WorldWideScience

Sample records for area telescope observations

  1. Fermi Large Area Telescope observations of GRB 110625A

    CERN Document Server

    Tam, P H Thomas; Fan, Yi-Zhong

    2012-01-01

    Gamma-ray bursts (GRBs) that emit photons at GeV energies form a small but significant population of GRBs. However, the number of GRBs whose GeV-emitting period is simultaneously observed in X-rays remains small. We report gamma-ray observations of GRB 110625A using Fermi's Large Area Telescope (LAT) in the energy range 100 MeV to 20 GeV. Gamma-ray emission at these energies was clearly detected using data taken between 180s and 580s after the burst, an epoch after the prompt emission phase. The GeV light curve differs from a simple power-law decay, and probably consists of two emission periods. Simultaneous Swift/XRT observations did not show flaring behaviors as in the case of GRB 100728A. We discuss the possibility that the GeV emission is the synchrotron self-Compton radiation of underlying ultraviolet flares.

  2. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR

    International Nuclear Information System (INIS)

    The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new γ-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E ≥ 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of Γ = 1.51+0.05-0.04 with an exponential cutoff at Ec = 2.9 ± 0.1 GeV. Spectral fits with generalized cutoffs of the form e-(E/Ec)b require b ≤ 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula.

  3. FERMI LARGE AREA TELESCOPE OBSERVATION OF SUPERNOVA REMNANT S147

    International Nuclear Information System (INIS)

    We present an analysis of gamma-ray data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope in the region around supernova remnant (SNR) S147 (G180.0–1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5σ confidence level. The gamma-ray flux is (3.8 ± 0.6) × 10–8 photons cm–2 s–1, corresponding to a luminosity of 1.3 × 1034 (d/1.3 kpc)2 erg s–1 in this energy range. The gamma-ray emission exhibits a possible spatial correlation with the prominent Hα filaments of SNR S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral π mesons produced through the proton-proton collisions in the filaments. The reacceleration of the pre-existing cosmic rays and subsequent adiabatic compression in the filaments is sufficient to provide the energy density required of high-energy protons.

  4. FERMI LARGE AREA TELESCOPE OBSERVATION OF SUPERNOVA REMNANT S147

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, J.; Uchiyama, Y.; Tanaka, T.; Tajima, H.; Bechtol, K.; Funk, S.; Lande, J. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Hanabata, Y. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Lemoine-Goumard, M. [Universite Bordeaux 1, CNRS/IN2p3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, 33175 Gradignan (France); Takahashi, T., E-mail: katsuta@slac.stanford.edu, E-mail: uchiyama@slac.stanford.edu [Institute of Space and Astronautical Science, Japanese Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-06-20

    We present an analysis of gamma-ray data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope in the region around supernova remnant (SNR) S147 (G180.0-1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5{sigma} confidence level. The gamma-ray flux is (3.8 {+-} 0.6) Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1}, corresponding to a luminosity of 1.3 Multiplication-Sign 10{sup 34} (d/1.3 kpc){sup 2} erg s{sup -1} in this energy range. The gamma-ray emission exhibits a possible spatial correlation with the prominent H{alpha} filaments of SNR S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral {pi} mesons produced through the proton-proton collisions in the filaments. The reacceleration of the pre-existing cosmic rays and subsequent adiabatic compression in the filaments is sufficient to provide the energy density required of high-energy protons.

  5. Fermi Large Area Telescope Observations of the Cosmic-Ray Induced

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.

    2012-02-29

    We report on measurements of the cosmic-ray induced {gamma}-ray emission of Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The LAT has observed the Earth during its commissioning phase and with a dedicated Earth-limb following observation in September 2008. These measurements yielded {approx} 6.4 x 10{sup 6} photons with energies > 100 MeV and {approx} 250 hours total livetime for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission - often referred to as Earth albedo gamma-ray emission - has a power-law shape up to 500 GeV with spectral index {Lambda} = 2.79 {+-} 0.06.

  6. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF TWO GAMMA-RAY EMISSION COMPONENTS FROM THE QUIESCENT SUN

    International Nuclear Information System (INIS)

    We report the detection of high-energy γ-rays from the quiescent Sun with the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope (Fermi) during the first 18 months of the mission. These observations correspond to the recent period of low solar activity when the emission induced by cosmic rays (CRs) is brightest. For the first time, the high statistical significance of the observations allows clear separation of the two components: the point-like emission from the solar disk due to CR cascades in the solar atmosphere and extended emission from the inverse Compton (IC) scattering of CR electrons on solar photons in the heliosphere. The observed integral flux (≥100 MeV) from the solar disk is (4.6 ± 0.2[statistical error]+1.0-0.8[systematic error]) x 10-7 cm-2 s-1, which is ∼7 times higher than predicted by the 'nominal' model of Seckel et al. In contrast, the observed integral flux (≥100 MeV) of the extended emission from a region of 20 deg. radius centered on the Sun, but excluding the disk itself, (6.8 ± 0.7[stat.]+0.5-0.4[syst.]) x 10-7 cm-2 s-1, along with the observed spectrum and the angular profile, is in good agreement with the theoretical predictions for the IC emission.

  7. Observations of Gamma-ray Bursts with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Francesco, E-mail: francesco.longo@ts.infn.it [Dipartimento di Fisica, Università di Trieste and INFN, sezione di Trieste, via Valerio 2, I-34127 Trieste (Italy); Vianello, Giacomo; Omodei, Nicola [Stanford University (HEPL), 452 Lomita Mall, Stanford, CA 94205 (United States); Piron, Frederic; Vasilieou, Vlasios [Laboratoire Univers et Particules de Montpellier, Universite de Montpellier II, CNRS/IN2P3, CC72, Place E. Bataillon, F-34095 Montpellier Cedex 5 (France); Razzaque, Soebur [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa)

    2014-04-01

    The Fermi observatory, with its Gamma-ray Bursts Monitor (GBM) and Large Area Telescope (LAT), is observing Gamma-ray Bursts (GRBs) with a very large spectral coverage and unprecedented sensitivity, from ∼10keV to >300GeV. In the first 3 years of the mission it observed emission above 100 MeV from 35 GRBs. In this paper we review the main results obtained on such a sample, highlighting also the relationships with the low-energy spectral and temporal features (as measured by the GBM). Some recent results on high energy photons from GRBs obtained with the preliminary Pass 8 new event-level reconstruction will be discussed.

  8. Gamma-ray observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    CERN Document Server

    Ackermann, M; Allafort, A; Antolini, E; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Silva, E do Couto e; Drell, P S; Drlica-Wagner, A; Enoto, T; Falletti, L; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fukazawa, Y; Fukui, Y; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Horan, D; Hou, X; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Lee, S -H; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Makishima, K; Mazziotta, M N; Mehault, J; Mitthumsiri, W; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nishino, S; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Orienti, M; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Razzano, M; Reimer, A; Reimer, O; Roth, M; Sadrozinski, H F -W; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thayer, J B; Tibolla, O; Tinivella, M; Torres, D F; Tramacere, A; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S

    2012-01-01

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between \\sim100 MeV and \\sim100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to \\sim10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity integrated CO intensity (WCO) at a 1{\\deg} \\times1{\\deg} pixel level. The correlation is found to be linear over a WCO range of ~10 fold when divided in 3 regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The Wco-to-mass conversion factor, Xco, is found to be \\sim2.3\\times1...

  9. Fermi Large Area Telescope observations of the Vela-X Pulsar Wind Nebula

    CERN Document Server

    ,

    2016-01-01

    We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45, using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 degree diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2*3 degrees area south of the pulsar known as Vela-X. The LAT flux is signicantly spatially extended with a best-fit radius of 0.88 +/- 0.12 degrees for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power-law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux above 100 MeV of (4.73 +/- 0.63 +/- 1.32) * 10^{-7} cm^{-2} s^{-1}. The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong ...

  10. Constraints on Lorentz Invariance Violation from Fermi -Large Area Telescope Observations of Gamma-Ray Bursts

    Science.gov (United States)

    Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Courturier, C.; Granot, J.; Stecker, Floyd William; Cohen-Tanugi, J.; Longo, F.

    2013-01-01

    We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the "QG energy scale" (the energy scale that LIV-inducing QG effects become important, E(sub QG)) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB 090510 and are E(sub QG,1) > 7.6 times the Planck energy (E(sub Pl)) and E(sub QG,2) > 1.3×10(exp 11) GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of approx. 2. Our results disfavor any class of models requiring E(sub QG,1) sub Pl)

  11. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF PSR J1836+5925

    International Nuclear Information System (INIS)

    The discovery of the γ-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 250 off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1 x 1034 erg s-1, and a large off-peak (OP) emission component, making it quite unusual among the known γ-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results, and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the OP emission indicate it is likely magnetospheric. Analysis of recent XMM-Newton observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission.

  12. Fermi large area telescope observations of the cosmic-ray induced γ-ray emission of the Earth's atmosphere

    International Nuclear Information System (INIS)

    We report on measurements of the cosmic-ray induced γ-ray emission of Earth's atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded ∼6.4x106 photons with energies >100 MeV and ∼250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission--often referred to as Earth albedo gamma-ray emission--has a power-law shape up to 500 GeV with spectral index Γ=2.79±0.06.

  13. Fermi Large Area Telescope Observations of the Monoceros Loop Supernova Remnant

    CERN Document Server

    Katagiri, H; Ackermann, M; Ballet, J; Casandjian, J M; Hanabata, Y; Hewitt, J W; Kerr, M; Kubo, H; Lemoine-Goumard, M; Ray, P S

    2016-01-01

    We present an analysis of the gamma-ray measurements by the Large Area Telescope onboard the \\textit{Fermi Gamma-ray Space Telescope} in the region of the supernova remnant~(SNR) Monoceros Loop~(G205.5$+$0.5). The brightest gamma-ray peak is spatially correlated with the Rosette Nebula, which is a molecular cloud complex adjacent to the southeast edge of the SNR. After subtraction of this emission by spatial modeling, the gamma-ray emission from the SNR emerges, which is extended and fit by a Gaussian spatial template. The gamma-ray spectra are significantly better reproduced by a curved shape than a simple power law. The luminosities between 0.2--300~GeV are $\\sim$~$4 \\times 10^{34}$~erg~s$^{-1}$ for the SNR and $\\sim$~$3 \\times 10^{34}$~erg~s$^{-1}$ for the Rosette Nebula, respectively. We argue that the gamma rays likely originate from the interactions of particles accelerated in the SNR. The decay of neutral pions produced in nucleon-nucleon interactions of accelerated hadrons with interstellar gas provid...

  14. Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, H.; /Ibaraki U., Mito; Tibaldo, L.; /INFN, Padua /Padua U. /Paris U., VI-VII; Ballet, J.; /Paris U., VI-VII; Giordano, F.; /Bari U. /Bari Polytechnic /INFN, Bari; Grenier, I.A.; /Paris U., VI-VII; Porter, T.A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Roth, M.; /Washington U., Seattle; Tibolla, O.; /Wurzburg U.; Uchiyama, Y.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Yamazaki, R.; /Sagamihara, Aoyama Gakuin U.

    2011-11-08

    We present an analysis of the gamma-ray measurements by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Cygnus Loop (G74.0-8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2-100 GeV. The gamma-ray spectrum shows a break in the range 2-3 GeV. The gamma-ray luminosity is {approx} 1 x 10{sup 33} erg s{sup -1} between 1-100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0{sup o}.7 {+-} 0{sup o}.1 and 1{sup o}.6 {+-} 0{sup o}.1. Given the association among X-ray rims, H{alpha} filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.

  15. Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant

    International Nuclear Information System (INIS)

    We present an analysis of the gamma-ray measurements by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Cygnus Loop (G74.0-8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2-100 GeV. The gamma-ray spectrum shows a break in the range 2-3 GeV. The gamma-ray luminosity is ∼ 1 x 1033 erg s-1 between 1-100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0o.7 ± 0o.1 and 1o.6 ± 0o.1. Given the association among X-ray rims, Hα filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.

  16. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE CYGNUS LOOP SUPERNOVA REMNANT

    International Nuclear Information System (INIS)

    We present an analysis of the gamma-ray measurements by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Cygnus Loop (G74.0–8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2-100 GeV. The gamma-ray spectrum shows a break in the range 2-3 GeV. The gamma-ray luminosity is ∼1 × 1033 erg s–1 between 1 and 100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0.07 ± 0.01 and 1.06 ± 0.01. Given the association among X-ray rims, Hα filaments, and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.

  17. Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant

    CERN Document Server

    Katagiri, H; Ballet, J; Giordano, F; Grenier, I A; Porter, T A; Roth, M; Tibolla, O; Uchiyama, Y; Yamazaki, R

    2011-01-01

    We present an analysis of the gamma-ray measurements by the Large Area Telescope(LAT) onboard the \\textit{Fermi Gamma-ray Space Telescope} in the region of the supernova remnant(SNR) Cygnus Loop(G74.0$-$8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2--100 GeV. The gamma-ray spectrum shows a break in the range 2--3 GeV. The gamma-ray luminosity is $\\sim$ $1 \\times 10^{33}$erg s$^{-1}$ between 1--100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0$^\\circ$.7 $\\pm$ 0$^\\circ$.1 and 1$^\\circ$.6 $\\pm$ 0$^\\circ$.1. Given the association among X-ray rims, \\halpha filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasona...

  18. FERMI-LARGE AREA TELESCOPE OBSERVATIONS OF THE EXCEPTIONAL GAMMA-RAY OUTBURSTS OF 3C 273 IN 2009 SEPTEMBER

    International Nuclear Information System (INIS)

    We present the light curves and spectral data of two exceptionally luminous gamma-ray outbursts observed by the Large Area Telescope experiment on board the Fermi Gamma-ray Space Telescope from 3C 273 in 2009 September. During these flares, having a duration of a few days, the source reached its highest γ-ray flux ever measured. This allowed us to study, in some details, their spectral and temporal structures. The rise and the decay are asymmetric on timescales of 6 hr, and the spectral index was significantly harder during the flares than during the preceding 11 months. We also found that short, very intense flares put out the same time-integrated energy as long, less intense flares like that observed in 2009 August.

  19. Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope

    CERN Document Server

    Hui, C Y; Ng, C W; Lin, L C C; Tam, P H T; Cheng, K S; Kong, A K H; Chernyshov, D O; Dogiel, V A

    2016-01-01

    We report the results from a detailed $\\gamma-$ray investigation in the field of two "dark accelerators", HESS J1745-303 and HESS J1741-302, with $6.9$ years of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we found that its MeV-GeV emission is mainly originated from the "Region A" of the TeV feature. Its $\\gamma-$ray spectrum can be modeled with a single power-law with a photon index of $\\Gamma\\sim2.5$ from few hundreds MeV to TeV. Moreover, an elongated feature, which extends from "Region A" toward northwest for $\\sim1.3^{\\circ}$, is discovered for the first time. The orientation of this feature is similar to that of a large scale atomic/molecular gas distribution. For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for this unidentified TeV source. On the other hand, we have detected a new point source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved which resembles that of a $\\gamma-$ray pulsar. This makes it possibly associated with PSR B1...

  20. Constraints on the Galactic Population of TEV Pulsar Wind Nebulae Using Fermi Large Area Telescope Observations

    CERN Document Server

    Acero, F; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Blandford, R D; Bloom, E D; Bonamente, E; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Charles, E; Chaves, R C G; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dalton, M; D'Ammando, F; de Palma, F; Dermer, C D; Di Venere, L; Silva, E do Couto e; Drell, P S; Drlica-Wagner, A; Falletti, L; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grégoire, T; Grenier, I A; Grondin, M -H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Hewitt, J; Hill, A B; Horan, D; Hou, X; Hughes, R E; Inoue, Y; Jackson, M S; Jogler, T; Jóhannesson, G; Johnson, A S; Kamae, T; Kawano, T; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Marelli, M; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohsugi, T; Okumura, A; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Roth, M; Rousseau, R; Parkinson, P M Saz; Schulz, A; Sgrò, C; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Takeuchi, Y; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tibolla, O; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Werner, M; Winer, B L; Wood, K S; Yang, Z

    2013-01-01

    Pulsar wind nebulae (PWNe) have been established as the most populous class of TeV gamma-ray emitters. Since launch, the Fermi Large Area Telescope (LAT)identified five high-energy (100MeV

  1. Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M.; Allafort, A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Baldini, L.; /INFN, Pisa; Ballet, J.; /AIM, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Buson, S.; /INFN, Padua /Padua U.; Caliandro, G.A.; /CSIC, Catalunya; Cameron, R.A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Caraveo, P.A.; /IASF, Milan /AIM, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Unlisted, US /Naval Research Lab, Wash., D.C. /Perugia U. /ASDC, Frascati /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /ASDC, Frascati /Udine U. /INFN, Trieste /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Udine U. /INFN, Trieste /Trieste Observ. /Hiroshima U. /Nagoya U. /Bari Polytechnic /INFN, Bari /INFN, Bari /ASDC, Frascati /INFN, Perugia /Perugia U. /Bari Polytechnic /INFN, Bari /ASDC, Frascati /Bari Polytechnic /INFN, Bari /Bologna Observ. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Naval Research Lab, Wash., D.C. /Alabama U., Huntsville /CSIC, Catalunya /Hiroshima U. /NASA, Goddard /Hiroshima U.; /more authors..

    2012-09-14

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of p0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  2. Fermi Large Area Telescope Observations of the Supernova Remnant GS.7-0.1

    Science.gov (United States)

    Ferrara, E. C.; Hays, E.; Troja, E.; Moiseev, A. A.

    2012-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission ofG8.7-0.1, and the molecular clouds, the decay of pions produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS Jl804-2l6 and that the spectrum in the Ge V band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV-spectrum originates from the interaction of particles accelerated in G8.7-0.l with molecular clouds, and we constrain the diffusion coefficient of the particles.

  3. GAMMA-RAY OBSERVATIONS OF THE SUPERNOVA REMNANT RX J0852.0-4622 WITH THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    We report on gamma-ray observations of the supernova remnant (SNR) RX J0852.0-4622 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. In the Fermi-LAT data, we find a spatially extended source at the location of the SNR. The extension is consistent with the SNR size seen in other wavelengths such as X-rays and TeV gamma rays, leading to the identification of the gamma-ray source with the SNR. The spectrum is well described as a power law with a photon index of Γ = 1.85 ± 0.06 (stat)+0.18-0.19 (sys), which smoothly connects to the H.E.S.S. spectrum in the TeV energy band. We discuss the gamma-ray emission mechanism based on multiwavelength data. The broadband data can be fit well by a model in which the gamma rays are of hadronic origin. We also consider a scenario with inverse Compton scattering of electrons as the emission mechanism of the gamma rays. Although the leptonic model predicts a harder spectrum in the Fermi-LAT energy range, the model can fit the data considering the statistical and systematic errors.

  4. Gamma-Ray Observations of the Supernova Remnant RX J0852.0-4622 with the Fermi Large Area Telescope

    Science.gov (United States)

    Tanaka, T.; Allafort, A.; Ballet, J.; Funk, S.; Giordano, F.; Hewitt, J.; Lemoine-Goumard, M.; Tajima, H.; Tibolla, O.; Uchiyama, Y.

    2011-01-01

    We report on gamma-ray observations of the supernova remnant (SNR) RX J0852.04622 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. In the Fermi-LAT data, we find a spatially extended source at the location of the SNR. The extension is consistent with the SNR size seen in other wavelengths such as X-rays and TeV gamma rays, leading to the identification of the gamma-ray source with the SNR. The spectrum is well described as a power law with a photon index of = 1.85 0.06 (stat)+0.18 0.19 (sys), which smoothly connects to the H.E.S.S. spectrum in the TeV energy band. We discuss the gamma-ray emission mechanism based on multiwavelength data. The broadband data can be fit well by a model in which the gamma rays are of hadronic origin. We also consider a scenario with inverse Compton scattering of electrons as the emission mechanism of the gamma rays. Although the leptonic model predicts a harder spectrum in the Fermi-LAT energy range, the model can fit the data considering the statistical and systematic errors.

  5. Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

    Science.gov (United States)

    Ackermann, M.; Albert, A.; Anderson, B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bouvier, A.; Brandt, T. J.; Hays, E.; Perkins, J. S.

    2013-01-01

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma ray flux upper limits between 500MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma ray background modeling, and assumed dark matter density profile.

  6. Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

    CERN Document Server

    :,; Albert, A; Anderson, B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Bloom, E D; Bonamente, E; Bouvier, A; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caragiulo, M; Caraveo, P A; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; D'Ammando, F; de Angelis, A; Dermer, C D; Digel, S W; Silva, E do Couto e; Drell, P S; Drlica-Wagner, A; Essig, R; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giroletti, M; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec,; Gustafsson, M; Hayashida, M; Hays, E; Hewitt, J; Hughes, R E; Jogler, T; Kamae, T; Knödlseder, J; Kocevski, D; Kuss, M; Larsson,; Latronico, L; Garde, M Llena; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Martinez, G; Mayer, M; Mazziotta, M N; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohsugi, T; Orlando, E; Ormes, J F; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Sànchez-Conde, M; Sehgal, N; Sgrò, C; Siskind, E J; Spinelli, P; Strigari, L; Suson, D J; Tajima, H; Takahashi, H; Thayer, J B; Tibaldo, L; Tinivella, M; Torres, D F; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Werner, M; Winer, B L; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2013-01-01

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma-ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma-ray flux upper limits between 500 MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical Standard Model channels. W...

  7. OBSERVATIONS OF THE YOUNG SUPERNOVA REMNANT RX J1713.7-3946 WITH THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    We present observations of the young supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0.055 ± 0.004 matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allow us to identify the LAT source with SNR RX J1713.7-3946. The spectrum of the source can be described by a very hard power law with a photon index of Γ = 1.5 ± 0.1 that coincides in normalization with the steeper H.E.S.S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.

  8. Constraints on the Emission Geometries of Gamma-ray Millisecond Pulsars Observed with the Fermi Large Area Telescope

    CERN Document Server

    Johnson, T J

    2012-01-01

    Millisecond pulsars (MSPs) have been established as a class of high-energy ($\\geq$0.1 GeV) emitters with the Large Area Telescope (LAT) aboard the \\emph{Fermi Gamma-ray Space Telescope}. Most MSP gamma-ray light curves display sharp peaks indicative of thin accelerating gaps, suggesting copious pair-creation in the open volume. MSP gamma-ray and radio light curves have been simulated using geometric outer-gap (OG), slot-gap/two-pole caustic (TPC), and pair-starved polar cap gamma-ray models and either a hollow-cone beam or altitude-limited, outer-magnetospheric gap radio model, all assuming a vacuum retarded dipolar magnetic field geometry. A Markov chain Monte Carlo maximum likelihood technique has been developed to find the best-fit model parameters for nineteen MSPs using data from the LAT and various radio observatories. The best-fit viewing angles follow a uniform, angular distribution. The distribution of magnetic inclination angles favors all angles equally, contrary to analyses of non-recycled pulsars...

  9. New Radio Telescope Makes First Scientific Observations

    Science.gov (United States)

    2001-05-01

    first since Magellan to cover large areas of the planet's surface, will provide images showing surface features as small as about 1 km (3,000 ft), only three times the size of the Arecibo telescope itself. Venus may be a geologically active planet similar to the Earth, and the new images will be used to look for changes on Venus due to volcanic activity, landslides and other processes that may have modified the surface since the Magellan mission. The radar echoes received by both telescopes also can be combined to form a radar interferometer capable of measuring altitudes over some of the planet's mountainous regions with considerably better detail than was achieved by Magellan. These were the first scheduled observations with the new Robert C. Byrd Green Bank Telescope, demonstrating its capabilities for solar-system studies. In addition to the observations of Venus, a tiny 150m (500 ft) asteroid, 2001 EC16, was imaged with the two telescopes working as a combined radar system on March 26 when the asteroid was only 8 times the distance of the Moon from the Earth. The image could show details on the asteroid's surface only 15 meters (50 ft) in size and shows EC16 to be an irregularly shaped object rotating about once every 200 hrs, one of the slowest rotation rates so far measured for these objects. It took about 20 seconds for the radar signal to go to EC16 and back, compared with the almost 5 minutes needed to go to Venus and back. EC16 was discovered by the NEAT asteroid survey on March 15, 11 days prior to the radar observations. Very large numbers of these near-Earth asteroids are being discovered and the combined Arecibo-GBT radar system will be needed to properly study a significant number of them. The Robert C. Byrd Green Bank Telescope The observing team led by Campbell also included Jean-Luc Margot of Caltech, Lynn Carter of Cornell, and Bruce Campbell of the Smithsonian Institution. The 100-meter (330 feet) Robert C. Byrd Green Bank Telescope was dedicated in

  10. Gamma-ray emission from PSR J0007+7303 using 7 years of Fermi Large Area Telescope observations

    CERN Document Server

    Li, Jian; Wilhelmi, Emma de Ona; Rea, Nanda; Martin, Jonatan

    2016-01-01

    Based on more than seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a detailed analysis of the bright gamma-ray pulsar (PSR) J0007+7303. We confirm that PSR J0007+7303 is significantly detected as a point source also during the off-peak phases with a TS value of 262 ($\\sim$ 16 $\\sigma$). In the description of PSR J0007+7303 off-peak spectrum, a power law with an exponential cutoff at 2.7$\\pm$1.2$\\pm$1.3 GeV (the first/second uncertainties correspond to statistical/systematic errors) is preferred over a single power law at a level of 3.5 $\\sigma$. The possible existence of a cutoff hints at a magnetospheric origin of the emission. In addition, no extended gamma-ray emission is detected compatible with either the supernova remnant (CTA 1) or the very high energy (> 100 GeV) pulsar wind nebula. A flux upper limit of 6.5$\\times$10$^{-12}$ erg cm$^{-2}$ s$^{-1}$ in the 10-300 GeV energy range is reported, for an extended source assuming the morphology of the VERITAS detection. During on-pe...

  11. CONSTRAINTS ON THE GALACTIC POPULATION OF TeV PULSAR WIND NEBULAE USING FERMI LARGE AREA TELESCOPE OBSERVATIONS

    International Nuclear Information System (INIS)

    Pulsar wind nebulae (PWNe) have been established as the most populous class of TeV γ-ray emitters. Since launch, the Fermi Large Area Telescope (LAT) has identified five high-energy (100 MeV < E < 100 GeV) γ-ray sources as PWNe and detected a large number of PWN candidates, all powered by young and energetic pulsars. The wealth of multi-wavelength data available and the new results provided by Fermi-LAT give us an opportunity to find new PWNe and to explore the radiative processes taking place in known ones. The TeV γ-ray unidentified (UNID) sources are the best candidates for finding new PWNe. Using 45 months of Fermi-LAT data for energies above 10 GeV, an analysis was performed near the position of 58 TeV PWNe and UNIDs within 5° of the Galactic plane to establish new constraints on PWN properties and find new clues on the nature of UNIDs. Of the 58 sources, 30 were detected, and this work provides their γ-ray fluxes for energies above 10 GeV. The spectral energy distributions and upper limits, in the multi-wavelength context, also provide new information on the source nature and can help distinguish between emission scenarios, i.e., between classification as a pulsar candidate or as a PWN candidate. Six new GeV PWN candidates are described in detail and compared with existing models. A population study of GeV PWN candidates as a function of the pulsar/PWN system characteristics is presented

  12. CONSTRAINTS ON THE GALACTIC POPULATION OF TeV PULSAR WIND NEBULAE USING FERMI LARGE AREA TELESCOPE OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Acero, F.; Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brigida, M. [Dipartimento di Fisica ' ' M. Merlin' ' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: funk@slac.stanford.edu, E-mail: joshualande@gmail.com, E-mail: lemoine@cenbg.in2p3.fr, E-mail: rousseau@cenbg.in2p3.fr [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); and others

    2013-08-10

    Pulsar wind nebulae (PWNe) have been established as the most populous class of TeV {gamma}-ray emitters. Since launch, the Fermi Large Area Telescope (LAT) has identified five high-energy (100 MeV < E < 100 GeV) {gamma}-ray sources as PWNe and detected a large number of PWN candidates, all powered by young and energetic pulsars. The wealth of multi-wavelength data available and the new results provided by Fermi-LAT give us an opportunity to find new PWNe and to explore the radiative processes taking place in known ones. The TeV {gamma}-ray unidentified (UNID) sources are the best candidates for finding new PWNe. Using 45 months of Fermi-LAT data for energies above 10 GeV, an analysis was performed near the position of 58 TeV PWNe and UNIDs within 5 Degree-Sign of the Galactic plane to establish new constraints on PWN properties and find new clues on the nature of UNIDs. Of the 58 sources, 30 were detected, and this work provides their {gamma}-ray fluxes for energies above 10 GeV. The spectral energy distributions and upper limits, in the multi-wavelength context, also provide new information on the source nature and can help distinguish between emission scenarios, i.e., between classification as a pulsar candidate or as a PWN candidate. Six new GeV PWN candidates are described in detail and compared with existing models. A population study of GeV PWN candidates as a function of the pulsar/PWN system characteristics is presented.

  13. GLAST Large Area Telescope Multiwavelength Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David J.; /NASA, Goddard

    2007-10-10

    High-energy gamma-ray sources are inherently nonthermal, multiwavelength objects. With the launch of the Gamma-ray Large Area Space Telescope (GLAST) scheduled for later this year, the GLAST Large Area Telescope (LAT) Collaboration invites cooperative efforts from observers at all wavelengths. Among the many topics where multiwavelength studies will maximize the scientific understanding, two stand out for particular emphasis: (1) Active Galactic Nuclei. The study of AGN gamma-ray jets through time variability and spectral modeling can help link the accretion processes close to the black hole with the large-scale interaction of the AGN with its environment; (2) Unidentified Gamma-ray Sources. New gamma-ray sources need first to be identified with known objects seen at other wavelengths using position, spectrum, or time variability, and then multiwavelength studies can be used to explore the astrophysical implications of high-energy radiation from these sources. Observers interested in any type of coordinated observations should contact the LAT Multiwavelength Coordinating Group.

  14. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF GAMMA-RAY PULSARS PSR J1057-5226, J1709-4429, AND J1952+3252

    International Nuclear Information System (INIS)

    The Fermi Large Area Telescope (LAT) data have confirmed the pulsed emission from all six high-confidence gamma-ray pulsars previously known from the EGRET observations. We report results obtained from the analysis of 13 months of LAT data for three of these pulsars (PSR J1057-5226, PSR J1709-4429, and PSR J1952+3252) each of which had some unique feature among the EGRET pulsars. The excellent sensitivity of LAT allows more detailed analysis of the evolution of the pulse profile with energy and also of the variation of the spectral shape with phase. We measure the cutoff energy of the pulsed emission from these pulsars for the first time and provide a more complete picture of the emission mechanism. The results confirm some, but not all, of the features seen in the EGRET data.

  15. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  16. Fermi Large Area Telescope observations of high-energy gamma-ray emission from behind-the-limb solar flares

    CERN Document Server

    Pesce-Rollins, Melissa; Petrosian, Vahe'; Liu, Wei; da Costa, Fatima Rubio; Allafort, Alice

    2015-01-01

    Fermi-LAT >30 MeV observations have increased the number of detected solar flares by almost a factor of 10 with respect to previous space observations. These sample both the impulsive and long duration phases of GOES M and X class flares. Of particular interest is the recent detections of three solar flares whose position behind the limb was confirmed by the STEREO-B spacecraft. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources and implications for the particle acceleration mechanisms.

  17. PSR J0007+7303 in the CTA1I Supenova Remnant: New Gamma-Ray Results from Two Years of Fermi Large Area Telescope Observations

    Science.gov (United States)

    Abdo, A.; Wood, K.; DeCesar, M.; Gargano, F.; Giordano, F.; Ray, P. S.; Parent, D.; Harding, A.; Coleman, M.; Wood, D. L.; Wolff, M.

    2012-01-01

    One of the main results of the Fermi Gamma-Ray Space Telescope is the discovery of -ray selected pulsars. The high magnetic field pulsar, PSR J0007+7303 in CTA1, was the first ever to be discovered through its -ray pulsations. Based on analysis of two years of Large Area Telescope (LAT) survey data, we report on the discovery of -ray emission in the off-pulse phase interval at the 6 level. The emission appears to be extended at the 2 level with a disk of extension 0.6. level. The flux from this emission in the energy range E 100 MeV is F 100 = (1.73 0.40stat 0.18sys) 108photonscm2 s1 and is best fitted by a power law with a photon index of = 2.54 0.14stat 0.05sys. The pulsed -ray flux in the same energy range is F 100 = (3.95 0.07stat 0.30sys) 107photonscm2 s1 and is best fitted by an exponentially cutoff power-law spectrum with a photon index of = 1.41 0.23stat 0.03sys and a cutoff energy Ec = 4.04 0.20stat 0.67sysGeV. We find no flux variability either at the 2009 May glitch or in the long-term behavior. We model the -ray light curve with two high-altitude emission models, the outer gap and slot gap, and find that the preferred model depends strongly on the assumed origin of the off-pulse emission. Both models favor a large angle between the magnetic axis and observer line of sight, consistent with the nondetection of radio emission being a geometrical effect. Finally, we discuss how the LAT results bear on the understanding of the cooling of this neutron star.

  18. AGN Observations with the MAGIC Telescope

    OpenAIRE

    Bigongiari, Ciro

    2006-01-01

    MAGIC is presently the imaging atmospheric Cherenkov telescope with the largest reflecting surface and the lowest energy threshold. MAGIC concluded its first year of regular observation in April 2006. During this period and the preceding commissioning phase, 25 Active Galactic Nuclei have been observed and VHE gamma-ray emission has been confirmed by 4 of them. Two more AGNs have been detected as gamma-ray sources with high statistical significance for the first time. We report in this paper ...

  19. Diffuse γ-ray emission observed by the Fermi large area telescope: massive stars, cosmic rays and the census of the interstellar medium in the galaxy

    International Nuclear Information System (INIS)

    Galactic diffuse γ-ray emission is produced by interactions of cosmic rays (CRs) with interstellar gas and low-energy radiation fields. This is the brightest component of the high-energy γ-ray sky, surveyed since 2008 with unprecedented sensitivity and angular resolution by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. Galactic diffuse emission constitutes not only a bright and structured background which needs to be modeled in order to study individual sources and fainter diffuse components, but it can be used also as a probe of the interstellar environment of the Milky Way. We present in-depth studies of LAT γ-ray observations of selected regions in the local and outer Galaxy. LAT data are compared with multiwavelength tracers of the interstellar medium (ISM), including radio/mm-wave lines of gas and infrared emission/extinction from dust. The impact of the HI optical depth, often overlooked in the past, is carefully examined and recognized currently as the dominant source of uncertainty in the interpretation of observations. On one hand, we discuss the constraints provided by the γ-ray data on the census of the interstellar gas. We determine the XCO = N(H2)/WCO ratio for several clouds, finding no significant gradients in the Galactic disc over a range of ∼ 3.5 kpc in Galactocentric radius, and variations of a factor ≤ 2 in nearby local clouds. We also find evidence for an ubiquitous dark phase of interstellar gas which does not shine at radio/mm wavelengths and which provides a mass ∼ 50% of that traced by CO. For the first time we determine its γ-ray spectrum which is found to be well correlated with that of HI, thus further confirming that the emission originates from interstellar gas. On the other hand, we use the emissivity per hydrogen atom to infer the distribution of CRs in distant locations not accessible by direct measurements. While the local HI emissivity is consistent with the CR spectra measured near the

  20. Fermi Large Area Telescope and Multi-wavelength Observations of the Flaring Activity of PKS 1510-089 between 2008 September and 2009 June

    Science.gov (United States)

    Abdo, A. A.; Ackermann, M.; Agudo, I.; Ajello, M.; Allafort, A.; Aller, H. D.; Aller, M. F.; Antolini, E.; Arkharov, A. A.; Axelsson, M.; Bach, U.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berdyugin, A.; Berenji, B.; Blandford, R. D.; Blinov, D. A.; Bloom, E. D.; Boettcher, M.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buemi, C. S.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carosati, D.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.; Chen, W. P.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Corbel, S.; Costamante, L.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Donato, D.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Forné, E.; Fortin, P.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Gurwell, M. A.; Gusbar, C.; Gómez, J. L.; Hadasch, D.; Hagen-Thorn, V. A.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kimeridze, G.; Knödlseder, J.; Konstantinova, T. S.; Kopatskaya, E. N.; Koptelova, E.; Kovalev, Y. Y.; Kurtanidze, O. M.; Kuss, M.; Lahteenmaki, A.; Lande, J.; Larionov, V. M.; Larionova, E. G.; Larionova, L. V.; Larsson, S.; Latronico, L.; Lee, S.-H.; Leto, P.; Lister, M. L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; McHardy, I. M.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morozova, D. A.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Nikolashvili, M. G.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pasanen, M.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Pushkarev, A. B.; Rainò, S.; Raiteri, C. M.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reinthal, R.; Ripken, J.; Ritz, S.; Roca-Sogorb, M.; Rodriguez, A. Y.; Roth, M.; Roustazadeh, P.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Sgrò, C.; Sigua, L. A.; Smith, P. D.; Sokolovsky, K.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Takalo, L. O.; Tanaka, T.; Taylor, B.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Tornikoski, M.; Torres, D. F.; Tosti, G.; Tramacere, A.; Trigilio, C.; Troitsky, I. S.; Umana, G.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vilchez, N.; Villata, M.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2010-10-01

    We report on the multi-wavelength observations of PKS 1510-089 (a flat spectrum radio quasar (FSRQ) at z = 0.361) during its high activity period between 2008 September and 2009 June. During this 11 month period, the source was characterized by a complex variability at optical, UV, and γ-ray bands, on timescales down to 6-12 hr. The brightest γ-ray isotropic luminosity, recorded on 2009 March 26, was sime2 × 1048 erg s-1. The spectrum in the Fermi Large Area Telescope energy range shows a mild curvature described well by a log-parabolic law, and can be understood as due to the Klein-Nishina effect. The γ-ray flux has a complex correlation with the other wavelengths. There is no correlation at all with the X-ray band, a weak correlation with the UV, and a significant correlation with the optical flux. The γ-ray flux seems to lead the optical one by about 13 days. From the UV photometry, we estimated a black hole mass of sime5.4 × 108 M sun and an accretion rate of sime0.5 M sun yr-1. Although the power in the thermal and non-thermal outputs is smaller compared to the very luminous and distant FSRQs, PKS 1510-089 exhibits a quite large Compton dominance and a prominent big blue bump (BBB) as observed in the most powerful γ-ray quasars. The BBB was still prominent during the historical maximum optical state in 2009 May, but the optical/UV spectral index was softer than in the quiescent state. This seems to indicate that the BBB was not completely dominated by the synchrotron emission during the highest optical state. We model the broadband spectrum assuming a leptonic scenario in which the inverse Compton emission is dominated by the scattering of soft photons produced externally to the jet. The resulting model-dependent jet energetic content is compatible with a scenario in which the jet is powered by the accretion disk, with a total efficiency within the Kerr black hole limit.

  1. Observations of microquasars with the MAGIC telescope

    CERN Document Server

    Rico, J; Bordas, P; Bosch-Ramon, V; Cortina, J; Paredes, J M; Ribó, M; Torres, D F; Zanin, R

    2007-01-01

    We report on the results from the observations in very high energy band (VHE, E_gamma > 100GeV) of the black hole X-ray binary (BHXB) Cygnus X-1. The observations were performed with the MAGIC telescope, for a total of 40 hours during 26 nights, spanning the period between June and November 2006. We report on the results of the searches for steady and variable gamma-ray signals, including the first experimental evidence for an intense flare, of duration between 1.5 and 24 hours.

  2. The Allen Telescope Array Commensal Observing System

    CERN Document Server

    Williams, Peter K G

    2012-01-01

    This memo describes the system used to conduct commensal correlator and beamformer observations at the Allen Telescope Array (ATA). This system was deployed for ~2 years until the ATA hibernation in 2011 and was responsible for collecting >5 TB of data during thousands of hours of observations. The general system design is presented and the implementation is discussed in detail. I emphasize the rationale for various design decisions and attempt to document a few aspects of ATA operations that might not be obvious to non-insiders. I close with some recommendations from my experience developing the software infrastructure and managing the correlator observations. These include: reuse existing systems; solve, don't avoid, tensions between projects, and share infrastructure; plan to make standalone observations to complement the commensal ones; and be considerate of observatory staff when deploying new and unusual observing modes. The structure of the software codebase is documented.

  3. Near-Earth Observations by Spread Telescopes

    CERN Document Server

    Maslov, I A; Eremin, V V; Zubenko, G I; Kondabarov, A V; Ougolnikov, O S

    2003-01-01

    We suggest the all-sky survey at the International Space Station by four little wide-angle telescopes with polarization filters and CCD-arrays spread by several meters one from another. The video information processing will be carried out by real-time multiprocessor system on the board of the station. This experiment would allow to observe the sunlit space debris and meteoroids of centimetre size with their distances and velocities estimations at the distances up to 20 km from station and to investigate the interplanetary and interstellar medium by the making of polarization sky maps and detecting the weak-contrast features on it.

  4. Fermi Large Area Telescope Second Source Catalog

    Science.gov (United States)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Belfiore, A.; Bellazzini, R.; Berenji, B.; Bignami, G. F.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Bonnell, J.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Campana, R.; Cañadas, B.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Ceccanti, M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chipaux, R.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbet, R.; Cutini, S.; D'Ammando, F.; Davis, D. S.; de Angelis, A.; DeCesar, M. E.; DeKlotz, M.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Enoto, T.; Escande, L.; Fabiani, D.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Iafrate, G.; Itoh, R.; Jóhannesson, G.; Johnson, R. P.; Johnson, T. E.; Johnson, A. S.; Johnson, T. J.; Kamae, T.; Katagiri, H.; Kataoka, J.; Katsuta, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Landriu, D.; Latronico, L.; Lemoine-Goumard, M.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Marelli, M.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Minuti, M.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Mongelli, M.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Pinchera, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Romani, R. W.; Roth, M.; Rousseau, R.; Ryde, F.; Sadrozinski, H. F.-W.; Salvetti, D.; Sanchez, D. A.; Saz Parkinson, P. M.; Sbarra, C.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Shaw, M. S.; Shrader, C.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stephens, T. E.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Tinebra, F.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Van Etten, A.; Van Klaveren, B.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wallace, E.; Wang, P.; Werner, M.; Winer, B. L.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.

    2012-04-01

    We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes. We dedicate this paper to the memory of our colleague Patrick Nolan, who died on 2011 November 6. His career spanned much of the history of high-energy astronomy from space and his work on the Large Area Telescope (LAT) began nearly 20 years ago when it was just a concept. Pat was a central member in the operation of the LAT collaboration and he is greatly missed.

  5. Young Astronomers' Observe with ESO Telescopes

    Science.gov (United States)

    1995-11-01

    axis (NGC 1448) and the dust lane (NGC 1947), respectively. Strong emission lines of H-alpha, ionized nitrogen [N II] and ionized sulphur [S II] were seen in both galaxies; they originate in interstellar gas clouds within their confines. From the exact wavelengths of these lines, the velocity of the galaxies can be measured. The team found values near 1100-1200 km/sec for both galaxies, in full agreement with the published values. Moreover, the variations of these line wavelengths at increasing distance from the galaxy centres allow to determine the rotation curves with good accuracy. A total amplitude of about 400 km/sec was observed in both galaxies. The velocity gradient is very steep at the centre, indicating the presence of a large mass in this area. Indeed, total masses of the order of 10e9 or even 10e10 solar masses were calculated for the innermost region of the galaxies. Team 2a: D'elia, Hardy, Janhonen, Lesuffleur, Nellen, Nykyri, Pudano; Team leader: Jacco van Loon This team obtained high-dispersion spectra (resolution about 80,000) with the Coude Echelle Spectrometer and the 1.4-m Coude Auxiliary Telescope (CAT) of 5 late-type gaint and supergiant stars. These stars have arrived at a late phase of their lives. The heaviest, i.e. the supergiants may soon become supernovae, while the less heavy, the giants, may develop into a White Dwarf via the intermediate Planetary Nebula stage. The team wanted to find out which of these stars would develop which way by classifying them. The spectra covered two spectral regions, at the hydrogen H-alpha 6562 A line and at the ionized calcium Ca II 8542 A line. The calcium line serves for spectral classification; the deeper and broader this line is, the higher is the luminosity of the star. Of the five stars, T Microscopis and nu Eridanis were found to have a rather weak and narrow Ca II line and are therefore giants; the others had higher luminosity, in particular Alpha Orionis. In astronomical terms, the latter may in fact

  6. Observer Access to the Cherenkov Telescope Array

    CERN Document Server

    Knödlseder, Jürgen; Boisson, Catherine; Brau-Nogué, Sylvie; Deil, Christoph; Khélifi, Bruno; Mayer, Michael; Walter, Roland

    2015-01-01

    The Cherenkov Telescope Array (CTA), a ground-based facility for very-high-energy (VHE) gamma-ray astronomy, will operate as an open observatory, serving a wide scientific community to explore and to study the non-thermal universe. Open community access is a novelty in this domain, putting a challenge on the implementation of services that make VHE gamma-ray astronomy as accessible as any other waveband. We present here the design of the CTA Observer Access system that comprises support of scientific users, dissemination of data and software, tools for scientific analysis, and the system to submit observing proposals. We outline the scientific user workflows and provide the status of the current developments.

  7. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, P. L.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Antolini, E.; Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Atwood, W. B.; Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bignami, G. F., E-mail: digel@stanford.edu, E-mail: Gino.Tosti@pg.infn.it, E-mail: jean.ballet@cea.fr, E-mail: tburnett@u.washington.edu [Istituto Universitario di Studi Superiori (IUSS), I-27100 Pavia (Italy); and others

    2012-04-01

    We present the second catalog of high-energy {gamma}-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely {gamma}-ray-producing source classes.

  8. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    International Nuclear Information System (INIS)

    We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes.

  9. Fermi Large Area Telescope Third Source Catalog

    CERN Document Server

    ,

    2015-01-01

    We present the third Fermi Large Area Telescope source catalog (3FGL) of sources in the 100~MeV--300~GeV range. Based on the first four years of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the 2FGL catalog, the 3FGL catalog incorporates twice as much data as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse gamma-ray emission, a refined procedure for source detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources above 4 sigma significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 232 sources are considered as identifie...

  10. Fermi Large Area Telescope Second Source Catalog

    CERN Document Server

    ,

    2011-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we att...

  11. Optical Observations of GEO Debris with Two Telescopes

    Science.gov (United States)

    Seitzer, P.; Abercromby, K.; Rodriguez, H.; Barker, E.

    2007-01-01

    six-parameter orbits to investigate what causes this change in observed angular rates. Are these faint objects either the same population of high area-to-mass (A/M) objects on eccentric orbits as discovered by the ESA Space Debris Telescope (Schildknecht, et al. 2004), or are they just normal debris from breakups in GEO?

  12. High Energy Astrophysics with the Fermi Large Area Telescope

    Science.gov (United States)

    Hays, Elizabeth

    2009-01-01

    This slide presentation reviews some of the findings of the Large Area Telescope (LAT) aboard the Fermi Observatory. It includes information about the LAT, and the Gamma-Ray Burst Monitor (GBM), detection of the quiet sun and the moon in gamma rays, Pulsars observed by the observatory, Globular Star Clusters, Active Galactic Nucleus, and Gamma-Ray Bursts, with specific information about GRB 080916C.

  13. FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG

    International Nuclear Information System (INIS)

    We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4σ. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.

  14. Young Astronomers' Observe with ESO Telescopes

    Science.gov (United States)

    1995-11-01

    Today, forty 16-18 year old students and their teachers are concluding a one-week, educational `working visit' to the ESO Headquarters in Garching (See ESO Press Release 14/95 of 8 November 1995). They are the winners of the Europe-wide contest `Europe Towards the Stars', organised by ESO with the support of the European Union, under the auspices of the Third European Week for Scientific and Technological Culture. From November 14-20, they have worked with professional ESO astronomers in order to get insight into the methods and principles of modern astronomy and astrophysics, as carried out at one of the world's foremost international centres. This included very successful remote observations with the ESO 3.5-m New Technology Telescope (NTT) and the 1.4-m Coude Auxiliary Telescope (CAT) via a satellite link between the ESO Headquarters and the La Silla observatory in Chile, 12,000 kilometres away. After a general introduction to modern astronomy on the first day of the visit, the participants divided into six teams, according to their interests. Some chose to observe distant galaxies, others prefered to have a closer look on binary stars, and one team decided to investigate a star which is thought to be surrounded by a proto-planetary system. Each team was supported by an experienced ESO astronomer. Then followed the observations at the remote consoles during three nights, the first at the NTT and the following at the CAT. Each team had access to the telescope during half a night. Although the work schedule - exactly as in `real' science - was quite hard, especially during the following data reduction and interpretative phase, all teams managed extremely well and in high spirits. The young astronomers' observations were favoured by excellent atmospheric conditions. At the NTT, the seeing was better than 0.5 arcsecond during several hours, an exceptional value that allows very good images to be obtained. All observations represent solid and interesting science, and

  15. Grid-Observing: Creating a Global Network of Telescopes

    Science.gov (United States)

    Hessman, F. V.; Gelderman, R.; Naylor, T.; Pennypacker, C.; Steele, I.

    2004-12-01

    With the increasing switch from classical observing campaigns to service observations, the decreasing pressure on a large number of 1 - 2m telescopes, and the rapid growth in the number of robotic, autonomous telescopes, it has become possible to create a truly global network of telescopes - what we call ``Grid-Observing." Such a network would permit a variety of photometric and spectroscopic monitoring and temporal survey projects which cannot be performed either with current or proposed larger telescopes (e.g. LSST) or with individual telescopes operated by a single institution. Participating observatories can be ``paid" for the services they provide to the network by being able to extract an equivalent amount of time on other telescopes, scaled by aperture, spectral resolution, atmospheric conditions, and the costs of operation or willingness to provide such a service. An XML interface - Remote Telescope Markup Language - insures that communications within the network are simple and relatively easily adapted to existent observatory software and procedures. An eBay-like mechanism for the automatic scheduling of telescopes can provide the necessary flexibility needed to perform time-critical projects as well as insure that the participating institutions retain full control over their telescopes. We are planning on networking several robotic telescope in the near future and expect that many other robotic and non-robotic telescopes will follow.

  16. CMB Observations with the South Pole Telescope

    Science.gov (United States)

    Keisler, Ryan

    2013-04-01

    I will describe a program of cosmological research centered on using measurements of the cosmic microwave background (CMB) to address questions relevant to physics: What is the absolute mass scale of neutrinos? How many species of neutrino-like particles were present in the early Universe? How does gravity behave on cosmological scales? Did inflation occur, and, if so, at what energy scale? A new generation of CMB experiments is targeting these questions, and I will focus on recent results from the South Pole Telescope (SPT). The SPT is a ground-based mm-wave observatory located at the geographic south pole in Antarctica, and in 2011 finished its initial, 2500 square-degree ``SPT-SZ'' survey. The data from this survey provided an unprecedented combination of resolution, area, and sensitivity, and has been used to make ground-breaking measurements of the CMB anisotropy and the gravitational lensing of the CMB. These measurements have, in conjunction with data from the WMAP satellite, led to strong constraints on the number of neutrino-like particle species present in the early universe and the shape of the power spectrum of primordial density fluctuations. The SPT-SZ data overlaps with the ongoing Dark Energy Survey (DES) footprint, and the joint dataset will provide new probes of large-scale structure, such as the relative velocities of massive galaxy clusters. In 2012, a new polarization-sensitive camera, SPTpol, was installed on the SPT, and I will summarize its performance and prospects for detecting the B-mode CMB polarization pattern. Finally, I will touch on what will be possible with a third-generation camera, SPT-3G. The leap in sensitivity provided by this camera will yield, for example, a constraint on the sum of the neutrino masses relevant for exploring the neutrino mass hierarchy.

  17. Pulsar Observations with Radio Telescope FAST

    Science.gov (United States)

    Nan, Ren-Dong; Wang, Qi-Ming; Zhu, Li-Chun; Zhu, Wen-Bai; Jin, Cheng-Jin; Gan, Heng-Qian

    2006-12-01

    FAST, Five hundred meter Aperture Spherical Telescope, is the Chinese effort for the international project SKA, Square Kilometer Array. An innovative engineering concept and design pave a new road to realizing huge single dish in the most effective way. Three outstanding features of the telescope are the unique karst depressions as the sites, the active main reflector which corrects spherical aberration on the ground to achieve full polarization and wide band without involving complex feed system, and the light focus cabin driven by cables and servomechanism plus a parallel robot as secondary adjustable system to carry the most precise parts of the receivers. Besides a general coverage of those critical technologies involved in FAST concept, the progresses in demonstrating model being constructed at the Miyun Radio Observatory of the NAOC is introduced. Being the most sensitive radio telescope, FAST will enable astronomers to jumpstart many of science goals, for example, the natural hydrogen line surveying in distant galaxies, looking for the first generation of shining objects, hearing the possible signal from other civilizations, etc. Among these subjects, the most striking one could be pulsar study. Large scale survey by FAST will not only improve the statistics of the pulsar population, but also may offer us a good fortune to pick up more of the most exotic, even unknown types like a sub-millisecond pulsar or a neutron star -- black hole binary as the telescope is put into operation.

  18. Optical telescope BIRT in ORIGIN for gamma ray burst observing

    DEFF Research Database (Denmark)

    Content, Robert; Sharples, Ray; Page, Mathew J.;

    2012-01-01

    The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope...

  19. Observations of Blazar S5 0716+714 With Ground Based Telescopes and the Spitzer Infrared Space Telescope

    Science.gov (United States)

    Adkins, Jeffery; Lacy, M.; Morton, A.; Travagli, T.; Mulaveesala, M.; Santiago, J.; Rapp, S.; Stefaniak, L.

    2006-12-01

    The Gamma-Ray Large Area Space Telescope (GLAST) to be launched in 2007 has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the Global Telescope Network (GTN). One of our targets, S5 0716+714, was observed with the Spitzer Space Telescope MIPS and IRAC instruments and also using ground based telescopes. Observations were made in seven infrared bands with Spitzer. Additional observations made from the ground by students, amateur astronomers, and college observatories in R,V, and I were nearly simultaneous with the Spitzer observations. This data were used to construct light curves over the course of the observation and the Spectral Energy Distribution (SED) of the target using all the sources. These data were compared to models of the dust emission from the torus, synchrotron emission from the radio core, and thermal emission from the accretion disk to determine the relative importance of the different emission mechanisms in this object as a function of wavelength. Results were compared to observations of 4C 29.45 made last year. This research was supported by the Spitzer Science Center, the National Optical Astronomy Observatory, and the California Department of Education's Specialized Secondary Program.

  20. Pulsar Results with the Fermi Large Area Telescope

    CERN Document Server

    Ray, Paul S

    2010-01-01

    The launch of the Fermi Gamma-ray Space Telescope has heralded a new era in the study of gamma-ray pulsars. The population of confirmed gamma-ray pulsars has gone from 6-7 to more than 60, and the superb sensitivity of the Large Area Telescope (LAT) on Fermi has allowed the detailed study of their spectra and light curves. Twenty-four of these pulsars were discovered in blind searches of the gamma-ray data, and twenty-one of these are, at present, radio quiet, despite deep radio follow-up observations. In addition, millisecond pulsars have been confirmed as a class of gamma-ray emitters, both individually and collectively in globular clusters. Recently, radio searches in the direction of LAT sources with no likely counterparts have been highly productive, leading to the discovery of a large number of new millisecond pulsars. Taken together, these discoveries promise a great improvement in the understanding of the gamma-ray emission properties and Galactic population of pulsars. We summarize some of the result...

  1. Searches for Dark Matter with the Fermi Large Area Telescope

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of the gamma-ray sky have come to prominence over the last few years, because of the excellent sensitivity and full-sky coverage of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this talk I will describe targets studied for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. I will also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, c...

  2. Gamma-ray observations of the microquasars Cygnus X-1, Cygnus X-3, GRS 1915+105, and GX 339-4 with the Fermi Large Area Telescope

    CERN Document Server

    Bodaghee, Arash; Pottschmidt, Katja; Rodriguez, Jerome; Wilms, Joern; Pooley, Guy G

    2013-01-01

    Detecting gamma-rays from microquasars is a challenging but worthwhile endeavor for understanding particle acceleration, the jet mechanism, and for constraining leptonic/hadronic emission models. We present results from a likelihood analysis on timescales of 1 d and 10 d of ~4 years worth of gamma-ray observations (0.1-10 GeV) by Fermi-LAT of Cyg X-1, Cyg X-3, GRS 1915+105, and GX 339-4. Our analysis reproduced all but one of the previous gamma-ray outbursts of Cyg X-3 as reported with Fermi or AGILE, plus 5 new days on which Cyg X-3 is detected at a significance of ~5-sigma that are not reported in the literature. In addition, Cyg X-3 is significantly detected on 10-d timescales outside of known gamma-ray flaring epochs which suggests that persistent gamma-ray emission from Cyg X-3 has been detected for the first time. For Cyg X-1, we find three low significance excesses (~3-4-sigma) on daily timescales that are contemporaneous with gamma-ray flares reported (also at low significance) by AGILE. Two other mic...

  3. Fermi Large Area Telescope and multi-wavelength observations of the flaring activity of PKS 1510-089 between 2008 September and 2009 June

    CERN Document Server

    ,

    2010-01-01

    We report on the multi-wavelength observations of PKS 1510-089 (a flat spectrum radio quasar at z=0.361) during its high activity period between 2008 September and 2009 June. During this 11 months period, the source was characterized by a complex variability at optical, UV and gamma-ray bands, on time scales down to 6-12 hours. The brightest gamma-ray isotropic luminosity, recorded on 2009 March 26, was ~ 2x10^48erg s^-1. The spectrum in the Fermi-LAT energy range shows a mild curvature well described by a log-parabolic law, and can be understood as due to the Klein-Nishina effect. The gamma-ray flux has a complex correlation with the other wavelengths. There is no correlation at all with the X-ray band, a weak correlation with the UV, and a significant correlation with the optical flux. The gamma-ray flux seems to lead the optical one by about 13 days. From the UV photometry we estimated a black hole mass of ~ 5.4x10^8 solar masses, and an accretion rate of ~ 0.5 solar masses/year. Although the power in the ...

  4. GAMMA-RAY OBSERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 339–4 WITH THE FERMI LARGE AREA TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Bodaghee, Arash; Tomsick, John A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); Pottschmidt, Katja [CRESST and NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Rodriguez, Jérôme [Laboratoire AIM, CEA/IRFU, Université Paris Diderot, CNRS/INSU, CEA DSM/IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Wilms, Jörn [Dr. Karl Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstrasse 7, D-96049 Bamberg (Germany); Pooley, Guy G., E-mail: bodaghee@ssl.berkeley.edu [Mullard Radio Astronomy Observatory, Cavendish Laboratory, The University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2013-10-01

    Detecting gamma-rays from microquasars is a challenging but worthwhile endeavor for understanding particle acceleration and the jet mechanism and for constraining leptonic/hadronic emission models. We present results from a likelihood analysis on timescales of 1 day and 10 days of ∼4 yr worth of gamma-ray observations (0.1-10 GeV) by Fermi-LAT of Cyg X-1, Cyg X-3, GRS 1915+105, and GX 339–4. Our analysis reproduced all but one of the previous gamma-ray outbursts of Cyg X-3 as reported with Fermi or AGILE, plus five new days on which Cyg X-3 is detected at a significance of ∼5σ that are not reported in the literature. In addition, Cyg X-3 is significantly detected on 10 day timescales outside of known gamma-ray flaring epochs, which suggests that persistent gamma-ray emission from Cyg X-3 has been detected for the first time. For Cyg X-1 we find three low-significance excesses (∼3-4σ) on daily timescales that are contemporaneous with gamma-ray flares reported (also at low significance) by AGILE. Two other microquasars, GRS 1915+105 and GX 339–4, are not detected, and we derive 3σ upper limits of 2.3 × 10{sup –8} photons cm{sup –2} s{sup –1} and 1.6 × 10{sup –8} photons cm{sup –2} s{sup –1}, respectively, on the persistent flux in the 0.1-10 GeV range. These results enable us to define a list of the general conditions that are necessary for the detection of gamma-rays from microquasars.

