WorldWideScience

Sample records for area avalanche photodiodes

  1. Recent advances in very large area avalanche photodiodes

    Science.gov (United States)

    Squillante, Michael R.; Christian, James; Entine, Gerald; Farrell, Richard; Karger, Arieh M.; McClish, Mickel; Myers, Richard; Shah, Kanai S.; Taylor, David; Vanderpuye, Kofi; Waer, Peter; Woodring, Mitchell

    2003-09-01

    The Avalanche Photodiode (APD) is a unique device that combines the advantages of solid state photodetectors with those of high gain devices such as photomultiplier tubes (PMTs). APDs have internal gain that provides a high signal-to-noise ratio. APDs have high quantum efficiency, are fast, compact, and rugged. These properties make them suitable detectors for important applications such as LADAR, detection and identification toxic chemicals and bio-warfare agents, LIDAR fluorescence detection, stand-off laser induced breakdown spectroscopy (LIBS), and nuclear detectors and imagers. Recently there have been significant technical breakthroughs in fabricating very large APDs, APD arrays, and position sensitive APD arrays (PSAPD). Signal gain of over 10,000 has been achieved, single element APDs have been fabricated with active area greater than 40 cm2, monolithic pixelated arrays with up to 28 x 28 elements have been fabricated, and position sensitive APDs have been developed and tested. Additionally, significant progress has been made in improving the fabrication process to provide better uniformity and high yield, permitting cost effective manufacturing of APDs for reduced cost.

  2. X-ray spectrometry with Peltier-cooled large area avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, L.M.P.; Lopes, J.A.M.; Santos, J.M.F. dos E-mail: jmf@gian.fis.uc.pt; Conde, C.A.N

    2004-01-01

    Performance characteristics of the response of a Peltier-cooled large-area avalanche photodiode are investigated. Detector gain, energy linearity, energy resolution and minimum detectable energy are studied at different operation temperatures. Detector energy resolution and lowest detectable X-ray energy present a strong improvement as the operation temperature is reduced from 25 to 15 deg. C and slower improvements are achieved for temperatures below 10 deg. C.

  3. Performance of a Large Area Avalanche Photodiode in a Liquid Xenon Ionization and Scintillation Chamber

    CERN Document Server

    Ni, K; Day, D; Giboni, K L; Lopes, J A M; Majewski, P; Yamashita, M

    2005-01-01

    Scintillation light produced in liquid xenon (LXe) by alpha particles, electrons and gamma-rays was detected with a large area avalanche photodiode (LAAPD) immersed in the liquid. The alpha scintillation yield was measured as a function of applied electric field. We estimate the quantum efficiency of the LAAPD to be 45%. The best energy resolution from the light measurement at zero electric field is 7.5%(sigma) for 976 keV internal conversion electrons from Bi-207 and 2.6%(sigma) for 5.5 MeV alpha particles from Am-241. The detector used for these measurements was also operated as a gridded ionization chamber to measure the charge yield. We confirm that using a LAAPD in LXe does not introduce impurities which inhibit the drifting of free electrons.

  4. Avalanche speed in thin avalanche photodiodes

    Science.gov (United States)

    Ong, D. S.; Rees, G. J.; David, J. P. R.

    2003-04-01

    The duration of the avalanche multiplication process in thin GaAs avalanche photodiodes is investigated using a full band Monte Carlo (FBMC) model. The results are compared with those of a simple random path length (RPL) model which makes the conventional assumptions of a displaced exponential for the ionization path length probability distribution function and that carriers always travel at their saturated drift velocities. We find that the avalanche duration calculated by the RPL model is almost twice of that predicted by the FBMC model, although the constant drift velocities used in the former model are estimated using the latter. The faster response predicted by FBMC model arises partly from the reduced dead space but mainly from the velocity overshoot of ionizing carriers. While the feedback multiplication processes forced by the effects of dead space extend the avalanche duration in short structures, the effects of velocity overshoot in the realistic model more than compensate, significantly improving multiplication bandwidth.

  5. Silicon Geiger mode avalanche photodiodes

    Institute of Scientific and Technical Information of China (English)

    M. Mazzillo; S. Billotta; G. Bonanno; A. Campisi; L. Cosentino; P. Finocchiaro; F. Musumeci; S.Privitera; S. Tudisco; G. Condorelli; D. Sanfilippo; G. Fallica; E. Sciacca; S. Aurite; S. Lombardo; E. Rlmini; M. Belluso

    2007-01-01

    In this letter we present the results regarding the electrical and optical characterization of Geiger mode silicon avalanche photodiodes (GMAP) fabricated by silicon standard planar technology. Low dark count rates, negligible afterpulsing effects,good timing resolution and high quantum detection efficiency in all the visible range have been measured. The very good electro-optical performances of our photodiodes make them attractive for the fabrication of arrays with a large number of GMAP to be used both in the commercial and the scientific fields, as telecommunications and nuclear medical imaging.

  6. Integrated avalanche photodiode arrays

    Science.gov (United States)

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  7. Response of large area avalanche photodiodes to low energy x rays

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, T. R. [Stop 8461, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Bales, M. [University of Michigan, Ann Arbor, Michigan 48104 (United States); Arp, U. [Stop 8410, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Dong, B. [Sotera Defense Solutions, Inc., Brookhaven National Laboratory, Upton, New York 11973 (United States); Farrell, R. [RMD Inc., Watertown, Massachusetts 02472 (United States)

    2012-05-15

    For an experiment to study neutron radiative beta-decay, we operated large area avalanche photodiodes (APDs) near liquid nitrogen temperature to detect x rays with energies between 0.2 keV and 20 keV. Whereas there are numerous reports of x ray spectrometry using APDs at energies above 1 keV, operation near liquid nitrogen temperature allowed us to reach a nominal threshold of 0.1 keV. However, due to the short penetration depth of x rays below 1 keV, the pulse height spectrum of the APD become complex. We studied the response using monochromatic x ray beams and employed phenomenological fits of the pulse height spectrum to model the measurement of a continuum spectrum from a synchrotron. In addition, the measured pulse height spectrum was modelled using a profile for the variation in efficiency of collection of photoelectrons with depth into the APD. The best results are obtained with the collection efficiency model.

  8. Nano-multiplication region avalanche photodiodes and arrays

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  9. Readout of a LaCl sub 3 (Ce sup 3 sup +) scintillation crystal with a large area avalanche photodiode

    CERN Document Server

    Allier, C P; Dorenbos, P; Hollander, R W; Eijk, C W E; Kraemer, K W; Güdel, H U

    2002-01-01

    A high-resolution gamma-ray detector consisting of an 8 mm diameter and 5 mm thick LaCl sub 3 (Ce sup 3 sup +) scintillation crystal coupled to a 16 mm diameter APD from Advanced Photonix Inc is presented. The energy resolution R obtained at 662 keV is about 3.7% (full-width at half maximum). The low intrinsic resolution of about 2%, the high light yield of the crystal (46 000+-5000 photons per MeV) and the high quantum efficiency of the avalanche photodiode make this gamma-ray detector an excellent choice for applications were a high energy resolution is required.

  10. Avalanche Photodiode Arrays for Optical Communications Receivers

    Science.gov (United States)

    Srinivasan, M.; Vilnrotter, V.

    2001-01-01

    An avalanche photodiode (APD) array for ground-based optical communications receivers is investigated for the reception of optical signals through the turbulent atmosphere. Kolmogorov phase screen simulations are used to generate realistic spatial distributions of the received optical field. It is shown that use of an APD array for pulse-position modulation detection can improve performance by up to 4 dB over single APD detection in the presence of turbulence, but that photon-counting detector arrays yield even greater gains.

  11. Relative degradation of near infrared avalanche photodiodes from proton irradiation

    Science.gov (United States)

    Becker, Heidi; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.

