for the microorganisms. In this study the performance of RBC is investigated at different flow rates and disk areas of media by introducing additional discs on the shaft of RBC. Initially efficiency of the RBC was observed on six flow rates at the disc area of 9.78m/sup 2/. Furthermore optimized three flow rates were used to augment the disk area. The efficiency of RBC system was improved significantly at disk area of 11.76m/sup 2/ and flow rate of 20 L/h. Under these conditions the removal of BOD5 (Biochemical Oxygen Demand) COD (Chemical Oxygen Demand) and TSS (Total Suspended Solid) was observed 83, 57 and 90% respectively. (author)

  12. Removal of phenolic compounds from the petrochemical effluent with a methanogenic consortium

    International Nuclear Information System (INIS)

    A specific petrochemical effluent was treated with a methanogenic consortium enriched for its ability to degrade phenolic compounds. The aim of using a well defined consortium, rather than undefined anaerobic sludges, was an interest in isolation of the bacterium responsible for the initial transformation of phenol into benzoic acid. The effluent was determined, and the degradation of the phenol was followed while the consortium was adapted by successive transfers in serum bottles with increasing concentrations of effluent. An assessment was made of the significance of some of the culture medium components on phenol removal. A study was carried out, after developing an upflow fixed-film anaerobic bioreactor, of the degradation of the various phenolic compounds present in two different batches of the same specific chemical effluent. The toxicity of batch A effluent was reduced by a factor of 2 after being treated in in the bioreactor, which is partially due to phenol and o-cresol removal. The biofilm was still active after exposure to the more concentrated and toxic B effluent, as evidenced by the the excellent phenol removal obtained with this effluent. Gas production was observed after exposure of the biofilm to effluent B, which showed that the methanogenic bacteria was still active. While there are other more efficient biological means for treating global petroleum refinery wastewaters, the anaerobic reactor indicates a good potential for the treatment of phenolic compounds in this specific effluent for the improvement of, at low cost, an existing wastewater treatment process. 25 refs., 2 tabs

  13. Facility effluent monitoring plan for the 327 Facility

    International Nuclear Information System (INIS)

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  14. Facility effluent monitoring plan for the 327 Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  15. Effluent generation by the dairy industry: preventive attitudes and opportunities

    Directory of Open Access Journals (Sweden)

    V. B. Brião

    2007-12-01

    Full Text Available Work aimed to identify the effluent is generating areas in a dairy company for purpose of changing concept pollution prevention. methodology consisted measuring volumes and collecting samples effluents production sectors. analysis was conducted by sector, order those which generated excessive amounts effluents. results show that dry products (powdered milk powdered whey are greatest generators BOD, nitrogen phosphorus, while fluid form (UHT milk, formulated UHT, pasteurized cream butter produced large quantities oils grease. solids recovery, waste segregation water reuse can be applied with saving potential as much R$ 28,000 ($ 11,200 per month only raw materials also environmental gains in pollution prevention.

  16. Zero effluent; Efluente zero

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Silvio Rogerio; Santos, Angelo Francisco dos [Liquigas Distribuidora S.A., Sao Paulo, SP (Brazil)

    2008-07-01

    A scenery of water shortage and the search for profitability improvement obligate the companies to exercise their creativity and to adopt alternative methods to the conventional ones to preserve the environmental resources. The 'Effluent Zero' project comes from a paradigms changing that the environmental preservation is a necessary cost. It brings a new analysis approach of this problem with the purpose to adapt the investments and operational costs with the effluents treatment to the demands of the productive processes. In Liquigas, the project brought significant results; made a potential reduction of nearly 90% in the investments of the effluents treatment systems. That means nearly 13% in reduction in the total investments in modernization and upgrade of the existents companies installations and of 1,6% in the total operational costs of the Company. Further more, it has contributed for a reduction of until 43% of the water consumption in the bottling process of the Liquefied Petroleum Gas (LPG). This way, the project resulted in effective actions of environmental protection with relevant economic benefits. (author)

  17. Feasibility of using geothermal effluents for waterfowl wetlands

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    This project was conducted to evaluate the feasibility of using geothermal effluents for developing and maintaining waterfowl wetlands. Information in the document pertains to a seven State area the West where geothermal resources have development potential. Information is included on physiochemical characteristics of geothermal effluents; known effects of constituents in the water on a wetland ecosystem and water quality criteria for maintaining a viable wetland; potential of sites for wetland development and disposal of effluent water from geothermal facilities; methods of disposal of effluents, including advantages of each method and associated costs; legal and institutional constraints which could affect geothermal wetland development; potential problems associated with depletion of geothermal resources and subsidence of wetland areas; potential interference (adverse and beneficial) of wetlands with ground water; special considerations for wetlands requirements including size, flows, and potential water usage; and final conclusions and recommendations for suitable sites for developing demonstration wetlands.

  18. Treatment of industrial effluents in constructed wetlands: Challenges, operational strategies and overall performance

    International Nuclear Information System (INIS)

    The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents. - Highlights: • Knowledge on use of wetlands treating various industrial effluents is insufficient. • Updated concept and functional mechanisms in wetlands were summarized. • Benefits and limitations of wetlands treating industrial effluents were evaluated. • Effluent recirculation and intensifications in the wetlands are recommended. - A comprehensive knowledge on application of CWs for treatment of various industrial effluents is reviewed in aspects of challenges, operational strategies and overall performance

  19. Treatment of textile effluent in a developed phytoreactor with immobilized bacterial augmentation and subsequent toxicity studies on Etheostoma olmstedi fish

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A phytoreactor was developed and augmented with immobilized bacteria. • This consortium showed enhanced treatment than the individual species. • Oxido-reductases from P. crinitum and B. pumilus could decolorize the effluent. • Characterization of effluent samples endorsed the efficacy of consortial strategy. • Toxicity studies revealed the less toxic nature of the consortium treated effluent. - Abstract: A static hydroponic bioreactor using nursery grown plants of Pogonatherum crinitum along with immobilized Bacillus pumilus cells was developed for the treatment of textile wastewater. Independent reactors with plants and immobilized cells were also kept for performance and efficacy evaluation. The effluent samples characterized before and after their treatment showed that the plant–bacterial consortium reactor was more efficient than those of individual plant and bacterium reactors. COD, BOD, ADMI, conductivity, turbidity, TDS and TSS of the textile effluent was found to be reduced by 78, 70, 93, 4, 90, 13 and 70% respectively within 12 d by the consortial set. HPTLC analysis revealed the transformation of the textile effluent to new products. The phytotoxicity study on Phaeseolus mungo and Sorghum vulgare seeds showed reduced toxicity of treated effluents. The animal toxicity study performed on Etheostoma olmstedi fishes showed the toxic nature of untreated effluent giving extreme stress to fishes leading to death. Histology of fish gills exposed to treated effluent was found to be less affected. The oxidative stress related enzymes like superoxide dismutase and catalase were found to show decreased activities and less lipid peroxidation in fishes exposed to treated effluent

  20. Treatment of textile effluent in a developed phytoreactor with immobilized bacterial augmentation and subsequent toxicity studies on Etheostoma olmstedi fish

    Energy Technology Data Exchange (ETDEWEB)

    Watharkar, Anuprita D. [Department of Biotechnology, Shivaji University, Kolhapur (India); Khandare, Rahul V. [School of Life Sciences, North Maharashtra University, Jalgaon (India); Waghmare, Pankajkumar R.; Jagadale, Ashwini D.; Govindwar, Sanjay P. [Department of Biochemistry, Shivaji University, Kolhapur (India); Jadhav, Jyoti P., E-mail: jpj_biochem@unishivaji.ac.in [Department of Biotechnology, Shivaji University, Kolhapur (India); Department of Biochemistry, Shivaji University, Kolhapur (India)

    2015-02-11

    Graphical abstract: - Highlights: • A phytoreactor was developed and augmented with immobilized bacteria. • This consortium showed enhanced treatment than the individual species. • Oxido-reductases from P. crinitum and B. pumilus could decolorize the effluent. • Characterization of effluent samples endorsed the efficacy of consortial strategy. • Toxicity studies revealed the less toxic nature of the consortium treated effluent. - Abstract: A static hydroponic bioreactor using nursery grown plants of Pogonatherum crinitum along with immobilized Bacillus pumilus cells was developed for the treatment of textile wastewater. Independent reactors with plants and immobilized cells were also kept for performance and efficacy evaluation. The effluent samples characterized before and after their treatment showed that the plant–bacterial consortium reactor was more efficient than those of individual plant and bacterium reactors. COD, BOD, ADMI, conductivity, turbidity, TDS and TSS of the textile effluent was found to be reduced by 78, 70, 93, 4, 90, 13 and 70% respectively within 12 d by the consortial set. HPTLC analysis revealed the transformation of the textile effluent to new products. The phytotoxicity study on Phaeseolus mungo and Sorghum vulgare seeds showed reduced toxicity of treated effluents. The animal toxicity study performed on Etheostoma olmstedi fishes showed the toxic nature of untreated effluent giving extreme stress to fishes leading to death. Histology of fish gills exposed to treated effluent was found to be less affected. The oxidative stress related enzymes like superoxide dismutase and catalase were found to show decreased activities and less lipid peroxidation in fishes exposed to treated effluent.

  1. Aplicação de efluente tratado de suinocultura para diluição de dejeto suíno e remoção de nitrogênio por desnitrificação Application of swine culture treated effluent for swine manure dilution and nitrogen removal by denitrification

    Directory of Open Access Journals (Sweden)

    Matheus A. G. Nunes

    2011-04-01

    Full Text Available Este trabalho avaliou o efeito da diluição do dejeto de suíno com o efluente tratado a 50% (v/v, com vistas a aumentar a desnitrificação via fornecimento de carbono ao processo. Considerando-se a diluição estudada, a concentração média de N-NO3- na mistura foi de 47,9 + 14,5 mg L-1, e a DQO da mistura, na faixa de 17.543 + 675 mg L-1, resultando numa relação DQO/N-NO3- de 366, extremamente favorável à ocorrência da atividade desnitrificante no tanque de homogeneização da mistura. A concentração de N-NO3- foi reduzida biologicamente a 0,5 mg L-1 (cerca de 1% da concentração inicial. O procedimento testado promoveu, ainda, uma melhora na etapa de separação sólido-líquido, empregando coagulantes naturais, onde foi observado um consumo de tanino inferior ao esperado.This study evaluated the effect of swine manure dilution with treated effluent up to 50% volumetric ratio of each part, intending to increase the denitrification by carbon feeding to the process. In studied dilution, the range of NO3--N content in the mixture was 47,9 + 14,5 mg L-1 and COD close to 17543 + 675 mg L-1, resulting in favorable denitrification activity on equalization tank due to relation COD/N-NO3- upper to 360. The NO3--N concentration was biologically reduced to 0.5 mg L-1 (around 1% of initial concentration. An improvement in solid-liquid separation efficiency using natural and synthetic organic polymers was also reached in the diluted effluent when compared to the undiluted manure.

  2. Radiation treatment of sewage effluent

    International Nuclear Information System (INIS)

    The water demand of the past several years increased rapidly. Recycling of municipal wastewater is the effective means of coping with water shortage in Tokyo. We studied the radiation treatment method of further purification of the effluent from sewage treatment plant. By gamma irradiation the refractory organic substances in effluent were decomposed. The COD values decreased and the light brown color faded with increasing dose. The high molecular weight components in effluent were degraded to lower molecular weight substances and were decomposed finally to carbon dioxide. Recent attention has been given to the disadvantages of using chlorine as a disinfectant of municipal wastewater effluents. It has been shown that the chlorination of organic substances in water may produce chlorinated hydrocarbons with carcinogenic properties. So a development of the effective sterilization method for the effluent has been needed instead of chlorine. The radiation sterilization of coliforms and total bacteria in primary effluent, secondary effluent and rapid sand filtered effluent were studied. Coliforms were very sensitive to radiation treatment in comparison with total bacteria. Especially, coliforms in secondary and rapid sand filtered effluents were disinfected to 10 % of initial at 0.1 kGy. (author)

  3. Evaluation of the cytogenotoxicity of textile effluents using Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Sandro Barbosa

    2011-08-01

    Full Text Available The cytotoxic and genotoxic potential of the raw (EB and treated (ET effluents of two textile mills located in south of Minas Gerais State that have their effluents treated at the same Effluent Treatment Plant was investigated using the Allium cepa test system. Cytotoxicity was evaluated by the root elongation and mitotic index (MI endpoints and the genotoxicity was assessed by de determination of chromosome aberrations (CA.The effluent samples were tested at the concentrations 0 (ultrapure water, 25, 50, 75, and 100 % (v/v. A Completely Randomized Design with four replicates of 30 seeds was used. The effluent samples in almost all tested concentrations promoted an increase in root elongation compared to the negative control and this effect was probably related to nutrients levels and organic matter in effluent samples. A lower MI at all concentrations of ET compared to EB. The highest MI was observed at 100% (v/v concentration of both effluents. The highest rates of CA occurred at concentrations 75% (v/v of EB and 100% (v/v of both effluents. The effluent samples showed no cytotoxic effect, but cell division occurred disorderly, leading to increase rate of AC, revealing a genetoxic effect. Improvements in the wastewater treatment are needed to reduce environmental impacts.

  4. PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments

    International Nuclear Information System (INIS)

    Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in influents, effluents and sludges were investigated by analyzing the samples from twelve wastewater treatment plants (WWTPs) in China. The highest concentrations of PFOS and PFOA in influents were found to occur in municipal and industrial WWTPs, respectively. Relative to PFOS and PFOA concentrations in influents, elevated concentrations were observed in effluents from WWTPs applying anaerobic–anoxic–oxic wastewater treatment process. Importantly, application of previously reported organic carbon normalized partition coefficients (KOC) derived from sediment-based sorption experiments appear to underestimate the PFOS and PFOA levels in biosolids quantified in the current study. PFOS and PFOA levels in effluents were found to be approximately 27 and 2 times higher than those detected in the effluent-receiving seawater, respectively. However, their levels in this area of seawater haven't exceeded the provisional short-term health advisories in drinking water issued by U.S. EPA yet. - Highlights: ► Levels of PFOS and PFOA in influents, effluents and sludge from Chinese WWTPs were examined. ► Municipal sewage was the main source for PFOS in Chinese WWTPs, while industrial sewage for PFOA. ► PFOS and PFOA concentrations in effluents were much higher than those in receiving seawater. - Levels of PFOS and PFOA in influent, effluent and sludge samples from Chinese WWTPs were examined and found much higher than those in receiving seawater.

  5. Application of waste stabilization pond's effluent on cultivation of roses (rosa damascena mill)

    International Nuclear Information System (INIS)

    The study focuses on the use of Waste Stabilization Ponds (WSP) effluent for irrigation and also aims to compare the efficiency of effluent with the Hoagland solution. Results revealed that the number of flowers, size of flower and the petals per flower increased by the use of both Hoagland solution and treated effluent while the height of plant and the fresh weight of flowers were increased significantly by the Hoagland solution only. Moreover, the leaves showed high concentration of reducing and non-reducing sugars as compared to flowers whereas, only the leaves of plants which were treated by the ponds effluent had low content of reducing sugars as compared to leaves of untreated plants serving as controls. The variation in chlorophyll content was similar to that of reducing and non-reducing sugars. In addition, leaves of plants that were treated by pond's effluent showed highest concentration of total phenol content. It is concluded that treated effluent is as effective as Hoagland for the irrigation of rose. Additionally, the use of treated effluent for irrigation reduces the demand of fresh water and the use of inorganic fertilizers for the commercial production of roses. (author)

  6. In-Plant Corrosion Study of Steels in Distillery Effluent Treatment Plant

    Science.gov (United States)

    Ram, Chhotu; Sharma, Chhaya; Singh, A. K.

    2015-05-01

    The present study deals with corrosion and performance of steels observed in an effluent treatment plant (ETP) of a distillery. For this purpose, the metal coupons were exposed in primary (untreated effluent) and secondary tank (anaerobic treatment effluent) of the ETP. The extent of attack has been correlated with the composition of the effluent with the help of laboratory immersion and electrochemical tests. Untreated distillery effluent found to be more corrosive than the anaerobic-treated effluents and is assigned due to chloride, phosphate, calcium, nitrate, and nitrite ions, which enhances corrosivity at acidic pH. Mild steel showed highest uniform and localized corrosion followed by stainless steels 304L and 316L and lowest in case of duplex 2205.

  7. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L. O.

    2007-06-12

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  8. Characterization and genotoxicity evaluation of effluent from a pharmacy industry

    Directory of Open Access Journals (Sweden)

    Hélio Mendes de Oliveira Júnior

    2013-08-01

    Full Text Available The pharmaceutical, textile and food industry bear much of the responsibility for environmental pollution. In order to appropriately treat and mitigate the effects of pharmaceutical effluent, it is necessary to study it in order to determine its physical and chemical composition. In this work, the physicochemical characteristics of a pharmaceutical effluent were studied, to include the concentration of phenolic compounds, heavy metals, total phosphorus, nitrate, chemical oxygen demand (COD, and dissolved oxygen (DO. The in vivo micronucleus test was performed in mice, for investigation and possible genotoxicity and mutagenicity of the effluent from the pharmaceutical hub in Anápolis - Goiás. In all samples, only the phenolics showed concentrations above the values established by CONAMA Resolution 430/2011. The high concentrations of total phenols and synergy between metals found in wastewater can be linked to mutagenicity and genotoxicity found in the effluent, since the results of the micronucleus test indicated higher micronucleus formation when the mice were exposed to the effluent. The results of the study highlighted the necessity of characterizing these effluents in order to determine an appropriate treatment.

  9. Effluent specific chemical markers for petroleum industry discharges

    International Nuclear Information System (INIS)

    Assessing the contribution of various sources to contaminant bioaccumulation in aquatic organism presents a number of challenges. The use of effluent-specific chemical markers would greatly facilitate identification of sources of contaminants found in aquatic organisms. Two classes of compounds were investigated for use as effluent-specific markers for petroleum industry discharges: alkylated polycyclic aromatic hydrocarbons (PAH) and rare earth elements (REE). Alkylated PAHs, specifically methyl and dimethyl naphthalenes, methyl and dimethyl phenanthrenes, and dibenzothiophene, appear to have excellent potential as effluent-specific markers for petroleum industry discharges. They are not associated with combustion sources, are abundant in crude oil and certain refined petroleum products, and were at detectable concentrations in bivalves exposed to refinery and produced water discharges. Three alkylated PAHs were detected in both refinery and produced water effluents, but not in receiving water samples from a highly urbanized estuary. REEs are incorporated into cracking catalysts used in refiners and would also appear to be excellent candidates for specific markers of refinery effluents. However, concentrations of REEs in a tertiary-treated refinery effluent were near or below detection and no significant bioaccumulation of REEs was observed for bivalves and fish

  10. Quantification of stable elements in liquid radioactive effluent

    International Nuclear Information System (INIS)

    The Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP possesses a continuous Radioactive Liquid Effluents Monitoring Programme established routinely. At IPEN/CNEN-SP program, each process area liquid effluent discharge point that releases or has potential to release radioactive materials is sampled routinely and analyzed for radioactivity, to subsequent planned release. This paper presents the results obtained by Atomic Absorption Spectrometry Method (AAS), used to 1 L samples of representative radioactive liquid effluents generated at IPEN/CNEN-SP from 2004 to 2008 year. Samples were analyzed for all effluents samples generated in the Centro de Radiofarmacia (CR) and in the Centro do Reator de Pesquisa (CRPq), more contributors to institutional source-term. Effluents samples generated in the others IPEN/CNEN-SP facilities were also analyzed, comprising 38 radioactive liquid effluents samples in the studied range time. The AAS method was investigated for uncertainty using reference materials and calibration curves were plotted. The pretreatment of the effluent samples included gentle hot plate acid digestion and phase homogenization, for 10 % nitric acid final concentration. The same condition was used for reference materials preparation, assaying the concentration similar to the interval of Brazilian environmental rules for stable elements. The concentrations of the stable elements Ag, Cd, Cr, Fe, Mn, Ni, Pb e Zn were determined. The obtained concentrations were compared to release limits under Sao Paulo State legislation. Two effluent samples showed values higher than the limits for Zn and Cd elements. The method of AAS discussed presents satisfactory conditions to determine and manage the radioactive liquid effluents for the presented stable species. (author)

  11. Treatment of Alkaline Stripped Effluent in Aerated Constructed Wetlands: Feasibility Evaluation and Performance Enhancement

    Directory of Open Access Journals (Sweden)

    Keli He

    2016-09-01

    Full Text Available Ammonium stripping has gained increasing interest for nitrogen recovery in anaerobically digested effluents. However, the stripped effluents often still do not meet discharge standards, having high pH and residual pollutants. Constructed wetlands (CWs are an easy to operate ecosystem and have a long history of application in treatment of wastewaters with extreme pH, such as acid mine drainage. However, knowledge of the mechanistic details involved in the use of CWs to treat high alkaline drainage, such as stripped effluent, is insufficient. This study explored the feasibility and effectiveness of using three sub-surface horizontal flow CWs to treat high alkaline stripped effluent (pH > 10. Two intensification strategies—intermittent aeration and effluent recirculation—were evaluated to enhance nitrogen depuration performance. The results show that the treatment of alkaline stripped effluent is feasible due to the high buffering capacity of the wetlands. Effluent recirculation combined with intermittent artificial aeration improves nitrogen removal, with 71% total nitrogen (TN removal. Ammonia volatilization from the surface of the wetlands in high alkaline conditions only contributed to 3% of the total removed ammonium. The microbial abundance and activity had significant diversity for the various enhancement strategies used in the constructed wetland systems. Anammox is an important process for nitrogen removal in CWs treating alkaline stripped effluent, and possible enhancements of this process should be investigated further.

  12. Required ozone doses for removing pharmaceuticals from wastewater effluents

    DEFF Research Database (Denmark)

    Antoniou, Maria; Hey, Gerly; Rodríguez Vega, Sergio;

    2013-01-01

    The aim of the this study was to investigate the ozone dosage required to remove active pharmaceutical ingredients (APIs) from biologically treated wastewater of varying quality, originated from different raw wastewater and wastewater treatment processes.Secondary effluents from six Swedish...

  13. 300 Area TEDF NPDES Permit Compliance Monitoring Plan

    International Nuclear Information System (INIS)

    This monitoring plan describes the activities and methods that will be employed at the 300 Area Treated Effluent Disposal Facility (TEDF) in order to ensure compliance with the National Discharge Elimination System (NPDES) permit. Included in this document are a brief description of the project, the specifics of the sampling effort, including the physical location and frequency of sampling, the support required for sampling, and the Quality Assurance (QA) protocols to be followed in the sampling procedures

  14. Comparison between Microscopic and Endoscopic Approaches for Evaluation of Anatomic Areas in Surgically Treated Chronic Otitis Media

    Directory of Open Access Journals (Sweden)

    M.T. Goodarzi

    2013-07-01

    Full Text Available Introduction & Objective: The diagnostic value of endoscopic and microscopic procedures for viewing different structures of middle ear has been widely assessed however, no published study is available for comparing the diagnostic value of them in chronic otitis media patients. The present study conducted to compare diagnostic value of these two procedures for as-sessment of middle ear normal structures and possible defects in these patients. Materials & Methods: In a prospective descriptive analytical study, fifty eight consecutive pa-tients older than 15 years who suffered from chronic otitis media and were candidates for tympanoplasty with or without mastoidectomy were included into the study and underwent operation. After entering the middle ear by post auricular incision and elevation of a tym-panomeatal flap, and prior to surgery , the middle ear was first examined by an operating mi-croscope in different bed and microscope positions and by performing gentle maneuvers on the head and then was reevaluated using a rigid 0 & 30 degree sinoscope. The visible areas of middle ear were separately noted. Results: Structures of epitympanum, posterior mesotympanum, and hypotympanum structures were more visible using endoscope compared with microscope(P0.05. Conclusion: Endoscopic and microscopic procedures had similar diagnostic values to view ossicular chain mobility and reflexes of round window as well as to detect ossicular chain erosions, but different anatomical parts and more hidden pits of the middle ear such as epitympanum, posterior mesotympanum, and hypotympanum are more visible by an endoscopic tool.In case of pathologic conditions, endoscopic approach is recommended for better observation and adequate evaluation of the location before and after the removal of the lesion. (Sci J Hamadan Univ Med Sci 2013; 20 (2:95-100

  15. A novel test method to determine the filter material service life of decentralized systems treating runoff from traffic areas.