  5. GAMMA-RAY OBSERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 339–4 WITH THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    Detecting gamma-rays from microquasars is a challenging but worthwhile endeavor for understanding particle acceleration and the jet mechanism and for constraining leptonic/hadronic emission models. We present results from a likelihood analysis on timescales of 1 day and 10 days of ∼4 yr worth of gamma-ray observations (0.1-10 GeV) by Fermi-LAT of Cyg X-1, Cyg X-3, GRS 1915+105, and GX 339–4. Our analysis reproduced all but one of the previous gamma-ray outbursts of Cyg X-3 as reported with Fermi or AGILE, plus five new days on which Cyg X-3 is detected at a significance of ∼5σ that are not reported in the literature. In addition, Cyg X-3 is significantly detected on 10 day timescales outside of known gamma-ray flaring epochs, which suggests that persistent gamma-ray emission from Cyg X-3 has been detected for the first time. For Cyg X-1 we find three low-significance excesses (∼3-4σ) on daily timescales that are contemporaneous with gamma-ray flares reported (also at low significance) by AGILE. Two other microquasars, GRS 1915+105 and GX 339–4, are not detected, and we derive 3σ upper limits of 2.3 × 10–8 photons cm–2 s–1 and 1.6 × 10–8 photons cm–2 s–1, respectively, on the persistent flux in the 0.1-10 GeV range. These results enable us to define a list of the general conditions that are necessary for the detection of gamma-rays from microquasars

  6. New vacuum solar telescope and observations with high resolution

    International Nuclear Information System (INIS)

    The New Vacuum Solar Telescope (NVST) is a one meter vacuum solar telescope that aims to observe fine structures on the Sun. The main goals of NVST are high resolution imaging and spectral observations, including measurements of the solar magnetic field. NVST is the primary ground-based facility used by the Chinese solar research community in this solar cycle. It is located by Fuxian Lake in southwest China, where the seeing is good enough to perform high resolution observations. We first introduce the general conditions at the Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic structures of this telescope and instruments are described in detail. Finally, some typical high resolution data of the solar photosphere and chromosphere are also shown

  7. Large Sky Area Multi-Object Fiber Spectroscopic Telescope

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yongheng

    2011-01-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is a meridian reflecting Schmidt telescope with a clear aperture of four meters, a focal length of 20 meters and a field of view of five degrees. By using active optics technique to control its reflecting corrector, the LAMOST is made a unique astronomical instrument in combining a large aperture with a wide field of view. The available large focal plane of 1.75 meter in diameter can accommodate up to 4,000 fibers,

  8. A Proposed Astronomy Learning Progression for Remote Telescope Observation

    Science.gov (United States)

    Slater, Timothy F.; Burrows, Andrea C.; French, Debbie A.; Sanchez, Richard A.; Tatge, Coty B.

    2014-01-01

    Providing meaningful telescope observing experiences for students who are deeply urban or distantly rural place-bound--or even daylight time-bound--has consistently presented a formidable challenge for astronomy educators. For nearly 2 decades, the Internet has promised unfettered access for large numbers of students to conduct remote telescope…

  9. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission

    CERN Document Server

    Atwood, W B

    2009-01-01

    (Abridged) The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. This paper describes the LAT, its pre-flight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4x4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 x,y tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an 8 layer hodoscopic configuration wit...

  10. Goddard Robotic Telescope - Optical Follow-up of GRBs and Coordinated Observations of AGNs -

    CERN Document Server

    Sakamoto, T; Donato, D; Gehrels, N; Okajima, T; Ukwatta, T N

    2010-01-01

    Since it is not possible to predict when a Gamma-Ray Burst (GRB) will occur or when Active Galactic Nucleus (AGN) flaring activity starts, follow-up/monitoring ground telescopes must be located as uniformly as possible all over the world in order to collect data simultaneously with Fermi and Swift detections. However, there is a distinct gap in follow-up coverage of telescopes in the eastern U.S. region based on the operations of Swift. Motivated by this fact, we have constructed a 14" fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up Swift/Fermi GRBs and 2) to perform the coordinated optical observations of Fermi Large Area Telescope (LAT) AGN. Our telescope system consists of off-the-shelf hardware. With the focal reducer, we are able to match the field of view of Swift narrow instruments (20' x 20'). We started scientific observations in mid-November 2008 and GRT has been...

  11. The Fermi Large Area Telescope as a Galactic Supernovae Axionscope

    CERN Document Server

    Meyer, Manuel; Mirizzi, Alessandro; Conrad, Jan; Sanchez-Conde, Miguel

    2016-01-01

    In a Galactic core-collapse supernova (SN), axionlike particles (ALPs) could be emitted via the Primakoff process and eventually convert into $\\gamma$ rays in the magnetic field of the Milky Way. From a data-driven sensitivity estimate, we find that, for a SN exploding in our Galaxy, the Fermi Large Area Telescope (LAT) would be able to explore the photon-ALP coupling down to $g_{a\\gamma} \\simeq 2 \\times 10^{-13}\\,$GeV$^{-1}$ for an ALP mass $m_a \\lesssim 10^{-9}\\,$eV. These values are out of reach of next generation laboratory experiments. In this event, the Fermi LAT would probe large regions of the ALP parameter space invoked to explain the anomalous transparency of the Universe to $\\gamma$ rays, stellar cooling anomalies, and cold dark matter. If no $\\gamma$-ray emission were to be detected, Fermi-LAT observations would improve current bounds derived from SN1987A by more than one order of magnitude.

  12. Observing Supernova 1987A with the Refurbished Hubble Space Telescope

    CERN Document Server

    France, Kevin; Heng, Kevin; Kirshner, Robert; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter; Larsson, Josefin; Lawrence, Stephen; Lundqvist, Peter; Panagia, Nino; Pun, Chun; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Stocke, John; Wang, Lifan; Wheeler, Craig

    2010-01-01

    Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 using the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Ly-a and H-a lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We observe broad blueshifted Ly-a, which we attribute to resonant scattering of photons emitted from hotspots on the equatorial ring. We also detect NV~\\lambda\\lambda 1239,1243 A line emission, but only to the red of Ly-A. The profiles of the NV lines differ markedly from that of H-a, suggesting that the N^{4+} ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.

  13. Telescopic observations - Visual, photographic, polarimetric. [of planet Mars

    Science.gov (United States)

    Martin, Leonard J.; James, Philip B.; Dollfus, Audouin; Iwasaki, Kyosuke; Beish, Jeffrey D.

    1992-01-01

    The paper divides the high points of telescopic observations of Mars into three time periods: historical, missions support (recent), and present. Particular attention is given to visual and photographic observations, with brief discussions of spectroscopic and polarization studies. Major topics of Martian phenomena included are albedo features, polar caps, dust storms, and white clouds. The interannual variability of the recessions of seasonal polar caps has been compared to dust storm activity, but this relationship remains uncertain. Only a very limited number of canals can be related to markings on the Viking images. The remainder are argued to be optical illusions created by observers pushing their perceived resolution beyond practical limits.

  14. The Potential of Small Space Telescopes for Exoplanet Observations

    Science.gov (United States)

    Serabyn, E.

    2010-01-01

    The imaging of faint exoplanets near bright stars requires the development of very high contrast detection techniques, including both precise wavefront control and deep starlight rejection. A system-level proof-of-principle experiment carried out at at the Palomar Observatory has recently demonstrated that exoplanets can be detected very near stars even with a fairly small (1.5 m diameter) telescope aperture, such as someday might be used by a first space-based exoplanet imaging mission. Using fine-scale wavefront correction across this small aperture, together with fine pointing and focus control, pre- and post-detection speckle reduction, and a vector vortex coronagraph, it has been possible to achieve extremely good starlight rejection within a small number of diffractions beams of the stellar position. This performance has recently allowed the imaging of the three HR8799 planets and the HD32297 disk, thus providing a first system-level validation of the steps needed to achieve high-contrast observations at very small angles. These results thus serve to highlight the potential of small space telescopes aiming at high-contrast exoplanet observations. Specifically, a small-angle coronagraph enables the use of smaller telescopes, thus potentially reducing mission cost significantly.

  15. Thermalizing a telescope in Antarctica: Analysis of ASTEP observations

    CERN Document Server

    Guillot, Tristan; Agabi, Abdelkrim; Rivet, Jean-Pierre; Daban, Jean-Baptiste; Mekarnia, Djamel; Aristidi, Eric; Schmider, Francois-Xavier; Crouzet, Nicolas; Gonçalves, Ivan; Gouvret, Carole; Ottogalli, Sébastien; Faradji, Hélène; Blanc, Pierre-Eric; Bondoux, Eric; Valbousquet, Franck

    2015-01-01

    The installation and operation of a telescope in Antarctica represent particular challenges, in particular the requirement to operate at extremely cold temperatures, to cope with rapid temperature fluctuations and to prevent frosting. Heating of electronic subsystems is a necessity, but solutions must be found to avoid the turbulence induced by temperature fluctua- tions on the optical paths. ASTEP 400 is a 40 cm Newton telescope installed at the Concordia station, Dome C since 2010 for photometric observations of fields of stars and their exoplanets. While the telescope is designed to spread star light on several pixels to maximize photometric stability, we show that it is nonetheless sensitive to the extreme variations of the seeing at the ground level (between about 0.1 and 5 arcsec) and to temperature fluctuations between --30 degrees C and --80 degrees C. We analyze both day-time and night-time observations and obtain the magnitude of the seeing caused by the mirrors, dome and camera. The most important ...

  16. The NASA Infrared Telescope Facility (IRTF): New Observational Capabilities

    Science.gov (United States)

    Tokunaga, Alan T.; Bus, S. J.; Connelley, Michael S.; Rayner, John T.

    2015-11-01

    The NASA Infrared Telescope Facility (IRTF) is a 3.0-m infrared telescope located at an altitude of 4.2 km near the summit of Mauna Kea on the island of Hawaii. The IRTF was established by NASA to support planetary science missions. Current instruments include: (1) SpeX, a 0.7-5.3 μm moderate resolution spectrograph with a slit-viewing camera that is also an imager, (2) MORIS, a high-speed CCD imager attached to SpeX for simultaneous visible and near-infrared observations, and (3) CSHELL, a 1-5 μm high-resolution spectrograph. MORIS can also be used as a visible wavelength guider for SpeX. Detector upgrades have recently been made to SpeX. We discuss new observational capabilities resulting from completion of a new echelle spectrograph for 1-5 μm with resolving power of 70,000 with a 0.375 arcsec slit. This instrument will be commissioned starting in the spring of 2016. We also plan to restore to service our 8-25 μm camera, MIRSI. It will be upgraded with a closed-cycle cooler that will eliminate the need for liquid helium and allow continuous use of MIRSI on the telescope. This will enable thermal observations of NEOs on short notice. We also plan to upgrade MIRSI to have a simultaneous visible imager for guiding and for photometry. The IRTF supports remote observing from any site. This eliminates the need for travel to the observatory and short observing time slots can be supported. We also welcome onsite visiting astronomers. In the near future we plan to implement a low-order wave-front sensor to allow real-time focus and collimation of the telescope. This will greatly improve observational efficiency. For further information on the IRTF and its instruments including visitor instruments, see: http://irtfweb.ifa.hawaii.edu/. We gratefully acknowledge the support of NASA contract NNH14CK55B, NASA Science Mission Directorate.

  17. Observations of Supernova Remnants with the Sardinia Radio Telescope

    CERN Document Server

    Egron, E; Loru, S; Iacolina, M N; Marongiu, M; Righini, S; Mulas, S; Murtas, G; Bachetti, M; Concu, R; Melis, A; Trois, A; Ricci, R; Pilia, M

    2016-01-01

    In the frame of the Astronomical Validation activities for the 64m Sardinia Radio Telescope, we performed 5-22 GHz imaging observations of the complex-morphology supernova remnants (SNRs) W44 and IC443. We adopted innovative observing and mapping techniques providing unprecedented accuracy for single-dish imaging of SNRs at these frequencies, revealing morphological details typically available only at lower frequencies through interferometry observations. High-frequency studies of SNRs in the radio range are useful to better characterize the spatially-resolved spectra and the physical parameters of different regions of the SNRs interacting with the ISM. Furthermore, synchrotron-emitting electrons in the high-frequency radio band are also responsible for the observed high-energy phenomenology as -e.g.- Inverse Compton and bremsstrahlung emission components observed in gamma-rays, to be disentangled from hadron emission contribution (providing constraints on the origin of cosmic rays).

  18. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W.B.; /UC, Santa Cruz; Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Anderson, B. /UC, Santa Cruz; Axelsson, M.; /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bartelt, J.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bederede, D.; /DAPNIA, Saclay; Bellardi, F.; /INFN, Pisa; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bignami, G.F.; /Pavia U.; Bisello, D.; /INFN, Padua /Padua U.; Bissaldi, E.; /Garching, Max Planck Inst., MPE; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Pisa /INFN, Pisa /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /INFN, Padua /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /Kalmar U. /Royal Inst. Tech., Stockholm /DAPNIA, Saclay /ASI, Rome /INFN, Pisa /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2009-05-15

    The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy {gamma}-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy {gamma}-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3

  19. Giant Planet Observations with the James Webb Space Telescope

    CERN Document Server

    Norwood, James; Fletcher, Leigh N; Orton, Glenn; Irwin, Patrick G J; Atreya, Sushil; Rages, Kathy; Cavalié, Thibault; Sánchez-Lavega, Agustin; Hueso, Ricardo; Chanover, Nancy

    2015-01-01

    This white paper examines the benefit of the upcoming James Webb Space Telescope for studies of the Solar System's four giant planets: Jupiter, Saturn, Uranus, and Neptune. JWST's superior sensitivity, combined with high spatial and spectral resolution, will enable near- and mid-infrared imaging and spectroscopy of these objects with unprecedented quality. In this paper we discuss some of the myriad scientific investigations possible with JWST regarding the giant planets. This discussion is preceded by the specifics of JWST instrumentation most relevant to giant planet observations. We conclude with identification of desired pre-launch testing and operational aspects of JWST that would greatly benefit future studies of the giant planets.

  20. Breakout Reconnection Observed by the TESIS EUV Telescope

    CERN Document Server

    Reva, Anton; Shestov, Sergey; Kuzin, Sergey

    2016-01-01

    We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 $R_\\odot$ from the Sun center in the Fe 171 \\AA\\ line. Starting from 2009 April 8 TESIS, observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 $R_\\odot$ above photosphere. A reconstructed from the MDI data magnetic field also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of $\\approx$ 7 km s$^{-1}$. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5-4 \\AA\\ channel increased. We interpret the loops' sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below...

  1. BREAKOUT RECONNECTION OBSERVED BY THE TESIS EUV TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V., E-mail: reva.antoine@gmail.com [Lebedev Physical Institute, Russian Academy of Sciences (Russian Federation)

    2016-01-10

    We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R{sub ⊙} from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R{sub ⊙} above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s{sup −1}. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5–4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.

  2. Breakout Reconnection Observed by the TESIS EUV Telescope

    Science.gov (United States)

    Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V.

    2016-01-01

    We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R⊙ from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R⊙ above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s-1. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5-4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.

  3. Prospects for Pulsar Studies with the GLAST Large Area Telescope

    Science.gov (United States)

    Harding, Alice K.

    2007-01-01

    The Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST), due to launch in November 2007, will have unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 200 GeV. GLAST is therefore expected to provide major advances in the understanding of high-energy emission from rotation-powered pulsars. As the only presently known galactic GeV source class; pulsars will be one of the most important sources for study with GLAST. The main science goals of the LAT for pulsar studies include an increase in the number of detected radio-loud and radio-quiet gamma-ray pulsars, including millisecond pulsars, giving much better statistics for elucidating population characteristics, measurement of the high-energy spectrum and the shape of spectral cutoffs and determining pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric particle acceleration and radiation mechanisms, by comparing data with theoretical models that have been developed. Additionally, the LAT will have the sensitivity to allow blind pulsation searches of nearly all unidentified EGRET sources, to possibly uncover more radio-quiet Geminga-like pulsars.

  4. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.; Macintosh, B.A.; Gibbard, S.; Gavel, D.T.; Roe, H.; De Pater, I.; Ghez, A.M.; Acton, S.; Wizinowich, P.L.; Lai, O.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  5. Observation of the Crab Nebula with the MAGIC telescope

    CERN Document Server

    Otte, A Nepomuk; Contreras, J L; Gaug, M; López, M; Majumdar, P

    2007-01-01

    We report about very high energy (VHE) gamma-ray observations of the Crab Nebula with the MAGIC telescope. The gamma-ray flux from the nebula was measured between 60 GeV and 9 TeV. The energy spectrum can be described with a curved power law dF/dE=f_0 (E/300GeV)^(a+b log10(E/300GeV)) with a flux normalization f_0 of (6.0+-0.2stat)*10^-10 cm^-2 s^-1 TeV^-1, a=-2.31+-0.06stat and b=-0.26+-0.07stat. The position of the IC-peak is determined at 77+-47 GeV. Within the observation time and the experimental resolution of the telescope, the gamma-ray emission is steady and pointlike. The emission's center of gravity coincides with the position of the pulsar. Pulsed gamma-ray emission from the pulsar could not be detected. We constrain the cutoff energy of the spectrum to be less than ~30 GeV, assuming that the differential energy spectrum has an exponential cutoff. For a super-exponential shape, the cutoff energy can be as high as ~60GeV.

  6. Global TIE Observatories: Real Time Observational Astronomy Through a Robotic Telescope Network

    Science.gov (United States)

    Clark, G.; Mayo, L. A.

    2001-12-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. Teachers are generally not trained in observational astronomy techniques and are unfamiliar with the most basic astronomical concepts. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The problem becomes even more challenging in inner cities, remote rural areas and low socioeconomic communities where educational emphasis on topics in astronomy as well as access to observing facilities is limited or non existent. Access to most optical telescope facilities is limited to monthly observing nights that cater to a small percentage of the general public living near the observatory. Even here, the observing experience is a one-time event detached from the process of scientific enquiry and sustained educational application. Additionally, a number of large, "research grade" observatory facilities are largely unused, partially due to the slow creep of light pollution around the facilities as well as the development of newer, more capable telescopes. Though cutting edge science is often no longer possible at these sights, real research opportunities in astronomy remain numerous for these facilities as educational tools. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible through classrooms, after school, and community based programs all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA sponsored Telescopes In Education project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy

  7. Optical telescope BIRT in ORIGIN for gamma ray burst observing

    Science.gov (United States)

    Content, Robert; Sharples, Ray; Page, Mathew J.; Cole, Richard; Walton, David M.; Winter, Berend; Pedersen, Kristian; Hjorth, Jens; Andersen, Michael; Hornstrup, Allan; den Herder, Jan-Willem A.; Piro, Luigi

    2012-09-01

    The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope is a 0.7-m F/1 with a very small instrument box containing 3 instruments: a slitless spectrograph with a resolution of 20, a multi-imager giving images of a field in 4 bands simultaneously, and a cross-dispersed Échelle spectrograph giving a resolution of 1000. The wavelength range is 0.5 μm to 1.7 μm. All instruments fit together in a box of 80 mm x 80 mm x 200 mm. The low resolution spectrograph uses a very compact design including a special triplet. It contains only spherical surfaces except for one tilted cylindrical surface to disperse the light. To reduce the need for a high precision pointing, an Advanced Image Slicer was added in front of the high resolution spectrograph. This spectrograph uses a simple design with only one mirror for the collimator and another for the camera. The Imager contains dichroics to separate the bandwidths and glass thicknesses to compensate the differences in path length. All 3 instruments use the same 2k x 2k detector simultaneously so that telescope pointing and tip-tilt control of a fold mirror permit to place the gamma ray burst on the desired instrument without any other mechanism.

  8. Observing Planetary Nebulae with JWST and Extremely Large Telescopes

    Science.gov (United States)

    Sahai, Raghvendra

    2015-01-01

    Most stars in the Universe that leave the main sequence in a Hubble time will end their lives evolving through the Planetary Nebula (PN) evolutionary phase. The heavy mass loss which occurs during the preceding AGB phase is important across astrophysics, dramatically changing the course of stellar evolution, dominantly contributing to the dust content of the interstellar medium, and influencing its chemical composition. The evolution from the AGB phase to the PN phases remains poorly understood, especially the dramatic transformation that occurs in the morphology of the mass-ejecta as AGB stars and their round circumstellar envelopes evolve into mostly PNe, the majority of which deviate strongly from spherical symmetry. In addition, although the PN [OIII] luminosity function (PNLF) has been used as a standard candle (on par with distance indicators such as Cepheids), we do not understand why it works. It has been argued that the resolution of these issues may be linked to binarity and associated processes such as mass transfer and common envelope evolution.Thus, understanding the formation and evolution of PNe is of wide astrophysical importance. PNe have long been known to emit across a very large span of wavelengths, from the radio to X-rays. Extensive use of space-based observatories at X-ray (Chandra/ XMM-Newton), optical (HST) and far-infrared (Spitzer, Herschel) wavelengths in recent years has produced significant new advances in our knowledge of these objects. Given the expected advent of the James Webb Space Telescope in the near future, and ground-based Extremely Large Telescope(s) somewhat later, this talk will focus on future high-angular-resolution, high-sensitivity observations at near and mid-IR wavelengths with these facilities that can help in addressing the major unsolved problems in the study of PNe.

  9. Metric Observations of Saturn with the Giant Meterwave Radio Telescope

    Science.gov (United States)

    Courtin, Regis D.; Pandey-Pommier, Mamta; Gautier, Daniel; Zarka, Philippe; Hofstadter, Mark D.

    2014-11-01

    We used the Giant Meterwave Radio Telescope (Pune, India) to observe Saturn at three wavelengths in the metric domain - 0.49 m (610 MHz), 1.28 m (235 MHz), and 2.0 m (150 MHz) - with the aim of constraining the deep atmospheric ammonia and water vapor concentrations around 10-20 kbar. We have obtained a clean detection at 0.49 m, with a disk brightness temperature of 216 ± 23 K, and no significant emission outside the disk, thus confirming model predictions about the weakness of synchrotron radiation by magnetospheric electrons. The initial measurements at the longer wavelengths were affected by strong ionospheric scintillation and RFI interferences. These measurements have been repeated and are expected to help reducing the initial error bars. We will discuss the constraints resulting from these observations on Saturn's deep atmospheric composition.

  10. Observation of the Perseus galaxy cluster with the MAGIC telescopes

    CERN Document Server

    Lombardi, S; Colin, P; Doro, M; Hildebrand, D; Prada, F; Pfrommer, C; Pinzke, A

    2011-01-01

    The MAGIC ground-based Imaging Cherenkov experiment observed the Perseus galaxy cluster for a total of about 25 hr between November and December 2008 in single telescope mode and for nearly 90 hr between October 2009 and February 2011 in stereoscopic mode. This survey represents the deepest observation of a cluster of galaxies at very high energies ever. It resulted in the detection of the central radio galaxy NGC 1275 and the head-tail radio galaxy IC 310. It also permits for the first time to put constraints on emission models predicting gamma-rays from cosmic ray acceleration in the cluster and to investigate dark matter scenarios. Here, we will report the latest MAGIC results on these studies.

  11. Observing Supernova 1987A with the Refurbished Hubble Space Telescope

    Science.gov (United States)

    France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P.; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M.; Larsson, Josefin; Lundqvist, Peter; Panagia, Nino; Pun, Chun S. J.; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Stocke, John T.; Wheeler, J. Craig

    2010-01-01

    The young remnant of supernova 1987A (SN 1987A) offers an unprecedented glimpse into the hydrodynamics and kinetics of fast astrophysical shocks. We have been monitoring SN 1987A with the Hubble Space Telescope (HST) since it was launched. The recent repair of the Space Telescope Imaging Spectrograph (STIS) allows us to compare observations in 2004, just before its demise, with those in 2010, shortly after its resuscitation by NASA astronauts. We find that the Ly-alpha and H-alpha lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We report evidence for nearly coherent, resonant scattering of Lya photons (to blueshifts approximately -12,000 km /s) from hotspots on the equatorial ring. We also report emission to the red of Ly-alpha that we attribute to N v lambda lambda 1239,1243 Angstrom line emission. These lines are detectable because, unlike hydrogen atoms, N4+ ions emit hundreds of photons before they are ionized. The profiles of the N v lines differ markedly from that of H-alpha. We attribute this to scattering of N4+ ions by magnetic fields in the ionized plasma. Thus, N v emission provides a unique probe of the isotropization zone of the collisionless shock. Observations with the recently installed Cosmic Origins Spectrograph (COS) will enable us to observe the N v lambda lambda 1239,1243 Angstrom line profiles with much higher signal-to-noise ratios than possible with STIS and may reveal lines of other highly ionized species (such as C IVlambda lambda 1548,1551 Angstrom) that will test our explanation for the N v emission

  12. Solar and Planetary Observations with a Lunar Radio Telescope

    Science.gov (United States)

    Kassim, N.; Weiler, K. W.; Lazio, J. W.; MacDowall, R. J.; Jones, D. L.; Bale, S. D.; Demaio, L.; Kasper, J. C.

    2006-05-01

    Ground-based radio telescopes cannot observe at frequencies below about 10 MHz (wavelengths longer than 30 m) because of ionospheric absorption. The Lunar Imaging Radio Array (LIRA) is a mission concept in which an array of radio telescopes is deployed on the Moon, as part of the Vision for Space Exploration, with the aim of extending radio observations to lower frequencies than are possible from the Earth. LIRA would provide the capability for dedicated monitoring of solar and planetary bursts as well as the search for magnetospheric emissions from extrasolar planets. The highest sensitivity observations can be accomplished by locating LIRA on the far side of the Moon. The array would be composed of 10-12 radial arms, each 1-2 km in length. Each arm would have several hundred dipole antennas and feedlines printed on a very thin sheet of kapton with a total mass of about 300 kg. This would provide a convenient way to deploy thousands of individual antennas and a centrally condensed distribution of array baselines. The lunar farside provides shielding from terrestrial natural and technological radio interference and freedom from the corrupting influence of Earth's ionosphere. This paper will describe the science case for LIRA as well as various options for array deployment and data transmission to Earth. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Basic research in radio astronomy at the NRL is supported by the Office of Naval Research.

  13. Giant Planet Observations with the James Webb Space Telescope

    Science.gov (United States)

    Norwood, James; Moses, Julianne; Fletcher, Leigh N.; Orton, Glenn; Irwin, Patrick G. J.; Atreya, Sushil; Rages, Kathy; Cavalié, Thibault; Sánchez-Lavega, Agustin; Hueso, Ricardo; Chanover, Nancy

    2016-01-01

    This white paper examines the benefit of the upcoming James Webb Space Telescope (JWST) for studies of the Solar System's four giant planets: Jupiter, Saturn, Uranus, and Neptune. JWST's superior sensitivity, combined with high spatial and spectral resolution, will enable near- and mid-infrared imaging and spectroscopy of these objects with unprecedented quality. In this paper, we discuss some of the myriad scientific investigations possible with JWST regarding the giant planets. This discussion is preceded by the specifics of JWST instrumentation most relevant to giant-planet observations. We conclude with identification of desired pre-launch testing and operational aspects of JWST that would greatly benefit future studies of the giant planets.

  14. A Circumpolar Stratospheric Telescope for Observations of Planets - FUJIN

    Science.gov (United States)

    Taguchi, Makoto; Takahashi, Yukihiro; Shoji, Yasuhiro; Yoshida, Kazuya; Sakamoto, Yuji; Watanabe, Makoto; Nakano, Toshihiko; Maeda, Atsunori; Nakamoto, Junpei; Imai, Masataka; Gouda, Yuya

    It is important to conduct long-term continuous observations of time-dependent events in planetary atmospheres and plasmaspheres. The aim of the FUJIN project is to carry out continuous observations of planets using a telescope that is lifted by a balloon to the polar stratosphere. The FUJIN-1 experiment was organized at Taiki Aerospace Research Field in Taiki-cho, Hokkaido, Japan, from May to June 2013, but the experiment was canceled due to a failure found in the balloon operation system provided by JAXA. However, the results of various prelaunch ground tests clearly established the feasibility of the experiment. We have recently begun organizing the FUJIN-2 experiment, in which scientific observations of planets will be conducted in the Arctic. Wind speed in the stratosphere is very low during April and May. The FUJIN-2 experiment will be conducted during this period in 2015 at ESRANGE in Kiruna, Sweden, since this is when Venus will be in the most favorable position for observations. The gondola will be recovered somewhere in the Scandinavian peninsula after one or two days of continuous observations. In summer, an eastern circumpolar wind is dominant in the stratosphere. If a balloon is flown under these conditions, it will take a week to fly from Kiruna to Alaska and more than two weeks for it to fly back to Scandinavia along a constant-latitude path around the Earth. We are currently organizing another experiment (FUJIN-3) involving such a circumpolar flight that will be conducted in 2017 or later. The system used in FUJIN-2 will also be used for FUJIN-3, but with the inclusion of a high-sensitivity CCD camera and a liquid-crystal tunable filter. Venus, Jupiter, and Mercury will be the planets of interest for FUJIN-3. Moreover, a next-generation stratospheric telescope with a meter-class aperture, a mobile gondola to approach the center of the polar vortex, and a super-pressure balloon for year-round observations are being studied to upgrade the FUJIN system

  15. SETI Observations of Exoplanets with the Allen Telescope Array

    CERN Document Server

    Harp, G R; Tarter, Jill C; Dreher, John; Jordan, Jane; Shostak, Seth; Smolek, Ken; Kilsdonk, Tom; Wimberly, M K R; Ross, John; Barott, W C; Ackermann, R F; Blair, Samantha

    2016-01-01

    We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA) for about 19000 hours from May 2009 to Dec 2015. This search focused on narrow-band radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their Habitable Zone. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1-9 GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrow-band (0.7-100 Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from -0.3 to 0.3 m/s^2. A total of 1.9 x 10^8 unique signals requiring immediate follow-up were detected in observations covering more than 8 x 10^9 star-MHz. We detected no persistent signals from extrate...

  16. Hubble Space Telescope Observations of the HD 202628 Debris Disk

    Science.gov (United States)

    Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Plavchan, Peter

    2012-01-01

    A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by approx.64deg from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along PA = 130deg. It has inner and outer radii (> 50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast ((Delta)r/r approx. = 0.4). The maximum visible radial extent is approx. 254 AU. With a mean surface brightnesses of V approx. = 24 mag arcsec.(sup -2), this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by approx.28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).

  17. Hubble Space Telescope Observations of the Draco Dwarf Spheroidal

    CERN Document Server

    Grillmair, C J; Holtzmann, J A; Worthey, G; Ballester, G E; Burrows, C J; Clarke, J T; Crisp, D; Evans, R W; Gallagher, J S; Griffiths, R E; Hester, J J; Hössel, J G; Scowen, P A; Stapelfeldt, K R; Trauger, J T; Watson, A M; Westphal, J A; Grillmair, Carl.J.; Mould, Jeremy R.; Holtzman, Jon A.; Worthey, Guy

    1997-01-01

    We present an F606W-F814W color-magnitude diagram for the Draco dwarf spheroidal galaxy based on Hubble Space Telescope WFPC2 images. The luminosity function is well-sampled to 3 magnitudes below the turn-off. We see no evidence for multiple turnoffs and conclude that, at least over the field of the view of the WFPC2, star formation was primarily single-epoch. If the observed number of blue stragglers is due to extended star formation, then roughly 6% (upper limit) of the stars could be half as old as the bulk of the galaxy. The color difference between the red giant branch and the turnoff is consistent with an old population and is very similar to that observed in the old, metal-poor Galactic globular clusters M68 and M92. Despite its red horizontal branch, Draco appears to be older than M68 and M92 by 1.6 +/- 2.5 Gyrs, lending support to the argument that the ``second parameter'' which governs horizontal branch morphology must be something other than age. Draco's observed luminosity function is very similar...

  18. Metric Observations of Saturn with the Giant Metrewave Radio Telescope

    Science.gov (United States)

    Courtin, R.; Pandey-Pommier, M.; Gautier, D.; Zarka, P.; Hofstadter, M.; Hersant, F.; Girard, J.

    2015-12-01

    We used the Giant Metrewave Radio Telescope (GMRT, India) to observe Saturn in the metric domain – at 0.49 m (610 MHz), 1.28 m (235 MHz), and 2.0 m (150 MHz) -with the aim of constraining the deep atmospheric ammonia and water vapor concentrations around 10-20 kbar. We have obtained a clean detection at 610 MHz, with a disk brightness temperature Tb= 216 ± 32 K, and no significant emission outside of the disk, thus confirming model predictions about the weakness of synchrotron radiation by magnetospheric electrons (Lorenzato et al. 2012, Lorenzato et al. 2012). A marginal detection was obtained at 235 MHz, with Tb= 404 ± 249 K, while an upper limit of 1210 K was set at 150 MHz. Unfortunately, some of the GMRT measurements were affected by strong ionospheric scintillation or radio frequency interferences (RFI). Although the reduction of the LOFAR measurements is much more complex, results are expected in the near future and they will complement nicely with those obtained with the GMRT. We will discuss the constraints resulting from these observations on Saturn's deep atmospheric composition.

  19. NASA Telescopes Join Forces to Observe Unprecedented Explosion

    Science.gov (United States)

    2011-04-01

    WASHINGTON -- NASA's Swift satellite, Hubble Space Telescope and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts ever observed. More than a week later, high-energy radiation continues to brighten and fade from its location. Astronomers say they have never seen such a bright, variable, high-energy, long-lasting burst before. Usually, gamma-ray bursts mark the destruction of a massive star, and flaring emission from these events never lasts more than a few hours. Although research is ongoing, astronomers feel the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces probably tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its rotational axis. A powerful blast of X- and gamma rays is seen when the jet is pointed in our direction. On March 28, Swift's Burst Alert Telescope discovered the source in the constellation Draco when it erupted with the first in a series of powerful blasts. "We know of objects in our own galaxy that can produce repeated bursts, but they are thousands to millions of times less powerful than the bursts we are seeing. This is truly extraordinary," said Andrew Fruchter at the Space Telescope Science Institute in Baltimore. Swift determined a position for the explosion, which now is cataloged as gamma-ray burst (GRB) 110328A, and informed astronomers worldwide. As dozens of telescopes turned to study the spot, astronomers quickly noticed a small, distant galaxy very near the Swift position. A deep image taken by Hubble on Monday, April 4, pinpointed the source of the explosion at the center of this galaxy, which lies 3.8 billion light-years away from Earth. That same day, astronomers used NASA's Chandra X-ray Observatory to make a four-hour-long exposure of the puzzling source. The image, which locates the X-ray object 10 times more

  20. Upper limits from five years of blazar observations with the VERITAS Cherenkov telescopes

    CERN Document Server

    Archambault, S; Benbow, W; Bird, R; Biteau, J; Buchovecky, M; Buckley, J H; Bugaev, V; Byrum, K; Cerruti, M; Chen, X; Ciupik, L; Connolly, M P; Cui, W; Eisch, J D; Errando, M; Falcone, A; Feng, Q; Finley, J P; Fleischhack, H; Fortin, P; Fortson, L; Furniss, A; Gillanders, G H; Griffin, S; Grube, J; Gyuk, G; Hütten, M; Hakansson, N; Hanna, D; Holder, J; Humensky, T B; Johnson, C A; Kaaret, P; Kar, P; Kelley-Hoskins, N; Kertzman, M; Kieda, D; Krause, M; Krennrich, F; Kumar, S; Lang, M J; Maier, G; McArthur, S; McCann, A; Meagher, K; Moriarty, P; Mukherjee, R; Nguyen, T; Nieto, D; De Bhróithe, A O'Faoláin; Ong, R A; Otte, A N; Park, N; Perkins, J S; Pichel, A; Pohl, M; Popkow, A; Pueschel, E; Quinn, J; Ragan, K; Reynolds, P T; Richards, G T; Roache, E; Rovero, A C; Santander, M; Sembroski, G H; Shahinyan, K; Smith, A W; Staszak, D; Telezhinsky, I; Tucci, J V; Tyler, J; Vincent, S; Wakely, S P; Weiner, O M; Weinstein, A; Williams, D A; Zitzer, B; Fumagalli, M; Prochaska, J X

    2016-01-01

    Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E>100 GeV) {\\gamma}-ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ~570 hours. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog which are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have a spectroscopic distance estimate. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of fo...

  1. Care of astronomical telescopes and accessories a manual for the astronomical observer and amateur telescope maker

    CERN Document Server

    Pepin, M Barlow

    2006-01-01

    This is complete guide for anyone who wants to understand more than just the basics of astronomical telescopes and accessories, and how to maintain them in the peak of condition. The latest on safely adjusting, cleaning, and maintaining your equipment is combined with thoroughly updated methods from the old masters.

  2. NASA Goddard Space Flight Center, on Behalf of the Fermi Large Area Telescope Collaboration

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays can be produced by processes that also produce neutrinos, the gamma-ray survey of the sky by the Fermi (Gamma-ray Space Telescope offers a view of potential targets for neutrino observations. Gamma-ray bursts. Active Galactic Nuclei, and supernova remnants are all sites where hadronic, neutrino-producing interactions are plausible. Pulsars, pulsar wind nebulae, and binary sources are all phenomena that reveal leptonic particle acceleration through their gamma-ray emission. While important to gamma-ray astrophysics, such sources are of less interest to neutrino studies. This talk will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT)on the Fermi spacecraft.

  3. The On-Orbit Calibrations for the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ampe, J.; /Naval Research Lab, Wash., D.C.; Anderson, B.; /UC, Santa Cruz; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Bagagli, R.; /INFN, Pisa; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bartelt, J.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bederede, D.; /DAPNIA, Saclay; Bellardi, F.; /INFN, Pisa; Bellazzini, R.; /INFN, Pisa; Belli, F.; /Frascati /Rome U.,Tor Vergata; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bisello, D.; /INFN, Padua /Padua U. /Garching, Max Planck Inst., MPE /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Pisa /INFN, Pisa /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /INFN, Padua /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /Kalmar U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /DAPNIA, Saclay /ASDC, Frascati /INFN, Pisa /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /NASA, Goddard /INFN, Perugia /Perugia U.; /more authors..

    2011-11-17

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.

  4. The on-orbit calibration of the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft bore-sight alignments. Here we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009. (authors)

  5. The on-orbit calibration of the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Ajello, M.; Bartelt, J.; Bechtol, K.; Berenji, B.; Bloom, E.D.; Bogart, J.R.; Borgland, A.W.; Bouvier, A.; Cameron, R.A.; Campell, M.; Charles, E.; Chiang, J.; Claus, R.; Condamoor, S.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Edmonds, Y.; Flath, D.L.; Focke, W.B.; Fouts, K.; Freytag, D.; Funk, S.; Glanzman, T.; Godfrey, G.; Goodman, J.; Hakimi, M.; Haller, G.; Hart, P.A.; Huffer, M.; Johannesson, G.; Johnson, A.S.; Kamae, T.; Kavelaars, A.; Kelly, H.; Kocian, M.L.; Lee, S.H.; Madejski, G.M.; Michelson, P.F.; Mitra, P.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nelson, D.; Nolan, P.L.; Paneque, D.; Panetta, J.H.; Rochester, L.S.; Romani, R.W.; Sapozhnikov, L.; Saxton, O.H.; Sugizaki, M.; Tajima, H.; Tanaka, T.; Thayer, J.B.; Thayer, J.G.; Tramacere, A.; Turri, M.; Usher, T.L.; Wai, L.L.; Waite, A.P.; Wang, P. [Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys and Cosmol, Dept Phys, Stanford, CA 94305 (United States); Ackermann, M.; Ajello, M.; Bartelt, J.; Bechtol, K.; Berenji, B.; Bloom, E.D.; Bogart, J.R.; Borgland, A.W.; Bouvier, A.; Cameron, R.A.; Campell, M.; Charles, E.; Chiang, J.; Claus, R.; Condamoor, S.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Edmonds, Y.; Flath, D.L.; Focke, W.B.; Fouts, K.; Freytag, D.; Funk, S.; Glanzman, T.; Godfrey, G.; Goodman, J.; Hakimi, M.; Haller, G.; Hart, P.A.; Huffer, M.; Johannesson, G.; Johnson, A.S.; Kamae, T.; Kavelaars, A.; Kelly, H.; Kocian, M.L.; Lee, S.H.; Madejski, G.M.; Michelson, P.F.; Mitra, P.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nelson, D.; Nolan, P.L.; Paneque, D.; Panetta, J.H.; Rochester, L.S.; Romani, R.W.; Sapozhnikov, L.; Saxton, O.H.; Sugizaki, M.; Tajima, H.; Tanaka, T.; Thayer, J.B; Thayer, J.G.; Tramacere, A.; Turri, M.; Usher, T.L.; Wai, L.L.; Waite, A.P.; Wang, P. [Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 (United States)] [and others

    2009-07-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft bore-sight alignments. Here we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009. (authors)

  6. DAG Telescope: A New Potential for MOS Observations

    Science.gov (United States)

    Alis, S.; Yesilyaprak, C.; Yerli, S. K.

    2016-10-01

    East Anatolian Observatory (aka. DAG) is a national project supported by the Turkish Government for building a 4 m class telescope which will be working in the optical and near-IR domain. As the tender process has been completed and kick-off to the telescope and the mirror production has been initiated, the project team is looking for possible collaborations for the focal plane instrumentation. This contribution is intended to describe the DAG project and to show its opportunities for a state-of-the-art MOS instrument.

  7. 21-cm Observations with the Morehead Radio Telescope: Involving Undergraduates in Observing Programs

    Science.gov (United States)

    Malphrus, B. K.; Combs, M. S.; Kruth, J.

    2000-12-01

    Herein we report astronomical observations made by undergraduate students with the Morehead Radio Telescope (MRT). The MRT, located at Morehead State University, Morehead, Kentucky, is small aperture (44-ft.) instrument designed by faculty, students, and industrial partners to provide a research instrument and active laboratory for undergraduate astronomy, physics, pre-engineering, and computer science students. Small aperture telescopes like the MRT have numerous advantages as active laboratories and as research instruments. The benefits to students are based upon a hands-on approach to learning concepts in astrophysics and engineering. Students are provided design and research challenges and are allowed to pursue their own solutions. Problem-solving abilities and research design skills are cultivated by this approach. Additionally, there are still contributions that small aperture centimeter-wave instruments can make. The MRT operates over a 6 MHz bandwidth centered at 1420 MHz (21-cm), which corresponds to the hyperfine transition of atomic hydrogen (HI). The HI spatial distribution and flux density associated with cosmic phenomena can be observed and mapped. The dynamics and kinematics of celestial objects can be investigated by observing over a range of frequencies (up to 2.5 MHz) with a 2048-channel back-end spectrometer, providing up to 1 KHz frequency resolution. The sensitivity and versatility of the telescope design facilitate investigation of a wide variety of cosmic phenomena, including supernova remnants, emission and planetary nebulae, extended HI emission from the Milky Way, quasars, radio galaxies, and the sun. Student observations of galactic sources herein reported include Taurus A, Cygnus X, and the Rosette Nebula. Additionally, we report observations of extragalactic phenomena, including Cygnus A, 3C 147, and 3C 146. These observations serve as a performance and capability test-bed of the MRT. In addition to the astronomical results of these

  8. THE FERMI LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Albert, A. [Department of Physics, Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Atwood, W. B.; Bouvier, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Institut fuer Astro- und Teilchenphysik and Institut fuer Theoretische Physik, Leopold-Franzens-Universitaet Innsbruck, A-6020 Innsbruck (Austria); Bonamente, E., E-mail: echarles@slac.stanford.edu, E-mail: luca.baldini@pi.infn.it, E-mail: rando@pd.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); and others

    2012-11-15

    The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy {gamma}-ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this paper, we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.

  9. THE FERMI LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION

    International Nuclear Information System (INIS)

    The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy γ-ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this paper, we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.

  10. On sky testing of the SOFIA telescope in preparation for the first science observations

    Science.gov (United States)

    Harms, Franziska; Wolf, Jürgen; Waddell, Patrick; Dunham, Edward; Reinacher, Andreas; Lampater, Ulrich; Jakob, Holger; Bjarke, Lisa; Adams, Sybil; Grashuis, Randy; Meyer, Allan; Bower, Kenneth; Schweikhard, Keith; Keilig, Thomas

    2009-08-01

    SOFIA, the Stratospheric Observatory for Infrared Astronomy, is an airborne observatory that will study the universe in the infrared spectrum. A Boeing 747-SP aircraft will carry a 2.5 m telescope designed to make sensitive infrared measurements of a wide range of astronomical objects. In 2008, SOFIA's primary mirror was demounted and coated for the first time. After reintegration into the telescope assembly in the aircraft, the alignment of the telescope optics was repeated and successive functional and performance testing of the fully integrated telescope assembly was completed on the ground. The High-speed Imaging Photometer for Occultations (HIPO) was used as a test instrument for aligning the optics and calibrating and tuning the telescope's pointing and control system in preparation for the first science observations in flight. In this paper, we describe the mirror coating process, the subsequent telescope testing campaigns and present the results.

  11. Linking Publications and Observations - the ESO Telescope Bibliography

    CERN Document Server

    Meakins, Silvia

    2011-01-01

    Bibliometric studies have become increasingly important in evaluating individual scientists, specific facilities, and entire observatories. In this context, the ESO Library has developed and maintains two tools: FUSE, a full-text search tool, and the Telescope Bibliography (telbib), a content management system that is used to classify and annotate ESO-related scientific papers. The new public telbib interface provides faceted searches and filtering, autosuggest support for author, bibcode and program ID searches, hit highlighting as well as recommendations for other papers of possible interest. It is available at http://telbib.eso.org

  12. IPS observation system for the Miyun 50 m radio telescope and its commissioning observation

    International Nuclear Information System (INIS)

    Ground-based observation of Interplanetary Scintillation (IPS) is an important approach for monitoring solar wind. A ground-based IPS observation system has been newly implemented on a 50 m radio telescope at Miyun station, managed by the National Astronomical Observatories, Chinese Academy of Sciences. This observation system has been constructed for the purpose of observing solar wind speed and the associated scintillation index by using the normalized cross-spectrum of a simultaneous dual-frequency IPS measurement. The system consists of a universal dual-frequency front-end and a dual-channel multi-function back-end specially designed for IPS. After careful calibration and testing, IPS observations on source 3C 273B and 3C 279 have been successfully carried out. The preliminary observation results show that this newly-developed observation system is capable of performing IPS observation. The system's sensitivity for IPS observation can reach over 0.3 Jy in terms of an IPS polarization correlator with 4 MHz bandwidth and 2 s integration time. (research papers)

  13. Shoot-the-Shower: real-time observations for astroparticle physics using the FRAM robotic telescope

    Science.gov (United States)

    Ebr, J.; Janeček, P.; Prouza, M.; Kubánek, P.; Jelínek, M.; Mašek, M.; Ebrová, I.; Černý, J.

    2014-12-01

    The FRAM telescope operates as an atmospheric monitoring device for the Pierre Auger Observatory in Argentina. In addition to regular photometric observations aimed to determine the overall aerosol content and characteristic in the atmosphere above the Observatory, FRAM is also a part of the rapid monitoring program. When a ultra-high energy shower is detected by the fluorescence telescopes of the Observatory, the FRAM telescope takes a series of images to measure atmospheric transparency along the trajectory of the shower. These observations are critical for the identification of showers with anomalous profiles. If such showers were clearly observed, they can significantly constrain the hadronic interaction models at very high energies.

  14. VizieR Online Data Catalog: Green Bank Telescope observations of NGC 2403 (de Blok+, 2014)

    Science.gov (United States)

    de Blok, W. J. G.; Keating, K. M.; Pisano, D. J.; Fraternali, F.; Walter, F.; Oosterloo, T.; Brinks, E.; Bigiel, F.; Leroy, A.

    2014-08-01

    We observed NGC 2403 with the Green Bank Telescopes in the 21-cm line of neutral hydrogen, in 21 sessions between 29 May and 30 September 2009. The beam size of the observations is 8.7'. We include a FITS file containing the data-cube (pos-pos-vel) of the HI emission line of NGC 2403. We used equatorial coordinates for the spatial dimensions and VLSR for the spectral dimension. The pixel size is 1.75' in spatial dimension and the spectral resolution is 5.2km/s. All values are in Jy/beam. The data-cube spans an area of about 4x4 degrees (RAxDec) around the center of the maps at 07:35:29.9 +65:35:48.5 (EQ=J2000) and the velocity ranges from -895.6 to 1745.0km/s. (2 data files).

  15. An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes

    Science.gov (United States)

    Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei

    2016-01-01

    For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.

  16. Gamma-ray and Radio Properties of Six Pulsars Detected by the Fermi Large Area Telescope

    Science.gov (United States)

    Weltevrede, P.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; Dermer, C. D.; Desvignes, G.; de Angelis, A.; de Luca, A.; de Palma, F.; Digel, S. W.; Dormody, M.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fortin, P.; Frailis, M.; Freire, P. C. C.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giavitto, G.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hays, E.; Hobbs, G.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Keith, M.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kramer, M.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Makeev, A.; Manchester, R. N.; Mazziotta, M. N.; McEnery, J. E.; McGlynn, S.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Ransom, S. M.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Reposeur, T.; Rochester, L. S.; Rodriguez, A. Y.; Romani, R. W.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Vasileiou, V.; Venter, C.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wang, N.; Watters, K.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2010-01-01

    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models.

  17. GAMMA-RAY AND RADIO PROPERTIES OF SIX PULSARS DETECTED BY THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models.

  18. The Cherenkov Telescope Array On-Site integral sensitivity: observing the Crab

    CERN Document Server

    Fioretti, Valentina; Schussler, Fabian

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the future large observatory in the very high energy (VHE) domain. Operating from 20 GeV to 300 TeV, it will be composed of tens of Imaging Air Cherenkov Telescopes (IACTs) displaced in a large area of a few square kilometers in both the southern and northern hemispheres. The CTA/DATA On-Site Analysis (OSA) is the system devoted to the development of dedicated pipelines and algorithms to be used at the CTA site for the reconstruction, data quality monitoring, science monitoring and realtime science alerting during observations. The OSA integral sensitivity is computed here for the most studied source at Gamma-rays, the Crab Nebula, for a set of exposures ranging from 1000 seconds to 50 hours, using the full CTA Southern array. The reason for the Crab Nebula selection as the first example of OSA integral sensitivity is twofold: (i) this source is characterized by a broad spectrum covering the entire CTA energy range; (ii) it represents, at the time of writing, the standar...

  19. Observations of VHE gamma-Ray Sources with the MAGIC Telescope

    OpenAIRE

    Bartko, Hendrik; Collaboration, for the MAGIC

    2007-01-01

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy gamma-radiation in the energy band between about 50 GeV and 10 TeV. Since Autumn of 2004 MAGIC has been taking data routinely, observing various objects li...

  20. Observation of Galactic Sources of Very High Energy Gamma-Rays with the MAGIC Telescope

    OpenAIRE

    Bartko, H.; Collaboration, for the MAGIC

    2007-01-01

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy gamma-radiation in the energy band between about 50 GeV and 10 TeV. Since the autumn of 2004 MAGIC has been taking data routinely, observing various object...

  1. Sensitivity Projections for Dark Matter Searches with the Fermi Large Area Telescope

    CERN Document Server

    Charles, Eric; Anderson, Brandon; Caputo, Regina; Cuoco, Alessandro; Di Mauro, Mattia; Drlica-Wagner, Alex; Gomez-Vargas, German; Meyer, Manuel; Tibaldo, Luigi; Wood, Matthew; Zaharijas, Gabrijela; Zimmer, Stephan; Ajello, Marco; Albert, Andrea; Baldini, Luca; Bechtol, Keith; Bloom, Elliott; Ceraudo, Francesco; Cohen-Tanugi, Johann; Digel, Seth; Gaskins, Jennifer; Gustafsson, Michael; Mirabal, Nestor; Razzano, Massimiliano

    2016-01-01

    The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of the $\\gamma$-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both stati...

  2. Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C454.3

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A

    2009-05-07

    This is the first report of Fermi Gamma-ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7-October 6, indicate strong, highly variable {gamma}-ray emission with an average flux of {approx} 3 x 10{sup -6} photons cm{sup -2} s{sup -1}, for energies > 100 MeV. The {gamma}-ray flux is variable, with strong, distinct, symmetrically-shaped flares for which the flux increases by a factor of several on a time scale of about three days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair-production implies relativistic beaming with Doppler factor {delta} > 8, consistent with the values inferred from VLBI observations of superluminal expansion ({delta} {approx} 25). The observed {gamma}-ray spectrum is not consistent with a simple power-law, but instead steepens strongly above {approx} 2 GeV, and is well described by a broken power-law with photon indices of {approx} 2.3 and {approx} 3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2GeV could be due to -ray absorption via photonphoton pair production on the soft X-ray photon field of the host AGN, but such an interpretation would require the dissipation region to be located very close ({approx}< 100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.

  3. Variable stars observed with the AST3-1 telescope from dome A of antarctica

    CERN Document Server

    Li, Gang; Liu, Xuanming

    2015-01-01

    Dome A in the Antarctic plateau is likely one of the best astronomical observing sites on Earth. The first one of three Antarctic Survey Telescope (AST3-1), a 50/68 cm Schmidt-like equatorial-mount telescope, is the first trackable telescope of China operating in Antarctica and the biggest telescope located in Antarctic inland. AST3-1 obtained huge amounts of data in 2012 and we processed the time-series parts. Here we present light curves of 29 variable stars identified from ten-day observations in 2012 with AST3-1, including 22 newly discovered variable stars. 23 of them are eclipsing binaries and the others are pulsating stars. We present the properties of the 29 variable stars, including the classifications, periods and magnitude ranges in i band. For the 17 eclipsing binaries, the phased light curves are presented with the orbital period values well determined.

  4. Observations of VHE gamma-Ray Sources with the MAGIC Telescope

    CERN Document Server

    Bartko, Hendrik

    2007-01-01

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy gamma-radiation in the energy band between about 50 GeV and 10 TeV. Since Autumn of 2004 MAGIC has been taking data routinely, observing various objects like supernova remnants (SNRs), gamma-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results for individual sources. An outlook to the construction of the second MAGIC telescope is given.

  5. FERMI LARGE AREA TELESCOPE DETECTION OF THE YOUNG SUPERNOVA REMNANT TYCHO

    International Nuclear Information System (INIS)

    After almost three years of data taking in sky-survey mode, the Fermi Large Area Telescope has detected γ-ray emission toward Tycho's supernova remnant (SNR). The Tycho SNR is among the youngest remnants in the Galaxy, originating from a Type Ia Supernova in AD 1572. The γ-ray integral flux from 400 MeV up to 100 GeV has been measured to be (3.5 ± 1.1stat ± 0.7syst)× 10–9 cm–2 s–1 with a photon index of 2.3 ± 0.2stat ± 0.1syst. A simple model consistent with TeV, X-ray, and radio data is sufficient to explain the observed emission as originating from π0 decays as a result of cosmic-ray acceleration and interaction with the ambient medium.

  6. FERMI LARGE AREA TELESCOPE DETECTION OF THE YOUNG SUPERNOVA REMNANT TYCHO

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, F. [Dipartimento di Fisica, ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Naumann-Godo, M.; Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Bechtol, K.; Funk, S.; Lande, J.; Tanaka, T.; Uchiyama, Y. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Mazziotta, M. N.; Raino, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari (Italy); Tibolla, O., E-mail: francesco.giordano@ba.infn.it, E-mail: Melitta.Naumann-Godo@cea.fr [Institut fuer Theoretische Physik and Astrophysik, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

    2012-01-15

    After almost three years of data taking in sky-survey mode, the Fermi Large Area Telescope has detected {gamma}-ray emission toward Tycho's supernova remnant (SNR). The Tycho SNR is among the youngest remnants in the Galaxy, originating from a Type Ia Supernova in AD 1572. The {gamma}-ray integral flux from 400 MeV up to 100 GeV has been measured to be (3.5 {+-} 1.1{sub stat} {+-} 0.7{sub syst}) Multiplication-Sign 10{sup -9} cm{sup -2} s{sup -1} with a photon index of 2.3 {+-} 0.2{sub stat} {+-} 0.1{sub syst}. A simple model consistent with TeV, X-ray, and radio data is sufficient to explain the observed emission as originating from {pi}{sup 0} decays as a result of cosmic-ray acceleration and interaction with the ambient medium.

  7. Scheduling and executing Phase II observing scripts on the Hobby-Eberly Telescope

    Science.gov (United States)

    Gaffney, Niall I.; Cornell, Mark E.

    1998-07-01

    We describe our scheme for scheduling and observing with the Hobby-Eberly Telescope (HET). The HET will be operated 85 percent of the time in a queue-scheduled, service observing mode. Principal investigators (PIs) use software planning tools to determine how to make their observations with the HET, and submit proposals for telescope time to local Time Allocation Committees (TACs). Once time has been granted, PIs submit detailed observing scripts which instruct HET operations how, when, and under what conditions data are to be taken. These scripts are compiled into a relational database which is used to schedule the telescope. Observations are scheduled using TAC and PI-assigned priorities to rank plans relative to ne another. Resident astronomers use these priorities plus a set of simple precedence rules to determine which objects are to be observed each night. The execution of observation scripts is mostly automated, with the software commanding the telescope position and building data acquisition macros for each instrument. Aside from building and running the nightly observing queue, the resident astronomers are responsible for identifying targets, starting exposures, and validating data quality. They may also revise the observing queue in real time as conditions change. We discuss our initial experience working with this system, scheduling and executing observations during the commissioning of the HET.

  8. An Autonomous Observation and Control System Based on EPICS and RTS2 for Antarctic Telescopes

    CERN Document Server

    Zhang, Guang-Yu; Tang, Peng-Yi; Jia, Ming-Hao; Chen, Jie; Dong, Shu-Cheng; Jiang, Fengxin; Wu, Wen-Qing; Liu, Jia-Jing; Zhang, Hong-Fei

    2015-01-01

    For an unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS (Experimental Physics and Industrial Control System) and RTS2(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of Open Source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2 respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfill the function of astronomical observation and use EPICS to fulfill the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 dire...

  9. The Greenwich Photo-heliographic Results (1874 - 1885): Observing Telescopes, Photographic Processes, and Solar Images

    Science.gov (United States)

    Willis, D. M.; Wild, M. N.; Appleby, G. M.; Macdonald, L. T.

    2016-05-01

    Potential sources of inhomogeneity in the sunspot measurements published by the Royal Observatory, Greenwich, during the early interval 1874 - 1885 are examined critically. Particular attention is paid to inhomogeneities that might arise because the sunspot measurements were derived from solar photographs taken at various contributing solar observatories, which used different telescopes, experienced different seeing conditions, and employed different photographic processes. The procedures employed in the Solar Department at the Royal Greenwich Observatory (RGO), Herstmonceux, during the final phase of sunspot observations provide a modern benchmark for interpreting the early sunspot measurements. The different observing telescopes used at the contributing solar observatories during the interval 1874 - 1885 are discussed in detail, using information gleaned from the official RGO publications and other relevant historical documents. Likewise, the different photographic processes employed at the different solar observatories are reviewed carefully. The procedures used by RGO staff to measure the positions and areas of sunspot groups on photographs of the Sun having a nominal radius of either four or eight inches are described. It is argued that the learning curve for the use of the Kew photoheliograph at the Royal Observatory, Greenwich, actually commenced in 1858, not 1874. The RGO daily number of sunspot groups is plotted graphically and analysed statistically. Similarly, the changes of metadata at each solar observatory are shown on the graphical plots and analysed statistically. It is concluded that neither the interleaving of data from the different solar observatories nor the changes in metadata invalidates the RGO count of the number of sunspot groups, which behaves as a quasi-homogeneous time series. Furthermore, it is emphasised that the correct treatment of days without photographs is quite crucial to the correct calculation of Group Sunspot Numbers.

  10. Solar observations with a low frequency radio telescope

    Science.gov (United States)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  11. Observations of the Crab pulsar with the MAGIC telescopes

    CERN Document Server

    Saito, T Y; Giavitto, G; Klepser, S; Schweizer, T; Zanin, R

    2011-01-01

    We report on the observations of the Crab pulsar with the MAGIC telesopes. Data were taken both in the mono-mode ($>25$ GeV) and in the stereo-mode ($>50$ GeV). Clear signals from the two peaks were detected with both modes and the phase resolved energy spectra were calculated. By comparing with the measurements done by Fermi-LAT, we found that the energy spectra of the Crab pulsar does not follow a power law with an exponential cutoff, but that it extends as a power law after the break at around 5 GeV. This suggests that the emission above 25 GeV is not dominated by the curvatura radiation, which is inconsistent with the standard prediction of the OG and SG models.

  12. Lunar impact flashes: Results from 56 hours of video survey data observed by using one telescope

    Science.gov (United States)

    Ait Moulay Larbi, M.; Benkhaldoun, Z.; Baratoux, D.; Daassou, A.; Bouley, S.

    2015-10-01

    Primarily observations are performed during 2013 and 2014 at AGM observatory of Marrakech by using one SC telescope in the aim of observing sporadic meteoroids impacting the lunar dark side. Here,we report results from 56 hours of video survey.

  13. Sensitivity projections for dark matter searches with the Fermi large area telescope

    Science.gov (United States)

    Charles, E.; Sánchez-Conde, M.; Anderson, B.; Caputo, R.; Cuoco, A.; Di Mauro, M.; Drlica-Wagner, A.; Gomez-Vargas, G. A.; Meyer, M.; Tibaldo, L.; Wood, M.; Zaharijas, G.; Zimmer, S.; Ajello, M.; Albert, A.; Baldini, L.; Bechtol, K.; Bloom, E. D.; Ceraudo, F.; Cohen-Tanugi, J.; Digel, S. W.; Gaskins, J.; Gustafsson, M.; Mirabal, N.; Razzano, M.

    2016-06-01

    The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of the γ-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 meV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the b b ¯ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the b b ¯ (τ+τ-) annihilation channels.