  12. SiC Avalanche Photodiodes and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aymont Technology, Inc. (Aymont) will demonstrate the feasibility of SiC p-i-n avalanche photodiodes (APD) arrays. Aymont will demonstrate 4 x 4 arrays of 2 mm2 APDs...

  13. Detection of light pulses using an avalanche-photodiode array with a metal-resistor-semiconductor structure

    NARCIS (Netherlands)

    Akindinov, AV; Bondarenko, GB; Voloshin, KG; Golovin, VM; Grigoriev, EA; Mal'kevich, DB; Martemiyanov, AN; Smirnitskiy, AV

    2005-01-01

    The results from tests of avalanche-photodiode (APD) arrays with a metal-resistor-semiconductor (MRS) structure are presented. The photodiodes, having a working area of 1 X 1 mm(2), operated in the Geiger mode. MRS APD arrays were tested using light-emitting diodes and as components of scintillation

  14. Investigation of avalanche photodiodes radiation hardness for baryonic matter studies

    CERN Document Server

    Kushpil, V; Ladygin, V P; Kugler, A; Kushpil, S; Svoboda, O; Tlustý, P

    2015-01-01

    Modern avalanche photodiodes (APDs) with high gain are good device candidates for light readout from detectors applied in relativistic heavy ion collisions experiments. The results of the investigations of the APDs properties from Zecotek, Ketek and Hamamatsu manufacturers after irradiation using secondary neutrons from cyclotron facility U120M at NPI of ASCR in \\v{R}e\\v{z} are presented. The results of the investigations can be used for the design of the detectors for the experiments at NICA and FAIR.

  15. Model of single-electron performance of micropixel avalanche photodiodes

    CERN Document Server

    Sadygov, Z; Akhmedov, G; Akhmedov, F; Khorev, S; Mukhtarov, R; Sadigov, A; Sidelev, A; Titov, A; Zerrouk, F; Zhezher, V

    2014-01-01

    An approximate iterative model of avalanche process in a pixel of micropixel avalanche photodiode initiated by a single photoelectron is presented. The model describes development of the avalanche process in time, taking into account change of electric field within the depleted region caused by internal discharge and external recharge currents. Conclusions obtained as a result of modelling are compared with experimental data. Simulations show that typical durations of the front and rear edges of the discharge current have the same magnitude of less than 50 ps. The front of the external recharge current has the same duration, however duration of the rear edge depends on value of the quenching micro-resistor. It was found that effective capacitance of the pixel calculated as the slope of linear dependence of the pulse charge on bias voltage exceeds its real capacitance by a factor of two.

  16. On possibilities of application of Miller formula for determination of parameters of Micropixel Avalanche Photodiodes

    CERN Document Server

    Sadygov, Z; Akhmedov, G; Akhmedov, F; Mukhtarov, R; Sadygov, A; Titov, A; Zhezher, V

    2014-01-01

    Miller formula modified to take into account voltage drop on serial resistor of an avalanche photodiode is considered. It is proven by experimental data that modified Miller formula can describe operation of both regular and micropixel avalanche photodiodes with good enough precision. It is shown that operation parameters of the devices can be determined using a linear extrapolation of the voltage-current curve for both regular avalanche photodiode and the one operating in Geiger mode.

  17. Correcting for accidental correlations in saturated avalanche photodiodes

    CERN Document Server

    Grieve, James A; Tang, Zhongkan; Ling, Alexander

    2015-01-01

    In this paper we present a high-level numerical model for estimating rates of accidental correlations between a pair of passively quenched Geiger mode avalanche photodiodes operating in the saturated regime. By considering the recovery time of both the diodes and the detection circuit we introduce the concept of an "effective duty cycle" and show that it may be estimated by numeric simulation. The impact of effective duty cycle on the observed accidental rate is examined and we demonstrate that the updated model leads to an improved correction factor in actual experiments. This will improve the signal-to-noise ratio in applications depending on correlation measurements.

  18. Double Screening Tests of the CMS ECAL Avalanche Photodiodes

    CERN Document Server

    Deiters, Konrad; Renker, Dieter; Sakhelashvili, Tariel; Britvitch, Ilia; Kuznetsov, Andrey; Musienko, Yuri; Singovsky, Alexander

    2005-01-01

    Specially developed avalanche photo-diodes (APDs) will be used to measure the light from the 61,200 lead tungstate crystals in the barrel part of the CMS electromagnetic calorimeter. To ensure the reliability over the lifetime of the detector, every APD is screened by irradiation and burn-in before it is accepted for CMS. As part of the establishment of the screening procedure and to determine its effectiveness, a large number of APDs were screened twice. The results of these tests suggest that the required reliability will be achieved.

  19. Robust Quantum Random Number Generator Based on Avalanche Photodiodes

    Science.gov (United States)

    Wang, Fang-Xiang; Wang, Chao; Chen, Wei; Wang, Shuang; Lv, Fu-Sheng; He, De-Yong; Yin, Zhen-Qiang; Li, Hong-Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-08-01

    We propose and demonstrate a scheme to realize a high-efficiency truly quantum random number generator (RNG) at room temperature (RT). Using an effective extractor with simple time bin encoding method, the avalanche pulses of avalanche photodiode (APD) are converted into high-quality random numbers (RNs) that are robust to slow varying noise such as fluctuations of pulse intensity and temperature. A light source is compatible but not necessary in this scheme. Therefor the robustness of the system is effective enhanced. The random bits generation rate of this proof-of-principle system is 0.69 Mbps with double APDs and 0.34 Mbps with single APD. The results indicate that a high-speed RNG chip based on the scheme is potentially available with an integrable APD array.

  20. Monte Carlo investigation of avalanche multiplication process in thin InP avalanche photodiodes

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; MA YuXiang

    2009-01-01

    An ensemble Monte Carlo simulation is presented to investigate the avalanche multiplication process in thin InP avalanche photodiodes (APDs). Analytical band structures are applied to the description of the conduction and valence band, and impact ionization is treated as an additional scattering mecha-nism with the Keldysh formula. Multiplication gain and excess noise factor of InP p~+-i-n~+ APDs aresimulated and obvious excess noise reduction is found in the thinner devices. The effect of dead space on excess noise in thin APD structures is investigated by the distribution of impact ionization events within the multiplication region. It is found that the dead space can suppress the feedback ionization events resulting in a more deterministic avalanche multiplication process and reduce the excess noise in thinner APDs.

  1. Avalanche photodiode based time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.; Ebert, Robert W.; McComas, David J.; Walther, Brandon C. [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)

    2015-08-15

    This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. By replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.

  2. Cesium hafnium chloride scintillator coupled with an avalanche photodiode photodetector

    Science.gov (United States)

    Kurosawa, S.; Kodama, S.; Yokota, Y.; Horiai, T.; Yamaji, A.; Shoji, Y.; Král, R.; Pejchal, J.; Ohashi, Y.; Kamada, K.; Nikl, M.; Yoshikawa, A.

    2017-02-01

    Optical and scintillation properties of pure Cs2HfCl6 (CHC) single crystals were investigated. In particular, light output and energy resolution were measured using a Si avalanche photodiode (Si-APD), since the Si-APD has sufficient quantum efficiency of around 70 % at emission wavelength region of CHC around 420 nm. This CHC single crystal grown using the vertical Bridgeman method showed light output of 37,000± 2,000 photons/MeV . The FWHM energy resolution was determined to be 3.7± 0.5× (E/662 keV)‑0.85± 0.03[%], where E [keV] is the gamma-ray energy. Moreover, the temperature dependence of the light output was stable from ‑5 to 30 oC, while the light output increased below ‑10 oC.