    Science.gov (United States)

    Huber, Maximilian; Welker, Antje; Dierschke, Martina; Drewes, Jörg E; Helmreich, Brigitte

    2016-09-01

    In recent years, there has been a significant increase in the development and application of technical decentralized filter systems for the treatment of runoff from traffic areas. However, there are still many uncertainties regarding the service life and the performance of filter materials that are employed in decentralized treatment systems. These filter media are designed to prevent the transport of pollutants into the environment. A novel pilot-scale test method was developed to determine - within a few days - the service lives and long-term removal efficiencies for dissolved heavy metals in stormwater treatment systems. The proposed method consists of several steps including preloading the filter media in a pilot-scale model with copper and zinc by a load of n-1 years of the estimated service life (n). Subsequently, three representative rain events are simulated to evaluate the long-term performance by dissolved copper and zinc during the last year of application. The presented results, which verified the applicability of this method, were obtained for three filter channel systems and six filter shaft systems. The performance of the evaluated systems varied largely for both tested heavy metals and during all three simulated rain events. A validation of the pilot-scale assessment method with field measurements was also performed for two systems. Findings of this study suggest that this novel method does provide a standardized and accurate estimation of service intervals of decentralized treatment systems employing various filter materials. The method also provides regulatory authorities, designers, and operators with an objective basis for performance assessment and supports stormwater managers to make decisions for the installation of such decentralized treatment systems. PMID:27179341

  16. Influence of distillery effluent on germination and growth of mung bean (Vigna radiata) seeds

    International Nuclear Information System (INIS)

    Distillery effluent or spent wash discharged as waste water contains various toxic chemicals that can contaminate water and soil and may affect the common crops if used for agricultural irrigation. Toxic nature of distillery effluent is due to the presence of high amounts of organic and inorganic chemical loads and its high-acidic pH. Experimental effects of untreated (Raw) distillery effluent, discharged from a distillery unit (based on fermentation of alcohol from sugarcane molasses), and the post-treatment effluent from the outlet of conventional anaerobic treatment plant (Treated effluent) of the distillery unit were studied in mung bean (Vigna radiata, L.R. Wilczek). Mung bean is a commonly used legume crop in India and its neighboring countries. Mung bean seeds were presoaked for 6 h and 30 h, respectively, in different concentrations (5-20%, v/v) of each effluent and germination, growth characters, and seedling membrane enzymes and constituents were investigated. Results revealed that the leaching of carbohydrates and proteins (solute efflux) were much higher in case of untreated effluent and were also dependent to the presoaking time. Other germination characters including percentage of germination, speed of germination index, vigor index and length of root and embryonic axis revealed significant concentration-dependent decline in untreated effluent. Evaluation of seedlings membrane transport enzymes and structural constituents (hexose, sialic acid and phospholipids) following 6 h presoaking of seeds revealed concentration-dependent decline, which were much less in treated effluent as compared to the untreated effluent. Treated effluent up to 10% (v/v) concentration reflected low-observed adverse effect levels

  17. Influence of distillery effluent on germination and growth of mung bean (Vigna radiata) seeds

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, A. [Biomembrane Toxicology Division, Industrial Toxicology Research Centre, Post Box No. 80, M.G. Marg, Lucknow 226001 (India); Upreti, Raj K. [Biomembrane Toxicology Division, Industrial Toxicology Research Centre, Post Box No. 80, M.G. Marg, Lucknow 226001 (India)], E-mail: upretirk@rediffmail.com

    2008-05-01

    Distillery effluent or spent wash discharged as waste water contains various toxic chemicals that can contaminate water and soil and may affect the common crops if used for agricultural irrigation. Toxic nature of distillery effluent is due to the presence of high amounts of organic and inorganic chemical loads and its high-acidic pH. Experimental effects of untreated (Raw) distillery effluent, discharged from a distillery unit (based on fermentation of alcohol from sugarcane molasses), and the post-treatment effluent from the outlet of conventional anaerobic treatment plant (Treated effluent) of the distillery unit were studied in mung bean (Vigna radiata, L.R. Wilczek). Mung bean is a commonly used legume crop in India and its neighboring countries. Mung bean seeds were presoaked for 6 h and 30 h, respectively, in different concentrations (5-20%, v/v) of each effluent and germination, growth characters, and seedling membrane enzymes and constituents were investigated. Results revealed that the leaching of carbohydrates and proteins (solute efflux) were much higher in case of untreated effluent and were also dependent to the presoaking time. Other germination characters including percentage of germination, speed of germination index, vigor index and length of root and embryonic axis revealed significant concentration-dependent decline in untreated effluent. Evaluation of seedlings membrane transport enzymes and structural constituents (hexose, sialic acid and phospholipids) following 6 h presoaking of seeds revealed concentration-dependent decline, which were much less in treated effluent as compared to the untreated effluent. Treated effluent up to 10% (v/v) concentration reflected low-observed adverse effect levels.

  18. Assessing Ecological Impacts of Shrimp and Sewage Effluent: Biological Indicators with Standard Water Quality Analyses

    Science.gov (United States)

    Jones, A. B.; O'Donohue, M. J.; Udy, J.; Dennison, W. C.

    2001-01-01

    Despite evidence linking shrimp farming to several cases of environmental degradation, there remains a lack of ecologically meaningful information about the impacts of effluent on receiving waters. The aim of this study was to determine the biological impact of shrimp farm effluent, and to compare and distinguish its impacts from treated sewage effluent. Analyses included standard water quality/sediment parameters, as well as biological indicators including tissue nitrogen (N) content, stable isotope ratio of nitrogen (δ 15N), and amino acid composition of inhabitant seagrasses, mangroves and macroalgae. The study area consisted of two tidal creeks, one receiving effluent from a sewage treatment plant and the other from an intensive shrimp farm. The creeks discharged into the western side of Moreton Bay, a sub-tropical coastal embayment on the east coast of Australia. Characterization of water quality revealed significant differences between the creeks, and with unimpacted eastern Moreton Bay. The sewage creek had higher concentrations of dissolved nutrients (predominantly NO-3/NO-2 and PO3-4, compared to NH+4 in the shrimp creek). In contrast, the shrimp creek was more turbid and had higher phytoplankton productivity. Beyond 750 m from the creek mouths, water quality parameters were indistinguishable from eastern Moreton Bay values. Biological indicators detected significant impacts up to 4 km beyond the creek mouths (reference site). Elevated plant δ 15N values ranged from 10·4-19·6‰ at the site of sewage discharge to 2·9-4·5‰ at the reference site. The free amino acid concentration and composition of seagrass and macroalgae was used to distinguish between the uptake of sewage and shrimp derived N. Proline (seagrass) and serine (macroalgae) were high in sewage impacted plants and glutamine (seagrass) and alanine (macroalgae) were high in plants impacted by shrimp effluent. The δ 15N isotopic signatures and free amino acid composition of inhabitant

  19. MRI planimetry for diagnosis and follow-up of valve area in mitral stenosis treated with valvuloplasty

    Energy Technology Data Exchange (ETDEWEB)

    Djavidani, B.; Lipke, C.; Nitz, W.; Feuerbach, S. [Inst. fuer Roentgendiagnostik, Universitaetsklinikum Regensburg (Germany); Debl, K.; Buchner, S.; Riegger, G.; Luchner, A. [Klinik und Poliklinik fuer Innere Medizin II, Universitaetsklinikum Regensburg (Germany)

    2006-08-15

    Purpose: we sought to determine whether noninvasive planimetry by magnetic resonance imaging (MRI) is suitably sensitive and reliable for visualizing the mitral valve area (MVA) and for detecting increases in the MVA after percutaneous balloon mitral valvuloplasty (PBMV). Materials and methods: in 8 patients with mitral valve stenosis, planimetry of the MVA was performed before and after PBMV with a 1.5 T MR scanner using a breath-hold balanced gradient echo sequence (true FISP). The data was compared to the echocardiographically determined MVA (ECHO-MVA) as well as to the invasively calculated MVA by the Gorlin formula at catheterization (CATH-MVA). Results: PBMV was associated with an increase of 0.79 {+-} 0.30 cm{sup 2} in the MVA ({delta} MRI-MVA). The correlation between {delta} MRI-MVA and {delta} CATH-MVA was 0.92 (p < 0.03) and that between {delta} MRI-MVA and {delta} ECHO-MVA was 0.90 (p < 0.04). The overall correlation between MRI-MVA and CATH-MVA was 0.95 (p < 0.0001) and that between MRI-MVA and ECHO-MVA was 0.98 (p < 0.0001). MRI-MVA slightly overestimated CATH-MVA by 8.0% (1.64 {+-} 0.45 vs. 1.51 {+-} 0.49 cm{sup 2}, p < 0.01) and ECHO-MVA by 1.8% (1.64 {+-} 0.45 vs. 1.61 {+-} 0.43 cm{sup 2}, n.s.). Conclusion: magnetic resonance planimetry of the mitral valve orifice is a sensitive and reliable method for the noninvasive quantification of mitral stenosis and visualization of small relative changes in the MVA. This new method is therefore capable of diagnosing as well as following the course of mitral stenosis. It must be taken into consideration that planimetry by MRI slightly overestimates the MVA as compared to cardiac catheterization. (orig.)

  20. Ecotoxicological risks associated with tannery effluent wastewater.

    Science.gov (United States)

    Shakir, Lubna; Ejaz, Sohail; Ashraf, Muhammad; Qureshi, Naureen Aziz; Anjum, Aftab Ahmad; Iltaf, Imran; Javeed, Aqeel

    2012-09-01

    The problem of water pollution acquires greater relevance in the context of a developing agrarian economy like Pakistan. Even though, the leather industry is a leading economic sector in Pakistan, there is an increasing environmental concern regarding tanneries because they produce large amounts of potentially toxic wastewater containing both trivalent and hexavalent chromium, which are equally hazardous for human population, aquaculture and agricultural activities in the area. Therefore, we defined the scope of the present study as to employ different bioassays to determine the eco-toxic potential of tannery effluent wastewater (TW) and its chromium based components, i.e., potassium dichromate (K(2)Cr(2)O(7)) and chromium sulfate Cr(2)(SO(4))(3). Particle-induced X-ray emission (PIXE) analysis of TW was carried out to determine the concentration of chromium in TW and then equal concentrations of hexavalent (K(2)Cr(2)O(7)) and trivalent chromium Cr(2)(SO(4))(3) were obtained for this study. Cytotoxicity assay, artemia bioassay and phytotoxicity assay was utilized to investigate the eco-toxicological potential of different concentrations of TW, K(2)Cr(2)O(7) and Cr(2)(SO(4))(3). All the dilutions of TW, K(2)Cr(2)O(7) and Cr(2)(SO(4))(3) presented concentration dependent cytotoxic effects in these assays. The data clearly represents that among all three tested materials, different dilutions of K(2)Cr(2)O(7) caused significantly more damage (Pshrimp and germination of maize seeds. Interestingly, the overall toxicity effects of TW treated groups were subsequent to K(2)Cr(2)O(7) treated group. Based on biological evidences presented in this article, it is concluded that hexavalent chromium (K(2)Cr(2)O(7)) and TW has got significant eco-damaging potential clearly elaborating that environmental burden in district Kasur is numerous and high levels of chromium is posing a considerable risk to the human population, aquaculture and agricultural industry that can obliterate

  1. Application of Stabilization Pond Effluent Quality Parameters in Assessing Treatment Efficiency, Disposal Safety and Irrigation Suitability

    Directory of Open Access Journals (Sweden)

    A. Kanda

    2013-09-01

    Full Text Available Physico-chemical and microbiological parameters of treated pond effluent and effluent-receiving stream water were assessed for their suitability for irrigation and effluent for discharge safety. The study was done at stabilization ponds in northern Zimbabwe. Monthly effluent and stream water samples were collected between May and October, 2011 from the 5th maturation pond outlet of a 2A-4F-5M stabilization pond system and at a point that was 4 km downstream. Overall pond treatment efficiency estimates were >89% with respect to BOD5, TSS and faecal coliforms (FCs. Mean treated effluent parameters (22.18±1.64mg/L BOD5, 17.00±1.19mg/L TSS and 37.33±2.99 cfu/100 mL FCs were significantly lower (p<0.05 than safe surface disposal limits. Treated effluent and stream water were both non-saline (mean electrical conductivity: effluent = 779.50±37.79 &mu S/cm and stream water = 470.33±41.83 &muS/cm with a low sodium hazard (mean SAR: pond effluent = 1.71±0.06 and stream water = 1.08±0.10. Residual Sodium Carbonate (RSC values were negative indicating safe water. Non-toxic levels of Cl- and Na+ were observed in stream water but slight restrictions for irrigation use were observed for the effluent. Effluent was slightly alkaline (pH 8.30±0.13 and safe. Stream water and effluent quality parameters were significantly different (p<0.05 except for FCs, CO32-, Cd2+, K++, Pb2+ and PO43-. Treated effluent was suitable for both surface discharge and for irrigation. Strong relationships were observed between effluent parameters and also between stream water parameters. Treated effluent from Woodbrook waste stabilization ponds can periodically be used for irrigation. This may help to restore stream water quality with a view to public health protection and environmental preservation.

  2. Toxicity assessment of effluent from flash light manufacturing industry by bioassay tests in Trigonella foenumgracum.

    Science.gov (United States)

    Kumari, Narendra; Kumar, Sanjeev; Bauddh, Kuldeep; Dwivedi, Neetu; Singh, D P; Barman, S C

    2014-11-01

    A rapid bioassay test was conducted to study heavy metal accumulation and biochemical changes in Trigonella foenumgracum (methi) irrigated with 25, 50, 75 and 100% of effluent from flash light manufacturing industry at 60 days after sowing. Total metal concentration in effluent samples was: Cr = 0.12 effluent followed by a decrease at higher concentration as compared to their respective control.An enhanced lipid peroxidation in the treated plants was observed, which was evident by increased level of antioxidants: proline, cysteine, malondialdehyde and ascorbic acid content. The treated plants accumulated metals in the following order: Cu > Pb > Cr > Cd in the roots and shoots. PMID:25522513

  3. Electron beam radiation treatment of pulp bleaching effluent

    International Nuclear Information System (INIS)

    There are very high values of the chemical oxidation demand (COD) in the effluent from pulp mills. The COD value of the effluent is still higher after traditional biological treatment. The biologically treated wastewater from pulp mill was irradiated using low energy EB. For the wastewater irradiated with a dose of less than 1 kGy, its COD value was reduced to 1/4 of the value for unirradiated wastewater. Chromaticity of the irradiated-wastewater was also greatly decreased. The UV-visible spectra of a significant constituent of the wastewater indicated that the contaminants were degraded well

  4. Disposal of tritiated effluents

    International Nuclear Information System (INIS)

    After some introductory remarks on the origin of tritium, its properties and its behaviour in a reprocessing plant three alternative methods for the disposal of tritiated effluents produced during reprocessing are described (deep well injection, in-situ solidification, deep-sea dumping) and compared with each other under various aspects. The study is based on the concept of a 1400 t/a reprocessing plant for LWR fuel, which annually produces 3000 m3 of tritiated waste water with a tritium content of 6.5 x 1012 Bq/m3 as well as a residual fission product and actinide content. An assessment of the three methods under the aspects of simplicity, reliability, safety, costs, state of development and materials handling revealed advantages in favour of 'injection', followed by 'dumping' and 'in-situ solidification'. (orig./HP)

  5. Role of livestock effluent suspended particulate in sealing effluent ponds.

    Science.gov (United States)

    Bennett, J McL; Warren, B R

    2015-05-01

    Intensive livestock feed-lots have become more prevalent in recent years to help in meeting the predicted food production targets based on expected population growth. Effluent from these is stored in ponds, representing a potential concern for seepage and contamination of groundwater. Whilst previous literature suggests that effluent particulate can limit seepage adequately in combination with a clay liner, this research addresses potential concerns for sealing of ponds with low concentration fine and then evaluates this against proposed filter-cake based methodologies to describe and predict hydraulic reduction. Short soil cores were compacted to 98% of the maximum dry density and subject to ponded head percolation with unfiltered-sediment-reduced effluent, effluent filtered to sealing was shown to follow mathematical models of filter-cake formation, but without the formation of a physical seal on top of the soil surface. Management considerations based on the results are presented. PMID:25721977

  6. IDENTIFICATION OF WOOD AND BARK EXTRACTIVES AND THEIR TOXICOLOGICAL EFFECTS ON THE TMP EFFLUENTS

    Institute of Scientific and Technical Information of China (English)

    XiaokunZhang; MohiniSain

    2004-01-01

    Wood extractives in model TMP effluents and bio-treated TMP mill effluent were extracted, isolated with liquid-liquid extraction, and analyzed with GC/MS following sylilation. Acute and chronic toxicity of the effluent samples were tested with Ceriodaphnia dubia. Wood and bark extractives are responsible for the toxicity of the TMP effluent to aquatic life. Resin and fatty acids have a dominating contribution to acute toxicity. Removal of them from the effluent cannot deplete all toxicants, some neutral extractives such as phytosterols, are still chronically toxic to Ceriodaphnia dubia. Wood bark has a dramatic impact on acute toxicity of the TMP effluent. Only 5% of spruce bark addition can increase acute toxicity by 38.4%. However, it has a reverse trend for chronic toxicity, which indicates that some neutral wood extractives may play important role in chronic toxicity of the TMP effluent as well. Successful control of the debarking process and debark effluents is essential for achieving high-quality effluent treatment.

  7. Epicoccum nigrum and Cladosporium sp. for the treatment of oily effluent in an air-lift reactor

    OpenAIRE

    Daniel Delgado Queissada; Flávio Teixeira da Silva; Juliana Sundfeld Penido; Carolina Dell'Aquila Siqueira; Tereza Cristina Brazil de Paiva

    2013-01-01

    The metalworking industry is responsible for one of the most complex and difficult to handle oily effluents. These effluents consist of cutting fluids, which provide refrigeration and purification of metallic pieces in the machining system. When these effluents are biologically treated, is important to do this with autochthonous microorganisms; the use of these microorganisms (bioaugmentation) tends to be more efficient because they are already adapted to the existing pollutants. For this pur...

  8. Facility effluent monitoring plan for WESF

    Energy Technology Data Exchange (ETDEWEB)

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  9. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    International Nuclear Information System (INIS)

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  10. Characterization of fish hold effluent discharged from commercial fishing vessels into harbor waters.

    Science.gov (United States)

    Albert, Ryan J; McLaughlin, Christine; Falatko, Debra

    2014-10-15

    Fish hold effluent and the effluent produced from the cleaning of fish holds may contain organic material resulting from the degradation of seafood and cleaning products (e.g., soaps and detergents). This effluent is often discharged by vessels into near shore waters and, therefore, could have the potential to contribute to water pollution in bays and estuaries. We characterized effluent from commercial fishing vessels with holds containing refrigerated seawater, ice slurry, or chipped ice. Concentrations of trace heavy metals, wet chemistry parameters, and nutrients in effluent were compared to screening benchmarks to determine if there is a reasonable potential for effluent discharge to contribute to nonattainment of water quality standards. Most analytes (67%) exceeded their benchmark concentration and, therefore, may have the potential to pose risk to human health or the environment if discharges are in significant quantities or there are many vessels discharging in the same areas. PMID:25176279

  11. Serological based monitoring of a cohort of patients with chronic Chagas disease treated with benznidazole in a highly endemic area of northern Argentina

    Science.gov (United States)

    Niborski, Leticia L; Grippo, Vanina; Lafón, Sonia O; Levitus, Gabriela; García-Bournissen, Facundo; Ramirez, Juan C; Burgos, Juan M; Bisio, Margarita; Juiz, Natalia A; Ayala, Vilma; Coppede, María; Herrera, Verónica; López, Crescencia; Contreras, Ana; Gómez, Karina A; Elean, Juan C; Mujica, Hugo D; Schijman, Alejandro G; Levin, Mariano J; Longhi, Silvia A

    2016-01-01

    This study aimed to evaluate well-documented diagnostic antigens, named B13, 1F8 and JL7 recombinant proteins, as potential markers of seroconversion in treated chagasic patients. Prospective study, involving 203 patients treated with benznidazole, was conducted from endemic areas of northern Argentina. Follow-up was possible in 107 out of them and blood samples were taken for serology and PCR assays before and 2, 3, 6, 12, 24 and 36 months after treatment initiation. Reactivity against Trypanosoma cruzi lysate and recombinant antigens was measured by ELISA. The rate of decrease of antibody titers showed nonlinear kinetics with an abrupt drop within the first three months after initiation of treatment for all studied antigens, followed by a plateau displaying a low decay until the end of follow-up. At this point, anti-B13, anti-1F8 and anti-JL7 titers were relatively close to the cut-off line, while anti-T. cruzi antibodies still remained positive. At baseline, 60.8% (45/74) of analysed patients tested positive for parasite DNA by PCR and during the follow-up period in 34 out of 45 positive samples (75.5%) could not be detected T. cruzi DNA. Our results suggest that these antigens might be useful as early markers for monitoring antiparasitic treatment in chronic Chagas disease. PMID:27223650

  12. Dairy shed effluent treatment and recycling: Effluent characteristics and performance.

    Science.gov (United States)

    Fyfe, Julian; Hagare, Dharma; Sivakumar, Muttucumaru

    2016-09-15

    Dairy farm milking operations produce considerable amounts of carbon- and nutrient-rich effluent that can be a vital source of nutrients for pasture and crops. The study aim was to characterise dairy shed effluent from a commercial farm and examine the changes produced by treatment, storage and recycling of the effluent through a two-stage stabilisation pond system. The data and insights from the study are broadly applicable to passive pond systems servicing intensive dairy and other livestock operations. Raw effluent contained mostly poorly biodegradable particulate organic material and organically bound nutrients, as well as a large fraction of fixed solids due to effluent recycling. The anaerobic pond provided effective sedimentation and biological treatment, but hydrolysis of organic material occurred predominantly in the sludge and continually added to effluent soluble COD, nutrients and cations. Sludge digestion also suppressed pH in the pond and increased salt levels through formation of alkalinity. High sludge levels significantly impaired pond treatment performance. In the facultative pond, BOD5 concentrations were halved; however smaller reductions in COD showed the refractory nature of incoming organic material. Reductions in soluble N and P were proportional to reductions in respective particulate forms, suggesting that respective removal mechanisms were not independent. Conditions in the ponds were unlikely to support biological nutrient removal. Recycling caused conservative inert constituents to accumulate within the pond system. Material leaving the system was mostly soluble (86% TS) and inert (65% TS), but salt concentrations remained below thresholds for safe land application. PMID:27213866

  13. Sustainable Removal of Ra-226 and U from Mine Effluents: A Review of Field Works in Northern Saskatchewan, Canada and Saxony, Germany

    International Nuclear Information System (INIS)

    less than 1 Bq kg-1 Ra-226 and had accumulated 8700 Bq kg-1 dry weight after six months of growth in flow through test. A full scale passive treatment system was constructed treating an effluent stream of 17 m3 h-1 with transplanted biomass or biomass grown from oospores. This contribution will discuss the use of these algae to remove or biopolish radionuclides in uranium mining effluents. Our objective is to create mineralizing ecosystems in mine waste management areas, which assist in and accelerate the formation of biogenic uranium and radium ore-bodies. (author)

  14. Plant based insect repellent and insecticide treated bed nets to protect against malaria in areas of early evening biting vectors: double blind randomised placebo controlled clinical trial in the Bolivian Amazon

    OpenAIRE

    Hill, N.; Lenglet, A; Arnéz, A M; Carneiro, I.