  14. VALIDATION OF OBSERVATIONS OBTAINED WITH A LIQUID MIRROR TELESCOPE BY COMPARISON WITH SLOAN DIGITAL SKY SURVEY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Borra, E. F. [Centre d’Optique, Photonique et Lasers Département de Physique, Université Laval (Canada)

    2015-06-15

    The results of a search for peculiar astronomical objects using very low resolution spectra obtained with the NASA Orbital Debris Observatory (NODO) 3 m diameter liquid mirror telescope (LMT) are compared with results of spectra obtained with the Sloan Digital Sky Survey (SDSS). The main purpose of this comparison is to verify whether observations taken with this novel type of telescope are reliable. This comparison is important because LMTs are an inexpensive novel type of telescope that is very useful for astronomical surveys, particularly surveys in the time domain, and validation of the data taken with an LMT by comparison with data from a classical telescope will validate their reliability. We start from a published data analysis that classified as peculiar only 206 of the 18,000 astronomical objects observed with the NODO LMT. A total of 29 of these 206 objects were found in the SDSS. The reliability of the NODO data can be seen through the results of the detailed analysis that, in practice, incorrectly identified less than 0.3% of the 18,000 spectra as peculiar objects, most likely because they are variable stars. We conclude that the LMT gave reliable observations, comparable to those that would have been obtained with a telescope using a glass mirror.

  15. Homestake Large Area Scintillation Detector and cosmic ray telescope

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, M.L.; Corbato, S.; Kieda, D.; Lande, K.; Lee, C.K.; Steinberg, R.I.

    1985-01-25

    The Homestake Large Area Scintillation Detector consists of 140 tons of liquid scintillator in a hollow 8 m x 8 m x 16 m box surrounding the Brookhaven /sup 37/Cl solar neutrino detector. The experiment is located at a depth of 4850 ft. (4200 m.w.e.) in the Homestake Gold Mine. Half of the detector is currently running; the full detector will be taking data early in 1985. An extensive air shower array is also currently under construction on the earth's surface above the underground chamber, consisting of 100 scintillators, each 3 m/sup 2/, covering approximately 0.8 km/sup 2/; the first portion of the surface array will also be providing data in early 1985. Together, the new Homestake detectors (Fig. 1) will be used to search for slow, massive magnetic monopoles; study the zenith angle distribution of neutrino-induced muons; search for neutrino bursts from the gravitational collapse of massive stars; measure the multiplicity and transverse momentum distributions of cosmic ray muons; and study the composition of the primary cosmic rays. In this paper, we present a progress report on the new detectors. In Sec. I we describe the underground device and its capabilities as a monopole detector; in Sec. II we describe the surface array and the cosmic ray studies; the neutrino measurements have been discussed elsewhere.

  16. Homestake Large Area Scintillation Detector and cosmic ray telescope

    International Nuclear Information System (INIS)

    The Homestake Large Area Scintillation Detector consists of 140 tons of liquid scintillator in a hollow 8 m x 8 m x 16 m box surrounding the Brookhaven 37Cl solar neutrino detector. The experiment is located at a depth of 4850 ft. (4200 m.w.e.) in the Homestake Gold Mine. Half of the detector is currently running; the full detector will be taking data early in 1985. An extensive air shower array is also currently under construction on the earth's surface above the underground chamber, consisting of 100 scintillators, each 3 m2, covering approximately 0.8 km2; the first portion of the surface array will also be providing data in early 1985. Together, the new Homestake detectors (Fig. 1) will be used to search for slow, massive magnetic monopoles; study the zenith angle distribution of neutrino-induced muons; search for neutrino bursts from the gravitational collapse of massive stars; measure the multiplicity and transverse momentum distributions of cosmic ray muons; and study the composition of the primary cosmic rays. In this paper, we present a progress report on the new detectors. In Sec. I we describe the underground device and its capabilities as a monopole detector; in Sec. II we describe the surface array and the cosmic ray studies; the neutrino measurements have been discussed elsewhere

  17. Hubble Space Telescope Observations of Active Asteroid 324P/La Sagra

    CERN Document Server

    Jewitt, David; Weaver, Harold; Mutchler, Max; Li, Jing; Larson, Stephen

    2016-01-01

    Hubble Space Telescope observations of active asteroid 324P/La Sagra near perihelion show continued mass loss consistent with the sublimation of near-surface ice. Isophotes of the coma measured from a vantage point below the orbital plane are best matched by steady emission of particles having a nominal size $a \\sim$ 100 $\\mu$m. The inferred rate of mass loss, $dM_d/dt \\sim$0.2 kg s$^{-1}$, can be supplied by sublimation of water ice in thermal equilibrium with sunlight from an area as small as 930 m$^2$, corresponding to about 0.2\\% of the nucleus surface. Observations taken from a vantage point only 0.6\\degr~from the orbital plane of 324P set a limit to the velocity of ejection of dust in the direction perpendicular to the plane, $V_{\\perp} <$ 1 m s$^{-1}$. Short-term photometric variations of the near-nucleus region, if related to rotation of the underlying nucleus, rule out periods $\\le$ 3.8 hr and suggest that rotation probably does not play a central role in driving the observed mass loss. We estimat...

  18. A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope

    CERN Document Server

    Weniger, Christoph

    2012-01-01

    The observation of a gamma-ray line in the cosmic-ray fluxes would be a smoking-gun signature for dark matter annihilation or decay in the Universe. We present an improved search for such signatures in the data of the Fermi Large Area Telescope (LAT), concentrating on energies between 20 and 300 GeV. Besides updating to 43 months of data, we use a new data-driven technique to select optimized target regions depending on the profile of the Galactic dark matter halo. In regions close to the Galactic center, we find a 4.6 sigma indication for a gamma-ray line at 130 GeV. When taking into account the look-elsewhere effect the significance of the observed excess is 3.3 sigma. If interpreted in terms of dark matter particles annihilating into a photon pair, the observations imply a dark matter mass of 129.8\\pm2.4^{+7}_{-13} GeV and a partial annihilation cross-section of = 1.27\\pm0.32^{+0.18}_{-0.28} x 10^-27 cm^3 s^-1 when using the Einasto dark matter profile. The evidence for the signal is based on about 50 pho...

  19. Refining the associations of the Fermi Large Area Telescope Source Catalogs

    CERN Document Server

    Massaro, F; Landoni, M; Paggi, A; Masetti, N; Giroletti, M; Otí-Floranes, H; Chavushyan, V; Jiménez-Bailón, E; Patiño-Álvarez, V; Digel, S W; Smith, Howard A; Tosti, G

    2015-01-01

    The Fermi-Large Area Telescope (LAT) First Source Catalog (1FGL) was released in February 2010 and the Fermi-LAT 2-Year Source Catalog (2FGL) appeared in April 2012, based on data from 24 months of operation. Since their releases, many follow up observations of unidentified gamma-ray sources (UGSs) were performed and new procedures to associate gamma-ray sources with potential counterparts at other wavelengths were developed. Here we review and characterize all the associations as published in the 1FGL and 2FGL catalog on the basis of multifrequency archival observations. In particular we located 177 spectra for the low-energy counterparts that were not listed in the previous Fermi catalogs, and in addition we present new spectroscopic observations of 8 gamma-ray blazar candidates. Based on our investigations, we introduce a new counterpart category of "candidate associations" and propose a refined classification for the candidate low-energy counterparts of the Fermi sources. We compare the 1FGL-assigned coun...

  20. Pulsar observations with European telescopes for testing gravity and detecting gravitational waves

    CERN Document Server

    Perrodin, D; Janssen, G H; Karuppusamy, R; Kramer, M; Lee, K; Liu, K; McKee, J; Purver, M; Sanidas, S; Smits, R; Stappers, B W; Zhu, W; Concu, R; Melis, A; Burgay, M; Casu, S; Corongiu, A; Egron, E; Iacolina, N; Pellizzoni, A; Pilia, M; Trois, A

    2016-01-01

    A background of nanohertz gravitational waves from supermassive black hole binaries could soon be detected by pulsar timing arrays, which measure the times-of-arrival of radio pulses from millisecond pulsars with very high precision. The European Pulsar Timing Array uses five large European radio telescopes to monitor high-precision millisecond pulsars, imposing in this way strong constraints on a gravitational wave background. To achieve the necessary precision needed to detect gravitational waves, the Large European Array for Pulsars (LEAP) performs simultaneous observations of pulsars with all five telescopes, which allows us to coherently add the radio pulses, maximize the signal-to-noise of pulsar signals and increase the precision of times-of-arrival. We report on the progress made and results obtained by the LEAP collaboration, and in particular on the addition of the Sardinia Radio Telescope to the LEAP observations during its scientific validation phase. In addition, we discuss how LEAP can be used t...

  1. Stellar intensity interferometry over kilometer baselines: Laboratory simulation of observations with the Cherenkov Telescope Array

    CERN Document Server

    Dravins, Dainis

    2014-01-01

    A long-held astronomical vision is to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, show their evolution over time, and reveal interactions of stellar winds and gas flows in binary star systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and used also for intensity interferometry. With no optical connection between the telescopes, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are on the order of one meter, making the method practically insensitive to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Theoretical modeling has shown how stellar surface images can be retrieved from such observ...

  2. FERMI/LARGE AREA TELESCOPE BRIGHT GAMMA-RAY SOURCE LIST

    International Nuclear Information System (INIS)

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the γ-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than ∼10σ) γ-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) γ-ray sources in the early mission data.

  3. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    CERN Document Server

    Giomi, Matteo; Maier, Gernot

    2016-01-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the...

  4. Using Internet-Based Robotic Telescopes to Engage Non-Science Majors in Astronomical Observation

    Science.gov (United States)

    Berryhill, K. J.; Coble, K.; Slater, T. F.; McLin, K. M.; Cominsky, L. R.

    2013-12-01

    Responding to national science education reform documents calling for students to have more opportunities for authentic research experiences, several national projects have developed online telescope networks to provide students with Internet-access to research grade telescopes. The nature of astronomical observation (e.g., remote sites, expensive equipment, and odd hours) has been a barrier in the past. Internet-based robotic telescopes allow scientists to conduct observing sessions on research-grade telescopes half a world away. The same technology can now be harnessed by STEM educators to engage students and reinforce what is being taught in the classroom, as seen in some early research in elementary schools (McKinnon and Mainwaring 2000 and McKinnon and Geissinger 2002), middle/high schools (Sadler et al. 2001, 2007 and Gehret et al. 2005) and undergraduate programs (e.g., McLin et al. 2009). This project looks at the educational value of using Internet-based robotic telescopes in a general education introductory astronomy course at the undergraduate level. Students at a minority-serving institution in the midwestern United States conducted observational programs using the Global Telescope Network (GTN). The project consisted of the use of planetarium software to determine object visibility, observing proposals (with abstract, background, goals, and dissemination sections), peer review (including written reviews and panel discussion according to NSF intellectual merit and broader impacts criteria), and classroom presentations showing the results of the observation. The GTN is a network of small telescopes funded by the Fermi mission to support the science of high energy astrophysics. It is managed by the NASA E/PO Group at Sonoma State University and is controlled using SkyNet. Data includes course artifacts (proposals, reviews, panel summaries, presentations, and student reflections) for six semesters plus student interviews. Using a grounded theory approach

  5. Multiple asteroid systems : Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations

    NARCIS (Netherlands)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Vieira Martins, R.; Berthier, J.; Vachier, F.; Cruikshank, D. P.; Lim, L. F.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; LaCluyze, A. P.

    2012-01-01

    We collected mid-IR spectra from 5.2 to 38 μm using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric lightcurves were also obtained for 14 of them during the Spitzer observations to provide the context of the obse

  6. Weak lensing analysis of C1 1358+62 using Hubble Space Telescope observations

    NARCIS (Netherlands)

    Hoekstra, H; Franx, M; Kuijken, K; Squires, G

    1998-01-01

    We report on the detection of weak gravitational lensing of faint, distant background objects by Cl 1358+62, a rich cluster of galaxies at a redshift of z = 0.33. The observations consist of a large, multicolor mosaic of Hubble Space Telescope WFPC2 images. The number density of approximately 50 bac

  7. SEARCH FOR GAMMA-RAY EMISSION FROM MAGNETARS WITH THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    We report on the search for 0.1-10 GeV emission from magnetars in 17 months of Fermi Large Area Telescope (LAT) observations. No significant evidence for gamma-ray emission from any of the currently known magnetars is found. The most stringent upper limits to date on their persistent emission in the Fermi energy range are estimated between ∼10-12and10-10 erg s-1 cm-2, depending on the source. We also searched for gamma-ray pulsations and possible outbursts, also with no significant detection. The upper limits derived support the presence of a cutoff at an energy below a few MeV in the persistent emission of magnetars. They also show the likely need for a revision of current models of outer-gap emission from strongly magnetized pulsars, which, in some realizations, predict detectable GeV emission from magnetars at flux levels exceeding the upper limits identified here using the Fermi-LAT observations.

  8. Astrometrical Observations of Pluto - Charon System with the Automated Telescopes of Pulkovo Observatory

    CERN Document Server

    Devyatkin, Alexander V; Slesarenko, Vyacheslav Yu

    2015-01-01

    The space probe 'New Horizon' was launched on 19th of January 2006 in order to study Pluto and its moons. Spacecraft will fly by Pluto as close as 12500 km in the middle of July 2015 and will get the most detailed images of Pluto and its moon until this moment. At the same time, observation obtained by the ground-based telescopes may also be helpful for the research of such distant system. Thereby, the Laboratory of observational astrometry of Pulkovo Observatory of RAS made a decision to reprocess observations obtained during last decade. More than 350 positional observations of Pluto - Charon system were carried out with the mirror astrograph ZA-320M at Pulkovo and Maksutov telescope MTM-500M near Kislovodsk. These observations were processed by means of software system APEX-II developed in Pulkovo observatory and numerical simulation was performed to calculate the differences between positions of photocenter and barycenter of Pluto - Charon system.

  9. Observation constraints of the hard X-ray modulation telescope HXMT

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The hard X-ray modulation telescope HXMT is a low orbit X-ray space telescope whose main science goals are to accomplish a hard X-ray all sky survey and to study timing and spectral characteristics of X-ray sources.HXMT has three kinds of science instruments:the high energy X-ray detector(HE),the medium energy X-ray detector(ME) and the low energy X-ray detector(LE).The observation schedule of HXMT is a key to achieving the science goal of HXMT,and the analysis of the observation constraints is one of the first tasks in making the observation schedule.This paper analyzes how the observation constraints influence the sky visibility and the visible time distribution of X-ray sources and discusses the schedule strategy with regard to the observation constraints.

  10. A secure and reliable monitor and control system for remote observing with the Large Millimeter Telescope

    Science.gov (United States)

    Wallace, Gary; Souccar, Kamal; Malin, Daniella

    2004-09-01

    Remote access to telescope monitor and control capabilities necessitates strict security mechanisms to protect the telescope and instruments from malicious or unauthorized use, and to prevent data from being stolen, altered, or corrupted. The Large Millimeter Telescope (LMT) monitor and control system (LMTMC) utilizes the Common Object Request Broker Architecture (CORBA) middleware technology to connect remote software components. The LMTMC provides reliable and secure remote observing by automatically generating SSLIOP enabled CORBA objects. TAO, the ACE open source Object Request Broker (ORB), now supports secure communications by implementing the Secure Socket Layer Inter-ORB Protocol (SSLIOP) as a pluggable protocol. This capability supplies the LMTMC with client and server authentication, data integrity, and encryption. Our system takes advantage of the hooks provided by TAO SSLIOP to implement X.509 certificate based authorization. This access control scheme includes multiple authorization levels to enable granular access control.

  11. Observing Near-Earth Objects with the James Webb Space Telescope

    CERN Document Server

    Thomas, Cristina A; Castillo-Rogez, Julie; Moskovitz, Nicholas; Mueller, Michael; Reddy, Vishnu; Rivkin, Andrew; Ryan, Erin; Stansberry, John

    2015-01-01

    The James Webb Space Telescope (JWST) has the potential to enhance our understanding of near-Earth objects (NEOs). We present results of investigations into the observability of NEOs given the nominal observing requirements of JWST on elongation (85-135 degrees) and non-sidereal rates ($<$30mas/s). We find that approximately 75% of NEOs can be observed in a given year. However, observers will need to wait for appropriate observing windows. We find that JWST can easily execute photometric observations of meter-sized NEOs which will enhance our understanding of the small NEO population.

  12. The Anti-Coincidence Detector for the GLAST Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Moiseev, A.A.; Hartman, R.C.; Ormes, J.F.; Thompson, D.J.; Amato, M.J.; Johnson, T.E.; Segal, K.N.; Sheppard, D.A.

    2007-03-23

    This paper describes the design, fabrication and testing of the Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT). The ACD is LAT's first-level defense against the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector, requiring a total active area of {approx}8.3 square meters. The ACD detector utilizes plastic scintillator tiles with wave-length shifting fiber readout. In order to suppress self-veto by shower particles at high gamma-ray energies, the ACD is segmented into 89 tiles of different sizes. The overall ACD efficiency for detection of singly charged relativistic particles entering the tracking detector from the top or sides of the LAT exceeds the required 0.9997.

  13. Observing Outer Planet Satellites (Except Titan) with the James Webb Space Telescope: Science Justification and Observational Requirements

    Science.gov (United States)

    Keszthelyi, Laszlo; Grundy, Will; Stansberry, John; Sivaramakrishnan, Anand; Thatte, Deepashri; Gudipati, Murthy; Tsang, Constantine; Greenbaum, Alexandra; McGruder, Chima

    2016-01-01

    The James Webb Space Telescope (JWST) will allow observations with a unique combination of spectral, spatial, and temporal resolution for the study of outer planet satellites within our Solar System. We highlight the infrared spectroscopy of icy moons and temporal changes on geologically active satellites as two particularly valuable avenues of scientific inquiry. While some care must be taken to avoid saturation issues, JWST has observation modes that should provide excellent infrared data for such studies.

  14. 325-MHz observations of the ELAIS-N1 field using the Giant Metrewave Radio Telescope

    CERN Document Server

    Sirothia, S K; Saikia, D J; Dole, H; Ricquebourg, F; Roland, J

    2008-01-01

    We present observations of the European Large-Area {\\it ISO} Survey-North 1 (ELAIS-N1) at 325 MHz using the Giant Metrewave Radio Telescope (GMRT), with the ultimate objective of identifying active galactic nuclei and starburst galaxies and examining their evolution with cosmic epoch. After combining the data from two different days we have achieved a median rms noise of $\\approx40 \\mu$Jy beam$^{-1}$, which is the lowest that has been achieved at this frequency. We detect 1286 sources with a total flux density above $\\approx270 \\mu$Jy. In this paper, we use our deep radio image to examine the spectral indices of these sources by comparing our flux density estimates with those of Garn et al. at 610 MHz with the GMRT, and surveys with the Very Large Array at 1400 MHz. We attempt to identify very steep spectrum sources which are likely to be either relic sources or high-redshift objects as well as inverted-spectra objects which could be Giga-Hertz Peaked Spectrum objects. We present the source counts, and report...

  15. Investigations into Generalization of Constraint-Based Scheduling Theories with Applications to Space Telescope Observation Scheduling

    Science.gov (United States)

    Muscettola, Nicola; Smith, Steven S.

    1996-01-01

    This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.

  16. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    International Nuclear Information System (INIS)

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions

  17. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  18. FERMI LARGE AREA TELESCOPE CONSTRAINTS ON THE GAMMA-RAY OPACITY OF THE UNIVERSE

    International Nuclear Information System (INIS)

    The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ∼10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the γ-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of γ-ray blazars with redshift up to z ∼ 3, and GRBs with redshift up to z ∼ 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of γ-ray flux attenuation by the EBL. We place upper limits on the γ-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the 'baseline' model of Stecker et al. can be ruled out with high confidence.

  19. The second FERMI large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  20. Estimate of the Fermi Large Area Telescope sensitivity to gamma-ray polarization

    CERN Document Server

    Giomi, Matteo; Sgrò, Carmelo; Longo, Francesco

    2016-01-01

    Although not designed primarily as a polarimeter, the \\textit{Fermi}-Large Area Telescope (LAT) has the potential to detect high degrees of linear polarization from some of the brightest gamma-ray sources. To achieve the needed accuracy in the reconstruction of the event geometry, low-energy ($\\leq200$ MeV) events converting in the silicon detector layers of the LAT tracker have to be used. We present preliminary results of the ongoing effort within the LAT collaboration to measure gamma-ray polarization. We discuss the statistical and systematic uncertainties affecting such a measurement. We show that a $5\\sigma$ minimum detectable polarization (MDP) of $\\approx30-50\\%$ could be within reach for the brightest gamma-ray sources as the Vela and Crab pulsars and the blazar 3C 454.3, after 10 years of observation. To estimate the systematic uncertainties, we stack bright AGN, and use this stack as a test source. LAT sensitivity to polarization is estimated comparing the data to a simulation of the expected unpol...

  1. The James Webb Space Telescope and its Capability for for Exoplanet Observations

    Science.gov (United States)

    Clampin, Mark

    2012-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 .meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 micron to 28 micron. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. In this presentation we will discuss the status of the JWST project and review the expected scientific performance of the observatory for observations of exosolar planets by means of transit observations, and direct coronagraphic imaging. In particular we will discuss recent simulations of photometric and spectroscopic transit observations that demonstrate the capabilities of JWST to characterize superearth atmospheres in the light of recent Kepler and Corot discoveries

  2. Telescope to Observe Planetary Systems (TOPS): a high throughput 1.2-m visible telescope with a small inner working angle

    CERN Document Server

    Guyon, O; Bowers, C; Burge, J; Burrows, A; Codona, J; Greene, T; Iye, M; Kasting, J; Martin, H; McCarthy, D W; Meadows, V; Meyer, M; Pluzhnik, E A; Sleep, P N; Spears, T; Tamura, M; Tenerelli, D; Vanderbei, R; Woodgate, B; Woodruff, R A; Woolf, N J; Guyon, Olivier; Angel, James R.P.; Bowers, Charles; Burge, James; Burrows, Adam; Codona, Johanan; Greene, Thomas; Iye, Masanori; Kasting, James; Martin, Hubert; Carthy, Donald W. Mc; Meadows, Victoria; Meyer, Michael; Pluzhnik, Eugene A.; Sleep, Norman; Spears, Tony; Tamura, Motohide; Tenerelli, Domenick; Vanderbei, Robert; Woodgate, Bruce; Woodruff, Robert A.; Woolf, Neville J.

    2006-01-01

    The Telescope to Observe Planetary Systems (TOPS) is a proposed space mission to image in the visible (0.4-0.9 micron) planetary systems of nearby stars simultaneously in 16 spectral bands (resolution R~20). For the ~10 most favorable stars, it will have the sensitivity to discover 2 R_E rocky planets within habitable zones and characterize their surfaces or atmospheres through spectrophotometry. Many more massive planets and debris discs will be imaged and characterized for the first time. With a 1.2m visible telescope, the proposed mission achieves its power by exploiting the most efficient and robust coronagraphic and wavefront control techniques. The Phase-Induced Amplitude Apodization (PIAA) coronagraph used by TOPS allows planet detection at 2 lambda/d with nearly 100% throughput and preserves the telescope angular resolution. An efficient focal plane wavefront sensing scheme accurately measures wavefront aberrations which are fed back to the telescope active primary mirror. Fine wavefront control is al...

  3. 2MTF III. HI 21cm observations of 1194 spiral galaxies with the Green Bank Telescope

    CERN Document Server

    Masters, Karen L; Hong, Tao; Jarrett, T H; Koribalski, Baerbel S; Macri, Lucas; Springob, Christopher M; Staveley-Smith, Lister

    2014-01-01

    We present HI 21cm observations of 1194 galaxies out to a redshift of 10,000 km/s selected as inclined spirals (i>60deg) from the 2MASS Redshift Survey. These observations were carried out at the National Radio Astronomy Observatory Robert C. Byrd Green Bank Telescope (GBT). This observing program is part of the 2MASS Tully-Fisher (2MTF) survey. This project will combine HI widths from these GBT observations with those from further dedicated observing at the Parkes Telescope, from the ALFALFA survey at Arecibo, and S/N>10 and spectral resolution, v_res < 10km/s published widths from a variety of telescopes. We will use these HI widths along with 2MASS photometry to estimate Tully-Fisher distances to nearby spirals and investigate the peculiar velocity field of the local Universe. In this paper we report on detections of neutral hydrogen in emission in 727 galaxies, and measure good signal-to-noise and symmetric HI global profiles suitable for use in the Tully-Fisher relation in 484.

  4. Performance of the Anti-Coincidence Detector on the GLAST Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard; Charles, E.; /SLAC; Hartman, R.C.; /NASA, Goddard; Moiseev, A.A.; /NASA, Goddard; Ormes, J.F.; /NASA, Goddard /Denver U.

    2007-10-22

    The Anti-Coincidence Detector (ACD), the outermost detector layer in the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT), is designed to detect and veto incident cosmic ray charged particles, which outnumber cosmic gamma rays by 3-4 orders of magnitude. The challenge in ACD design is that it must have high (0.9997) detection efficiency for singly-charged relativistic particles, but must also have a low probability for self-veto of high-energy gammas by backsplash radiation from interactions in the LAT calorimeter. Simulations and tests demonstrate that the ACD meets its design requirements. The performance of the ACD has remained stable through stand-alone environmental testing, shipment across the U.S., installation onto the LAT, shipment back across the U.S., LAT environmental testing, and shipment to Arizona. As part of the fully-assembled GLAST observatory, the ACD is being readied for final testing before launch.

  5. FERMI LARGE AREA TELESCOPE GAMMA-RAY DETECTION OF THE RADIO GALAXY M87

    International Nuclear Information System (INIS)

    We report the Fermi Large Area Telescope (LAT) discovery of high-energy (MeV/GeV) γ-ray emission positionally consistent with the center of the radio galaxy M87, at a source significance of over 10σ in 10 months of all-sky survey data. Following the detections of Cen A and Per A, this makes M87 the third radio galaxy seen with the LAT. The faint point-like γ-ray source has a >100 MeV flux of 2.45 (±0.63) x 10-8 photons cm-2 s-1 (photon index = 2.26 ± 0.13) with no significant variability detected within the LAT observation. This flux is comparable with the previous EGRET upper limit (-8 photons cm-2 s-1, 2σ), thus there is no evidence for a significant MeV/GeV flare on decade timescales. Contemporaneous Chandra and Very Long Baseline Array data indicate low activity in the unresolved X-ray and radio core relative to previous observations, suggesting M87 is in a quiescent overall level over the first year of Fermi-LAT observations. The LAT γ-ray spectrum is modeled as synchrotron self-Compton (SSC) emission from the electron population producing the radio-to-X-ray emission in the core. The resultant SSC spectrum extrapolates smoothly from the LAT band to the historical-minimum TeV emission. Alternative models for the core and possible contributions from the kiloparsec-scale jet in M87 are considered, and cannot be excluded.

  6. New Hubble Space Telescope Observations of Heavy Elements in Four Metal-Poor Stars

    CERN Document Server

    Roederer, Ian U; Sobeck, Jennifer S; Beers, Timothy C; Cowan, John J; Frebel, Anna; Ivans, Inese I; Schatz, Hendrik; Sneden, Christopher; Thompson, Ian B

    2012-01-01

    Elements heavier than the iron group are found in nearly all halo stars. A substantial number of these elements, key to understanding neutron-capture nucleosynthesis mechanisms, can only be detected in the near-ultraviolet. We report the results of an observing campaign using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to study the detailed heavy element abundance patterns in four metal-poor stars. We derive abundances or upper limits from 27 absorption lines of 15 elements produced by neutron-capture reactions, including seven elements (germanium, cadmium, tellurium, lutetium, osmium, platinum, and gold) that can only be detected in the near-ultraviolet. We also examine 202 heavy element absorption lines in ground-based optical spectra obtained with the Magellan Inamori Kyocera Echelle Spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the High Resolution Echelle Spectrometer on the Keck I Telescope on Mauna Kea. We have detected up to 34 elements hea...

  7. PONDER - A Real time software backend for pulsar and IPS observations at the Ooty Radio Telescope

    CERN Document Server

    Naidu, Arun; Manoharan, P K; Krishnakumar, M A

    2015-01-01

    This paper describes a new real-time versatile backend, the Pulsar Ooty Radio Telescope New Digital Efficient Receiver (PONDER), which has been designed to operate along with the legacy analog system of the Ooty Radio Telescope (ORT). PONDER makes use of the current state of the art computing hardware, a Graphical Processing Unit (GPU) and sufficiently large disk storage to support high time resolution real-time data of pulsar observations, obtained by coherent dedispersion over a bandpass of 16 MHz. Four different modes for pulsar observations are implemented in PONDER to provide standard reduced data products, such as time-stamped integrated profiles and dedispersed time series, allowing faster avenues to scientific results for a variety of pulsar studies. Additionally, PONDER also supports general modes of interplanetary scintillation (IPS) measurements and very long baseline interferometry data recording. The IPS mode yields a single polarisation correlated time series of solar wind scintillation over a b...

  8. Umbral dots observed in photometric images taken with 1.6 m solar telescope

    Directory of Open Access Journals (Sweden)

    Andić A.

    2011-01-01

    Full Text Available Umbral dots (UDs were observed using the 1.6 meter solar telescope. Achieved conventional diffraction limit in the TiO 705.68 nm spectral line used was 0.001. The 418 UDs were analysed. Median diameter was 0 .005 and median intensity difference between darkest part of the UD's background and brightest part of the UDs was 37%. Despite the achieved resolution, no UDs substructures were visible. The analysed UDs appeared to be circular.

  9. Australia telescope compact array observations of radio recombination lines toward 30 Doradus

    NARCIS (Netherlands)

    Peck, AB; Goss, WM; Dickel, HR; Roelfsema, PR; Kesteven, MJ; Dickel, [No Value; Milne, DK; Points, SD

    1997-01-01

    Three hydrogen recombination lines-H90 alpha at 8.9 GHz, H92 alpha at 8.3 GHz, and H109 alpha at 5.0 GHz-have been observed with the Australia Telescope Compact Array toward the 30 Doradus Nebula, the giant H II region in the Large Magellanic Cloud. In this paper, emphasis is placed on the more sens

  10. Innovative enclosure dome/observing aperture system design for the MROI Array Telescopes

    Science.gov (United States)

    Busatta, A.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    The close-pack array of the MROI necessitated an original design for the Unit Telescope Enclosure (UTE) at Magdalena Ridge Observatory. The Magdalena Ridge Observatory Interferometer (MROI) is a project which comprises an array of up to ten (10) 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. The most compact configuration includes all ten telescopes, several of which are at a relative distance of less than 8m center to center from each other. Since the minimum angle of the field of regard is 30° with respect to the horizon, it is difficult to prevent optical blockage caused by adjacent UTEs in this compact array. This paper presents the design constraints inherent in meeting the requirement for the close-pack array. An innovative design enclosure was created which incorporates an unique dome/observing aperture system. The description of this system focuses on how the field of regard requirement led to an unique and highly innovative concept that had to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). Finally, we describe the wide use of composites materials and structures (e.g. glass/carbon fibres, sandwich panels etc.) on the aperture system which represents the only way to guarantee adequate thermal and environmental protection, compactness, structural stability and limited power consumption due to reduced mass.

  11. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  12. A population of gamma-ray millisecond pulsars seen with the Fermi Large Area Telescope.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Camilo, F; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbet, R; Cutini, S; Dermer, C D; Desvignes, G; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Freire, P C C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hobbs, G; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Johnston, S; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Manchester, R N; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; McLaughlin, M A; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ransom, S M; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Starck, J L; Striani, E; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Watters, K; Webb, N; Weltevrede, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface.

  13. A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Pulsars are born with sub-second spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface. (authors)

  14. Large-area Reflective Infrared Filters for Millimeter/sub-mm Telescopes

    CERN Document Server

    Ahmed, Z; Thompson, K L; Kuo, C L; Brooks, G; Pothoven, T

    2014-01-01

    Ground-based millimeter and sub-millimeter telescopes are attempting to image the sky with ever-larger cryogenically-cooled bolometer arrays, but face challenges in mitigating the infrared loading accompanying large apertures. Absorptive infrared filters supported by mechanical coolers scale insufficiently with aperture size. Reflective metal-mesh filters placed behind the telescope window provide a scalable solution in principle, but have been limited by photolithography constraints to diameters under 300 mm. We present laser etching as an alternate technique to photolithography for fabrication of large-area reflective filters, and show results from lab tests of 500 mm-diameter filters. Filters with up to 700 mm diameter can be fabricated using laser etching with existing capability.

  15. Astronomical observation devices CIAO and COMICS for Telescope Subaru; Sugbaru boenkyo kansoku sochi CIAO/COMICS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-20

    Described herein are astronomical observation devices, a coronagraph imaging device (CIAO) and intermediate-infrared imaging spectrometer (COMICS), delivered to National Astronomical Observatory in October 1999. These devices are for the focal section of Telescope Subaru, completed in Hawaii in 1999 (devices for the first stage project), to observe various celestial objects by imaging and spectroscopically processing the infrared ray data collected by the telescope. This company has developed these devices jointly with National Astronomical Observatory as the orderer. They have been in service since December 1999 when they were set in the telescope (the attached photograph shows COMICS). Its major specifications are dimensions: 2,000 mm long, 2,000 mm wide and 1900 mm high, weight: 1,300 kg (CIAO) and 1640 kg (COMICS), and detector temperature: 35K (-238 degrees C) for CIAO and 5K (-268 degrees C) for COMICS. They are featured by the infrared sensor and optical system cooled by a system which uses a refrigerator to prevent heat radiation (infrared ray) from the ambient; and the optical system being insulated and supported by a tension strap structure to keep its performance unaffected by cooling or slanting ({+-}70 degrees). (translated by NEDO)

  16. Commensal observing with the Allen Telescope array: software command and control

    CERN Document Server

    Gutierrez-Kraybill, Colby; MacMahon, David; Williams, Peter K G; Harp, Gerald; Ackermann, Robert; Kilsdonk, Tom; Richards, Jon; Barott, William C; 10.1117/12.857860

    2010-01-01

    The Allen Telescope Array (ATA) is a Large-Number-Small-Diameter radio telescope array currently with 42 individual antennas and 5 independent back-end science systems (2 imaging FX correlators and 3 time domain beam formers) located at the Hat Creek Radio Observatory (HCRO). The goal of the ATA is to run multiple back-ends simultaneously, supporting multiple science projects commensally. The primary software control systems are based on a combination of Java, JRuby and Ruby on Rails. The primary control API is simplified to provide easy integration with new back-end systems while the lower layers of the software stack are handled by a master observing system. Scheduling observations for the ATA is based on finding a union between the science needs of multiple projects and automatically determining an efficient path to operating the various sub-components to meet those needs. When completed, the ATA is expected to be a world-class radio telescope, combining dedicated SETI projects with numerous radio astronom...

  17. Commensal observing with the Allen Telescope array: software command and control

    Science.gov (United States)

    Gutierrez-Kraybill, Colby; Keating, Garrett K.; MacMahon, David; Williams, Peter K. G.; Harp, Gerald; Ackermann, Robert; Kilsdonk, Tom; Richards, Jon; Barott, William C.

    2010-07-01

    The Allen Telescope Array (ATA) is a Large-Number-Small-Diameter radio telescope array currently with 42 individual antennas and 5 independent back-end science systems (2 imaging FX correlators and 3 time domain beam formers) located at the Hat Creek Radio Observatory (HCRO). The goal of the ATA is to run multiple back-ends simultaneously, supporting multiple science projects commensally. The primary software control systems are based on a combination of Java, JRuby and Ruby on Rails. The primary control API is simplified to provide easy integration with new back-end systems while the lower layers of the software stack are handled by a master observing system. Scheduling observations for the ATA is based on finding a union between the science needs of multiple projects and automatically determining an efficient path to operating the various sub-components to meet those needs. When completed, the ATA is expected to be a world-class radio telescope, combining dedicated SETI projects with numerous radio astronomy science projects.

  18. First scientific VLBI observations using New Zealand 30 metre radio telescope WARK30M

    CERN Document Server

    Petrov, Leonid; Weston, Stuart; McCallum, Jamie; Ellingsen, Simon; Gulyaev, Sergei

    2015-01-01

    We report the results of a successful twenty-four hour 6.7 GHz VLBI experiment using the 30 metre radio telescope wark30m near Warkworth, New Zealand, recently converted from a radio telecommunications antenna. This was the first scientific VLBI observing session with the participation of this new station and two radio telescopes located in Australia: Hobart 26-m and Ceduna 30-m. We have determined the position of wark30m with uncertainties estimated as 100 mm for the vertical component and 10 mm for the horizontal components. We have detected parsec scale emission from the radio source 1031-837 and established that it is associated with the gamma-ray object 2FGL J1032.9-8401. We conclude that wark30m is ready to operate for scientific projects.

  19. NEW HUBBLE SPACE TELESCOPE OBSERVATIONS OF HEAVY ELEMENTS IN FOUR METAL-POOR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Roederer, Ian U.; Thompson, Ian B. [Carnegie Observatories, Pasadena, CA 91101 (United States); Lawler, James E. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Sobeck, Jennifer S. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Cowan, John J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Frebel, Anna [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Ivans, Inese I. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schatz, Hendrik [Department of Physics and Astronomy, Michigan State University, E. Lansing, MI 48824 (United States); Sneden, Christopher [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2012-12-15

    Elements heavier than the iron group are found in nearly all halo stars. A substantial number of these elements, key to understanding neutron-capture nucleosynthesis mechanisms, can only be detected in the near-ultraviolet. We report the results of an observing campaign using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to study the detailed heavy-element abundance patterns in four metal-poor stars. We derive abundances or upper limits from 27 absorption lines of 15 elements produced by neutron-capture reactions, including seven elements (germanium, cadmium, tellurium, lutetium, osmium, platinum, and gold) that can only be detected in the near-ultraviolet. We also examine 202 heavy-element absorption lines in ground-based optical spectra obtained with the Magellan Inamori Kyocera Echelle Spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the High Resolution Echelle Spectrometer on the Keck I Telescope on Mauna Kea. We have detected up to 34 elements heavier than zinc. The bulk of the heavy elements in these four stars are produced by r-process nucleosynthesis. These observations affirm earlier results suggesting that the tellurium found in metal-poor halo stars with moderate amounts of r-process material scales with the rare earth and third r-process peak elements. Cadmium often follows the abundances of the neighboring elements palladium and silver. We identify several sources of systematic uncertainty that must be considered when comparing these abundances with theoretical predictions. We also present new isotope shift and hyperfine structure component patterns for Lu II and Pb I lines of astrophysical interest.

  20. Astrometrical Observations of Pluto - Charon System with the Automated Telescopes of Pulkovo Observatory

    OpenAIRE

    Devyatkin, Alexander V.; Bashakova, Ekaterina A.; Slesarenko, Viacheslav Yu.

    2015-01-01

    The space probe 'New Horizon' was launched on 19th of January 2006 in order to study Pluto and its moons. Spacecraft will fly by Pluto as close as 12500 km in the middle of July 2015 and will get the most detailed images of Pluto and its moon until this moment. At the same time, observation obtained by the ground-based telescopes may also be helpful for the research of such distant system. Thereby, the Laboratory of observational astrometry of Pulkovo Observatory of RAS made a decision to rep...

  1. Observation of the Perseus cluster of galaxies with the MAGIC telescopes

    OpenAIRE

    Lombardi, Saverio; Colin, Pierre; Hildebrand, Dorothee; Zandanel, Fabio; Prada, Francisco; Collaboration, for the MAGIC; Pfrommer, Christoph; Pinzke, Anders

    2011-01-01

    The MAGIC telescopes performed a deep observation of the central region of the Perseus galaxy cluster in stereoscopic mode between October 2009 and February 2011. The nearly 85 hr of collected data (after quality selection) represent the deepest observation of a cluster of galaxies at very high energies (VHE, E > 100 GeV) ever. The survey resulted in the detection of VHE gamma-ray emissions from its central galaxy NGC 1275 and from the radio galaxy IC 310. In addition, the deep survey also pe...

  2. Overview of the results from extra-galactic observations with the MAGIC telescopes

    OpenAIRE

    Berger, Karsten; Collaboration, for the MAGIC

    2011-01-01

    The non-thermal jet emission in active galactic nuclei covers several orders of magnitude in the frequency range. Hence the observational approach needs multi-wavelength (MWL) campaigns collecting data in the radio, optical, UV, X-rays, high energy until the Very High Energy (VHE) gamma-ray band. MAGIC, a system of two 17 m diameter telescopes at the Roque de los Muchachos observatory on the canary island La Palma, actively participates and organizes MWL observations on known and newly discov...

  3. Hubble Space Telescope Observations of Binary Very-Low-Mass Stars and Brown Dwarfs

    OpenAIRE

    Gizis, J. E.; Reid, I N; Knapp, G. R.; Liebert, J.; Kirkpatrick, J. D.; Koerner, D. W.; Burgasser, A. J.

    2003-01-01

    We present analysis of Hubble Space Telescope images of 82 nearby field late-M and L dwarfs. We resolve 13 of these systems into double M/L dwarf systems and identify an additional possible binary. Combined with previous observations of 20 L dwarfs, we derive an observed binary fraction for ultracool dwarfs of 17+4-3%, where the statistics included systems with separations in the range 1.6-16 A.U. We argue that accounting for biases and incompleteness leads to an estimated binary fraction 15+...

  4. Hubble Space Telescope and Ground-Based Optical and Ultraviolet Observations of GRB010222

    CERN Document Server

    Galama, T J; Brown, T M; Kimble, R A; Price, P A; Berger, E; Frail, D A; Kulkarni, S R; Yost, S A; Gal-Yam, A; Bloom, J S; Harrison, F A; Sari, R; Fox, D; Djorgovski, S G

    2003-01-01

    We report on Hubble Space Telescope WFPC2 optical and STIS near ultraviolet MAMA observations, and ground-based optical observations of GRB010222, spanning 15 hrs to 71 days. The observations are well-described by a relativistic blast-wave model with a hard electron-energy distribution, p = 1.57, and a jet transition at t_j=0.93 days. These values are slightly larger than previously found as a result of a correction for the contribution from the host galaxy to the late-time ground-based observations and the larger temporal baseline provided by the Hubble Space Telescope observations. The host galaxy is found to contain a very compact core (size <0.25 arcsec) which coincides with the position of the optical transient. The STIS near ultraviolet MAMA observations allow for an investigation of the extinction properties along the line of sight to GRB010222. We find that the far ultraviolet curvature component (c_4) is rather large. In combination with the low optical extinction A_V =0.11 mag, when compared to t...

  5. Probing Millisecond Pulsar Emission Geometry Using Light Curves From the Fermi Large Area Telescope

    Science.gov (United States)

    Venter, Christo; Harding, Alice; Guillemot, L.

    2009-01-01

    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.

  6. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R.D.; Bloom, E.D.; Borgland, A.W.; Bouvier, A.; Buehler, R. [W.W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T.J. [Centre d' Étude Spatiale des Rayonnements, CNRS/UPS, BP 44346, F-30128 Toulouse Cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: tesla@ucolick.org, E-mail: profumo@scipp.ucsc.edu [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2010-05-01

    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ∼ 200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ∼ 5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.

  7. Jet Emission in Young Radio Sources: A Fermi Large Area Telescope Gamma-Ray View

    Science.gov (United States)

    Migliori, G.; Siemiginowska, A.; Kelly, B. C.; Stawarz, Ł.; Celotti, A.; Begelman, M. C.

    2014-01-01

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (lsim10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ~1046-1048 erg s-1 depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ~4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L jet, kin/L disk > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (lsim 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  8. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; Ajello, M.; /SLAC; Anderson, B.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Taiwan, Natl. Taiwan U. /Ohio State U.; Bechtol, K.; /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /SLAC; Bregeon, J.; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Padua U. /Naval Research Lab, Wash., D.C. /Udine U. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Pisa /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Udine U. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Bari U. /INFN, Bari /INFN, Pisa /INFN, Bari /NASA, Goddard /Maryland U.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  9. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Allafort, A.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baldini, L.; /INFN, Pisa; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bloom, E.D.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bouvier, A.; /UC, Santa Cruz; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Buson, S.; /INFN, Padua /Padua U. /CSIC, Catalunya /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Unlisted, US /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /ASDC, Frascati /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /ASDC, Frascati /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Ecole Polytechnique /Hiroshima U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Bari Polytechnic /INFN, Bari /INFN, Bari /NASA, Goddard /INFN, Perugia /Perugia U.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  10. OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. VI. FURTHER OBSERVATIONS FROM TNG, WHT, OAN, SOAR, AND MAGELLAN TELESCOPES

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez Crespo, N.; Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Milisavljevic, D.; Paggi, A.; Smith, Howard A. [Harvard—Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Landoni, M. [INAF-Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy); Chavushyan, V.; Patiño-Álvarez, V. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Apartado Postal 51-216, 72000 Puebla, México (Mexico); Masetti, N. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129, Bologna (Italy); Jiménez-Bailón, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 877, Ensenada, 22800 Baja California, México (Mexico); Strader, J.; Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Katagiri, H.; Kagaya, M. [College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito 310-8512 (Japan); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); D’Abrusco, R. [Department of Physical Sciences, University of Napoli Federico II, via Cinthia 9, I-80126 Napoli (Italy); Ricci, F.; La Franca, F. [Dipartimento di Matematica e Fisica, Università Roma Tre, via della Vasca Navale 84, I-00146, Roma (Italy); and others

    2016-04-15

    Blazars, one of the most extreme classes of active galaxies, constitute so far the largest known population of γ-ray sources, and their number is continuously growing in the Fermi catalogs. However, in the latest release of the Fermi catalog there is still a large fraction of sources that are classified as blazar candidates of uncertain type (BCUs) for which optical spectroscopic observations are necessary to confirm their nature and their associations. In addition, about one-third of the γ-ray point sources listed in the Third Fermi-LAT Source Catalog (3FGL) are still unassociated and lacking an assigned lower-energy counterpart. Since 2012 we have been carrying out an optical spectroscopic campaign to observe blazar candidates to confirm their nature. In this paper, the sixth of the series, we present optical spectroscopic observations for 30 γ-ray blazar candidates from different observing programs we carried out with the Telescopio Nazionale Galileo, William Herschel Telescope, Observatorio Astronómico Nacional, Southern Astrophysical Research Telescope, and Magellan Telescopes. We found that 21 out of 30 sources investigated are BL Lac objects, while the remaining targets are classified as flat-spectrum radio quasars showing the typical broad emission lines of normal quasi-stellar objects. We conclude that our selection of γ-ray blazar candidates based on their multifrequency properties continues to be a successful way to discover potential low-energy counterparts of the Fermi unidentified gamma-ray sources and to confirm the nature of BCUs.

  11. Space telescope phase B definition study. Volume 2A: Science instruments, high speed point/area photometer

    Science.gov (United States)

    1976-01-01

    The analysis and preliminary design of a high speed point/area photometer for the space telescope are summarized. The scientific objectives, photometer requirements, and design concepts are presented.

  12. Very-high-energy {\\gamma}-ray observations of novae and dwarf novae with the MAGIC telescopes

    CERN Document Server

    Ahnen, M L; Antonelli, L A; Antoranz, P; Babic, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Chatterjee, A; Clavero, R; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Di Pierro, F; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Glawion, D Eisenacher; Elsaesser, D; Fernández-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giammaria, P; Godinović, N; Muñoz, A González; Guberman, D; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Idec, W; Kellermann, H; Kodani, K; Konno, Y; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Majumdar, P; Makariev, M; Mallot, K; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Saito, T; Saito, K; Satalecka, K; Scapin, V; Schultz, C; Schweizer, T; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Stamerra, A; Steinbring, T; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Torres, D F; Toyama, T; Treves, A; Verguilov, V; Vovk, I; Will, M; Zanin, R; Desiante, R; Hays, E

    2015-01-01

    Context. In the last five years the Fermi Large Area Telescope (LAT) instrument detected GeV {\\gamma}-ray emission from five novae. The GeV emission can be interpreted in terms of an inverse Compton process of electrons accelerated in a shock. In this case it is expected that protons in the same conditions can be accelerated to much higher energies. Consequently they may produce a second component in the {\\gamma}-ray spectrum at TeV energies. Aims. We aim to explore the very-high-energy domain to search for {\\gamma}-ray emission above 50 GeV and to shed light on the acceleration process of leptons and hadrons in nova explosions. Methods. We have performed observations with the MAGIC telescopes of the classical nova V339 Del shortly after the 2013 outburst, triggered by optical and subsequent GeV {\\gamma}-ray detec- tions. We also briefly report on VHE observations of the symbiotic nova YY Her and the dwarf nova ASASSN-13ax. We complement the TeV MAGIC observations with the analysis of con- temporaneous Fermi-...

  13. High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope

    CERN Document Server

    Aleksić, J; Antoranz, P; Asensio, M; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadamek, A; Hadasch, D; Häfner, D; Herrero, A; Hose, J; Hrupec, D; Huber, B; Jankowski, F; Jogler, T; Kadenius, V; Klepser, S; Knoetig, M L; Krähenbühl, T; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Leonardo, E; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Niedzwiecki, A; Nieto, D; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Partini, S; Persic, M; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R

    2012-01-01

    The high frequency peaked BL Lac PKS 2155-304 with a redshift of z=0.116 was discovered in 1997 in the very high energy (VHE, E >100GeV) gamma-ray range by the University of Durham Mark VI gamma-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the Southern Cherenkov observatory H.E.S.S. Detection from the Northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE gamma-emission. During the outburst, the VHE gamma-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 hours at large zenith angles. Here we present ...

  14. The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars

    OpenAIRE

    Abdo, A A; et al, .; Hessels, J.

    2013-01-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and ener...

  15. Gaia science alerts and the observing facilities of the Serbian-Bulgarian mini-network telescopes

    Directory of Open Access Journals (Sweden)

    Damljanović G.

    2014-01-01

    Full Text Available The astrometric European Space Agency (ESA Gaia mission was launched in December 19, 2013. One of the tasks of the Gaia mission is production of an astrometric catalog of over one billion stars and more than 500000 extragalactic sources. The quasars (QSOs, as extragalactic sources and radio emitters, are active galactic nuclei objects (AGNs whose coordinates are well determined via Very Long Baseline Interferometry (VLBI technique and may reach sub-milliarcsecond accuracy. The QSOs are the defining sources of the quasi-inertial International Celestial Reference Frame (ICRF because of their core radio morphology, negligible proper motions (until sub-milliarcsecond per year, and apparent point-like nature. Compact AGNs, visible in optical domain, are useful for a direct link of the future Gaia optical reference frame with the most accurate radio one. Apart from the above mentioned activities, Gaia has other goals such as follow-up of transient objects. One of the most important Gaia's requirements for photometric alerts is a fast observation and reduction response, that is, submition of observations within 24 hours. For this reason we have developed a pipeline. In line with possibilities of our new telescope (D(cm/F(cm=60/600 at the Astronomical Station Vidojevica (ASV, of the Astronomical Observatory in Belgrade, we joined the Gaia-Follow-Up Network for Transients Objects (Gaia-FUN-TO for the photometric alerts. Moreover, in view of the cooperation with Bulgarian colleagues (in the frst place, SV, one of us (GD initiated a local mini-network of Serbian { Bulgarian telescopes useful for the Gaia-FUN-TO and other astronomical purposes. During the next year we expect a new 1.4 m telescope at ASV site. The speed of data processing (from observation to calibration server could be one day. Here, we present an overview of our activities in the Gaia-FUN-TO which includes establishing Serbian { Bulgarian mini-network (of five telescopes at three sites

  16. Improved Photometric Calibrations for Red Stars Observed with the SDSS Photometric Telescope

    CERN Document Server

    Davenport, James R A; Covey, Kevin R; Hawley, Suzanne L; West, Andrew A; Schneider, Donald P

    2007-01-01

    We present a new set of photometric transformations for red stars observed with the Sloan Digital Sky Survey (SDSS) 0.5-m Photometric Telescope (PT) and the SDSS 2.5-m telescope at the Apache Point Observatory in New Mexico. Nightly PT observations of US Naval Observatory standards are used to determine extinction corrections and calibration terms for SDSS 2.5-m photometry. Systematic differences between the PT and native SDSS 2.5-m {\\it ugriz} photometry require conversions between the two systems which have previously been undefined for the reddest stars. By matching $\\sim 43,000$ stars observed with both the PT and SDSS 2.5-m, we extend the present relations to include low-mass stars with colors $0.6 \\le r-i \\le 1.7$. These corrections will allow us to place photometry of bright, low-mass trigonometric parallax stars previously observed with the PT on the 2.5-m system. We present new transformation equations and discuss applications of these data to future low-mass star studies using the SDSS.

  17. First observations of the water masers with the Urumqi 25m radio telescope

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new radio spectral receiving system has been installed on the 25 m radio telescope of the Urumqi Astronomical Observatory. The back end is a surface acoustic wave chirp transform spectrometer (SAW CZT), used for the first time in radio astronomy. The calibration of the line observations has carefully been investigated for the new-type spectrometer. In order to test the feasibility of the prototype spectrometer, we observed water maser emission from a number of known Galactic sources. We describe the observed spectra of W49N, W3(OH), 2248+600 and 1909+090. We found that W49N spectrum showed high-velocity features ranging from -330 to 146 km s-1. In comparison with the spectra observed by Medicina, the feature at the LSR velocity -52 km s-1 in the W3(OH) presented the rapid variation in flux density.

  18. Observing---and Imaging---Active Galactic Nuclei with the Event Horizon Telescope

    CERN Document Server

    Fish, Vincent L; Bouman, Katherine L; Chael, Andrew A; Johnson, Michael D; Doeleman, Sheperd S; Blackburn, Lindy; Wardle, John F C; Freeman, William T

    2016-01-01

    Originally developed to image the shadow region of the central black hole in Sagittarius A* and in the nearby galaxy M87, the Event Horizon Telescope (EHT) provides deep, very high angular resolution data on other AGN sources too. The challenges of working with EHT data have spurred the development of new image reconstruction algorithms. This work briefly reviews the status of the EHT and its utility for observing AGN sources, with emphasis on novel imaging techniques that offer the promise of better reconstructions at 1.3 mm and other wavelengths.

  19. The Cosmic Ray Energy Spectrum Observed with the Surface Detector of the Telescope Array Experiment

    OpenAIRE

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; B.G. Cheon; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.

    2012-01-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays with primary energies above 1.6 x 10^(18) eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 x 10^(18) eV and a steepening at 5.4 x 10^(19) eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of ultra-high energy cosmic ray ...

  20. AGN Observations in the GeV/TeV Energy Range with the MAGIC Telescope

    OpenAIRE

    Wagner, Robert

    2008-01-01

    MAGIC currently is the largest imaging atmospheric Cerenkov telescope world-wide. Since 2004, gamma-ray emission from several active galactic nuclei in the GeV/TeV energy range has been detected, some of which were newly discovered as very-high energy gamma-ray sources. The gamma-rays are assumed to originate from particle acceleration processes in the AGN jets. We give an overview of the AGN observed and detected by MAGIC, discuss spectral and temporal properties of these and show physics im...

  1. Fermi Gamma-ray Space Telescope Observations of Gamma-ray Pulsars

    CERN Document Server

    Parkinson, P M Saz

    2009-01-01

    The Large Area Telescope on the recently launched Fermi Gamma-ray Space Telescope (formerly GLAST), with its large field of view and effective area, combined with its excellent timing capabilities, is poised to revolutionize the field of gamma-ray astrophysics. The large improvement in sensitivity over EGRET is expected to result in the discovery of many new gamma-ray pulsars, which in turn should lead to fundamental advances in our understanding of pulsar physics and the role of neutron stars in the Galaxy. Almost immediately after launch, Fermi clearly detected all previously known gamma-ray pulsars and is producing high precision results on these. An extensive radio and X-ray timing campaign of known (primarily radio) pulsars is being carried out in order to facilitate the discovery of new gamma-ray pulsars. In addition, a highly efficient time-differencing technique is being used to conduct blind searches for radio-quiet pulsars, which has already resulted in new discoveries. I present some recent results...

  2. Slipping reconnection in a solar flare observed in high resolution with the GREGOR solar telescope

    CERN Document Server

    Sobotka, M; Denker, C; Balthasar, H; Jurčák, J; Liu, W; Berkefeld, T; Vera, M Collados; Feller, A; Hofmann, A; Kneer, F; Kuckein, C; Lagg, A; Louis, R E; von der Lühe, O; Nicklas, H; Schlichenmaier, R; Schmidt, D; Schmidt, W; Sigwarth, M; Solanki, S K; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; Waldmann, T

    2016-01-01

    A small flare ribbon above a sunspot umbra in active region 12205 was observed on November 7, 2014, at 12:00 UT in the blue imaging channel of the 1.5 m GREGOR telescope, using a 1 A Ca II H interference filter. Context observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO), the Solar Optical Telescope (SOT) onboard Hinode, and the Interface Region Imaging Spectrograph (IRIS) show that this ribbon is part of a larger one that extends through the neighboring positive polarities and also participates in several other flares within the active region. We reconstructed a time series of 140 seconds of Ca II H images by means of the multiframe blind deconvolution method, which resulted in spatial and temporal resolutions of 0.1 arcsec and 1 s. Light curves and horizontal velocities of small-scale bright knots in the observed flare ribbon were measured. Some knots are stationary, but three move along the ribbon with speeds of 7-11 km/s. Two of them move in the opposite d...

  3. Status of Telescope Fabra ROA at Montsec: Optical Observations for Space Surveillance & Tracking

    CERN Document Server

    Fors, O; Nunez, J; Muinos, J L; Boloix, J; Baena, R; Morcillo, R; Merino, M

    2011-01-01

    The telescope Fabra ROA at Montsec (TFRM) is a 0.5m f/1 refurbished Baker-Nunn Camera (BNC) operated by a collaboration between the Fabra Observatory - Royal Academy of Arts and Sciences of Barcelona and the Spanish Navy Observatory (ROA), and installed at Montsec Astronomical Observatory (Spain). Among other capabilities, its CCD FoV (4.4{\\deg}x4.4{\\deg}), the telescope tracking at arbitrary RA and DEC rates, and the CCD shutter commanding at will during the exposure are specially remarkable for Space Surveillance and Tracking (SST) observational programs. On Feb 2011, the TFRM participated, in the CO-VI third run satellite tracking campaign of the ESA SST/Space Surveillance Awareness Preparatory Program (SST/SSA-PP). During this multi-asset 7-day campaign the TFRM conducted systematic observations of artificial satellites which yielded to the determination of 1137 accurate position measurements. Since Feb 2011, the TFRM is observing in remote and fully unattended robotic modes under commissioning status. A ...

  4. Astrometric observations of outer Jovian satellites with the `Saturn' telescope. First results

    CERN Document Server

    Khovritchev, M Yu; Balyaev, I A; Bikulova, D A; Izmailov, I S; Roshchina, E A; Petjur, V V; Shumilov, A A; Maksimova, L A; Oskina, K I; Apetyan, A A; Kulikova, A M

    2015-01-01

    The one-meter telescope-reflector `Saturn' (D=1 m, F = 4 m) was partially renovated at the Pulkovo observatory at the end of 2014. The telescope was equipped by CCD camera S2C with 14x14 arcmin field of view and 824 mas per pix scale. The observations of outer Jovian satellites have been performed in a test mode since January 2015. The exposure time of 30 seconds allows us to obtain images of stars up to magnitude 19.5 with the present state of the mirror and the equipment. The observations of outer Jovian satellites have been performed during testing period. These objects are interesting targets because their astrometric observations required to improve ephemeris and dynamic studies. Satellites positions have been determined on the basis of CCD images obtained within 6 nights. Astrometric reduction is performed by linear method using HCRF/UCAC4 and HCRF/URAT1. Internal accuracy of satellites positions has been estimated as 20 - 100 mas. The absolute values of residuals O-C do not exceed 100 mas in most cases...

  5. Observation of the 2005 January 20 GLE event using Yangbajing solar neutron telescope and neutron monitor

    International Nuclear Information System (INIS)

    A solar cosmic rays Ground Level Enhancement (GLE) event associated with a X7.1/2b solar flare in 2005 January 20 was observed by the Yangbajing solar neutron telescope (SNT) and neutron monitor (NM), located at Yangbajing Tibet (90.53 degree E, 30.11 degree N, 4310m a.s.l) with the highest vertical geomagnetic cut-off rigidity of 14.1 GV in NM network. The statistical significance of the counting rate enhancement recorded by solar neutron telescope in >40 MeV channel was 3.7 σ in the time window of 07:00-07:05UT and 6.0σ in the time window of 07:00-07:20UT, respectively. The onset time of 06:51-06:52UT for this GLE event was clearly observed by the Yangbajing NM. Our Observation indicates that solar protons have been accelerated up to energies of >10 GeV during this solar event. (authors)

  6. PONDER - A Real time software backend for pulsar and IPS observations at the Ooty Radio Telescope

    Science.gov (United States)

    Naidu, Arun; Joshi, Bhal Chandra; Manoharan, P. K.; Krishnakumar, M. A.