  3. Systematic afterpulsing-estimation algorithms for gated avalanche photodiodes

    CERN Document Server

    Wiechers, Carlos; Muñiz-Sánchez, Oscar R; Yépiz, Pablo Daniel; Arredondo-Santos, Alejandro; Hirsch, Jorge G; U'Ren, Alfred B

    2016-01-01

    We present a method designed to efficiently extract optical signals from InGaAs avalanche photodiodes (APDs) operated in gated mode. In particular, our method permits an estimation of the fraction of counts which actually results from the signal being measured, as opposed to being produced by noise mechanisms, specifically by afterpulsing. Our method in principle allows the use of InGaAs APDs at high detection efficiencies, with the full operation bandwidth, either with or without resorting to the application of a dead time. As we show below, our method can be used in configurations where afterpulsing exceeds the genuine signal by orders of magnitude, even near saturation. The algorithms which we have developed are suitable to be used either in real-time processing of raw detection probabilities or in post-processing applications, after a calibration step has been performed. The algorithms which we propose here can complement technologies designed for the reduction of afterpulsing.

  4. Characterization of midwave infrared InSb avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Abautret, J., E-mail: johan.abautret@ies.univ-montp2.fr; Evirgen, A. [Université Montpellier, IES, UMR 5214, F-34095 Montpellier (France); CNRS, IES, UMR 5214, F-34095 Montpellier (France); SOFRADIR, BP 21, 38113 Veurey-Voroize (France); Perez, J. P.; Christol, P. [Université Montpellier, IES, UMR 5214, F-34095 Montpellier (France); CNRS, IES, UMR 5214, F-34095 Montpellier (France); Rothman, J. [CEA-LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Cordat, A. [SOFRADIR, BP 21, 38113 Veurey-Voroize (France)

    2015-06-28

    This paper focuses on the InSb material potential for the elaboration of Avalanche Photodiodes (APD) for high performance infrared imaging applications, both in passive or active mode. The first InSb electron-APD structure was grown by molecular beam epitaxy, processed and electrically characterized. The device performances are at the state of the art for the InSb epi-diode technology, with a dark current density J(−50 mV) = 32 nA/cm{sup 2} at 77 K. Then, a pure electron injection was performed, and an avalanche gain, increasing exponentially, was observed with a gain value near 3 at −4 V at 77 K. The Okuto–Crowell model was used to determine the electron ionization coefficient α(E) in InSb, and the InSb gain behavior is compared with the one of InAs and MCT APDs.

  5. GaN-Based, Low-Voltage Avalanche Photodiodes for Robust and Compact UV Imagers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR program is directed toward the development of a novel low-voltage (~10V) AlGaN-based multi-quantum well (MQW) avalanche photodiode (APD) on...

  6. Single Photon Sensitive HgCdTe Avalanche Photodiode Detector (APD) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A linear mode HgCdT electron-initiated avalanche photodiode (EAPD) capable of 1570nm photon detection efficiency (PDE) at >10 MHz will be developed. The Phase I...

  7. The properties of ITE's silicon avalanche photodiodes within the spectral range used in scintillation detection

    CERN Document Server

    Wegrzecka, I

    1999-01-01

    The design and properties of 3 mm silicon avalanche photodiodes developed at ITE are presented. Their performance parameters within the spectral range applicable in scintillation detection (400-700 nm) are discussed and compared to those for near infrared radiation.

  8. Advanced active quenching circuits for single-photon avalanche photodiodes

    Science.gov (United States)

    Stipčević, M.; Christensen, B. G.; Kwiat, P. G.; Gauthier, D. J.

    2016-05-01

    Commercial photon-counting modules, often based on actively quenched solid-state avalanche photodiode sensors, are used in wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single photon arrival time resolution (jitter), however they usually do not specify the conditions under which these parameters are constant or present a sufficient description. In this work, we present an in-depth analysis of the active quenching process and identify intrinsic limitations and engineering challenges. Based on that, we investigate the range of validity of the typical parameters used by two commercial detectors. We identify an additional set of imperfections that must be specified in order to sufficiently characterize the behavior of single-photon counting detectors in realistic applications. The additional imperfections include rate-dependence of the dead time, jitter, detection delay shift, and "twilighting." Also, the temporal distribution of afterpulsing and various artifacts of the electronics are important. We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the system's performance. Specifically, we discuss implications of these new findings in a few applications in which single-photon detectors play a major role: the security of a quantum cryptographic protocol, the quality of single-photon-based random number generators and a few other applications. Finally, we describe an example of an optimized avalanche quenching circuit for a high-rate quantum key distribution system based on time-bin entangled photons.

  9. Single and few photon avalanche photodiode detection process study

    Science.gov (United States)

    Blazej, Josef; Prochazka, Ivan

    2009-07-01

    We are presenting the results of the study of the Single Photon Avalanche Diode (SPAD) pulse response risetime and its dependence on several key parameters. We were investigating the unique properties of K14 type SPAD with its high delay uniformity of 200 μm active area and the correlation between the avalanche buildup time and the photon number involved in the avalanche trigger. The detection chip was operated in a passive quenching circuit with active gating. This setup enabled us to monitor the diode reverse current using an electrometer, a fast digitizing oscilloscope, and using a custom design comparator circuit. The electrometer reading enabled to estimate the photon number per detection event, independently on avalanche process. The avalanche build up was recorded on the oscilloscope and processed by custom designed waveform analysis package. The correlation of avalanche build up to the photon number, bias above break, photon absorption location, optical pulse length and photon energy was investigated in detail. The experimental results are presented. The existing solid state photon counting detectors have been dedicated for picosecond resolution and timing stability of single photon events. However, the high timing stability is maintained for individual single photons detection, only. If more than one photon is absorbed within the detector time resolution, the detection delay will be significantly affected. This fact is restricting the application of the solid state photon counters to cases where single photons may be guaranteed, only. For laser ranging purposes it is highly desirable to have a detector, which detects both single photon and multi photon signals with picoseconds stability. The SPAD based photon counter works in a purely digital mode: a uniform output signal is generated once the photon is detected. If the input signal consists of several photons, the first absorbed one triggers the avalanche. Obviously, for multiple photon signals, the

  10. Interaction of Avalanche Photodiodes (APDs Devices With Thermal Irradiation Environments

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2012-04-01

    Full Text Available This paper has been examined the high temperature irradiation variations testing in order to be used to determine avalanche photodiode lifetime, even though APD failure mechanisms are more sensitive to increases in current density. As a measured parameter of degradation, the current density is of great significance when searching for failure modes in APD. Raising the current density however, is not really indicative of lifetime since it is more likely a situation to be avoided than one that simulates normal lifetime degradation. The reliability of semiconductor detectors is very dependent on the degradation modes. This paper has investigated deeply some of the degradation performance and capabilities of typical APDs currently used in many communication and sensing systems over wide range of the affecting parameters. APDs are used in systems that require coherent and often single mode light such as high data rate communications and sensing applications. APDs are an attractive receiver choice for photon-starved (low signal applications, because their internal gain mechanism can improve signal to noise ratio. An optical receiver must also be appropriate for the laser wavelength being used. The near infrared is the preferred wavelength regime for deep space optical communications largely due to the wavelengths of available laser technologies that meet the optical power requirements of a deep space optical link

  11. New gamma detector modules based on micropixel avalanche photodiode

    Science.gov (United States)

    Ahmadov, F.; Ahmadov, G.; Guliyev, E.; Madatov, R.; Sadigov, A.; Sadygov, Z.; Suleymanov, S.; Akberov, R.; Nuriyev, S.; Zerrouk, F.

    2017-01-01

    In this paper presented the results of the ionizing radiation detector modules, which developed on the basis of a new generation of micropixel avalanche photodiode (MAPD) of MAPD-3NK type. The samples were produced in cooperation with the Zecotek Photonics and characterized by the following parameters: sensitive area—3.7 mm × 3.7 mm, density of pixels—10000 pixels/mm2, photon detection efficiency—35-40% (at wavelength of 450-550 nm) and operation voltage—91 V. The beta particle and gamma ray detection performance of MAPD with different single scintillation crystal such as NaI, LFS and p-terphenyl was investigated. The gamma ray detector modules demonstrated a perfect linear behavior of detected signal amplitudes as a function of the gamma ray energy (from 26.3 keV up to 1.33 MeV). Energy resolution for 662 keV gamma rays was 11.2% and the minimum detectable energy was 26.3 keV.