    2007-01-01

    Objective To determine the effectiveness in reducing malaria of combining an insect repellent with insecticide treated bed nets compared with the nets alone in an area where vector mosquitoes feed in the early evening.

  15. Avaliação da eficiência do reator UASB tratando efluente de laticínio sob diferentes cargas orgânicas The efficiency of UASB reactor treating dairy effluent at diferent organic loading rates

    Directory of Open Access Journals (Sweden)

    Cláudio Milton Montenegro Campos

    2004-12-01

    Full Text Available Avaliou-se o desempenho de um reator anaeróbio de manta de lodo (UASB em escala laboratorial quanto à eficiência na remoção da carga poluidora, utilizando como substrato leite tipo B, diluído com concentração média de 2.500 mg.L-1, similar aos efluentes de laticínios quando descartado o soro. Durante os 205 dias de operação, o reator foi avaliado em relação à eficiência, de acordo com a carga orgânica volumétrica (COV aplicada. O incremento da COV aplicada foi realizado com a redução do tempo de detenção hidráulica; com isso, os TDH(s médios aplicados no reator foram de 12, 20, 18 e 16 horas. A carga orgânica biológica (COB inicial, ou seja, de partida, foi de 0,054 kgDBO.kgSVT-1.dia-1. O reator apresentou eficiências de 24, 43, 52 e 39%, na remoção de DQOT, e 22, 22, 17 e 17% na remoção de sólidos totais para os respectivos TDH(s aplicados. Os melhores resultados do reator UASB na remoção de matéria orgânica foram obtidos com os TDH (s de 20 e 18 horas. Nas condições de temperatura, carga orgânica volumétrica (COV e tempo de detenção hidráulica (TDH aplicados, o reator demonstrou boas condições de tamponamento, sendo desnecessária a correção do pH, o que significa minimização de custos.In this research it was evaluated the performance of a laboratory scale UASB reactor (Upflow Anaerobic Sludge Blanket treating a simulated dairy wastewater. In order to obtain the same concentration of an ordinary dairy, in terms of COD substrate, it was carried out the dilution of type B pasteurized milk with drinking water at a mean concentration of 2,500 mg.L-1, similar to a dairy wastewater without milk serum. During 205 days of operation the reactor was evaluated considering the efficiency related to the organic loading rate, which varied according to the hydraulic detention time applied. The UASB reactor was operated at different hydraulic retention times, of about 12, 20, 18 and 16 hours. The initial (start

  16. Alkaline hydrothermal synthesis of homogeneous titania microspheres with urchin-like nanoarchitectures for dye effluent treatments

    International Nuclear Information System (INIS)

    Highlights: → Alkali-hydrothermal treatments of a remnant of Ti-H2O2 reaction achieve titania microspheres. → Inhibited heterogeneous nucleation and low supersaturation contribute to the uniform size. → Radially aligned anatase nanowires construct the microspheres. → The microspheres possess a BET surface area of 45.4 m2/g. → The microspheres exhibit a high activity to assist photodegradation of rhodamine B in water. - Abstract: The heterogeneous photocatalysis technique to treat dye effluents demands micrometer-sized titania aggregates with one-dimensional nanostructures, which possess high photocatalytic activity and at the same time facilitate the catalyst-recovery from a slurry system. In this study, the solution remained after interactions between metallic Ti and hydrogen peroxide was subjected to an alkaline hydrothermal treatment. Microspheres with extremely uniform sizes of ca. 2 μm in diameter were achieved after a subsequent proton exchange followed by calcination in air. The microspheres were urchin-like aggregates of radially assembled nanowires, which consisted of chain-like anatase single crystallites with an average diameter of 20-25 nm. The homogeneous microspheres calcinated at 600 oC possessed a surface area of 45.4 m2/g and exhibited an excellent activity to assist photodegradation of rhodamine B in water, which is significantly higher than that of P25 titania nanoparticles. Because of the much easier recovery of the photocatalyst, the homogeneous microspheres synthesized herein may find practical applications in efficient photocatalytic treatments of dye effluents.

  17. The endocrine-disrupting effect and other physiological responses of municipal effluent on the clam Ruditapes decussatus.

    Science.gov (United States)

    Mezghani-Chaari, Sawssan; Machreki-Ajmi, Monia; Tremolet, Gauthier; Kellner, Kristell; Geffard, Alain; Minier, Christophe; Hamza-Chaffai, Amel

    2015-12-01

    In order to document the potential endocrine disrupting and toxic effect of the municipal wastewater effluents discharged into the Sfax coastal area (South of Tunisia), specimens of clam R. decussatus were collected from a reference site and were in vivo exposed to treated sewage effluent for 30 days. To this end, estrogenic and androgenic activities were measured in the gills to assess potential accumulation and regulation of active compounds. After effluent exposure androgenic activity in organic extracts increased up to fivefold compared to controls and remained elevated, while estrogenic activity was not significantly affected by exposure. As a consequence, remarkable disruptions in the gametogenesis activity, glycogen content, and Vitellogenin-like protein levels in male clams were observed. A parallel analysis of heavy metals in clam tissues was determined. A significant uptake of Ni, Zn, and Pb in soft tissues of exposed clams was observed. The significant increase of malondialdehyde (MDA) concentrations as a function of exposure time implies that clams have been exposed to an oxidative stress probably due to the presence of high metal concentrations in sewage effluent. Correlation analysis has revealed a statistically significant and positive relationship between MDA levels and metal concentrations in clams' tissues. The acetylcholinesterase activity was not significantly affected by exposure. Altogether, these results showed that a short-term exposure to a mixture of chemical compounds released by the Sfax wastewater treatment plant induce adverse physiological and reproductive effects in R. decussatus. Further studies are underway in order to evaluate its long-term impacts on aquatic wildlife in the gulf of Gabes area. PMID:26278908

  18. Innovative Use of Cr(VI) Plume Depictions and Pump-and-Treat Capture Analysis to Estimate Risks of Contaminant Discharge to Surface Water at Hanford Reactor Areas

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Chuck W.; Hanson, James P.; Ivarson, Kristine A.; Tonkin, M.

    2015-01-14

    The Hanford Site nuclear reactor operations required large quantities of high-quality cooling water, which was treated with chemicals including sodium dichromate dihydrate for corrosion control. Cooling water leakage, as well as intentional discharge of cooling water to ground during upset conditions, produced extensive groundwater recharge mounds consisting largely of contaminated cooling water and resulted in wide distribution of hexavalent chromium (Cr[VI]) contamination in the unconfined aquifer. The 2013 Cr(VI) groundwater plumes in the 100 Areas cover approximately 6 km2 (1500 acres), primarily in the 100-HR-3 and 100-KR-4 groundwater operable units (OUs). The Columbia River is a groundwater discharge boundary; where the plumes are adjacent to the Columbia River there remains a potential to discharge Cr(VI) to the river at concentrations above water quality criteria. The pump-and-treat systems along the River Corridor are operating with two main goals: 1) protection of the Columbia River, and 2) recovery of contaminant mass. An evaluation of the effectiveness of the pump-and-treat systems was needed to determine if the Columbia River was protected from contamination, and also to determine where additional system modifications may be needed. In response to this need, a technique for assessing the river protection was developed which takes into consideration seasonal migration of the plume and hydraulic performance of the operating well fields. Groundwater contaminant plume maps are generated across the Hanford Site on an annual basis. The assessment technique overlays the annual plume and the capture efficiency maps for the various pump and treat systems. The river protection analysis technique was prepared for use at the Hanford site and is described in detail in M.J. Tonkin, 2013. Interpolated capture frequency maps, based on mapping dynamic water level observed in observation wells and derived water levels in the vicinity of extraction and injection wells

  19. Effluent polishing by means of advanced oxidation

    International Nuclear Information System (INIS)

    Three different Advanced Oxidation Processes (ozonation at pH 7.5, electron beam irradiation and a combination ozonation/electron beam irradiation) have been applied to study decomposition of aqueous naphthalene-1,5-disulfonic acid (1,5-NDSA) with regard to mineralization and formation of biodegradable intermediates. Formation of biodegradable intermediates could not be indicated for any of the processes used, single electron beam irradiation treatment was the most efficient process for mineralization of organic carbon contained in aqueous 1,5-NDSA. Applied to a real wastewater effluent from a mixed municipal/industrial wastewater electron beam irradiation with a radiation dose of 2 kGy was sufficient to reduce the concentrations of all naphthalene sulfonic acids and some of the alkylphenol ethoxylates by about 2 orders of magnitude. Moreover, high energy electrons effectively inactivate indicator bacteria in effluents from municipal wastewater treatment plants and eliminate simultaneously any estrogenic activity originating from natural and synthetic hormones also contained in the wastewater effluents. Inactivation of bacteria and bacterial spores by electron beam irradiation was found to be practically unaffected by the water matrix and suspended solids. There is a strong indication from literature data that these findings are also relevant to viruses of concern in water hygiene like poliovirus. Cost analysis of the irradiation process based on actual numbers from the first full scale wastewater treatment plant in the Republic of Korea indicated a total cost of about 0.2 US$/m3 treated water for 2 kGy irradiation dose. (author)

  20. Proteomic identification of non-erythrocytic alpha-spectrin-1 down-regulation in the pre-optic area of neonatally estradiol-17β treated female adult rats.

    Science.gov (United States)

    Govindaraj, Vijayakumar; Rao, Addicam Jagannadha

    2016-06-01

    It is well established that sexually dimorphic brain regions, which are critical for reproductive physiology and behavior, are organized by steroid hormones during the first 2 weeks after birth in the rodents. In our recent observation, neonatal exposure to estradiol-17β (E2) in the female rat revealed increase in cyclooxygenase 2 (COX-2) level, sexually dimorphic nucleus (SDN)-pre-optic area (POA) size and down-regulation of synaptogenesis related genes in POA in the adult stage. In the present study, using the same animal model, the protein profile of control and neonatally E2-treated POA was compared by 1D-SDS-PAGE, and the protein that shows a change in abundance was identified by LC-MS/MS analysis. Results indicated that there was a single protein band, which was down-regulation in E2-treated POA and it was identified as spectrin alpha chain, non-erythrocytic 1 (SPTAN1). Consistently, the down-regulation of SPTAN1 expression was also confirmed by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. The SPTAN1 was identified as a cytoskeletal protein that is involved in stabilization of the plasma membrane and organizes intracellular organelles, and it has been implicated in cellular functions including DNA repair and cell cycle regulation. The evidence shows that any mutation in spectrins causes impairment of synaptogenesis and other neurological disorders. Also, protein-protein interaction analysis of SPTAN1 revealed a strong association with proteins such as kirrel, actinin, alpha 4 (ACTN4) and vinculin (VCL) which are implicated in sexual behavior, masculinization and defeminization. Our results indicate that SPTAN1 expression in the developing rat brain is sexually dimorphic, and we suggest that this gene may mediate E2-17β-induced masculinization and defeminization, and disrupted reproductive function in the adult stage. PMID:27166725

  1. Global hepatic gene expression in rainbow trout exposed to sewage effluents: A comparison of different sewage treatment technologies

    International Nuclear Information System (INIS)

    Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents. - Highlights: ► Livers of trout exposed to different sewage effluents were analysed by microarray. ► Exposure to conventionally

  2. Global hepatic gene expression in rainbow trout exposed to sewage effluents: A comparison of different sewage treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Cuklev, Filip, E-mail: filip.cuklev@neuro.gu.se [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Gunnarsson, Lina, E-mail: lina.gunnarsson@fysiologi.gu.se [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Cvijovic, Marija, E-mail: marija.cvijovic@chalmers.se [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Goeteborg (Sweden); Kristiansson, Erik, E-mail: erik.kristiansson@chalmers.se [Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Goeteborg (Sweden); Rutgersson, Carolin [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Bjoerlenius, Berndt, E-mail: berndtb@kth.se [Stockholm Water Company, Vaermdoevaegen 23, SE-131 55 Stockholm (Sweden); Larsson, D.G. Joakim, E-mail: joakim.larsson@fysiologi.gu.se [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden)

    2012-06-15

    Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents. - Highlights: Black-Right-Pointing-Pointer Livers of trout exposed to different sewage effluents were analysed by microarray. Black

  3. Research on the removal of radium from uranium effluent by air-aeration hydrated manganese hydroxide adsorption

    International Nuclear Information System (INIS)

    In the acidic leaching uranium process, pyrolusite or manganese oxide (MnO2) powder is often used as an oxidizer. In the processed effluent, manganese ion present as a contaminant in addition to U, Ra, Th, As, Zn, Cu, F, SO42-, etc. Manganese ion content is about 100∼200 mg/1 in effluent. In this case, a new process technique can be developed to treat the effluent using the Mn2+ present in the effluent. The approach is as follows: The effluent is neutralized by lime milk to pH about 11. As a result, most contaminants are precipitated to meet the uranium effluent discharge standards (U, Th, Mn, SO42- etc.), but radium is still present in the effluent. In this process, manganese ion forms manganese hydroxide Mn(OH)2. The manganese hydroxide is easily to oxide to form MnO(OH)2 by air aeration. This hydrated manganese hydroxide complex can then be used to adsorb radium in effluent. The experiments show: (1) Effluent pH, manganese concentration in effluent, and aeration strength and time etc. influence the radium removal efficiency. Under the test conditions, when manganese in effluent is between 100∼300 mg/l, and pH is over 10.5, radium can be reduced to lower 1.11 Bq/1 in the processed effluent. Higher contents of impurity elements such as aluminum, silicon and magnesium in the effluent affect the removal efficiency; (2) Under the experimental conditions, the lime precipitation air-aeration formed hydrated manganese hydroxide complex sludge is stable. There is no obvious release of radium from the adsorbed hydrated manganese hydroxide complex sludge; (3) The current experiments show that hydrated manganese hydroxide complex sludge has a very good re-adsorption ability for removal of radium from uranium effluent. Some experimental parameters have been measured. (author)

  4. Normal water irrigation as an alternative to effluent irrigation in improving rice grain yield and properties of a paper mill effluent affected soil.

    Science.gov (United States)

    Boruah, D; Hazarika, S

    2010-07-01

    Rice crop (var. Luit) was grown under controlled conditions in paper mill effluent contaminated soil and irrigated with undiluted paper mill effluent as well as normal water and compared the results against a control treatment consisting of similar unaffected soil irrigated with normal water. The effluent was alkaline (pH 7.5), containing high soluble salts (EC 2.93 dS m(-1)), chloride (600 mg L(-1)) and total dissolved solids (1875 mg L(-1)). At maximum tillering (MT) stage effluent irrigation significantly (P < 0.05) reduced the leaf numbers per hill and leaf area by 19.8 and 36.4 %, respectively. Tiller number and maximum root length were reduced by 19.3% and 12.5%, respectively at fifty percent flowering (FF) stage. Effluent irrigated crop recorded significant reduction in the dry matter production (17.5-24.9%) and grain yield (19%). Unfilled grain was increased by 10.7%. Higher concentration of sodium, calcium and magnesium in the effluent irrigated soil affected K uptake. Available soil P was lowest while available N, K, S and exchangeable and water soluble Na, K, Ca, Mg were highest in effluent irrigated soil. Chloride content found to increase (3-7 folds) while microbial biomass carbon reduced (10-37%). The adverse effect of the paper mill effluent on the crop as well as on the affected soil could be reduced significantly through normal water irrigation. PMID:21391395

  5. Heavy-metal contamination of agricultural soils irrigated with industrial effluents

    International Nuclear Information System (INIS)

    Pakistan is facing a thread of degradation of water and land-resources by industrial effluents. To evaluated the suitability of these effluents as a source of irrigation for agriculture and the study their effects on soil chemical properties, experiments were conducted in the industrial area of Sheikhupura, where effluent from Paper and Board Mill (PBM), Leather Industry (LI) and Fertilizer Industry (FI) were being used for irrigation. At each site, two fields were selected, one irrigated with industrial effluents and the other with tube-well/canal water. The soil samples were collected and analyzed for pH, ECe, SAR and for heavy metals, such as Cu, Cd, Cr, Zn, Pb, Mn, Fe, Al and Ni. Soil receiving effluent from LI showed higher ECe and SAR values, as compared to the soils receiving other effluents. The concentration of Al was high in the soil irrigated with LI effluent. The Mn and Fe contents were higher in soils irrigated with PBM effluent. Effluent from LI is not fit for irrigation, since its recipient soil showed high concentration of Cr and also high sodicity values. Except Cr, the heavy metals were not of environmental concern. (author)

  6. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents

    KAUST Repository

    Krasner, Stuart W.

    2009-11-01

    Effluents from wastewater treatment plants (WWTPs) contain disinfection byproducts (DBPs) of health concern when the water is utilized downstream as a potable water supply. The pattern of DBP formation was strongly affected by whether or not the WWTP achieved good nitrification. Chlorine addition to poorly nitrified effluents formed low levels of halogenated DBPs, except for (in some cases) dihalogenated acetic acids, but often substantial amounts of N-nitrosodimethyamine (NDMA). Chlorination of well-nitrified effluent typically resulted in substantial formation of halogenated DBPs but much less NDMA. For example, on a median basis after chlorine addition, the well-nitrified effluents had 57 μg/L of trihalomethanes [THMs] and 3 ng/L of NDMA, while the poorly nitrified effluents had 2 μg/L of THMs and 11 ng/L of NDMA. DBPs with amino acid precursors (haloacetonitriles, haloacetaldehydes) formed at substantial levels after chlorination of well-nitrified effluent. The formation of halogenated DBPs but not that of NDMA correlated with the formation of THMs in WWTP effluents disinfected with free chlorine. However, THM formation did not correlate with the formation of other DBPs in effluents disinfected with chloramines. Because of the relatively high levels of bromide in treated wastewater, bromine incorporation was observed in various classes of DBPs. © 2009 American Chemical Society.

  7. Bioremediation of metal-rich effluents: could the invasive bivalve work as a biofilter?

    Science.gov (United States)

    Rosa, Inês Correia; Costa, Raquel; Gonçalves, Fernando; Pereira, Joana Luísa

    2014-09-01

    Industrial effluents are important sources of contamination of water and sediments, frequently causing serious damage at different levels of biological organization. Management and treatment of harmful industrial wastes is thus a major concern. Metal-bearing effluents, such as acid mine drainage (AMD), are particularly problematic because metals can easily bioaccumulate in organisms and biomagnify across the trophic chain. Several solutions have been proposed to treat AMD, including active methods involving the addition of neutralizing agents and passive techniques that use natural energy sources for remediation. However, increasing environmental and economic requirements lead the constant search for more sustainable solutions. The present study explores the possibility of using , an invasive freshwater bivalve, as a bioremediation tool using AMD as a model, metal-bearing effluent. The study compares untreated and biotreated effluents at two dilution levels (4 and 10% v/v) following two distinct approaches: (i) chemical characterization of the metal concentrations in water complemented by determination of the accumulation in the clams' soft tissues and shells; and (ii) ecotoxicity assessment using standard organisms (the bacterium , the microalgae , and the cladoceran ). Significant removal of metals from water was recorded for both effluent dilutions, with higher purification levels found for the 4% effluent. The environmental toxicity of the effluents generally decreased after the treatment with the clams. Thus, this study provides evidence for the suitability of as a bioremediator for metal-bearing effluents, especially if the treatment can be materialized in a multistage configuration system. PMID:25603239

  8. Study of dilution of effluent discharged through a sea outfall near Mangalore using radiotracer technique

    International Nuclear Information System (INIS)

    The fate of effluent discharged into water bodies is a matter of concern from the point of view of environmental pollution. Radiotracer techniques have been successfully used to study the change in concentration of effluents while being mixed with large water bodies. The technique used is to add a known concentration of radioactive tracer into the effluent stream and to measure the dilutions at different locations near the effluent discharge point with radiation detectors. M/s Mangalore Chemicals and Fertilizers Ltd (MCF) at Mangalore on the west coast of India disposes off the treated and initially diluted effluent at the rate of about 360 m3/h into the sea near by through an outfall extending about 100 meters into the sea. The effluent mainly contains ammonia in the range of 40-50 ppm as the pollutant. It was desired to measure the extent of dilution occurring to the effluent at a few locations of known distances along the sea shore from the discharge point of the effluent. Radiotracers 82Br as ammonium bromide solution and tritium as tritiated water were employed for the study. The concentration measurement was done at site for 82Br and by estimation of samples in the laboratory in the case of tritium. Dilution of the order of 1000 was obtained at about 100 meters distance for a continuous injection of about 4 hours. (author). 3 tables, 3 figures

  9. Removal of phosphorus from livestock effluents.

    Science.gov (United States)

    Szogi, Ariel A; Vanotti, Matias B

    2009-01-01

    For removal of phosphorus (P) from swine liquid manure before land application, we developed a treatment process that produces low P effluents and a valuable P by-product with minimal chemical addition and ammonia losses. The new wastewater process included two sequential steps: (i) biological nitrification and (ii) increasing the pH of the nitrified wastewater to precipitate P. We hypothesized that by reduction of inorganic buffers (NH(4)(+) and carbonate alkalinity) via nitrification, P could be selectively removed by subsequent hydrated lime [Ca(OH)(2)] addition. The objective of the study was to assess if this new treatment could consistently reduce inorganic buffer capacity with varied initial concentrations of N (100-723 mg NH(4)(+) L(-1)), P (26-85 mg TP L(-1)), and alkalinity (953-3063 mg CaCO(3) L(-1)), and then efficiently remove P from swine lagoon liquid. The process was tested with surface lagoon liquids from 10 typical swine farms in North Carolina. Each lagoon liquid received treatment in a nitrification bioreactor, followed by chemical treatment with Ca(OH)(2) at Ca rates of 0, 2, 4, 6, 8, 10, and 12 mmol L(-1) to precipitate P. This configuration was compared with a control that received the same Ca rates but without the nitrification pretreatment. The new process significantly reduced >90% the inorganic buffers concentrations compared with the control and prevented ammonia losses. Subsequent lime addition resulted in efficient pH increase to > or = 9.5 for optimum P precipitation in the nitrified liquid and significant reduction of effluent total P concentration versus the control. With this new process, the total P concentration in treated liquid effluent can be adjusted for on-farm use with up to >90% of P removal. The recovered solid Ca phosphate material can be easily exported from the farm and reused as P fertilizer. Therefore, the new process can be used to reduce the P content in livestock effluents to levels that would diminish problems of

  10. Effects of exposure to zinc oxide nanoparticles in freshwater mussels in the presence of municipal effluents

    OpenAIRE

    Gagnon, C; M Pilote; P Turcotte; André, C.; F Gagné

    2016-01-01

    Zinc oxide (nano-ZnO) nanoparticles are used in the production of transparent sunscreens and cosmetics, which are released into surface waters and municipal wastewater effluent. The purpose of this study was to examine the toxicity of nano-ZnO in the presence of municipal effluents to freshwater mussels Elliptio complanata. Mussels were exposed for 21 days at 15 o C to nano-ZnO and ZnCl2 in the presence of 10 % dilution of primary-treated municipal effluent. After the exposure ...