    2015-06-01

    This paper describes a new real-time versatile backend, the Pulsar Ooty Radio Telescope New Digital Efficient Receiver (PONDER), which has been designed to operate along with the legacy analog system of the Ooty Radio Telescope (ORT). PONDER makes use of the current state of the art computing hardware, a Graphical Processing Unit (GPU) and sufficiently large disk storage to support high time resolution real-time data of pulsar observations, obtained by coherent dedispersion over a bandpass of 16 MHz. Four different modes for pulsar observations are implemented in PONDER to provide standard reduced data products, such as time-stamped integrated profiles and dedispersed time series, allowing faster avenues to scientific results for a variety of pulsar studies. Additionally, PONDER also supports general modes of interplanetary scintillation (IPS) measurements and very long baseline interferometry data recording. The IPS mode yields a single polarisation correlated time series of solar wind scintillation over a bandwidth of about four times larger (16 MHz) than that of the legacy system as well as its fluctuation spectrum with high temporal and frequency resolutions. The key point is that all the above modes operate in real time. This paper presents the design aspects of PONDER and outlines the design methodology for future similar backends. It also explains the principal operations of PONDER, illustrates its capabilities for a variety of pulsar and IPS observations and demonstrates its usefulness for a variety of astrophysical studies using the high sensitivity of the ORT.

  7. The 2016 Transit of Mercury Observed from Major Solar Telescopes and Satellites

    Science.gov (United States)

    Pasachoff, Jay M.; Schneider, Glenn; Gary, Dale; Chen, Bin; Sterling, Alphonse C.; Reardon, Kevin P.; Dantowitz, Ronald; Kopp, Greg A.

    2016-10-01

    We report observations from the ground and space of the 9 May 2016 transit of Mercury. We build on our explanation of the black-drop effect in transits of Venus based on spacecraft observations of the 1999 transit of Mercury (Schneider, Pasachoff, and Golub, Icarus 168, 249, 2004). In 2016, we used the 1.6-m New Solar Telescope at the Big Bear Solar Observatory with active optics to observe Mercury's transit at high spatial resolution. We again saw a small black-drop effect as 3rd contact neared, confirming the data that led to our earlier explanation as a confluence of the point-spread function and the extreme solar limb darkening (Pasachoff, Schneider, and Golub, in IAU Colloq. 196, 2004). We again used IBIS on the Dunn Solar Telescope of the Sacramento Peak Observatory, as A. Potter continued his observations, previously made at the 2006 transit of Mercury, at both telescopes of the sodium exosphere of Mercury (Potter, Killen, Reardon, and Bida, Icarus 226, 172, 2013). We imaged the transit with IBIS as well as with two RED Epic IMAX-quality cameras alongside it, one with a narrow passband. We show animations of our high-resolution ground-based observations along with observations from XRT on JAXA's Hinode and from NASA's Solar Dynamics Observatory. Further, we report on the limit of the transit change in the Total Solar Irradiance, continuing our interest from the transit of Venus TSI (Schneider, Pasachoff, and Willson, ApJ 641, 565, 2006; Pasachoff, Schneider, and Willson, AAS 2005), using NASA's SORCE/TIM and the Air Force's TCTE/TIM. See http://transitofvenus.info and http://nicmosis.as.arizona.edu.Acknowledgments: We were glad for the collaboration at Big Bear of Claude Plymate and his colleagues of the staff of the Big Bear Solar Observatory. We also appreciate the collaboration on the transit studies of Robert Lucas (Sydney, Australia) and Evan Zucker (San Diego, California). JMP appreciates the sabbatical hospitality of the Division of Geosciences and

  8. Data Processing Pipeline for Pointing Observations of Lunar-based Ultraviolet Telescope

    CERN Document Server

    Meng, Xian-Min; Qiu, Yu-Lei; Wu, Chao; Wang, Jing; Han, Xu-Hui; Deng, Jin-Song; Xin, Li-Ping; Cai, Hong-Bo; Wei, Jian-Yan

    2015-01-01

    We describe the data processing pipeline developed to reduce the pointing observation data of Lunar-based Ultraviolet Telescope (LUT), which belongs to the Chang'e-3 mission of the Chinese Lunar Exploration Program. The pointing observation program of LUT is dedicated to variable objects monitoring in a near-ultraviolet (245-345 nm) band. LUT works in lunar daytime for sufficient power supply, so some special data processing strategies have been developed in the pipeline. The procedures of the pipeline mainly include stray light removing, astrometry, flat fielding employing superflat technique, source extraction and cosmic rays rejection, aperture and PSF photometry, aperture correction, and catalogues archiving. It has been intensively tested and works smoothly with observation data. The photometric accuracy is typically ~0.02 mag for LUT 10 mag stars (30s exposure), with errors from background noises, residuals of stray light removing, and flat fielding. The accuracy degrades to be ~0.2 mag for stars of 13....

  9. Bayesian techniques for comparing time-dependent GRMHD simulations to variable Event Horizon Telescope observations

    CERN Document Server

    Kim, Junhan; Chan, Chi-kwan; Medeiros, Lia; Ozel, Feryal; Psaltis, Dimitrios

    2016-01-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long baseline interferometer (VLBI) that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore the robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. We also apply our method to the early EHT data...

  10. Point source detection performance of Hard X-ray Modulation Telescope imaging observation

    CERN Document Server

    Huo, Zhuoxi; Li, Xiaobo; Zhou, Jianfeng

    2015-01-01

    The Hard X-ray Modulation Telescope (HXMT) will perform an all-sky survey in hard X-ray band as well as deep imaging of a series of small sky regions. We expect various compact objects to be detected in these imaging observations. Point source detection performance of HXMT imaging observation depends not only on the instrument but also on its data analysis since images are reconstructed from HXMT observed data with numeric methods. Denoising technique plays an import part in HXMT imaging data analysis pipeline alongside with demodulation and source detection. In this paper we have implemented several methods for denoising HXMT data and evaluated the point source detection performances in terms of sensitivities and location accuracies. The results show that direct demodulation with 1-fold cross correlation should be the default reconstruction and regularization methods, although both sensitivity and location accuracy could be further imporved by selecting and tuning numerical methods in data analysis of HXMT i...

  11. Follow-up observations toward Planck cold clumps with ground-based radio telescopes

    CERN Document Server

    Liu, Tie; Mardones, Diego; Kim, Kee-Tae; Menten, Karl M; Tatematsu, Ken; Cunningham, Maria; Juvela, Mika; Zhang, Qizhou; Goldsmith, Paul F; Liu, Sheng-Yuan; Zhang, Hua-Wei; Meng, Fanyi; Li, Di; Lo, Nadia; Guan, Xin; Yuan, Jinghua; Belloche, Arnaud; Henkel, Christian; Wyrowski, Friedrich; Garay, Guido; Ristorcelli, Isabelle; Lee, Jeong-Eun; Wang, Ke; Bronfman, Leonardo; Toth, L Viktor; Schnee, Scott; Qin, Shengli; Akhter, Shaila

    2014-01-01

    The physical and chemical properties of prestellar cores, especially massive ones, are still far from being well understood due to the lack of a large sample. The low dust temperature ($<$14 K) of Planck cold clumps makes them promising candidates for prestellar objects or for sources at the very initial stages of protostellar collapse. We have been conducting a series of observations toward Planck cold clumps (PCCs) with ground-based radio telescopes. In general, when compared with other star forming samples (e.g. infrared dark clouds), PCCs are more quiescent, suggesting that most of them may be in the earliest phase of star formation. However, some PCCs are associated with protostars and molecular outflows, indicating that not all PCCs are in a prestellar phase. We have identified hundreds of starless dense clumps from the mapping survey with the Purple Mountain Observatory (PMO) 13.7-m telescope. Follow-up observations suggest that these dense clumps are ideal targets to search for prestellar objects.

  12. Cosmic ray composition measurements and cosmic ray background free gamma-ray observations with Cherenkov telescopes

    CERN Document Server

    Neronov, A; Vovk, Ie; Mirzoyan, R

    2016-01-01

    Muon component of extensive air showers (EAS) initiated by cosmic ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic ray background in gamma-ray observations. This technique provides a possibility for up to two orders of magnitude improvement of sensitivity for gamma-ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an or...

  13. Comparison of Observation Correlation Techniques for a Telescope Survey of the Geostationary Ring

    Science.gov (United States)

    Weigel, Martin; Meinel, Michael; Fiedler, Hauke

    2013-08-01

    The history of space surveillance by ground based optical telescopes goes back to the early days of spaceflight. Since the beginning, detection of uncatalogued space objects faces the difficulty of initial orbit determination from angles only observations within a limited time period. Multiple short arc data sets have to be combined to calculate orbital elements with sufficient accuracy. For this purpose, the hypotheses have to be tested that one or more short arc measurements belong to the same object. Solving this correlation or object identification problem efficiently becomes more urgent than ever before with the increasing space object population. The described correlation problem is set up on a large scale by observation simulations for a global network of six robotic telescopes over one month. This survey generates more than 12.000 short arc data sets called tracklets from 1.027 objects in near geostationary orbits (GEO). Initial orbital elements are determined from the short arc measurements applying a circular orbit assumption. Based on the orbital elements, a hypotheses filter for pair and triple tracklet combinations is presented. The newly developed pair filter features high filter rates with simultaneously low filter errors at a negligible computational effort. It is therefore recommended as a pre-filtering stage for more complex correlation methods like recent approaches that utilize the admissible region concept.

  14. Observations of GEO Debris with the Magellan 6.5-m Telescopes

    Science.gov (United States)

    Seitzer, Patrick; Burkhardt, Andrew; Cardonna, Tommaso; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Optical observations of geosynchronous orbit (GEO) debris are important to address two questions: 1. What is the distribution function of objects at GEO as a function of brightness? With some assumptions, this can be used to infer a size distribution. 2. Can we determine what the likely composition of individual GEO debris pieces is from studies of the spectral reflectance of these objects? In this paper we report on optical observations with the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile that attempt to answer both questions. Imaging observations over a 0.5 degree diameter field-of-view have detected a significant population of optically faint debris candidates with R > 19th magnitude, corresponding to a size smaller than 20 cm assuming an albedo of 0.175. Many of these objects show brightness variations larger than a factor of 2, suggesting either irregular shapes or albedo variations or both. The object detection rate (per square degree per hour) shows an increase over the rate measured in the 0.6-m MODEST observations, implying an increase in the population at optically fainter levels. Assuming that the albedo distribution is the same for both samples, this corresponds to an increase in the population of smaller size debris. To study the second issue, calibrated reflectance spectroscopy has been obtained of a sample of GEO and near GEO objects with orbits in the public U.S. Space Surveillance Network catalog. With a 6.5-m telescope, the exposures times are short (30 seconds or less), and provide simultaneous wavelength coverage from 4500 to 8000 Angstroms. If the observed objects are tumbling, then simultaneous coverage and short exposure times are essential for a realistic assessment of the object fs spectral signature. We will compare the calibrated spectra with lab-based measurements of simple spacecraft surfaces composed of a single material.

  15. Recent GRBs observed with the 1.23m CAHA telescope and the status of its upgrade

    CERN Document Server

    Gorosabel, Javier; Jelinek, Martin; Castro-Tirado, Alberto J; Postigo, Antonio de Ugarte; Carrion, Sebastian Castillo; Guziy, Sergey; Cunniffe, Ronan; Fernandez, Matilde; Huelamo, Nuria; Terron, Victor; Morales, Nicolas; Ortiz, Jose Luis; Mottola, Stefano; Carsenty, Uri; .,

    2010-01-01

    We report on optical observations of Gamma-Ray Bursts (GRBs) followed up by our collaboration with the 1.23m telescope located at the Calar Alto observatory. The 1.23m telescope is an old facility, currently undergoing upgrades to enable fully autonomous response to GRB alerts. We discuss the current status of the control system upgrade of the 1.23m telescope. The upgrade is being done by the ARAE our group, based on members of IAA (Instituto de Astrofiisica de Andalucia). Currently the ARAE group is responsible to develop the BOOTES network of robotic telescopes based on the Remote Telescope System, 2nd Version (RTS2), which controls the available instruments and interacts with the EPICS database of Calar Alto. Currently the telescope can run fully autonomously or under observer supervision using RTS2. The fast reaction response mode for GRB reaction (typically with response times below 3 minutes from the GRB onset) still needs some development and testing. The telescope is usually operated in legacy interac...

  16. Kinematics and stellar population properties of the Andromeda galaxy by using the spectroscopic observations of the Guoshoujing Telescope

    Institute of Scientific and Technical Information of China (English)

    Hu Zou; Yan-Bin Yang; Tian-Meng Zhang; Jun Ma; Xu Zhou; Ali Luo; Hao-Tong Zhang; Zhong-Rui Bai; Yong-Heng Zhao

    2011-01-01

    The Andromeda galaxy was observed by the Guoshoujing Telescope (formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope ——LAMOST),during the 2009 commissioning phase.Due to the absence of standard stars for flux calibration,we use the photometric data of 15 intermediate bands in the Beijing-Arizona-Taipei-Connecticut (BATC) survey to calibrate the spectra.In total,59 spectra located in the bulge and disk of the galaxy are obtained.Kinematic and stellar population properties of the stellar content are derived with these spectra.We obtain the global velocity field and calculate corresponding rotation velocities out to about 7 kpc along the major axis.These rotation velocity measurements complement those of the gas content,such as the H I and CO.The radial velocity dispersion shows that the stars in the bulge are more dynamically thermal and the disk is more rotationally-supported.The age distribution shows that the bulge was formed about 12 Gyr ago,the disk is relatively younger and the ages of some regions along the spiral arms can reach as young as about 1 Gyr.These young stellar populations have a relatively richer abundance and larger reddening.The overall average metallicity of the galaxy approximates the solar metallicity and a very weak abundance gradient is gained.The reddening map gives a picture of a dust-free bulge and a distinct dusty ring in the disk.

  17. Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129

    CERN Document Server

    Murgia, M; Carretti, E; Melis, A; Concu, R; Trois, A; Loi, F; Vacca, V; Tarchi, A; Castangia, P; Possenti, A; Bocchinu, A; Burgay, M; Casu, S; Pellizzoni, A; Pisanu, T; Poddighe, A; Poppi, S; D'Amico, N; Bachetti, M; Corongiu, A; Egron, E; Iacolina, N; Ladu, A; Marongiu, P; Migoni, C; Perrodin, D; Pilia, M; Valente, G; Vargiu, G

    2016-01-01

    We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cluster of galaxies. The data were acquired using the recently-commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1 deg x 1 deg centered on the radio source 3C 129. We modeled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster center. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source...

  18. Transverse Motions of Chromospheric Type II Spicules Observed by the New Solar Telescope

    CERN Document Server

    Yurchyshyn, V; Abramenko, V

    2012-01-01

    Using high resolution off-band \\ha\\ data from the New Solar Telescope and Morlet wavelet analysis technique, we analyzed transverse motions of type II spicules observed near the North Pole of the Sun. Our new findings are that i) some of the observed type II spicules display kink or an inverse "Y" features, suggesting that their origin may be due to magnetic reconnection, and ii) type II spicules tend to display coherent transverse motions/oscillations. Also, the wavelet analysis detected significant presence of high frequency oscillations in type II spicules, ranging from 30 to 180 s with the the average period of 90 s. We conclude that at least some of type II spicules and their coherent transverse motions may be caused by reconnection between large scale fields rooted in the intergranular lanes and and small-scale emerging dipoles, a process that is know to generate high frequency kink mode MHD waves propagating along the magnetic field lines.

  19. Non-Blazhko RR Lyrae Stars Observed with the KEPLER Space Telescope

    CERN Document Server

    Nemec, J M; Benko, J M; Moskalik, P; Kolenberg, K; Szabo, R; Kurtz, D W; Bryson, S; Guggenberger, E; Chadid, M; Jeon, Y -B; Kunder, A; Layden, A C; Kinemuchi, K; Kiss, L L; Poretti, E; Christensen-Dalsgaard, J; Kjeldsen, H; Caldwell, D; Ripepi, V; Derekas, A; Nuspl, J; Mullally, F; Thompson, S E; Borucki, W J

    2011-01-01

    This paper summarizes the main results of our recent study of the non-Blazhko RR Lyrae stars observed with the Kepler space telescope. These stars offer the opportunity for studying the stability of the pulsations of RR Lyrae stars and for providing a reference against which the Blazhko RR Lyrae stars can be compared. Of particular interest is the stability of the low-dispersion (sigma < 1mmag) light curves constructed from ~18,000 long-cadence (30-min) and (for FN Lyr and AW Dra) the ~150,000 short-cadence (1-min) photometric data points. Fourier-based [Fe/H] values and other physical characteristics are also derived. When the observed periods are compared with periods computed with the Warsaw non-linear convective pulsation code better agreement is achieved assuming pulsational L and M values rather than the (higher) evolutionary L and M values.

  20. SPECKLE OBSERVATIONS OF BINARY STARS WITH THE WIYN TELESCOPE. VII. MEASURES DURING 2008-2009

    Energy Technology Data Exchange (ETDEWEB)

    Horch, Elliott P.; Bahi, Lizzie Anne P.; Gaulin, Joseph R. [Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515 (United States); Howell, Steve B. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Sherry, William H. [National Optical Astronomy Observatories, 950 North Cherry Avenue, Tucson, AZ 87719 (United States); Baena Galle, Roberto [Observatori Fabra, Reial Academia de Ciencies i Arts de Barcelona, Cami de l' Observatori s/n, E-08002 Barcelona (Spain); Van Altena, William F., E-mail: horche2@southernct.edu, E-mail: bahil1@owls.southernct.edu, E-mail: jgaulin.jg@gmail.com, E-mail: steve.b.howell@nasa.gov, E-mail: wsherry@noao.edu, E-mail: rbaena@am.ub.es, E-mail: william.vanaltena@yale.edu [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2012-01-15

    Five hundred thirty-one speckle measures of binary stars are reported. These data were taken mainly during the period 2008 June through 2009 October at the WIYN 3.5 m Telescope at Kitt Peak and represent the last data set of single-filter speckle observations taken in the WIYN speckle program prior to the use of the current two-channel speckle camera. The astrometric and photometric precision of these observations is consistent with previous papers in this series: we obtain a typical linear measurement uncertainty of approximately 2.5 mas, and the magnitude differences reported have typical uncertainties in the range of 0.1-0.14 mag. In combination with measures already in the literature, the data presented here permit the revision of the orbit of A 1634AB (= HIP 76041) and the first determination of visual orbital elements for HDS 1895 (= HIP 65982).

  1. Observation of the Perseus cluster of galaxies with the MAGIC telescopes

    CERN Document Server

    Lombardi, Saverio; Hildebrand, Dorothee; Zandanel, Fabio; Prada, Francisco; Pfrommer, Christoph; Pinzke, Anders

    2011-01-01

    The MAGIC telescopes performed a deep observation of the central region of the Perseus galaxy cluster in stereoscopic mode between October 2009 and February 2011. The nearly 85 hr of collected data (after quality selection) represent the deepest observation of a cluster of galaxies at very high energies (VHE, E > 100 GeV) ever. The survey resulted in the detection of VHE gamma-ray emissions from its central galaxy NGC 1275 and from the radio galaxy IC 310. In addition, the deep survey also permits for the first time to constrain emission models predicting VHE gamma-rays from cosmic-ray acceleration in the cluster. In this contribution we report the latest MAGIC results concerning these topics.

  2. Prospects for Observing Ultracompact Binaries with Space-Based Gravitational Wave Interferometers and Optical Telescopes

    Science.gov (United States)

    Littenberg, T. B.; Larson, S. L.; Nelemans, G.; Cornish, N. J.

    2012-01-01

    Space-based gravitational wave interferometers are sensitive to the galactic population of ultracompact binaries. An important subset of the ultracompact binary population are those stars that can be individually resolved by both gravitational wave interferometers and electromagnetic telescopes. The aim of this paper is to quantify the multimessenger potential of space-based interferometers with arm-lengths between 1 and 5 Gm. The Fisher information matrix is used to estimate the number of binaries from a model of the Milky Way which are localized on the sky by the gravitational wave detector to within 1 and 10 deg(exp 2) and bright enough to be detected by a magnitude-limited survey.We find, depending on the choice ofGW detector characteristics, limiting magnitude and observing strategy, that up to several hundred gravitational wave sources could be detected in electromagnetic follow-up observations.

  3. Development of the Circumpolar Stratospheric Telescope FUJIN for Observations of Planets

    Science.gov (United States)

    Maeda, A.; Taguchi, M.; Shoji, Y.; Nakano, T.; Imai, M.; Goda, Y.; Takahashi, Y.; Yosida, K.; Sakamoto, Y.; Watanabe, M.

    2015-12-01

    It is important to conduct long-term continuous observations for studies on time-dependent events in the planetary atmospheres and plasmaspheres. The FUJIN project aims at continuous observations of planets using a telescope lifted by a balloon in the polar stratosphere. The FUJIN-2 will be launched at ESRANGE in Kiruna, Sweden in the window from June to August in 2016. The gondola will be recovered in Scandinavia after two or three weeks flight. The main target of the FUJIN-mission was Venus previously. But since the outline of Venus changes its phase, it is hard for us to plan the test using balloon which choose the observation term to free. We decide to mainly observe Jupiter for same conditions over one year without the term of conjunction. We will observe the haze in the Jupiter's polar using the most deep absorption band of methane in 890nm, visual-infrared region, and we will get the parameters which decide that the wave is Rossby-Wave to get the Jupiter's background wind. And we will observe Mercury's sodium atmosphere and tail as an optional observation as an option.

  4. Hubble and Keck Telescope Observations of Active Asteroid 288P/300163 (2006 VW139)

    CERN Document Server

    Agarwal, Jessica; Weaver, Harold; Mutchler, Max; Larson, Stephen

    2015-01-01

    We present Hubble Space Telescope and Keck 10 meter telescope observations of active asteroid 288P/300163 (2006 VW139) taken to examine ejected dust. The nucleus is a C-type object with absolute magnitude $H_V$ = 17.0$\\pm$0.1 and estimated diameter $\\sim$2.6 km (for assumed visual geometric albedo $p_V$ = 0.04). Variations in the brightness of the nucleus at the 10% to 15% level are significant in both 2011 December and 2012 October but we possess too few data to distinguish variations caused by activity from those caused by rotation. The dust scattering cross-section in 2011 December is $\\sim$40 km$^2$, corresponding to a dust mass $\\sim$9$\\times$10$^6$ kg (88 $\\mu$m mean particle radius assumed). The full width at half maximum of the debris sheet varies from $\\sim$100 km near the nucleus to $\\sim$1000 km 30arcsec (40,000 km) east of it. Dust dynamical models indicate ejection speeds between 0.06 and 0.3 m s$^{-1}$, particle sizes between 10 and 300 $\\mu$m and an inverse square-root relation between particle...

  5. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    CERN Document Server

    Wang, Xiaofeng; Filippenko, Alexei V; Aldering, Greg; Antilogus, Pierre; Arnett, David; Baade, Dietrich; Baron, Eddie; Barris, Brian J; Benetti, Stefano; Bouchet, Patrice; Burrows, Adam S; Canal, Ramon; Cappellaro, Enrico; Carlberg, Raymond; di Carlo, Elisa; Challis, Peter; Crotts, Arlin; Danziger, John I; Della Valle, Massimo; Jack, Dennis; Fink, Michael; Foley, Ryan J; Fransson, Claes; Gal-Yam, Avishay; Garnavich, Peter; Gerardy, Chris L; Goldhaber, Gerson; Hamuy, Mario; Hillebrandt, Wolfgang; Hoeflich, Peter A; Holland, Stephen T; Holz, Daniel E; Hughes, John P; Jeffery, David J; Jha, Saurabh W; Kasen, Dan; Khokhlov, Alexei M; Kirshner, Robert P; Knop, Robert; Kozma, Cecilia; Krisciunas, Kevin; Kromer, Markus; Lee, Brian C; Leibundgut, Bruno; Lentz, Eric J; Leonard, Douglas C; Lewin, Walter H G; Li, Weidong; Livio, Mario; Lundqvist, Peter; Maoz, Dan; Matheson, Thomas; Mazzali, Paolo; Meikle, Peter; Miknaitis, Gajus; Milne, Peter; Mochnacki, Stefan; Nomoto, Ken'Ichi; Nugent, Peter E; Oran, Elaine; Panagia, Nino; Patat, Ferdinando; Perlmutter, Saul; Phillips, Mark M; Pinto, Philip; Poznanski, Dovi; Pritchet, Christopher J; Reinecke, Martin; Riess, Adam; Ruiz-Lapuente, Pilar; Scalzo, Richard; Schlegel, Eric M; Schmidt, Brian; Siegrist, James; Soderberg, Alicia M; Sollerman, Jesper; Sonneborn, George; Spadafora, Anthony; Spyromilio, Jason; Sramek, Richard A; Starrfield, Sumner G; Strolger, Louis G; Suntzeff, Nicholas B; Thomas, Rollin; Tonry, John L; Tornambe, Amedeo; Truran, James W; Turatto, Massimo; Turner, Michael; Van Dyk, Schuyler D; Weiler, Kurt; Wheeler, J Craig; Wood-Vasey, Michael; Woosley, Stan; Yamaoka, Hitoshi; Zhang, Tianmeng

    2011-01-01

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This dataset provides unique spectral time series down to 2000 Angstrom. Significant diversity is seen in the near maximum-light spectra (~ 2000--3500 Angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in uvw1/F250W are found to correlate with the B-band light-curve shape parameter dm15(B), but with much larger scatter relative to the correlation in the broad-band B band (e.g., ~0.4 mag versus ~0.2 mag for those with 0.8 3 sigma), being brighter than normal SNe Ia such as SN 2005cf by ~0.9 mag and ~2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show th...

  6. Stellar Archaeology and Galaxy Genesis: The Need for Large Area Multi-Object Spectrograph on 8 m-Class Telescopes

    Science.gov (United States)

    Irwin, Mike J.; Lewis, Geraint F.

    The origin and evolution of galaxies like the Milky Way and M31 remain among the key questions in astrophysics. The galaxies we see today in and around the Local Group are representatives of the general field population of the Universe and have been evolving for the majority of cosmic time. As our nearest neighbour systems they can be studied in far more detail than their distant counterparts and hence provide our best hope for understanding star formation and prototypical galaxy evolution over the lifetime of the Universe [K. Freeman, J. Bland-Hawthorn in Annu. Rev. Astron. Astrophys. 40, 487 (2002)]. Significant observational progress has been made, but we are still a long way from understanding galaxy genesis. To unravel this formative epoch, detailed large area multi-object spectroscopy of spatial, kinematic and chemical structures on 8 m-class telescopes are required, to provide the link between local near-field cosmology and predictions from the high-redshift Universe.

  7. Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data.

    Science.gov (United States)

    Ackermann, M; Albert, A; Anderson, B; Atwood, W B; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bregeon, J; Bruel, P; Buehler, R; Caliandro, G A; Cameron, R A; Caputo, R; Caragiulo, M; Caraveo, P A; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cuoco, A; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Digel, S W; Di Venere, L; Drell, P S; Drlica-Wagner, A; Essig, R; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec, S; Gustafsson, M; Hays, E; Hewitt, J W; Horan, D; Jogler, T; Jóhannesson, G; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Llena Garde, M; Longo, F; Loparco, F; Lubrano, P; Malyshev, D; Mayer, M; Mazziotta, M N; McEnery, J E; Meyer, M; Michelson, P F; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Murgia, S; Nuss, E; Ohsugi, T; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Sánchez-Conde, M; Schulz, A; Sehgal, N; Sgrò, C; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strigari, L; Tajima, H; Takahashi, H; Thayer, J B; Tibaldo, L; Torres, D F; Troja, E; Vianello, G; Werner, M; Winer, B L; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2015-12-01

    The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100  GeV annihilating via quark and τ-lepton channels.

  8. Co-evolution of AGN and Star-forming Galaxies in the Australia Telescope Large Area Survey

    CERN Document Server

    Norris, Ray P

    2014-01-01

    ATLAS (Australia Telescope Large Area Survey) is a wide deep radio survey which is distinguished by its comprehensive multi-wavelength approach. ATLAS is creating a large dataset of radio-selected galaxies for studying the evolution and inter-relationship of star-forming and active galaxies. Although the project is far from complete, we are already starting to answer some of these questions, and have stumbled across three surprises along the way: * FRI/FRII radio-loud AGN embedded within spiral galaxies, * radio-bright AGN which are unexpectedly faint in the infrared, and which may be at high redshift * IR-luminous radio-quiet AGN which are partly responsible for the wide variations in reported values of the radio-infrared ratio These and other observations suggest that the AGN activity and star formation become increasingly inter-dependent at high redshifts.

  9. Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data

    Science.gov (United States)

    Ackermann, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caputo, R.; Caragiulo, M.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Essig, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Grenier, I. A.; Guiriec, S.; Gustafsson, M.; Hays, E.; Hewitt, J. W.; Horan, D.; Jogler, T.; Jóhannesson, G.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Llena Garde, M.; Longo, F.; Loparco, F.; Lubrano, P.; Malyshev, D.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Murgia, S.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Ritz, S.; Sánchez-Conde, M.; Schulz, A.; Sehgal, N.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Strigari, L.; Tajima, H.; Takahashi, H.; Thayer, J. B.; Tibaldo, L.; Torres, D. F.; Troja, E.; Vianello, G.; Werner, M.; Winer, B. L.; Wood, K. S.; Wood, M.; Zaharijas, G.; Zimmer, S.; Fermi-LAT Collaboration

    2015-12-01

    The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ -ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100 GeV annihilating via quark and τ -lepton channels.

  10. Observations of Binary Systems with the H.E.S.S. Telescopes

    CERN Document Server

    Bordas, P; Eger, P; Ernenwein, J -P; Laffon, H; Mariaud, C; Murach, T; de Naurois, M; Romoli, C; Schüssler, F

    2016-01-01

    Observations of binary systems obtained recently with the High Energy Stereoscopic System (H.E.S.S) of Cherenkov telescopes are reported. The outcomes of a detailed observation campaign on PSR B1259-63 during its periastron passage in 2014 will be presented. This system was observed for the first time with H.E.S.S. II, providing spectra and light curves down to 200 GeV, which will be compared with observations conducted during previous periastron passages and with results from an analysis of contemporaneously taken Fermi-LAT data. Also long-term observations of LS 5039 with H.E.S.S in phase I and phase II are reported. This source was monitored at very high energies (VHEs) in a period of time spanning more than ten years. Its spectral energy distribution measured with H.E.S.S. II extends down to 120 GeV. Spectral results from the Fermi-LAT observations are shown as well, and the compatibility with H.E.S.S. results in the overlapping energy range is discussed. The identification of the new gamma-ray binary can...

  11. FERMI/LARGE AREA TELESCOPE DISCOVERY OF GAMMA-RAY EMISSION FROM THE FLAT-SPECTRUM RADIO QUASAR PKS 1454-354

    International Nuclear Information System (INIS)

    We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy γ-ray (GeV) emission from the flat-spectrum radio quasar PKS 1454-354 (z = 1.424). On 2008 September 4, the source rose to a peak flux of (3.5 ± 0.7) x 10-6 ph cm-2 s-1 (E > 100 MeV) on a timescale of hours and then slowly dropped over the following 2 days. No significant spectral changes occurred during the flare. Fermi/LAT observations also showed that PKS 1454-354 is the most probable counterpart of the unidentified EGRET source 3EG J1500-3509. Multiwavelength measurements performed during the following days (7 September with Swift; 6-7 September with the ground-based optical telescope Automated Telescope for Optical Monitoring; 13 September with the Australia Telescope Compact Array) resulted in radio, optical, UV, and X-ray fluxes greater than archival data, confirming the activity of PKS 1454-354.

  12. Searches for Cosmic-Ray Electron Anisotropies with the \\textit{Fermi} Large Area Telescope

    CERN Document Server

    Ackermann, M

    2010-01-01

    The Large Area Telescope on board the \\textit{Fermi} satellite (\\textit{Fermi}-LAT) detected more than 1.6 million cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from $\\sim$ 10 $^\\circ$ up to 90$^\\circ$, and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy's angular scale. The upper limits for a dipole anisotropy ranged from $\\sim0.5%$ to $\\sim5%$.

  13. Large area double scattering telescope for balloon-borne studies of neutrons and gamma rays

    Science.gov (United States)

    Zych, A. D.; Herzo, D.; Koga, R.; Millard, W. A.; Moon, S.; Ryan, J.; Wilson, R.; White, R. S.; Dayton, B.

    1975-01-01

    A large area double scattering telescope for balloon-borne research is described. It measures the flux, energy and direction of 2-100 MeV neutrons and 0.5-30 MeV gamma rays. These measurements are made using time-of-flight and pulse height analysis techniques with two large tanks of mineral oil liquid scintillator. Results from Monte Carlo calculations of the efficiency, energy resolution and angular resolution are presented and the electronics implementation for the processing of 80 photomultiplier tubes signals will be discussed. The detector weighs 800 kg with a large part of this weight being the liquid scintillator (320 kg). It will be flown at 3 mbars for flight durations up to 40 hours. The first flight is planned for Spring, 1975.

  14. Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope

    CERN Document Server

    Ackermann, M; Allafort, A; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Silva, E do Couto e; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Gustafsson, M; Hadasch, D; Harding, A K; Hayashida, M; Hughes, R E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Garde, M Llena; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Ormes, E Orlando J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Roth, M; Sadrozinski, H F -W; Sbarra, C; Schalk, T L; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thayer, J B; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2011-01-01

    We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting the Earth's shadow, which is offset in opposite directions for opposite charges due to the Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 GeV and 200 GeV. We confirm that the fraction rises with energy in the 20--100 GeV range and determine for the first time that it continues to rise between 100 and 200 GeV.

  15. Discovery of VHE gamma-rays from the blazar 1ES 1215+303 with the MAGIC Telescopes and simultaneous multi-wavelength observations

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Asensio, M; Backes, M; de Almeida, U Barres; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Bretz, T; Cañellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Huber, B; Jankowski, F; Jogler, T; Kadenius, V; Kellermann, H; Klepser, S; Krähenbühl, T; Krause, J; La Barbera, A; Lelas, D; Leonardo, E; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Niedzwiecki, A; Nieto, D; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Perez-Torres, M A; Persic, M; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Gimenez, I Puerto; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Strah, N; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Berdyugin, A; Buson, S; Järvelä, E; Larsson, S; Lähteenmäki, A; Tammi, J; de Lausanne, now at: Ecole polytechnique fédérale; Lausanne,; Switzerland,; Padova, supported by INFN; Energéticas, now at: Centro de Investigaciones; Tecnológicas, Medioambientales y; Madrid,; Spain,; KIPAC, now at:; Laboratory, SLAC National Accelerator; USA,; ESO, now at: Finnish Centre for Astronomy with; Turku, University of; Finland,; Observatory, Aalto University Metsähovi Radio; Metsähovintie,; Finland,; Physics, Department of; University, Stockholm; Stockholm,; Sweden,; Physics, The Oskar Klein Centre for Cosmoparticle; Stockholm,; Sweden,; Astronomy, Department of; University, Stockholm; Stockholm,; Sweden),

    2012-01-01

    Context. We present the discovery of very high energy (VHE, E > 100GeV) gamma-ray emission from the BL Lac object 1ES 1215+303 by the MAGIC telescopes and simultaneous multi-wavelength data in a broad energy range from radio to gamma-rays. Aims. We study the VHE gamma-ray emission from 1ES 1215+303 and its relation to the emissions in other wavelengths. Methods. Triggered by an optical outburst, MAGIC observed the source in January-February 2011 for 20.3 hrs. The target was monitored in the optical R-band by the KVA telescope that also performed optical polarization measurements. We triggered target of opportunity observations with the Swift satellite and obtained simultaneous and quasi-simultaneous data from the Fermi Large Area Telescope and from the Mets\\"ahovi radio telescope. We also present the analysis of older MAGIC data taken in 2010. Results. The MAGIC observations of 1ES 1215+303 carried out in January-February 2011 resulted in the first detection of the source at VHE with a statistical significanc...

  16. Photometric Properties of Ceres from Telescopic Observations using Dawn Framing Camera Color Filters

    CERN Document Server

    Reddy, Vishnu; Gary, Bruce L; Sanchez, Juan A; Stephens, Robert D; Megna, Ralph; Coley, Daniel; Nathues, Andreas; Corre, Lucille Le; Hoffmann, Martin

    2015-01-01

    The dwarf planet Ceres is likely differentiated similar to the terrestrial planets but with a water/ice dominated mantle and an aqueously altered crust. Detailed modeling of Ceres' phase function has never been performed to understand its surface properties. The Dawn spacecraft began orbital science operations at the dwarf planet in April 2015. We observed Ceres with flight spares of the seven Dawn Framing Camera color filters mounted on ground-based telescopes over the course of three years to model its phase function versus wavelength. Our analysis shows that the modeled geometric albedos derived from both the IAU HG model and the Hapke model are consistent with a flat and featureless spectrum of Ceres, although the values are ~10% higher than previous measurements. Our models also suggest a wavelength dependence of Ceres' phase function. The IAU G-parameter and the Hapke single-particle phase function parameter, g, are both consistent with decreasing (shallower) phase slope with increasing wavelength. Such...

  17. Observation of Chromospheric Sunspot at Millimeter Range with the Nobeyama 45 m Telescope

    CERN Document Server

    Iwai, Kazumasa

    2015-01-01

    The brightness temperature of the radio free-free emission at millimeter range is an effective tool for characterizing the vertical structure of the solar chromosphere. In this paper, we report on the first single-dish observation of a sunspot at 85 and 115 GHz with sufficient spatial resolution for resolving the sunspot umbra using the Nobeyama 45 m telescope. We used radio attenuation material, i.e. a solar filter, to prevent the saturation of the receivers. Considering the contamination from the plage by the side-lobes, we found that the brightness temperature of the umbra should be lower than that of the quiet region. This result is inconsistent with the preexisting atmospheric models. We also found that the brightness temperature distribution at millimeter range strongly corresponds to the ultraviolet (UV) continuum emission at 1700 {\\AA}, especially at the quiet region.

  18. HUBBLE AND KECK TELESCOPE OBSERVATIONS OF ACTIVE ASTEROID 288P/300163 (2006 VW139)

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jessica [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Jewitt, David [Department Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Box 951567 Los Angeles, CA 90095-1567 (United States); Weaver, Harold [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Mutchler, Max [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larson, Stephen, E-mail: agarwal@mps.mpg.de [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd. Tucson AZ 85721-0092 (United States)

    2016-01-15

    We present Hubble Space Telescope (HST) and Keck 10 m telescope observations of active asteroid 288P/300163 (2006 VW139) taken to examine ejected dust. The nucleus is a C-type object with absolute magnitude H{sub V} = 17.0 ± 0.1 and estimated diameter ∼2.6 km (for assumed visual geometric albedo p{sub V} = 0.04). Variations in the brightness of the nucleus at the 10%–15% level are significant in both 2011 December and 2012 October but we possess too few data to distinguish variations caused by activity from those caused by rotation. The dust scattering cross-section in 2011 December is ∼40 km{sup 2}, corresponding to a dust mass ∼9 × 10{sup 6} kg (88 μm mean particle radius assumed). The FWHM of the debris sheet varies from ∼100 km near the nucleus to ∼1000 km 30″ (40,000 km) east of it. Dust dynamical models indicate ejection speeds between 0.06 and 0.3 m s{sup −1}, particle sizes between 10 and 300 μm and an inverse square-root relation between particle size and velocity. Overall, the data are most simply explained by prolonged, low velocity ejection of dust, starting in or before 2011 July and continuing until at least 2011 October. These properties are consistent with the sublimation of near-surface ice aided by centrifugal forces. The high spatial resolution of our HST images (52 km pixel{sup −1}) reveals details that remained hidden in previous ground-based observations, such as the extraordinarily small vertical extent of the dust sheet, ejection speeds well below the nucleus escape speed, and the possibility of a binary nucleus.

  19. Optical spectroscopic observations of $\\gamma$-ray blazar candidates VI. Further observations from TNG, WHT, OAN, SOAR and Magellan telescopes

    CERN Document Server

    Crespo, N Álvarez; Milisavljevic, D; Landoni, M; Chavushyan, V; Patiño-Álvarez, V; Masetti, N; Jiménez-Bailón, E; Strader, J; Chomiuk, L; Katagiri, H; Kagaya, M; Cheung, C C; Paggi, A; D'Abrusco, R; Ricci, F; La Franca, F; Smith, Howard A; Tosti, G

    2016-01-01

    Blazars, one of the most extreme class of active galaxies, constitute so far the largest known population of $\\gamma$-ray sources and their number is continuously growing in the Fermi catalogs. However in the latest release of the Fermi catalog there is still a large fraction of sources that are classified as blazar candidate of uncertain type (BCUs) for which optical spectroscopic observations are necessary to confirm their nature and their associations. In addition about 1/3 of the $\\gamma$-ray point sources listed in the Third Fermi-LAT Source Catalog (3FGL) are still unassociated and lacking an assigned lower energy counterpart. Since 2012 we have been carrying out an optical spectroscopic campaign to observe blazar candidates to confirm their nature. In this paper, the sixth of the series, we present optical spectroscopic observations for 30 $\\gamma$-ray blazar candidates from different observing programs we carried out with the TNG, WHT, OAN, SOAR and Magellan telescopes. We found that 21 out of 30 sour...

  20. Modeling Seven Years of Event Horizon Telescope Observations with Radiatively Inefficient Accretion Flow Models

    CERN Document Server

    Broderick, Avery E; Johnson, Michael D; Rosenfeld, Katherine; Wang, Carlos; Doeleman, Sheperd S; Akiyama, Kazunori; Johannsen, Tim; Roy, Alan L

    2016-01-01

    An initial three-station version of the Event Horizon Telescope, a millimeter-wavelength very-long baseline interferometer, has observed Sagittarius A* (Sgr A*) repeatedly from 2007 to 2013, resulting in the measurement of a variety of interferometric quantities. Of particular importance, there is now a large set of closure phases, measured over a number of independent observing epochs. We analyze these observations within the context of a realization of semi-analytic radiatively inefficient disk models, implicated by the low luminosity of Sgr A*. We find a broad consistency among the various observing epochs and between different interferometric data types, with the latter providing significant support for this class of models of Sgr A*. The new data significantly tighten existing constraints on the spin magnitude and its orientation within this model context, finding a spin magnitude of $a=0.10^{+0.30+0.56}_{-0.10-0.10}$, an inclination with respect to the line of sight of $\\theta={60^\\circ}^{+5^\\circ+10^\\c...

  1. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    Science.gov (United States)

    Wang, Xiaofeng; Wang, Lifan; Filippenko, Alexei; Baron, Eddie; Kromer, Markus; Jack, Dennis; Zhang, Tianmeng; Aldering, Greg; Antilogus, Pierre; Arnett, W. David; Baade, Dietrich; Barris, Brian J.; Benetti, Stefano; Bouchet, Patrice; Burrows, Adam S.; Canal, Ramon; Cappellaro, Enrico; Carlberg, Raymond; di Carlo, Elisa; Challis, Peter; Crotts, Arlin; Danziger, John I.; Della Valle, Massimo; Holland, Stephen T.

    2012-01-01

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope, This dataset provides unique spectral time series down to 2000 A. Significant diversity is seen in the near-maximum-light spectra (approx.2000-3500 A) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in the uvw lIF250W filter are found to correlate with the B-band light-curve shape parameter .(Delta)m15(B), but with much larger scatter relative to the correlation in the broad-band B band (e.g., approx. 0.4 mag versus approx. 0.2 mag for those with 0.8 3(sigma), being brighter than normal SNe Ia such as SN 2005cf by approx. 0,9 mag and approx. 2.0 mag in the uvwl1F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects

  2. EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaofeng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Wang Lifan [Physics and Astronomy Department, Texas A and M University, College Station, TX 77843 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Baron, Eddie [Department of Physics, University of Oklahoma, Norman, OK 73019 (United States); Kromer, Markus [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); Jack, Dennis [Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg (Germany); Zhang Tianmeng [National Astronomical Observatory of China, Chinese Academy of Sciences, Beijing 100012 (China); Aldering, Greg [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Antilogus, Pierre [Laboratoire de Physique Nucleaire des Hautes Energies, Paris (France); Arnett, W. David [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Baade, Dietrich [European Southern Observatory, 85748 Garching (Germany); Barris, Brian J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Benetti, Stefano; Cappellaro, Enrico [Osservatorio Astronomico di Padova, 35122 Padova (Italy); Bouchet, Patrice [CEA/DSM/DAPNIA/Service d' Astrophysique, 91191 Gif-sur-Yvette Cedex (France); Burrows, Adam S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Canal, Ramon [Department d' Astronomia i Meterorologia, Universidad de Barcelona, Barcelona 8007 (Spain); Carlberg, Raymond G. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3J3 (Canada); Di Carlo, Elisa [INAF, Osservatorio Astronomico di Teramo, 64100 Teramo (Italy); Challis, Peter J., E-mail: wang_xf@mail.tsinghua.edu.cn [Harvard/Smithsonian Center Astrophysics, Cambridge, MA 02138 (United States); and others

    2012-04-20

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This data set provides unique spectral time series down to 2000 A. Significant diversity is seen in the near-maximum-light spectra ({approx}2000-3500 A) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in the uvw1/F250W filter are found to correlate with the B-band light-curve shape parameter {Delta}m{sub 15}(B), but with much larger scatter relative to the correlation in the broadband B band (e.g., {approx}0.4 mag versus {approx}0.2 mag for those with 0.8 mag < {Delta}m{sub 15}(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3{sigma}), being brighter than normal SNe Ia such as SN 2005cf by {approx}0.9 mag and {approx}2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.

  3. FERMI LARGE AREA TELESCOPE STUDY OF COSMIC RAYS AND THE INTERSTELLAR MEDIUM IN NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [CNRS, IRAP, F-31028 Toulouse cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: hayashi@hep01.hepl.hiroshima-u.ac.jp, E-mail: mizuno@hep01.hepl.hiroshima-u.ac.jp [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2012-08-10

    We report an analysis of the interstellar {gamma}-ray emission from the Chamaeleon, R Coronae Australis (R CrA), and Cepheus and Polaris flare regions with the Fermi Large Area Telescope. They are among the nearest molecular cloud complexes, within {approx}300 pc from the solar system. The {gamma}-ray emission produced by interactions of cosmic rays (CRs) and interstellar gas in those molecular clouds is useful to study the CR densities and distributions of molecular gas close to the solar system. The obtained {gamma}-ray emissivities above 250 MeV are (5.9 {+-} 0.1{sub stat}{sup +0.9}{sub -1.0sys}) Multiplication-Sign 10{sup -27} photons s{sup -1} sr{sup -1} H-atom{sup -1}, (10.2 {+-} 0.4{sub stat}{sup +1.2}{sub -1.7sys}) Multiplication-Sign 10{sup -27} photons s{sup -1} sr{sup -1} H-atom{sup -1}, and (9.1 {+-} 0.3{sub stat}{sup +1.5}{sub -0.6sys}) Multiplication-Sign 10{sup -27} photons s{sup -1} sr{sup -1} H-atom{sup -1} for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively. Whereas the energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth, the measured emissivities from 250 MeV to 10 GeV indicate a variation of the CR density by {approx}20% in the neighborhood of the solar system, even if we consider systematic uncertainties. The molecular mass calibrating ratio, X{sub CO} = N(H{sub 2})/W{sub CO}, is found to be (0.96 {+-} 0.06{sub stat}{sup +0.15}{sub -0.12sys}) Multiplication-Sign 10{sup 20} H{sub 2}-molecule cm{sup -2} (K km s{sup -1}){sup -1}, (0.99 {+-} 0.08{sub stat}{sup +0.18}{sub -0.10sys}) Multiplication-Sign 10{sup 20} H{sub 2}-molecule cm{sup -2} (K km s{sup -1}){sup -1}, and (0.63 {+-} 0.02{sub stat}{sup +0.09}{sub -0.07sys}) Multiplication-Sign 10{sup 20} H{sub 2}-molecule cm{sup -2} (K km s{sup -1}){sup -1} for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively, suggesting a variation of X{sub CO} in the vicinity of the solar system. From the

  4. Physical Conditions in Quasar Outflows: Very Large Telescope Observations of QSO 2359-1241

    Science.gov (United States)

    Korista, Kirk T.; Bautista, Manuel A.; Arav, Nahum; Moe, Maxwell; Costantini, Elisa; Benn, Chris

    2008-11-01

    We analyze the physical conditions of the outflow seen in QSO 2359-1241 (NVSS J235953-124148), based on high-resolution spectroscopic VLT observations. This object was previously studied using Keck HIRES data. The main improvement over the HIRES results is our ability to accurately determine the number density of the outflow. For the major absorption component, the populations from five different Fe II excited levels yield a gas density nH = 104.4 cm-3 with less than 20% scatter. We find that the Fe II absorption arises from a region with roughly constant conditions and temperature greater than 9000 K, before the ionization front where temperature and electron density drop. Further, we model the observed spectra and investigate the effects of varying gas metallicities and the spectral energy distribution of the incident ionizing radiation field. The accurately measured column densities allow us to determine the ionization parameter (log UH ≈ - 2.4) and total column density of the outflow [log NH(cm -2) ≈ 20.6]. Combined with the number density finding, these are stepping stones toward determining the mass flux and kinetic luminosity of the outflow, and therefore its importance to AGN feedback processes. Based on observations made with ESO Telescopes at the Paranal Observatories under program 078.B-0433(A).

  5. The Effect of Pulsar Timing Noise and Glitches on Timing Analysis for Ground Based Telescopes Observation

    Science.gov (United States)

    Oña-Wilhelmi, E.; de Jager, O. C.; Contreras, J. L.; de los Reyes, R.; Fonseca, V.; López, M.; Lucarelli, F.; MAGIC Collaboration

    2003-07-01

    Pulsed emission from a number of gamma-ray pulsars is expected to be detectable with next generation ground-based gamma-ray telescopes such as MAGIC and possibly H.E.S.S. within a few hours of observations. The sensitivity is however not sufficient to enable a detection within a few seconds as reached by radio surveys. In some cases we may be fortunate to do a period search given a few hours' data, but if the signal is marginal, the correct period parameters must be known to allow a folding of the gamma-ray arrival times. The residual phases are then sub jected to a test for uniformity from which the significance of a signal can be assessed. If contemporary radio parameters are not available, we have to extrap olate archival radio parameters to the observation time in question. Such an extrap olation must then be accurate enough to avoid significant pulse smearing. The pulsar ephemerides from the archival data of HartRAO and Princeton (b etween 1989 and 1998) provide an excellent opportunity to study the accuracy of extrap olations of such ephemerides to the present moment, if an appropriate time shift is intro duced. The aim of this study is to investigate the smear in the gamma-ray pulse profile during a single night of observations.

  6. OBSERVATIONS OF THE M82 SN 2014J WITH THE KILODEGREE EXTREMELY LITTLE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Siverd, Robert J.; Stassun, Keivan G.; Pepper, Joshua [Department of Physics and Astronomy, Vanderbilt University, VU Station B 1807, Nashville, TN 37235 (United States); Goobar, Ariel [The Oskar Klein Centre, Department of Physics, Stockholm University, SE 106 91 Stockholm (Sweden)

    2015-01-20

    We report observations of the bright M82 supernova 2014J serendipitously obtained with the Kilodegree Extremely Little Telescope (KELT). The supernova (SN) was observed at high cadence for over 100 days, from pre-explosion, to early rise and peak times, through the secondary bump. The high cadence KELT data with high signal-to-noise ratio is completely unique for SN 2014J and for any other SNIa, with the exception of the (yet) unpublished Kepler data. Here, we report determinations of the SN explosion time and peak time. We also report measures of the ''smoothness'' of the light curve on timescales of minutes/hours never before probed, and we use this to place limits on energy produced from short-lived isotopes or inhomogeneities in the explosion or the circumstellar medium. From the non-observation of significant perturbations of the light curves, we derive a 3σ upper limit corresponding to 8.7 × 10{sup 36} erg  s{sup –1} for any such extra sources of luminosity at optical wavelengths.

  7. Observations of the M82 SN 2014J with the Kilodegree Extremely Little Telescope

    CERN Document Server

    Siverd, Robert J; Stassun, Keivan G; Pepper, Joshua

    2014-01-01

    We report observations of the bright M82 supernova 2014J serendipitously obtained with the Kilodegree Extremely Little Telescope (KELT). The SN was observed at high cadence for over 100 days, from pre-explosion, to early rise and peak times, through the secondary bump. The high cadence KELT data with high S/N is completely unique for SN 2014J and for any other SNIa, with the exception of the (yet) unpublished Kepler data. Here, we report determinations of the SN explosion time and peak time. We also report measures of the "smoothness" of the light curve on timescales of minutes/hours never before probed, and we use this to place limits on energy produced from short-lived isotopes or inhomogeneities in the explosion or the circumstellar medium. From the non-observation of significant perturbations of the light curves, we derive a 3sigma upper-limit corresponding to 8.7 x 10^36 erg/s for any such extra sources of luminosity at optical wavelengths.

  8. Observational results of a multi-telescope campaign in search of interstellar urea [(NH{sub 2}){sub 2}CO

    Energy Technology Data Exchange (ETDEWEB)

    Remijan, Anthony J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Snyder, Lewis E.; Kuo, Hsin-Lun; Looney, Leslie W.; Friedel, Douglas N. [Department of Astronomy, University of Illinois at Urbana-Champaign, Champaign, IL 61801 (United States); McGuire, Brett A. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); Golubiatnikov, G. Yu; Lovas, Frank J. [Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F. [Institute of Radio Astronomy of NASU, Chervonopraporna 4, 61002 Kharkov (Ukraine); McCall, Benjamin J. [Departments of Chemistry and Astronomy, University of Illinois at Urbana-Champaign, Champaign, IL 61801 (United States); Hollis, Jan M. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-03-10

    In this paper, we present the results of an observational search for gas phase urea [(NH{sub 2}){sub 2}CO] observed toward the Sgr B2(N-LMH) region. We show data covering urea transitions from ∼100 GHz to 250 GHz from five different observational facilities: the Berkeley-Illinois-Maryland-Association (BIMA) Array, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the NRAO 12 m telescope, the IRAM 30 m telescope, and the Swedish-ESO Submillimeter Telescope (SEST). The results show that the features ascribed to urea can be reproduced across the entire observed bandwidth and all facilities by best-fit column density, temperature, and source size parameters which vary by less than a factor of two between observations merely by adjusting for telescope-specific parameters. Interferometric observations show that the emission arising from these transitions is cospatial and compact, consistent with the derived source sizes and emission from a single species. Despite this evidence, the spectral complexity of both (NH{sub 2}){sub 2}CO and of Sgr B2(N) makes the definitive identification of this molecule challenging. We present observational spectra, laboratory data, and models, and discuss our results in the context of a possible molecular detection of urea.

  9. Observation of the Halo of NGC 3077 Near the "Garland" Region Using the Hubble Space Telescope

    CERN Document Server

    Sakai, S; Sakai, Shoko; Madore, Barry

    2001-01-01

    We report the detection of upper main sequence stars and red giant branch stars in the halo of an amorphous galaxy, NGC3077. The observations were made using Wide Field Planetary Camera~2 on board the Hubble Space Telescope. The red giant branch luminosity function in I-band shows a sudden discontinuity at I = 24.0 +- 0.1 mag. Identifying this with the tip of the red giant branch (TRGB), and adopting the calibration provided by Lee, Freedman, & Madore (1993) and the foreground extinction of A_B = 0.21 mag, we obtain a distance modulus of (m-M)_0 = 27.93 +- 0.14(random) +- 0.16(sys). This value agrees well with the distance estimates of four other galaxies in the M81 Group. In addition to the RGB stars, we observe a concentration of upper main sequence stars in the halo of NGC3077, which coincides partially with a feature known as the ``Garland''. Using Padua isochrones, these stars are estimated to be <150 Myrs old. Assuming that the nearest encounter between NGC3077 and M81 occurred 280 Myrs ago as pr...

  10. Secondary eclipse observations for seven hot-Jupiters from the Anglo-Australian Telescope

    CERN Document Server

    Zhou, G; Kedziora-Chudczer, L; Tinney, C G; Bailey, J; Salter, G; Rodriguez, J

    2015-01-01

    We report detections and constraints for the near infrared Ks band secondary eclipses of seven hot-Jupiters using the IRIS2 infrared camera on the Anglo-Australian Telescope. Eclipses in the Ks band for WASP-18b and WASP-36b have been measured for the first time. We also present new measurements for the eclipses of WASP-4b, WASP-5b, and WASP-46b, as well as upper limits for the eclipse depths of WASP-2b and WASP-76b. In particular, two full eclipses of WASP-46b were observed, allowing us to demonstrate the repeatability of our observations via independent analyses on each eclipse. Significant numbers of eclipse depths for hot-Jupiters have now been measured in both Ks and the four Spitzer IRAC bandpasses. We discuss these measurements in the context of the broadband colours and brightness temperatures of the hot-Jupiter atmosphere distribution. Specifically, we re-examine the proposed temperature dichotomy between the most irradiated, and mildly irradiated planets. We find no evidence for multiple clusters in...

  11. Observations of the Crab pulsar above 25 GeV with the MAGIC I telescope

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Asensio, M; Backes, M; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Braun, I; Bretz, T; Cañellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Garrido, D; Giavitto, G; Godinović, N; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Jogler, T; Kellermann, H; Klepser, S; Krähenbühl, T; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Leonardo, E; Lindfors, E; Lombardi, S; López, M; López-Oramas, A; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Nieto, D; Nilsson, K; Orito, R; Otte, N; Oya, I; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Perez-Torres, M A; Persic, M; Peruzzo, L; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Gimenez, I Puerto; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rissi, M; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Strah, N; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Treves, A; Uellenbeck, M; Vankov, H; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Hirotani, K

    2011-01-01

    We report on the observation of $\\gamma$-rays above 25\\,GeV from the Crab pulsar (PSR B0532+21) using the MAGIC I telescope. Two data sets from observations during the winter period 2007/08 and 2008/9 are used. In order to discuss the spectral shape from 100\\,MeV to 100\\,GeV, one year of public {\\it Fermi}-LAT data are also analyzed to complement the MAGIC data. The extrapolation of the exponential cutoff spectrum determined with the Fermi-LAT data is inconsistent with MAGIC measurements, which requires a modification of the standard pulsar emission models. In the energy region between 25 and 100\\,GeV, the emission in the P1 phase (from -0.06 to 0.04, location of the main pulse) and the P2 phase (from 0.32 to 0.43, location of the interpulse) can be described by power laws with spectral indices of $-3.1 \\pm 1.0_{stat} \\pm 0.3_{syst}$ and $-3.5 \\pm 0.5_{stat} \\pm 0.3_{syst}$, respectively. Assuming an asymmetric Lorentzian for the pulse shape, the peak positions of the main pulse and the interpulse are estimat...

  12. Observations of TeV binary systems with the H.E.S.S. telescope

    CERN Document Server

    Bordas, Pol; de Naurois, Mathieu; Ohm, Stefan; Wilhelmi, Emma de Oña; Sushch, Iurii; Volpe, Francesca; Zabalza, Víctor

    2013-01-01

    Recent observations of binary systems obtained with the H.E.S.S. telescopes are providing crucial information on the physics of relativistic outflows and the engines powering them. We report here on new H.E.S.S. results on HESS J0632+057, PSR B1259-63/LS 2883, Eta Carinae and the recently discovered source HESS J1018-589. Despite the high-quality data obtained in the last years through both ground and space-based gamma-ray detectors, many questions on the mechanisms that permit binary systems to emit at gamma-rays remain open. In particular, it is becoming apparent that emission at high and very-high energies is uncorrelated in some gamma-ray binary systems, with bright GeV flares not observed at TeV energies (e.g. PSR B1259-63), and sources periodically detected at VHEs which are lacking its HE counterpart (e.g. HESS J0632+057). Our results mainly confirm the predictions derived previously for the studied sources, but unexpected results are also found in a few cases, which are discussed in the context of con...

  13. Generation of a Near Infra-Red Guide Star Catalog for Thirty-Meter Telescope Observations

    Indian Academy of Sciences (India)

    Smitha Subramanian; Annapurni Subramaniam; Luc Simard; Kim Gillies; A. N. Ramaprakash; G. C. Anupama; C. S. Stalin; Swara Ravindranath; B. Eswar Reddy

    2013-06-01

    The requirements for the production of a near Infra-Red Guide Star Catalog (IRGSC) for Thirty Meter Telescope (TMT) observations are identified and presented. A methodology to compute the expected J band magnitude of stellar sources from their optical (, , ) magnitudes is developed. The computed and observed J magnitudes of sources in three test fields are compared and the methodology developed is found to be satisfactory for the magnitude range, JVega = 16–22 mag. From this analysis, we found that for the production of final TMT IRGSC (with a limiting magnitude of JVega = 22 mag), we need , , bands optical data which go up to AB ∼ 23 mag. Fine tuning of the methodology developed, such as using Spectral Energy Distribution (SED) template fitting for optimal classification of stars in the fainter end, incorporating spectral libraries in the model, to reduce the scatter, and modification of the existing colour–temperature relation to increase the source density are planned for the subsequent phase of this work.