  12. Nano-Multiplication-Region Avalanche Photodiodes and Arrays

    Science.gov (United States)

    Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas

    2008-01-01

    Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be

  13. Improved x-ray detection and particle identification with avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Diepold, Marc, E-mail: marc.diepold@mpq.mpg.de; Franke, Beatrice; Götzfried, Johannes; Hänsch, Theodor W.; Krauth, Julian J.; Mulhauser, Françoise; Nebel, Tobias; Pohl, Randolf [Max Planck Institute of Quantum Optics, 85748 Garching (Germany); Fernandes, Luis M. P.; Amaro, Fernando D.; Gouvea, Andrea L.; Monteiro, Cristina M. B.; Santos, Joaquim M. F. dos [LIBPhys, Physics Department, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Machado, Jorge [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL) e Departamento de Física da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, 2892-516 Caparica (Portugal); Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, case 74, 75005 Paris (France); Amaro, Pedro; Santos, José Paulo [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL) e Departamento de Física da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, 2892-516 Caparica (Portugal); and others

    2015-05-15

    Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work, we report on a fitting technique used to account for different detector responses resulting from photoabsorption in the various avalanche photodiode layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2 and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g., to distinguish between x-rays and MeV electrons in our experiment.

  14. Development of Fuses for Protection of Geiger-Mode Avalanche Photodiode Arrays

    Science.gov (United States)

    Grzesik, Michael; Bailey, Robert; Mahan, Joe; Ampe, Jim

    2015-11-01

    Current-limiting fuses composed of Ti/Al/Ni were developed for use in Geiger-mode avalanche photodiode arrays for each individual pixel in the array. The fuses were designed to burn out at ˜4.5 × 10-3 A and maintain post-burnout leakage currents less than 10-7 A at 70 V sustained for several minutes. Experimental fuse data are presented and successful incorporation of the fuses into a 256 × 64 pixel InP-based Geiger-mode avalanche photodiode array is reported.

  15. Background-Free Optical Sampling System Using Si Avalanche Photodiode as Two-Photon Absorber

    Institute of Scientific and Technical Information of China (English)

    Kenji; Taira; Ryo; Ohta; Yasuyuki; Ozeki; Yutaka; Fukuchi; Kazuhiro; Katoh; Kazuro; Kikuchi

    2003-01-01

    The introduction of a double-chopping scheme eliminates the background level in the optical sampling system, where a Si avalanche photodiode acts as a two-photon absorber. We successfully demonstrate background-free optical sampling of 40-GHz and 160-GHz pulse trains.

  16. The blocking probability of Geiger-mode avalanche photo-diodes

    Science.gov (United States)

    Moision, Bruce; Srinivasan, Meera; Hamkins, Jon

    2005-01-01

    When a photo is detected by a Geiger-mode avalanche photo-diode (GMAPD), the detector is rendered inactive, or blocked, for a certain period of time. In this paper we derive the blocking probability for a GMAPD whose input is either an unmodulated, Benoulli modulated or pulse-position-modulated Poisson process.

  17. Photoionization of Trapped Carriers in Avalanche Photodiodes to Reduce Afterpulsing During Geiger-Mode Photon Counting

    Science.gov (United States)

    Krainak, Michael A.

    2005-01-01

    We reduced the afterpulsing probability by a factor of five in a Geiger-mode photon-counting InGaAs avalanche photodiode by using sub-band-gap (lambda = 1.95 micron) laser diode illumination, which we believe photoionizes the trapped carriers.

  18. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.

    Science.gov (United States)

    Aull, Brian

    2016-04-08

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.

  19. III-Nitride Visible- and Solar-Blind Avalanche Photodiodes

    Science.gov (United States)

    2007-12-01

    Manager: Dr. Donald Silversmith – Air Force Office of Scientific Research Principal Investigator: Professor Manijeh Razeghi Center for...photodiodes K. Minder, J.L. Pau, R. McClintock, P. Kung, C. Bayram, M. Razeghi and D. Silversmith Applied Physics Letters, Vol. 91, No. 7, p. 073513-1...M. Razeghi, E. Muñoz, and D. Silversmith Applied Physics Letters, Vol. 91, No. 04, p. 041104 -1-- July 23, 2007 3. Hole-initiated multiplication

  20. HgCdTe Infrared Avalanche Photodiode Single Photon Detector Arrays for the LIST and Other Decadal Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a HgCdTe avalanche photodiode (APD)  SWIR/IR linear mode photon counting (LMPC) array detector system in support of the LIST lidar. Provide a new type...

  1. High-Speed Radiation Tolerant Avalanche Photodiodes Based on InGaN for Space Altimeter Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance, radiation-tolerant detectors are required for the time-of-flight laser based rangefinders. Avalanche photodiodes (APDs) are conventionally chosen...

  2. Antimonide-based Geiger-mode avalanche photodiodes for SWIR and MWIR photon counting

    Science.gov (United States)

    Duerr, Erik K.; Manfra, Michael J.; Diagne, Mohamed A.; Bailey, Robert J.; Zayhowski, John J.; Donnelly, Joseph P.; Connors, Michael K.; Grzesik, Michael J.; Turner, George W.

    2010-04-01

    At MIT Lincoln Laboratory, avalanche photodiodes (APDs) have been developed for both 2-μm and 3.4-μm detection using the antimonide material system. These bulk, lattice-matched detectors operate in Geiger mode at temperatures up to 160 K. The 2-μm APDs use a separate-absorber-multiplier design with an InGaAsSb absorber and electron-initiated avalanching in the multiplier. These APDs have exhibited normalized avalanche probability (product of avalanche probability and photo-carrier-injection probability) of 0.4 and dark count rates of ~150 kHz at 77 K for a 30-μm-diameter device. A 1000- element imaging array of the 2-μm detectors has been demonstrated, which operate in a 5 kg dewar with an integrated Stirling-cycle cooler. The APD array is interfaced with a CMOS readout circuit, which provides photon time-of-arrival information for each pixel, allowing the focal plane array to be used in a photon-counting laser radar system. The 3.4-μm APDs use an InAsSb absorber and hole-initiated avalanching and have shown dark count rates of ~500 kHz at 77 K but normalized avalanche probability of < 1%. Research is ongoing to determine the cause of the low avalanche probability and improve the device performance.

  3. Commercially available Geiger mode single-photon avalanche photodiode with a very low afterpulsing probability

    CERN Document Server

    Stipčević, Mario

    2015-01-01

    Afterpulsing is one of the main technological flaws present in photon counting detectors based on solid-state semiconductor avalanche photodiodes operated in Geiger mode. Level of afterpulsing depends mainly on type of the semiconductor, doping concentrations and temperature and presents an additional source of noise, along with dark counts. Unlike dark counts which appear randomly in time, aterpulses and are time-correlated with the previous detections. For measurements that rely on timing information afterpulsing can create fake signals and diminish the sensitivity. In this work we test a novel broadband sensitive APD that was designed for sub-Geiger avalanche gain operation. We find that this APD, which has a reach-through geometry typical of single-photon detection photodiodes, can also operate in Geiger mode with usable detection sensitivity and acceptable dark counts level while exhibiting uniquely low afterpulsing. The afterpulsing of tested samples was systematically less than 0.05 percent at 10V exce...