  11. Incineration of Pre-Treated Municipal Solid Waste (MSW for Energy Co-Generation in a Non-Densely Populated Area

    Directory of Open Access Journals (Sweden)

    Ettore Trulli

    2013-12-01

    Full Text Available The planning actions in municipal solid waste (MSW management must follow strategies aimed at obtaining economies of scale. At the regional basin, a proper feasibility analysis of treatment and disposal plants should be based on the collection and analysis of data available on production rate and technological characteristics of waste. Considering the regulations constraint, the energy recovery is limited by the creation of small or medium-sized incineration plants, while separated collection strongly influences the heating value of the residual MSW. Moreover, separated collection of organic fraction in non-densely populated area is burdensome and difficult to manage. The paper shows the results of the analysis carried out to evaluate the potential energy recovery using a combined cycle for the incineration of mechanically pre-treated MSW in Basilicata, a non-densely populated region in Southern Italy. In order to focalize the role of sieving as pre-treatment, the evaluation on the MSW sieved fraction heating value was presented. Co-generative (heat and power production plant was compared to other MSW management solutions (e.g., direct landfilling, also considering the environmental impact in terms of greenhouse gases (GHGs emissions.

  12. Facility effluent monitoring plan for the 324 Facility

    International Nuclear Information System (INIS)

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  13. A safety review of the NRU effluent heat recovery project

    International Nuclear Information System (INIS)

    The NRU effluent heat recovery project diverts heated effluent water from the NRU process effluent weir and distributes the water for various heating applications in both the inner and active area at Chalk River Nuclear Laboratories (CRNL). The dominant hazard of the system operation is from leakage of tritiated heavy water from the reactor heavy water system into the light water system and the subsequent contamination of the steam system. Protective features include continuous leakage monitoring and automatic isolation of the recovery system. Modelling of the worst case accident, predicts a dose equivalent from tritium in steam humidification of about 26 mrem (260 μSv). The operation of the heat recovery project does not present an unacceptable risk to CRNL personnel

  14. Fungal Biosorption, An Innovative Treatment for the Decolourisation and Detoxification of Textile Effluents

    OpenAIRE

    Antonella Pannocchia; Antonella Mangiavillano; Valeria Prigione; Pietro Giansanti; Valeria Tigini; Giovanna Cristina Varese

    2010-01-01

    Textile effluents are among the most difficult-to-treat wastewaters, due to their considerable amount of recalcitrant and toxic substances. Fungal biosorption is viewed as a valuable additional treatment for removing pollutants from textile wastewaters. In this study the efficiency of Cunninghamella elegans biomass in terms of contaminants, COD and toxicity reduction was tested against textile effluents sampled in different points of wastewater treatment plants. The results showed that C. ele...

  15. Application of aquatic fungi in bioreactors for the treatment of textile dye model effluents

    OpenAIRE

    Junghanns, Charles; 5th European Bioremediation Conference

    2011-01-01

    Textile dyes are designed to resist fading upon exposure to sweat, light, water, oxidizing agents, and microbial attack. Therefore they are hardly removed from effluents by conventional wastewater treatment. Dye-containing effluents can be treated by a number of physico-chemical processes. Nevertheless, some of these methods do not degrade xenobiotics resulting in a pollution transfer, whereas other methods are of limited use due to different constraints related to e.g. costs or general appli...

  16. Treatment of acid mine drainage and acidic effluents / by Marinda de Beer

    OpenAIRE

    De Beer, Marinda

    2005-01-01

    The scarcity of water in South Africa is exacerbated by pollution of the surface- and ground- water resources. Typical pollutants of the aquatic environment include acid mine drainage and industrial effluents. AMD and acidic effluents can have detrimental effects on mining infrastructure, water reuse options and environmental discharge. As a result, some form of treatment is required at many mine sites. Unless treated, acid water cannot be discharged into public water courses. It ...

  17. Characterization and monitoring of 300 Area facility liquid waste streams during 1994 and 1995

    International Nuclear Information System (INIS)

    Pacific Northwest National Laboratory's Facility Effluent Management Program characterized and monitored liquid waste streams from 300 Area buildings that are owned by the US Department of Energy and are operated by Pacific Northwest National Laboratory. The purpose of these measurements was to determine whether the waste streams would meet administrative controls that were put in place by the operators of the 300 Area Treated Effluent Disposal Facility. This report summarizes the data obtained between March 1994 and September 1995 on the following waters: liquid waste streams from Buildings 306, 320, 324, 325, 326, 327, 331, and 3,720; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe)

  18. Radioactive effluents in Savannah River

    International Nuclear Information System (INIS)

    During 1990, low-level radiometric studies of the Savannah River continued to distinguish between effluent contributions from Plant Vogtle and the Savannah River Site. Measurements of these radioactive effluents are of mutual interest to both institutions, as they can address disturbing trends before they become health and legal concerns. The Environmental Technology Section (ETS) has conducted radiometric studies of Plant Vogtle since late 1986, prior to its startup. The plant has two 1100 MWe pressurized water reactors developed by Westinghouse. Unit 1 started commercial operations in June 1987, and Unit 2 began in May 1989. During powered operations, ETS has routinely detected neutron-activated isotopes in controlled releases but all activities have been several orders of magnitude below the DOE guide values. In 1990, processing improvements for Vogtle effluents have yielded even lower activities in the river. The Vogtle release data and the ETS measurements have tracked well over the past four years

  19. Radioactive effluents in Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1991-11-27

    During 1990, low-level radiometric studies of the Savannah River continued to distinguish between effluent contributions from Plant Vogtle and the Savannah River Site. Measurements of these radioactive effluents are of mutual interest to both institutions, as they can address disturbing trends before they become health and legal concerns. The Environmental Technology Section (ETS) has conducted radiometric studies of Plant Vogtle since late 1986, prior to its startup. The plant has two 1100 MWe pressurized water reactors developed by Westinghouse. Unit 1 started commercial operations in June 1987, and Unit 2 began in May 1989. During powered operations, ETS has routinely detected neutron-activated isotopes in controlled releases but all activities have been several orders of magnitude below the DOE guide values. In 1990, processing improvements for Vogtle effluents have yielded even lower activities in the river. The Vogtle release data and the ETS measurements have tracked well over the past four years.

  20. Phytoremediation of the coalmine effluent.

    Science.gov (United States)

    Bharti, Sandhya; Kumar Banerjee, Tarun

    2012-07-01

    Coal mine effluent was subjected to detoxification by phytoremediation using two macrophytes Azolla pinnata and Lemna minor. Both plants were kept separately in the effluents for 7 day. The initial concentration (mg L⁻¹) of eight metals: Fe, Mn, Cu, Zn, Ni, Pb, Cr and Cd investigated in the effluent were 22.91±0.02, 9.61±1.6, 2.04±0.23, 1.03±0.15, 0.86±0.19, 0.69±0.11, 0.18±0.007 and 0.06±0.008 respectively. The initial fresh biomass of each plant was 100g. After one week, metals removed in A. pinnata-phytoremediated effluent were in the order: Mn (98%)>Fe (95.4%)>Zn (95%)>Cu (93%)>Pb (86.9%)>Cd (85%)>Cr (77.7%)>Ni (66.2%) and metal decrease in L. minor-phytoremediated effluent were: Mn (99.5%)>Cu (98.8%)>Zn (96.7%)>Ni (94.5%)>Fe (93.1%)>Cd (86.7%)>Pb (84%)>Cr (76%). Due to metal toxicity the total chlorophyll and protein contents of L. minor decreased by 29.3% and 38.55% respectively. The decrease of these macromolecules in A. pinnata was 27% and 15.56% respectively. Also, the reduction in biomass of L. minor was greater than that for A. pinnata. Based on the finding we could suggest that both the plants are suitable for bioremediation of mine effluent at the contaminated sites. However, attention for quick disposal of these metal loaded plants is urgently required. PMID:22571948

  1. Conceptual design report, TWRS Privatization Phase I, Liquid effluent transfer systems, subproject W-506

    International Nuclear Information System (INIS)

    This document includes Conceptual Design Report (CDR) for providing liquid effluent lines for routing waste from two Private Contractor (PC) facilities to existing storage, treatment, and disposal facilities in the 200-East Area

  2. Amélioration de la qualité microbiologique des effluents secondaires par stockage en bassins

    Directory of Open Access Journals (Sweden)

    Trad-Rais M.

    1999-01-01

    Full Text Available Microbiological quality improvement of secondary effluent by reservoir storage. Storing secondary effluents is of particular interest for water resource management. It constitutes further treatment which reduces the microbial contamination of water to a level where it can be used for the irrigation of all crops, without restriction. The storage of treated wastewater takes place during the winter, ensuring that such a resource is not lost and enabling a larger area to be irrigated during the dry season, thereby increasing agricultural production. Storage trials in reservoirs were conducted in north-eastern Tunisia. Their objective was to determine the length and conditions of secondary effluent decontamination as well as the impact of seasonal storage on water quality. The results indicate that the decontamination of effluents slows down with increased reservoir depth. For a depth of less than 150 cm, a reduction of fecal coliforms in the order of 3 log units is attained in 3 days when the average temperature of the water ranges from 22 to 25 degrees C; when this temperature is between 25.5 and 28 degrees C, the same reduction takes 8 days. Below 20 degrees C, decontamination is considerably reduced: for a mean water temperature ranging from 12.5 to 18 degrees C, the reduction of fecal coliforms reaches 3 log units only after a retention time of 17 days in the reservoir. Seasonal storage from 2 to 7 months does not affect the bacteriological quality of water: after decontamination, no proliferation of bacterial indicators occurs during storage.

  3. J.O. no. 7, text no. 18. Decree, orders, general text. Decree no. 2004-25 of the 8 january 2004 allowing the ''Commissariat a l'Energie Atomique'' to modify the nuclear installation no. 35 (INB no. 35) named radioactive liquid effluents management area of the nuclear research center of Saclay (Essonne); J.O. no. 7, texte no. 18. Decrets, arretes, circulaires, textes generaux. Decret no. 2004-25 du 8 janvier 2004 autorisant le Commissariat a l'energie atomique a modifier l'installation nucleaire de base no. 35 (INB no.35) denommee zone de gestion des effluents liquides radioactifs du centre d'etudes nucleaires de Saclay (Essonne)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    The radioactive liquid effluents management area, no. 35, has been declared by the Cea the 27 may 1964. The Cea asked for a modification authorization of this installation, the 6 june 2001. The new installation Stella will be operational on 2005-2006. This decree defines the operating conditions of the new installation. (A.L.B.)

  4. Nonradiological liquid effluent monitoring program

    International Nuclear Information System (INIS)

    A monitoring program for nonradioactive parameters and pollutants in liquid effluents was initiated in October 1985 for facilities operated by EG ampersand G Idaho, Inc., for the U.S. Department of Energy at the Idaho National Engineering Laboratory. Program design and implementation are discussed in this report. Design and methodologies for sampling, analysis, and data management are also discussed. Monitoring results for 28 liquid effluent streams from (October 1991 through December 1992) are presented with emphasis on calendar year 1992 activities. All parameter measurements and concentrations were below the Resource Conservation and Recovery Act toxic characteristics limits

  5. Treatment of biorefractory organic compounds in wool scour effluent by hydroxyl radical oxidation.

    Science.gov (United States)

    Poole, Andrew J

    2004-01-01

    Wool scouring effluent that had been treated with chemical flocculation and aerobic biological treatment (Sirolan CFB effluent) was tertiary treated by hydroxyl radical oxidation to remove residual organic compounds. These compounds impart a high chemical oxygen demand of 500-3000 mg/L and dark colour. However, a H2O2/UV process was found to effectively treat the majority of residual compounds, with up to 75% COD, 85% total organic carbon, and 100% removal of colour (T(480 nm)) achieved. This was despite the effluent being strongly absorbing in the UV region, with a film thickness of 0.21 mm reducing T(254 nm) by 50%. Treatment was unaffected by pH over the range 3-9. H2O2/UV treatment increased the biodegradability of the effluent (5-day biochemical oxygen demand increased from effluent had a final COD in the range 125-750 mg/L, equating to a total COD removal from raw wool scour effluent of approximately 97.5%. This degree of treatment is sufficient for discharge in many, but not all, circumstances. PMID:15276763

  6. The conditions for industrial effluent discharges to the municipal sewerage system

    International Nuclear Information System (INIS)

    The industrial waste waters of an urban area are jointly treated with municipal sewage waters. The operation of the municipal sewage treatment plant depends substantially on the quality and quantity of industrial waste water conducted to the treatment plant for joint treatment and drainage. In order to guarantee the normal run of the plant a number of normative documents have been worked out regulating the discharge of industrial effluents to the municipal sewer network. Detailed requirements for individual industrial enterprises have been elaborated on the grounds of these documents by the local bodies of Water Supply and Sewage Management. The local requirements are coordinated with the institutions for the regulation of water utilisation and water conservation under the USSR Ministry of Land Reclamation and Water Conservation and the Ministry of Fisheries and are confirmed by local municipal authorities. Control over the implementation of obligations is exercised by Water Supply and Sewerage Management authorities. The discharges of industrial effluents to municipal sewer network have to meet both general and specific requirements

  7. Monitoring of the aerosols produced during the sprinkler irrigation with treated wastewater

    International Nuclear Information System (INIS)

    The paper evaluates the microbiological content of the aerosols produced during the irrigation with treated wastewater coming from a disinfection pilot plant set up in order to reach the Italian limit for unrestricted irrigation wastewater reuse. This evaluation is extremely important for both the possible effects on the workers' health and the presence of inhabited centers, including the city of Pistoia (Italy), just in the shelter of the cultivated areas. According to the experimental results, the paper points out that aerosols produced during irrigation do not contain any faecal indicator bacteria. Therefore WWTP disinfected effluent appears to be suitable from a sanitary point of view. On the contrary, using the un disinfected secondary effluent the presence of faecal indicator bacteria in the aerosols produced during the sprinkler irrigation

  8. Ground Water Pollution and Emerging Environmental Challenges of Industrial Effluent Irrigation : A Case Study of Mettupalayam Taluk, Tamilnadu

    OpenAIRE

    Mukherjee, Sacchidananda; Nelliyat, Prakash

    2006-01-01

    Industrial disposal of effluents on land and the subsequent pollution of groundwater and soil of surrounding farmlands – is a relatively new area of research. The environmental and socioeconomic aspects of industrial effluent irrigation have not been studied as extensively as domestic sewage based irrigation practices, at least for a developing country like India. The disposal of effluents on land has become a regular practice for some industries. Industries located in Mettupalaya...

  9. The impact of zinc oxide nanoparticles in freshwater mussels exposed to municipal effluents

    Directory of Open Access Journals (Sweden)

    Gagné F

    2016-08-01

    Full Text Available Zinc oxide nanoparticles (nano-ZnO are used in the production of transparent sunscreens and cosmetics, which are released into the environment through municipal effluents. The purpose of this study was to examine the toxicity of nano-ZnO to freshwater mussels (Elliptio complanata in the presence of municipal effluents. Mussels were exposed for 21 days at 15 o C to 1 and 10 µg/L nanoZnO, and ZnCl2 in the presence of a physico-chemically treated municipal effluent (3 and 10 % v/v. After the exposure period and a 24 h depuration step, mussels were analyzed for free Zn in gills, metallothioneins (MT, oxidative stress (production of malondialdehyde (MDA during lipid peroxidation, gonad alkali-labile phosphate (ALP levels and genotoxicity. Gill MT levels were increased at 10 µg/L nano-ZnO and ZnCl2 and in the presence of the municipal effluent. MT levels were positively correlated with free Zn in gills and negatively correlated with MDA levels, indicating its involvement in the prevention of oxidative stress. However, MDA levels were significantly related to DNA damage in gills, indicating that MT induction did not prevent oxidative-mediated damage in cells. Gonad ALP levels were increased by exposure to ZnCl2 and to the highest concentration of municipal effluent. DNA strand breaks were increased in mussels treated to nano-ZnO indepentely of municipal effluent. Multivariate discriminant function analysis revealed that control mussels differed from mussels exposed to the municipal effluent and from those exposed to nano-ZnO or ZnCl2 alone. When the municipal effluent was added, changes in MDA, MT and labile Zn were produced and formed another cluster, suggesting a change in the toxicity of the municipal effluent in the presence of nano-ZnO.

  10. Direct nanofiltration of wastewater treatment plant effluent

    OpenAIRE

    Schrader, Guillo Alexander

    2006-01-01

    Membrane technology, especially nanofiltration, is seen as a suitable technology to polish WWTP effluent to EU WFD standards and consequently produce an effluent quality suitable for agricultural or (in)direct potable usage. The objective of this study was to assess the potential of direct nanofiltration as technique for effluent reclamation.

  11. Facility effluent monitoring plan for WESF

    International Nuclear Information System (INIS)

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the efferent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability

  12. Use of Bacillus pumilus CBMAI 0008 and Paenibacillus sp. CBMAI 868 for colour removal from paper mill effluent

    OpenAIRE

    de Oliveira, Patrícia Lopes; Duarte, Marta Cristina Teixeira; Ponezi, Alexandre Nunes; Durrant, Lúcia Regina

    2009-01-01

    Bacillus pumilus and Paenibacillus sp. were applied on the paper mill effluent to investigate the colour remotion. Inocula were individually applied in effluent at pH 7.0, 9.0 and 11.0. The real colour and COD remotion after 48h at pH 9.0 were, respectively, 41.87% and 22.08% for B. pumilus treatment and 42.30% and 22.89% for Paenibacillus sp. Gel permeation chromatography was used to verify the molar masses of compounds in the non-treated and treated effluent, showing a decrease in the compo...

  13. Physicochemical Analysis and Microbial Diversity of Yamuna Water and Industrial Effluents

    Directory of Open Access Journals (Sweden)

    Poonam Gupta

    2014-06-01

    Full Text Available Pollution has arisen as a serious environmental concern to the present world after industrialization of human societies. It has severely affected our air, soil and water sources. Looking to its global, national, regional and local dimensions, it is now imperative to check it at each and every level. In the present study, 8 samples (3 Yamuna water samples, 3 tannery effluent samples and 2 textile effluent samples, were collected from different sites of Yamuna and exit points of textile and tannery Industries. Water and effluent samples were analysed for various physicochemical parameters (pH, TDS, hardness, chloride and BOD using conventional methods. Afterwards these samples were utilized for isolation of the native bacterial species. All the samples were showing higher than the standard values for TDS (500mg/l, hardness (80-100 mg/l, chloride (250mg/l and BOD (30mg/l. It was observed that the tannery effluents were showing maximum TDS values(1190-1240mg/l, followed by textile effluents (1190 and 1210mg/l and Yamuna water (530-1180mg/l.Similarly, in case of chloride content, highest concentration range(828.8-1598mg/lwas shown by tannery effluents. pH value was nearly neutral for Yamuna water, slightly acidic in case of textile effluents and more acidic for tannery samples. Highest range of hardness values were observed for the tannery effluents (860-880mg/l followed by textile effluents (760 and 860mg/l. The BOD values were nearly similar for all the samples with maximum values being observed for tannery effluents (42-48 mg/l. Thus it can be inferred that all the samples were highly polluted and need to be treated by suitable methods. There were 11 cultures purified, that could be employed in bioremediation purposes.

  14. Characterizing shipboard bilgewater effluent before and after treatment.

    Science.gov (United States)

    McLaughlin, Christine; Falatko, Debra; Danesi, Robin; Albert, Ryan

    2014-04-01

    Operational discharges from oceangoing vessels, including discharges of bilgewater, release oil into marine ecosystems that can potentially damage marine life, terrestrial life, human health, and the environment. Bilgewater is a mix of oily fluids and other pollutants from a variety of sources onboard a vessel. If bilgewater cannot be retained onboard, it must be treated by an oily water separator before discharge for larger ocean-going vessels. We evaluated the effectiveness of bilgewater treatment systems by analyzing land-based type approval data, collecting and analyzing shipboard bilgewater effluent data, assessing bilgewater effluent concentrations compared to regulatory standards, evaluating the accuracy of shipboard oil content monitors relative to analytical results, and assessing additional pollution reduction benefits of treatment systems. Land-based type approval data were gathered for 20 treatment systems. Additionally, multiple samples of influent and effluent from operational bilgewater treatment systems onboard three vessels were collected and analyzed, and compared to the land-based type approval data. Based on type approval data, 15 treatment systems were performing below 5 ppm oil. Shipboard performance measurements verified land-based type approval data for the three systems that were sampled. However, oil content monitor readings were more variable than actual oil concentration measurements from effluent samples, resulting in false negatives and positives. The treatment systems sampled onboard for this study generally reduced the majority of other potentially harmful pollutants, which are not currently regulated, with the exception of some heavy metal analytes. PMID:24420560

  15. Biological and advanced treatment of sulfate pulp bleaching effluents

    International Nuclear Information System (INIS)

    Spent bleaching effluents (from chlorination (C) and extraction (E) stages) of a sulfate pulp mill were subjected to bench-scale biological and advanced treatment. Although > 90 % of the influent BOD5 could be removed in an activated sludge process, the effluent still contained high amounts of resistant substances. The maximum COD removal was about 50 %; the removal rates achieved in the parameters TOC, DOC, AOX, SAK (254 nm) were even lower. The biological treatment led to an increase in color (436 nm) up to 40 %. The biologically pretreated effluent was further treated by ozone or ozone/irradiation. The DOC, COD, color (436 nm), SAK (254 nm) and AOX removal rates amounted to 61 %, 81 %, 98 %, 92 % and 92 %, respectively. These methods led simultaneously to an increase in biological biodegradability as reflected by an increase in BOD5. A comparison of the results obtained for raw and biologically pretreated wastewaters showed that biodegradable substances should first be removed from the wastewater since otherwise the effectiveness of these methods decreased. The coagulation/flocculation of biologically pretreated effluent showed that FeCl3 was the most effective coagulant and that removal rates > 90 % could be achieved. The treatment with various powder activated carbons showed that a dosage of 10 g/l was required to achieve elimination rates > 90 % in the parameters DOC, COD, color (436 nm) and SAK (254 nm). Adsorption isotherms were developed for every activated carbon and adsorption constants were calculated. (author)

  16. INDUSTRIAL EFFLUENT TREATMENT USING IONIZING RADIATION COMBINED TO TITANIUM DIOXIDE

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, C.L.; Oikawa, H.; Mori, M.N.; Sampa, M.H.O.

    2004-10-04

    The Advanced Oxidation Process (AOP) with OH radicals are the most efficient to mineralize organic compounds, and there are various methods to generate OH radicals as the use of ozone, hydrogen peroxide and ultra-violet radiation and ionizing radiation. The irradiation of aqueous solutions with high-energy electrons results in the excitation and ionizing of the molecules and rapid (10{sup -14} - 10{sup -9} s) formation of reactive intermediates. These reactive species will react with organic compounds present in industrial effluent inducing their decomposition. Titanium dioxide (TiO{sub 2}) catalyzed photoreaction is used to remove a wide range of pollutants in air and water media, combined to UV/VIS light, FeO{sub 2}, and H{sub 2}O{sub 2}, but as far as known there is no report on the combination with ionizing radiation. In some recent studies, the removal of organic pollutants in industrial effluent, such as Benzene, Toluene, and Xylene from petroleum production using ionizing radiation was investigated. It has been ob served that none of the methods can be used individually in wastewater treatment applications with good economics and high degree of energy efficiency. In the present work, the efficiency of ionizing radiation in presence of TiO{sub 2} to treat industrial effluent was evaluated. The main aim to combine these technologies is to improve the efficiency for very hard effluents and to reduce the processing cost for future implementation to large-scale design.