  14. Hubble Space Telescope Observations of an Outer Field in Omega Centauri: A Definitive Helium Abundance

    CERN Document Server

    King, I R; Cassisi, S; Milone, A P; Bellini, A; Piotto, G; Anderson, J; Pietrinferni, A; Cordier, D

    2012-01-01

    We revisit the problem of the split main sequence (MS) of the globular cluster omega Centauri, and report the results of two-epoch Hubble Space Telescope observations of an outer field, for which proper motions give us a pure sample of cluster members, and an improved separation of the two branches of the main sequence. Using a new set of stellar models covering a grid of values of helium and metallicity, we find that the best possible estimate of the helium abundance of the bluer branch of the MS is Y = 0.39 +/- 0.02. For the cluster center we apply new techniques to old observations: we use indices of photometric quality to select a high-quality sample of stars, which we also correct for differential reddening. We then superpose the color-magnitude diagram of the outer field on that of the cluster center, and suggest a connection of the bluer branch of the MS with one of the more prominent among the many sequences in the subgiant region. We also report a group of undoubted cluster members that are well to t...

  15. Hubble Space Telescope Observations of UV Oscillations in WZ Sagittae During the Decline from Outburst

    CERN Document Server

    Welsh, W F; Godon, P; Gänsicke, B T; Knigge, C; Long, K S; Szkody, P

    2003-01-01

    We present a time series analysis of Hubble Space Telescope observations of WZ Sge obtained in 2001 September, October, November and December as WZ Sge declined from its 2001 July superoutburst. Previous analysis of these data showed the temperature of the white dwarf decreased from ~29,000 K to ~18,000 K. In this study we binned the spectra over wavelength to yield ultraviolet light curves at each epoch that were then analyzed for the presence of the well-known 27.87 s and 28.96 s oscillations. We detect the 29 s periodicity at all four epochs, but the 28 s periodicity is absent. The origin of these oscillations has been debated since their discovery in the 1970s and competing hypotheses are based on either white dwarf non-radial g-mode pulsations or magnetically-channelled accretion onto a rotating white dwarf. By analogy with the ZZ Ceti stars, we argue that the non-radial g-mode pulsation model demands a strong dependence of pulse period on the white dwarf's temperature. However, these observations show t...

  16. 2006 Whole Earth Telescope Observations of GD358: A New Look at the Prototype DBV

    CERN Document Server

    Provencal, J L; Kanaan, A; Shipman, H L; Childers, D; Baran, A; Kepler, S O; Reed, M; Zhou, A; Eggen, J; Watson, T K; Winget, D E; Thompson, S E; Riaz, B; Nitta, A; Kleinman, S J; Crowe, R; Slivkoff, J; Sherard, P; Purves, N; Binder, P; Knight, R; Kim, S -L; Chen, Wen-Ping; Yang, M; Lin, H C; Lin, C C; Chen, C W; Jiang, X J; Sergeev, A V; Mkrtichian, D; Janiashvili, E; Andreev, M; Janulis, R; Siwak, M; Zola, S; Koziel, D; Stachowski, G; Paparo, M; Bognár, Z; Handler, G; Lorenz, D; Steininger, B; Beck, P; Nagel, T; Kusterer, D; Hoffman, A; Reiff, E; Kowalski, R; Vauclair, G; Charpinet, S; Chevreton, M; Solheim, J E; Pakstiene, E; Fraga, L; Dalessio, J

    2008-01-01

    We report on the analysis of 436.1 hrs of nearly continuous high-speed photometry on the pulsating DB white dwarf GD358 acquired with the Whole Earth Telescope (WET) during the 2006 international observing run, designated XCOV25. The Fourier transform (FT) of the light curve contains power between 1000 to 4000 microHz, with the dominant peak at 1234 microHz. We find 27 independent frequencies distributed in 10 modes, as well as numerous combination frequencies. Our discussion focuses on a new asteroseismological analysis of GD358, incorporating the 2006 data set and drawing on 24 years of archival observations. Our results reveal that, while the general frequency locations of the identified modes are consistent throughout the years, the multiplet structure is complex and cannot be interpreted simply as l=1 modes in the limit of slow rotation. The high k multiplets exhibit significant variability in structure, amplitude and frequency. Any identification of the m components for the high k multiplets is highly s...

  17. Hubble Space Telescope observations of cool white dwarf stars: Detection of new species of heavy elements

    Science.gov (United States)

    Shipman, Harry; Barnhill, Maurice; Provencal, Judi; Roby, Scott; Bues, Irmela; Cordova, France; Hammond, Gordon; Hintzen, Paul; Koester, Detlev; Liebert, James

    1995-01-01

    Observations of cool white dwarf stars with the Hubble Space Telescope (HST) has uncovered a number of spectral features from previouslly unobserved species. In this paper we present the data on four cool white dwarfs. We present identifications, equivalent width measurements, and brief summaries of the significance of our findings. The four stars observed are GD 40 (DBZ3, G 74-7 (DAZ), L 745-46A (DZ), and LDS 749B (DBA). Many additional species of heavey elements were detected in GD 40 and G 74-7. In L 745-46A, while the detections are limited to Fe 1, Fe II, and Mg II, the quality of the Mg II h and K line profiles should permit a test of the line broadening theories, which are so crucial to abundance determinations. The clear detection of Mg II h and k in LDS 749 B should, once an abundance determination is made, provide a clear test of the hypothesis that the DBA stars are the result of accretion from the interstellar medium. This star contains no other clear features other than a tantalizing hint of C II 1335 with a P Cygni profile, and some expected He 1 lines.

  18. Hubble Space Telescope/NICMOS Observations of Massive Stellar Clusters near the Galactic Center

    CERN Document Server

    Figer, D F; Morris, M; Serabyn, E; Rich, R M; McLean, I S; Figer, Donald F.; Kim, Sungsoo S.; Morris, Mark; Serabyn, Eugene; Lean, Ian S. Mc

    1999-01-01

    We report Hubble Space Telescope (HST) Near-infrared Camera and Multi-object Spectrometer (NICMOS) observations of the Arches and Quintuplet clusters, two extraordinary young clusters near the Galactic Center. For the first time, we have identified main sequence stars in the Galactic Center with initial masses well below 10 Msun. We present the first determination of the initial mass function (IMF) for any population in the Galactic Center, finding an IMF slope which is significantly more positive (Gamma approx -0.65) than the average for young clusters elsewhere in the Galaxy (Gamma approx -1.4). The apparent turnoffs in the color-magnitude diagrams suggest cluster ages which are consistent with the ages implied by the mixture of spectral types in the clusters; we find tau(age) approx 2+/-1 Myr for the Arches cluster, and tau(age) approx 4+/-1 Myr for the Quintuplet. We estimate total cluster masses by adding the masses of observed stars down to the 50% completeness limit, and then extrapolating down to a lo...

  19. A telescopic cinema sound camera for observing high altitude aerospace vehicles

    Science.gov (United States)

    Slater, Dan

    2014-09-01

    Rockets and other high altitude aerospace vehicles produce interesting visual and aural phenomena that can be remotely observed from long distances. This paper describes a compact, passive and covert remote sensing system that can produce high resolution sound movies at >100 km viewing distances. The telescopic high resolution camera is capable of resolving and quantifying space launch vehicle dynamics including plume formation, staging events and payload fairing jettison. Flight vehicles produce sounds and vibrations that modulate the local electromagnetic environment. These audio frequency modulations can be remotely sensed by passive optical and radio wave detectors. Acousto-optic sensing methods were primarily used but an experimental radioacoustic sensor using passive micro-Doppler radar techniques was also tested. The synchronized combination of high resolution flight vehicle imagery with the associated vehicle sounds produces a cinema like experience that that is useful in both an aerospace engineering and a Hollywood film production context. Examples of visual, aural and radar observations of the first SpaceX Falcon 9 v1.1 rocket launch are shown and discussed.

  20. FERMI LARGE AREA TELESCOPE DETECTION OF GRAVITATIONAL LENS DELAYED γ-RAY FLARES FROM BLAZAR B0218+357

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, C. C.; Grove, J. E. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Larsson, S. [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Scargle, J. D. [Space Sciences Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Amin, M. A. [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Blandford, R. D.; Chiang, J.; Marshall, P. J. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bulmash, D. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Ciprini, S. [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00133 Roma (Italy); Corbet, R. H. D. [Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Falco, E. E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Wood, D. L. [Praxis Inc., Alexandria, VA 22303 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); D' Ammando, F.; Giroletti, M. [INAF Istituto di Radioastronomia, I-40129 Bologna (Italy); Lott, B. [Centre d' Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex (France); Ojha, R., E-mail: Teddy.Cheung@nrl.navy.mil, E-mail: stefan@astro.su.se [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2014-02-20

    Using data from the Fermi Large Area Telescope (LAT), we report the first clear γ-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced γ-ray activity with peak fluxes consistently observed to reach >20-50 × its previous average flux. An auto-correlation function analysis identified a delay in the γ-ray data of 11.46 ± 0.16 days (1σ) that is ∼1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing γ-ray flares/delayed emissions. In three such ∼8-10 day-long sequences within a ∼4 month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with ∼1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of ∼3-6 hr implying as well extremely compact γ-ray emitting regions.

  1. Observations of the transiting planet TrES-2 with the AIU Jena telescope in Gro{\\ss}schwabhausen

    CERN Document Server

    Raetz, St; Schmidt, T O B; Roell, T; Eisenbeiss, T; Hohle, M M; Seifahrt, A; Koeltzsch, A; Vanko, M; Broeg, Ch; Koppenhoefer, J; Neuhäuser, R

    2008-01-01

    We have started high precision photometric monitoring observations at the AIU Jena observatory in Grossschwabhausen near Jena in fall 2006. We used a 25 cm Cassegrain telescope equipped with a CCD-camera mounted picky-pack on a 90 cm telescope. To test the obtainable photometric precision, we observed stars with known transiting planets. We could recover all planetary transits observed by us. We observed the parent star of the transiting planet TrES-2 over a longer period in Grossschwabhausen. Between March and November 2007 seven different transits and almost a complete orbital period were analyzed. Overall, in 31 nights of observation 3423 exposures (in total 57.05 h of observation) of the TrES-2 parent star were taken. Here, we present our methods and the resulting light curves. Using our observations we could improve the orbital parameters of the system.

  2. Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129

    Science.gov (United States)

    Murgia, M.; Govoni, F.; Carretti, E.; Melis, A.; Concu, R.; Trois, A.; Loi, F.; Vacca, V.; Tarchi, A.; Castangia, P.; Possenti, A.; Bocchinu, A.; Burgay, M.; Casu, S.; Pellizzoni, A.; Pisanu, T.; Poddighe, A.; Poppi, S.; D'Amico, N.; Bachetti, M.; Corongiu, A.; Egron, E.; Iacolina, N.; Ladu, A.; Marongiu, P.; Migoni, C.; Perrodin, D.; Pilia, M.; Valente, G.; Vargiu, G.

    2016-10-01

    We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cluster of galaxies. The data were acquired using the recently commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1°×1° centred on the radio source 3C 129. We modelled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster centre. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source. If the magnetic field is at the equipartition value, we showed that the lifetimes of radiating electrons result in a radiative age for 3C 129 of tsyn ≃ 267 ± 26 Myr. Assuming a linear projected length of 488 kpc for the tail, we deduced that 3C 129 is moving supersonically with a Mach number of M = vgal/cs = 1.47. Linearly polarized emission was clearly detected for both 3C 129 and 3C 129.1. The linear polarization measured for 3C 129 reaches levels as high as 70 per cent in the faintest region of the source where the magnetic field is aligned with the direction of the tail.

  3. ATLASGAL - The APEX Telescope Large Area Survey of the Galaxy at 870 microns

    CERN Document Server

    Schuller, F; Contreras, Y; Wyrowski, F; Schilke, P; Bronfman, L; Henning, T; Walmsley, C M; Beuther, H; Bontemps, S; Cesaroni, R; Deharveng, L; Garay, G; Herpin, F; Le Floc'h, B; Linz, H; Mardones, D; Minier, V; Molinari, S; Motte, F; Nyman, L -A; Reveret, V; Risacher, C; Russeil, D; Schneider, N; Testi, L; Troost, T; Vasyunina, T; Wienen, M; Zavagno, A; Kovács, A; Kreysa, E; Siringo, G; Weiss, A

    2009-01-01

    (Abridged) Studying continuum emission from interstellar dust is essential to locate and characterize the highest density regions in the interstellar medium. In particular, the early stages of massive star formation are still mysterious. Our goal is to produce a large scale, systematic database of massive pre- and proto-stellar clumps in the Galaxy, in order to better understand how and under what conditions star formation takes place. A well characterized sample of star-forming sites will deliver an evolutionary sequence and a mass function of high-mass star-forming clumps. Such a systematic survey at submm wavelengths also represents a pioneering work in preparation for Herschel and ALMA. The APEX telescope is ideally located to observe the inner Milky Way. The recently commissioned Large APEX Bolometer Camera (LABOCA) is a 295-element bolometer array observing at 870 microns, with a beam of 19". Taking advantage of its large field of view (11.4') and excellent sensitivity, we have started an unbiased surve...

  4. Modeling Seven Years of Event Horizon Telescope Observations with Radiatively Inefficient Accretion Flow Models

    Science.gov (United States)

    Broderick, Avery E.; Fish, Vincent L.; Johnson, Michael D.; Rosenfeld, Katherine; Wang, Carlos; Doeleman, Sheperd S.; Akiyama, Kazunori; Johannsen, Tim; Roy, Alan L.

    2016-04-01

    An initial three-station version of the Event Horizon Telescope, a millimeter-wavelength very-long baseline interferometer, has observed Sagittarius A* (Sgr A*) repeatedly from 2007 to 2013, resulting in the measurement of a variety of interferometric quantities. Of particular importance is that there is now a large set of closure phases measured over a number of independent observing epochs. We analyze these observations within the context of a realization of semi-analytic radiatively inefficient disk models, implicated by the low luminosity of Sgr A*. We find a broad consistency among the various observing epochs and between different interferometric data types, with the latter providing significant support for this class of model of Sgr A*. The new data significantly tighten existing constraints on the spin magnitude and its orientation within this model context, finding a spin magnitude of a={0.10}-0.10-0.10+0.30+0.56, an inclination with respect to the line of sight of θ ={60^\\circ }-{8^\\circ -{13}^\\circ }+{5^\\circ +{10}^\\circ }, and a position angle of ξ ={156^\\circ }-{17^\\circ -{27}^\\circ }+{10^\\circ +{14}^\\circ } east of north. These are in good agreement with previous analyses. Notably, the previous 180° degeneracy in the position angle has now been conclusively broken by the inclusion of the closure-phase measurements. A reflection degeneracy in the inclination remains, permitting two localizations of the spin vector orientation, one of which is in agreement with the orbital angular momentum of the infrared gas cloud G2 and the clockwise disk of young stars. This may support a relationship between Sgr A*'s accretion flow and these larger-scale features.

  5. Hubble Space Telescope observations of globular cluster systems along the Hubble sequence of spiral galaxies

    CERN Document Server

    Goudfrooij, P; Brenneman, L; Kissler-Patig, M; Minniti, D; Huizinga, E; Goudfrooij, Paul; Strader, Jay; Brenneman, Laura; Kissler-Patig, Markus; Minniti, Dante; Huizinga, Edwin

    2003-01-01

    We have studied the globular cluster (GC) systems of 7 giant, edge-on spiral galaxies using Hubble Space Telescope imaging in V and I. The galaxy sample covers the Hubble types Sa to Sc, allowing us to study the variation of the properties of GC systems along the Hubble sequence. The photometry reaches ~1.5 mag beyond the turn-over magnitude of the GC luminosity function for each galaxy. Specific frequencies (S_N values) of GCs were evaluated by comparing the numbers of GCs found in our WFPC2 pointings with those in the Milky Way which would be detected in the same metric area. The S_N values of spirals with B/T <= 0.3 (i.e., spirals with a Hubble type later than about Sb) are consistent with a value of S_N = 0.55 +- 0.25. We suggest that this population of GCs represents a `universal', old halo population that is present around each galaxy. Most galaxies in our sample have S_N values that are consistent with a scenario in which GC systems are made up of (i) the aforementioned halo population plus (ii) a p...

  6. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power (dot E) = 3.5 x 1033 ergs s-1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 ± 0.01 and 0.08 ± 0.02 wide, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) x 10-8 cm-2 s-1 with cut-off energy (1.7 ± 0.4 ± 0.5) GeV. Based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency Lγ/(dot E) ≅ 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  7. PULSED GAMMA RAYS FROM THE MILLISECOND PULSAR J0030+0451 WITH THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar (MSP) PSR J0030+0451 with the Large Area Telescope on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second MSP to be detected in gamma rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma-Ray Observatory. The spin-down power E-dot=3.5x1033 erg s-1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, 0.07 ± 0.01 and 0.08 ± 0.02 wide, respectively, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cutoff power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) x 10-8 cm-2 s-1 with cutoff energy (1.7 ± 0.4 ± 0.5) GeV. Based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency Lγ/E-dot≅15 percent for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  8. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M. /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, M.; /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2011-11-17

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power {dot E} = 3.5 x 10{sup 33} ergs s{sup -1} is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 {+-} 0.01 and 0.08 {+-} 0.02 wide, separated by 0.44 {+-} 0.02 in phase. The first gamma-ray peak falls 0.15 {+-} 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 {+-} 1.05 {+-} 1.35) x 10{sup -8} cm{sup -2} s{sup -1} with cut-off energy (1.7 {+-} 0.4 {+-} 0.5) GeV. Based on its parallax distance of (300 {+-} 90) pc, we obtain a gamma-ray efficiency L{sub {gamma}}/{dot E} {approx_equal} 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  9. Probing millisecond pulsar emission geometry using light curves from the Fermi Large Area Telescope

    CERN Document Server

    Venter, C; Guillemot, L

    2009-01-01

    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of B-field lines, in the geometric context of polar cap (PC), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by TPC and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We...

  10. THE FIRST CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    We present the first catalog of active galactic nuclei (AGNs) detected by the Large Area Telescope (LAT), corresponding to 11 months of data collected in scientific operation mode. The First LAT AGN Catalog (1LAC) includes 671 γ-ray sources located at high Galactic latitudes (|b|>100) that are detected with a test statistic greater than 25 and associated statistically with AGNs. Some LAT sources are associated with multiple AGNs, and consequently, the catalog includes 709 AGNs, comprising 300 BL Lacertae objects, 296 flat-spectrum radio quasars, 41 AGNs of other types, and 72 AGNs of unknown type. We also classify the blazars based on their spectral energy distributions as archival radio, optical, and X-ray data permit. In addition to the formal 1LAC sample, we provide AGN associations for 51 low-latitude LAT sources and AGN 'affiliations' (unquantified counterpart candidates) for 104 high-latitude LAT sources without AGN associations. The overlap of the 1LAC with existing γ-ray AGN catalogs (LBAS, EGRET, AGILE, Swift, INTEGRAL, TeVCat) is briefly discussed. Various properties-such as γ-ray fluxes and photon power-law spectral indices, redshifts, γ-ray luminosities, variability, and archival radio luminosities-and their correlations are presented and discussed for the different blazar classes. We compare the 1LAC results with predictions regarding the γ-ray AGN populations, and we comment on the power of the sample to address the question of the blazar sequence.

  11. Pulsed Gamma-Rays From PSR J2021 3651 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, Marco; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, William B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, Milan; /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, Ronaldo; /INFN, Pisa; Berenji, Bijan; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bogaert, G.; /Ecole Polytechnique; Borgland, Anders W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Columbia U. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /IASF, Milan /IASF, Milan /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Royal Inst. Tech., Stockholm /Stockholm U. /ASI, Rome /NRAO, Charlottesville /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Manchester U. /Montpellier U. /Bari U. /INFN, Bari; /more authors..

    2011-11-30

    We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 {+-} 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 {+-} 0.004 {+-} 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 {+-} 3 {+-} 11) x 10{sup -8} cm{sup -2} s{sup -1}. The photon spectrum is well-described by an exponentially cut-off power law of the form dF/dE = kE{sup -{Gamma}}e{sup (-E/E{sub c})} where the energy E is expressed in GeV. The photon index is {Gamma} = 1.5 {+-} 0.1 {+-} 0.1 and the exponential cut-off is E{sub c} = 2.4 {+-} 0.3 {+-} 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is < 10% of the pulsed emission at the 95% confidence level. Radio polarization measurements yield a rotation measure of RM = 524 {+-} 4 rad m{sup -2} but a poorly constrained magnetic geometry. Re-analysis of Chandra data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase-aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.

  12. Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations

    Science.gov (United States)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Vieira Martins, R.; Berthier, J.; Vachier, F.; Cruikshank, D. P.; Lim, L. F.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; LaCluyze, A. P.

    2012-11-01

    We collected mid-IR spectra from 5.2 to 38 μm using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric lightcurves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq > 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia (Γ ⩽ ∼100 J s-1/2 K-1 m-2) and their emissivity spectra display strong mineral features, implying that they are covered with a thick layer of thermally insulating regolith. The smaller (surface-equivalent system diameter Deff < 17 km) asteroids also show some emission lines of minerals, but they are significantly weaker, consistent with regoliths with coarser grains, than those of the large binary asteroids. The average bulk densities of these multiple asteroids vary from 0.7-1.7 g/cm3 (P-, C-type) to ∼2 g/cm3 (S-type). The highest density is estimated for the M-type (22) Kalliope (3.2 ± 0.9 g/cm3). The spectral energy distributions (SEDs) and emissivity spectra, made available as a supplement document, could help to constrain the surface compositions of these asteroids.

  13. Capability of Cherenkov Telescopes to Observe Ultra-fast Optical Flares

    CERN Document Server

    Deil, C; Hermann, G; Clapson, A -C; Förster, A; Van Eldik, C; Hofmann, W

    2008-01-01

    The large optical reflector (~ 100 m^2) of a H.E.S.S. Cherenkov telescope was used to search for very fast optical transients of astrophysical origin. 43 hours of observations targeting stellar-mass black holes and neutron stars were obtained using a dedicated photometer with microsecond time resolution. The photometer consists of seven photomultiplier tube pixels: a central one to monitor the target and a surrounding ring of six pixels to veto background events. The light curves of all pixels were recorded continuously and were searched offline with a matched-filtering technique for flares with a duration of 2 us to 100 ms. As expected, many unresolved (500 us) background events originating in the earth's atmosphere were detected. In the time range 3 to 500 us the measurement is essentially background-free, with only eight events detected in 43 h; five from lightning and three presumably from a piece of space debris. The detection of flashes of brightness ~ 0.1 Jy and only 20 us duration from the space debri...

  14. Hubble Space Telescope observations of an extraordinary flare in the M87 jet

    CERN Document Server

    Madrid, Juan P

    2009-01-01

    HST-1, a knot along the M87 jet located 0.85 arcsec from the nucleus of the galaxy has experienced dramatic and unexpected flaring activity since early 2000. We present analysis of Hubble Space Telescope Near-Ultraviolet (NUV) imaging of the M87 jet from 1999 May to 2006 December that reveals that the NUV intensity of HST-1 has increased 90 times over its quiescent level and outshines the core of the galaxy. The NUV light curve that we derive is synchronous with the light curves derived in other wavebands. The correlation of X-ray and NUV light curves during the HST-1 flare confirms the synchrotron origin of the X-ray emission in the M87 jet. The outburst observed in HST-1 is at odds with the common definition of AGN variability usually linked to blazars and originating in close proximity of the central black hole. In fact, the M87 jet is not aligned with our line of sight and HST-1 is located at one million Schwarzchild radii from the super-massive black hole in the core of the galaxy.

  15. Whole Earth Telescope observations of the pulsating subdwarf B star PG 0014+067

    CERN Document Server

    Vuckovic, M; O'Toole, S; Csubry, Z; Baran, A; Zola, S; Moskalik, P; Klumpe, E W; Riddle, R; O'Brien, M S; Mullally, F; Wood, M A; Wilkat, V; Zhou, A Y; Reed, M D; Terndrup, D M; Sullivan, D J; Kim, S L; Chen, W P; Chen, C W; Hsiao, W S; Sanchawala, K; Lee, H T; Jiang, X J; Janulis, R; Siwak, M; Ogloza, W; Paparo, M; Bognár, Z; Sodor, A; Handler, G; Lorenz, D; Steininger, B; Silvotti, R; Vauclair, G; Oreiro, R; Ostensen, R; Bronowska, A; Castanheira, B G; Kepler, S O; Fraga, L; Shipman, H L; Provencal, J L; Childers, D

    2006-01-01

    PG 0014+067 is one of the most promising pulsating subdwarf B stars for seismic analysis, as it has a rich pulsation spectrum. The richness of its pulsations, however, poses a fundamental challenge to understanding the pulsations of these stars, as the mode density is too complex to be explained only with radial and nonradial low degree (l < 3) p-modes without rotational splittings. One proposed solution, for the case of PG 0014+067 in particular, assigns some modes with high degree (l=3). On the other hand, theoretical models of sdB stars suggest that they may retain rapidly rotating cores, and so the high mode density may result from the presence of a few rotationally-split triplet (l=1), quintuplet (l=2) modes, along with radial (l=0) p-modes. To examine alternative theoretical models for these stars, we need better frequency resolution and denser longitude coverage. Therefore, we observed this star with the Whole Earth Telescope for two weeks in October 2004. In this paper we report the results of Whol...

  16. Testing the No-Hair Theorem with Event Horizon Telescope Observations of Sagittarius A*

    CERN Document Server

    Loeb, Abraham

    2013-01-01

    The advent of the Event Horizon Telescope (EHT), a millimeter-wave very-long baseline interferometric array, has enabled spatially-resolved studies of the sub-horizon-scale structure for a handful of supermassive black holes. Among these, the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), presents the largest angular cross section. Thus far, these studies have focused upon measurements of the black hole spin and the validation of low-luminosity accretion models. However, a critical input into the analysis of EHT data is the structure of the black hole spacetime, and thus these observations provide the novel opportunity to test the applicability of the Kerr metric to astrophysical black holes. Here we present the first simulated images of a radiatively inefficient accretion flow (RIAF) around Sgr A* employing a quasi-Kerr metric that contains an independent quadrupole moment in addition to the mass and spin that fully characterize a black hole in general relativity. We show th...

  17. The fragment R collision: W. M. Keck telescope observations of SL9.

    Science.gov (United States)

    Graham, J R; de Pater, I; Jernigan, J G; Liu, M C; Brown, M E

    1995-03-01

    The W. M. Keck telescope was used to observe the impact of comet Shoemaker-Levy 9 (SL9) fragment R at a wavelength of 2.3 micrometers on 21 July 1994. The data showed three outbursts. The first flash lasted about 40 seconds and was followed 1 minute after its peak by a second flash that lasted about 3 minutes. A third, longer lasting flare began 6 minutes after the first flash and lasted for 10 minutes. At its maximum brightness, the flare outshone Jupiter. The two short flashes are probably associated with the initial meteor trail and the subsequent fireball, respectively. The bright flare occurred when the impact site rotated into view. These data show that the explosion ejected material at least 1300 kilometers above the visible cloud tops. The luminosity of the impact site during the long bright flare was probably maintained by the release of gravitational potential energy, as this material fell back onto the lower atmosphere. PMID:7871431

  18. Event Horizon Telescope Observations as Probes for Quantum Structure of Astrophysical Black Holes

    CERN Document Server

    Giddings, Steven B

    2016-01-01

    The need for a consistent quantum evolution for black holes has led to proposals that their semiclassical description is modified not just near the singularity, but at horizon or larger scales. If such modifications extend beyond the horizon, they influence regions accessible to distant observeration. Natural candidates for these modifications behave like metric fluctuations, with characteristic length and time scales set by the horizon radius. We investigate the possibility of using the Event Horizon Telescope to observe these effects, if they have a strength sufficient to make quantum evolution consistent with unitarity. We find that such quantum fluctuations can introduce a strong time dependence for the shape and size of the shadow that a black hole casts on its surrounding emission. For the black hole in the center of the Milky Way, detecting the rapid time variability of its shadow will require non-imaging timing techniques. However, for the much larger black hole in the center of the M87 galaxy, a vari...

  19. Metrics for Optimization of Large Synoptic Survey Telescope Observations of Stellar Variables and Transients

    CERN Document Server

    Lund, Michael B; Pepper, Joshua A; Stassun, Keivan G

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) will be the largest time-domain photometric survey ever. In order to maximize the LSST science yield for a broad array of transient stellar phenomena, it is necessary to optimize the survey cadence, coverage, and depth via quantitative metrics that are specifically designed to characterize the time-domain behavior of various types of stellar transients. In this paper we present three such metrics built on the LSST Metric Analysis Framework (MAF) model (Jones et al. 2014). Two of the metrics quantify the ability of LSST to detect non-periodic and/or non-recurring transient events, and the ability of LSST to reliably measure periodic signals of various timescales. The third metric provides a way to quantify the range of stellar parameters in the stellar populations that LSST will probe. We provide example uses of these metrics and discuss some implications based on these metrics for optimization of the LSST survey for observations of stellar variables and transients.

  20. Probing Very Bright-End of Galaxy Luminosity Function at z >~ 7 Using Hubble Space Telescope Pure Parallel Observations

    CERN Document Server

    Yan, Haojing; Zamojski, Michel A; Windhorst, Rogier A; McCarthy, Patrick J; Fan, Xiaohui; Röttgering, Huub J A; Koekemoer, Anton M; Robertson, Brant E; Davé, Romeel; Cai, Zheng

    2010-01-01

    We report the first results from the Hubble Infrared Pure Parallel Imaging Extragalactic Survey, which utilizes the pure parallel orbits of the Hubble Space Telescope to do deep imaging along a large number of random sightlines. To date, our analysis includes 26 widely separated fields observed by the Wide Field Camera 3, which amounts to 122.8 sq. arcmin in total area. We have found three bright Y098-dropouts, which are candidate galaxies at z >~ 7.4. One of these objects shows a peculiar indication of variability and its nature is uncertain. The other two objects are among the brightest candidate galaxies at these redshifts known to date (L>2L*). Such very luminous objects could be the progenitors of the high-mass LBGs observed at lower redshifts. While our sample is still limited in size, it is much less subject to the uncertainty caused by "cosmic variance" than other samples because it is derived using fields along many random sightlines. We find that the existence of the brightest candidate at z~7.4 is ...

  1. T35: a small automatic telescope for long-term observing campaigns

    CERN Document Server

    Martin-Ruiz, Susana; Abril, Miguel; Costillo, Luis P; Garcia, Antonio; de la Rosa, Jose Luis; Bustamante, Isabel; Gutierrez-Soto, Juan; Magan, Hector; Ramos, Jose Luis; Ubierna, Marcos

    2010-01-01

    The T35 is a small telescope (14") equipped with a large format CCD camera installed in the Sierra Nevada Observatory (SNO) in Southern Spain. This telescope will be a useful tool for the detecting and studying pulsating stars, particularly, in open clusters. In this paper, we describe the automation process of the T35 and show also some images taken with the new instrumentation.

  2. Hubble Space Telescope STIS Observations of GRB 000301C: CCD Imaging and Near-Ultraviolet MAMA Spectroscopy

    NARCIS (Netherlands)

    A. Smette; A.S. Fruchter; Th.R. Gull; K.C. Sahu; L. Petro; H. Ferguson; J. Rhoads; D.J. Lindler; R.A.M.J. Wijers

    2001-01-01

    We present Space Telescope Imaging Spectrograph observations of the optical transient (OT) counterpart of the gamma-ray burster GRB 000301C obtained 5 days after the burst, on 2000 March 6. CCD clear-aperture imaging reveals a R~=21.50+/-0.15 source with no apparent host galaxy. An 8000 s, 1150 Å

  3. New millisecond pulsars detected by the Fermi Large Area Telescope and the radio/gamma-ray connection

    CERN Document Server

    Espinoza, C M; Celik, O; Weltevrede, P; Stappers, B W; Smith, D A; Kerr, M; Zavlin, V E; Cognard, I; Eatough, R P; Freire, P C C; Janssen, G H; Camilo, F; Desvignes, G; Hewitt, J W; Hou, X; Johnston, S; Keith, M; Kramer, M; Lyne, A; Manchester, R N; Ransom, S M; Ray, P S; Shannon, R; Theureau, G; Webb, N

    2012-01-01

    We report on the discovery of gamma-ray pulsations from five millisecond pulsars (MSPs) using the Fermi Large Area Telescope (LAT) and timing ephemerides provided by various radio observatories. We also present confirmation of the gamma-ray pulsations from a sixth source, PSR J2051-0827. Five of these six MSPs are in binary systems: PSRs J1713+0747, J1741+1351, J1600-3053 and the two black widow binary pulsars PSRs J0610-2100 and 2051-0827. The only isolated MSP is the nearby PSR J1024-0719, which is also known to emit X-rays. We present X-ray observations in the direction of PSRs J1600-3053 and J2051-0827. While the latter is firmly detected, we an only give upper limits for the X-ray flux of the former. There are no dedicated X-ray observations available for the other 3 objects. The MSPs mentioned above, together with most of the MSPs detected by Fermi, are used to put together a sample of 30 gamma-ray MSPs which is used to study the morphology and phase connection of radio and gamma-ray pulse profiles. We ...

  4. Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caputo, R.; Caragiulo, M.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Godfrey, G.; Gomez-Vargas, G. A.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Gustafsson, M.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jóhannesson, G.; Johnson, R. P.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Malyshev, D.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Murgia, S.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reposeur, T.; Ritz, S.; Sánchez-Conde, M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Tajima, H.; Takahashi, H.; Thayer, J. B.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Werner, M.; Winer, B. L.; Wood, K. S.; Wood, M.; Zaharijas, G.; Zimmer, S.

    2015-06-01

    Dark matter in the Milky Way may annihilate directly into γ rays, producing a monoenergetic spectral line. Therefore, detecting such a signature would be strong evidence for dark matter annihilation or decay. We search for spectral lines in the Fermi Large Area Telescope observations of the Milky Way halo in the energy range 200 MeV-500 GeV using analysis methods from our most recent line searches. The main improvements relative to previous works are our use of 5.8 years of data reprocessed with the Pass 8 event-level analysis and the additional data resulting from the modified observing strategy designed to increase exposure of the Galactic center region. We search in five sky regions selected to optimize sensitivity to different theoretically motivated dark matter scenarios and find no significant detections. In addition to presenting the results from our search for lines, we also investigate the previously reported tentative detection of a line at 133 GeV using the new Pass 8 data.

  5. First detection of GeV emission from an ultraluminous infrared galaxy Arp 220 with the Fermi Large Area Telescope

    CERN Document Server

    Peng, Fang-Kun; Liu, Ruo-Yu; Tang, Qing-Wen; Wang, Jun-Feng

    2016-01-01

    Cosmic rays (CRs) in starburst galaxies produce high energy gamma-rays by colliding with the dense interstellar medium. Arp 220 is the nearest ultra luminous infrared galaxy (ULIRG) that has star-formation at extreme levels, so it has long been predicted to emit high-energy gamma-rays. However, no evidence of gamma-ray emission was found despite intense efforts of search. Here we report the discovery of high-energy gamma-ray emission above 200 MeV from Arp 220 at a confidence level of $\\sim 6.3 \\sigma $ using 7.5 years of \\textsl {Fermi} Large Area Telescope observation. The gamma-ray emission shows no significant variability over the observation period and it obeys the quasi-linear scaling relation between the gamma-ray luminosity and total infrared luminosity for star-forming galaxies, suggesting that these gamma-rays arise from CR interactions. As the high density gas makes Arp 220 an ideal CR calorimeter, the gamma-ray luminosity can be used to measure the efficiency of powering CRs by supernova remnants ...

  6. Acceleration feedback control (AFC) enhanced by disturbance observation and compensation (DOC) for high precision tracking in telescope systems

    Science.gov (United States)

    Wang, Qiang; Cai, Hua-Xiang; Huang, Yong-Mei; Ge, Liang; Tang, Tao; Su, Yan-Rui; Liu, Xiang; Li, Jin-Ying; He, Dong; Du, Sheng-Ping; Ling, Yu

    2016-08-01

    In this paper, a cascade acceleration feedback control (AFC) enhanced by a disturbance observation and compensation (DOC) method is proposed to improve the tracking precision of telescope systems. Telescope systems usually suffer some uncertain disturbances, such as wind load, nonlinear friction and other unknown disturbances. To ensure tracking precision, an acceleration feedback loop which can increase the stiffness of such a system is introduced. Moreover, to further improve the tracking precision, we introduce the DOC method which can accurately estimate the disturbance and compensate it. Furthermore, the analysis of tracking accuracy used by this method is proposed. Finally, a few comparative experimental results show that the proposed control method has excellent performance for reducing the tracking error of a telescope system.

  7. 2006 WHOLE EARTH TELESCOPE OBSERVATIONS OF GD358: A NEW LOOK AT THE PROTOTYPE DBV

    International Nuclear Information System (INIS)

    We report on the analysis of 436.1 hr of nearly continuous high-speed photometry on the pulsating DB white dwarf GD358 acquired with the Whole Earth Telescope (WET) during the 2006 international observing run, designated XCOV25. The Fourier transform (FT) of the light curve contains power between 1000 and 4000 μHz, with the dominant peak at 1234 μHz. We find 27 independent frequencies distributed in 10 modes, as well as numerous combination frequencies. Our discussion focuses on a new asteroseismological analysis of GD358, incorporating the 2006 data set and drawing on 24 years of archival observations. Our results reveal that, while the general frequency locations of the identified modes are consistent throughout the years, the multiplet structure is complex and cannot be interpreted simply as l = 1 modes in the limit of slow rotation. The high-k multiplets exhibit significant variability in structure, amplitude and frequency. Any identification of the m components for the high-k multiplets is highly suspect. The k = 9 and 8 modes typically do show triplet structure more consistent with theoretical expectations. The frequencies and amplitudes exhibit some variability, but much less than the high-k modes. Analysis of the k = 9 and 8 multiplet splittings from 1990 to 2008 reveal a long-term change in multiplet splittings coinciding with the 1996 sforzando event, where GD358 dramatically altered its pulsation characteristics on a timescale of hours. We explore potential implications, including the possible connections between convection and/or magnetic fields and pulsations. We suggest future investigations, including theoretical investigations of the relationship between magnetic fields, pulsation, growth rates, and convection.

  8. Detection of Solar Wind Disturbances: Mexican Array Radio Telescope IPS Observations at 140 MHz

    Science.gov (United States)

    Romero-Hernandez, E.; Gonzalez-Esparza, J. A.; Aguilar-Rodriguez, E.; Ontiveros-Hernandez, V.; Villanueva-Hernandez, P.

    2015-09-01

    The interplanetary scintillation (IPS) technique is a remote-sensing method for monitoring solar-wind perturbations. The Mexican Array Radio Telescope (MEXART) is a single-station instrument operating at 140 MHz, fully dedicated to performing solar-wind studies employing the IPS technique. We report MEXART solar-wind measurements (scintillation indices and solar-wind velocities) using data obtained during the 2013 and 2014 campaigns. These solar-wind measurements were calculated employing a new methodology based on the wavelet transform (WT) function. We report the variation of the scintillation indices versus the heliocentric distance for two IPS sources (3C48 and 3C147). We found different average conditions of the solar-wind density fluctuations in 2013 and 2014. We used the fittings of the radial dependence of the scintillation index to calculate g-indices. Based on the g-index value, we identified 17 events that could be associated with strong compression regions in the solar wind. We present the first ICME identifications in our data. We associated 14 IPS events with preceding CME counterparts by employing white-light observations from the Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) spacecraft. We found that most of the IPS events, detected during the solar maximum of Cycle 24 were associated with complex CME events. For the IPS events associated with single CME counterparts, we found a deceleration tendency of the CMEs as they propagate in the interplanetary medium. These results show that the instrument detects solar-wind disturbances, and the WT methodology provides solar-wind information with good accuracy. The MEXART observations will complement solar-wind IPS studies using other frequencies, and the tracking of solar-wind disturbances by other stations located at different longitudes.

  9. The major upgrade of the MAGIC telescopes, Part II: The achieved physics performance using the Crab Nebula observations

    CERN Document Server

    Aleksic, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barcelo, M; Barrio, J A; Gonzalez, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Bitossi, M; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Cecchi, R; Colin, P; Colombo, E; Contreras, J L; Corti, D; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Wilhelmi, E de Ona; Mendez, C Delgado; Dettlaff, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fidalgo, D; Fink, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; Lopez, R J Garcia; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giavitto, G; Godinovic, N; Munoz, A Gonzalez; Gozzini, S R; Haberer, W; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Illa, J M; Kadenius, V; Kellermann, H; Knoetig, M L; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lemus, J L; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; Lopez, M; Lopez-Coto, R; Lopez-Oramas, A; Lorca, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martinez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Negrello, M; Neustroev, V; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribo, M; Rico, J; Garcia, J Rodriguez; Rugamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schlammer, J; Schmidl, S; Schweizer, T; Shore, S N; Sillanpaa, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Tejedor, L A; Temnikov, P; Terzic, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Vogler, P; Wetteskind, H; Will, M; Zanin, R; IFAE,; UAB, Campus; Bellaterra, E-08193; Spain,; di Udine, Universita; Trieste, INFN; Udine, I-33100; Italy,; Astrophysics, INAF National Institute for; Rome, I-00136; di Siena, Universita; Pisa, INFN; Siena, I-53100; Institute, Rudjer Boskovic; Rijeka, University of; Split, University of; Zagreb, HR-10000; Croatia,; Physik, Max-Planck-Institut fur; Munchen, D-80805; Germany,; Complutense, Universidad; Madrid, E-28040; de Canarias, Inst de Astrofisica; La Laguna, E-38200; Tenerife,; Lodz, University of; Lodz, PL-90236; Poland,; Elektronen-Synchrotron, Deutsches; Zeuthen, D-15738; Zurich, ETH; Zurich, CH-8093; Switzerland,; Wurzburg, Universitat; Wurzburg, D-97074; Energeticas, Centro de Investigaciones; Tecnologicas, Medioambientales y; Sciences, Institute of Space; Barcelona, E-08193; di Padova, Universita; INFN,; Padova, I-35131; Dortmund, Technische Universitat; Dortmund, D-44221; Radiacions, Unitat de Fisica de les; de Fisica, Departament; CERES-IEEC,; de Barcelona, Universitat Autonoma; de Barcelona, Universitat; ICC,; IEEC-UB,; Barcelona, E-08028; Physics, Division of; Astronomy,; University, Kyoto; Japan,; Observatory, Tuorla; Turku, University of; Physics, Department of; Oulu, University of; Finland,; Research, Inst for Nucl; Energy, Nucl; Sofia, BG-1784; Bulgaria,; di Pisa, Universita; Pisa, I-56126; ICREA,; Insubria, Universita dell; Bicocca, INFN Milano; Como,; Como, I-22100; Observatory, European Gravitational; Macerata, I-56021 S Stefano a; Siena, INFN; at, now; :,; Center, NASA Goddard Space Flight; Greenbelt,; 20771, MD; USA,; Physics, Department of; Astronomy, Department of; Maryland, University of; Park, College; 20742, MD; de Lausanne, now at Ecole polytechnique federale; Lausanne,; Teilchenphysik, Now at Institut fur Astro- und; Innsbruck, Leopold-Franzens- Universitat; Innsbruck, A-6020; Austria,; deceased,; ESO, now at Finnish Centre for Astronomy with; Turku,; Division, now at Astrophysics Science; Centre, Bhabha Atomic Research; 400085, Mumbai; India,; INAF-Trieste, also at

    2014-01-01

    MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent a series of upgrades, involving the exchange of the MAGIC-I camera and its trigger system, as well as the upgrade of the readout system of both telescopes. We use observations of the Crab Nebula taken at low and medium zenith angles to assess the key performance parameters of the MAGIC stereo system. For low zenith observations the trigger threshold of the MAGIC telescopes is about 50GeV. The integral sensitivity for sources with Crab Nebula-like spectrum above 220GeV is (0.66+/-0.03)% of Crab Nebula flux in 50 h of observations. The angular resolution at those energies is < 0.07 degree, while the energy resolution is 16%. We also re-evaluate the effect of the systematic uncertainty on the data taken with the MAGIC telescopes after the upgrade. We estimate that the systematic uncertainties can be divided in following components: < 15% in energy scale...

  10. Full-disk Synoptic Observations of the Chromosphere Using H$_{\\alpha}$ Telescope at the Kodaikanal Observatory

    CERN Document Server

    Ravindra, B; Rangarajan, K E; Bagare, S P; Jagdev, Singh; Kemkar, P M M; Lancelot, J P; Thulasidharen, K C; Gabriel, F; Selvendran, R

    2016-01-01

    This paper reports on the installation and observations of a new solar telescope installed on 7th October, 2014 at the Kodaikanal Observatory. The telescope is a refractive type equipped with a tunable Lyot H$_{\\alpha}$ filter. A CCD camera of 2k$\\times$2k size makes the image of the Sun with a pixel size of 1.21$^{\\prime\\prime}$ pixel$^{-1}$ with a full field-of-view of 41$^{\\prime}$. The telescope is equipped with a guiding system which keeps the image of the Sun within a few pixels throughout the observations. The FWHM of the Lyot filter is 0.4\\AA~and the filter is motorized, capable of scanning the H$_{\\alpha}$ line profile at a smaller step size of 0.01\\AA. Partial-disk imaging covering about 10$^{\\prime}$, is also possible with the help of a relay lens kept in front of the CCD camera. In this paper, we report the detailed specifications of the telescope, filter unit, its installation, observations and the procedures we have followed to calibrate and align the data. We also present preliminary results wi...

  11. AUSTRALIA TELESCOPE COMPACT ARRAY RADIO CONTINUUM 1384 AND 2368 MHz OBSERVATIONS OF SAGITTARIUS B

    International Nuclear Information System (INIS)

    We present images of the Sagittarius (Sgr) B giant molecular cloud at 1384 and 2368 MHz obtained using new, multi-configuration Australia Telescope Compact Array observations. We have combined these observations with archival single-dish observations yielding images at resolutions of 47'' x 14'' and 27'' x 8'' at 1384 and 2368 MHz, respectively. These observations were motivated by our theoretical work indicating the possibility that synchrotron emission from secondary electrons and positrons created in hadronic cosmic ray (CR) collisions with the ambient matter of the Sgr B2 cloud could provide a detectable (and possibly linearly polarized) non-thermal radio signal. We find that the only detectable non-thermal emission from the Sgr B region is from a strong source to the south of Sgr B2, which we label Sgr B2 Southern Complex (SC). We find Sgr B2(SC) integrated flux densities of 1.2 ± 0.2 Jy at 1384 MHz and 0.7 ± 0.1 Jy at 2368 MHz for a source of FWHM size at 1384 MHz of ∼54''. Despite its non-thermal nature, the synchrotron emission from this source is unlikely to be dominated due to secondary electrons and positrons. Failing to find clear evidence of non-thermal emission due to secondary electrons and positrons, we use polarization data to place 5σ upper limits on the level of polarized intensity from the Sgr B2 cloud of 3.5 and 3 mJybeam-1 at 1384 and 2368 MHz, respectively. We also use the angular distribution of the total intensity of archival 330 MHz Very Large Array and the total intensity and polarized emission of our new 1384 and 2368 MHz data to constrain the diffusion coefficient for transport of the parent hadronic CRs into the dense core of Sgr B2 to be no larger than about 1% of that in the Galactic disk. Finally, we have also used the data to perform a spectral and morphological study of the features of the Sgr B cloud and compare and contrast these to previous studies.

  12. Observational Results of a Multi-Telescope Campaign in Search of Interstellar Urea [(NH$_2$)$_2$CO

    CERN Document Server

    Remijan, Anthony J; McGuire, Brett A; Kuo, Hsin-Lun; Looney, Leslie W; Friedel, Douglas N; Golubiatnikov, G Yu; Lovas, Frank J; Ilyushin, V V; Alekseev, E A; Dyubko, S F; McCall, Benjamin J; Hollis, Jan M

    2014-01-01

    In this paper, we present the results of an observational search for gas phase urea [(NH$_2$)$_2$CO] observed towards the Sgr B2(N-LMH) region. We show data covering urea transitions from $\\sim$100 GHz to 250 GHz from five different observational facilities: BIMA, CARMA, the NRAO 12 m telescope, the IRAM 30 m telescope, and SEST. The results show that the features ascribed to urea can be reproduced across the entire observed bandwidth and all facilities by best fit column density, temperature, and source size parameters which vary by less than a factor of 2 between observations merely by adjusting for telescope-specific parameters. Interferometric observations show that the emission arising from these transitions is cospatial and compact, consistent with the derived source sizes and emission from a single species. Despite this evidence, the spectral complexity, both of (NH$_2$)$_2$CO and of Sgr B2(N), makes the definitive identification of this molecule challenging. We present observational spectra, laborator...

  13. GREEN BANK TELESCOPE AND SWIFT X-RAY TELESCOPE OBSERVATIONS OF THE GALACTIC CENTER RADIO MAGNETAR SGR J1745–2900

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Ryan S.; Archibald, Robert F.; Kaspi, Victoria M.; Scholz, Paul, E-mail: rlynch@physics.mcgill.ca [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)

    2015-06-20

    We present results from eight months of Green Bank Telescope 8.7 GHz observations and nearly 18 months of Swift X-ray telescope observations of the radio magnetar SGR J1745–2900. We tracked the radio and X-ray flux density, polarization properties, profile evolution, rotation, and single-pulse behavior. We identified two main periods of activity. The first is characterized by approximately 5.5 months of relatively stable evolution in radio flux density, rotation, and profile shape, while in the second these properties varied substantially. Specifically, a third profile component emerged and the radio flux also became more variable. The single pulse properties also changed, most notably with a larger fraction of pulses with pulse widths ∼5–20 ms in the erratic state. Bright single pulses are well described by a log-normal energy distribution at low energies, but with an excess at high energies. The 2–10 keV flux decayed steadily since the initial X-ray outburst, while the radio flux remained stable to within ∼20% during the stable state. A joint pulsar timing analysis of the radio and X-ray data shows a level of timing noise unprecedented in a radio magnetar, though during the time covered by the radio data alone the timing noise was at a level similar to that observed in other radio magnetars. While SGR J1745–2900 is similar to other radio magnetars in many regards, it differs by having experienced a period of relative stability in the radio that now appears to have ended, while the X-ray properties evolved independently.

  14. Monte Carlo simulations of alternative sky observation modes with the Cherenkov Telescope Array

    CERN Document Server

    Szanecki, M; Niedźwiecki, A; Sitarek, J; Bednarek, W

    2015-01-01

    We investigate possible sky survey modes with the Middle Sized Telescopes (MST, aimed at covering the energy range from $\\sim$100 GeV to 10 TeV) subsystem of the Cherenkov Telescope Array (CTA). We use the standard CTA tools, CORSIKA and sim_telarray, to simulate the development of gamma-ray showers, proton background and the telescope response. We perform simulations for the H.E.S.S.-site in Namibia, which is one of the candidate sites for the CTA experiment. We study two previously considered modes, parallel and divergent, and we propose a new, convergent mode with telescopes tilted toward the array center. For each mode we provide performance parameters crucial for choosing the most efficient survey strategy. For the non-parallel modes we study the dependence on the telescope offset angle. We show that use of both the divergent and convergent modes results in potential advantages in comparison with use of the parallel mode. The fastest source detection can be achieved in the divergent mode with larger offs...

  15. Launch in orbit of the telescope NINA for cosmic ray observations: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Sparvoli, R. E-mail: Sparvoli@roma2.infn.it; Bidoli, V.; Canestro, A.; Casolino, M.; De Pascale, M. P.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Murashov, A.; Voronov, S.; Bonvicini, V.; Cirami, R.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Bartalucci, S.; Ricci, M.; Adriani, O.; Papini, P.; Piccardi, S.; Spillantini, P.; Boezio, M.; Castellini, G

    2000-05-01

    On July the 10th, 1998 the telescope NINA was launched in space on board the Russian satellite Resurs-01 n.4. The scientific task of the mission is the study of the galactic, solar and anomalous components of the cosmic rays in the energy interval 10-200 MeV/n for contained particles. The core of NINA is a segmented silicon detector mounted onto the satellite so to point to the zenith. In this paper we report about the cosmic ray measurements performed by the telescope during its first 6 months of operation.

  16. Building Large Area CZT Imaging Detectors for a Wide-Field Hard X-ray Telescope - ProtoEXIST1

    CERN Document Server

    Hong, J; Grindlay, J; Chammas, N; Barthelemy, S; Baker, R; Gehrels, N; Nelson, K E; Labov, S; Collins, J; Cook, W R; McLean, R; Harrison, F

    2009-01-01

    We have constructed a moderately large area (32 cm2), fine pixel (2.5 mm pixel, 5 mm thick) CZT imaging detector which constitutes the first section of a detector module (256 cm2) developed for a balloon-borne wide-field hard X-ray telescope, ProtoEXIST1. ProtoEXIST1 is a prototype for the High Energy Telescope (HET) in the Energetic X-ray imaging Survey Telescope (EXIST), a next generation space-borne multi-wavelength telescope. We have constructed a large (nearly gapless) detector plane through a modularization scheme by tiling of a large number of 2 cm x 2 cm CZT crystals. Our innovative packaging method is ideal for many applications such as coded-aperture imaging, where a large, continuous detector plane is desirable for the optimal performance. Currently we have been able to achieve an energy resolution of 3.2 keV (FWHM) at 59.6 keV on average, which is exceptional considering the moderate pixel size and the number of detectors in simultaneous operation. We expect to complete two modules (512 cm2) withi...

  17. Discovery of Nine Gamma-Ray Pulsars in Fermi Large Area Telescope Data Using a New Blind Search Method

    OpenAIRE

    Pletsch, H. J.; Guillemot, L.; Allen, B.; Kramer, M.; Aulbert, C.; Fehrmann, H.; Ray, P.S.; Barr, E. D.; Belfiore, A.; Camilo, F.; Caraveo, P. A.; Çelik, O; Champion, D. J.; Dormody, M.; Eatough, R. P.

    2012-01-01

    We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient and incorporates several advances, including a metric-based gridding of the sear...

  18. Devasthal Fast Optical Telescope Observations of Wolf–Rayet Dwarf Galaxy Mrk 996

    Indian Academy of Sciences (India)

    S. Jaiswal; A. Omar

    2013-09-01

    The Devasthal Fast Optical Telescope (DFOT) is a 1.3 meter aperture optical telescope, recently installed at Devasthal, Nainital. We present here the first results using an H filter with this telescope on a Wolf–Rayet dwarf galaxy Mrk 996. The instrumental response and the H sensitivity obtained with the telescope are (3.3 ± 0.3) × 10-15 erg s-1 cm-2/counts s-1 and 7.5 × 10-17 erg s-1 cm-2 arcsec-2 respectively. The H flux and the equivalent width for Mrk 996 are estimated as (132 ± 37) × 10-14 erg s-1 cm-2 and ∼ 96 Å respectively. The star formation rate is estimated as 0.4 ± 0.1⊙ yr-1. Mrk 996 deviates from the radio-FIR correlation known for normal star forming galaxies with a deficiency in its radio continuum. The ionized gas as traced by Hα emission is found in a disk shape which is misaligned with respect to the old stellar disk. This misalignment is indicative of a recent tidal interaction in the galaxy. We believe that galaxy–galaxy tidal interaction is the main cause of the WR phase in Mrk 996.

  19. Collapse postulate for observables with continuous area

    International Nuclear Information System (INIS)

    In order to provide a mathematical framework for discussing the statistical correlations between the outcomes, when an arbitrary sequence of observables are measured, it is necessary to generalize the conventional von Neumann-Lueders collapse postulate to observables with a continuous spectrum. It is shown that the standard prescription in conventional quantum theory for the joint probabilities of compatible observables is sufficient to characterize, more or less completely, the appropriate ''generalized collapse postulate'' which associates with each observable a unique ''finitely additive expectation valued measure''. An interesting feature of the collapse associated with observables with continuous spectra, which again follows from the basic principles of conventional quantum theory, is that it must be formulated in terms of the so-called non-normal conditional expectations, which implies that the joint probabilities associated with successive observations of such observables are not in general σ-additive. The implications of this non-σ-additivity on the determination of expectation values, correlation functions etc., are also investigated. It is demonstrated that the basic prescriptions introduced in this paper constitute a natural completion of the framework of conventional quantum theory for discussing the statistics of an arbitrary sequence of observations

  20. DISCOVERY OF PULSED γ-RAYS FROM THE YOUNG RADIO PULSAR PSR J1028-5819 WITH THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of γ-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The γ-ray light curve shows two sharp peaks having phase separation of 0.460 ± 0.004, trailing the very narrow radio pulse by 0.200 ± 0.003 in phase, very similar to that of other known γ-ray pulsars. The measured γ-ray flux gives an efficiency for the pulsar of ∼10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819.

  1. DETERMINATION OF THE POINT-SPREAD FUNCTION FOR THE FERMI LARGE AREA TELESCOPE FROM ON-ORBIT DATA AND LIMITS ON PAIR HALOS OF ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Asano, K. [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551 (Japan); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [CNRS, IRAP, F-31028 Toulouse cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: mdwood@slac.stanford.edu, E-mail: mar0@uw.edu [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); and others

    2013-03-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from Almost-Equal-To 20 MeV to >300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of {gamma} rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broader than the pre-launch PSF. We checked for dependence of the PSF on the class of {gamma}-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. We found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low- and high-redshift BL Lac AGNs and the TeV blazars 1ES0229+200 and 1ES0347-121.

  2. DETERMINATION OF THE POINT-SPREAD FUNCTION FOR THE FERMI LARGE AREA TELESCOPE FROM ON-ORBIT DATA AND LIMITS ON PAIR HALOS OF ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from ≈20 MeV to >300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of γ rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broader than the pre-launch PSF. We checked for dependence of the PSF on the class of γ-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. We found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low- and high-redshift BL Lac AGNs and the TeV blazars 1ES0229+200 and 1ES0347–121.

  3. Development of the Model of Galactic Interstellar Emission for Standard Point-Source Analysis of Fermi Large Area Telescope Data

    CERN Document Server

    Acero, F; Ajello, M; Albert, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bellazzini, R; Bissaldi, E; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bregeon, J; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caragiulo, M; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cuoco, A; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Digel, S W; Di Venere, L; Drell, P S; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guiriec, S; Hadasch, D; Harding, A K; Hayashi, K; Hays, E; Hewitt, J W; Hill, A B; Horan, D; Hou, X; Jogler, T; Jóhannesson, G; Kamae, T; Kuss, M; Landriu, D; Larsson, S; Latronico, L; Li, J; Li, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Maldera, S; Malyshev, D; Manfreda, A; Martin, P; Mayer, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mirabal, N; Mizuno, T; Monzani, M E; Morselli, A; Nuss, E; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Pesce-Rollins, M; Piron, F; Pivato, G; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Remy, Q; Renault, N; Sánchez-Conde, M; Schaal, M; Schulz, A; Sgrò, C; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Vianello, G; Werner, M; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2016-01-01

    Most of the celestial gamma rays detected by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point and extended source studies rely on the modeling of this diffuse emission for accurate characterization. We describe here the development of the Galactic Interstellar Emission Model (GIEM) that is the standard adopted by the LAT Collaboration and is publicly available. The model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse Compton emission produced in the Galaxy. We also include in the GIEM large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric ...

  4. SUB-MILLIMETER TELESCOPE CO (2-1) OBSERVATIONS OF NEARBY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xue-Jian; Gu, Qiusheng [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wang, Zhong [Harvard-Smithsonian Center for Astrophysics, MS 66, 60 Garden Street, Cambridge, MA 02138 (United States); Wang, Junzhi [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Zhang, Zhi-Yu, E-mail: xjjiang@nju.edu.cn [The UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2015-01-20

    We present CO J = 2-1 observations toward 32 nearby gas-rich star-forming galaxies selected from the ALFALFA and Wide-field Infrared Survey Explorer (WISE) catalogs, using the Sub-millimeter Telescope (SMT). Our sample is selected to be dominated by intermediate-M {sub *} galaxies. The scaling relations between molecular gas, atomic gas, and galactic properties (stellar mass, NUV – r, and WISE color W3 – W2) are examined and discussed. Our results show the following. (1) In the galaxies with stellar mass M {sub *} ≤10{sup 10} M {sub ☉}, the H I fraction (f {sub H} {sub I} ≡ M {sub H} {sub I}/M {sub *}) is significantly higher than that of more massive galaxies, while the H{sub 2} gas fraction (f{sub H{sub 2}} ≡ M{sub H{sub 2}}/M {sub *}) remains nearly unchanged. (2) Compared to f{sub H{sub 2}}, f {sub H} {sub I} correlates better with both M {sub *} and NUV – r. (3) A new parameter, WISE color W3 – W2 (12-4.6 μm), is introduced, which is similar to NUV – r in tracing star formation activity, and we find that W3 – W2 has a tighter anti-correlation with log f{sub H{sub 2}} than the anti-correlation of (NUV – r)-f {sub H} {sub I}, (NUV – r)-f{sub H{sub 2}}, and (W3 – W2)-f {sub H} {sub I}. This indicates that W3 – W2 can trace the H{sub 2} fraction in galaxies. For the gas ratio M{sub H{sub 2}}/M {sub H} {sub I} , only in the intermediate-M {sub *} galaxies it appears to depend on M {sub *} and NUV – r. We find a tight correlation between the molecular gas mass M{sub H{sub 2}} and 12 μm (W3) luminosities (L {sub 12} {sub μm}), and the slope is close to unity (1.03 ± 0.06) for the SMT sample. This correlation may reflect that the cold gas and dust are well mixed on a global galactic scale. Using the all-sky 12 μm (W3) data available in WISE, this correlation can be used to estimate CO flux for molecular gas observations and can even predict H{sub 2} mass for star-forming galaxies.