  4. Study of frequency and time responses of a separated absorption and multiplication region avalanche photodiode

    CERN Document Server

    Banoushi, A; Setayeshi, S

    2003-01-01

    In this paper, the frequency and time responses of a separated absorption and multiplication avalanche photodiode are studied by solving the carrier continuity equations, in the low gain regime. The discrepancy between the carrier velocities in different layers is considered for the first time. It is shown that considerable error occurs, if the device d characteristics are calculated assuming uniformly distributed velocities in the depletion layer, especially when the different layers have almost equal thickness.

  5. Silicon Geiger-mode avalanche photodiode arrays for photon-starved imaging

    Science.gov (United States)

    Aull, Brian F.

    2015-05-01

    Geiger-mode avalanche photodiodes (GMAPDs) are capable of detecting single photons. They can be operated to directly trigger all-digital circuits, so that detection events are digitally counted or time stamped in each pixel. An imager based on an array of GMAPDs therefore has zero readout noise, enabling quantum-limited sensitivity for photon-starved imaging applications. In this review, we discuss devices developed for 3D imaging, wavefront sensing, and passive imaging.

  6. Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)

    Science.gov (United States)

    Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.

    2015-08-01

    InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.

  7. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes

    Science.gov (United States)

    Farrell, Alan C.; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M.; Huffaker, Diana L.

    2015-12-01

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III-V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.

  8. 3D integration of Geiger-mode avalanche photodiodes aimed to very high fill-factor pixels for future linear colliders 

    CERN Document Server

    Vilella, E; Dieguez, A

    2013-01-01

    This paper presents an analysis of the maximum achievable fill-factor by a pixel detector of Geiger-mode avalanche photodiodes with the Chartered 130 nm/Tezzaron 3D process. The analysis shows that fillfactors between 66% and 96% can be obtained with different array architectures and a time-gated readout circuit of minimum area. The maximum fill-factor is achieved when the two-layer vertical stack is used to overlap the non-sensitive areas of one layer with the sensitive areas of the other one. Moreover, different sensor areas are used to further increase the fill-factor. A chip containing a pixel detector of the Geigermode avalanche photodiodes and aimed to future linear colliders has been designed with the Chartered 130 nm/Tezzaron 3D process to increase the fill-factor.

  9. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging

    Directory of Open Access Journals (Sweden)

    Tomislav Resetar

    2016-08-01

    Full Text Available This work explores the benefits of linear-mode avalanche photodiodes (APDs in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under −32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e - rms, full well capacity of 8000 e - , and the conversion gain of 75 µV / e - are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination.

  10. Improved X-ray detection and particle identification with avalanche photodiodes

    CERN Document Server

    Diepold, Marc; Machado, Jorge; Amaro, Pedro; Abdou-Ahmed, Marwan; Amaro, Fernando D; Antognini, Aldo; Biraben, François; Chen, Tzu-Ling; Covita, Daniel S; Dax, Andreas J; Franke, Beatrice; Galtier, Sandrine; Gouvea, Andrea L; Götzfried, Johannes; Graf, Thomas; Hänsch, Theodor W; Hildebrandt, Malte; Indelicato, Paul; Julien, Lucile; Kirch, Klaus; Knecht, Andreas; Kottmann, Franz; Krauth, Julian J; Liu, Yi-Wei; Monteiro, Cristina M B; Mulhauser, Françoise; Naar, Boris; Nebel, Tobias; Nez, François; Santos, José Paulo; Santos, Joaquim M F dos; Schuhmann, Karsten; Szabo, Csilla I; Taqqu, David; Veloso, João F C A; Voss, Andreas; Weichelt, Birgit; Pohl, Randolf

    2015-01-01

    Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work we report on a fitting technique used to account for different detector responses resulting from photo absorption in the various APD layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2, and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g. to distinguish between x-rays and MeV electrons in our experiment.

  11. Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation

    Science.gov (United States)

    Becker, Heidi N.; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.

  12. Pixelated Geiger-Mode Avalanche Photo-Diode Characterization through Dark Current Measurement

    CERN Document Server

    Amaudruz, Pierre-André; Gilhully, Colleen; Goertzen, Andrew; James, Lloyd; Kozlowski, Piotr; Retière, Fabrice; Shams, Ehsan; Sossi, Vesna; Stortz, Greg; Thiessen, Jonathan D; Thompson, Christopher J

    2013-01-01

    PIXELATED geiger-mode avalanche photodiodes(PPDs), often called silicon photomultipliers (SiPMs) are emerging as an excellent replacement for traditional photomultiplier tubes (PMTs) in a variety of detectors, especially those for subatomic physics experiments, which requires extensive test and operation procedures in order to achieve uniform responses from all the devices. In this paper, we show for two PPD brands, Hamamatsu MPPC and SensL SPM, that the dark noise rate, breakdown voltage and rate of correlated avalanches can be inferred from the sole measure of dark current as a function of operating voltage, hence greatly simplifying the characterization procedure. We introduce a custom electronics system that allows measurement for many devices concurrently, hence allowing rapid testing and monitoring of many devices at low cost. Finally, we show that the dark current of Hamamastu Multi-Pixel Photon Counter (MPPC) is rather independent of temperature at constant operating voltage, hence the current measure...

  13. Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength

    Science.gov (United States)

    Dong, Yuan; Wang, Wei; Lee, Shuh Ying; Lei, Dian; Gong, Xiao; Khai Loke, Wan; Yoon, Soon-Fatt; Liang, Gengchiau; Yeo, Yee-Chia

    2016-09-01

    We report the demonstration of a germanium-tin multiple quantum well (Ge0.9Sn0.1 MQW)-on-Si avalanche photodiode (APD) for light detection near the 2 μm wavelength range. The measured spectral response covers wavelengths from 1510 to 2003 nm. An optical responsivity of 0.33 A W-1 is achieved at 2003 nm due to the internal avalanche gain. In addition, a thermal coefficient of breakdown voltage is extracted to be 0.053% K-1 based on the temperature-dependent dark current measurement. As compared to the traditional 2 μm wavelength APDs, the Si-based APD is promising for its small excess noise factor, less stringent demand on temperature stability, and its compatibility with silicon technology.

  14. High-speed imaging and wavefront sensing with an infrared avalanche photodiode array

    CERN Document Server

    Baranec, Christoph; Riddle, Reed; Hall, Donald; Jacobson, Shane; Law, Nicholas M; Chun, Mark

    2015-01-01

    Infrared avalanche photodiode arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared avalanche photodiode array that achieves a correlated double sampling read noise of 0.73 e- in the lab, and a total noise of 2.52 e- on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics system at the Palomar Observatory 1.5-m telescope. We report here on the improved image quality achieved simultaneously at visible and infrared wavelengths by using the array as part of an image stabilization control-loop with adaptive-optics sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity as well as future uses of this technology in other adaptive optics and high-contrast imaging applications.

  15. Interplanetary Space Weather Effects on Lunar Reconnaissance Orbiter Avalanche Photodiode Performance

    Science.gov (United States)

    Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.

    2016-01-01

    Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).

  16. Noise Temperature Characteristics and Gain-control of Avalanche Photodiodes for Laser Radar

    Institute of Scientific and Technical Information of China (English)

    CAI Xi-ping; SHANG Hong-Bo; BAI Ji-yuan; YANG Shuang; WANG Li-na

    2008-01-01

    Avalanche photodiodes(APDs) are promising light sensors with high quantum efficiency and low noise. It has been extensively used in radiation detection, laser radar and other weak signal detection fields. Unlike other photodiodes, APD is a very sensitive light detector with very high internal gain. The basic theory shows that the gain of APD is related to the temperature. The internal gain fluctuates with the variation of temperature. Investigated was the influence of the variation of the gain induced by the fluctuation of temperature on the output from APD for a very weak laser pulse input in laser radar. An active reverse-biased voltage compensation method is used to stabilize the gain of APD. An APD model is setup to simulate the detection of light pulse signal. The avalanche process, various noises and temperature's effect are all included in the model. Our results show that for the detection of weak light signal such as in laser radar, even a very small fluctuation of temperature could cause a great effect on APD's gain. The results show that the signal-to-noise ratio of the APD's output could be improved effectively with the active gain-control system.