  17. Performance evaluation of Effluent Treatment Plant of Dairy Industry

    Directory of Open Access Journals (Sweden)

    Pratiksinh Chavda

    2014-09-01

    Full Text Available Dairy industry is among the most polluting of the food industries in regard to its large water consumption. Dairy is one of the major industries causing water pollution. Considering the increased milk demand, the dairy industry in India is expected to grow rapidly and have the waste generation and related environmental problems are also assumed increased importance. Poorly treated wastewater with high level of pollutants caused by poor design, operation or treatment systems creates major environmental problems when discharged to the surface land or water. Various operations in a dairy industry may include pasteurization, cream, cheese, milk powder etc. Considering the above stated implications an attempt has been made in the present project to evaluate one of the Effluent Treatment Plant for dairy waste. Samples are collected from three points; Collection tank (CT, primary clarifier (PC and Secondary clarifier (SC to evaluate the performance of Effluent Treatment Plant. Parameters analyzed for evaluation of performance of Effluent Treatment Plant are pH, TDS, TSS, COD, and BOD at 200C The pH, TDS, TSS, COD and BOD removal efficiency of Effluent Treatment Plant were 26.14 %, 33.30 %, 93.85 %, 94.19 % and 98.19 % respectively.

  18. Global hepatic gene expression in rainbow trout exposed to sewage effluents: a comparison of different sewage treatment technologies.

    Science.gov (United States)

    Cuklev, Filip; Gunnarsson, Lina; Cvijovic, Marija; Kristiansson, Erik; Rutgersson, Carolin; Björlenius, Berndt; Larsson, D G Joakim

    2012-06-15

    Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents. PMID:22575374

  19. Toxicity of different industrial effluents in Taiwan: a comparison of the sensitivity of Daphnia similis and Microtox.

    Science.gov (United States)

    Liu, M C; Chen, C M; Cheng, H Y; Chen, H Y; Su, Y C; Hung, T Y

    2002-01-01

    Industrial effluents are known to exhibit toxicity toward different aquatic organisms. In Taiwan management of these discharges still relies on chemical and physical and physical characteristics of water, although various standard method for assessing aquatic toxicity have been proposed by the Taiwan Environmental Protection Administration. In this study we examined the toxicity and compared the sensitivity of different types of industrial effluents using two proposed toxicity tests: the Daphnia similis acute toxicity test and the Microtox acute assay (Vibrio fischeri). Results showed that electroplating effluents were the most toxic of all the effluents tested, followed by acrylonitrile manufacturing, pulp/paper, and tannery effluents. The EC50 of an electroplating effluent for D. similis and V. fischeri (15 min) was as low as, respectively, 2.9% and 3.9% of the whole effluent. The other effluents were not acutely toxic to either organism tested. However, the tests exhibited different sensitivity toward various discharges. Only the electroplating and acrylonitrile manufacturing effluents had effects on both organisms. These results indicate the importance of the incorporation of aquatic toxicity tests into the management scheme for treated wastewaters. PMID:11979586

  20. Bioremediation of a complex industrial effluent by biosorbents derived from freshwater macroalgae.

    Directory of Open Access Journals (Sweden)

    Joel T Kidgell

    Full Text Available Biosorption with macroalgae is a promising technology for the bioremediation of industrial effluents. However, the vast majority of research has been conducted on simple mock effluents with little data available on the performance of biosorbents in complex effluents. Here we evaluate the efficacy of dried biomass, biochar, and Fe-treated biomass and biochar to remediate 21 elements from a real-world industrial effluent from a coal-fired power station. The biosorbents were produced from the freshwater macroalga Oedogonium sp. (Chlorophyta that is native to the industrial site from which the effluent was sourced, and which has been intensively cultivated to provide a feed stock for biosorbents. The effect of pH and exposure time on sorption was also assessed. These biosorbents showed specificity for different suites of elements, primarily differentiated by ionic charge. Overall, biochar and Fe-biochar were more successful biosorbents than their biomass counterparts. Fe-biochar adsorbed metalloids (As, Mo, and Se at rates independent of effluent pH, while untreated biochar removed metals (Al, Cd, Ni and Zn at rates dependent on pH. This study demonstrates that the biomass of Oedogonium is an effective substrate for the production of biosorbents to remediate both metals and metalloids from a complex industrial effluent.

  1. Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent.

    Science.gov (United States)

    Haq, Izharul; Kumar, Sharad; Kumari, Vineeta; Singh, Sudheer Kumar; Raj, Abhay

    2016-03-15

    Due to high pollution load and colour contributing substances, pulp and paper mill effluents cause serious aquatic and soil pollution. A lignin-degrading bacterial strain capable of decolourising Azure-B dye was identified as lignin peroxidase (LiP) producing strain LD-5. The strain was isolated from pulp and paper mill effluent contaminated site. Biochemical and 16S rDNA gene sequence analysis suggested that strain LD-5 belonged to the Serratia liquefaciens. The strain LD-5 effectively reduced pollution parameters (colour 72%, lignin 58%, COD 85% and phenol 95%) of real effluent after 144h of treatment at 30°C, pH 7.6 and 120rpm. Extracellular LiP produced by S. liquefaciens during effluent decolourisation was purified to homogeneity using ammonium sulfate (AMS) precipitation and DEAE cellulose column chromatography. The molecular weight of the purified lignin peroxidase was estimated to be ∼28kDa. Optimum pH and temperature for purified lignin peroxidase activity were determined as pH 6.0 and 40°C, respectively. Detoxified effluent was evaluated for residual toxicity by alkaline single cell (comet) gel electrophoresis (SCGE) assay using Saccharomyces cerevisiae MTCC 36 as model organism. The toxicity reduction to treated effluent was 49.4%. These findings suggest significant potential of S. liquefaciens for bioremediation of pulp and paper mill effluent. PMID:26686478

  2. Evaluation of analytical methods for bioconcentratable contaminants in effluent, sediment, and tissue samples

    International Nuclear Information System (INIS)

    In a study sponsored by the American Petroleum Institute, effluent, sediment, and tissue samples were extracted and analyzed by gas chromatography/mass spectrometry for bioconcentratable contaminants following EPA draft methods as part of a round-robin intercalibration exercise. In addition, three petroleum industry treated effluents representing marketing terminal, refinery, and produced water effluents were analyzed using the EPA effluent method and two modified methods that included alternative extract cleanup procedures. For all three methods, recoveries of surrogate compounds spiked prior to extraction were generally low, suggesting a need to reduce/eliminate some of the procedures that contribute analyte losses. The EPA draft method for effluents and sediments contains an acid cleanup procedure that appears responsible for consistent losses of 5- and 6-ringed polynuclear aromatic hydrocarbons (PAHs). Two alternative cleanup procedures were evaluated for the effluent method, one using alumina column chromatography and the other using normal-phase silica column automated HPLC. Both alternative cleanup methods proved better suited than the acid cleanup procedure for effluents containing PAHs. Additional procedural modifications to the draft methods are recommended

  3. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-11

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.

  4. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL's sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL's outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE's purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives

  5. Irrigation of treated wastewater in Braunschweig, Germany

    DEFF Research Database (Denmark)

    Ternes, T.A.; Bonerz, M.; Herrmann, N.;

    2007-01-01

    In this study the fate of pharmaceuticals and personal care products which are irrigated on arable land with treated municipal waste-water was investigated. In Braunschweig, Germany, wastewater has been irrigated continuously for more than 45 years. In the winter time only the effluent of the...

  6. Evaluation of bone marrow irradiation by area under the curve of blood counts measurements in hemodialyzed patients with differentiated thyroid cancer treated with 131Iodine

    International Nuclear Information System (INIS)

    The administration of 131I is a well established treatment for differentiated thyroid carcinoma (DTC). Uncommon situations, such as DTC in patients on hemodialysis (HD), can generate logistic problems with personnel and disposables materials, as well as with suitable calculation of the activity to be administered, in order to avoid excessive irradiation to critical organs such as bone marrow, due to excretion impairment. Objectives: To estimate the risk of bone marrow irradiation in patients with DTC and end stage renal disease (ESRD) in HD, requiring radioiodine ablation therapy, and to make radiation safety considerations during HD. Methods: 2 patients (p) with ESRD in HD with DTC with indication of post surgical 131I ablation of the thyroid remnant were submitted. An interdisciplinary approach between Nuclear Medicine, Endocrinology and Nephrology departments was addressed. Both patients received a 3.7GBq dose of 131I. Extended high flux HD was performed 24 hours after therapeutic dose (dialysis flow 800ml/min and blood flow 400ml/min during 6 hours). External exposition was measured with a portable monitor at 1 meter distance from the p and serial blood count teams of the inlet and outlet blood lines of the HD blood circuit were obtained; chip monitors were used by the Nephrology personnel in order to measure their external exposition. At the end of the procedure, residual activity of the HD machine, dialyser and lines were measured with a portable monitor. In order to evaluate the bone marrow irradiation, the radionuclide clearance, the area under the curve (AUC) was calculated, taking into account the different values of the effective half life described in the literature. Results: In the 2 p, 94 and 90% of the 131I dose had been removed at the end of the first HD session respectively (76% and 66% in the first hour of HD). A parallel reduction was observed in the external dosimetry. The effective intradialysis 131I T 1/2 was 1.4 and 1.8 hours. Conclusions

  7. Research on the removal of radium from uranium effluent by air-aeration hydrated manganese hydroxide adsorption

    International Nuclear Information System (INIS)

    In the acidic leaching uranium process, pyrolusite or manganese oxide (MnO2) powder is often used as an oxidizer. In the resulting effluent, manganese ion is present as a contaminant in addition to U, Ra, Th, As, Zn, Cu, F-, SO42-, etc. Manganese ion content is about 100∼200 mg/l in effluent. In this case, a new process technique can be developed to treat the effluent using the Mn2+ present in the effluent. The approach is as follows: The effluent is neutralized by lime milk to pH about 11. As a result, most contaminants are precipitated to meet the uranium effluent discharge standards (U, Th, Mn, SO42- etc), but radium is still present in the effluent. In this process, manganese ion forms manganese hydroxide Mn(OH)2. The manganese hydroxide is easily oxidized to form MnO(OH)2 by air aeration. This hydrated manganese hydroxide complex can then be used to adsorb radium in effluent. The experiments show: (1) Effluent pH, manganese concentration in effluent, and aeration strength and time etc. influence the radium removal efficiency. Under the test conditions, when manganese in effluent is between 100∼300 mg/l, and pH is over 10.5, radium can be reduced to lower than 1.11 Bq/l in the processed effluent. Higher contents of impurity elements such as aluminum, silicon and magnesium in the effluent affect the removal efficiency, (2) Under the experimental conditions, the lime precipitation-air aeration formed hydrated manganese hydroxide complex sludge is stable. There is no obvious release of radium from the adsorbed hydrated manganese hydroxide complex sludge, (3) the current experiments show that hydrated manganese hydroxide complex sludge has very good re-adsorption ability for removal of radium from uranium effluent. Some experimental parameters have been measured, (4) Compared with other process methods, such as neutralizing effluent without aeration; or neutralization with barium chloride addition at pH 5, 8, and 11, the removal of radium from uranium effluent

  8. Evaluation of Municipal Effluent Toxicity Using Higher Plants and Invertebrates

    Directory of Open Access Journals (Sweden)

    Jūratė Žaltauskaitė

    2010-10-01

    Full Text Available   Toxicity of Kaunas municipal effluent was evaluated using bioassays with aquatic invertebrates and terrestrial higher plants. Toxicity tests were performed on samples of both untreated and mechanically and biologically treated wastewater. Wastewater toxicity was assessed using seed germination and short-term early seedling growth tests of lettuce (Lactuca sativa L. and acute microcrustaceans Thamnocephalus platyurus (24 h assays. Undiluted untreated wastewater was severely toxic to T.platyurus and led to death of all exposed organisms. Twofold decrease in wastewater concentration in the solution (from 100 % to 50 % led to sharp transition between extremely toxic to medium toxic to tested organisms. In four and more times diluted wastewater only 10-20 % of the total exposed T. platyurus died. Measured endpoints in higher plants tests were: seed germination, root length, shoot height and total biomass. Raw sewage was slightly toxic (0.6 TU to the root growth of lettuce, but mechanically and biologically treated effluents exhibited no adverse effects or even started to stimulate the growth. The growth of shoots and total biomass were stimulated due to exposure to effluents. Stimulation effect was determined by sufficiently high concentrations of nutrients. 

  9. Reutilização de efluente de tingimentos de fibras acrílicas pós-tratamento fotoeletroquímico Reuse of a effluent from the dyeing of acrylic fabrics after photoelectrochemical treatment

    Directory of Open Access Journals (Sweden)

    Mônica Lucas

    2008-01-01

    Full Text Available On a laboratory scale effluents were produced from bichromic dyeing of acrylic fabrics with the basic dyes Blue Astrazon FGGL 300% and Yellow Gold Astrazon GL 200%. The residual dyeing baths were subjected to a photoelectrochemical treatment and reused in a second dyeing process. In the reutilization study, dyeings with treated effluent were compared with standard dyeings with distilled water. The results of dyeings using 100% of treated effluent were unsatisfactory, but the substitution of 10 to 30% of the treated effluent by distilled water resulted in reduced and more acceptable values for difference in colour intensity (ΔE between 1.86 and 0.3.

  10. Efluente de esgoto doméstico tratado e reutilizado como fonte hídrica alternativa para a produção de cana-de-açúcar Reuse of treated domestic sewage effluent as an alternative water source for the production of sugarcane

    Directory of Open Access Journals (Sweden)

    Cley A. S. de Freitas

    2013-07-01

    Full Text Available Com base no consumo hídrico excessivo na produção agrícola e da expansão do cultivo da cana-de-açúcar impulsionada pela crescente demanda de etanol, tem-se questionado em relação a um uso mais racional da água de irrigação e ao reúso de água na produção agrícola. Desta forma objetivou-se, com o presente trabalho, avaliar os efeitos do reúso de efluente de esgoto doméstico tratado na irrigação da cana-de-açúcar. O estudo foi conduzido no Centro de Pesquisa sobre Tratamento e Reúso de Águas Residuárias, em Aquiraz, CE. O delineamento experimental adotado foi o de blocos ao acaso, no esquema de parcelas subdivididas, com quatro repetições. Nas parcelas avaliaram-se os efeitos de dois tipos de água (água potável e esgoto doméstico tratado; e nas subparcelas se alocaram cinco lâminas de irrigação baseadas em percentuais da evaporação medida em um tanque do tipo classe A (ECA. Concluiu-se que a água residuária proporcionou o maior potencial produtivo de colmos (272,1 Mg ha-1 e a maior densidade de plantas (126.000 plantas ha-1. O aumento das lâminas de irrigação proporcionou incrementos no potencial produtivo e na densidade de plantas, independente do tipo de água.With the excessive consumption of water in agricultural production, and the expansion of the cultivation of sugarcane due to growing demand for ethanol, in this context, a rational use of water for irrigation and use of wastewater in agricultural production has been raised. Therefore, the objective of this study was to evaluate the effects of reuse of treated domestic sewage effluent for irrigation of sugarcane. The study was conducted at the Research Center on Treatment and Reuse of Wastewater, in Aquiraz, CE. The experimental design was randomized blocks in split plots with four replications. In the plots were evaluated the effects of two types of water (well water and treated domestic sewage; in the subplots five irrigation water depths were

  11. Yields, Quality and Metal Accumulation of Chinese Cabbage Irrigated with Diary Effluent

    OpenAIRE

    Linxian Liao; Wangwei Cai; Xiaohou Shao; Junyi Tan

    2013-01-01

    In order to investigate the short-term effects of wastewater (dairy effluent) and EM treated wastewater on cabbage quality (vitamin C, nitrate), yield, Nitrogen (N) and Phosphorous (P) uptakes and heavy metals (i.e., Hg, Pb and Cd) accumulation in Cabbage, field experiments were conducted with the following irrigation treatments: Clean Water (CW), Waste Water (WW), Reclaimed Water-EM treated wastewater (RW), Clear Water-wastewater rotation (C/W) and clear water-treated wastewater rotation (C/...

  12. Can constructed wetlands treat wastewater for reuse in agriculture? Review of guidelines and examples in South Europe.

    Science.gov (United States)

    Lavrnić, Stevo; Mancini, Maurizio L

    2016-01-01

    South Europe is one of the areas negatively affected by climate change. Issues with water shortage are already visible, and are likely to increase. Since agriculture is the biggest freshwater consumer, it is important to find new water sources that could mitigate the climate change impact. In order to overcome problems and protect the environment, a better approach towards wastewater management is needed. That includes an increase in the volume of wastewater that is treated and a paradigm shift towards a more sustainable system where wastewater is actually considered as a resource. This study evaluates the potential of constructed wetlands (CWs) to treat domestic wastewater and produce effluent that will be suitable for reuse in agriculture. In South Europe, four countries (Greece, Italy, Portugal and Spain) have national standards that regulate wastewater reuse in agriculture. Wastewater treatment plants (WWTPs) that are based on CWs in these four countries were analysed and their effluents compared with the quality needed for reuse. In general, it was found that CWs have trouble reaching the strictest standards, especially regarding microbiological parameters. However, their effluents are found to be suitable for reuse in areas that do not require water of the highest quality. PMID:27232397

  13. Treatment option evaluation for liquid effluent secondary streams on the Hanford Site

    International Nuclear Information System (INIS)

    This study, conducted by the Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC), examines the range of secondary waste types and volumes likely to result from treatment of contaminated liquid effluents. Alternatives for treatment of these effluents were considered, taking into account the implementation of the ''best-available technology'' as assumed in current and ongoing engineering studies for treating the various liquid effluent waste streams. These treatment alternatives, and potential variations in the operating schedules for Hanford Site facilities generating contaminated liquid effluents, were evaluated to project an estimated range for the volume of each of the various secondary waste streams that are likely to be generated. The conclusions and recommendations were developed, based on these estimates. 23 refs., 34 figs., 16 tabs

  14. Anaerobic treatment of pulp and paper mill effluents--status quo and new developments.

    Science.gov (United States)

    Habets, Leo; Driessen, Willie

    2007-01-01

    Since the early 1980s, anaerobic treatment of industrial effluents has found widespread application in the pulp and paper industry. Over 200 installations are treating a large variety of different pulp and paper mill effluents. Amongst various anaerobic systems the UASB and IC are the most applied anaerobic reactor systems. Anaerobic treatment is well feasible for effluents originated from recycle paper mills, mechanical pulping (peroxide bleached), semi-chemical pulping and sulphite and kraft evaporator condensates. The advantages of anaerobic pre-treatment are (1) net production of renewable energy (biogas), (2) minimized bio-solids production, (3) minimal footprint and (4) reduced emission of greenhouse gases. Via in-line application of anaerobic treatment in closed circuits (paper kidney technology) further savings on cost of fresh water intake and effluent discharge levies are generated. PMID:17486855

  15. Biosorption Potential of Trichoderma gamsii Biomass for Removal of Cr(VI) from Electroplating Industrial Effluent

    OpenAIRE

    Haresh Keharia; Kavita, B.

    2012-01-01

    The potential use of acid-treated biomass of Trichoderma gamsii to remove hexavalent chromium ions from electroplating industrial effluent was evaluated. Electroplating industrial effluent contaminated with 5000 mg/L of Cr(VI) ions, collected from industrial estate of Gujarat, India, was mixed with acid-treated biomass of T. gamsii at biomass dose of 10 mg/mL. Effect of contact time and initial Cr(VI) ions was studied. The biosorption of Cr(VI) ions attained equilibrium at time interval of 24...

  16. Desalination of brackish water and concentration of industrial effluents by electrodialysis

    Directory of Open Access Journals (Sweden)

    J. J. Schoeman

    1983-03-01

    Full Text Available Electrodialysis (ED is, at present, used mainly for the desalination of brackish drinking-water. Brackish water with a high scaling potential can be successfully treated, using the electrodialysis reversal (EDR process without the addition of chemicals. The reliability of the ED process makes it very attractive for water treatment. Although used mainly for brackish water desalination, ED also has certain industrial applications. Plating wash waters, cooling tower recirculation water and glass etching effluents have been treated successfully with ED for water recovery and effluent volume reduction, while ED treatment of nickel plating wash waters is an established industrial process.

  17. Reutilização de efluente de tingimentos de fibras acrílicas pós-tratamento fotoeletroquímico Reuse of a effluent from the dyeing of acrylic fabrics after photoelectrochemical treatment

    OpenAIRE

    Mônica Lucas; Pâmela F. P. Toassi Jeremias; Jürgen Andreaus; Ivonete Oliveira Barcellos; Patricio Peralta-Zamora

    2008-01-01

    On a laboratory scale effluents were produced from bichromic dyeing of acrylic fabrics with the basic dyes Blue Astrazon FGGL 300% and Yellow Gold Astrazon GL 200%. The residual dyeing baths were subjected to a photoelectrochemical treatment and reused in a second dyeing process. In the reutilization study, dyeings with treated effluent were compared with standard dyeings with distilled water. The results of dyeings using 100% of treated effluent were unsatisfactory, but the substitution of 1...

  18. Supplemental stack-effluent monitoring at the Safety Light Corporation, Bloomsburg, Pennsylvania. Final report

    International Nuclear Information System (INIS)

    Supplemental stack effluent monitoring was performed at the Safety Light Corporation (SLC) in Bloomsburg, PA, on August 16 through 20, 1982. Monitoring of the SLC stack effluents at the point of relese indicated concentrations of aqueous tritium above the guideline levels established for unrestricted areas. However, environmental air sampling off-site indicated that the levels of all forms of tritium, including aqueous tritium, were well within the guidelines. Analyses performed by both the Oak Ridge Associated Universities (ORAU) and SLC of the stack effluents produced comparable results. It is concluded that the environmental tritium monitoring and control program established by SLC is adequate. Monitoring data are included

  19. Controlled disposal of domestic effluent sewage in the ground to reduce fecal coliforms

    Directory of Open Access Journals (Sweden)

    Paulo Fortes Neto

    2008-12-01

    Full Text Available The indiscriminate launching in water bodies of domestic sewage without treatment, or even treated, but without appropriate disinfection, contributes with significant amount of organisms of the called "coliform group” that can carry specific illnesses agents propagated through the water. The application of effluent in the ground, instead of direct disposal in water courses, in addition to being an alternative way for the disposal of residues and biological control of pollutants, constitutes an adequate way of nutrients supply to the soil and plants. So, this work had as objective the evaluation of the reduction of fecal coliforms, after controlled applications of 60 days treated effluent in cultivated soil, by analyzing the increase of fluorescent rhizobacterias Pseudomonas fluorescens and Bacillus spp. present in the rhizospheres of different crops. The experiment was developed in field conditions in the Experimental Farm of Department of Agrarian Sciences of the University of Taubaté, municipality of Taubaté, SP. The Experimental design consisted of random blocks, with five treatments including annual crops (Oats, Barley, Triticale - a cross between wheat and rye, Black Beans and non-cultivated soil as witness - blank reference and four repetitions, totalizing 20 ground plots with area of 2 m x 1 m with 50 cm space among plots on a Dystrophic Red-Yellow Latossol. Results from the microbial analyses of rhizosphere and non-rhizosphere soil indicated that the rhizosphere of oats had denser rhizobacterias than the other crops. However, the greatest efficiency was found in the reduction of thermo-tolerant coliforms for both black beans and non-cultivated soil.

  20. Review on Pretreatment of Effluent Released from Steel Industry

    Directory of Open Access Journals (Sweden)

    Meena Vangalpati1

    2014-08-01

    Full Text Available There are many reasons for the environmental pollution.One of the main reason is the vast industrialization, which contributes to 78% of the world’s pollution.There are various industries like leather,food,automobile,pharmaceutical,leather,textile,etc,responsible for the destruction of nature. Steel is one of the major metal produced in huge quantities which releases toxic effluents like nickel,copper,cadmium,lead,nitrates,chromium .These elements lead to great destruction in both flora and fauna by variety of diseases and loss of natural habitats.Biological,physical,and chemical techniques help in the treatment.This paper reviews on treating these effluents initially by simple laboratory methods.