  5. Quantum telescopes

    CERN Document Server

    Kellerer, Aglae

    2014-01-01

    In the 20th century, quantum mechanics connected the particle and wave concepts of light and thereby made mechanisms accessible that had never been imagined before. Processes such as stimulated emission and quantum entanglement have revolutionized modern technology. But even though astronomical observations rely on novel technologies, the optical layout of telescopes has fundamentally remained unchanged. While there is no doubt that Huyghens and Newton would be astounded by the size of our modern telescopes, they would nevertheless understand their optical design. The time may now have come to consider quantum telescopes, that make use of the fundamental scientific changes brought along by quantum mechanics. While one aim is to entertain our reader, our main purpose is to explore the possible future evolution of telescopes.

  6. Aerosol observation in Fengtai area, Beijing

    Institute of Scientific and Technical Information of China (English)

    Zengdong Liu; Jianguo Liu; Bei Wang; Fan Lu; Shuhua Huang; Dexia Wu; Daowen Han

    2008-01-01

    Measurements of aerosol number concentration and particulate matter with diameter less than 10μm (PM10) mass concentrations of urban background aerosols were performed in Fengtai area, Beijing in 2006. Black carbon (BC) was collected simultaneously from the ground and analyzed to determine the particulate matter components. To satisfy the interest in continuous monitoring of temporal and spatial distribution of aerosols, the relationship between extinction coefficient (visibility) measured by lidar remote sensing and the aerosol number concentration measured from the ground was derived by using statistical method. Vertical particle number concentration profile within the planetary boundary layer could be inversed through the lidar data as well as the statistical relation.

  7. Long term performance evaluation of the TACTIC imaging telescope using ∼400 h Crab Nebula observation during 2003–2010

    Indian Academy of Sciences (India)

    A K Tickoo; R Koul; R C Rannot; K K Yadav; P Chandra; V K Dhar; M K Koul; M Kothari; N K Agarwal; A Goyal; H C Goyal; S Kotwal; N Kumar; P Marandi; K Venugopal; K Chanchalani; N Bhatt; S Bhattacharyya; C Borwankar; N Chouhan; S R Kaul; A K Mitra; S Sahaynathan; M Sharma; K K Singh; C K Bhat

    2014-03-01

    The TeV atmospheric Cherenkov telescope with imaging camera (TACTIC) -ray telescope has been in operation at Mt. Abu, India since 2001 to study TeV -ray emission from celestial sources. During the last 10 years, apart from consistently detecting a steady signal from the Crab Nebula above ∼1.2 TeV energy, at a sensitivity level of ∼5.0 in ∼25 h, the telescope has also detected flaring activity from Mrk 421 and Mrk 501 on several occasions. Although we used Crab Nebula data partially, in some of the reported results, primarily for testing the validity of the full data analysis chain, the main aim of this work is to study the long term performance of the TACTIC telescope by using consolidated data collected between 2003 and 2010. The total on-source data, comprising ∼402 h, yields an excess of ∼(3742±192) -ray events with a statistical significance of ∼19.9 . The off-source data, comprising ∼107 h of observation, is found to be consistent with a no-emission hypothesis, as expected. The resulting -ray rate for the onsource data is determined to be ∼(9.31±0.48) h-1. A power law fit (d/d = $f_0E^{−}$) with $f_0 \\tilde (2.66 ± 0.29) × 10^{−11}$ cm-2 s-1 TeV-1 and $ \\tilde$ 2.56 ± 0.10 is found to provide reasonable fit to the inferred differential spectrum within statistical uncertainties. The spectrum matches reasonably well with that obtained by other groups. A brief summary of the improvements in the various subsystems of the telescope carried out recently, which has resulted in a substantial improvement in its detection sensitivity (viz., ∼5 in an observation period of ∼13 h as compared to ∼25 h earlier) are also presented in this paper. Encouraged by the detection of strong -ray signals from Mrk 501 and Mrk 421 on several occasions, there is considerable scope for the TACTIC telescope to monitor similar TeV -ray emission activity from other active galactic nuclei on a long-term basis.

  8. The spatial structure and temporal variability of Ganymede’s auroral ovals from Hubble Space Telescope observations

    Science.gov (United States)

    Musacchio, Fabrizio; Saur, Joachim; Roth, Lorenz; Retherford, Kurt D.; McGrath, Melissa A.; Feldman, Paul D.; Strobel, Darrel F.

    2015-11-01

    We analyze spectrally and spatially resolved images of Ganymede’s FUV-auroral ovals obtained during the past two decades by Hubble’s Space Telescope Imaging Spectrograph (HST/STIS). We find both, spatial inhomogeneities of the brightness-distribution on the observed disk as well as temporal variation as a function of Ganymede’s position relative to the Jovian current sheet. The brightness of the ovals is not equally distributed along the ovals, i.e., the Jupiter-facing side is always brighter than the anti-Jupiter side at least by ~60%. When Ganymede moves from high elevated magnetic latitudes towards the center region of the Jovian current sheet, the brightness of the aurora on the leading side increases by over 30% from ~80 Rayleigh up to ~108 Rayleigh. Simultaneously, inside the current sheet center the auroral ovals are displaced by an average of ~6° of planetographic latitude, i.e., the ovals shift furthermore down towards the planetographic equator on the leading side, and up towards the poles on the trailing side. Both effects, the increase of brightness and the moving of the ovals, are correlated to increased plasma interaction inside the current sheet. Ganymede’s electron-impact-excited auroral emissions are thought to be driven by electron acceleration by strong field-aligned currents at the boundary area between open and closed magnetic field lines of Ganymede’s mini-magnetosphere. The change of the auroral morphology is a direct response to the changing plasma environment, i.e., changing ram and thermal pressures. Thus, the investigation of the aurora proves to be a suitable diagnostic tool of the various processes that contribute to Ganymede’s complex plasma and magnetic field environment.

  9. Single dish performance of KVN 21-m radio telescopes:Simultaneous observations at 22 and 43 GHz

    CERN Document Server

    Lee, Sang-Sung; Oh, Chung Sik; Han, Seog-Tae; Je, Do-Heung; Kim, Kee-Tae; Wi, Seog-Oh; Cho, Se-Hyung; Sohn, Bong Won; Kim, Jaeheon; Lee, Jeewon; Oh, Se-Jin; Song, Min-Gyu; Kang, Jiman; Jung, Moon-Hee; Lee, Jeong Ae; Oh, Junghwan; Bae, Jae-Han; Yun, So-Young; Lee, Jung-Won; Kim, Bong Gyu; Chung, Hyunsoo; Roh, Duk-Gyoo; Lee, Chang Hoon; Kim, Hyun Goo; Kim, Hyo Ryoung; Yeom, Jae-Hwan; Kurayama, Tomoharu; Jung, Taehyun; Park, Pulun; Kim, Min Joong; Yoon, Dong-Hwan; Kim, Won-Ju

    2011-01-01

    We report simultaneous multi-frequency observing performance at 22 and 43 GHz of the 21-m shaped-Cassegrain radio telescopes of the Korean VLBI Network (KVN). KVN is the first millimeter-dedicated VLBI network in Korea having a maximum baseline length of 480 km. It currently operates at 22 and 43 GHz and planed to operate in four frequency bands, 22, 43, 86, and 129 GHz. The unique quasioptics of KVN enable simultaneous multi-frequency observations based on efficient beam filtering and accuarate antenna-beam alignment at 22 and 43 GHz. We found that the offset of the beams is within 20 degrees.

  10. Long-term observations of Uranus and Neptune at 90 GHz with the IRAM 30m telescope - (1985 -- 2005)

    OpenAIRE

    Kramer, C.; Moreno, R.; Greve, A.

    2008-01-01

    The planets Uranus and Neptune with small apparent diameters are primary calibration standards. We investigate their variability at ~90 GHz using archived data taken at the IRAM 30m telescope during the 20 years period 1985 to 2005. We calibrate the planetary observations against non-variable secondary standards (NGC7027, NGC7538, W3OH, K3-50A) observed almost simultaneously. Between 1985 and 2005, the viewing angle of Uranus changed from south-pole to equatorial. We find that the disk bright...

  11. Adaptive Optics at Optical Wavelengths: Test Observations of Kyoto 3DII Connected to Subaru Telescope AO188

    Science.gov (United States)

    Matsubayashi, K.; Sugai, H.; Shimono, A.; Akita, A.; Hattori, T.; Hayano, Y.; Minowa, Y.; Takeyama, N.

    2016-09-01

    Adaptive optics (AO) enables us to observe objects with high spatial resolution, which is important in most astrophysical observations. Most AO systems are operational at near-infrared wavelengths but not in the optical range, because optical observations require a much higher performance to obtain the same Strehl ratio as near-infrared observations. Therefore, to enable AO-assisted observations at optical wavelengths, we connected the Kyoto Tridimensional Spectrograph II (Kyoto 3DII), which can perform integral field spectroscopy, to the second generation AO system of the Subaru Telescope (AO188). We developed a new beam-splitter that reflects light below 594 nm for the wavefront sensors of AO188 and transmits above 644 nm for Kyoto 3DII. We also developed a Kyoto 3DII mount at the Nasmyth focus of the Subaru Telescope. In test observations, the spatial resolution of the combined AO188–Kyoto 3DII was higher than that in natural seeing conditions, even at 6500 Å. The full width at half maximum of an undersampled (1.5 spaxels) bright guide star (7.0 mag in the V-band) was 0.″12.

  12. Adaptive Optics at Optical Wavelengths: Test Observations of Kyoto 3DII Connected to Subaru Telescope AO188

    Science.gov (United States)

    Matsubayashi, K.; Sugai, H.; Shimono, A.; Akita, A.; Hattori, T.; Hayano, Y.; Minowa, Y.; Takeyama, N.

    2016-09-01

    Adaptive optics (AO) enables us to observe objects with high spatial resolution, which is important in most astrophysical observations. Most AO systems are operational at near-infrared wavelengths but not in the optical range, because optical observations require a much higher performance to obtain the same Strehl ratio as near-infrared observations. Therefore, to enable AO-assisted observations at optical wavelengths, we connected the Kyoto Tridimensional Spectrograph II (Kyoto 3DII), which can perform integral field spectroscopy, to the second generation AO system of the Subaru Telescope (AO188). We developed a new beam-splitter that reflects light below 594 nm for the wavefront sensors of AO188 and transmits above 644 nm for Kyoto 3DII. We also developed a Kyoto 3DII mount at the Nasmyth focus of the Subaru Telescope. In test observations, the spatial resolution of the combined AO188-Kyoto 3DII was higher than that in natural seeing conditions, even at 6500 Å. The full width at half maximum of an undersampled (1.5 spaxels) bright guide star (7.0 mag in the V-band) was 0.″12.

  13. Space Telescope and Optical Reverberation Mapping Project. I. Ultraviolet Observations of the Seyfert 1 Galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope

    CERN Document Server

    De Rosa, G; Ely, J; Kriss, G A; Crenshaw, D M; Horne, Keith; Korista, K T; Netzer, H; Pogge, R W; Arevalo, P; Barth, A J; Bentz, M C; Brandt, W N; Breeveld, A A; Brewer, B J; Bonta, E Dalla; De Lorenzo-Caceres, A; Denney, K D; Dietrich, M; Edelson, R; Evans, P A; Fausnaugh, M M; Gehrels, N; Gelbord, J M; Goad, M R; Grier, C J; Grupe, D; Hall, P B; Kaastra, J; Kelly, B C; Kennea, J A; Kochanek, C S; Lira, P; Mathur, S; McHardy, I M; Nousek, J A; Pancoast, A; Papadakis, I; Pei, L; Schimoia, J S; Siegel, M; Starkey, D; Treu, T; Uttley, P; Vaughan, S; Vestergaard, M; Villforth, C; Yan, H; Young, S; Zu, Y

    2015-01-01

    We describe the first results from a six-month long reverberation-mapping experiment in the ultraviolet based on 170 observations of the Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Significant correlated variability is found in the continuum and broad emission lines, with amplitudes ranging from ~30% to a factor of two in the emission lines and a factor of three in the continuum. The variations of all the strong emission lines lag behind those of the continuum, with He II 1640 lagging behind the continuum by ~2.5 days and Lyman alpha 1215, C IV 1550, and Si IV 1400 lagging by ~5-6 days. The relationship between the continuum and emission lines is complex. In particular, during the second half of the campaign, all emission-line lags increased by a factor of 1.3-2 and differences appear in the detailed structure of the continuum and emission-line light curves. Velocity-resolved cross-correlation analysis shows coherent structure in lag versus line-of-sight veloc...

  14. Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope

    OpenAIRE

    Wagner, Robert

    2008-01-01

    Since 2004, the MAGIC gamma-ray telescope has newly discovered 6 TeV blazars. The total set of 13 MAGIC-detected active galactic nuclei includes well-studied objects at other wavelengths like Markarian 501 and the giant radio galaxy M 87, but also the distant the flat-spectrum radio quasar 3C 279, and the newly discovered TeV gamma-ray emitter S5 0716+71. In addition, also long-term and multi-wavelength studies on well-known TeV blazars and systematic searches for new TeV blazars have been...

  15. Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope

    OpenAIRE

    Wagner, Robert; Collaboration, for the MAGIC

    2008-01-01

    Since 2004, the MAGIC gamma-ray telescope has newly discovered 6 TeV blazars. The total set of 13 MAGIC-detected active galactic nuclei includes well-studied objects at other wavelengths like Markarian 501 and the giant radio galaxy M87, but also the distant the flat-spectrum radio quasar 3C 279, and the newly discovered TeV gamma-ray emitter S5 0716+71. In addition, also long-term and multi-wavelength studies on well-known TeV blazars and systematic searches for new TeV blazars have been car...

  16. Gamma large area silicon telescope: Applying SI strip detector technology to the detection of gamma rays in space

    Science.gov (United States)

    Atwood, W. B.; Bloom, E. D.; Godfrey, G. L.; Hertz, P. L.; Lin, Ying-Chi; Nolan, P. L.; Snyder, A. E.; Taylor, R. E.; Wood, K. S.; Michelson, P. F.

    1992-12-01

    The recent discoveries and excitement generated by EGRET (Energetic Gamma Ray Experiment Telescope) (presently operating on CGRO (Compton Gamma Ray Observatory)) has prompted an investigation into modern technologies ultimately leading to the next generation space based gamma ray telescope. The goal is to design a detector that would increase the data acquisition rate by almost two orders of magnitude beyond EGRET, while at the same time improving on the angular resolution, the energy measurement of reconstructed gamma rays and the triggering capability of the instrument. The proposed GLAST (Gamma Ray Large Area Silicon Telescope) instrument is based on silicon particle detectors that offer the advantages of no consumables, no gas volume, robust (versus fragile), long lived, and self triggering. The GLAST detector is roughly modeled after EGRET in that a tracking module precedes a calorimeter. The GLAST tracker has planes of cross strip (x, y) 300 micrometer match silicon detectors coupled to a thin radiator to measure the coordinates of converted electron-positron pairs. An angular resolution of 0.1 deg at high energy is possible (the low energy angular resolution 100 MeV would be about 2 deg, limited by multiple scattering). The increased depth of the GLAST calorimeter over EGRET's extends the energy range to about 300 GeV.

  17. THE TRUE DURATIONS OF STARBURSTS: HUBBLE SPACE TELESCOPE OBSERVATIONS OF THREE NEARBY DWARF STARBURST GALAXIES

    International Nuclear Information System (INIS)

    The duration of a starburst is a fundamental parameter affecting the evolution of galaxies yet, to date, observational constraints on the durations of starbursts are not well established. Here we study the recent star formation histories of three nearby dwarf galaxies to rigorously quantify the duration of their starburst events using a uniform and consistent approach. We find that the bursts range from ∼200 to ∼400 Myr in duration resolving the tension between the shorter timescales often derived observationally with the longer timescales derived from dynamical arguments. If these three starbursts are typical of starbursts in dwarf galaxies, then the short timescales (3-10 Myr) associated with starbursts in previous studies are best understood as 'flickering' events which are simply small components of the larger starburst. In this sample of three nearby dwarfs, the bursts are not localized events. All three systems show bursting levels of star formation in regions of both high and low stellar density. The enhanced star formation moves around the galaxy during the bursts and covers a large fraction of the area of the galaxy. These massive, long-duration bursts can significantly affect the structure, dynamics, and chemical evolution of the host galaxy and can be the progenitors of 'superwinds' that drive much of the recently chemically enriched material from the galaxy into the intergalactic medium.

  18. How many radio-loud quasars can be detected by the Gamma-Ray Large Area Space Telescope?

    OpenAIRE

    Cao, Xinwu; Bai, J. M.

    2007-01-01

    In the unification scheme, radio quasars and FR II radio galaxies come from the same parent population, but viewed at different angles. Based on the Comptonization models for the gamma-ray emission from active galactic nuclei (AGNs), we estimate the number of radio quasars and FR II radio galaxies to be detected by the Gamma-Ray Large Area Space Telescope (GLAST) using the luminosity function (LF) of their parent population derived from the flat-spectrum radio quasar (FSRQ) LF. We find that ~...

  19. Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope

    Science.gov (United States)

    Ajello, M.; Albert, A.; Anderson, B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cecchi, C.; Chekhtman, A.; Ciprini, S.; Cohen-Tanugi, J.; Conrad, J.; Costanza, F.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Favuzzi, C.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Glanzman, T.; Godfrey, G.; Guiriec, S.; Horan, D.; Jóhannesson, G.; Katsuragawa, M.; Kensei, S.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lubrano, P.; Madejski, G. M.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Negro, M.; Nuss, E.; Okada, C.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Sánchez-Conde, M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Takahashi, H.; Thayer, J. B.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Wood, K. S.; Wood, M.; Zaharijas, G.; Zimmer, S.; Fermi-LAT Collaboration

    2016-04-01

    We report on the search for spectral irregularities induced by oscillations between photons and axionlike-particles (ALPs) in the γ -ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5 ×10-12 GeV-1 for ALP masses 0.5 ≲ma≲5 neV at 95% confidence. The limits are competitive with the sensitivity of planned laboratory experiments, and, together with other bounds, strongly constrain the possibility that ALPs can reduce the γ -ray opacity of the Universe.

  20. Design and Initial Tests of the Tracker-Converter ofthe Gamma-ray Large Area Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W.B.; Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; De; Drell, P.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Germani, S.; Giannitrapani, R.; Giglietto, N.; /UC, Santa Cruz /INFN, Pisa /Pisa U. /INFN, Trieste /INFN,

    2007-04-16

    The Tracker subsystem of the Large Area Telescope (LAT) science instrument of the Gamma-ray Large Area Space Telescope (GLAST) mission has been completed and tested. It is the central detector subsystem of the LAT and serves both to convert an incident gamma-ray into an electron-positron pair and to track the pair in order to measure the gamma-ray direction. It also provides the principal trigger for the LAT. The Tracker uses silicon strip detectors, read out by custom electronics, to detect charged particles. The detectors and electronics are packaged, along with tungsten converter foils, in 16 modular, high-precision carbon-composite structures. It is the largest silicon-strip detector system ever built for launch into space, and its aggressive design emphasizes very low power consumption, passive cooling, low noise, high efficiency, minimal dead area, and a structure that is highly transparent to charged particles. The test program has demonstrated that the system meets or surpasses all of its performance specifications as well as environmental requirements. It is now installed in the completed LAT, which is being prepared for launch in early 2008.

  1. Observations in the 1.3 and 1.5 THz Atmospheric Windows with the Receiver Lab Telescope

    CERN Document Server

    Marrone, D P; Tong, E; Paine, S N; Loudkov, D; Kawamura, J H; Luhr, D; Barrientos, C

    2005-01-01

    The Receiver Lab Telescope (RLT) is a ground-based terahertz telescope; it is currently the only instrument producing astronomical data between 1 and 2 THz. The capabilities of the RLT have been expanding since observations began in late 2002. Initial observations were limited to the 850 GHz and 1.03 THz windows due to the availability of solid state local oscillators. In the last year we have begun observations with new local oscillators for the 1.3 and 1.5 THz atmospheric windows. These oscillators provide access to the 11-10 and 13-12 lines of CO at 1.267 and 1.497 THz, as well as the [N II] line at 1.461 THz. We report on our first measurements of these high CO transitions, which represent the highest-frequency detections ever made from the ground. We also present initial observations of [N II] and discuss the implications of this non-detection for the standard estimates of the strength of this line.

  2. Observations of the magnetars 4U 0142+61 and 1E 2259+586 with the MAGIC telescopes

    CERN Document Server

    Aleksić, J; Antoranz, P; Asensio, M; de Almeida, U Barres; Barrio, J A; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnefoy, S; Bonnoli, G; Tridon, D Borla; Bretz, T; Carmona, E; Carosi, A; Fidalgo, D Carreto; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadamek, A; Hadasch, D; Herrero, A; Hose, J; Hrupec, D; Jankowski, F; Kadenius, V; Klepser, S; Knoetig, M L; Krähenbühl, T; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Leonardo, E; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Masbou, J; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nieto, D; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Partini, S; Persic, M; Pilia, M; Prada, F; Moroni, P G Prada; Prandini, E; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Weitzel, Q; Zandanel, F; Zanin, R; Rea, N

    2012-01-01

    Magnetars are an extreme, highly magnetized class of isolated neutron stars whose large X-ray luminosity is believed to be driven by their high magnetic field. In this work we study for the first time the possible very high energy gamma-ray emission above 100 GeV from magnetars, observing the sources 4U 0142+61 and 1E 2259+586. We observed the two sources with atmospheric Cherenkov telescopes in the very high energy range (E > 100 GeV). 4U 0142+61 was observed with the MAGIC I telescope in 2008 for ~25 h and 1E 2259+586 was observed with the MAGIC stereoscopic system in 2010 for ~14 h. The data were analyzed with the standard MAGIC analysis software. Neither magnetar was detected. Upper limits to the differential and integral flux above 200 GeV were computed using the Rolke algorithm. We obtain integral upper limits to the flux of 1.52*10^-12cm^-2 s^-1 and 2.7*10^-12cm^-2 s^-1 with a confidence level of 95% for 4U 0142+61 and 1E 2259+586, respectively. The resulting differential upper limits are presented tog...

  3. The 2006 SPIE Symposium on Astronomical Telescopes and Instrumentation ? Observing the Universe from Ground and Space

    Science.gov (United States)

    Moorwood, A.

    2006-06-01

    The most recent of these biennial SPIE (The International Society for Optical Engineering) Symposia was held from 24-31 May in the Orlando World Center Marriott Resort & Convention Center in Florida, USA. Over the last decade, these meetings have grown to become the main forum for presenting and discussing all aspects of ground-based, airborne and space telescopes and their instrumentation, including associated advances in technology, software, operations and even astronomical results. As a consequence the meetings are large and well attended by people at all levels in the process of initiating, approving, implementing and operating astronomical projects and facilities. This year there were ~ 1700 registered participants who presented ~ 1600 papers and posters in the following 12 parallel conferences which formed the heart of the meeting.

  4. Simulation of autonomous observing with a ground-based telescope: the LSST experience

    Science.gov (United States)

    Ridgway, Stephen; Cook, Kem; Miller, Michelle; Petry, Catherine; Chandrasekharan, Srinivasan; Saha, Abhijit; Allsman, Robyn; Axelrod, Timothy; Claver, Charles; Delgado, Francisco; Ivezic, Zeljko; Jones, R. Lynne; Krughoff, Simon; Pierfederici, Francesco; Pinto, Phillip

    2010-07-01

    A survey program with multiple science goals will be driven by multiple technical requirements. On a ground-based telescope, the variability of conditions introduces yet greater complexity. For a program that must be largely autonomous with minimal dwell time for efficiency it may be quite difficult to foresee the achievable performance. Furthermore, scheduling will likely involve self-referential constraints and appropriate optimization tools may not be available. The LSST project faces these issues, and has designed and implemented an approach to performance analysis in its Operations Simulator and associated post-processing packages. The Simulator has allowed the project to present detailed performance predictions with a strong basis from the engineering design and measured site conditions. At present, the Simulator is in regular use for engineering studies and science evaluation, and planning is underway for evolution to an operations scheduling tool. We will describe the LSST experience, emphasizing the objectives, the accomplishments and the lessons learned.

  5. The Cosmic Ray Energy Spectrum Observed with the Surface Detector of the Telescope Array Experiment

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zhou, X; Zollinger, R R; Zundel, Z

    2012-01-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays for energies above 1.6x10^(18) eV in its first three years of operation. The spectrum shows a dip at an energy of 5x10^(18) eV and a steepening at 5x10^(19) eV which is consistent with the expectation from the GZK cutoff. Here we use a new technique that involves generating a complete simulation of the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the "thinning" approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.

  6. Energy Spectrum of Ultra-High Energy Cosmic Rays Observed with the Telescope Array Using a Hybrid Technique

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, S; Martens, K; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Urban, F; Vasiloff, G; Wada, Y; Wong, T; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zhou, X; Zollinger, R; Zundel, Z

    2013-01-01

    We measure the spectrum of cosmic rays with energies greater than $10^{18.2}$ eV with the Fluorescence Detectors (FDs) and the Surface Detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27 2008 to September 7 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.

  7. Energy Spectrum of Ultra-High Energy Cosmic Rays Observed with the Telescope Array Using a Hybrid Technique

    OpenAIRE

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; B.G. Cheon; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.

    2013-01-01

    We measure the spectrum of cosmic rays with energies greater than $10^{18.2}$ eV with the Fluorescence Detectors (FDs) and the Surface Detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27 2008 to September 7 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is ...

  8. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  9. NASA's Orbital Debris Optical and IR Ground-Based Observing Program Utilizing the MCAT, UKIRT, and Magellan Telescopes

    Science.gov (United States)

    Lederer, Susan; Cowardin, H. M.; Buckalew, B.; Frith, J.; Hickson, P.; Pace, L.; Matney, M.; Anz-Meador, P.; Seitzer, P.; Stansbery, E.; Glesne, T.

    2016-01-01

    Characterizing debris in Earth-orbit has become increasingly important as the population growth rises steadily, posing greater and greater threats to active satellites with each passing year. Currently, the Joint Space Operations is tracking over 23,000 pieces of debris, ranging in size from 1-meter and larger in geosychronous orbits (GEO) to 10-cm and larger at low-Earth orbits (LEO). Model estimates suggest that there may be more than 500,000 pieces of spacecraft debris larger than 1 cm currently in orbit around the Earth. With such a small fraction of the total population being tracked, and new break-ups occurring in LEO, GEO, and Geo Transfer Orbits, new assets, techniques, and approaches for characterizing this debris are needed. With this in mind, NASA's Orbital Debris Program Office has actively tasked a suite of telescopes around the world. In 2015, the newly-built 1.3m optical Meter Class Autonomous Telescope (MCAT) came on-line on Ascension Island in the South Atlantic Ocean and is currently in its commissioning phase. MCAT is designed to track Earth-orbiting objects above 200km, conduct surveys at GEO, and work in tandem with a newly-installed Raven-class commercial-off-the-shelf system, a 0.4-meter telescope co-located on Ascension with a field-of-view similar to MCAT's and research-grade instrumentation designed to complement MCAT for observations taken either simultaneously or in tandem. The 3.8m infrared UKIRT telescope on Mauna Kea, Hawaii, has been heavily tasked throughout 2015 and into 2016, collecting data on individual targets as well as in survey modes to study both the general GEO population as well as an individual break-up event of a BRIZ-M Rocket body that occurred in January 2016. Data collected include photometry and spectroscopy in the near-Infrared (0.85-2.5 m) and the mid-infrared (8-16 m). Finally, the 6.5-m Baade Magellan telescope at Las Campanas Observatory in Chile was used to collect optical photometric survey data in October

  10. Thin fused silica optics for a high angular resolution and large collecting area X Ray telescope after Chandra

    Science.gov (United States)

    Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero

    2014-08-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1o in diameter).

  11. The Star Formation Histories of Local Group Dwarf Galaxies. I. Hubble Space Telescope/Wide Field Planetary Camera 2 Observations

    Science.gov (United States)

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-01

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ~ 5 Gyr (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ~ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M 107 M ⊙) and is largely explained by environment; (5) the distinction between "ultra-faint" and "classical" dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  12. A limit on the ultra-high-energy neutrino flux from lunar observations with the Parkes radio telescope

    CERN Document Server

    Bray, J D; Roberts, P; Reynolds, J E; James, C W; Phillips, C J; Protheroe, R J; McFadden, R A; Aartsen, M G

    2015-01-01

    We report a limit on the ultra-high-energy neutrino flux based on a non-detection of radio pulses from neutrino-initiated particle cascades in the Moon, in observations with the Parkes radio telescope undertaken as part of the LUNASKA project. Due to the improved sensitivity of these observations, which had an effective duration of 127 hours and a frequency range of 1.2-1.5 GHz, this limit extends to lower neutrino energies than those from previous lunar radio experiments, with a detection threshold below 10^20 eV. The calculation of our limit allows for the possibility of lunar-origin pulses being misidentified as local radio interference, and includes the effect of small-scale lunar surface roughness. The targeting strategy of the observations also allows us to place a directional limit on the neutrino flux from the nearby radio galaxy Centaurus A.

  13. Whole earth telescope observations of the white dwarf G29-38 - Phase variations of the 615 second period

    International Nuclear Information System (INIS)

    An extensive set of high-speed photometric observations obtained with the Whole Earth Telescope network is used to show that the complex light curve of the ZZ Zeti (DAV) star G29-38 is dominated by a single, constant amplitude period of 615 s during the time span of these observations. The pulse arrival times for this period exhibit a systematic variation in phase readily explained by light-travel time effects produced by reflex orbital motion about an unseen companion. The best-fit model to the observations indicates a highly eccentric orbit, a period of 109 + or - 13 days and a minimum mass of 0.5 solar mass for the companion. 23 refs

  14. On the telescopic disks of stars - a review and analysis of stellar observations from the early 17th through the middle 19th centuries

    CERN Document Server

    Graney, Christopher M

    2010-01-01

    Since the dawn of telescopic astronomy astronomers have observed and measured the "spurious" telescopic disks of stars, generally reporting that brighter stars have larger disks than fainter stars. Early observers such as Galileo Galilei interpreted these disks as being the physical bodies of stars; later observers such as William Herschel understood them to be spurious; some, such as Christian Huygens, argued that stars show no disks at all. In the early 19th century George B. Airy produced a theoretical explanation of star images sufficient to explain all historical observations, but astronomers were slow to fully recognize this. Even today conventional wisdom concerning stars and telescopes stands at odds to both historical observations and Airy's theory. We give a detailed analysis of both historical observations and Airy's theory, illustrating how Airy's theory explains the historical observations, from Galileo to Huygens to Herschel. We argue that the observations themselves appear in all cases to be va...

  15. Knot a Bad Idea: Testing BLISS Mapping for Spitzer Space Telescope Eclipse Observations

    CERN Document Server

    Schwartz, Joel C

    2016-01-01

    [Abridged] Much of transiting exoplanet science relies on high-precision photometry. The current generation of instruments exhibit sensitivity variations greater than the astrophysical signals. For the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope, a popular way to handle this is BiLinearly-Interpolated Subpixel Sensitivity mapping (BLISS). We use examples of posterior probability functions to show that this scheme can misfit or bias astrophysical parameters, and a toy model to show that underestimated uncertainties may even happen in very simple cases. BLISS maps of detector sensitivity can also be unreliable if the noise in the data is low. To know the astrophysical and detector models a priori, we construct a model of \\emph{Spitzer} light curves with $\\sim10^{3}$ data. We compare standard BLISS to a variant in which the knot values are full-fledged parameters in the MCMC, and to a standard polynomial model. Both types of BLISS fit the eclipse depth similarly, and the standard BLISS knots vary...

  16. HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE NUCLEUS OF COMET C/2012 S1 (ISON)

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, Philippe L.; Toth, Imre [Laboratoire d' Astrophysique de Marseille, UMR 7326, CNRS and Aix Marseille Université, 38 rue Frédéric Joliot-Curie, F-13388 Marseille Cedex 13 (France); Weaver, Harold A., E-mail: philippe.lamy@lam.fr [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099 (United States)

    2014-10-10

    We report on the analysis of several sequences of broadband visible images of comet C/2012 S1 (ISON) taken with the Wide Field Camera 3 of the Hubble Space Telescope on 2013 April 10, May 8, October 9, and November 1 in an attempt to detect and characterize its nucleus. Whereas the overwhelming coma precluded the detection of the nucleus in the first two sequences, the contrast was sufficient in early October to unambiguously retrieve the signal from the nucleus. Two images taken within a few minutes led to similar V magnitudes for the nucleus of 21.97 and 22.0 with a 1σ uncertainty of 0.065. Assuming a standard value for the geometric albedo (0.04) and a linear phase function with a coefficient of 0.04 mag deg{sup –1}, these V values imply that the nucleus radius is 0.68 ± 0.02 km. Although this result does depend on these two assumptions, we argue that the radius most likely lies in the range 0.6-0.9 km. This result is consistent with the constraints derived from the water production rates reported by Combi et al. The last sequence of images in 2013 November revealed temporal variation of the innermost coma. If attributed to a single rotating jet, this coma brightness variation suggests the rotational period of the nucleus may be close to ∼10.4 hr.

  17. Hubble Space Telescope Observations of cD Galaxies and their Globular Cluster Systems

    CERN Document Server

    Jordan, A; West, M J; Marzke, R O; Minniti, D; Rejkuba, M; Jordan, Andres; Cote, Patrick; West, Michael J.; Marzke, Ronald O.; Minniti, Dante; Rejkuba, Marina

    2004-01-01

    We have used WFPC2 on the Hubble Space Telescope to obtain F450W and F814W images of four cD galaxies (NGC 541 in Abell 194, NGC 2832 in Abell 779, NGC 4839 in Abell 1656 and NGC 7768 in Abell 2666) in the range 5400 < cz < 8100 km s^{-1}. For NGC 541, the HST data are supplemented by ground-based B and I images obtained with the FORS1 on the VLT. We present surface brightness and color profiles for each of the four galaxies, confirming their classification as cD galaxies. Isophotal analyses reveal the presence of subarcsecond-scale dust disks in the nuclei of NGC 541 and NGC 7768. Despite the extreme nature of these galaxies in terms of spatial extent and luminosity, our analysis of their globular cluster systems reveals no anomalies in terms of specific frequencies, metallicity gradients, average metallicities, or the metallicity offset between the globulars and the host galaxy. We show that the latter offset appears roughly constant at \\Delta [Fe/H] ~ 0.8 dex for early-type galaxies spanning a lumino...

  18. Second Epoch Hubble Space Telescope Observations of Kepler's Supernova Remnant: The Proper Motions of Balmer Filaments

    CERN Document Server

    Sankrit, Ravi; Blair, William P; Long, Knox S; Williams, Brian J; Borkowski, Kazimierz J; Patnaude, Daniel J; Reynolds, Stephen P

    2015-01-01

    We report on the proper motions of Balmer-dominated filaments in Kepler's supernova remnant using high resolution images obtained with the Hubble Space Telescope at two epochs separated by about 10 years. We use the improved proper motion measurements and revised values of shock velocities to derive a distance to Kepler of 5.1 [+0.8, -0.7] kpc. The main shock around the northern rim of the remnant has a typical speed of 1690 km/s and is encountering material with densities of about 8 cm^-3. We find evidence for the variation of shock properties over small spatial scales, including differences in the driving pressures as the shock wraps around a curved cloud surface. We find that the Balmer filaments ahead of the ejecta knot on the northwest boundary of the remnant are becoming fainter and more diffuse. We also find that the Balmer filaments associated with circumstellar material in the interior regions of the remnant are due to shocks with significantly lower velocities and that the brightness variations amon...

  19. Hubble Space Telescope Observations of the CFA Seyfert 2 Galaxies: The Fueling of Active Galactic Nuclei

    Science.gov (United States)

    Martini, Paul; Pogge, Richard W.

    1999-12-01

    We present an investigation of possible fueling mechanisms operating in the inner kiloparsec of Seyfert galaxies. We analyze visible and near-infrared Hubble Space Telescope images of 24 Seyfert 2 galaxies from the CfA Redshift Survey sample. In particular, we are searching for the morphological signatures of dynamical processes responsible for transporting gas from kiloparsec scales into the nucleus. The circumnuclear regions are very rich in gas and dust, often taking the form of nuclear spiral dust lanes on scales of a few hundred parsecs. While these nuclear spirals are found in 20 of our 24 Seyfert galaxies, we find only five nuclear bars among the entire sample, strongly reinforcing the conclusions of other investigators that nuclear bars are not the primary means of transporting this material into the nucleus. An estimate of the gas density in the nuclear spirals, based on extinction measurements, suggests that the nuclear spiral dust lanes are probably shocks in nuclear gas disks that are not strongly self-gravitating. Since shocks can dissipate energy and angular momentum, these spiral dust lanes may be the channels by which gas from the host galaxy disks is being fed into the central engines.

  20. Hubble Space Telescope observations of the host galaxies and environments of calcium-rich supernovae

    CERN Document Server

    Lyman, J D; James, P A; Angus, C R; Church, R P; Davies, M B; Tanvir, N R

    2016-01-01

    Calcium-rich supernovae represent a significant challenge for our understanding of the fates of stellar systems. They are less luminous than other supernova (SN) types and they evolve more rapidly to reveal nebular spectra dominated by strong calcium lines with weak or absent signatures of other intermediate- and iron-group elements, which are seen in other SNe. Strikingly, their explosion sites also mark them out as distinct from other SN types. Their galactocentric offset distribution is strongly skewed to very large offsets (around one third are offset greater than 20 kpc), meaning they do not trace the stellar light of their hosts. Many of the suggestions to explain this extreme offset distribution have invoked the necessity for unusual formation sites such as globular clusters or dwarf satellite galaxies, which are therefore difficult to detect. Building on previous work attempting to detect host systems of nearby Ca-rich SNe, we here present Hubble Space Telescope imaging of 5 members of the class - 3 e...

  1. Hubble Space Telescope NICMOS Polarization Observations of Three Edge-on Massive YSOs

    CERN Document Server

    Simpson, Janet P; Colgan, Sean W J; Cotera, Angela S; Erickson, Edwin F; Hines, Dean C; Whitney, Barbara A

    2009-01-01

    Massive young stellar objects (YSOs), like low-mass YSOs, appear to be surrounded by optically thick envelopes and/or disks and have regions, often bipolar, that are seen in polarized scattered light at near-infrared wavelengths. We are using the 0.2'' spatial resolution of NICMOS on Hubble Space Telescope to examine the structure of the disks and outflow regions of massive YSOs in star-forming regions within a few kpc of the Sun. Here we report on 2 micron polarimetry of NGC 6334 V and S255 IRS1. NGC 6334 V consists of a double-lobed bright reflection nebula seen against a dark region, probably an optically thick molecular cloud. Our polarization measurements show that the illuminating star lies ~ 2'' south of the line connecting the two lobes; we do not detect this star at 2 micron, but there are a small radio source and a mid-infrared source at this location. S255 IRS1 consists of two YSOs (NIRS1 and NIRS3) with overlapping scattered light lobes and luminosities corresponding to early B stars. Included in ...

  2. Constraining the Dark Matter decay lifetime with very deep observations of the Perseus cluster with the MAGIC telescopes

    CERN Document Server

    Palacio, J; Acosta, M Vazquez; Colin, P; Maggio, C; Rico, J

    2015-01-01

    We present preliminary results on Dark Matter searches from observations of the Perseus galaxy cluster with the MAGIC Telescopes. MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. Galaxy clusters are the largest known gravitationally bound structures in the Universe, with masses of ~10^15 Solar masses. There is strong evidence that galaxy clusters are Dark Matter dominated objects, and therefore promising targets for Dark Matter searches, particularly for decay signals. MAGIC has taken almost 300 hours of data on the Perseus Cluster between 2009 and 2015, the deepest observational campaign on any galaxy cluster performed so far in the very high energy range of the electromagnetic spectrum. We analyze here a small sample of this data and search for signs of dark matter in the mass range between 100 GeV and 20 TeV. We apply a likelihood analysis optimized for the spectral and morphological features expected in the dark matter decay signals. This i...

  3. Analysis of the GPS Observations of the Site Survey at Sheshan 25-m Radio Telescope in August 2008

    Science.gov (United States)

    Liu, L.; Cheng, Z. Y.; Li, J. L.

    2010-01-01

    The processing of the GPS observations of the site survey at Sheshan 25-m radio telescope in August 2008 is reported. Because each session in this survey is only about six hours, not allowing the subdaily high frequency variations in the station coordinates to be reasonably smoothed, and because there are serious cycle slips in the observations and a large volume of data would be rejected during the software automatic adjustment of slips, the ordinary solution settings of GAMIT needed to be adjusted by loosening the constraints in the a priori coordinates to 10 m, adopting the "quick" mode in the solution iteration, and combining Cview manual operation with GAMIT automatic fixing of cycle slips. The resulting coordinates of the local control polygon in ITRF2005 are then compared with conventional geodetic results. Due to large rotations and translations in the two sets of coordinates (geocentric versus quasi-topocentric), the seven transformation parameters cannot be solved for directly. With various trial solutions it is shown that with a partial pre-removal of the large parameters, high precision transformation parameters can be obtained with post-fit residuals at the millimeter level. This analysis is necessary to prepare the follow-on site and transformation survey of the VLBI and SLR telescopes at Sheshan

  4. BRIGHT ACTIVE GALACTIC NUCLEI SOURCE LIST FROM THE FIRST THREE MONTHS OF THE FERMI LARGE AREA TELESCOPE ALL-SKY SURVEY

    International Nuclear Information System (INIS)

    The first three months of sky-survey operation with the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope reveal 132 bright sources at |b|>10 deg. with test statistic greater than 100 (corresponding to about 10σ). Two methods, based on the CGRaBS, CRATES, and BZCat catalogs, indicate high-confidence associations of 106 of these sources with known active galactic nuclei (AGNs). This sample is referred to as the LAT Bright AGN Sample (LBAS). It contains two radio galaxies, namely, Centaurus A and NGC 1275, and 104 blazars consisting of 58 flat spectrum radio quasars (FSRQs), 42 BL Lac objects, and 4 blazars with unknown classification. Four new blazars were discovered on the basis of the LAT detections. Remarkably, the LBAS includes 10 high-energy-peaked BL Lacs (HBLs), sources which were previously difficult to detect in the GeV range. Another 10 lower-confidence associations are found. Only 33 of the sources, plus two at |b| < 10 deg., were previously detected with Energetic Gamma-Ray Experiment Telescope(EGRET), probably due to variability. The analysis of the γ-ray properties of the LBAS sources reveals that the average GeV spectra of BL Lac objects are significantly harder than the spectra of FSRQs. No significant correlation between radio and peak γ-ray fluxes is observed. Blazar log N-log S distributions and luminosity functions are constructed to investigate the evolution of the different blazar classes, with positive evolution indicated for FSRQs but none for BL Lacs. The contribution of LAT blazars to the total extragalactic γ-ray intensity is estimated.

  5. SPITZER, VERY LARGE TELESCOPE, AND VERY LARGE ARRAY OBSERVATIONS OF THE GALACTIC LUMINOUS BLUE VARIABLE CANDIDATE HD 168625

    International Nuclear Information System (INIS)

    We present mid-IR and radio observations of the Galactic luminous blue variables (LBVs) candidate HD 168625 and its associated nebula. We obtained mid-IR spectroscopic observations using the Infrared Spectrograph on board the Spitzer Space Telescope, and performed mid-IR and radio imaging observations using VISIR on the Very Large Telescope and the Very Large Array with comparable angular resolution. Our spectroscopic observations detected spectral features attributable to polycyclic aromatic hydrocarbons (PAHs) and therefore indicate the presence of a photodissociation region (PDR) around the ionized nebula. This result increases the number of LBVs and LBV candidates where a PDR has been found, confirming the importance of such a component in the total mass-loss budget of the central object during this elusive phase of massive star evolution. We have analyzed and compared the mid-IR and radio maps, and derive several results concerning the associated nebula. There is evidence for grain distribution variations across the nebula, with a predominant contribution from bigger grains in the northern part of the nebula while PAH and smaller grains are more concentrated in the southern part. A compact radio component located where there is a lack of thermal dust grains corroborates the presence of a shock in the southern nebula, which could arise as a consequence of the interaction of a fast outflow with the slower, expanding dusty nebula. Such a shock would be a viable means for PAH production as well as for changes in the grain size distribution. Finally, from the detection of a central radio component probably associated with the wind from the central massive supergiant, we derive a current mass-loss rate of M-dot =(1.46±0.15)x10-6 Msun yr-1.

  6. Diffusion of cosmic-rays and the Gamma-ray Large Area Telescope: Phenomenology at the 1-100 GeV regime

    CERN Document Server

    Marrero, Ana Y Rodriguez; del Pozo, Elsa de Cea; Reimer, Olaf; Cillis, Analia N

    2008-01-01

    This paper analyzes astrophysical scenarios that may be detected at the upper end of the energy range of the Gamma Ray Large Area Space Telescope (GLAST), as a result of cosmic-ray (CR) diffusion in the interstellar medium (ISM). Hadronic processes are considered as the source of $\\gamma$-ray photons from localized molecular enhancements nearby accelerators. Two particular cases are presented: a) the possibility of detecting spectral energy distributions (SEDs) with maxima above 1 GeV, which may be constrained by detection or non-detection at very-high energies (VHE) with observations by ground-based Cerenkov telescopes, and b) the possibility of detecting V-shaped, inverted spectra, due to confusion of a nearby (to the line of sight) arrangement of accelerator/target scenarios with different characteristic properties. We show that the finding of these signatures (in particular, a peak at the 1--100 GeV energy region) is indicative for an identification of the underlying mechanism producing the $\\gamma$-rays ...

  7. Discovery of Pulsed Gamma Rays from the Young Radio Pulsar PSR J1028-5819 with the Fermi Large Area Telescope

    CERN Document Server

    2009-01-01

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz)in the error circle of the EGRET source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of gamma-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The gamma-ray light curve shows two sharp peaks having phase separation of 0.460 +- 0.004, trailing the very narrow radio pulse by 0.200 +- 0.003 in phase, very similar to that of other known $\\gamma$-ray pulsars. The measured gamma-ray flux gives an efficiency for the pulsar of 10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT ena...

  8. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: cmccully@physics.rutgers.edu [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others

    2014-05-10

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  9. A Road Map for the Generation of a Near-Infrared Guide Star Catalog for Thirty Meter Telescope Observations

    Science.gov (United States)

    Subramanian, Smitha; Subramaniam, Annapurni; Sivarani, T.; Simard, Luc; Anupama, G. C.; Gillies, Kim; Ramaprakash, A. N.; Reddy, B. Eswar

    2016-09-01

    The near-infrared instruments in the upcoming Thirty Meter Telescope (TMT) will be assisted by a multi conjugate Adaptive Optics (AO) system. For the efficient operation of the AO system, during observations, a near-infrared guide star catalog which goes as faint as 22 mag in JVega band is essential and such a catalog does not exist. A methodology, based on stellar atmospheric models, to compute the expected near-infrared magnitudes of stellar sources from their optical magnitudes is developed. The method is applied and validated in JHKs bands for a magnitude range of JVega 16-22 mag. The methodology is also applied and validated using the reference catalog of PAN STARRS. We verified that the properties of the final PAN STARRS optical catalog will satisfy the requirements of TMT IRGSC and will be one of the potential sources for the generation of the final catalog. In a broader context, this methodology is applicable for the generation of a guide star catalog for any existing/upcoming near-infrared telescopes.

  10. Beaming structures of Jupiter's decametric common S-bursts observed from LWA1, NDA, and URAN2 radio telescopes

    CERN Document Server

    Imai, Masafumi; Clarke, Tracy E; Higgins, Charles A; Panchenko, Mykhaylo; Dowell, Jayce; Imai, Kazumasa; Brazhenko, Anatolii I; Frantsuzenko, Anatolii V; Konovalenko, Alexandr A

    2016-01-01

    On 2015 February 21, simultaneous observations of Jupiter's decametric radio emission between 10 and 33 MHz were carried out using three powerful low-frequency radio telescopes: Long Wavelength Array Station One (LWA1) in USA; Nan\\c{c}ay Decameter Array (NDA) in France; and URAN2 telescope in Ukraine. We measure lag times of short-bursts (S-bursts) for 105-minutes of data over effective baselines up to 8460 km by using cross-correlation analysis of the spectrograms from each instrument. Of particular interest is the measurement of the beaming thickness of S-bursts, testing if either flashlight- or beacon-like beaming is emanating from Jupiter. We find that the lag times for all pairs drift slightly as time elapses, in agreement with expectations from the flashlight-like beaming model. This leads to a new constraint of the minimum beaming thickness of 2.66". Also, we find that most of the analyzed data abound with S-bursts, whose occurrence probability peaks at 17-18 MHz.

  11. A Road Map for the Generation of a Near-Infrared Guide Star Catalog for Thirty Meter Telescope Observations

    Indian Academy of Sciences (India)

    Smitha Subramanian; Annapurni Subramaniam; T Sivarani; Luc Simard; G. C. Anupama; Kim Gillies; A. N. Ramaprakash; B. Eswar Reddy

    2016-09-01

    The near-infrared instruments in the upcoming Thirty Meter Telescope (TMT) will be assisted by a multi conjugate Adaptive Optics (AO) system. For the efficient operation of the AO system, during observations, a near-infrared guide star catalog which goes as faint as 22 mag in ${\\rm J}_{{\\rm Vega}}$ band is essential and such a catalog does not exist. A methodology, based on stellar atmospheric models, to compute the expected near-infrared magnitudes of stellar sources from their optical magnitudes is developed. The method is applied and validated in JHKs bands for a magnitude range of ${\\rm J}_{\\rm{Vega}}$ 16--22 mag. The methodology is also applied and validated using the reference catalog of PAN STARRS. We verified that the properties of the final PAN STARRS optical catalog will satisfy the requirements of TMT IRGSC and will be one of the potential sources for the generation of the final catalog. In a broader context, this methodology is applicable for the generation of a guide star catalog for any existing/upcoming near-infrared telescopes.

  12. Wide-Field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399*

    Science.gov (United States)

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-01-01

    We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, thecentral giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys(ACS) aboard theHubble Space Telescope(HST).Using a novel technique to construct drizzled point-spreadfunction libraries for HSTACS data, we accurately determine the fidelity of GC structural parameter measurementsfrom detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius,rh,compared with other GC structural parameters, such as King core and tidal radius. The measurement ofrhfor themajor fraction of the NGC 1399 GC system reveals a trend of increasingrhversus galactocentric distance,Rgal,out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found tohave a mean size ratio ofrh,redrh,blue0.820.11 at all galactocentric radii from the core regions of the galaxyout to40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanismsrelated to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regionstorh2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended darkmatter halo, andor tidal stress induced by the increased stochasticity in the dwarf halo substructure at largergalactocentric distances. We compare our results with the GCrhdistribution functions in various galaxies and findthat the fraction of extended GCs withrh5 pc is systematically larger in late-type galaxies compared with GCsystems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies.We match our GCrhmeasurements with radial velocity data from the literature and split the resulting sample at

  13. Multi-wavelength study of Mrk 421 TeV flare observed with \\emph{TACTIC} telescope in February 2010

    CERN Document Server

    Singh, K K; Chandra, P; Sahayanathan, S; Bhatt, N; Rannot, R C; Tickoo, A K; Koul, R

    2014-01-01

    We present results from multi-wavelength study of intense flaring activity from a high frequency peaked BL Lac object Mrk 421. The source was observed in its flaring state on February 16, 2010 with the $TACTIC$ at energies above 1.5 TeV. Near simultaneous multi-wavelength data were obtained from high energy (MeV-GeV) $\\gamma$--ray observations with \\emph{Fermi}--LAT, X--ray observations by the \\emph{Swift} and \\emph{MAXI} satellites, optical V-band observation by SPOL at \\emph{Steward Observatory} and radio 15 GHz observation at OVRO 40 meter-telescope. We have performed a detailed spectral and temporal analysis of $TACTIC$, \\emph{Fermi}--LAT and \\emph{Swift}--XRT observations of Mrk 421 during February 10--23, 2010 (MJD 55237-55250). The flaring activity of the source is studied by investigating the properties of daily light curves from radio to $TeV$ energy range and we present the correlation and variability analysis in each energy band. The $TeV$ flare detected by $TACTIC$ on February 16, 2010 is well cor...

  14. Off-limb EUV observations of the solar corona and transients with the CORONAS-F/SPIRIT telescope-coronagraph

    Directory of Open Access Journals (Sweden)

    V. Slemzin

    2008-10-01

    Full Text Available The SPIRIT telescope aboard the CORONAS-F satellite (in orbit from 26 July 2001 to 5 December 2005, observed the off-limb solar corona in the 175 Å (Fe IX, X and XI lines and 304 Å (He II and Si XI lines bands. In the coronagraphic mode the mirror was tilted to image the corona at the distance of 1.1...5 Rsun from the solar center, the outer occulter blocked the disk radiation and the detector sensitivity was enhanced. This intermediate region between the fields of view of ordinary extreme-ultraviolet (EUV telescopes and most of the white-light (WL coronagraphs is responsible for forming the streamer belt, acceleration of ejected matter and emergence of slow and fast solar wind. We present here the results of continuous coronagraphic EUV observations of the solar corona carried out during two weeks in June and December 2002. The images showed a "diffuse" (unresolved component of the corona seen in both bands, and non-radial, ray-like structures seen only in the 175 Å band, which can be associated with a streamer base. The correlations between latitudinal distributions of the EUV brightness in the corona and at the limb were found to be high in 304 Å at all distances and in 175 Å only below 1.5 Rsun. The temporal correlation of the coronal brightness along the west radial line, with the brightness at the underlying limb region was significant in both bands, independent of the distance. On 2 February 2003 SPIRIT observed an expansion of a transient associated with a prominence eruption seen only in the 304 Å band. The SPIRIT data have been compared with the corresponding data of the SOHO LASCO, EIT and UVCS instruments.

  15. Auto Adjusting Astronomical Telescope

    Directory of Open Access Journals (Sweden)

    Rohit R. Ghalsasi

    2014-04-01

    Full Text Available Astronomical telescope is powerful and basic tool for star or celestial observation. Here we proposed integrated system using Raspberry Pi for auto adjusting astronomical telescope. This integrated circuit helps to control stellar monitoring, stellar targeting, and tracking functions of telescope. Astro compass gives the direction of the celestial objects.

  16. Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope.

    Science.gov (United States)

    Ajello, M; Albert, A; Anderson, B; Baldini, L; Barbiellini, G; Bastieri, D; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bottacini, E; Bregeon, J; Bruel, P; Buehler, R; Caliandro, G A; Cameron, R A; Caragiulo, M; Caraveo, P A; Cecchi, C; Chekhtman, A; Ciprini, S; Cohen-Tanugi, J; Conrad, J; Costanza, F; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Di Mauro, M; Di Venere, L; Domínguez, A; Drell, P S; Favuzzi, C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Glanzman, T; Godfrey, G; Guiriec, S; Horan, D; Jóhannesson, G; Katsuragawa, M; Kensei, S; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Maldera, S; Manfreda, A; Mayer, M; Mazziotta, M N; Meyer, M; Michelson, P F; Mirabal, N; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Negro, M; Nuss, E; Okada, C; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Sánchez-Conde, M; Sgrò, C; Simone, D; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Takahashi, H; Thayer, J B; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2016-04-22

    We report on the search for spectral irregularities induced by oscillations between photons and axionlike-particles (ALPs) in the γ-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5×10^{-12}  GeV^{-1} for ALP masses 0.5≲m_{a}≲5  neV at 95% confidence. The limits are competitive with the sensitivity of planned laboratory experiments, and, together with other bounds, strongly constrain the possibility that ALPs can reduce the γ-ray opacity of the Universe. PMID:27152783

  17. Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope

    CERN Document Server

    Cerutti, F; Sala, P R

    2016-01-01

    We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first 7 years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.

  18. Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costanza, F.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Harding, A. K.; Hewitt, J. W.; Horan, D.; Hou, X.; Iafrate, G.; Jóhannesson, G.; Kamae, T.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Murgia, S.; Nuss, E.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Winer, B. L.; Wood, K. S.; Yassine, M.; Cerutti, F.; Ferrari, A.; Sala, P. R.; Fermi LAT Collaboration

    2016-04-01

    We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first seven years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.

  19. The Cassini Campaign observations of the Jupiter aurora by the Ultraviolet Imaging Spectrograph and the Space Telescope Imaging Spectrograph

    Science.gov (United States)

    Ajello, Joseph M.; Pryor, Wayne; Esposito, Larry; Stewart, Ian; McClintock, William; Gustin, Jacques; Grodent, Denis; Gérard, J.-C.; Clarke, John T.

    2005-11-01

    We have analyzed the Cassini Ultraviolet Imaging Spectrometer (UVIS) observations of the Jupiter aurora with an auroral atmosphere two-stream electron transport code. The observations of Jupiter by UVIS took place during the Cassini Campaign. The Cassini Campaign included support spectral and imaging observations by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS). A major result for the UVIS observations was the identification of a large color variation between the far ultraviolet (FUV: 1100-1700 Å) and extreme ultraviolet (EUV: 800-1100 Å) spectral regions. This change probably occurs because of a large variation in the ratio of the soft electron flux (10-3000 eV) responsible for the EUV aurora to the hard electron flux (˜15-22 keV) responsible for the FUV aurora. On the basis of this result a new color ratio for integrated intensities for EUV and FUV was defined ( 4πI/4πI) which varied by approximately a factor of 6. The FUV color ratio ( 4πI/4πI) was more stable with a variation of less than 50% for the observations studied. The medium resolution (0.9 Å FWHM, G140M grating) FUV observations (1295-1345 Å and 1495-1540 Å) by STIS on 13 January 2001, on the other hand, were analyzed by a spectral modeling technique using a recently developed high-spectral resolution model for the electron-excited H 2 rotational lines. The STIS FUV data were analyzed with a model that considered the Lyman band spectrum (B Σu+1→XΣg+1) as composed of an allowed direct excitation component (X Σg+1→BΣu+1) and an optically forbidden component (X Σg+1→EF,GK,HH¯,…Σg+1 followed by the cascade transition Σg+1→BΣu+1). The medium-resolution spectral regions for the Jupiter aurora were carefully chosen to emphasize the cascade component. The ratio of the two components is a direct measurement of the mean secondary electron energy of the aurora. The mean secondary electron energy of the aurora varies between 50 and 200 eV for the polar

  20. Observations of VHE gamma-ray binaries with the MAGIC Telescopes

    CERN Document Server

    López-Oramas, A; Cortina, J; Hadasch, D; Herrero, A; Marcote, B; Munar-Adrover, P; Moldón, J; Paredes, J M; Ribas, I; Ribó, M; Torres, D; Casares, J; Rea, N

    2013-01-01

    Several binary systems, composed of a star and a compact object, have been detected in the GeV-TeV range. Several systems have been observed but only a handful of sources have shown emission at those energies. Here, we present the observations conducted by MAGIC of different {\\gamma}-ray binary systems. On one hand, we show the latest studies on the binary system LS I +61 303, which displays variability on different timescales. With the latest MAGIC observations, we will try to shed light on our understanding of this source, by presenting super-orbital and multi-wavelength studies. On the other hand, we show the observational results on the binary system HD 215227. This source has been proposed as a new {\\gamma}-ray binary for being spatially coincident with the gamma-ray source AGL J2241+4454 detected by AGILE at E >100 GeV.

  1. Flows in and around active region NOAA12118 observed with the GREGOR solar telescope and SDO/HMI

    CERN Document Server

    Verma, M; Balthasar, H; Kuckein, C; Manrique, S J González; Sobotka, M; González, N Bello; Hoch, S; Diercke, A; Kummerow, P; Berkefeld, T; Collados, M; Feller, A; Hofmann, A; Kneer, F; Lagg, A; Löhner-Böttcher, J; Nicklas, H; Yabar, A Pastor; Schlichenmaier, R; Schmidt, D; Schmidt, W; Schubert, M; Sigwarth, M; Solanki, S K; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; von der Lühe, O; Waldmann, T

    2016-01-01

    Accurate measurements of magnetic and velocity fields in and around solar active regions are key to unlocking the mysteries of the formation and the decay of sunspots. High spatial resolution image and spectral sequences with a high cadence obtained with the GREGOR solar telescope give us an opportunity to scrutinize 3-D flow fields with local correlation tracking and imaging spectroscopy. We present GREGOR early science data acquired in 2014 July - August with the GREGOR Fabry-P\\'erot Interferometer and the Blue Imaging Channel. Time-series of blue continuum (? 450.6 nm) images of the small active region NOAA 12118 were restored with the speckle masking technique to derive horizontal proper motions and to track the evolution of morphological changes. In addition, high-resolution observations are discussed in the context of synoptic data from the Solar Dynamics Observatory.