  17. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    Science.gov (United States)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  18. Scintillator counters with multi-pixel avalanche photodiode readout for the ND280 detector of the T2K experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mineev, O. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation)]. E-mail: oleg@inr.ru; Afanasjev, A. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Bondarenko, G.; Golovin, V. [Center of Perspective Technology and Apparatus, 107076 Moscow (Russian Federation); Gushchin, E.; Izmailov, A.; Khabibullin, M.; Khotjantsev, A. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Kudenko, Yu. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Kurimoto, Y. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kutter, T. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001 (United States); Lubsandorzhiev, B. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Mayatski, V. [AO Uniplast, 600016 Vladimir (Russian Federation); Musienko, Yu. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Nakaya, T.; Nobuhara, T. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Shaibonov, B.A.J.; Shaikhiev, A. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Taguchi, M. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Yershov, N. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Yokoyama, M. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2007-07-11

    The Tokai-to-Kamioka (T2K) experiment is a second generation long baseline neutrino oscillation experiment which aims at a sensitive search for {nu}{sub e} appearance. The main design features of the T2K near neutrino detectors located at 280m from the target are presented, and the scintillator counters are described. The counters are readout via WLS fibers embedded into S-shaped grooves in the scintillator from both ends by multi-pixel avalanche photodiodes operating in a limited Geiger mode. Operating principles and results of tests of photosensors with a sensitive area of 1mm{sup 2} are presented. A time resolution of 1.75ns, a spatial resolution of 9.9-12.4cm, and a detection efficiency for minimum ionizing particles of more than 99% were obtained for scintillator detectors in a beam test.

  19. InAs/InAsSb Avalanche Photodiode (APD) for applicaions in long-wavelength infrared region

    Institute of Scientific and Technical Information of China (English)

    P.K.Maurya; H.Agarwal; A.Singh; P.Chakrabarti

    2008-01-01

    A generic numerical model of a long-wavelength Avalanche Photodiode (APD) based on narrow bandgap semiconductor InAsSb on lnAs substrate is reported for the first time. This model has been applied for theoretical characterization of a proposed N+ InAS/P-InAsSb avalanche photodiode structure for possible application in 2-5 μm wavelength region. The parameters such as gain, excess noise factor and their trade-offwith variation of doping concentration and bias voltage have been estimated for the APD taking into account history-dependent theory of avalanche multiplication process. The LWIR APD is expected to find application in optical gas sensor and in future generation of optical communication system.

  20. A cooled avalanche photodiode detector for X-ray magnetic diffraction experiments

    CERN Document Server

    Kishimoto, S; Ito, M

    2001-01-01

    A cooled avalanche photodiode (APD) detector was developed for X-ray magnetic diffraction experiments. A stack of four silicon APDs was cooled down to 243 K by a thermoelectric cooler. The energy widths of 0.89 and 1.55 keV (FWHM) were obtained for 8.05 keV X-rays at 1x10 sup 6 s sup - sup 1 and for 16.53 keV X-rays at 2x10 sup 6 s sup - sup 1 , respectively. Test measurements of X-ray magnetic diffraction were executed using a terbium single crystal and white synchrotron radiation. A peak width of (1 0 3) reflection (5.4 keV) was roughly three times wider than that with a high-purity germanium detector.

  1. Measurement-based characterization of multipixel avalanche photodiodes for scintillating detectors

    CERN Document Server

    Dziewiecki, M

    2012-01-01

    Multipixel avalanche photodiodes (MAPD) are recently gaining popularity in high energy physics experiments as an attractive replacement for photomultiplier tubes, which have been extensively used for many years as a part of various scintillating detectors. Their low price, small dimensions and another features facilitating their use (like mechanical shock resistance, magnetic field immunity or moderate supply voltage) make the MAPDs a good choice for commercial use as well, what is reflected in growing number of producers as well as MAPD models available on the market. This dissertation presents Author’s experience with MAPD measurements and modelling, gained during his work on the T2K (Tokai-to-Kamioka) long-baseline neutrino experiment, carried out by an international collaboration in Japan. First, operation principle of the MAPD, definitions of various parameters and measurement methods are discussed. Then, a device for large-scale MAPD measurements and related data processing methods are described. Fina...

  2. Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications

    Science.gov (United States)

    Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry

    2015-01-01

    An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.

  3. Optimization of InGaAs/InAlAs Avalanche Photodiodes

    Science.gov (United States)

    Chen, Jun; Zhang, Zhengyu; Zhu, Min; Xu, Jintong; Li, Xiangyang

    2017-01-01

    In this paper, we report a two-dimensional (2D) simulation for InGaAs/InAlAs separate absorption, grading, charge, and multiplication avalanche photodiodes (SAGCM APDs) and study the effect of the charge layer and multiplication layer on the operating voltage ranges of APD. We find that with the increase of the thicknesses as well as the doping concentrations of the charge layer and the multiplication layer, the punchthrough voltage increases; with the increase of the doping concentrations of two layers and the thickness of the charge layer, the breakdown voltage decreases; with the increase of the thickness of the multiplication layer, the breakdown voltage first rapidly declines and then slightly rises.

  4. Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode

    Science.gov (United States)

    Chen, Xiuliang; Ding, Chengjie; Pan, Haifeng; Huang, Kun; Laurat, Julien; Wu, Guang; Wu, E

    2017-01-01

    We report on a high-speed temporal and spatial multiplexed single-photon counter with photon-number-resolving capability up to four photons. The infrared detector combines a fiber loop to split, delay and recombine optical pulses and a 200 MHz dual-channel single-photon detector based on InGaAs/InP avalanche photodiode. To fully characterize the photon-number-resolving capability, we perform quantum detector tomography and then reconstruct its positive-operator-valued measure and the associated Wigner functions. The result shows that, despite of the afterpulsing noise and limited system detection efficiency, this temporal and spatial multiplexed single-photon counter can already find applications for large repetition rate quantum information schemes. PMID:28294155

  5. A method to precisely identify the afterpulses when using the S9717 avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, Alexandru, E-mail: alrusu@nipne.ro; Rusu, Lucian [“Horia Hulubei” National Institute for Physics and Nuclear Engineering, Reactorului Street, No. 34, City Măgurele, jud. Ilfov, POB 077125 (Romania)

    2015-12-07

    The detection ratio of an avalanche photodiode (APD) biased in Geiger-mode increases versus the excess voltage; the afterpulsing rate increases too. The last one can be reduced by inserting an artificial dead time and accepting a lower measuring top rate. So, in order to tune a single-photon detector system, it is necessary to exactly identify afterpulses and measure their rate; the experimental results are presented. When using the S9717 APD in Geiger-mode, the cathode to ground voltage waveform reveals the existence of a particular sequence of pulses: a usual one followed, within 1μs, by a least one appearing to have been generated for negative excess voltage values. All these characteristics are the signature of the afterpulsing generation. Based on this observation, we were able to precisely measure the afterpulsing rate.

  6. Reducing the Spikes of Avalanche Photodiode Measurements at the National Spherical Torus Experiment

    Science.gov (United States)

    Brubaker, Z. E.; Foley, E. L.

    2011-10-01

    Avalanche Photodiodes (APD) used at the National Spherical Torus Experiment (NSTX) make important measurements for the Motional Stark Effect (MSE) diagnostic. However, they are very sensitive, and if radiation consistently reaches these detectors they are damaged over time. Furthermore, they also display spikes in their readings, which greatly complicates the data analysis for MSE. Due to our Collisionally-Induced Fluorescence Motional Stark Effect diagnostic observing significant radiation despite being shielded by a 3 foot concrete wall, we must devise a plan for shielding our new Laser-Induced Fluorescence Motional Stark Effect diagnostic, as well as determining the best possible location for them. In order to reduce the amount of spikes seen in our readings and to preserve our detectors, I investigated the type of radiation responsible, the locations most affected, and tested various materials for shielding. Results will be presented.