  1. Continuous monitoring of gaseous effluents

    International Nuclear Information System (INIS)

    The system allows to continuously determine the radioactive materials discharge (iodine, noble gases and aerosols) to the environment. It consists in compelling, by a pump, a known and fixed fraction of the total flow and preserving the aerosols by a filter. The gas -now free from aerosols- traverses an activated carbon filter which keeps the iodine; after being free from aerosols and iodine, the effluent traverses a measurement chambers for noble gases which has a scintillator. (Author)

  2. Liquid Effluents Program mission analysis

    International Nuclear Information System (INIS)

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ''capstone'' team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan

  3. The effects of bleach plant effluent recycle in kraft mill green liquors

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, B.M.; Uloth, V.C. [Pulp and Paper Research Inst. of Canada, Vancouver, BC (Canada); Dorris, G.M. [Pulp and Paper Research Inst. of Canada, Pointe Claire, PQ (Canada); Stafford, E. C.

    1995-12-31

    A new approach to reducing or eliminating effluent flows from a kraft mill through process changes and by recycling, was presented. A closed system experiment was conducted in which bleach plant effluents and green liquors were used to simulate effluent recycling to the recausticizing area in place of fresh water. Results showed that with current levels of water use, acid effluents from bleaching of softwood pulp could be recycled to the recausticizing area if a 5-18 per cent loss in causticizing efficiency and a 10 per cent decrease in the lime mud settling rate was tolerable. High levels of sodium chloride did not always reduce causticizing efficiency. It was found that bleach plant water usage was very high in the plants studied. New ways to minimize water use in the plant must be found if a significant degree of closure is to be achieved. 15 refs., 6 tabs., 8 figs.

  4. [Treatment of Petrochemical Treatment Plant Secondary Effluent by Fenton Oxidation].

    Science.gov (United States)

    Wang, Yi; Wu, Chang-yong; Zhou, Yue-xi; Zhang, Xue; Dong, Bo; Chen, Xue-min

    2015-07-01

    Fenton oxidation was applied to treat the petrochemical treatment plant secondary effluent by the continuous flow configuration. The effect of Fenton agent dosage on the COD and phosphorus removal and the variation of the dissolved organic matter characteristics during the treatment process were investigated. The results showed the average COD and PO(4)3- -P concentrations were 64.8 mg.L-1 and 0. 79 mg.L-1, respectively. When the dosage of H2O (30%), FeSO4.7H2O and PAM were 0. 4 mL.L-1, 0. 8 mg.L-1 and 0. 9 mg.L-1 and the residence time was 30 min, the average removal rate of COD and PO(4)3- -P were 24. 3% and 95. 5% respectively. The effluent COD was lower than 50 mg.L-1. The percentage of dissolved organic matters with molecular weight less than 1 x 10(3) was 80. 4% in the raw wastewater, however, the percentage increased to 95. 6% when treated by Fenton oxidation. Three-dimensional fluorescence analysis showed that the Fenton oxidation can effectively remove protein and phenols. GC-MS results showed that there were about 117 kinds of organic matters detected in the secondary effluent, while the number reduced to 27 after oxidation by Fenton. The organics containing unsaturated bond had a better removal than those of other types of organics. Fenton oxidation can be used in the advanced treatment of petrochemical secondary effluent. PMID:26489330

  5. Biodegradation and detoxification of melanoidin from distillery effluent using an aerobic bacterial strain SAG5 of Alcaligenes faecalis.

    Science.gov (United States)

    Santal, Anita Rani; Singh, N P; Saharan, Baljeet Singh

    2011-10-15

    Distillery effluent retains very dark brown color even after anaerobic treatment due to presence of various water soluble, recalcitrant and coloring compounds mainly melanoidins. In laboratory conditions, melanoidin decolorizing bacteria was isolated and optimized the cultural conditions at various incubation temperatures, pH, carbon sources, nitrogen sources and combined effect of both carbon and nitrogen sources. The optimum decolorization (72.6 ± 0.56%) of melanoidins was achieved at pH 7.5 and temperature 37 °C on 5th day of cultivation. The toxicity evaluation with mung bean (Vigna radiata) revealed that the raw distillery effluent was environmentally highly toxic as compared to biologically treated distillery effluent, which indicated that the effluent after bacterial treatment is environmentally safe. This proves to be novel biological treatment technique for biodegradation and detoxification of melanoidin from distillery effluent using the bacterial strain SAG(5). PMID:21880418

  6. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment.

    Science.gov (United States)

    Lin, Hongjun; Wang, Fangyuan; Ding, Linxian; Hong, Huachang; Chen, Jianrong; Lu, Xiaofeng

    2011-09-15

    The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH(4)(+)-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent. PMID:21794980

  7. Comportamento do girassol quando cultivado em área tratada com o herbicida 2,4-D¹ Sunflower behavior when cultivated in 2,4-D treated areas

    Directory of Open Access Journals (Sweden)

    D.L.P. Gazziero

    2001-04-01

    Full Text Available Com o objetivo de determinar o período adequado de semeadura da cultura do girassol (Helianthus annuus, em relação à aplicação de 2,4-D, foi realizado um experimento em condições de campo da área experimental da Embrapa Soja, Londrina-PR, durante o ano agrícola 1995/96. Os tratamentos estabelecidos foram doses do herbicida 2,4-D (0,0, 536 e 1.005 g e.a. ha-1 e épocas de semeadura da cultura. Dessa forma, a semeadura foi realizada um dia antes da aplicação do produto (-1 dia, no dia da aplicação (0 dia e a 1, 4, 7, 10 e 13 dias depois da aplicação do herbicida. Os resultados indicaram que o girassol sofreu injúrias mais severas nas três primeiras épocas de semeadura (-1, 0 e 1. Aumentando o tempo entre a aplicação das doses do herbicida e a semeadura do girassol, observaram-se menores danos causados à cultura. O experimento permitiu concluir que áreas tratadas com o 2,4-D nas doses de 536 e 1.005 g e.a. ha-1 podem ser cultivadas com girassol, desde que se mantenha um intervalo mínimo de quatro dias entre a aplicação do herbicida e a sua semeadura.A field assay was carried out at the "Embrapa Soja", an experimental station in Londrina, Paraná, Brazil, to evaluate the adequate timing for sunflower sowing combined with 2.4-D, during the growing season of 1995/96. The treatments consisted of three rates of 2.4-D herbicide (0.0, 536 and 1,005 g a.e. ha-1 and seven periods of sunflower sowing: -1 day (sunflower sowing was conducted one day before herbicide application; 0 day (sunflower sowing and herbicide application were conducted at the same day and sunflower sowing at one, four, seven, 10 and 13 days after herbicide application. The results showed that sunflower growth was reduced mainly when sowing occurred at a time close to the 2.4-D application. Reduced herbicide damage on sunflower plants was observed when a longer period was kept between sowing time and herbicide application. It was concluded that areas treated

  8. Effluent treatment for nuclear thermal propulsion ground testing

    Science.gov (United States)

    Shipers, Larry R.

    1993-01-01

    The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.

  9. Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques

    Science.gov (United States)

    Pathak, S.; Bhadra, B. K.; Sharma, J. R.

    2012-07-01

    The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized

  10. STUDY OF INFLUENCE OF EFFLUENT ON GROUND WATER USING REMOTE SENSING, GIS AND MODELING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    S. Pathak

    2012-07-01

    Full Text Available The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India. There are four Common Effluent Treatment Plant (CETP treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi – a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat −1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer – inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer

  11. Radioactive effluent releases from Rokkasho Reprocessing Plant (1). Gaseous effluent

    International Nuclear Information System (INIS)

    In Japan, Rokkasho Reprocessing Plant (RRP) is going to start the operation in service as the first large-scale commercial reprocessing plant of spent fuels which has annual reprocessing quantity of 800tUpr in maximum. RRP started active test with spent fuels on March 31, 2006. In the active test, the performance of reprocessing, removal of radioactive nuclides from gaseous and liquid effluent, and so on are verified. When spent fuel assemblies are sheared and dissolved, radioactive gaseous waste containing 85Kr, 3H and 129I is released to the atmosphere. In order to limit the public dose as low as reasonably achievable, RRP removes radioactive materials by the help of scrubbing, filtering, etc, and then releases gaseous effluent through a main stack that allow to make dispersion and dilution very efficient. For active test, concerning the radioactive gaseous effluent to be released into the environment, the target values of annual release quantity have been defined in our Safety Rules based on the estimated annual release quantity at the design stage of RRP. By monitoring the radioactive material in exhaust, RRP controls it not to exceed the target values in order to keep the public dose as low as reasonably achievable. RRP will reprocess 430 tUpr spent fuel tUpr (about 460 fuel assemblies for PWR, and about 1250 fuel assemblies for BWR) during active test. The amounts of radioactive gaseous waste during active test are evaluated to be less than the target values. In addition, public dose from external exposure, inhalation, and, ingestion of agricultural and livestock food, influenced by RRP during active test is evaluated low sufficiently. (author)

  12. The biorotor system for posttreatment of anaerobically treated domestic sewage

    OpenAIRE

    Tawfik, A.I.

    2002-01-01

    This thesis describes the evaluation of the applicability of biorotor system for post-treatment (polishing) of different effluent qualities of an UASB reactor treating raw domestic sewage, with emphasis on the elimination of various COD fractions, ammonia and E.Coli.The removal mechanism of E.Coli from UASB effluent using a RBC has been investigated. The results obtained revealed that an adsorption process and sedimentation comprise the most important removal mechanism of E.Coli in the biofil...

  13. Method for treating wastewater using microorganisms and vascular aquatic plants

    Science.gov (United States)

    Wolverton, B. C. (Inventor)

    1983-01-01

    A method for treating wastewater compresses subjecting the wastewater to an anaerobic setting step for at least 6 hours and passing the liquid effluent from the anaerobic settling step through a filter cell in an upflow manner. There the effluent is subjected first to the action of anaerobic and facultative microorganisms, and then to the action of aerobic microorganisms and the roots of at least one vascular aquatic plant.

  14. Study of the retention of fission products by a few common minerals. Application to the treatment of medium activity effluents (1962)

    International Nuclear Information System (INIS)

    The conditions in which strontium is fixed on calcite (the object of the Geneva report P/395 - USA - 1958) are more closely studied and the work is extended to five fission products present in the effluents, and to 17 common rocks and minerals. Although as it turns out this fixation is not suitable as a method of treating the S.T.E. effluents (i.e. those from the Effluent Treatment plant at Marcoule), the study shows that all the crystals considered are strongly contaminated by simple contact with the effluents. (author)

  15. Desenvolvimento e operação de reator anaeróbio de manta de lodo (UASB no tratamento dos efluentes da suinocultura em escala laboratorial Development and operation of an upflow anaerobic sludge blanket reactor (UASB treating liquid effluent from swine manure in laboratory scale

    Directory of Open Access Journals (Sweden)

    Cláudio Milton Montenegro Campos

    2006-02-01

    Full Text Available A atividade suinícola vem, desde meados da década de 70, sendo uma das mais poluidoras atividades agroindustriais no Estado de Minas Gerais. Sendo assim, objetivou-se desenvolver um Reator Anaeróbio de Manta de Lodo (UASB-Upflow Anaerobic Sludge Blanket visando tratar os dejetos produzidos com máxima eficiência dentro de um tempo e com custo reduzidos. Para tanto um experimento em escala laboratorial foi projetado e monitorado no Laboratório de Análise de Água do Departamento de Engenharia da Universidade Federal de Lavras (LAADEG, sendo composto por um Tanque de Acidificação e Equalização (TAE, um Reator Anaeróbio de Manta de Lodo e uma Lagoa Aerada Facultativa (LAF, o qual foi alimentado com fluxo contínuo. As análises físico-químicas realizadas foram: DQO, DBO5, Sólidos Totais (Fixos e Voláteis, Temperatura, pH, Nitrogênio, Fósforo, Acidez e Alcalinidade Total. O sistema proporcionou eficiência de remoção média de 93% de DQO, 84% de DBO5 e 85% de Sólidos Totais Voláteis, demonstrando adequada adaptação aos diversos tempos de detenção hidráulica adotados (55, 40, 30, 25, 18 e 15 horas. Os parâmetros adotados na partida do reator UASB foram: COV: 1,11kgDQO.m-3.d-1, COB: 0,019 kgDBO5.kgSVT-1.d-1 e TDH: 55h.The swine production, since 70th , is one of the most pollutant agro-industrial activities in the Minas Gerais State, Brazil. The objective of this research was to develop an Upflow Anaerobic Sludge Blanket Reactor (UASB, aiming at treating the effluent generated within a maximum efficiency and minimum time and cost. Therefore, a lab-scale reactor was built up and monitored in the laboratory of Engineering Department at the Federal University of Lavras (UFLA. The system consisted of an Acidification and Equalization Tank (AET, an Upflow Anaerobic Sludge Blanket reactor (UASB, and an Aerated Facultative Pond (AFP. The system was fed continuously. The physical-chemical analyses carried out were: COD, BOD5, Total

  16. Alkaline hydrothermal synthesis of homogeneous titania microspheres with urchin-like nanoarchitectures for dye effluent treatments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin-Ming, E-mail: msewjm@zju.edu.cn [State Key Laboratory of Silicon Materials, Zhejiang University, ZheDa Road 38, Hangzhou 310027 (China); Song, Xiao-Mei [State Key Laboratory of Silicon Materials, Zhejiang University, ZheDa Road 38, Hangzhou 310027 (China); Yan, Mi, E-mail: mse_yanmi@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, ZheDa Road 38, Hangzhou 310027 (China)

    2011-10-30

    Highlights: {yields} Alkali-hydrothermal treatments of a remnant of Ti-H{sub 2}O{sub 2} reaction achieve titania microspheres. {yields} Inhibited heterogeneous nucleation and low supersaturation contribute to the uniform size. {yields} Radially aligned anatase nanowires construct the microspheres. {yields} The microspheres possess a BET surface area of 45.4 m{sup 2}/g. {yields} The microspheres exhibit a high activity to assist photodegradation of rhodamine B in water. - Abstract: The heterogeneous photocatalysis technique to treat dye effluents demands micrometer-sized titania aggregates with one-dimensional nanostructures, which possess high photocatalytic activity and at the same time facilitate the catalyst-recovery from a slurry system. In this study, the solution remained after interactions between metallic Ti and hydrogen peroxide was subjected to an alkaline hydrothermal treatment. Microspheres with extremely uniform sizes of ca. 2 {mu}m in diameter were achieved after a subsequent proton exchange followed by calcination in air. The microspheres were urchin-like aggregates of radially assembled nanowires, which consisted of chain-like anatase single crystallites with an average diameter of 20-25 nm. The homogeneous microspheres calcinated at 600 {sup o}C possessed a surface area of 45.4 m{sup 2}/g and exhibited an excellent activity to assist photodegradation of rhodamine B in water, which is significantly higher than that of P25 titania nanoparticles. Because of the much easier recovery of the photocatalyst, the homogeneous microspheres synthesized herein may find practical applications in efficient photocatalytic treatments of dye effluents.

  17. Development of a new process for radium removal from uranium mining and milling effluents

    International Nuclear Information System (INIS)

    This paper describes the on-going pilot scale development of a new treatment process designed to remove radium-226 from uranium milling effluents. Presently, decants from Canadian uranium mining and milling tailings areas are treated with barium chloride to remove radium-226 prior to discharge into the environment. This is usually accomplished in large natural or man-made ponds which provide an opportunity for a (Ba,Ra)SO/sub 4/ precipitate to form and subsequently settle. At some treatment facilities sand filtration is used as a polishing step. The new process involves the use of a fluidized bed to facilitate the deposition of a (Ba,Ra)SO/sub 4/ precipitate on a free-draining granular medium of high surface area. Incoming radium-226 activity levels have consistently been reduced by 90-99% and effluent levels of 0.37 Bq/L (10 pCi/L) or less have been achieved, depending on the influent activity levels. Testing of the process as a polishing step demonstrated radium removal efficiencies up to 60% when the process influent was already less than 0.19 Bq/L (5 pCi/L). The process has been operated at temperatures ranging from 260C down to 0.30C with no reduction in efficiency. In contrast to treatment times in the order of days for conventional settling pond systems and hours for mechanical stirred tank/filtration systems, the new process is able to achieve these radium removal efficiencies in times on the order of one minute

  18. Decolorization of textile effluent by bitter gourd peroxidase immobilized on concanavalin A layered calcium alginate-starch beads

    International Nuclear Information System (INIS)

    Bitter gourd peroxidase immobilized on the surface of concanavalin A layered calcium alginate-starch beads was used for the successful and effective decolorization of textile industrial effluent. Effluent was recalcitrant to the action of bitter gourd peroxidase; however, in the presence of some redox mediators, it was successfully decolorized. Effluent decolorization was maximum (70%) in the presence of 1.0 mM 1-hydroxybenzotriazole within 1 h of incubation. However, immobilized bitter gourd peroxidase showed maximum decolorization at pH 5.0 and 40 deg. C. Immobilized bitter gourd peroxidase decolorized more than 90% effluent after 3 h of incubation in a batch process. The two-reactor system, one reactor containing immobilized peroxidase and the other had activated silica, was quite effective in the decolorization of textile effluent. The system was capable of decolorizing 40% effluent even after 2 months of continuous operation. The absorption spectra of the untreated and treated effluent exhibited a marked difference in absorbance at various wavelengths. Immobilized peroxidase/1-hydroxybenzotriazole system could be employed for the treatment of a large volume of effluent in a continuous reactor.

  19. Estimating the Biodegradability of Treated Sewage Samples Using Synchronous Fluorescence Spectra

    Directory of Open Access Journals (Sweden)

    Jin Hur

    2011-07-01

    Full Text Available Synchronous fluorescence spectra (SFS and the first derivative spectra of the influent versus the effluent wastewater samples were compared and the use of fluorescence indices is suggested as a means to estimate the biodegradability of the effluent wastewater. Three distinct peaks were identified from the SFS of the effluent wastewater samples. Protein-like fluorescence (PLF was reduced, whereas fulvic and/or humic-like fluorescence (HLF were enhanced, suggesting that the two fluorescence characteristics may represent biodegradable and refractory components, respectively. Five fluorescence indices were selected for the biodegradability estimation based on the spectral features changing from the influent to the effluent. Among the selected indices, the relative distribution of PLF to the total fluorescence area of SFS (Index II exhibited the highest correlation coefficient with total organic carbon (TOC-based biodegradability, which was even higher than those obtained with the traditional oxygen demand-based parameters. A multiple regression analysis using Index II and the area ratio of PLF to HLF (Index III demonstrated the enhancement of the correlations from 0.558 to 0.711 for TOC-based biodegradability. The multiple regression equation finally obtained was 0.148 ´ Index II − 4.964 ´ Index III − 0.001 and 0.046 ´ Index II − 1.128 ´ Index III + 0.026. The fluorescence indices proposed here are expected to be utilized for successful development of real-time monitoring using a simple fluorescence sensing device for the biodegradability of treated sewage.

  20. Impact evaluation of the liquid effluent disposal of the Duque de Caxias Refinery (REDUC) in fluvial waters and sediments, RJ, Brazil; Avaliacao do impacto do descarte de efluentes liquidos da Refinaria Duque de Caxias (REDUC) sobre aguas e sedimentos fluviais, RJ, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Bidone, Edison Dausacker; Santelli, Ricardo Erthal; Cordeiro, Renato Campello [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Gamboa, Carla Maria; Camaz, Fernando Ribeiro; Jorge, Fabricio Goncalves [PETROBRAS/REDUC, Rio de Janeiro, RJ, RJ (Brazil). Refinaria de Duque de Caxias; Carvalho, Maria de Fatima B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The purpose of this work is to assess the contribution of the liquid effluents of the Duque de Caxias Refinery (REDUC) in the water and sediment contamination in the estuarine Iguacu-Sarapui system, a tributary of the Guanabara Bay, Rio de Janeiro, Brazil. Since 2002 is being conducted a quarterly monitoring of some parameters in water, river sediments and treated liquid effluent, such as: pH, suspended solids, total sedimented solids, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, total organic carbon, oil and grease (O and G), phenols, sulfide, ammonia, metals and metalloids (V, Cr, Pb, Ni, Cu, Cd, Zn, Hg, As, Se , Co, Fe, Mn), polycyclic aromatic hydrocarbons, coprostanol and cholesterol (indicators of domestic wastes). The obtained results show that the effluents meet the legal standards and the treated liquid effluents from REDUC in the estuarine system have little or no impact on river water quality. The higher levels of contaminants detected in water and sediments samples are directly related to untreated domestic sewage from urban areas. (author)

  1. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment

    International Nuclear Information System (INIS)

    Highlights: → The first study to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. → The study revealed that most organics in the secondary effluent were low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by PAC-MBR process. → The study suggested that the action of biomass and the PAC is mutual and synergistic. - Abstract: The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH4+-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent.

  2. Evaluation of toxic metals in the industrial effluents and their segregation through peanut husk fence for pollution abatement

    International Nuclear Information System (INIS)

    The industrial pollution is exponentially growing in the developing countries due to the discharge of untreated effluents from the industries in the open atmosphere. This may cause severe health hazards in the general public. To reduce this effect, it is essential to remove the toxic and heavy metals from the effluents before their disposal into the biosphere. In this context, samples of the effluents were collected from the textile/yarn, ceramics and pulp/paper industries and the concentrations of the toxic metal ions were determined using neutron activation analysis (NAA) technique. The observed concentration values of the As, Cr and Fe ions, in the unprocessed industrial effluents, were 4.91 ± 0.8, 9.67 ± 0.7 and 9.71 ± 0.8 mg/L, respectively which was well above the standard recommended limits (i.e. 1.0, 1.0 and 2.0 mg/L, respectively). In order to remove the toxic metal ions from the effluents, the samples were treated with pea nut husk fence. After this treatment, 91.5% arsenic, 81.9% chromium and 66.5% iron metal ions were successfully removed from the effluents. Then the treated effluents contained concerned toxic metal ions concentrations within the permissible limits as recommended by the national environmental quality standards (NEQS). (author)

  3. Removal of coloured compounds from textile industry effluents by UV/H2O2 advanced oxidation and toxicity evaluation.

    Science.gov (United States)

    Nagel-Hassemer, Maria Eliza; Carvalho-Pinto, Catia Regina S; Matias, William Gerson; Lapolli, Flávio Rubens

    2011-12-01

    This study has investigated the reduction in coloured substances and toxic compounds present in textile industry effluent by the use of an advanced oxidation process using hydrogen peroxide (H2O2) as oxidant, activated by ultraviolet radiation. The investigation was carried out on industrial effluents, both raw and after biological treatment, using different concentrations of H2O2 in a photochemical reactor equipped with a 250 W high-pressure mercury vapour lamp. The results showed that after 60 minutes of ultraviolet irradiation a H2O2 concentration of 500 mg L(-1) was able to remove approximately 73% of the coloured compounds present in raw effluent and 96% of those present in biologically treated effluent. Additionally, post-treatment toxicity tests performed using the microcrustacean Daphnia magna showed a significant effective reduction in the acute toxicity of the raw effluent. In tests carried out with treatment at a concentration of 750 and 1000 mg L(-1) H2O2, analysis of the frequency ofmicronuclei in erythrocytes of Tilapia cf rendalli exposed to treated effluent samples confirmed that there were no mutagenic effects on the fish. Together, these results indicate that the oxidation process offers a good alternative for the removal of colour and toxicity from textile industry effluent. PMID:22439575

  4. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hongjun, E-mail: hjlin@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province 321004 (China); Wang, Fangyuan; Ding, Linxian; Hong, Huachang [College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province 321004 (China); Chen, Jianrong, E-mail: cjr@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province 321004 (China); Lu, Xiaofeng [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800 (China)

    2011-09-15

    Highlights: {yields} The first study to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. {yields} The study revealed that most organics in the secondary effluent were low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by PAC-MBR process. {yields} The study suggested that the action of biomass and the PAC is mutual and synergistic. - Abstract: The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH{sub 4}{sup +}-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent.