  2. Observation of radiation environment in the International Space Station in 2012–March 2013 by Liulin-5 particle telescope

    Directory of Open Access Journals (Sweden)

    Semkova Jordanka

    2014-01-01

    Full Text Available Since June 2007 the Liulin-5 charged particle telescope, located in the spherical tissue-equivalent phantom of the MATROSHKA-R project onboard the International Space Station (ISS, has been making measurements of the local energetic particle radiation environment. From 27 December 2011 to 09 March 2013 measurements were conducted in and outside the phantom located in the MIM1 module of the ISS. In this paper Liulin-5 dose rates, due to galactic cosmic rays and South Atlantic Anomaly trapped protons, measured during that period are presented. Particularly, dose rates and particle fluxes for the radiation characteristics in the phantom during solar energetic particle (SEP events occurring in March and May 2012 are discussed. Liulin-5 SEP observations are compared with other ISS data, GOES proton fluxes as well as with solar energetic particle measurements obtained onboard the Mir space station during previous solar cycles.

  3. Ultra-narrow Negative Flare Front Observed in Helium-10830~\\AA\\ using the 1.6 m New Solar Telescope

    CERN Document Server

    Xu, Yan; Ding, Mingde; Kleint, Lucia; Su, Jiangtao; Liu, Chang; Ji, Haisheng; Chae, Jongchul; Jing, Ju; Cho, Kyuhyoun; Cho, Kyungsuk; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles which have adverse effects in the near Earth environment. By definition, flares are usually referred to bright features resulting from excess emission. Using the newly commissioned 1.6~m New Solar Telescope at Big Bear Solar Observatory, here we show a striking "negative" flare with a narrow, but unambiguous "dark" moving front observed in He I 10830 \\AA, which is as narrow as 340 km and is associated with distinct spectral characteristics in H-alpha and Mg II lines. Theoretically, such negative contrast in He I 10830 \\AA\\ can be produced under special circumstances, by nonthermal-electron collisions, or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomi...

  4. Hubble Space Telescope STIS observations of GRB 000301C: CCD imaging and near-ultraviolet MAMA spectroscopy

    DEFF Research Database (Denmark)

    Smette, A.; Fruchter, A.S.; Gull, T.R.;

    2001-01-01

    interpret this as the H I Lyman break at z = 2.067 +/- 0.025, indicating the presence of a cloud with an H I column density log N-HI(cm(2)) > 18 on the line of sight to the OT. This measured redshift is conservatively a lower limit to the GRB redshift. However, as all other GRBs that have deep Hubble Space......We present Space Telescope Imaging Spectrograph observations of the optical transient (OT) counterpart of the c-ray burster GRB 000301C obtained 5 days after the burst, on 2000 March 6. CCD clear-aperture imaging reveals a R similar or equal to 21.50 +/- 0.15 source with no apparent host galaxy...

  5. Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope

    CERN Document Server

    Balthasar, H; Manrique, S J González; Kuckein, C; Kavka, J; Kučera, A; Schwartz, P; Vašková, R; Berkefeld, T; Vera, M Collados; Denker, C; Feller, A; Hofmann, A; Lagg, A; Nicklas, H; Suárez, D Orozco; Yabar, A Pastor; Rezaei, R; Schlichenmaier, R; Schmidt, D; Schmidt, W; Sigwarth, M; Sobotka, M; Solanki, S K; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; von der Lühe, O; Waldmann, T

    2016-01-01

    Arch filament systems occur in active sunspot groups, where a fibril structure connects areas of opposite magnetic polarity, in contrast to active region filaments that follow the polarity inversion line. We used the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral lines Si I 1082.7 nm, He I 1083.0 nm, and Ca I 1083.9 nm. We focus on the near-infrared calcium line to investigate the photospheric magnetic field and velocities, and use the line core intensities and velocities of the helium line to study the chromospheric plasma. The individual fibrils of the arch filament system connect the sunspot with patches of magnetic polarity opposite to that of the spot. These patches do not necessarily coincide with pores, where the magnetic field is strongest. Instead, areas are preferred not far from the polarity inversion line. These areas exhibit photospheric downflows of moderate velocity, but significantly higher downflows of up to 30 km/s in the chromospheric helium line. Our f...

  6. The Uffo Slewing Mirror Telescope for Early Optical Observation from Gamma Ray Bursts

    DEFF Research Database (Denmark)

    Nam, Jiwoo; Ahmad, S.; Ahn, K.;

    2013-01-01

    While some space born observatories, such as SWIFT and FERMI, have been operating, early observation of optical after grow of GRBs is still remained as an unexplored region. The Ultra-Fast Flash Observatory (UFFO) project is a space observatory for optical follow-ups of GRBs, aiming to explore th...

  7. The UFFO slewing mirror telescope for early optical observation from gamma ray bursts

    DEFF Research Database (Denmark)

    NAM, JIWOO; AHMAD, S.; AHN, K.;

    2013-01-01

    While some space born observatories, such as SWIFT and FERMI, have been operating, early observation of optical after grow of GRBs is still remained as an unexplored region. The Ultra-Fast Flash Observatory (UFFO) project is a space observatory for optical follow-ups of GRBs, aiming to explore th...

  8. VHE gamma-ray emission from the FSRQs observed by the MAGIC telescopes

    CERN Document Server

    Lindfors, E; de Almeida, U Barres; Mazin, D; Paneque, D; Saito, K; Gonzalez, J Becerra; Berger, K; De Caneva, G; Schultz, C; Sitarek, J; Stamerra, A; Tavecchio, F; Buson, S; D'Ammando, F; Hayashida, M; Tornikoski, M; Hovatta, T

    2013-01-01

    Among more than fifty blazars detected in very high energy (VHE, E>100GeV) gamma-rays, only three belong to the subclass of Flat Spectrum Radio Quasars (FSRQs): PKS 1510-089, PKS 1222+216 and 3C 279. The detection of FSRQs in the VHE range is challenging, mainly because of their steep soft spectra in the GeV-TeV regime. MAGIC has observed and detected all FSRQs known to be VHE emitters up to now and found that they exhibit very different behavior. The 2010 discovery of PKS 1222+216 (z = 0.432) with the fast variability observed, challenges simple one-zone emission models and more complicated scenarios have been proposed. 3C 279 is the most distant VHE gamma-ray emitting AGN (z = 0.536), which was discovered by MAGIC in 2006 and detected again in 2007. In 2011 MAGIC observed 3C 279 two times: first during a monitoring campaign and later observations were triggered by a flare detected with Fermi-LAT. We present the MAGIC results and the multiwavelength behavior during this flaring epoch. Finally, we report the ...

  9. Riccioli Measures the Stars: Observations of the telescopic disks of stars as evidence against Copernicus and Galileo in the middle of the 17th century

    CERN Document Server

    Graney, Christopher M

    2010-01-01

    G. B. Riccioli's 1651 Almagestum Novum contains a table of diameters of stars as measured by Riccioli and his associates with a telescope. The star diameters are spurious, caused by the diffraction of light waves through the circular aperture of the telescope, but astronomers of the time, Riccioli and Galileo Galilei among others, were unaware of this phenomenon and believed that they were seeing the physical bodies of stars. Riccioli used these telescopically measured disks to determine the sizes of stars under both geocentric (or geo-heliocentric/Tychonic) and heliocentric/Copernican hypotheses. The sizes obtained under the Copernican system were immense - dwarfing the Earth, Sun, the Earth's orbit, and even exceeding the distances to the stars given by Tycho Brahe. Thus Riccioli felt that telescopic observations were an effective argument against the Copernican system.

  10. Analysis of Hubble Space Telescope Observations of an Outburst of Comet 29P/Schwassmann-Wachmann 1

    Science.gov (United States)

    Schambeau, Charles Alfred; Fernandez, Yanga R.; Samarasinha, Nalin H.; Kundu, Arunav

    2016-10-01

    We present results of a continuing analysis on the spin state of the enigmatic Comet 29P/Schwassmann-Wachmann 1 (SW1). Previous works have reported possible constraints on the spin state including a non-principal axis state [1] or a rotation period of tens of days [2]. This diversity of published answers highlights the complexity of determining the spin state of an active comet nucleus. Previous work by our group using 3D Monte Carlo coma modeling of ground-based outburst observations from 2008 [3] has placed constraints on the spin period for a set of assumed spin-pole orientations. Due to the nature of the 2008 outburst morphology no constraints on the spin-pole orientation could be found.We present here an analysis of Hubble Space Telescope WFPC2 observations of SW1 shortly after a 1996 outburst [4] with which we have further constrained the spin state. The 0.046-arcsec/pixel scale (176 km/pixel at SW1) of the PC detector gives an order-of-magnitude improvement in spatial resolution over our ground-based observations. Two sets of observations from UT 1996 Mar. 11.3 and 12.1 show the ejected dust forming an asymmetric outflow contained on the sunward side of the coma. A projected outflow velocity of 0.15 ± 0.02 km/s was measured, similar to our measured value from the 2008 observations. Enhancements of the images were performed [5] to bring out subtle variations in coma brightness (i.e., jets) and to allow us to search for signatures of the nucleus' rotation during the outburst. Three curved features are seen in both sets of observations and were modeled using the 3D Monte Carlo coma model [6]. We find a spin period on the order of several days, in agreement with our earlier 2008 analysis.[1] Meech, K. J., et al.: 1993, Astron. J., 106, 1222. [2] Miles, R., et al.: 2016, Icarus, 272, 327. [3] Schambeau, C. A., et al.: 2016, Icarus, submitted. [4] Feldman, P. D., et al.: 1996, AAS/DPS Meeting Abstracts, 28, 1084. [5] Samarasinha, N. and Larson, S.: 2014, Icarus

  11. Limitations Placed on the Time Coverage, Isoplanatic Patch Size and Exposure Time for Solar Observations Using Image Selection Procedures in the Presence of Telescope Aberrations

    Science.gov (United States)

    Beckers, J. M.; Rimmele, T. R.

    1996-12-01

    Image selection, adaptive optics and post-facto image restoration methods are all techniques being used for diffraction limited imaging with ground-based solar and stellar telescopes. Often these techniques are used in a hybrid form like e.g. the application of adaptive optics and/or post-facto image restoration in combination with already good images obtained by image selection in periods of good seeing. Fried (JOSA 56, 1372, 1966), Hecquet and Coupinot (J. Optics/Paris 16, 21, 1985) and Beckers ("Solar and Stellar Granulation", Kluwer, Rutten & Severino Eds, 55, 1988) already discussed the usefulness of image selection, or the "Lucky Observer" mode, for high resolution imaging. All assumed perfect telescope optics. In case of moderate telescope aberrations image selection can still lead to diffraction limited imaging but only when the atmospheric wavefront aberration happens to compensate that of the telescope. In this "Very Lucky Observer" mode the probability of obtaining a good image is reduced over the un-aberrated case, as are the size of the isoplanatic patch and the exposure time. We describe an analysis of these effects for varying telescope aberrations. These result in a strong case for the removal of telescope aberrations either by initial implementation or by the use of slow active optics.

  12. Possibility of observation by the Antares telescope of the gamma ray point sources observed by the Egret detector and study of a prototype

    International Nuclear Information System (INIS)

    The ANTARES collaboration aims to install an underwater neutrino telescope at 2 500 m deep and 40 km away from Toulon (France). The neutrinos are detected thanks to their interaction by charged current in the medium surrounding the telescope which can be rock or water. The produced muon emits Tcherenkov light along its path in water. This light is detected by a three-dimensional network of 900 photomultipliers divided into 12 independent lines. To validate the chosen techniques, a prototype made up of a fifth of line was deployed in 2003. A reconstruction algorithm was developed on simulated data whose results are presented. However, a technical failure made the data recorded by the prototype unsuitable. The detection potential of Antares to gamma ray sources observed by Egret is studied. Indeed, under the assumption of a gamma ray production via high-energy hadrons, a comparable flux of neutrinos associated is predicted. By supposing the two fluxes equal and an energy spectrum varying as E-2 eleven sources are potentially detectable in one year. The Antares sensitivity to such a spectrum depends on the declination of the source with an optimum of 3.6 10-4 m-2 s-1 GeV-1 in one year at 90% of confidence level for a declination of - 90 deg C. (author)

  13. Very high energy gamma-ray follow-up observations of novae and dwarf novae with the MAGIC telescopes

    CERN Document Server

    López-Coto, R; Bednarek, W; Desiante, R; Longo, F

    2015-01-01

    In the last few years the Fermi-LAT instrument has detected GeV gamma-ray emission from several novae. Such GeV emission can be interpreted in terms of inverse Compton emission from electrons accelerated in the shock or in terms of emission from hadrons accelerated in the same conditions. The latter might reach much higher energies and could produce a second component in the gamma-ray spectrum at TeV energies. We perform follow-up observations of selected novae and dwarf novae in search of the second component in TeV energy gamma rays. This can shed light on the acceleration process of leptons and hadrons in nova explosions. We have performed observations with the MAGIC telescopes of 3 sources, a symbiotic nova YY Her, a dwarf nova ASASSN-13ax and a classical nova V339 Del, shortly after their outbursts. We did not detect TeV gamma-ray emission from any of the objects observed. The TeV upper limits from MAGIC observations and the GeV detection by Fermi constrain the acceleration parameters for electrons and h...

  14. Observations of Extrasolar Planets During the non-Cryogenic Spitzer Space Telescope Mission

    OpenAIRE

    Deming, Drake; Agol, Eric; Charbonneau, David; Cowan, Nicolas; Knutson, Heather; Marengo, Massimo

    2007-01-01

    Precision infrared photometry from Spitzer has enabled the first direct studies of light from extrasolar planets, via observations at secondary eclipse in transiting systems. Current Spitzer results include the first longitudinal temperature map of an extrasolar planet, and the first spectra of their atmospheres. Spitzer has also measured a temperature and precise radius for the first transiting Neptune-sized exoplanet, and is beginning to make precise transit timing measurements to infer the...

  15. Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations

    CERN Document Server

    Marchis, F; Emery, J P; Mueller, M; Baek, M; Pollock, J; Assafin, M; Martins, R Vieira; Berthier, J; Vachier, F; Cruikshank, D P; Lim, L; Reichart, D; Ivarsen, K; Haislip, J; LaCluyz, A

    2016-01-01

    Photometric lightcurves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq $\\lt$ 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia ($\\Gamma$ < $\\sim$100 J s-1/2K-1m-2) and their emissivity spectra display strong mineral features, implying that they are covered with a thick layer of thermally insulating regolith. The smaller (surface-equivalent system diameter Deff $\\lt$17 km) asteroids also show some emission lines of minerals, but they are signif...

  16. Mass and energy of erupting solar plasma observed with the X-Ray Telescope on Hinode

    CERN Document Server

    Lee, Jin-Yi; Reeves, Katharine K; Moon, Yong-Jae; Kim, Kap-Sung

    2014-01-01

    We investigate seven eruptive plasma observations by Hinode/XRT. Their corresponding EUV and/or white light CME features are visible in some events. Five events are observed in several passbands in X-rays, which allows the determination of the eruptive plasma temperature using a filter ratio method. We find that the isothermal temperatures vary from 1.6 to 10 MK. These temperatures are an average weighted toward higher temperature plasma. We determine the mass constraints of eruptive plasmas by assuming simplified geometrical structures of the plasma with isothermal plasma temperatures. This method provides an upper limit to the masses of the observed eruptive plasmas in X-ray passbands since any clumping causes the overestimation of the mass. For the other two events, we assume the temperatures are at the maximum temperature of the XRT temperature response function, which gives a lower limit of the masses. We find that the masses in XRT, ~3x10 13 - 5x10 14 g, are smaller in their upper limit than total masse...

  17. VHE gamma-ray observations of transient and variable stellar objects with the MAGIC Telescopes

    CERN Document Server

    Fernández-Barral, A; Wilhelmi, E de Oña; Torres, D F; Fruck, C; Hadasch, D; López-Oramas, A; Munar-Adrover, P

    2015-01-01

    Galactic transients, X-ray and gamma-ray binaries provide a proper environment for particle acceleration. This leads to the production of gamma rays with energies reaching the GeV-TeV regime. MAGIC has carried out deep observations of different transient and variable stellar objects of which we highlight 4 of them here: LSI+61 303, MWC 656, Cygnus X-1 and SN 2014J. We present the results of those observations, including long-term monitoring of Cygnus X-1 and LSI+61 303 (7 and 8 years, respectively). The former is one of the brightest X-ray sources and best studied microquasars across a broad range of wavelengths, whose steady and variable signal was studied by MAGIC within a multiwavelength scenario. The latest results of an unique object, MWC 656, are also shown in this presentation. This source is the first high-mass X-ray binary system detected that is composed of a black hole and a Be star. Finally, we report on the observations of SN 2014J, the nearest Type Ia SN of the last 40 years. Its proximity and e...

  18. Global estimation of burned area using MODIS active fire observations

    OpenAIRE

    GIGLIO, L.; G. R. van der Werf; J. T. Randerson; Collatz, G. J.; Kasibhatla, P.

    2006-01-01

    We present a method for estimating monthly burned area globally at 1° spatial resolution using Terra MODIS data and ancillary vegetation cover information. Using regression trees constructed for 14 different global regions, MODIS active fire observations were calibrated to ''true'' burned area estimates derived from 500-m MODIS imagery based on the conventional assumption that burned area is proportional to counts of fire pixels. Unlike earlier methods, we...

  19. Searching for dwarf spheroidal galaxies and other galactic dark matter substructures with the Fermi large area telescope

    Energy Technology Data Exchange (ETDEWEB)

    Drlica-Wagner, Alex [Stanford Univ., CA (United States). Dept. of Physics

    2013-08-01

    Over the past century, it has become clear that about a quarter of the known universe is composed of an invisible, massive component termed ''dark matter''. Some of the most popular theories of physics beyond the Standard Model suggest that dark matter may be a new fundamental particle that could self-annihilate to produce γ rays. Nearby over-densities in the dark matter halo of our Milky Way present some of the most promising targets for detecting the annihilation of dark matter. We used the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope to search for γ rays produced by dark matter annihilation in Galactic dark matter substructures. We searched for γ-ray emission coincident with Milky Way dwarf spheroidal satellite galaxies, which trace the most massive Galactic dark matter substructures. We also sought to identify nearby dark matter substructures that lack all astrophysical tracers and would be detectable only through γ-ray emission from dark matter annihilation. We found no conclusive evidence for γ-ray emission from dark matter annihilation, and we set stringent and robust constraints on the dark matter annihilation cross section. While γ-ray searches for dark matter substructure are currently the most sensitive and robust probes of dark matter annihilation, they are just beginning to intersect the theoretically preferred region of dark matter parameter space. Thus, we consider future prospects for increasing the sensitivity of γ-ray searches through improvements to the LAT instrument performance and through upcoming wide- field optical surveys.

  20. Resolving the Extragalactic γ-Ray Background above 50 GeV with the Fermi Large Area Telescope.

    Science.gov (United States)

    Ackermann, M; Ajello, M; Albert, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bregeon, J; Britto, R J; Bruel, P; Buehler, R; Caliandro, G A; Cameron, R A; Caragiulo, M; Caraveo, P A; Cavazzuti, E; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Cohen-Tanugi, J; Cominsky, L R; Costanza, F; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Digel, S W; Di Mauro, M; Di Venere, L; Domínguez, A; Drell, P S; Favuzzi, C; Fegan, S J; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Godfrey, G; Green, D; Grenier, I A; Guiriec, S; Hays, E; Horan, D; Iafrate, G; Jogler, T; Jóhannesson, G; Kuss, M; La Mura, G; Larsson, S; Latronico, L; Li, J; Li, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Magill, J; Maldera, S; Manfreda, A; Mayer, M; Mazziotta, M N; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Negro, M; Nuss, E; Ohsugi, T; Okada, C; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Petrosian, V; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Romani, R W; Sánchez-Conde, M; Schmid, J; Schulz, A; Sgrò, C; Simone, D; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Thayer, J B; Tibaldo, L; Torres, D F; Troja, E; Vianello, G; Yassine, M; Zimmer, S

    2016-04-15

    The Fermi Large Area Telescope (LAT) Collaboration has recently released a catalog of 360 sources detected above 50 GeV (2FHL). This catalog was obtained using 80 months of data re-processed with Pass 8, the newest event-level analysis, which significantly improves the acceptance and angular resolution of the instrument. Most of the 2FHL sources at high Galactic latitude are blazars. Using detailed Monte Carlo simulations, we measure, for the first time, the source count distribution, dN/dS, of extragalactic γ-ray sources at E>50  GeV and find that it is compatible with a Euclidean distribution down to the lowest measured source flux in the 2FHL (∼8×10^{-12}  ph cm^{-2} s^{-1}). We employ a one-point photon fluctuation analysis to constrain the behavior of dN/dS below the source detection threshold. Overall, the source count distribution is constrained over three decades in flux and found compatible with a broken power law with a break flux, S_{b}, in the range [8×10^{-12},1.5×10^{-11}]  ph cm^{-2} s^{-1} and power-law indices below and above the break of α_{2}∈[1.60,1.75] and α_{1}=2.49±0.12, respectively. Integration of dN/dS shows that point sources account for at least 86_{-14}^{+16}% of the total extragalactic γ-ray background. The simple form of the derived source count distribution is consistent with a single population (i.e., blazars) dominating the source counts to the minimum flux explored by this analysis. We estimate the density of sources detectable in blind surveys that will be performed in the coming years by the Cherenkov Telescope Array. PMID:27127954

  1. Resolving the Extragalactic γ -Ray Background above 50 GeV with the Fermi Large Area Telescope

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bregeon, J.; Britto, R. J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Godfrey, G.; Green, D.; Grenier, I. A.; Guiriec, S.; Hays, E.; Horan, D.; Iafrate, G.; Jogler, T.; Jóhannesson, G.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Magill, J.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Negro, M.; Nuss, E.; Ohsugi, T.; Okada, C.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Romani, R. W.; Sánchez-Conde, M.; Schmid, J.; Schulz, A.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Thayer, J. B.; Tibaldo, L.; Torres, D. F.; Troja, E.; Vianello, G.; Yassine, M.; Zimmer, S.

    2016-04-01

    The Fermi Large Area Telescope (LAT) Collaboration has recently released a catalog of 360 sources detected above 50 GeV (2FHL). This catalog was obtained using 80 months of data re-processed with Pass 8, the newest event-level analysis, which significantly improves the acceptance and angular resolution of the instrument. Most of the 2FHL sources at high Galactic latitude are blazars. Using detailed Monte Carlo simulations, we measure, for the first time, the source count distribution, d N /d S , of extragalactic γ -ray sources at E >50 GeV and find that it is compatible with a Euclidean distribution down to the lowest measured source flux in the 2FHL (˜8 ×10-12 ph cm-2 s-1 ). We employ a one-point photon fluctuation analysis to constrain the behavior of d N /d S below the source detection threshold. Overall, the source count distribution is constrained over three decades in flux and found compatible with a broken power law with a break flux, Sb, in the range [8 ×10-12,1.5 ×10-11] ph cm-2 s-1 and power-law indices below and above the break of α2∈[1.60 ,1.75 ] and α1=2.49 ±0.12 , respectively. Integration of d N /d S shows that point sources account for at least 8 6-14+16% of the total extragalactic γ -ray background. The simple form of the derived source count distribution is consistent with a single population (i.e., blazars) dominating the source counts to the minimum flux explored by this analysis. We estimate the density of sources detectable in blind surveys that will be performed in the coming years by the Cherenkov Telescope Array.

  2. The Casual Sky Observer's Guide Stargazing with Binoculars and Small Telescopes

    CERN Document Server

    De Laet, Rony

    2012-01-01

    Here is an invaluable guide for those stargazers who are just starting out on their fascinating journey. Don't know what sights to look for? How to locate them? What seasons are best for viewing what stars? All that and more is included in these pages. Plus lots of tips for what equipment to use and good observing techniques. Take this with you to your viewing site, along with your equipment, and you're ready to begin. The universe is there for your viewing pleasure. Enjoy!

  3. Cosmological observations with a wide field telescope in space: Pixel simulations of EUCLID spectrometer

    International Nuclear Information System (INIS)

    The observations of the supernovae, the cosmic microwave background, and more recently the measurement of baryon acoustic oscillations and the weak lensing effects, converge to a Lambda CDM model, with an accelerating expansion of the today Universe. This model need two dark components to fit the observations, the dark matter and the dark energy. Two approaches seem particularly promising to measure both geometry of the Universe and growth of dark matter structures, the analysis of the weak distortions of distant galaxies by gravitational lensing and the study of the baryon acoustic oscillations. Both methods required a very large sky surveys of several thousand square degrees. In the context of the spectroscopic survey of the space mission EUCLID, dedicated to the study of the dark side of the universe, I developed a pixel simulation tool for analyzing instrumental performances. The proposed method can be summarized in three steps. The first step is to simulate the observables, i.e. mainly the sources of the sky. I work up a new method, adapted for spectroscopic simulations, which allows to mock an existing survey of galaxies in ensuring that the distribution of the spectral properties of galaxies are representative of current observations, in particular the distribution of the emission lines. The second step is to simulate the instrument and produce images which are equivalent to the expected real images. Based on the pixel simulator of the HST, I developed a new tool to compute the images of the spectroscopic channel of EUCLID. The new simulator have the particularity to be able to simulate PSF with various energy distributions and detectors which have different pixels. The last step is the estimation of the performances of the instrument. Based on existing tools, I set up a pipeline of image processing and performances measurement. My main results were: 1) to validate the method by simulating an existing survey of galaxies, the WISP survey, 2) to determine the

  4. The Substructure of the Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.

  5. The Excitation of Extended Red Emission: New Constraints on Its Carrier from Hubble Space Telescope Observations of NGC 7023

    Science.gov (United States)

    Witt, Adolf N.; Gordon, Karl D.; Vijh, Uma P.; Sell, Paul H.; Smith, Tracy L.; Xie, Rui-Hua

    2006-01-01

    , PAH dications deserve further study as potential carriers of the ERE. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with program 9471.

  6. Hubble Space Telescope observations of the afterglow, supernova and host galaxy associated with the extremely bright GRB 130427A

    CERN Document Server

    Levan, A J; Fruchter, A S; Hjorth, J; Pian, E; Mazzali, P; Perley, D A; Cano, Z; Graham, J; Hounsell, R A; Cenko, S B; Fynbo, J P U; Kouveliotou, C; Pe'er, A; Misra, K; Wiersema, K

    2013-01-01

    We present Hubble Space Telescope observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova associated with an intrinsically extremely luminous burst (E_iso >10^54 erg), much more luminous than almost all previous GRBs with spectroscopically associated supernovae. We use the combination of the image quality and UV capability of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light ~17 rest-frame days after the burst. We find that the burst originated ~4 kpc from the nucleus of a moderately star forming (1 Msol/yr), possibly interacting disc galaxy. ACS grism observations show that the associated supernova, SN 2013cq, is well fit in the red by an SN 1998bw-like supernovae of similar luminosity and velocity (v~15,000 km/s). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v~30,000 km/s), but this SN fai...

  7. Constraining Cosmic Rays and Magnetic Fields in the Perseus Galaxy Cluster with TeV observations by the MAGIC telescopes

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Asensio, M; Backes, M; de Almeida, U Barres; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Braun, I; Bretz, T; Cañellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Garrido, D; Giavitto, G; Godinović, N; Gozzini, S R; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Jogler, T; Kellermann, H; Klepser, S; Krähenbühl, T; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Leonardo, E; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Niedzwiecki, A; Nieto, D; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Perez-Torres, M A; Persic, M; Peruzzo, L; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Gimenez, I Puerto; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Strah, N; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Treves, A; Uellenbeck, M; Vankov, H; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Pfrommer, C; Pinzke, A

    2011-01-01

    Galaxy clusters are being assembled today in the most energetic phase of hierarchical structure formation which manifests itself in powerful shocks that contribute to a substantial energy density of cosmic rays (CRs). Hence, clusters are expected to be luminous gamma-ray emitters since they also act as energy reservoirs for additional CR sources, such as active galactic nuclei and supernova-driven galactic winds. To detect the gamma-ray emission from CR interactions with the ambient cluster gas, we conducted the deepest to date observational campaign targeting a galaxy cluster at very high-energy gamma-rays and observed the Perseus cluster with the MAGIC Cherenkov telescopes for a total of ~85 hr of effective observing time. This campaign resulted in the detection of the central radio galaxy NGC 1275 at energies E > 100 GeV with a very steep energy spectrum. Here, we restrict our analysis to energies E > 630 GeV and detect no significant gamma-ray excess. This constrains the average CR-to-thermal pressure rat...

  8. Bent-Tailed Radio Sources in the Australia Telescope Large Area Survey of the Chandra Deep Field-South

    CERN Document Server

    Dehghan, Siamak; Franzen, Thomas M O; Norris, Ray P; Miller, Neal A

    2015-01-01

    Using the 1.4 GHz Australia Telescope Large Area Survey (ATLAS), supplemented with the 1.4 GHz Very Large Array images, we undertook a search for bent-tailed (BT) radio galaxies in the Chandra Deep Field-South (CDFS). Here we present a catalog of 56 detections, which include 45 bent-tailed sources, four diffuse low-surface-brightness objects (one relic, two halos, and one unclassified object), and a further seven complex, multi-component sources. We report BT sources with rest-frame powers in the range $10^{22} \\leq$ $\\textrm{P}_{1.4 \\textrm{ GHz}} \\leq 10^{26}$ W Hz$^{-1}$, redshifts up to 2 and linear extents from tens of kpc up to about one Mpc. This is the first systematic study of such sources down to such low powers and high redshifts and demonstrates the complementary nature of searches in deep, limited area surveys as compared to shallower, large surveys. Of the sources presented here one is the most distant bent-tailed source yet detected at a redshift of 2.1688. Two of the sources are found to be as...

  9. Thin fused silica optics for a few arcsec angular resolution and large collecting area x-ray telescope

    Science.gov (United States)

    Citterio, O.; Civitani, M. M.; Pareschi, G.; Basso, S.; Campana, S.; Conconi, P.; Ghigo, M.; Mattaini, E.; Moretti, A.; Parodi, G.; Tagliaferri, G.

    2013-09-01

    The implementation of a X-ray mission with high imaging capabilities, similar to those achieved with Chandra (SMART-X project, led by CfA and involving several other US Institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy in order to achieve the 1 arc sec HEW requirement. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. We will present the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1 deg in diameter).

  10. A Stacked Analysis of Brightest Cluster Galaxies Observed with the Fermi Large Area Telescope

    CERN Document Server

    Dutson, K L; Edge, A C; Hinton, J A; Hogan, M T

    2012-01-01

    We present the results of a search for high-energy gamma-ray emission from a large sample of galaxy clusters sharing the properties of three existing Fermi-LAT detections (in Perseus, Virgo and Abell 3392), namely a powerful radio source within their brightest cluster galaxy (BCG). From a parent, X-ray flux-limited sample of clusters, we select 114 systems with a core-dominated BCG radio flux above 50 or 75 mJy, stacking data from the first 45 months of the Fermi mission, to determine statistical limits on the gamma-ray fluxes of the ensemble of candidate sources. For a >300 MeV selection, the distribution of detection significance across the sample is consistent with that across control samples for significances 4 sigma signals which are not associated with previously identified gamma-ray emission. Modelling of the data in these fields results in the detection of four non-2FGL Fermi sources, though none appear to be unambiguously associated with the BCG candidate. A search at energies >3 GeV hints at emissio...

  11. Observing the fine structure of loops through high resolution spectroscopic observations of coronal rain with the CRISP instrument at the Swedish Solar Telescope

    CERN Document Server

    Antolin, Patrick

    2011-01-01

    We present here one of the first high resolution spectroscopic observations of coronal rain, performed with the CRISP instrument at the Swedish Solar Telescope. This work constitutes the first attempt to assess the importance of coronal rain in the understanding of the coronal magnetic field in active regions. A large statistical set is obtained in which dynamics (total velocities and accelerations), shapes (lengths and widths), trajectories (angles of fall) and thermodynamic properties (temperatures) of the condensations are derived. Specifically, we find that coronal rain is composed of small and dense chromospheric cores with average widths and lengths of 310 km and 710 km respectively, average temperatures below 7000 K, displaying a broad distribution of falling speeds with an average of 70 km/s and accelerations largely below the effective gravity along loops. Through estimates of the ion-neutral coupling in the blobs we show that coronal rain acts as a tracer of the coronal magnetic field, thus supporti...

  12. Hubble Space Telescope Observations of Dusty Filaments in Hercules A: Evidence for Entrainment

    CERN Document Server

    O'Dea, Christopher P; Tremblay, Grant R; Kharb, Preeti; Cotton, William D; Perley, Rick A

    2013-01-01

    We present U, V, and I-band images of the host galaxy of Hercules A (3C 348) obtained with HST/WFC3/UVIS. We find a network of dusty filaments which are more complex and extended than seen in earlier HST observations. The filaments are associated with a faint blue continuum light (possibly from young stars) and faint H-alpha emission. It seems likely that the cold gas and dust has been stripped from a companion galaxy now seen as a secondary nucleus. There are dusty filaments aligned with the base of the jets on both eastern and western sides of the galaxy. The morphology of the filaments is different on the two sides - the western filaments are fairly straight, while the eastern filaments are mainly in two loop-like structures. We suggest that despite the difference in morphologies, both sets of filaments have been entrained in a slow moving boundary layer outside the relativistic flow. As suggested by Fabian et al. (2008), magnetic fields in the filaments may stabilize them against disruption. We consider a...

  13. Observing with a space-borne gamma-ray telescope: selected results from INTEGRAL

    CERN Document Server

    Schanne, S

    2006-01-01

    The International Gamma-Ray Astrophysics Laboratory, i.e. the INTEGRAL satellite of ESA, in orbit since about 3 years, performs gamma-ray observations of the sky in the 15 keV to 8 MeV energy range. Thanks to its imager IBIS, and in particular the ISGRI detection plane based on 16384 CdTe pixels, it achieves an excellent angular resolution (12 arcmin) for point source studies with good continuum spectrum sensitivity. Thanks to its spectrometer SPI, based on 19 germanium detectors maintained at 85 K by a cryogenic system, located inside an active BGO veto shield, it achieves excellent spectral resolution of about 2 keV for 1 MeV photons, which permits astrophysical gamma-ray line studies with good narrow-line sensitivity. In this paper we review some goals of gamma-ray astronomy from space and present the INTEGRAL satellite, in particular its instruments ISGRI and SPI. Ground and in-flight calibration results from SPI are presented, before presenting some selected astrophysical results from INTEGRAL. In partic...

  14. Precise Estimates of the Physical Parameters for the Exoplanet System HD 17156 Enabled by Hubble Space Telescope Fine Guidance Sensor Transit and Asteroseismic Observations

    DEFF Research Database (Denmark)

    Nutzman, Philip; Gilliland, Ronald L.; McCullough, Peter R.;

    2011-01-01

    We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio Rp /R sstarf = 0.07454 ± 0.00035, in......We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio Rp /R sstarf = 0.07454 ± 0...

  15. Observations of free-free and anomalous microwave emission from LDN 1622 with the 100 m Green Bank Telescope

    Science.gov (United States)

    Harper, S. E.; Dickinson, C.; Cleary, K.

    2015-11-01

    LDN 1622 has previously been identified as a possible strong source of dust-correlated anomalous microwave emission (AME). Previous observations were limited by resolution meaning that the radio emission could not be compared with current generation high-resolution infrared data from Herschel, Spitzer or Wide-field Infrared Sky Explorer. This paper presents arcminute resolution mapping observations of LDN 1622 at 4.85 and 13.7 GHz using the 100 m Robert C. Byrd Green Bank Telescope. The 4.85 GHz map reveals a corona of free-free emission enclosing LDN 1622 that traces the photodissociation region of the cloud. The brightest peaks of the 4.85 GHz map are found to be within ≈10 per cent agreement with the expected free-free predicted by Southern H-Alpha Sky Survey Atlas H α data of LDN 1622. At 13.7 GHz, the AME flux density was found to be 7.0 ± 1.4 mJy and evidence is presented for a rising spectrum between 13.7 and 31 GHz. The spinning dust model of AME is found to naturally account for the flux seen at 13.7 GHz. Correlations between the diffuse 13.7 GHz emission and the diffuse mid-infrared emission are used to further demonstrate that the emission originating from LDN 1622 at 13.7 GHz is described by the spinning dust model.

  16. GRT-WF (Goddard Robotic Telescope Wide Field) Observations on Sprites to Study Correlations Between Sprites and TGFs

    Science.gov (United States)

    Watanabe, Ken; Hegley, Jakob; Vydra, Ekaterina; Sakamoto, Takanori; Okajima, Takashi; Gehrels, Neil

    2015-08-01

    It is believed that accelerated electrons are responsible for both Sprites and terrestrial gamma- ray flashes (TGFs). Although several theoretical explanations have been made, we still do not fully understand how TGFs are generated. Therefore, we search for correlations between Sprites and TGFs. We constructed a wide field optical camera system (GRT- WF) using off- the- shelf hardware in June, 2011 at Florida Gulf Coast University (FGCU), Fort Myers, Florida where a high thunderstorm activity during summer is observed. Seven cameras have been set to point along azimuth directions to cover most of the visible sky. The field of view of each camera is ~40 x 60 deg. The events are captured automatically by off- the- shelf software. We have observed around five hundred Sprites in the past four years. We have compared these Sprites with the TGFs detected by the Fermi Gamma-ray Space Telescope LAT in times and locations as well as other instruments. We discuss the preliminary results of our study.

  17. Study of galaxies in the Lynx-Cancer void. VI. HI-observations with the Nancay Radio Telescope

    CERN Document Server

    Pustilnik, S A

    2016-01-01

    Context. Void population consists mainly of late-type and low surface brightness (LSB) dwarf galaxies whose atomic hydrogen is the main component of their baryonic matter. Therefore, observations of void galaxy HI are mandatory in order to understand their evolution and dynamics. Aims. Our aim was to obtain integrated HI parameters for a fainter part of the nearby Lynx-Cancer void galaxy sample (total of 45 objects) with the Nancay Radio Telescope (NRT) and to conduct the comparative analysis of all the 103 void galaxies with known HI data with a sample of similar galaxies residing in denser environments of the Local Volume. Methods. For HI observations we used the NRT with its sensitive antenna/receiver system FORT and standard processing. The comparison of the void and control samples on the parameter M(HI)/L_B is conducted with the non-parametric method `The 2x2 Contingency Table test'. Results. We obtained new HI data for about 40% of the Lynx-Cancer galaxy sample. Along with data from the literature, we ...

  18. Fourier analysis of non-Blazhko ab-type RR Lyrae stars observed with the Kepler space telescope

    CERN Document Server

    Nemec, J M; Benko, J M; Moskalik, P; Kolenberg, K; Szabo, R; Kurtz, D W; Bryson, S; Guggenberger, E; Chadid, M; Jeon, Y -B; Kunder, A; Layden, A C; Kinemuchi, K; Kiss, L L; Poretti, E; Christensen-Dalsgaard, J; Kjeldsen, H; Caldwell, D; Ripepi, V; Derekas, A; Nuspl, J; Mullally, F; Thompson, S E; Borucki, W J

    2011-01-01

    Nineteen of the ~40 RR Lyr stars in the Kepler field have been identified as candidate non-Blazhko (or unmodulated) stars. In this paper we present the results of Fourier decomposition of the time-series photometry of these stars acquired during the first 417 days of operation (Q0-Q5) of the Kepler telescope. Fourier parameters based on ~18400 long-cadence observations per star (and ~150000 short-cadence observations for FN Lyr and for AW Dra) are derived. None of the stars shows the recently discovered `period-doubling' effect seen in Blazhko variables; however, KIC 7021124 has been found to pulsate simultaneously in the fundamental and second overtone modes with a period ratio P2/P0 ~ 0.59305 and is similar to the double-mode star V350 Lyr. Period change rates are derived from O-C diagrams spanning, in some cases, over 100 years; these are compared with high-precision periods derived from the Kepler data alone. Extant Fourier correlations by Kovacs, Jurcsik et al. (with minor transformations from the V to t...

  19. Observations of Free-Free and Anomalous Microwave Emission from LDN 1622 with the 100 m Green Bank Telescope

    CERN Document Server

    Harper, S E; Cleary, K

    2015-01-01

    LDN 1622 has previously been identified as a possible strong source of dust-correlated Anomalous Microwave Emission (AME). Previous observations were limited by resolution meaning that the radio emission could not be compared with current generation high-resolution infrared data from Herschel, Spitzer or WISE. This Paper presents arcminute resolution mapping observations of LDN 1622 at 4.85 GHz and 13.7 GHz using the 100 m Robert C. Byrd Green Bank Telescope. The 4.85 GHz map reveals a corona of free-free emission enclosing LDN 1622 that traces the photo-dissociation region of the cloud. The brightest peaks of the 4.85 GHz map are found to be within 10% agreement with the expected free-free predicted by SHASSA H{\\alpha} data of LDN 1622. At 13.7 GHz the AME flux density was found to be 7.0 $\\pm$ 1.4 mJy and evidence is presented for a rising spectrum between 13.7 GHz and 31 GHz. The spinning dust model of AME is found to naturally account for the flux seen at 13.7 GHz. Correlations between the diffuse 13.7 GH...

  20. Observations of Oppositely Directed Umbral Wavefronts Rotating in Sunspots Obtained from the New Solar Telescope of BBSO

    Science.gov (United States)

    Su, J. T.; Ji, K. F.; Cao, W.; Banerjee, D.; Priya, T. G.; Zhao, J. S.; Bai, X. Y.; Chen, J.; Zhang, M.; Ji, H. S.

    2016-02-01

    We study the umbral waves as observed by chromospheric imaging observations of two sunspots with the New Solar Telescope at the Big Bear Solar Observatory. We find that the wavefronts (WFs) rotate clockwise and form a one-armed spiral structure in the first sunspot, whereas two- and three-armed structures arise in the second sunspot where the WFs rotate anticlockwise and clockwise alternately. All the spiral arms display propagation outwards and become running penumbral waves once they cross the umbral boundaries, suggesting that the umbral and penumbral waves propagate along the same inclined field lines. We propose that the one-armed spiral structure may be produced by the WF reflections at the chromospheric umbral light bridge, and the multi-armed spirals may be related to the twist of the magnetic field in the umbra. Additionally, the time lag of the umbral oscillations in between the data of He i 10830 Å and {{H}}α -0.4 Å is ∼17 s, and it is ∼60 s for that in between the data of 304 Å and {{H}}α -0.4 Å. This indicates that these disturbances are slow magnetoacoustic waves in nature, and that they propagate upward along the inclined lines with fast radial expansions causing horizontal velocities of the running waves.

  1. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    Science.gov (United States)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  2. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Fukui, Yasuo [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca [University of Puerto Rico, Rio Piedras Campus, Physics Department, Box 23343, UPR station, San Juan (Puerto Rico); and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  3. Changes in observed climate extremes in global urban areas

    International Nuclear Information System (INIS)

    Climate extremes have profound implications for urban infrastructure and human society, but studies of observed changes in climate extremes over the global urban areas are few, even though more than half of the global population now resides in urban areas. Here, using observed station data for 217 urban areas across the globe, we show that these urban areas have experienced significant increases (p-value <0.05) in the number of heat waves during the period 1973–2012, while the frequency of cold waves has declined. Almost half of the urban areas experienced significant increases in the number of extreme hot days, while almost 2/3 showed significant increases in the frequency of extreme hot nights. Extreme windy days declined substantially during the last four decades with statistically significant declines in about 60% in the urban areas. Significant increases (p-value <0.05) in the frequency of daily precipitation extremes and in annual maximum precipitation occurred at smaller fractions (17 and 10% respectively) of the total urban areas, with about half as many urban areas showing statistically significant downtrends as uptrends. Changes in temperature and wind extremes, estimated as the result of a 40 year linear trend, differed for urban and non-urban pairs, while changes in indices of extreme precipitation showed no clear differentiation for urban and selected non-urban stations. (letter)

  4. Search for gamma-ray emission from dark matter annihilation in the large magellanic cloud with the fermi large area telescope

    NARCIS (Netherlands)

    M.R. Buckley; E. Charles; J.M. Gaskins; A.M. Brooks; A. Drlica-Wagner; P. Martin; G. Zhao

    2015-01-01

    At a distance of 50 kpc and with a dark matter mass of similar to 10(10) M-circle dot, the large magellanic cloud (LMC) is a natural target for indirect dark matter searches. We use five years of data from the Fermi Large Area Telescope (LAT) and updated models of the gamma-ray emission from standar

  5. Optical observations of comet 67P/Churyumov-Gerasimenko with the Nordic Optical Telescope. Comet activity before the solar conjunction

    Science.gov (United States)

    Zaprudin, B.; Lehto, H. J.; Nilsson, K.; Pursimo, T.; Somero, A.; Snodgrass, C.; Schulz, R.

    2015-11-01

    Context. 67P/Churyumov-Gerasimenko (67P) is a short-period Jupiter-family comet that was chosen as a target for the Rosetta mission by the European Space Agency (ESA). Monitoring of 67P with the Nordic Optical Telescope (NOT; La Palma, Spain) intends to aid this mission by providing ground-based reference information about the overall activity of the target and its astrometric position before the rendezvous. One motivation for our observations was to monitor sudden major increases in activity because they might have affected the Rosetta mission planning. None were observed. Ground-based photometric observations register the global activity of the comet, while the Rosetta spacecraft mostly measures local events. These data combined can lead to new insights into the comet behavior. Aims: The aim of this work is to perform the photometric and the astrometric monitoring of comet 67P with the NOT and to compare the results with the latest predictions for its position and activity. A new method of fitting extended-source components to the target surface brightness distribution was developed and applied to the data to estimate the size and contribution of the coma to the total brightness of the target. Methods: Comet 67P was monitored by the NOT in service mode during the period between 12.5.2013 and 11.11.2014. The very first observations were performed in the V band alone, but in the latest observations, the R band was used as well to estimate the color and nature of activity of the target. We applied a new method for estimating the coma size by deconvolving the point spread function profile from the image, which used Markov chain Monte Carlo and Bayesian statistics. This method will also be used for coma size estimations in further observations after the solar conjunction of 67P. Results: Photometric magnitudes in two colors were monitored during the period of observations. At the end of April 2014, the beginning of activity was observed. In late September 2014, a

  6. GREEN BANK TELESCOPE ZPECTROMETER CO(1-0) OBSERVATIONS OF THE STRONGLY LENSED SUBMILLIMETER GALAXIES FROM THE HERSCHEL ATLAS

    International Nuclear Information System (INIS)

    The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) has uncovered a population of strongly lensed submillimeter galaxies (SMGs). The Zpectrometer instrument on the Green Bank Telescope (GBT) was used to measure the redshifts and constrain the masses of the cold molecular gas reservoirs for two candidate high-redshift lensed sources. We derive CO(1-0) redshifts of z = 3.042 ± 0.001 and z = 2.625 ± 0.001, and measure molecular gas masses of (1-3) x1010 Msun, corrected for lens amplification and assuming a conversion factor of α = 0.8 Msun( K km s-1 pc2)-1. We find typical L(IR)/L'(CO) ratios of 120 ± 40 and 140 ± 50 Lsun( K km s-1 pc2)-1, which are consistent with those found for local ultraluminous infrared galaxies (ULIRGs) and other high-redshift SMGs. From analysis of published data, we find no evidence for enhanced L(IR)/L'(CO(1-0)) ratios for the SMG population in comparison to local ULIRGs. The GBT results highlight the power of using the CO lines to derive blind redshifts, which is challenging for the SMGs at optical wavelengths given their high obscuration.

  7. Optical archival spectra of blazar candidates of uncertain type in the 3$^{rd}$ Fermi Large Area Telescope Catalog

    CERN Document Server

    Crespo, N Álvarez; D'Abrusco, R; Landoni, M; Masetti, N; Chavushyan, V; Jiménez-Bailón, E; La Franca, F; Milisavljevic, D; Paggi, A; Patiño-Álvarez, V; Ricci, F; Smith, Howard A

    2016-01-01

    Despite the fact that blazars constitute the rarest class among active galactic nuclei (AGNs) they are the largest known population of associated $\\gamma$-ray sources. Many of the $\\gamma$-ray objects listed in the Fermi-Large Area Telescope Third Source catalog (3FGL) are classified as blazar candidates of uncertain type (BCUs), either because they show multifrequency behaviour similar to blazars but lacking optical spectra in the literature, or because the quality of such spectra is too low to confirm their nature. Here we select, out of 585 BCUs in the 3FGL, 42 BCUs which we identify as probable blazars by their WISE infrared colors and which also have optical spectra that are available in the Sloan Digital Sky Survey (SDSS) and/or Six-Degree Field Galaxy Survey Database (6dFGS). We confirm the blazar nature of all of the sources. We furthermore conclude that 28 of them are BL Lacs, 8 are radio-loud quasars with flat radio spectrum and 6 are BL Lac whose emission is dominated by their host galaxy.

  8. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bladford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Ferrara, E. C.; Gehrels, N.; Hays, E.; Scargle, J. D.; Thompson, D. J.; Troja, E.

    2011-01-01

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(exp -26) cm(exp 3) / s at 5 GeV to about 5 X 10(exp -23) cm(exp 3)/ s at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (approx 3 X 10(exp -26) cm(exp 3)/s for a purely s-wave cross section), without assuming additional boost factors.

  9. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Ajello, M.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC; Albert, A.; /Taiwan, Natl. Taiwan U. /Ohio State U.; Atwood, W.B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC; Burnett, T.H.; /Washington U., Seattle; Buson, S.; /INFN, Padua /Padua U. /ICE, Bellaterra /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /INFN, Rome /Rome U. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /Artep Inc. /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /ASDC, Frascati /Perugia U. /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /Montpellier U. /Stockholm U. /Stockholm U., OKC /ASDC, Frascati /ASDC, Frascati /Udine U. /INFN, Trieste /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /Montpellier U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /NASA, Goddard /Hiroshima U. /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /Bari Polytechnic /INFN, Bari /INFN, Bari /ASDC, Frascati /NASA, Goddard /INFN, Perugia /Perugia U. /Bari Polytechnic /INFN, Bari /Bologna Observ. /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /DAPNIA, Saclay /Alabama U., Huntsville; /more authors..

    2012-09-14

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10{sup -26} cm{sup 3} s{sup -1} at 5 GeV to about 5 x 10{sup -23} cm{sup 3} s{sup -1} at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section ({approx}3 x 10{sup -26} cm{sup 3} s{sup -1} for a purely s-wave cross section), without assuming additional boost factors.

  10. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope Quasar Survey: Quasar Properties from First Data Release

    CERN Document Server

    Ai, Y L; Yang, Jinyi; Yang, Qian; Wang, Feige; Guo, Rui; Zuo, Wenwen; Dong, Xiaoyi; Zhang, Y -X; Yuan, H -L; Song, Y -H; Wang, Jianguo; Dong, Xiaobo; Yang, M; Wu, H; Shen, S -Y; Shi, J -R; He, B -L; Lei, Y -J; Li, Y -B; Luo, A -L; Zhao, Y -H; Zhang, Hao-Tong

    2015-01-01

    We present preliminary results of the quasar survey in Large Sky Area Multi- Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes pilot survey and the first year regular survey. There are 3921 quasars identified with reliability, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with highest z of 4.83. We compile emission line measurements around the H{\\alpha}, H{\\beta}, Mg II, and C IV regions for the new quasars. The continuum luminosities are inferred from SDSS photo- metric data with model fitting as the spectra in DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, and flags indicating the selec- tion methods, broad absorption line quasars. The catalog and spectra for these quasars are available online. 28% of the 3921 quasars are selected with optical- infrared colours independently, indicating that the method is quite promising in completeness of quasar survey. LAMOST DR1 and the on-g...

  11. Search for high energy gamma-ray emission from tidal disruption events with the Fermi Large Area Telescope

    CERN Document Server

    Peng, Feng-Kun; Wang, Xiang-Yu

    2016-01-01

    Massive black holes at galaxy center may tear apart a star when the star passes occasionally within the disruption radius, which is the so-called tidal disruption event(TDE). Most TDEs radiate with thermal emission resulted from the acceleration disk, but three TDEs have been detected in bright non-thermal X-ray emission, which is interpreted as arising from the relativistic jets. Search for high-energy gamma-ray emission from one relativistic TDE (Swift J164449.3+573451) with the \\textsl{Fermi} Large Area Telescope (LAT) has yielded non-detection. In this paper, we report the search for high energy emission from the other two relativistic TDEs (Swift J2058.4+0516 Swift J1112.2-8238) during the flare period. No significant GeV emission is found, with an upper limit fluence in LAT energy range being less than $1\\%$ of that in X-rays. Compared with gamma-ray bursts (GRBs) and blazars, these TDEs have the lowest flux ratio between GeV emission and X-ray emission. The non-detection of high-energy emission from re...

  12. Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A

    CERN Document Server

    ,

    2016-01-01

    We report the Fermi Large Area Telescope detection of extended gamma-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended gamma-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be 100 MeV gamma-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the gamma-ray fluxes by factors of about ~ 2 - 3, depending on the EBL model adopted. An additional gamma-ray spectral component is thus ...

  13. Optical archival spectra of blazar candidates of uncertain type in the 3rd Fermi Large Area Telescope Catalog

    Science.gov (United States)

    Álvarez Crespo, N.; Massaro, F.; D'Abrusco, R.; Landoni, M.; Masetti, N.; Chavushyan, V.; Jiménez-Bailón, E.; La Franca, F.; Milisavljevic, D.; Paggi, A.; Patiño-Álvarez, V.; Ricci, F.; Smith, Howard A.

    2016-09-01

    Despite the fact that blazars constitute the rarest class among active galactic nuclei (AGNs) they are the largest known population of associated γ-ray sources. Many of the γ-ray objects listed in the Fermi-Large Area Telescope Third Source catalog (3FGL) are classified as blazar candidates of uncertain type (BCUs), either because they show multifrequency behavior similar to blazars but lacking optical spectra in the literature, or because the quality of such spectra is too low to confirm their nature. Here we select, out of 585 BCUs in the 3FGL, 42 BCUs which we identify as probable blazars by their WISE infrared colors and which also have optical spectra that are available in the Sloan Digital Sky Survey (SDSS) and/or Six-Degree Field Galaxy Survey Database (6dFGS). We confirm the blazar nature of all of the sources. We furthermore conclude that 28 of them are BL Lacs, 8 are radio-loud quasars with flat radio spectrum and 6 are BL Lac whose emission is dominated by their host galaxy.

  14. THE LARGE SKY AREA MULTI-OBJECT FIBER SPECTROSCOPIC TELESCOPE QUASAR SURVEY: QUASAR PROPERTIES FROM THE FIRST DATA RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Y. L.; Wu, Xue-Bing; Yang, Jinyi; Yang, Qian; Wang, Feige; Guo, Rui; Dong, Xiaoyi [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Zuo, Wenwen; Shen, S.-Y. [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Zhang, Y.-X.; Yuan, H.-L.; Song, Y.-H.; Yang, M.; Wu, H.; Shi, J.-R.; He, B.-L.; Lei, Y.-J.; Li, Y.-B. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences 100012, Beijing (China); Wang, Jianguo; Dong, Xiaobo, E-mail: aiyl@pku.edu.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); and others

    2016-02-15

    We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the Hα, Hβ, Mg ii, and C iv regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra in DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical–infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.

  15. Studying the SGR 1806-20/Cl* 1806-20 Region Using the Fermi Large Area Telescope

    Science.gov (United States)

    Yeung, Paul K. H.; Kong, Albert K. H.; Tam, P. H. Thomas; Lin, Lupin C. C.; Hui, C. Y.; Hu, Chin-Ping; Cheng, K. S.

    2016-08-01

    The region around SGR 1806-20 and its host stellar cluster Cl* 1806-20 is a potentially important site of particle acceleration. The soft γ-ray repeater and Cl* 1806-20, which also contains several very massive stars including a luminous blue variable hypergiant LBV 1806-20, are capable of depositing a large amount of energy to the surroundings. Using the data taken with the Fermi Large Area Telescope (LAT), we identified an extended LAT source to the southwest of Cl* 1806-20. The centroid of the 1-50 GeV emission is consistent with that of HESS J1808-204 (until now unidentified). The LAT spectrum is best-fit by a broken power law with the break energy {E}{{b}}=297+/- 15 {MeV}. The index above E b is 2.60 ± 0.04 and is consistent with the flux and spectral index above 100 GeV for HESS J1808-204, suggesting an association between the two sources. Meanwhile, the interacting supernova remnant SNR G9.7-0.0 is also a potential contributor to the LAT flux. A tentative flux enhancement at the MeV band during a 45 day interval (2011 January 21-March 7) is also reported. We discuss possible origins of the extended LAT source in the context of both leptonic and hadronic scenarios.

  16. Studying the SGR 1806-20/Cl* 1806-20 region using the \\emph{Fermi} Large Area Telescope

    CERN Document Server

    Yeung, Paul K H; Tam, P H Thomas; Lin, Lupin C C; Hui, C Y; Hu, Chin-Ping; Cheng, K S

    2016-01-01

    The region around SGR 1806-20 and its host stellar cluster Cl* 1806-20 is a potentially important site of particle acceleration. The soft $\\gamma-$ray repeater and Cl* 1806-20, which also contains several very massive stars including a luminous blue variable hypergiant LBV 1806-20, are capable of depositing a large amount of energy to the surroundings. Using the data taken with the \\emph{Fermi} Large Area Telescope (LAT), we identified an extended LAT source to the south-west of Cl* 1806-20. The centroid of the 1-50~GeV emission is consistent with that of HESS J1808-204 (until now unidentified). The LAT spectrum is best-fit by a broken power-law with the break energy $E_\\mathrm{b}=297\\pm15$ MeV. The index above $E_\\mathrm{b}$ is $2.60\\pm0.04$, and is consistent with the flux and spectral index above 100 GeV for HESS J1808-204, suggesting an association between the two sources. Meanwhile, the interacting supernova remnant SNR G9.7-0.0 is also a potential contributor to the LAT flux. A tentative flux enhancemen...

  17. Search for gamma-ray spectral lines with the Fermi Large Area Telescope and dark matter implications

    Science.gov (United States)

    Albert, Andrea

    Measurements indicate that ~85% of the matter in the universe neither emits nor reflects light--appropriately called "dark matter". We believe dark matter may be primary composed of new particles, but we know very little about their nature. What dark matter is and how it interacts is one of the top cosmological mysteries today. Detecting a signal from particle dark matter would not only offer insight into the fundamental nature of dark matter, but it would also be strong evidence for physics existing beyond the Standard Model. A promising dark matter candidate is a weakly interacting massive particle (WIMP). Measurements indicate that the Milky Way Galaxy resides in a halo of dark matter, making it an ideal laboratory for investigating these elusive particles. As WIMPs are predicted to be heavy, their interactions should produce high-energy gamma rays that would be detected by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope (Fermi). If WIMPs annihilate directly into gamma rays, the gamma-ray energy would be the same as the rest mass energy of the WIMPs, which is currently unknown. This process would cause a "pile-up" of gamma rays at a specific energy, producing a sharp line (or bump) in the otherwise relatively smooth gamma-ray energy spectrum. This distinctive signal would not only be strong evidence for the existence of WIMPs, but would also provide information about their mass. We have searched for spectral lines in the energy range 5 to 300 GeV using 3.7 years of Fermi LAT data, reprocessed with updated calorimeter calibration constants, and an improved energy dispersion model from previous LAT Collaboration line searches. We search in five regions selected to optimize sensitivity to different theoretically-motivated density distributions of WIMPs. We do not find any globally significant lines in our a priori search regions and present 95% confidence limits for annihilation cross section and decay lifetimes. We extensively discuss

  18. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  19. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    International Nuclear Information System (INIS)

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E iso > 1054 erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v ph ∼ 15, 000 km s–1). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v ph ∼ 30, 000 km s–1), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M ☉ yr–1), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  20. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; Cenko, S. B.; Fynbo, J. P. U.; Kouveliotou, C.; Pe'er, A.; Misra, K.; Wiersema, K.

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  1. The Star Formation Histories of Local Group Dwarf Galaxies I. Hubble Space Telescope / Wide Field Planetary Camera 2 Observations

    CERN Document Server

    Weisz, Daniel R; Skillman, Evan D; Holtzman, Jon; Gilbert, Karoline M; Dalcanton, Julianne J; Williams, Benjamin F

    2014-01-01

    We present uniformly measured star formation histories (SFHs) of 40 Local Group dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with $\\tau$ $\\sim$ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs (dTrans), and dwarf ellipticals (dEs) can be approximated by the combination of an exponentially declining SFH ($\\tau$ $\\sim$ 3-4 Gyr) for lookback ages $>$ 10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z=2 ranges considerably (80\\%...