  7. Application of PN and avalanche silicon photodiodes to low-level optical

    Science.gov (United States)

    Eppeldauer, G.; Schaefer, A. R.

    1988-01-01

    New approaches to the discovery of other planetary systems require very sensitive and stable detection techniques in order to succeed. Two methods in particular, the astrometric and the photometric methods, require this. To begin understanding the problems and limitations of solid state detectors regarding this application, preliminary experiments were performed at the National Bureau of Standards and a low light level detector characterization facility was built. This facility is briefly described, and the results of tests conducted in it are outlined. A breadboard photometer that was used to obtain stellar brightness ratio precision data is described. The design principles of PN and avalanche silicon photodiodes based on low light level measuring circuits are discussed.

  8. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    Science.gov (United States)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  9. Dark-current characteristics of GaN-based UV avalanche photodiodes

    Science.gov (United States)

    Xu, Jintong; Chang, Chao; Li, Xiangyang

    2015-04-01

    For UV detecting, it needs high ratio of signal to noise, which means high responsibility and low noise. GaN-based avalanche photodiodes can provide a high internal photocurrent gain. In this paper, we report the testing and characterization of GaN based thin film materials, optimization design of device structure, the device etching and passivation technology, and the photoelectric characteristics of the devices. Also, uniformity of the device was obtained. The relationship between dark current and material quality or device processes was the focus of this study. GaN based material with high aluminum components have high density defects. Scanning electron microscope, cathodoluminescence spectra, X-ray double crystal diffraction and transmission spectroscopy testing were employed to evaluate the quality of GaN-based material. It shows that patterned sapphire substrate or thick AlN buffer layer is more effective to get high quality materials. GaN-based materials have larger hole ionization coefficient, so back incident structure were adopted to maximize the hole-derived multiplication course and it was helped to get a smaller multiplication noise. The device with separate absorption and multiplication regions is also prospective to reduce the avalanche noise. According to AlGaN based material characteristics and actual device fabrication, device structure was optimized further. Low physical damage inductively coupled plasma (ICP) etching method was used to etch mesa and wet etching method was employed to treat mesa damage. Silica is passivation material of device mesa. For solar-blind ultraviolet device, it is necessary to adopt a wider bandgap material than AlGaN material. The current-voltage characteristics under reverse bias were measured in darkness and under UV illumination. The distribution of dark current and response of different devices was obtained. In short, for GaN-based UV avalanche photodiode, dark current was related to high density dislocation of

  10. A new method to improve multiplication factor in micro-pixel avalanche photodiodes with high pixel density

    Energy Technology Data Exchange (ETDEWEB)

    Sadygov, Z. [National Nuclear Research Center, Baku (Azerbaijan); Joint Institute for Nuclear Research, Dubna (Russian Federation); Ahmadov, F. [National Nuclear Research Center, Baku (Azerbaijan); Khorev, S. [Zecotek Photonics Inc., Vancouver (Canada); Sadigov, A., E-mail: saazik@yandex.ru [National Nuclear Research Center, Baku (Azerbaijan); Suleymanov, S. [National Nuclear Research Center, Baku (Azerbaijan); Madatov, R.; Mehdiyeva, R. [Institute of Radiation Problems, Baku (Azerbaijan); Zerrouk, F. [Zecotek Photonics Inc., Vancouver (Canada)

    2016-07-11

    Presented is a new model describing development of the avalanche process in time, taking into account the dynamics of electric field within the depleted region of the diode and the effect of parasitic capacitance shunting individual quenching micro-resistors on device parameters. Simulations show that the effective capacitance of a single pixel, which defines the multiplication factor, is the sum of the pixel capacitance and a parasitic capacitance shunting its quenching micro-resistor. Conclusions obtained as a result of modeling open possibilities of improving the pixel gain in micropixel avalanche photodiodes with high pixel density (or low pixel capacitance).

  11. A PMT-like high gain avalanche photodiode based on GaN/AlN periodical stacked structure

    CERN Document Server

    Zheng, Ji-yuan; Yang, Di; Yu, Jia-dong; Meng, Xiao; E, Yan-xiong; Wu, Chao; Hao, Zhi-biao; Sun, Chang-zheng; Xiong, Bing; Luo, Yi; Han, Yan-jian; Wang, Jian; Li, Hong-tao; Brault, Julien; Matta, Samuel; Khalfioui, Mohamed Al; Yan, Jian-chang; Wei, Tong-bo; Zhang, Yun; Wang, Jun-xi

    2016-01-01

    Avalanche photodiode (APD) has been intensively investigated as a promising candidate to replace photomultiplier tubes (PMT) for weak light detection. However, in conventional APDs, a large portion of carrier energy drawn from the electric field is thermalized, and the multiplication efficiencies of electron and hole are low and close. In order to achieve high gain, the device should work under breakdown bias, where carrier multiplication proceeds bi-directionally to form a positive feedback multiplication circle. However, breakdown is hard to control, in practice, APDs should work under Geiger mode as a compromise between sustainable detection and high gain. The complexity of system seriously restricts the application. Here, we demonstrate an avalanche photodiode holding high gain without breakdown, which means no quenching circuit is needed for sustainable detection. The device is based on a GaN/AlN periodically-stacked-structure (PSS), wherein electron holds much higher efficiency than hole to draw energy ...

  12. A test beam set-up for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking

    CERN Document Server

    Vilella, A; Trenado, J; Vila, A; Casanova, R; Vos, M; Garrido, L; Dieguez, A

    2012-01-01

    It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed.

  13. Development of novel technologies to enhance performance and reliability of III-Nitride avalanche photodiodes

    Science.gov (United States)

    Suvarna, Puneet Harischandra

    Solar-blind ultraviolet avalanche photodiodes are an enabling technology for applications in the fields of astronomy, communication, missile warning systems, biological agent detection and particle physics research. Avalanche photodiodes (APDs) are capable of detecting low-intensity light with high quantum efficiency and signal-to-noise ratio without the need for external amplification. The properties of III-N materials (GaN and AlGaN) are promising for UV photodetectors that are highly efficient, radiation-hard and capable of visible-blind or solar-blind operation without the need for external filters. However, the realization of reliable and high performance III-N APDs and imaging arrays has several technological challenges. The high price and lack of availability of bulk III-N substrates necessitates the growth of III-Ns on lattice mismatched substrates leading to a high density of dislocations in the material that can cause high leakage currents, noise and premature breakdown in APDs. The etched sidewalls of III-N APDs and high electric fields at contact edges are also detrimental to APD performance and reliability. In this work, novel technologies have been developed and implemented that address the issues of performance and reliability in III-Nitride based APDs. To address the issue of extended defects in the bulk of the material, a novel pulsed MOCVD process was developed for the growth of AlGaN. This process enables growth of high crystal quality AlxGa1-xN with excellent control over composition, doping and thickness. The process has also been adapted for the growth of high quality III-N materials on silicon substrate for devices such as high electron mobility transistors (HEMTs). A novel post-growth defect isolation technique is also discussed that can isolate the impact of conductive defects from devices. A new sidewall passivation technique using atomic layer deposition (ALD) of dielectric materials was developed for III-N APDs that is effective in

  14. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    Science.gov (United States)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  15. Radiation tolerance of a Geiger-mode avalanche photodiode imaging array

    Science.gov (United States)

    Kolb, Kimberly E.; Figer, Donald F.; Lee, Joong; Hanold, Brandon J.