  5. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch grown in the field and sugar beet (Beta vulgaris L. grown in hydroponics

    Directory of Open Access Journals (Sweden)

    Hamdi eEl-Jendoubi

    2014-01-01

    Full Text Available Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch trees grown in the field and sugar beet (Beta vulgaris L. cv. ‘Orbis’ grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated and basal (untreated leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.

  6. Novas tendências no tratamento de efluentes têxteis New tendencies on textile effluent treatment

    Directory of Open Access Journals (Sweden)

    Airton Kunz

    2002-02-01

    Full Text Available Textile effluents, when not correctly treated, cause a high impact to the environment. The main recalcitrant compounds present in textile effluent are represented by the synthetic dyes, used during the fibber dying process. Among others, the azo dyes are considered the most harmful due to its mutagenic and carcinogenic character. In the present work we reported a revision study on the new tendencies for remediation of textile effluents, mainly to degrade the recalcitrant compounds. For this purpose, chemical, physical, photochemical, biological and combined processes were investigated.

  7. Agricultural use of treated wastewater: the need for a paradigm shift in sanitation & treatment

    OpenAIRE

    Van, Lier, G; Huibers, F.P.

    2004-01-01

    Appropriate treated domestic sewage can be regarded as iseal for irrigation and fertilization purposes, particularly in the (semi)arid climate region. This contribution focuses on: 1) pathogens, various levels of interception; 2) basic wastewater treatment; 3) wastewater treatment for effluent use in irrigated agriculture; 4) effluent treatment for agricultural re-use

  8. Decreased fish diversity found near marble industry effluents in River Barandu, Pakistan.

    Science.gov (United States)

    Mulk, Shahi; Korai, Abdul Latif; Azizullah, Azizullah; Khattak, Muhammad Nasir Khan

    2016-01-01

    In a recently published study we observed that effluents from marble industry affected physicochemical characteristics of River Barandu in District Buner, Pakistan. These changes in water quality due to marble effluents may affect fish community. The present study was therefore conducted to evaluate the impacts of marble industry effluents on fish communities in River Barandu using abundance, richness, diversity and evenness of fish species as end point criteria. The fish samples were collected by local fishermen on monthly basis from three selected sites (upstream, effluents/industrial, and downstream sites). During the study period, a total of 18 fish species were found belonging to 4 orders, 5 families and 11 genera. The Cyprinidae was observed to be the dominant family at all the three selected sites. Lower abundance and species diversity was observed at the industrial (22%) and downstream sites (33%) as compared to the upstream site (45%). Effluents of marble industry were associated with lower abundance of species in River Barandu. It is recommended that industries should be shifted away from the vicinity of river and their effluents must be treated before discharging to prevent further loss of fish abundance and diversity in the River. PMID:26497021

  9. Decolorization of Distillery Effluent by Thermotolerant Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Soni Tiwari

    2012-01-01

    Full Text Available Problem statement: Ethanol production from sugarcane molasses generate large volume of effluent containing high Biological Oxygen Demand (BOD and Chemical Oxygen Demand (COD along with melanoidin, a color compound generally produced by Millard reaction. Melanodin is a recalcitrant compound degraded by specific microorganisms having ability to produce mono and di-oxygenases peroxidases, phenoxidases and laccases, are mainly responsible for degradation of complex aromatic hydrocarbons like color compound. These compounds causes several toxic effects on living system, therefore may be treated before disposal. Approach: The purpose of this study was to isolate a potential thermotolerant melanoidin decolorizing bacterium from natural resources for treatment of distillery effluent at industrial level. Results: Total 10 isolates were screened on solid medium containing molasses pigments. Three potential melanoidin decolorizing thermotolerant bacterial isolates identified as Bacillus subtilis, Bacillus cereus and Pseudomonas sp. were further optimized for decolorization at different physico-chemical and nutritional level. Out of these three, Bacillus subtilis showed maximum decolorization (85% at 45°C using (w/v 0.1%, glucose; 0.1%, peptone; 0.05%, MgSO4; 0.01%, KH2PO4; pH-6.0 within 24h of incubation under static condition. Conclusion/Recommendations: The strain of Bacillus subtilis can tolerate higher temperature and required very less carbon (0.1%, w/v and nitrogen sources (0.1%, w/v in submerged fermentation. It can be utilized for melanoidin decolorization of distillery effluent at industrial scale.

  10. Assessment of Nelumbo nucifera and Hydrilla verticillata in the treatment of pharmaceutical industry effluent from 24 Parganas, West Bengal

    OpenAIRE

    Shamba Chatterjee

    2014-01-01

    Modern day technologies employed in industrialization and unhygienic lifestyle of mankind has led to a severe environmental menace resulting in pollution of freshwater bodies. Pharmaceutical industry effluents cause eutrophication and provide adequate nutrients for growth of pathogenic bacteria. This study has been conducted with aquatic plants water lotus (Nelumbo nucifera) and hydrilla (Hydrilla verticillata) with an novel aim to treat pharmaceutical industry effluents showing the outcome o...

  11. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  12. The aquatic toxicity and chemical forms of coke plant effluent cyanide -- Implications for discharge limits

    International Nuclear Information System (INIS)

    Cyanide is present in treated cokemaking process waters at concentrations as high as 8.0 mg/L. In assessing options for managing the discharge of a treated effluent, the development and implementation of discharge limits for cyanide became a critical issue. A study was initiated to evaluate possible alternatives to cyanide permit limits at the US Steel Gary Works Facility. The objectives of the study were to: (1) evaluation the forms of cyanide present in coke plant effluent; (2) determine whether these forms of cyanide are toxic to selected aquatic organisms; (3) compare the aquatic toxicity of various chemical forms of cyanide; (4) identify if the receiving water modifies cyanide bioavailability; and (5) confirm, with respect to water quality-based effluent limits, an appropriate analytical method for monitoring cyanide in a coke plant effluent. The results of aquatic toxicity tests and corresponding analytical data are presented. Toxicity tests were conducted with various pure chemical forms of cyanide as well as whole coke plant effluent (generated from a pilot-scale treatment system). Test species included the fathead minnow (Pimephales promelas), rainbow trout (Oncorhynchus mykiss), Ceriodaphnia dubia (C. dubia) and Daphnia magna (D. magna). Analytical measurements for cyanide included total, weak acid dissociable, diffusible cyanide and selected metal species of cyanide. The findings presented by the paper are relevant with respect to the application of cyanide water quality criteria for a coke plant effluent discharge, the translation of these water quality-based effluent limits to permit limits, and methods for compliance monitoring for cyanide

  13. Economic valuation of environmental benefits of removing pharmaceutical and personal care products from WWTP effluents by ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Molinos-Senante, M., E-mail: maria.molinos@uv.es [Department of Mathematics for Economy, Universitat de Valencia, Campus dels Tarongers, 46022 Valencia (Spain); Reif, R., E-mail: rreif@icra.cat [Laboratory of Chemical and Environmental Engineering (LEQUIA), Universitat de Girona, Facultat Ciències, Campus Montilivi, 17071 Girona (Spain); Chemical Engineering Department, Universidade de Santiago de Compostela, Rua Lope Gomez de Marzoa s/n, 15782 Santiago de Compostela (Spain); Garrido-Baserba, M., E-mail: mgarrido@icra.cat [Catalan Institute for Water Research, Scientific and Technological Park, H2O Building, Emili Grahit 101, 17003 Girona (Spain); Laboratory of Chemical and Environmental Engineering (LEQUIA), Universitat de Girona, Facultat Ciències, Campus Montilivi, 17071 Girona (Spain); Hernández-Sancho, F., E-mail: francesc.hernandez@uv.es [Department of Applied Economics II, Universitat de Valencia, Campus dels Tarongers, 46022 Valencia (Spain); Omil, F., E-mail: francisco.omil@usc.es [Chemical Engineering Department, Universidade de Santiago de Compostela, Rua Lope Gomez de Marzoa s/n, 15782 Santiago de Compostela (Spain); Poch, M., E-mail: manel@lequia.udg.edu [Catalan Institute for Water Research, Scientific and Technological Park, H2O Building, Emili Grahit 101, 17003 Girona (Spain); Laboratory of Chemical and Environmental Engineering (LEQUIA), Universitat de Girona, Facultat Ciències, Campus Montilivi, 17071 Girona (Spain); Sala-Garrido, R., E-mail: ramon.sala@uv.es [Department of Mathematics for Economy, Universitat de Valencia, Campus dels Tarongers, 46022 Valencia (Spain)

    2013-09-01

    Continuous release of pharmaceutical and personal care products (PPCPs) present in effluents from wastewater treatment plants (WWTPs) is nowadays leading to the adoption of specific measures within the framework of the Directive 2000/60/EC (Water Framework Directive). The ozonation process, normally employed for drinking water production, has also proven its potential to eliminate PPCPs from secondary effluents in spite of their low concentrations. However, there is a significant drawback related with the costs associated with its implementation. This lack of studies is especially pronounced regarding the economic valuation of the environmental benefits associated to avoid the discharge of these pollutants into water bodies. For the first time the shadow prices of 5 PPCPs which are ethynilestradiol, sulfamethoxazole, diclofenac, tonalide and galaxolide from treated effluent using a pilot-scale ozonation reactor have been estimated. From non-sensitive areas their values are − 73.73; − 34.95; − 42.20; − 10.98; and − 8.67 respectively and expressed in €/kg. They represent a proxy to the economic value of the environmental benefits arisen from undischarged pollutants. This paper contributes to value the environmental benefits of implementing post-treatment processes aimed to achieve the quality standards required by the Priority Substances Directive. - Highlights: • Environmental Benefit Analysis of PPCPs • PPCPs' removal depends on their functional group and molecular structures. • Shadow prices as a proxy of the environmental benefits from ozonation process • HHCB and AHTN have the lowest shadow prices. • The greatest environmental benefit is associated with the removal of DCF.

  14. Economic valuation of environmental benefits of removing pharmaceutical and personal care products from WWTP effluents by ozonation

    International Nuclear Information System (INIS)

    Continuous release of pharmaceutical and personal care products (PPCPs) present in effluents from wastewater treatment plants (WWTPs) is nowadays leading to the adoption of specific measures within the framework of the Directive 2000/60/EC (Water Framework Directive). The ozonation process, normally employed for drinking water production, has also proven its potential to eliminate PPCPs from secondary effluents in spite of their low concentrations. However, there is a significant drawback related with the costs associated with its implementation. This lack of studies is especially pronounced regarding the economic valuation of the environmental benefits associated to avoid the discharge of these pollutants into water bodies. For the first time the shadow prices of 5 PPCPs which are ethynilestradiol, sulfamethoxazole, diclofenac, tonalide and galaxolide from treated effluent using a pilot-scale ozonation reactor have been estimated. From non-sensitive areas their values are − 73.73; − 34.95; − 42.20; − 10.98; and − 8.67 respectively and expressed in €/kg. They represent a proxy to the economic value of the environmental benefits arisen from undischarged pollutants. This paper contributes to value the environmental benefits of implementing post-treatment processes aimed to achieve the quality standards required by the Priority Substances Directive. - Highlights: • Environmental Benefit Analysis of PPCPs • PPCPs' removal depends on their functional group and molecular structures. • Shadow prices as a proxy of the environmental benefits from ozonation process • HHCB and AHTN have the lowest shadow prices. • The greatest environmental benefit is associated with the removal of DCF

  15. Design and development of effluent treatment plants for the Sellafield reprocessing factory

    International Nuclear Information System (INIS)

    The reprocessing of spent nuclear fuel has been carried out at Sellafield since the early 1950s. The storage of fuel in water filled ponds prior to reprocessing and the reprocessing operation itself results in the generation of a number of radioactive liquid effluents. The highly active liquors are stored in stainless steel tanks and will, with the commissioning of the Windscale Vitrification Plant, be converted into glass for long term storage and disposal. The medium and low active liquors are, after appropriate treatment, discharged to sea well below the Authorised Limits which are set by the appropriate Regulatory Bodies. Since 1960 these have been the Department of the Environment and the Ministry of Agriculture, Fisheries and Food. Even though the discharges have been well below the limits set, BNFL have for many years adopted a policy of reducing the levels of activity still further. Considerable progress has already been made, by changing reprocessing operations regimes but more importantly by the development and construction of specialised effluent treatment plants. Further reductions are, however, planned. Two major effluent treatment plants form the main basis of BNFL's policy to reduce activity discharges from Sellafield. The first, the Site Ion Exchange Effluent Plant, to treat storage pond water was brought into operation in 1985. The second, the enhanced Actinide Removal Plant to treat medium and low active effluents, is programmed to operate in 1992. (author)

  16. Effluent treatment process in molasses-based distillery industries: A review

    International Nuclear Information System (INIS)

    Distillery effluent is a contaminated stream with high chemical oxygen demand (COD) varying from 45,000 to 75,000 mg/l and low pH values of between 4.3 and 5.3. Different processes covering aerobic, anaerobic as well as physico-chemical methods which have been employed to this effluent has been given in this review paper. Among the different methods available, it was found that 'An Inverse Anaerobic Fluidization' to be a better choice for treating effluent from molasses-based distillery industries using an inverse anaerobic fluidized-bed reactor (IAFBR). This technology has been widely applied as an effective step in removing 80-85% of the COD in the effluent stream. Therefore, in this review, attention has been paid to highlight in respect of fluidization phenomena, process performance, stability of the system, operating parameters, configuration of inverse anaerobic fluidization and suitable carrier material employed in an inverse anaerobic fluidized-bed reactor especially for treating this effluent

  17. Direct nanofiltration of wastewater treatment plant effluent

    NARCIS (Netherlands)

    Schrader, Guillo Alexander

    2006-01-01

    Membrane technology, especially nanofiltration, is seen as a suitable technology to polish WWTP effluent to EU WFD standards and consequently produce an effluent quality suitable for agricultural or (in)direct potable usage. The objective of this study was to assess the potential of direct nanofiltr

  18. 324 and 327 Facilities Environmental Effluent Specifications

    International Nuclear Information System (INIS)

    These effluent specifications address requirements for the 324/321 Facilities, which are undergoing stabilization activities. Effluent specifications are imposed to protect personnel, the environment and the public, by ensuring adequate implementation and compliance with federal and state regulatory requirements and Hanford programs

  19. 324/327 facilities environmental effluent specifications

    International Nuclear Information System (INIS)

    These effluent technical specifications address requirements for the 324/327 facilities, which are undergoing stabilization activities. Effluent technical specifications are imposed to protect personnel, the environment and the public, by ensuring adequate implementation and compliance with federal and state regulatory requirements and Hanford programs

  20. Mesoporous carbon-supported Pd nanoparticles with high specific surface area for cyclohexene hydrogenation: Outstanding catalytic activity of NaOH-treated catalysts

    Science.gov (United States)

    Puskás, R.; Varga, T.; Grósz, A.; Sápi, A.; Oszkó, A.; Kukovecz, Á.; Kónya, Z.

    2016-06-01

    Extremely high specific surface area mesoporous carbon-supported Pd nanoparticle catalysts were prepared with both impregnation and polyol-based sol methods. The silica template used for the synthesis of mesoporous carbon was removed by both NaOH and HF etching. Pd/mesoporous carbon catalysts synthesized with the impregnation method has as high specific surface area as 2250 m2/g. In case of NaOH-etched impregnated samples, the turnover frequency of cyclohexene hydrogenation to cyclohexane at 313 K was obtained ~ 14 molecules • site- 1 • s- 1. The specific surface area of HF-etched samples was higher compared to NaOH-etched samples. However, catalytic activity was ~ 3-6 times higher on NaOH-etched samples compared to HF-etched samples, which can be attributed to the presence of sodium and surface hydroxylgroups of the catalysts etched with NaOH solution.

  1. Valorisation of Moringaoleifera waste: treatment and reuse of textile dye effluents

    OpenAIRE

    Vilaseca Vallvé, M. Mercedes; López Grimau, Víctor; Gutiérrez Bouzán, María Carmen

    2015-01-01

    This work is focused on the valorisation of an agricultural waste as natural coagulant to treat wastewater from the textile industry. In this paper, the waste of Moringaoleifera oil extraction is used as coagulant to remove five reactive dyes from synthetic textile effluents. Moringaoleifera shows better results for dye removal than conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high...

  2. Treating Meningitis

    Science.gov (United States)

    ... David C. Spencer, MD Steven Karceski, MD Treating meningitis Steven Karceski, MD WHAT DID THE AUTHORS STUDY? ... study, “ Dexamethasone and long-term survival in bacterial meningitis, ” Dr. Fritz and his colleagues carefully evaluated 2 ...

  3. "Effect of Coagulants on Electrochemical Process for Phosphorus Removal from Activated Sludge Effluent"

    Directory of Open Access Journals (Sweden)

    AR Mesdaghinia

    2003-10-01

    Full Text Available According to Environmental Protection Organization of Iran, maximum permissible concentration of residual phosphorus in treated municipal wastewater is 1 mg /l-P. The total average phosphorus concentration in raw municipal wastewater is about 8 mg / l; about 70 percent of the incoming phosphorus normally is discharged with secondary treatment plant effluents. In this research, the role of adding different kinds of coagulants on phosphorus removal efficiency of an electrochemical process was investigated. The research is a bench scale experimental type using batch system for elec. process with direct current. Samples were collected from an extended aeration effluent. The used electrode was steel type and its total effective area was 336 cm2. In each run 1500 ml of sample was placed in an electrolytic cell equipped with magnetic stirrer. The results show that phosphorus removal efficiency increases by increasing of DC and reaction time. Minimum rate of current/percentage of removal was obtained for 0.6amp current and under the same conditions minimum rate of reaction time/percentage of removal was provided in 15 min. In 6min reaction time and 0.6amp current, adding poly aluminum chloride (PAC up to about 27 mg/l could improve the efficiency up to about 50%. But under the same condition, similar results were not observed in 12min reaction time. Besides, adding alum or ferrous sulfate showed similar behavior to PAC. Electrochemical treatment without addition of coagulants and thereby without any changes on the primary characteristics of the sample can remove the phosphorus up to about 93%. But in the case of sufficient reaction time for electrochemical process, adding coagulants can not improve the efficiency and in comparison to a chemical precipitation alone, the use of electrochemical treatment can not reduce the required doses of coagulants in short reaction time.

  4. Quality of effluents from Hattar Industrial Estate

    Institute of Scientific and Technical Information of China (English)

    SIAL R.A.; CHAUDHARY M.F.; ABBAS S.T.; LATIF M.I.; KHAN A.G.

    2006-01-01

    Of 6634 registered industries in Pakistan, 1228 are considered to be highly polluting. The major industries include textile, pharmaceutical, chemicals (organic and inorganic), food industries, ceramics, steel, oil mills and leather tanning which spread all over four provinces, with the larger number located in Sindh and Punjab, with smaller number in North Western Frontier Province (NWFP) and Baluchistan. Hattar Industrial Estate extending over 700 acres located in Haripur district of NWFP is a new industrial estate, which has been developed with proper planning for management of industrial effluents. The major industries located in Hattar are ghee industry, chemical (sulfuric acid, synthetic fiber) industry, textile industry and pharmaceuticals industry.These industries, although developed with proper planning are discharging their effluents in the nearby natural drains and ultimately collected in a big drain near Wah. The farmers in the vicinity are using these effluents for growing vegetables and cereal crops due to shortage of water. In view of this discussion, there is a dire need to determine ifthese effluents are hazardous for soil and plant growth. So, effluents from different industries, sewage and normal tap water samples were collected and analysed for pH,electrical conductivity (EC), total soluble salts (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, cations and anions and heavy metals. The effluents of ghee and textile industries are highly alkaline. EC and TSS loads of ghee and textile industries are also above the National Environmental Quality Standards (NEQS), Pakistan. All the effluents had residual sodium carbonates (RSCs), carbonates and bicarbonates in amounts that cannot be used for irrigation. Total toxic metals load in all the effluents is also above the limit i.e. 2.0 mg/L. Copper in effluents of textile and sewage, manganese in ghee industry effluents and iron contents in all the effluents were higher

  5. Quality of effluents from Hattar Industrial Estate.

    Science.gov (United States)

    Sial, R A; Chaudhary, M F; Abbas, S T; Latif, M I; Khan, A G

    2006-12-01

    Of 6634 registered industries in Pakistan, 1228 are considered to be highly polluting. The major industries include textile, pharmaceutical, chemicals (organic and inorganic), food industries, ceramics, steel, oil mills and leather tanning which spread all over four provinces, with the larger number located in Sindh and Punjab, with smaller number in North Western Frontier Province (NWFP) and Baluchistan. Hattar Industrial Estate extending over 700 acres located in Haripur district of NWFP is a new industrial estate, which has been developed with proper planning for management of industrial effluents. The major industries located in Hattar are ghee industry, chemical (sulfuric acid, synthetic fiber) industry, textile industry and pharmaceuticals industry. These industries, although developed with proper planning are discharging their effluents in the nearby natural drains and ultimately collected in a big drain near Wah. The farmers in the vicinity are using these effluents for growing vegetables and cereal crops due to shortage of water. In view of this discussion, there is a dire need to determine if these effluents are hazardous for soil and plant growth. So, effluents from different industries, sewage and normal tap water samples were collected and analysed for pH, electrical conductivity (EC), total soluble salts (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, cations and anions and heavy metals. The effluents of ghee and textile industries are highly alkaline. EC and TSS loads of ghee and textile industries are also above the National Environmental Quality Standards (NEQS), Pakistan. All the effluents had residual sodium carbonates (RSCs), carbonates and bicarbonates in amounts that cannot be used for irrigation. Total toxic metals load in all the effluents is also above the limit i.e. 2.0 mg/L. Copper in effluents of textile and sewage, manganese in ghee industry effluents and iron contents in all the effluents were

  6. Remediation of Nitrobenzene Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Effluent Oxidation with Persulfate

    OpenAIRE

    Yan, Jingchun; Gao, Weiguo; Qian, Linbo; Han, Lu; Chen, Yun; Chen, Mengfang

    2015-01-01

    The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The de...

  7. Fungal Biosorption, An Innovative Treatment for the Decolourisation and Detoxification of Textile Effluents

    Directory of Open Access Journals (Sweden)

    Antonella Pannocchia

    2010-08-01

    Full Text Available Textile effluents are among the most difficult-to-treat wastewaters, due to their considerable amount of recalcitrant and toxic substances. Fungal biosorption is viewed as a valuable additional treatment for removing pollutants from textile wastewaters. In this study the efficiency of Cunninghamella elegans biomass in terms of contaminants, COD and toxicity reduction was tested against textile effluents sampled in different points of wastewater treatment plants. The results showed that C. elegans is a promising candidate for the decolourisation and detoxification of textile wastewaters and its versatility makes it very competitive compared with conventional sorbents adopted in industrial processes.

  8. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    OpenAIRE

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with ...