  2. A General Relativistic Null Hypothesis Test with Event Horizon Telescope Observations of the black-hole shadow in Sgr A*

    CERN Document Server

    Psaltis, Dimitrios; Chan, Chi-Kwan; Marrone, Daniel P

    2014-01-01

    (Abridged) In General Relativity, the shadow cast by a black hole has a size that depends very weakly on its spin or the orientation of the observer. The half opening angle of the shadow is always equal to 5+-0.2 GM/Dc^2, where M is the mass of the black hole and D is its distance from the Earth. Therefore, measuring the size of the shadow of a black hole of known mass-to-distance ratio and verifying whether it is within the 4% predicted range constitutes a null hypothesis test of GR. We show that Sgr A* is the optimal target for performing this test with the Event Horizon Telescope. We use the results of monitoring of stellar orbits to show that the ratio M/D for Sgr A* is already known to an accuracy of ~6%. We investigate our prior knowledge of the scattering screen towards Sgr A, the effects of which will need to be corrected for in order for the black-hole shadow to appear sharp against the background emission. We argue that, even though the properties of the scattering ellipse at longer wavelengths are ...

  3. Early Science with the Large Millimeter Telescope: Observations of Extremely Luminous High-z Sources Identified by Planck

    CERN Document Server

    Harrington, K C; Cybulski, R; Wilson, G W; Aretxaga, I; Chavez, M; De la Luz, V; Erickson, N; Ferrusca, D; Gallup, A D; Hughes, D H; Montaña, A; Narayanan, G; Sánchez-Argüelles, D; Schloerb, F P; Souccar, K; Terlevich, E; Terlevich, R; Zeballos, M; Zavala, J A

    2016-01-01

    We present 8.5 arcsec resolution 1.1mm continuum imaging and CO spectroscopic redshift measurements of eight extremely bright submillimetre galaxies identified from the Planck and Herschel surveys, taken with the Large Millimeter Telescope's AzTEC and Redshift Search Receiver instruments. We compiled a candidate list of high redshift galaxies by cross-correlating the Planck Surveyor mission's highest frequency channel (857 GHz, FWHM = 4.5 arcmin) with the archival Herschel Spectral and Photometric Imaging Receiver (SPIRE) imaging data, and requiring the presence of a unique, single Herschel counterpart within the 150 arcsec search radius of the Planck source positions with 350 micron flux density larger than 100 mJy, excluding known blazars and foreground galaxies. All eight candidate objects observed are detected in 1.1mm continuum by AzTEC bolometer camera, and at least one CO line is detected in all cases with a spectroscopic redshift between 1.3 < z(CO) < 3.3. Their infrared spectral energy distribu...

  4. The Green Bank Telescope 350 MHz Drift-scan Survey I: Survey Observations and the Discovery of 13 Pulsars

    CERN Document Server

    Boyles, Jason; Ransom, Scott M; Stairs, Ingrid H; Lorimer, Duncan R; McLaughlin, Maura A; Hessels, Jason W T; Kaspi, Vicky M; Kondratiev, Vlad I; Archibald, Anne; Berndsen, Aaron; Cardoso, Rogerio F; Cherry, Angus; McPhee, Christie A; Pennucci, Tim; Roberts, Mallory S E; Stovall, Kevin; van Leeuwen, Joeri

    2012-01-01

    Over the summer of 2007, we obtained 1191 hours of `drift-scan' pulsar search observations with the Green Bank Telescope at a radio frequency of 350 MHz. Here we describe the survey setup, search procedure, and the discovery and follow-up timing of thirteen pulsars. Among the new discoveries, one (PSR J1623-0841) was discovered only through its single pulses, two (PSRs J1327-0755 and J1737-0814) are millisecond pulsars, and another (PSR J2222-0137) is a mildly recycled pulsar. PSR J1327-0755 is a 2.7 ms pulsar at a DM of 27.9 pc cm^{-3} in a 8.7 day orbit with a minimum companion mass of 0.22$ solar mass. PSR J1737-0814 is a 4.2 ms pulsar at a DM of 55.3 pc cm^{-3} in a 79.3 day orbit with a minimum companion mass of 0.06 solar mass. PSR J2222$-$0137 is a 32.8 ms pulsar at a very low DM of 3.27 pc cm^{-3} in a 2.4 day orbit with a minimum companion mass of 1.11 solar mass. It is most likely a white dwarf-neutron star system or an unusual low-eccentricity double neutron star system. Ten other pulsars discovere...

  5. ULTRA-NARROW NEGATIVE FLARE FRONT OBSERVED IN HELIUM-10830 Å USING THE 1.6 m NEW SOLAR TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan; Liu, Chang; Jing, Ju; Wang, Haimin [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd, Newark, NJ 07102-1982 (United States); Cao, Wenda; Gary, Dale [Big Bear Solar Observatory, New Jersey Institute of Technology 323 Martin Luther King Blvd, Newark, NJ 07102-1982 (United States); Ding, Mingde [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Kleint, Lucia [Fachhochschule Nordwestschweiz (FHNW), Institute of 4D technologies Bahnhofstr. 6, CH-5210 Windisch (Switzerland); Su, Jiangtao [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ji, Haisheng [Purple Mountain Observatory, 2 Beijing Xi Lu, Nanjing, 210008 (China); Chae, Jongchul; Cho, Kyuhyoun [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Cho, Kyungsuk [Korea Astronomy and Space Science Institute, Daedeokdae-ro 776, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2016-03-10

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles that have adverse effects on the near-Earth environment. By definition, flares are usually referred to as bright features resulting from excess emission. Using the newly commissioned 1.6 m New Solar Telescope at Big Bear Solar Observatory, we show a striking “negative” flare with a narrow but unambiguous “dark” moving front observed in He i 10830 Å, which is as narrow as 340 km and is associated with distinct spectral characteristics in Hα and Mg ii lines. Theoretically, such negative contrast in He i 10830 Å can be produced under special circumstances by nonthermal electron collisions or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomical objects.

  6. The Star-Forming Region NGC 346 in the Small Magellanic Cloud with Hubble Space Telescope ACS Observations I. Photometry

    CERN Document Server

    Gouliermis, D A; Brandne, W; Henning, T; Henning, Th.

    2006-01-01

    We present a photometric study of the star-forming region NGC 346 and its surrounding field in the Small Magellanic Cloud, using data taken with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). The data set contains both short and long exposures for increased dynamic range, and photometry was performed using the ACS module of the stellar photometry package DOLPHOT. We detected almost 100,000 stars over a magnitude range of V ~ 11 to V ~ 28 mag, including all stellar types from the most massive young stars to faint lower main sequence and pre-main sequence stars. We find that this region, which is characterized by a plethora of stellar systems and interesting objects, is an outstanding example of mixed stellar populations. We take into account different features of the color-magnitude diagram of all the detected stars to distinguish the two dominant stellar systems: The stellar association NGC 346 and the old spherical star cluster BS 90. These observations provide a complete st...

  7. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    CERN Document Server

    Matthews, Tristan G; Angilè, Francesco E; Benton, Steven J; Chapin, Edward L; Chapman, Nicholas L; Devlin, Mark J; Fissel, Laura M; Fukui, Yasuo; Gandilo, Natalie N; Gundersen, Joshua O; Hargrave, Peter C; Klein, Jeffrey; Korotkov, Andrei L; Moncelsi, Lorenzo; Mroczkowski, Tony K; Netterfield, Calvin B; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E; Truch, Matthew D P; Tucker, Carole E; Tucker, Gregory S; Ward-Thompson, Derek

    2013-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 {\\mu}m. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry (The optical data were published in 1998 by J. Rizzo and collaborators.). The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I,...

  8. FERMI GAMMA-RAY SPACE TELESCOPE OBSERVATIONS OF THE GAMMA-RAY OUTBURST FROM 3C454.3 IN NOVEMBER 2010

    International Nuclear Information System (INIS)

    The flat-spectrum radio quasar 3C454.3 underwent an extraordinary 5 day γ-ray outburst in 2010 November when the daily flux measured with the Fermi Large Area Telescope (LAT) at photon energies E > 100 MeV reached (66 ± 2) x 10-6 photons cm-2 s-1. This is a factor of three higher than its previous maximum flux recorded in 2009 December and ∼> 5 times brighter than the Vela pulsar, which is normally the brightest source in the γ-ray sky. The 3 hr peak flux was (85 ± 5)x10-6 photons cm-2 s-1, corresponding to an apparent isotropic luminosity of (2.1 ± 0.2)x1050 erg s-1, the highest ever recorded for a blazar. In this Letter, we investigate the features of this exceptional event in the γ-ray band of the Fermi-LAT. In contrast to previous flares of the same source observed with the Fermi-LAT, clear spectral changes are observed during the flare.

  9. Thin monolithic glass shells for future high angular resolution and large collecting area x-ray telescope

    Science.gov (United States)

    Civitani, M. M.; Citterio, O.; Ghigo, M.; Mattaini, E.; Pareschi, G.; Parodi, G.

    2013-09-01

    One of the most difficult requests to be accomplished from the technological point of view for next generation x-ray telescopes is to combine high angular resolution and effective area. A significant increase of effective area can be reached with high precision but at the same time thin (2-3 mm thickness for mirror diameters of 30-110 cm) glass mirror shells. In the last few years the Brera Observatory has lead a development program for realizing this kind of monolithic thin glass shell. The fused silica has been chosen as shell substrate due to its thermal and mechanical properties. To bring the mirror shells to the needed accuracy, we have adopted a deterministic direct polishing method (already used for past missions as Einstein, Rosat, Chandra) to ten time thinner shells. The technological challenge has been solved using a temporary stiffening structure that allows the handling and the machining of so thin glass shells. The results obtained with a prototype shell at an intermediate stage of its development (17'' HEW measured in full illumination mode with x-ray) indicate that the working concept is feasible and can be further exploited using the very large Ion Beam Facility available in our labs for the final high accuracy figuring of the thin shells. In this paper we present the required tolerances for the shell realization, the shells production chain flow and the ion beam facility up grading. Forecast on figuring time and expected performances of the figuring will also be given on the basis on the metrological data collected during past shell development.

  10. The Mass Function of Main-Sequence Stars in NGC 6397 from Near-Infrared and Optical High-Resolution Hubble Space Telescope Observations

    Science.gov (United States)

    De Marchi, Guido; Paresce, Francesco; Pulone, Luigi

    2000-02-01

    We have investigated the properties of the stellar mass function in the globular cluster NGC 6397 through the use of a large set of Hubble Space Telescope (HST) observations. The latter include existing WFPC 2 images in the V and I bands, obtained at ~4.5‧ and 10' radial distances, as well as a series of deep images in the J and H bands obtained with the NIC 2 and NIC 3 cameras of the NICMOS instrument pointed, respectively, to regions located ~4.5‧ and ~3.2‧ from the center. These observations span the region from ~1 to ~3 times the cluster's half-light radius (rhl~=3') and have been subjected to the same, homogeneous data processing so as to guarantee that the ensuing results could be directly compared to one another. We have built color-magnitude diagrams that we use to measure the luminosity function of main-sequence stars extending from just below the turnoff all the way down to the hydrogen-burning limit. All luminosity functions derived in this way show the same, consistent behavior in that they all increase with decreasing luminosity up to a peak at MI~=8.5 or MH~=7 and then drop precipitously well before photometric incompleteness becomes significant. Within the observational uncertainties, at MI~=12 or MH~=10.5 (~0.09 Msolar) the luminosity functions are compatible with zero. The direct comparison of our NIC 2 field with previous WFPC 2 observations of the same area shows that down to MH~=11 there are no more faint, red stars than those already detected by the WFPC 2, thus excluding a significant population of faint, low-mass stars at the bottom of the main sequence. By applying the best available mass-luminosity relation appropriate to the metallicity of NGC 6397 and consistent with our color-magnitude diagrams to both the optical and the IR data, we obtain a mass function that shows a break in slope at ~0.3 Msolar. No single-exponent power-law distribution is compatible with these data, regardless of the value of the exponent. We find that a

  11. THE FIRST DETECTION OF GeV EMISSION FROM AN ULTRALUMINOUS INFRARED GALAXY: Arp 220 AS SEEN WITH THE FERMI LARGE AREA TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Fang-Kun; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Liu, Ruo-Yu [Max-Planck-Institut für Kernphysik, D-69117 Heidelberg (Germany); Tang, Qing-Wen [School of Science, Nanchang University, Nanchang 330031 (China); Wang, Jun-Feng, E-mail: xywang@nju.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)

    2016-04-20

    Cosmic rays (CRs) in starburst galaxies produce high-energy gamma-rays by colliding with the dense interstellar medium. Arp 220 is the nearest ultraluminous infrared galaxy that has star formation at extreme levels, so it has long been predicted to emit high-energy gamma-rays. However, no evidence of gamma-ray emission was found despite intense search efforts. Here we report the discovery of high-energy gamma-ray emission above 200 MeV from Arp 220 at a confidence level of ∼6.3σ using 7.5 years of Fermi Large Area Telescope observations. The gamma-ray emission shows no significant variability over the observation period and it is consistent with the quasi-linear scaling relation between the gamma-ray luminosity and total infrared luminosity for star-forming galaxies, suggesting that these gamma-rays arise from CR interactions. As the high-density medium of Arp 220 makes it an ideal CR calorimeter, the gamma-ray luminosity can be used to measure the efficiency of powering CRs by supernova (SN) remnants given a known supernova rate in Arp 220. We find that this efficiency is about 4.2 ± 2.6% for CRs above 1 GeV.

  12. Multi-filter transit observations of WASP-39b and WASP-43b with three San Pedro M\\'artir telescopes

    CERN Document Server

    Ricci, D; Ayala-Loera, C; Michel, R; Navarro-Meza, S; Fox-Machado, L; Reyes-Ruiz, M

    2014-01-01

    Three optical telescopes located at the San Pedro M\\'artir National Observatory were used for the first time to obtain multi-filter defocused photometry of the transiting extrasolar planets WASP-39b and WASP-43b. We observed WASP-39b with the 2.12m telescope in the U filter for the first time, and additional observations were carried out in the R and I filters using the 0.84m telescope. WASP-43b was observed in VRI with the same instrument, and in the i filter with the robotic 1.50m telescope. We reduced the data using different pipelines and performed aperture photometry with the help of custom routines, in order to obtain the light curves. The fit of the light curves (1.5--2.5mmag rms), and of the period analysis, allowed a revision of the orbital and physical parameters, revealing for WASP-39b a period ($4.0552947 \\pm 9.65 \\times 10^{-7}$ days) which is $3.084 \\pm 0.774$ seconds larger than previously reported. Moreover, we find for WASP-43b a planet/star radius ($0.1738 \\pm 0.0033$) which is $0.01637 \\pm ...

  13. Sunspot numbers based on historic records in the 1610s: Early telescopic observations by Simon Marius and others

    Science.gov (United States)

    Neuhäuser, R.; Neuhäuser, D. L.

    2016-07-01

    , Tanner, Perovius, Argoli, and Wely are not mentioned as observers for 1611, 1612, 1618, 1620, and 1621 in Hoyt & Schatten. Marius and Schmidnerus are among the earliest datable telescopic sunspot observers (1611 Aug 3, Julian), namely after Harriot, the two Fabricius (father and son), Scheiner, and Cysat. Sunspots records by Malapert from 1618 to 1621 show that the last low-latitude spot was seen in Dec 1620, while the first high-latitude spots were noticed in June and Oct 1620, so that the Schwabe cycle turnover (minimum) took place around that time, which is also consistent with the sunspot trend mentioned by Marius and with naked-eye spots and likely true aurorae. We consider discrepancies in the Hoyt & Schatten (1998) systematics, we compile the active day fractions for the 1610s, and we critically discuss very recent publications on Marius which include the following Maunder Minimum. Our work should be seen as a call to go back to the historical sources.

  14. Early-type galaxies at intermediate redshift observed with Hubble space telescope WFC3: perspectives on recent star formation

    International Nuclear Information System (INIS)

    We present an analysis of the stellar populations of 102 visually selected early-type galaxies (ETGs) with spectroscopic redshifts (0.35 ≲ z ≲ 1.5) from observations in the Early Release Science program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We fit one- and two-component synthetic stellar models to the ETGs UV-optical-near-IR spectral energy distributions and find that a large fraction (∼40%) are likely to have experienced a minor (fYC ≲ 10% of stellar mass) burst of recent (tYC ≲ 1 Gyr) star formation. The measured age and mass fraction of the young stellar populations do not strongly trend with measurements of galaxy morphology. We note that massive (M > 1010.5 M ☉) recent star-forming ETGs appear to have larger sizes. Furthermore, high-mass, quiescent ETGs identified with likely companions populate a distinct region in the size-mass parameter space, in comparison with the distribution of massive ETGs with evidence of recent star formation (RSF). We conclude that both mechanisms of quenching star formation in disk-like ETGs and (gas-rich, minor) merger activity contribute to the formation of young stars and the size-mass evolution of intermediate redshift ETGs. The number of ETGs for which we have both HST WFC3 panchromatic (especially UV) imaging and spectroscopically confirmed redshifts is relatively small, therefore, a conclusion about the relative roles of both of these mechanisms remains an open question.

  15. The star formation histories of local group dwarf galaxies. I. Hubble space telescope/wide field planetary camera 2 observations

    International Nuclear Information System (INIS)

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 105 M☉ to 30% for galaxies with M > 107 M☉) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

  16. The star formation histories of local group dwarf galaxies. I. Hubble space telescope/wide field planetary camera 2 observations

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: drw@ucsc.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-07-10

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10{sup 5} M{sub ☉} to 30% for galaxies with M > 10{sup 7} M{sub ☉}) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

  17. Early science with the Large Millimeter Telescope: observations of extremely luminous high-z sources identified by Planck

    Science.gov (United States)

    Harrington, K. C.; Yun, Min S.; Cybulski, R.; Wilson, G. W.; Aretxaga, I.; Chavez, M.; De la Luz, V.; Erickson, N.; Ferrusca, D.; Gallup, A. D.; Hughes, D. H.; Montaña, A.; Narayanan, G.; Sánchez-Argüelles, D.; Schloerb, F. P.; Souccar, K.; Terlevich, E.; Terlevich, R.; Zeballos, M.; Zavala, J. A.

    2016-06-01

    We present 8.5 arcsec resolution 1.1-mm continuum imaging and CO spectroscopic redshift measurements of eight extremely bright submillimetre galaxies identified from the Planck and Herschel surveys, taken with the Large Millimeter Telescope's AzTEC and Redshift Search Receiver instruments. We compiled a candidate list of high-redshift galaxies by cross-correlating the Planck Surveyor mission's highest frequency channel (857 GHz, full width at half-maximum = 4.5 arcmin) with the archival Herschel Spectral and Photometric Imaging Receiver imaging data, and requiring the presence of a unique, single Herschel counterpart within the 150-arcsec search radius of the Planck source positions with 350-μm flux density larger than 100 mJy, excluding known blazars and foreground galaxies. All eight candidate objects observed are detected in 1.1 mm continuum by AzTEC bolometer camera, and at least one CO line is detected in all cases with a spectroscopic redshift between 1.3 < zCO < 3.3. Their infrared (IR) spectral energy distributions (SEDs) mapped using the Herschel and AzTEC photometry are consistent with cold dust emission with characteristic temperature between Td = 43 and 84 K. With apparent IR luminosity of up to LIR = 3 × 1014μ-1 L⊙, they are some of the most luminous galaxies ever found (with yet unknown gravitational magnification factor μ). The analysis of their SEDs suggests that star formation is powering the bulk of their extremely large IR luminosities. Derived molecular gas masses of M_{H_2}=(0.6-7.8)× 10^{11} M_{odot } (for μ ≈ 10) also make them some of the most gas-rich high-redshift galaxies ever detected.

  18. Bright features in Neptune on 2013-2015 from ground-based observations with small (40 cm) and large telescopes (10 m)

    Science.gov (United States)

    Hueso, Ricardo; Delcroix, Marc; Baranec, Christoph; Sánchez-Lavega, Agustín; María Gómez-Forrellad, Josep; Félix Rojas, Jose; Luszcz-Cook, Statia; de Pater, Imke; de Kleer, Katherine; Colas, François; Guarro, Joan; Goczynski, Peter; Jones, Paul; Kivits, Willem; Maxson, Paul; Phillips, Michael; Sussenbach, John; Wesley, Anthony; Hammel, Heidi B.; Pérez-Hoyos, Santiago; Mendikoa, Iñigo; Riddle, Reed; Law, Nicholas M.; Sayanagi, Kunio

    2015-11-01

    Observations of Neptune over the last few years obtained with small telescopes (30-50 cm) have resulted in several detections of bright features on the planet. In 2013, 2014 and 2015, different observers have repeatedly observed features of high contrast at Neptune’s mid-latitudes using long-pass red filters. This success at observing Neptune clouds with such small telescopes is due to the presence of strong methane absorption bands in Neptune’s spectra at red and near infrared wavelengths; these bands provide good contrast for elevated cloud structures. In each case, the atmospheric features identified in the images survived at least a few weeks, but were essentially much more variable and apparently shorter-lived, than the large convective system recently reported on Uranus [de Pater et al. 2015]. The latest and brightest spot on Neptune was first detected on July 13th 2015 with the 2.2m telescope at Calar Alto observatory with the PlanetCam UPV/EHU instrument. The range of wavelengths covered by PlanetCam (from 350 nm to the H band including narrow-band and wide-band filters in and out of methane bands) allows the study of the vertical cloud structure of this bright spot. In particular, the spot is particularly well contrasted at the H band where it accounted to a 40% of the total planet brightness. Observations obtained with small telescopes a few days later provide a good comparison that can be used to scale similar structures in 2013 and 2014 that were observed with 30-50 cm telescopes and the Robo-AO instrument at Palomar observatory. Further high-resolution observations of the 2015 event were obtained in July 25th with the NIRC2 camera in the Keck 2 10-m telescope. These images show the bright spot as a compact bright feature in H band with a longitudinal size of 8,300 km and a latitudinal extension of 5,300 km, well separated from a nearby bright band. The ensemble of observations locate the structure at -41º latitude drifting at about +24.27º/day or

  19. RadioAstron -- a Telescope with a Size of 300 000 km: Main Parameters and First Observational Results

    CERN Document Server

    Kardashev, N S; 10.1134/S1063772913030025

    2013-01-01

    The Russian Academy of Sciences and Federal Space Agency, together with the participation of many international organizations, worked toward the launch of the RadioAstron orbiting space observatory with its onboard 10-m reflector radio telescope from the Baikonur cosmodrome on July 18, 2011. Together with some of the largest ground-based radio telescopes and a set of stations for tracking, collecting, and reducing the data obtained, this space radio telescope forms a multi-antenna ground-space radio interferometer with extremely long baselines, making it possible for the first time to study various objects in the Universe with angular resolutions a million times better than is possible with the human eye. The project is targeted at systematic studies of compact radio-emitting sources and their dynamics. Objects to be studied include supermassive black holes, accretion disks, and relativistic jets in active galactic nuclei, stellar-mass black holes, neutron stars and hypothetical quark stars, regions of format...

  20. Observing Volcanoes from the Seafloor in the Central Mediterranean Area

    OpenAIRE

    Gabriele Giovanetti; Stephen Monna; Nadia Lo Bue; Davide Embriaco; Francesco Frugoni; Giuditta Marinaro; Mariagrazia De Caro; Tiziana Sgroi; Caterina Montuori; Angelo De Santis; Gianfranco Cianchini; Laura Beranzoli; Paolo Favali

    2016-01-01

    The three volcanoes that are the object of this paper show different types of activity that are representative of the large variety of volcanism present in the Central Mediterranean area. Etna and Stromboli are sub-aerial volcanoes, with significant part of their structure under the sea, while the Marsili Seamount is submerged, and its activity is still open to debate. The study of these volcanoes can benefit from multi-parametric observations from the seafloor. Each volcano was studied with ...

  1. DETECTION OF THE ENERGETIC PULSAR PSR B1509-58 AND ITS PULSAR WIND NEBULA IN MSH 15-52 USING THE FERMI-LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    We report the detection of high-energy γ-ray emission from the young and energetic pulsar PSR B1509 - 58 and its pulsar wind nebula (PWN) in the composite supernova remnant G320.4 - 1.2 (aka MSH 15 - 52). Using 1 yr of survey data with the Fermi-Large Area Telescope (LAT), we detected pulsations from PSR B1509 - 58 up to 1 GeV and extended γ-ray emission above 1 GeV spatially coincident with the PWN. The pulsar light curve presents two peaks offset from the radio peak by phases 0.96 ± 0.01 and 0.33 ± 0.02. New constraining upper limits on the pulsar emission are derived below 1 GeV and confirm a severe spectral break at a few tens of MeV. The nebular spectrum in the 1-100 GeV energy range is well described by a power law with a spectral index of (1.57 ± 0.17 ± 0.13) and a flux above 1 GeV of (2.91 ± 0.79 ± 1.35) x 10-9 cm-2 s-1. The first errors represent the statistical errors on the fit parameters, while the second ones are the systematic uncertainties. The LAT spectrum of the nebula connects nicely with Cherenkov observations, and indicates a spectral break between GeV and TeV energies.

  2. GroundBIRD: Observing Cosmic Microwave Polarization at Large Angular Scale with Kinetic Inductance Detectors and High-Speed Rotating Telescope

    Science.gov (United States)

    Oguri, S.; Choi, J.; Damayanthi, T.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Karatsu, K.; Mima, S.; Minowa, M.; Nagasaki, T.; Otani, C.; Sekimoto, Y.; Tajima, O.; Tomita, N.; Yoshida, M.; Won, E.

    2016-08-01

    Cosmic microwave background (CMB) is an important source of information about the origin of our universe. In particular, odd-parity large angular scale patterns in the CMB polarization, the primordial B-modes, are strong evidence for an inflationary universe, related to the accelerating expansion of the metric. We are developing a unique telescope, GroundBIRD, to take CMB polarization measurements. The telescope combines novel techniques: high-speed rotation scanning, cold optics, and microwave kinetic inductance detectors (MKIDs). We evaluated the response of MKIDs on the rotation stage. Method of shielding from the geo-magnetic field is established. We have also developed a receiver cryostat. We are able to maintain a sufficient cold status for observations on the optical configuration. We plan to start commissioning the system by observing CMB in Japan in 2015-2016. We will then deploy GroundBIRD in the Canary Islands for further scientific observations.

  3. Neutrino telescopes

    CERN Document Server

    Carr, J

    2002-01-01

    This review presents the scientific objectives and status of Neutrino Telescope Projects. The science program of these projects covers: neutrino astronomy, dark matter searches and measurements of neutrino oscillations. The two neutrino telescopes in operation: AMANDA and BAIKAL will be described together with the ANTARES neutrino telescope being built in the Mediterranean. (18 refs).

  4. Slewing Mirror Telescope optics for the early observation of UV/optical photons from Gamma-Ray Bursts

    DEFF Research Database (Denmark)

    Jeong, S.; Nam, J. W.; Ahn, K. B.;

    2013-01-01

    We report on design, manufacture, and testing of a Slewing Mirror Telescope (SMT), the first of its kind and a part of Ultra-Fast Flash Observatory-pathfinder (UFFO-p) for space-based prompt measurement of early UV/optical light curves from Gamma-Ray Bursts (GRBs). Using a fast slewing mirror of ...

  5. NRAO Green Bank Telescope (GBT)

    Data.gov (United States)

    Federal Laboratory Consortium — The largest fully steerable telescope in the world - the Robert C. Byrd Green Bank Telescope, began observations in Green Bank, West Virginia in 2000and is a wonder...

  6. OBSERVING THE FINE STRUCTURE OF LOOPS THROUGH HIGH-RESOLUTION SPECTROSCOPIC OBSERVATIONS OF CORONAL RAIN WITH THE CRISP INSTRUMENT AT THE SWEDISH SOLAR TELESCOPE

    International Nuclear Information System (INIS)

    Observed in cool chromospheric lines, such as Hα or Ca II H, coronal rain corresponds to cool and dense plasma falling from coronal heights. Considered as a peculiar sporadic phenomenon of active regions, it has not received much attention since its discovery more than 40 years ago. Yet, it has been shown recently that a close relationship exists between this phenomenon and the coronal heating mechanism. Indeed, numerical simulations have shown that this phenomenon is most likely due to a loss of thermal equilibrium ensuing from a heating mechanism acting mostly toward the footpoints of loops. We present here one of the first high-resolution spectroscopic observations of coronal rain, performed with the CRisp Imaging Spectro Polarimeter (CRISP) instrument at the Swedish Solar Telescope. This work constitutes the first attempt to assess the importance of coronal rain in the understanding of the coronal magnetic field in active regions. With the present resolution, coronal rain is observed to literally invade the entire field of view. A large statistical set is obtained in which dynamics (total velocities and accelerations), shapes (lengths and widths), trajectories (angles of fall of the blobs), and thermodynamic properties (temperatures) of the condensations are derived. Specifically, we find that coronal rain is composed of small and dense chromospheric cores with average widths and lengths of ∼310 km and ∼710 km, respectively, average temperatures below 7000 K, displaying a broad distribution of falling speeds with an average of ∼70 km s–1, and accelerations largely below the effective gravity along loops. Through estimates of the ion-neutral coupling in the blobs we show that coronal rain acts as a tracer of the coronal magnetic field, thus supporting the multi-strand loop scenario, and acts as a probe of the local thermodynamic conditions in loops. We further elucidate its potential in coronal heating. We find that the cooling in neighboring strands

  7. Simultaneous Observations of Giant Pulses from the Crab Pulsar, with the Murchison Widefield Array and Parkes Radio Telescope: Implications for the Giant Pulse Emission Mechanism

    CERN Document Server

    Oronsaye, S I; Bhat, N D R; Tremblay, S E; McSweeney, S J; Tingay, S J; van Straten, W; Jameson, A; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Deshpande, A A; Greenhill, L J; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Prabu, T; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Wayth, R B; Webster, R L; Williams, A; Williams, C L

    2015-01-01

    We report on observations of giant pulses from the Crab pulsar performed simultaneously with the Parkes radio telescope and the incoherent combination of the Murchison Widefield Array (MWA) antenna tiles. The observations were performed over a duration of approximately one hour at a center frequency of 1382 MHz with 340 MHz bandwidth at Parkes, and at a center frequency of 193 MHz with 15 MHz bandwidth at the MWA. Our analysis has led to the detection of 55 giant pulses at the MWA and 2075 at Parkes above a threshold of 3.5$\\sigma$ and 6.5$\\sigma$ respectively. We detected 51$\\%$ of the MWA giant pulses at the Parkes radio telescope, with spectral indices in the range of $-3.6>\\alpha> -4.9$ ($S_{\\rm \

  8. HARPS Observes the Earth Transiting the Sun — A Method to Study Exoplanet Atmospheres Using Precision Spectroscopy on Large Ground-based Telescopes

    Science.gov (United States)

    Yan, F.; Fosbury, R.; Petr-Gotzens, M.; Pallé, E.; Zhao, G.

    2015-09-01

    Exoplanetary transits offer the opportunity to measure the transmission of long, tangential pathlengths through their atmospheres. Since the fraction of the observed stellar light taking these paths is very small, transit photometric and spectrophotometric measurements of light curves require very high levels of measurement stability, favouring the use of intrinsically stable space telescopes. By studying the Rossiter-McLaughlin effect on the radial velocity of the transited star, pure, high-precision radial velocity measurements can be used to estimate the changes in planetary atmospheric transmission with wavelength: a promising method for future studies of small planets with very large ground-based telescopes since it removes the requirement for extreme photometric stability. This article describes a successful feasibility experiment using the HARPS instrument to measure reflected moonlight during the penumbral phases of a Lunar eclipse, effectively providing an observation of an Earth transit.

  9. Detection of zero anisotropy at 5.2 AU during the November 1998 solar particle event: Ulysses Anisotropy Telescopes observations

    Directory of Open Access Journals (Sweden)

    S. Dalla

    Full Text Available For the first time during the mission, the Anisotropy Telescopes instrument on board the Ulysses spacecraft measured constant zero anisotropy of protons in the 1.3-2.2 MeV energy range, for a period lasting more than three days. This measurement was made during the energetic particle event taking place at Ulysses between 25 November and 15 December 1998, an event characterised by constant high proton fluxes within a region delimited by two interplanetary forward shocks, at a distance of 5.2 AU from the Sun and heliographic latitude of 17°S. We present the ATs results for this event and discuss their possible interpretation and their relevance to the issue of intercalibration of the two telescopes.

    Key words: Interplanetary physics (energetic particles - Solar physics, astrophysics and astronomy (energetic particles - Space plasma physics (instruments and techniques

  10. Distinguishing Photons from Muons using the Time-Over-Threshold in the Tracker from the Gamma Ray Large Area Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Rawlings, Renata A

    2003-09-23

    The Gamma Ray Large Area Space Telescope, GLAST, is a large scientific instrument designed to study gamma ray activity in space. GLAST is designed to detect gamma rays with greater energy and angular resolution then previously done by gamma ray telescopes. A portion of GLAST is the Large Area Space Telescope (LAT), which is made up of sixteen identical towers encased in an anticoincidence detector. The source of the data for this study is a simulation of one of these towers. The LAT will detect gamma rays by using a technique known as pair-conversion. When a gamma ray slams into a layer of tungsten in the tower it creates a pair of subatomic particles (an electron and its anti-matter counterpart, a positron). Where this pair hits the detector has an effect on the photon's signal distribution. When a specific series of cuts are done a difference in the gamma ray signal as compared to the background signal is seen. This shape difference will ideally be the crux of detecting gamma rays. This study is a small portion of the Total preparations done to enhance the gamma ray signal coming into the detector.

  11. Observations of Lick Standard Stars Using the SCORPIO Multi-Slit Unit at the SAO 6-m Telescope

    CERN Document Server

    Sharina, M E; Puzia, T

    2006-01-01

    We present Lick line-index measurements of standard stars from the list of Worthey. The spectra were taken with the multi-slit unit of the SCORPIO spectrograph at the 6-m Special Astrophysical observatory telescope. We describe in detail our method of analysis and explain the importance of using the Lick index system for studying extragalactic globular clusters. Our results show that the calibration of our instrumental system to the standard Lick system can be performed with high confidence.

  12. DETECTION OF GAMMA-RAY EMISSION FROM THE STARBURST GALAXIES M82 AND NGC 253 WITH THE LARGE AREA TELESCOPE ON FERMI

    International Nuclear Information System (INIS)

    We report the detection of high-energy γ-ray emission from two starburst galaxies using data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been detected at significance levels of 6.8σ and 4.8σ, respectively, from sources positionally coincident with locations of the starburst galaxies M82 and NGC 253. The total fluxes of the sources are consistent with γ-ray emission originating from the interaction of cosmic rays with local interstellar gas and radiation fields and constitute evidence for a link between massive star formation and γ-ray emission in star-forming galaxies.

  13. Scaling Flux Tower Observations of Sensible Heat Flux Using Weighted Area-to-Area Regression Kriging

    Directory of Open Access Journals (Sweden)

    Maogui Hu

    2015-07-01

    Full Text Available Sensible heat flux (H plays an important role in characterizations of land surface water and heat balance. There are various types of H measurement methods that depend on observation scale, from local-area-scale eddy covariance (EC to regional-scale large aperture scintillometer (LAS and remote sensing (RS products. However, methods of converting one H scale to another to validate RS products are still open for question. A previous area-to-area regression kriging-based scaling method performed well in converting EC-scale H to LAS-scale H. However, the method does not consider the path-weighting function in the EC- to LAS-scale kriging with the regression residue, which inevitably brought about a bias estimation. In this study, a weighted area-to-area regression kriging (WATA RK model is proposed to convert EC-scale H to LAS-scale H. It involves path-weighting functions of EC and LAS source areas in both regression and area kriging stages. Results show that WATA RK outperforms traditional methods in most cases, improving estimation accuracy. The method is considered to provide an efficient validation of RS H flux products.

  14. Observing Volcanoes from the Seafloor in the Central Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Gabriele Giovanetti

    2016-04-01

    Full Text Available The three volcanoes that are the object of this paper show different types of activity that are representative of the large variety of volcanism present in the Central Mediterranean area. Etna and Stromboli are sub-aerial volcanoes, with significant part of their structure under the sea, while the Marsili Seamount is submerged, and its activity is still open to debate. The study of these volcanoes can benefit from multi-parametric observations from the seafloor. Each volcano was studied with a different kind of observation system. Stromboli seismic recordings are acquired by means of a single Ocean Bottom Seismometer (OBS. From these data, it was possible to identify two different magma chambers at different depths. At Marsili Seamount, gravimetric and seismic signals are recorded by a battery-powered multi-disciplinary observatory (GEOSTAR. Gravimetric variations and seismic Short Duration Events (SDE confirm the presence of hydrothermal activity. At the Etna observation site, seismic signals, water pressure, magnetic field and acoustic echo intensity are acquired in real-time thanks to a cabled multi-disciplinary observatory (NEMO-SN1 . This observatory is one of the operative nodes of the European Multidisciplinary Seafloor and water-column Observatory (EMSO; www.emso-eu.org research infrastructure. Through a multidisciplinary approach, we speculate about deep Etna sources and follow some significant events, such as volcanic ash diffusion in the seawater.

  15. Observed and Projected Climate Extremities in Chennai Metropolitan Area

    Science.gov (United States)

    Anushiya, j.; Andimuthu, R.

    2013-12-01

    Analyses of observed climate throughout world revealed some significant changes in the extremes. Any change in the frequency or severity of extreme climate events would have profound impacts on the resilience of nature and society. It is thus very important to analyze extreme events to reliably monitor and detect climate change. Chennai is the fourth largest metropolis in India and one of the fastest growing economic and Industrial growth centers in South Asia. Population has grown rapidly in the last 20 years due to its major industrialization and tremendous growth. Already Chennai's day and night time Temperature shows an increasing trend. The past incidence of catastrophic flooding was observed in the city due to heavy rains associated with depressions and cyclonic storm lead floods in major rivers. After 2000, the incidents were reported repeatedly. The effort has made in this study to find the observed climate extremities over the past years and in the future. For observed changes, IMD gridded data set, and station data are used. Future high resolution climate scenarios (0.220x0.220) are developed through RCM using PRECIS. The boundary data have provided by the UK Met office. The selected members are simulated under the A1B scenario (a mid range emission scenario) for a continuous run till 2100. Climate indices listed by Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) by the CLIVAR are considered in this study. The indices were obtained using the software package RClimDex. Kendall's tau based slope estimator has been used to find the significance lavel. The results shows the significant increasing tendency of warm days (TX90P) in the past and in future. The trends in extreme wet days (R99P) are also increased. The growth in population, urban and industrial area, economic activities, depletion of natural resources along with changing climate are forced to develop the infrastructure includes climate friendly policies to adopt and to ensure the

  16. High-energy gamma-ray emission from solar flares: Summary of Fermi large area telescope detections and analysis of two M-class flares

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Albert, A. [Department of Physics, Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Allafort, A.; Bechtol, K.; Bottacini, E.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck (Austria); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Bouvier, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M. [Dipartimento di Fisica " M. Merlin" dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Caliandro, G. A., E-mail: allafort@stanford.edu, E-mail: nicola.omodei@stanford.edu [Institut de Ciències de l' Espai (IEEE-CSIC), Campus UAB, E-08193 Barcelona (Spain); and others

    2014-05-20

    We present the detections of 18 solar flares detected in high-energy γ-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. This work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying γ-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by γ-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the γ-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. This would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of γ-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and γ-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.

  17. Progress in Space Solar Telescope

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we will summarize the progress in the development of the Chinese Space Solar Telescope (SST) during the past few years. The main scientific objective of SST is to observe the fundamental structure of solar magnetic field with its 1-m optical telescope. The success of 1-m Swedish Solar Telescope and Hinode underscores the importance of this 1-m space telescope. In addition, some key technical problems have been solved.

  18. Observation of the BL Lac objects 1ES 1215+303 and 1ES 1218+304 with the MAGIC telescopes

    OpenAIRE

    Colin, Pierre; Gonzalez, Josefa Becerra; Lindfors, Elina; Lombardi, Saverio; Sitarek, Julian; Stamera, Antonio; collaboration, for the MAGIC

    2011-01-01

    The two BL Lac objects 1ES 1215+303 and 1ES 1218+304, separated by 0.8 deg, were observed with the MAGIC telescopes in 2010 and 2011. The 20 hours of data registered in January 2011 resulted in the first detection at Very High Energy (>100 GeV) of 1ES 1215+303 (also known as ON-325). This observation was triggered by a high optical state of the source reported by the Tuorla blazar monitoring program. Comparison with the 25 hours of data carried out from January to May 2010 suggests that 1ES 1...

  19. A comparison study of mass-area ratio for large size x-ray telescope optics in pore and very thin glass sheets configurations

    Science.gov (United States)

    Basso, S.

    2006-06-01

    Dealing with very large size optics for the next generation of X-ray telescopes, like XEUS or ConX/SXT, it's necessary to build segmented mirrors which are assembled in petals because it's impossible to realize them in a monolithic form. The shape of these petals can be square or circular. The main problem is that such optics must have a very low weight compared to past X-ray telescopes, but assuring optimal imaging capabilities. In this paper I compare two different techniques that can achieve this so low weight. One is known as High Precision pore Optics (HPO) and the other one is based on a more classical shaped segments, assembled together, but built with very thin (in the 100-300 μm range) glass sheets that are stiffened with ribs. In this study, the main geometrical differences between the two approaches assumed, is that the first one has a pore size that doesn't change along the optics radius while the second one is based on a constant length. The main purpose of this study is to understand when one concept can be better than the other, depending on a given set of parameters, such as the focal length of the telescope, the filling factor of optic, the thickness of the walls, the radius of the segment, etc. The final goal is to achieve the best optimization of the mass to area ratio.

  20. Robust Constraint on a Drifting Proton-to-Electron Mass Ratio at z=0.89 from Methanol Observation at Three Radio Telescopes

    CERN Document Server

    Bagdonaite, Julija; Jansen, Paul; Bethlem, Hendrick L; Ubachs, Wim; Muller, Sébastien; Henkel, Christian; Menten, Karl M

    2013-01-01

    A limit on a possible cosmological variation of the proton-to-electron mass ratio $\\mu$ is derived from methanol (CH$_3$OH) absorption lines in the benchmark PKS1830$-$211 lensing galaxy at redshift $z \\sim 0.89$ observed with the Effelsberg 100-m radio telescope, the IRAM 30-m telescope, and the ALMA telescope array. Ten different absorption lines of CH$_3$OH covering a wide range of sensitivity coefficients $K_{\\mu}$ are used to derive a purely statistical 1-$\\sigma$ constraint of $\\Delta\\mu/\\mu = (1.5 \\pm 1.5) \\times 10^{-7}$ for a lookback time of 7.5 billion years. Systematic effects of chemical segregation, excitation temperature, frequency dependence and time variability of the background source are quantified. A multi-dimensional linear regression analysis leads to a robust constraint of $\\Delta\\mu/\\mu = (-1.0 \\pm 0.8_{\\rm stat} \\pm 1.0_{\\rm sys}) \\times 10^{-7}$.

  1. The large binocular telescope.

    Science.gov (United States)

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  2. The large binocular telescope.

    Science.gov (United States)

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010. PMID:20517352

  3. SNAP telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  4. Broca's area processes the hierarchical organization of observed action.

    Science.gov (United States)

    Wakita, Masumi

    2013-01-01

    Broca's area has been suggested as the area responsible for the domain-general hierarchical processing of language and music. Although meaningful action shares a common hierarchical structure with language and music, the role of Broca's area in this domain remains controversial. To address the involvement of Broca's area in the processing action hierarchy, the activation of Broca's area was measured using near-infrared spectroscopy. Measurements were taken while participants watched silent movies that featured hand movements playing familiar and unfamiliar melodies. The unfamiliar melodies were reversed versions of the familiar melodies. Additionally, to investigate the effect of a motor experience on the activation of Broca's area, the participants were divided into well-trained and less-trained groups. The results showed that Broca's area in the well-trained participants demonstrated a significantly larger activation in response to the hand motion when an unfamiliar melody was played than when a familiar melody was played. However, Broca's area in the less-trained participants did not show a contrast between conditions despite identical abilities of the two participant groups to identify the melodies by watching key pressing actions. These results are consistent with previous findings that Broca's area exhibits increased activation in response to grammatically violated sentences and musically deviated chord progressions as well as the finding that this region does not represent the processing of grammatical structure in less-proficient foreign language speakers. Thus, the current study suggests that Broca's area represents action hierarchy and that sufficiently long motor training is necessary for it to become sensitive to motor syntax. Therefore, the notion that hierarchical processing in Broca's area is a common function shared between language and music may help to explain the role of Broca's area in action perception. PMID:24478668

  5. Broca's area processes the hierarchical organization of observed action.

    Science.gov (United States)

    Wakita, Masumi

    2013-01-01

    Broca's area has been suggested as the area responsible for the domain-general hierarchical processing of language and music. Although meaningful action shares a common hierarchical structure with language and music, the role of Broca's area in this domain remains controversial. To address the involvement of Broca's area in the processing action hierarchy, the activation of Broca's area was measured using near-infrared spectroscopy. Measurements were taken while participants watched silent movies that featured hand movements playing familiar and unfamiliar melodies. The unfamiliar melodies were reversed versions of the familiar melodies. Additionally, to investigate the effect of a motor experience on the activation of Broca's area, the participants were divided into well-trained and less-trained groups. The results showed that Broca's area in the well-trained participants demonstrated a significantly larger activation in response to the hand motion when an unfamiliar melody was played than when a familiar melody was played. However, Broca's area in the less-trained participants did not show a contrast between conditions despite identical abilities of the two participant groups to identify the melodies by watching key pressing actions. These results are consistent with previous findings that Broca's area exhibits increased activation in response to grammatically violated sentences and musically deviated chord progressions as well as the finding that this region does not represent the processing of grammatical structure in less-proficient foreign language speakers. Thus, the current study suggests that Broca's area represents action hierarchy and that sufficiently long motor training is necessary for it to become sensitive to motor syntax. Therefore, the notion that hierarchical processing in Broca's area is a common function shared between language and music may help to explain the role of Broca's area in action perception.

  6. Possibility of observation by the Antares telescope of the gamma ray point sources observed by the Egret detector and study of a prototype; Possibilite d'observation par le telescope Antares des sources ponctuelles de rayons gamma observees par le detecteur Egret et etude d'un prototype

    Energy Technology Data Exchange (ETDEWEB)

    Saouter, S

    2004-09-01

    The ANTARES collaboration aims to install an underwater neutrino telescope at 2 500 m deep and 40 km away from Toulon (France). The neutrinos are detected thanks to their interaction by charged current in the medium surrounding the telescope which can be rock or water. The produced muon emits Tcherenkov light along its path in water. This light is detected by a three-dimensional network of 900 photomultipliers divided into 12 independent lines. To validate the chosen techniques, a prototype made up of a fifth of line was deployed in 2003. A reconstruction algorithm was developed on simulated data whose results are presented. However, a technical failure made the data recorded by the prototype unsuitable. The detection potential of Antares to gamma ray sources observed by Egret is studied. Indeed, under the assumption of a gamma ray production via high-energy hadrons, a comparable flux of neutrinos associated is predicted. By supposing the two fluxes equal and an energy spectrum varying as E{sup -2} eleven sources are potentially detectable in one year. The Antares sensitivity to such a spectrum depends on the declination of the source with an optimum of 3.6 10{sup -4} m{sup -2} s{sup -1} GeV{sup -1} in one year at 90% of confidence level for a declination of - 90 deg C. (author)

  7. Hubble Space Telescope Proper Motions along the Sagittarius Stream: I. Observations and Results for Stars in Four Fields

    CERN Document Server

    Sohn, Sangmo Tony; Carlin, Jeffrey L; Majewski, Steven R; Kallivayalil, Nitya; Law, David R; Anderson, Jay; Siegel, Michael H

    2014-01-01

    We present a Hubble Space Telescope (HST) study of stellar proper motions (PMs) for four fields spanning 200 degrees along the Sagittarius (Sgr) stream: one field in the trailing arm, one field near the Sgr dSph tidal radius, and two fields in the leading arm. From data with 6-9 year time baselines, we determine absolute PMs of dozens of individual stars per field, using established techniques that use distant background galaxies to define a stationary reference frame. Stream stars are identified based on combined color-magnitude diagram (CMD) and PM information. The results are broadly consistent with the few existing PM measurements for the Sgr dwarf spheroidal galaxy (dSph) and the trailing arm. However, our new results provide the highest PM accuracy for the stream to date, the first PM measurements for the leading arm, and the first PM measurements for individual stream stars [We also serendipitously determine the PM of the globular cluster NGC 6652 to be ($\\mu_{\\rm W}$, $\\mu_{\\rm N}$) = (5.66 $\\pm$ 0.07...

  8. Superorbital Periodic Modulation in Wind-Accretion High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    Science.gov (United States)

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-01-01

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  9. DEEP CHANDRA MONITORING OBSERVATIONS OF NGC 4649. II. WIDE-FIELD HUBBLE SPACE TELESCOPE IMAGING OF THE GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, MI 48824 (United States); Fabbiano, Giuseppina; Luo, Bin; Kim, Dong-Woo; Fragos, Tassos [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Brodie, Jean P. [UCO/Lick Observatory, 1156 High Street, Santa Cruz, CA 95064 (United States); Gallagher, John S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706-1582 (United States); Kalogera, Vassiliki [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); King, Andrew [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Zezas, Andreas, E-mail: strader@pa.msu.edu [Physics Department, University of Crete, P.O. Box 2208, GR-710 03, Heraklion, Crete (Greece)

    2012-11-20

    We present g and z photometry and size estimates for globular clusters (GCs) in the massive Virgo elliptical NGC 4649 (M60) using a five-pointing Hubble Space Telescope/Advanced Camera for Surveys mosaic. The metal-poor GCs show a monotonic negative metallicity gradient of -0.43 {+-} 0.10 dex per dex in radius over the full radial range of the data, out to {approx}24 kpc. There is evidence for substantial color substructure among the metal-rich GCs. The metal-poor GCs have typical sizes {approx}0.4 pc larger than the metal-rich GCs out to large galactocentric distances ({approx}> 20 kpc), favoring an intrinsic explanation for the size difference rather than projection effects. There is no clear relation between half-light radius and galactocentric distance beyond {approx}15 kpc, suggesting that the sizes of GCs are not generically set by tidal limitation. Finally, we identify {approx}20 candidate ultracompact dwarfs that extend down to surprisingly faint absolute magnitudes (M{sub z} {approx} -8.5), and may bridge the gap between this class and 'extended clusters' in the Local Group. Three of the brighter candidates have published radial velocities and can be confirmed as bona fide ultracompact dwarfs; follow-up spectroscopy will determine the nature of the remainder of the candidates.

  10. Hubble Space Telescope Observations of the CfA Seyfert 2s The Fueling of Active Galactic Nuclei

    CERN Document Server

    Martini, P; Pogge, Richard W; Martini, Paul

    1999-01-01

    We present an investigation of possible fueling mechanisms operating in the inner kiloparsec of Seyfert galaxies. We analyze visible and near-infrared Hubble Space Telescope images of 24 Seyfert 2s from the CfA Redshift Survey sample. In particular, we are searching for the morphological signatures of dynamical processes reponsible for transporting gas from kiloparsec scales into the nucleus. The circumnuclear regions are very rich in gas and dust, often taking the form of nuclear spiral dust lanes on scales of a few hundred parsecs. While these nuclear spirals are found in 20 of our 24 Seyferts, we find only 5 nuclear bars among the entire sample, strongly reinforcing the conclusions of other investigators that nuclear bars are not the primary means of transporting this material into the nucleus. An estimate of the gas density in the nuclear spirals based on extinction measurements suggests that the nuclear spiral dust lanes are probably shocks in nuclear gas disks that are not strongly self-gravitating. Sin...

  11. The Dark Matter Telescope

    CERN Document Server

    Tyson, J A; Angel, J R P; Wittman, David

    2001-01-01

    Weak gravitational lensing enables direct reconstruction of dark matter maps over cosmologically significant volumes. This research is currently telescope-limited. The Dark Matter Telescope (DMT) is a proposed 8.4 m telescope with a 3 degree field of view, with an etendue of 260 $(m. degree)^2$, ten times greater than any other current or planned telescope. With its large etendue and dedicated observational mode, the DMT fills a nearly unexplored region of parameter space and enables projects that would take decades on current facilities. The DMT will be able to reach 10-sigma limiting magnitudes of 27-28 magnitude in the wavelength range .3 - 1 um over a 7 square degree field in 3 nights of dark time. Here we review its unique weak lensing cosmology capabilities and the design that enables those capabilities.

  12. Hubble Space Telescope

    International Nuclear Information System (INIS)

    The characteristics and capabilities of the Hubble Space Telescope (HST) are described. The telescope can provide an angular resolution of about 0.1 arcsec, a faint stellar limiting magnitude of about 28 mag, and UV observations greater than or equal to 1150 A. The scientific instruments on the HST include: a wide-field and planetary camera, a faint object spectrograph, a faint object camera, a high speed photometer, a high resolution spectrograph, and three fine guidance sensors. The role of the Space Telescope Science Institute in managing and distributing the HST data is examined. The application of the telescope to the study of cosmology, evolution, QSOs and AGNs, galaxies and cluster, stars and the interstellar medium, and planetary astronomy is proposed

  13. Scientific impact of large telescopes

    CERN Document Server

    Sánchez, S F

    2000-01-01

    The scientific impacts of telescopes worldwide have been compared on the basis of their contributions to (a) the 1000 most-cited astronomy papers published 1991-8 (125 from each year), and (b) the 452 astronomy papers published in Nature 1989-98. 1-m and 2-m ground-based telescopes account for \\~5% of the citations to the top-cited papers, 4-m telescopes 10%, Keck I/II 4%, sub-mm and radio telescopes 4%, HST 8%, other space telescopes 23%. The remaining citations are mainly to theoretical and review papers. The strong showing by 1-m and 2-m telescopes in the 1990s augurs well for the continued scientific impact of 4-m telescopes in the era of 8-m telescopes. The impact of individual ground-based optical telescopes is proportional to collecting area (and approximately proportional to capital cost). The impacts of the various 4-m telescopes are similar, with CFHT leading in citation counts, and WHT in Nature papers. HST has about 15 times the citation impact of a 4-m ground-based telescope, but cost >100 times ...

  14. Depth-dependent global properties of a sunspot observed by Hinode using the Solar Optical Telescope/Spectropolarimeter

    Science.gov (United States)

    Tiwari, Sanjiv K.; van Noort, Michiel; Solanki, Sami K.; Lagg, Andreas

    2015-11-01

    Context. For the past two decades, the three-dimensional structure of sunspots has been studied extensively. A recent improvement in the Stokes inversion technique prompts us to revisit the depth-dependent properties of sunspots. Aims: In the present work, we aim to investigate the global depth-dependent thermal, velocity, and magnetic properties of a sunspot, as well as the interconnection between various local properties. Methods: We analysed high-quality Stokes profiles of the disk-centred, regular, leading sunspot of NOAA AR 10933, acquired by the Solar Optical Telescope/Spectropolarimeter (SOT/SP) on board the Hinode spacecraft. To obtain depth-dependent stratification of the physical parameters, we used the recently developed, spatially coupled version of the SPINOR inversion code. Results: First, we study the azimuthally averaged physical parameters of the sunspot. We find that the vertical temperature gradient in the lower- to mid-photosphere is at its weakest in the umbra, while it is considerably stronger in the penumbra, and stronger still in the spot's surroundings. The azimuthally averaged field becomes more horizontal with radial distance from the centre of the spot, but more vertical with height. At continuum optical depth unity, the line-of-sight velocity shows an average upflow of ~300 ms-1 in the inner penumbra and an average downflow of ~1300 ms-1 in the outer penumbra. The downflow continues outside the visible penumbral boundary. The sunspot shows, at most, a moderate negative twist of qualitative similarity to that of a standard penumbral filament and its surrounding spines. Conclusions: The large-scale variation in the physical parameters of a sunspot at various optical depths is presented. Our results suggest that the spines in the penumbra are basically the outward extension of the umbra. The spines and the penumbral filaments, together, are the basic elements that form a sunspot penumbra.

  15. Metallicity and star formation activities of the interacting system Arp 86 from observations with MOS on the Xinglong 2.16 m telescope

    International Nuclear Information System (INIS)

    We present an analysis of the metallicity and star formation activities of H II regions in the interacting system Arp 86, based on the first scientific observations using multi-object spectroscopy with the 2.16 m telescope at the Xinglong Observing Station. We find that the oxygen abundance gradient in Arp 86 is flatter than that in normal disk galaxies, which confirms that gas inflows caused by tidal forces during encounters can flatten the metallicity distributions in galaxies. The companion galaxy NGC 7752 is currently experiencing a galaxy-wide starburst with a higher star formation rate surface density than the main galaxy NGC 7753, which can be explained in that the companion galaxy is more susceptible to the effects of interaction than the primary. We also find that the galaxy 2MASX J23470758+2926531 has similar abundance and star formation properties to NGC 7753, and may be a part of the Arp 86 system. (research papers)

  16. The Beaming Structures of Jupiter’s Decametric Common S-bursts Observed from the LWA1, NDA, and URAN2 Radio Telescopes

    Science.gov (United States)

    Imai, Masafumi; Lecacheux, Alain; Clarke, Tracy E.; Higgins, Charles A.; Panchenko, Mykhaylo; Dowell, Jayce; Imai, Kazumasa; Brazhenko, Anatolii I.; Frantsuzenko, Anatolii V.; Konovalenko, Alexandr A.

    2016-08-01

    On 2015 February 21, simultaneous observations of Jupiter's decametric radio emission between 10 and 33 MHz were carried out using three powerful low-frequency radio telescopes: the Long Wavelength Array Station One in the USA, the Nançay Decameter Array in France, and the URAN2 telescope in Ukraine. We measured the lag times of short-bursts (S-bursts) for 105 minutes of data over effective baselines of up to 8460 km by using cross-correlation analysis of the spectrograms from each instrument. Of particular interest is the measurement of the beaming thickness of S-bursts, testing if either flashlight- or beacon-like beaming is emanating from Jupiter. We find that the lag times for all pairs drift slightly as time elapses, in agreement with expectations from the flashlight-like beaming model. This leads to a new constraint of the minimum beaming thickness of 2.″66. Also, we find that most of the analyzed data abound with S-bursts, whose occurrence probability peaks at 17–18 MHz.

  17. Hubble Space Telescope Configuration

    Science.gov (United States)

    1985-01-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  18. Measurement of the Cosmic Ray e+ plus e- Spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, M.; /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bogaert, G.; /Ecole Polytechnique; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /Stockholm U., OKC /Royal Inst. Tech., Stockholm /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Pisa /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Bari U. /INFN, Bari; /more authors..

    2012-05-14

    Designed as a high-sensitivity gamma-ray observatory, the Fermi Large Area Telescope is also an electron detector with a large acceptance exceeding 2 m{sup 2}sr at 300 GeV. Building on the gamma-ray analysis, we have developed an efficient electron detection strategy which provides sufficient background rejection for measurement of the steeply-falling electron spectrum up to 1 TeV. Our high precision data show that the electron spectrum falls with energy as E{sup -3.0} and does not exhibit prominent spectral features. Interpretations in terms of a conventional diffusive model as well as a potential local extra component are briefly discussed.

  19. Cosmic-Ray Background Flux Model based on a Gamma-Ray Large-Area Space Telescope Balloon Flight Engineering Model

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T

    2004-09-03

    Cosmic-ray background fluxes were modeled based on existing measurements and theories and are presented here. The model, originally developed for the Gamma-ray Large Area Space Telescope (GLAST) Balloon Experiment, covers the entire solid angle (4{pi} sr), the sensitive energy range of the instrument ({approx} 10 MeV to 100 GeV) and abundant components (proton, alpha, e{sup -}, e{sup +}, {mu}{sup -}, {mu}{sup +} and gamma). It is expressed in analytic functions in which modulations due to the solar activity and the Earth geomagnetism are parameterized. Although the model is intended to be used primarily for the GLAST Balloon Experiment, model functions in low-Earth orbit are also presented and can be used for other high energy astrophysical missions. The model has been validated via comparison with the data of the GLAST Balloon Experiment.

  20. UV/Visible Observations of C/2012 K1 PanSTARRS and C/2013 A1 Siding Spring from a Stratospheric Telescope

    Science.gov (United States)

    Young, E. F.; Diller, J.; Dinkel, K.; Dischner, Z.; Cheng, A. F.; Hibbitts, C.; Osterman, S. N.

    2014-12-01

    The UV-VIS (Ultra-Violet/Visible) instrument on the BOPPS mission (Balloon Observation Platform for Planetary Science) has two main goals: to demonstrate pointing stability at the 0.1" level, commensurate with the near-space PSF (Point Spread Function) expected from the 80 cm aperture telescope, and to observe targets in wavelengths where the telluric transmission is low. Two potential targets of a BOPPS flight in September 2014 are comets C/2012 K1 PanSTARRS and C/2013 A1 Siding Spring. The UV-VIS science camera has been outfitted with four filters from the NASA's Hale-Bopp filter set: an OH filter at 308 nm, a CN filter at 385 nm and continuum filters at 345 and 445 nm. UV-VIS can potentially measure OH emission from the cometary targets if the BOPPS flight extends past sunset; the sky background due to Rayleigh scattering at 310 nm is too high for daytime observations, even from float altitudes near 35 km. The BOPPS telescope is stabilized at the few arcsecond level by inertial-guida