  9. Biopretreatment of palm oil mill effluent by thermotolerant polymer-producing fungi

    OpenAIRE

    Masao Ukita; Monticha Pechsuth; Poonsuk Prasertsan

    2001-01-01

    Palm oil industry is one of the three major agro-industries in Southern Thailand and generates large quantities of effluent with high organic matter (BOD and COD values of 58,000 and 110,000 mg/l, respectively), total solids and suspended solids (70,000 and 40,000 mg/l, respectively), oil & grease (25,600 mg/l), and has a low pH (4.5). Conventional anaerobic ponding system is normally employed in palm oil mills to treat the effluent. To increase its efficiency, biopretreatment to remove the o...

  10. Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge

    OpenAIRE

    H.J. Porwal; A. V. Mane; S.G. Velhal

    2015-01-01

    Water resources are of significant importance to human beings. The present investigation was carried out for biodegradation of dairy effluent by using selected aerobic microbial isolates and a model having layers of sawdust and activated charcoal as filtering media. Yeast isolates (DSI1) and two bacterial isolates (DSI2 and DSI3) were obtained from the dairy sludge. A mixed culture (DSI4) was prepared by taking 1:1, DSI1 and DSI3 to treat the effluent and check its efficiency. After aeration ...

  11. The use of PHP in the radioactive effluent treatment in rare earth industry

    International Nuclear Information System (INIS)

    Monazite is one of the most important rare earth resources, processing monazite, however, is accompanied by radioactive effluent that needs treatment. A satisfactory treatment should be able not only to insolubilize the radioactive isotopes but also to clarify the suspension quickly and completely. In this study, out of 15 different coagulants, partially hydrolyzed polyacrylamide (PHP) of molecular weight 1000 has been chosen as the most efficient one for the clarification of the treated effluent in question. Satisfactory performance has been attained in a continuous clarifier

  12. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    International Nuclear Information System (INIS)

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log Koc values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log Kow, organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs

  13. Suspended solids in liquid effluents

    International Nuclear Information System (INIS)

    An international literature review and telephone mail survey was conducted with respect to technical and regulatory aspects of suspended solids in radioactive liquid wastes from nuclear power stations. Results of the survey are summarized and show that suspended solids are an important component of some waste streams. The data available, while limited, show these solids to be associated largely with corrosion products. The solids are highly variable in quantity, size and composition. Filtration is commonly applied for their removal from liquid effluents and is effective. Complex interactions with receiving waters can result in physical/chemical changes of released radionuclides and these phenomena have been seen as reason for not applying regulatory controls based on suspended solids content. 340 refs

  14. Assessment methodology for radioactive effluents

    International Nuclear Information System (INIS)

    The objective of this environmental assessment is to define and rank the needs for controlling radioactive effluents from nuclear fuel cycle facilities. The assessment is based on environmental standards and dose-to-man calculations. The study includes three calculations for each isotope from each facility: maximum individual dose for a 50-year dose commitment from a 1-yr exposure according to the organ affected; population dose for a 50-yr dose commitment from a 1-yr exposure according to the organ affected; and annual dose rate for the maximally exposed individual. The relative contribution of a specific nuclide and source to the total dose provides a method of ranking the nuclides, which in turn identifies the sources that should receive the greatest control in the future. These results will be used in subsequent tasks to assess the environmental impact of the total nuclear fuel cycle

  15. Sustainable Management of Effluents from Small Piggery Farms in Mexico

    Directory of Open Access Journals (Sweden)

    J. J. de Victorica-Almeida

    2008-01-01

    Full Text Available In Mexico, pig farming is the third most important livestock activity due to its contribution to the total meat production. However, it is estimated that around 38% of pig farms dispose their wastewaters without any treatment directly into the nation’s water bodies, which in turn has a severe impact in the environment. One reason for not treating is the high costs involved, especially for small pig farms. Therefore, a study was performed to develop a low cost and easy to operate treatment system suitable for this type of wastewater and with a quality that allows the reuse of the final effluent within the farm. The pilot study was performed in packed reactors to evaluate the influence of the hydraulic superficial charge on the removal of BOD and COD from a partially treated effluent produced in a small swine farm. BOD and COD initial concentrations ranged from 1,173-2,318 mg L-1 and 2,146-4,119 mg L-1, respectively. The reactors were three PVC columns, 10.16 cm in diameter and 1.32 M in height, each with 6.4 L of total volume and packed with a fixed bed of volcanic rock (tezontle, 47.7% porosity and 7 mm mean diameter. The columns were operated in sequence with download flow under Superficial Hydraulic Charges (SHC of 1, 3 and 5 m3/m2h, with recirculation. The results show treatment efficiencies of 97.3-98.9% for BOD and 84.8-92.6% for COD, with recirculation time between 16 and 27 days. The results of this study are being used to establish the basic elements for designing and implementing suitable wastewater treatment systems to recycle and reuse these effluents in small scale piggery farms in Mexico, to promote sustainable management and reduce water pollution.

  16. Removal of viruses and indicators by anaerobic membrane bioreactor treating animal waste.

    Science.gov (United States)

    Wong, Kelvin; Xagoraraki, Irene; Wallace, James; Bickert, William; Srinivasan, Sangeetha; Rose, Joan B

    2009-01-01

    Appropriate treatment of agricultural waste is necessary for the protection of public health in rural areas because land-applied animal manure may transmit zoonotic disease. In this study, we evaluated the potential of using a pilot anaerobic membrane bioreactor (AnMBR) to treat agricultural waste. The AnMBR system, following a conventional complete mix anaerobic digester (CMAD), achieved high removals of biological and chemical agents. The mean log(10) removals of Escherichia coli, enterococci, Clostridium perfringens, and coliphage by the AnMBR were 5.2, 6.1, 6.4, and 3.7, respectively, and for the CMAD were 1.5, 1.2, 0.1, and 0.5, respectively. Compared with other indicators, coliphage was observed most frequently and had the highest concentration in effluent samples. Bovine adenoviruses and bovine polymaviruses (BPyV) were monitored in this study using nested PCR methods. All of the CMAD influent and CMAD effluent samples were positive for both viruses, and three AnMBR effluent samples were BPyV positive. The mean removals of total Kjeldahl nitrogen, total phosphate, chemical oxygen demand, total solids, and volatile solids by the entire system were 31, 96, 92, 82, and 91%, respectively, but there was no removal of ammonium. When the AnMBR was operated independent of the CMAD, AnMBR achieved similar E. coli and enterococci removals as the combined CMAD/AnMBR system. The high quality of effluent produced by the pilot AnMBR system in this study demonstrated that such systems can be considered as alternatives for managing animal manure. PMID:19549946

  17. Different techniques recently used for the treatment of textile dyeing effluents: a review

    International Nuclear Information System (INIS)

    Industrial textile processing comprises the operation of pretreatment dyeing printing and finishing. These production processes produce a substantial amount of chemical pollution. Textile finishing's wastewater, especially dye house effluent, contain different classes of organic dyes, chemicals and auxiliaries. They are colored and have extreme pH, COD and BOD values, and contain different salts, surfactants heavy metals and mineral oils. Therefore, dye bath effluents have to be treated before being discharge into the environment or municipal wastewater reservoir. This paper presents the review of different techniques currently used for the treatment of textile effluent, which are based on carbon adsorption, filtration, chemical precipitation, photo degradation, biodegradation and electrolytic chemical treatment. Membrane Technology has also been applied with the objective of recovering dyes and water. Biological processes could be adopted as a pretreatment decolorization step, combined with conventional treatment system (eg. coagulation flocculation, adsorption on activated carbon) to reduce the COD and BOD, an effective alternative for use by the textile dyeing industries. Electrochemical oxidation is an efficient process for the removal of colour and total organic carbon in reactive dyes textile wastewater. The ozonation is effective for decolorization of several dyes of different classes. Practical application of this process is feasible by treating industrial textile effluent after biological treatment. Processes using membranes technique, very interesting possibilities of separating hydrolyzed dyestuffs, dyeing auxiliaries and reuse treated wastewater in different finishing operation of textile industries. (author)

  18. Radiation induced decontamination of Cr(Ⅵ), Cu(Ⅱ) and phenol in some tannery effluents

    Institute of Scientific and Technical Information of China (English)

    Hasan M.KHAN; Abdul MAHMOOD

    2007-01-01

    Industrialization has led to a number of environmental problems, such as release of toxic metals and other toxic organic and inorganic compounds to the environment. Among all, the rapid expansion of leather related industries in Pakistan have resulted in considerable environmental problems and effluents from processing of both domestic and imported hides and skins have increased pollution to alarming levels. Some tannery effluents of Peshawar area investigated in the present study showed high concentrations of Cr(Ⅵ) (2.7-12.6 mg/L), Cu(Ⅱ) (2.6-11.4 mg/L) and phenol (0.1-4.2 mg/L). These contaminants are very toxic and must be removed from effluents before releasing into water bodies. A new technique of gamma irradiation has been investigated to decrease the load of COD and concentrations of Cr(Ⅵ), Cu(Ⅱ) and phenol associated with tannery effluents to the permitted values. It was observed that concentration of Cr(Ⅵ) in the effluents can be brought to the permitted level by applying radiation dose of 3 kGy. A radiation dose of 2.5 kGy was required to remove more than 95% of Cu(Ⅱ) and 100 % degradation of phenol in tannery effluents could be achieved by only one kGy of radiation dose.

  19. Radiation induced decontamination of Cr(VI), Cu(II) and phenol in some tannery effluents

    International Nuclear Information System (INIS)

    Industrialization has led to a number of environmental problems, such as release of toxic metals and other toxic organic and inorganic compounds to the environment. Among all, the rapid expansion of leather related industries in Pakistan have resulted in considerable environmental problems and effluents from processing of both domestic and imported hides and skins have increased pollution to alarming levels. Some tannery effluents of Peshawar area investigated in the present study showed high concentrations of Cr(VI) (2.7-12.6 mg/L), Cu(II) (2.6-11.4 mg/L) and phenol (0.1-4.2 mg/L). These contaminants are very toxic and must be removed from effluents before releasing into water bodies. A new technique of gamma irradiation has been investigated to decrease the load of COD and concentrations of Cr(VI), Cu(II) and phenol associated with tannery effluents to the permitted values. It was observed that concentration of Cr(VI) in the effluents can be brought to the permitted level by applying radiation dose of 3 kGy. A radiation dose of 2.5 kGy was required to remove more than 95% of Cu(II) and 100 % degradation of phenol in tannery effluents could be achieved by only one kGy of radiation dose. (authors)

  20. Processing of miscellaneous radioactive effluents by continous flocculation decantation

    International Nuclear Information System (INIS)

    In the nuclear power plant of Chooz an installation for flocculation and chemical precipitation has been built to treat miscellaneous radioactive effluents continuously. It is an industrial prototype of 5 m3/h resulting of several years of research, first on lab scale in a discontinous system and finally in a continuous pilot plant of small size (500 l/h). The process is based on the adsorption of radioactivity on a floc of copper-ferrocyanide precipitated by ferric chloride. The water is then filtered. After a series of preliminary tests and modifications, it has been possible to develop a technique which satisfies the specified decontamination conditions and to reduce the discharges of radioactivity to the Meuse to only 5 - 10% of the authorized limits. The process aims principally at the treatment of laundry waste, but other effluents such as drains from the rocks, pool water and used decontamination solutions (of the primary pumps) have been treated. A technico-economic evaluation of the process in comparison with evaporation is clearly in favour of the flocculation. 31 figs, 40 tables, 12 refs

  1. Facility effluent monitoring plan for the 325 Facility

    International Nuclear Information System (INIS)

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  2. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  3. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    International Nuclear Information System (INIS)

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities

  4. Facility Effluent Monitoring Plan for the 3720 Building

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the Environmental Science Laboratory (3720 Facility) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs'' This FEMP has been prepared for the 3720 Facility primarily because it has a major (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The 3720 Facility provides office and laboratory space for PNNL scientific and engineering staff conducting multidisciplinary research in the areas of materials characterization and testing and waste management. The facility is designed to accommodate the use of radioactive and hazardous materials to conduct these activities. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, and dispersible particulate. The facility is in the process of being vacated for shutdown, but is considered a Major Emission Point as of the date of this document approval.

  5. Facility Effluent Monitoring Plan for the 3720 Building

    International Nuclear Information System (INIS)

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the Environmental Science Laboratory (3720 Facility) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs'' This FEMP has been prepared for the 3720 Facility primarily because it has a major (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The 3720 Facility provides office and laboratory space for PNNL scientific and engineering staff conducting multidisciplinary research in the areas of materials characterization and testing and waste management. The facility is designed to accommodate the use of radioactive and hazardous materials to conduct these activities. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, and dispersible particulate. The facility is in the process of being vacated for shutdown, but is considered a Major Emission Point as of the date of this document approval

  6. Distribution of pyrethroid insecticides in secondary wastewater effluent.

    Science.gov (United States)

    Parry, Emily; Young, Thomas M

    2013-12-01

    Although the freely dissolved form of hydrophobic organic chemicals may best predict aquatic toxicity, differentiating between dissolved and particle-bound forms is challenging at environmentally relevant concentrations for compounds with low toxicity thresholds such as pyrethroid insecticides. The authors investigated the distribution of pyrethroids among 3 forms: freely dissolved, complexed with dissolved organic carbon, and sorbed to suspended particulate matter, during a yearlong study at a secondary wastewater treatment plant. Effluent was fractionated by laboratory centrifugation to determine whether sorption was driven by particle size. Linear distribution coefficients were estimated for pyrethroid sorption to suspended particulate matter (K(id)) and dissolved organic carbon (K(idoc)) at environmentally relevant pyrethroid concentrations. Resulting K(id) values were higher than those reported for other environmental solids, and variation between sampling events correlated well with available particle surface area. Fractionation results suggest that no more than 40% of the pyrethroid remaining in secondary effluent could be removed by extending settling periods. Less than 6% of the total pyrethroid load in wastewater effluent was present in the dissolved form across all sampling events and chemicals. PMID:23939863

  7. Facility effluent monitoring plan for the 325 Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  8. Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area, KSA

    Science.gov (United States)

    Brima, Eid I.

    2014-11-01

    Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.

  9. Filtration of effluents for microirrigation systems

    OpenAIRE

    Puig Bargués, Jaume; Barragán Fernández, Javier; Ramírez de Cartagena Bisbe, Francisco

    2005-01-01

    Clogging, measured through head loss across filters, and the filtration quality of different filters using different effluents were studied. The filters used were: 115, 130, and 200 m disc filters; 98, 115, 130, and 178 m screen filters; and a sand filter filled with a single layer of sand with an effective diameter of 0.65 mm. The filters were used with a meat industry effluent and secondary and tertiary effluents of two wastewater treatment plants. It was observed that clogging depended o...

  10. Treating childhood pneumonia in hard-to-reach areas: A model-based comparison of mobile clinics and community-based care

    Directory of Open Access Journals (Sweden)

    Pitt Catherine

    2012-01-01

    Full Text Available Abstract Background Where hard-to-access populations (such as those living in insecure areas lack access to basic health services, relief agencies, donors, and ministries of health face a dilemma in selecting the most effective intervention strategy. This paper uses a decision mathematical model to estimate the relative effectiveness of two alternative strategies, mobile clinics and fixed community-based health services, for antibiotic treatment of childhood pneumonia, the world's leading cause of child mortality. Methods A "Markov cycle tree" cohort model was developed in Excel with Visual Basic to compare the number of deaths from pneumonia in children aged 1 to 59 months expected under three scenarios: 1 No curative services available, 2 Curative services provided by a highly-skilled but intermittent mobile clinic, and 3 Curative services provided by a low-skilled community health post. Parameter values were informed by literature and expert interviews. Probabilistic sensitivity analyses were conducted for several plausible scenarios. Results We estimated median pneumonia-specific under-5 mortality rates of 0.51 (95% credible interval: 0.49 to 0.541 deaths per 10,000 child-days without treatment, 0.45 (95% CI: 0.43 to 0.48 with weekly mobile clinics, and 0.31 (95% CI: 0.29 to 0.32 with CHWs in fixed health posts. Sensitivity analyses found the fixed strategy superior, except when mobile clinics visited communities daily, where rates of care-seeking were substantially higher at mobile clinics than fixed posts, or where several variables simultaneously differed substantially from our baseline assumptions. Conclusions Current evidence does not support the hypothesis that mobile clinics are more effective than CHWs. A CHW strategy therefore warrants consideration in high-mortality, hard-to-access areas. Uncertainty remains, and parameter values may vary across contexts, but the model allows preliminary findings to be updated as new or context

  11. Tricky Treats

    Centers for Disease Control (CDC) Podcasts

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Tricky Treats shows children the difference between healthy snacks and sweet treats.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  12. Removal of radium-226 from uranium mining effluents

    International Nuclear Information System (INIS)

    Uranium mining and milling operations usually generate large quantities of solid and liquid waste materials. A slurry, consisting of waste rock and chemical solutions from the milling operation, is discharged to impoundment areas (tailings basins). Most of the radioactive material dissolved in tailings slurries is precipitated by the addition of lime and limestone prior to discharge from the mill. However, the activity of one radioisotope, radium-226, remains relatively high in the tailings basin effluents. In Canada, radium-226 is removed from uranium mining and milling effluents by the addition of barium chloride to precipitate barium-radium sulphate [(Ba,Ra)SO4]. Although dissolved radium-226 activities are generally reduced effectively, the process is considered to have two undesirable characteristics: the first related to suspended radium-226 in the effluents and the second to ultimate disposal of the (Ba,Ra)SO4 sludge. A government-industry mining task force established a radioactivity sub-group in 1974 to assist in the development of effluent guidelines and regulations for the uranium mining industry (Radioactivity Sub-group, 1974). The investigation of more effective removal methods was recommended, including the development of mechanical treatment systems as alternatives to settling ponds. Environment Canada's Wastewater Technology Centre (WTC) initiated a bench scale study in March, 1976 which was designed to assess the feasibility of using precipitation, coagulation, flocculation and sedimentation for the removal of radium-226. In 1977, the study was accelerated with financial assistance from the Atomic Energy Control Board. The results were favourable, with improved radium removals obtained in bench scale batch tests using barium chloride as the precipitant and either alum or ferric chloride as the coagulant. A more comprehensive bench scale and pilot scale process development and demonstration program was formulated. The results of the joint study are

  13. On-line liquid-effluent monitoring of sewage at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    LLNL's sanitary sewer system is a possible route for the escape of toxic materials. Liquid effluents are released to Livermore's sanitary sewer system and the effluent is treated at the Livermore Water Reclamation Plant (LWRP). The plant is a secondary-treatment operation that returns most of the water to the San Francisco Bay via a transport pipeline. The remaining portion is used for irrigating vegetation along the roadways and a local golf course. An automatic on-line, sewage-effluent-monitoring system has been developed that diverts a representative fraction of the total waste stream leaving the site. This portion is monitored for pH, radiation, and heavy metals as it passes through a detection assembly. The assembly consists of an industrial pH probe, two NaI radiation detectors, and an x-ray fluorescence metal detector. A microprocessor collects, reduces, and analyzes the data to determine if the levels are acceptable by established environmental limits

  14. Chloro-Organics in Papermill Effluent: Identification and Removal by Sequencing Batch Biofilm Reactor

    Science.gov (United States)

    Abd. Rahman, Rakmi; Zahrim, A. Y.; Abu Bakar, Azizah

    Effluents from paper mills are among major sources of aquatic pollution and may be toxic since they contain chlorinated phenolic compounds which are measured as adsorbable organic halides (AOX). In this work, removal of chlorophenol was investigated using a Sequencing Batch Biofilm Reactor (SBBR) with Granular Activated Carbon (GAC) as a growth media. Wastewater for this study was obtained from treated effluent outlet of a papermill in Selangor. Treatment of the papermill secondary effluent shows that SBBR process, with a combination of adsorption and biodegradation, gave a good removal of pentachlorophenol (PCP), on average, about 70%. The growth kinetic parameters obtained were: YH = 0.6504 mg biomass/mg PCP, dH = 6.50x10-5 h-1, μh = 0.00315 h-1 and Ks = 5.82 mg PCP L-1. These show that the SBBR system is suitable to be operated at long SRTs.

  15. Supercritical water oxidation test bed effluent treatment study

    International Nuclear Information System (INIS)

    This report presents effluent treatment options for a 50 h Supercritical Water Test Unit. Effluent compositions are calculated for eight simulated waste streams, using different assumed cases. Variations in effluent composition with different reactor designs and operating schemes are discussed. Requirements for final effluent compositions are briefly reviewed. A comparison is made of two general schemes. The first is one in which the effluent is cooled and effluent treatment is primarily done in the liquid phase. In the second scheme, most treatment is performed with the effluent in the gas phase. Several unit operations are also discussed, including neutralization, mercury removal, and evaporation

  16. Studies of the ionizing radiation effects on the effluents acute toxicity due to anionic surfactants

    International Nuclear Information System (INIS)

    Several studies have shown the negative effects of surfactants, as detergents active substance, when discharged on biological sewage wastewater treatment plants. High toxicity may represent a lower efficiency for biological treatment. When surfactants are in aquatic environment they may induce a loss of grease revetment on birds (feather). Depending on the surfactant concentration, several damages to all biotic systems can happen. Looking for an alternative technology for wastewater treatment, efficient for surfactant removal, the present work applied ionizing radiation as an advanced oxidation process for affluents and effluents from Suzano Treatment Station. Such wastewater samples were submitted to radiation using an electron beam from a Dynamic Electron Beam Accelerator from Instituto de Pesquisas Energeticas e Nucleares. In order to assess this proposed treatment efficacy, it was performed acute toxicity evaluation with two test-organisms, the crustacean Daphnia similis and the luminescent bacteria Vibrio fischeri. The studied effluents were: one from a chemical industry (IND), three from sewage plant (affluents - GG, GM and Guaio) and the last biologically treated secondary effluent (EfF), discharged at Tiete river. The applied radiation doses varied from 3 kGy to 50 kGy, being 50 kGy enough for surfactant degradation contained at industrial effluent. For GG, GM and Guaio samples, doses of 6 kGy and 10 kGy were efficient for surfactant and toxicity reduction, representing an average removal that varied from 71.80% to 82.76% and toxicity from 30% to 91% for most the effluents. The final effluent was less toxic than the others and the radiation induced an average 11% removal for anionic surfactant. The industrial effluents were also submitted to an aeration process in order to quantify the contribution of surfactant to the whole sample toxicity, once it was partially removed as foam and several fractions were evaluated for toxicity. (author)

  17. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe3O4) nanoparticles

    Science.gov (United States)

    Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.

    2016-04-01

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding

  18. Quality of water recovered from a municipal effluent injection well in the Floridan aquifer system, Pompano Beach, Florida

    Science.gov (United States)

    McKenzie, D.J.; Irwin, G.A.

    1984-01-01

    Approximately 69 million gallons of backflow from an injection well used for the disposal of secondary treated municipal effluent in the Floridan aquifer system near Pompano Beach, Florida, was periodically sampled for inorganic quality from March 1975 through March 1977. Analyses of the backflow effluent showed a concomitant increase in dissolved solids and a change in ionic composition as a function of cumulative volume of backflow. Both the increase in dissolved solids and the change in major ionic composition were directly related to an estimated 6 to 7 percent mixing of the moderately saline water in the Florida aquifer system with the injected system with the injected effluent. Although an estimated 3.5 billion gallons of effluent was injected into the aquifer system during the 16-year operation of the Collier Manor treatment plant, only 65 to 70 million gallons was backflowed before the chloride concentration approached 250 milligrams per liter. (USGS)

  19. 40 CFR 409.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.13 Effluent limitations guidelines representing the degree of effluent reduction...

  20. 40 CFR 409.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best conventional pollutant... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Louisiana Raw Cane Sugar Processing Subcategory § 409.47 Effluent limitations guidelines representing the degree of effluent...