    2016-07-01

    Radiation testing results for a Geiger-mode avalanche photodiode (GM-APD) array-based imager are reviewed. Radiation testing is a crucial step in technology development that assesses the readiness of a specific device or instrument for space-based missions or other missions in high-radiation environments. Pre- and postradiation values for breakdown voltage, dark count rate (DCR), after pulsing probability, photon detection efficiency (PDE), crosstalk probability, and intrapixel sensitivity are presented. Details of the radiation testing setup and experiment are provided. The devices were exposed to a total dose of 50 krad(Si) at the Massachusetts General Hospital's Francis H. Burr Proton Therapy Center, using monoenergetic 60 MeV protons as the radiation source. This radiation dose is equivalent to radiation absorbed over 10 solar cycles at an L2 orbit with 1-cm aluminum shielding. The DCR increased by 2.3 e-/s/pix/krad(Si) at 160 K, the afterpulsing probability increased at all temperatures and settings by a factor of ˜2, and the effective breakdown voltage shifted by +1.5 V. PDE, crosstalk probability, and intrapixel sensitivity were unchanged by radiation damage. The performance of the GM-APD imaging array is compared to the performance of the CCD on board the ASCA satellite with a similar radiation shield and radiation environment.

  16. Radiation Detection Measurements with a New 'Buried Junction' Silicon Avalanche Photodiode

    CERN Document Server

    Lecomte, R; Rouleau, D; Dautet, H; McIntyre, R J; McSween, D; Webb, P

    1999-01-01

    An improved version of a recently developed 'Buried Junction' avalanche photodiode (APD), designed for use with scintillators, is described and characterized. This device, also called the 'Reverse APD', is designed to have a wide depletion layer and thus low capacitance, but to have high gain only for e-h pairs generated within the first few microns of the depletion layer. Thus it has high gain for light from scintillators emitting in the 400-600 nm range, with relatively low dark current noise and it is relatively insensitive to minimum ionizing particles (MIPs). An additional feature is that the metallurgical junction is at the back of the wafer, leaving the front surface free to be coupled to a scintillator without fear of junction contamination. The modifications made in this device, as compared with the earlier diode, have resulted in a lower excess noise factor, lower dark current, and much-reduced trapping. The electrical and optical characteristics of this device are described and measurements of ener...

  17. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging.

    Science.gov (United States)

    Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong

    2010-12-01

    As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.

  18. Radiation damage of multipixel Geiger-mode avalanche photodiodes irradiated with low-energy γ's and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Y.; Yun, Y. B. [Yonsei University, Seoul (Korea, Republic of); Ha, J. M. [Yonsei University, Seoul (Korea, Republic of); Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of); Lee, J. S.; Yoon, Y. S. [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of); Eun, J. W. [Namseoul University, Cheonan (Korea, Republic of)

    2012-05-15

    A few types of multipipixel Geiger-mode avalanche photodiodes (also referred to as silicon photomultipliers SiPMs) are irradiated with 1 to 2.5 MeV γ's and electrons. We characterize radiation damage effects appearing in the reverse bias current, the dark current and count rate, the pixel gain, and the photon detection efficiency of the devices. An interesting observation on the dark current and count rate is made and linked to the specific damage caused by the irradiation.

  19. Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media.

    Science.gov (United States)

    Mu, Ying; Valim, Niksa; Niedre, Mark

    2013-06-15

    We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations.

  20. A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes

    CERN Document Server

    Anderhub, H; Biland, A; Boller, A; Braun, I; Bretz, T; Commichau, S; Commichau, V; Dorner, D; Gendotti, A; Grimm, O; von Gunten, H; Hildebrand, D; Horisberger, U; Krähenbühl, T; Kranich, D; Lorenz, E; Lustermann, W; Mannheim, K; Neise, D; Pauss, F; Renker, D; Rhode, W; Rissi, M; Röser, U; Rollke, S; Stark, L S; Stucki, J -P; Viertel, G; Vogler, P; Weitzel, Q

    2009-01-01

    Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light detection in atmospheric Cherenkov telescopes. In this paper, the design and commissioning of a 36-pixel G-APD prototype camera is presented. The data acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond time resolution has been achieved. Cosmic-ray induced air showers have been recorded using an imaging mirror setup, in a self-triggered mode. This is the first time that such measurements have been carried out with a complete G-APD camera.

  1. A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Anderhub, H; Biland, A; Boller, A; Braun, I; Commichau, S; Commichau, V; Dorner, D; Gendotti, A; Grimm, O; Gunten, H von; Hildebrand, D; Horisberger, U; Kraehenbuehl, T; Kranich, D; Lorenz, E; Lustermann, W [Institute for Particle Physics, ETH Zurich, Schafmattstr. 20, 8093 Zurich (Switzerland); Backes, M; Neise, D [TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund (Germany); Bretz, T; Mannheim, K [University of Wuerzburg Am Hubland, 97074 Wuerzburg (Germany)], E-mail: qweitzel@phys.ethz.ch (and others)

    2009-10-15

    Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light detection in atmospheric Cherenkov telescopes. In this paper, the design and commissioning of a 36-pixel G-APD prototype camera is presented. The data acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond time resolution has been achieved. Cosmic-ray induced air showers have been recorded using an imaging mirror setup, in a self-triggered mode. This is the first time that such measurements have been carried out with a complete G-APD camera.

  2. Optimization of a guard ring structure in Geiger-mode avalanche photodiodes fabricated at National NanoFab Center

    Science.gov (United States)

    Lim, K. T.; Kim, H.; Cho, M.; Kim, Y.; Kim, C.; Kim, M.; Lee, D.; Kang, D.; Yoo, H.; Park, K.; Sul, W. S.; Cho, G.

    2016-01-01

    A typical Geiger-mode avalanche photodiode (G-APD) contains a guard ring that protects the structure from having an edge breakdown due to the lowering of electric fields at junction curvatures. In this contribution, G-APDs with a virtual guard ring (vGR) merged with n-type diffused guard ring (nGR) in various sizes were studied to find the optimal design for G-APDs fabricated at National NanoFab Center (NNFC) . The sensors were fabricated via a customized CMOS process with a micro-cell size of 65× 65 μm2 on a 200 mm p-type epitaxial layer wafer. I-V characteristic curves for proposed structures were measured on a wafer-level with an auto probing system and plotted together to compare their performance. A vGR width of 1.5 μm and a nGR width of 1.5 μm with an overlapping between vGR and nGR of 1.5 μm showed the lowest leakage current before the breakdown voltage while suppressing the edge breakdown. Furthermore, the current level of the lowest-leakage-current structure was as low as that of only vGR with a width of 2.0 μm, indicating that the structure is also area efficient. Based on these results, the design with vGR, nGR, and OL with width of 1.5 μm is determined to be the optimal structure for G-APDs fabricated at NNFC.

  3. A test beam setup for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Vilella, E., E-mail: evilella@el.ub.es [Department of Electronics, University of Barcelona (UB), C/Marti i Franques 1, 08028 Barcelona (Spain); Alonso, O. [Department of Electronics, University of Barcelona (UB), C/Marti i Franques 1, 08028 Barcelona (Spain); Trenado, J. [Department of Structure and Constituents of Matter, University of Barcelona (UB), C/Marti i Franques 1, 08028 Barcelona (Spain); Vila, A.; Casanova, R. [Department of Electronics, University of Barcelona (UB), C/Marti i Franques 1, 08028 Barcelona (Spain); Vos, M. [Instituto de Fisica Corpuscular (IFIC), C/Catedratico Jose Beltran 2, 46980 Paterna (Spain); Garrido, L. [Department of Structure and Constituents of Matter, University of Barcelona (UB), C/Marti i Franques 1, 08028 Barcelona (Spain); Dieguez, A. [Department of Electronics, University of Barcelona (UB), C/Marti i Franques 1, 08028 Barcelona (Spain)

    2012-12-01

    It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed. -- Highlights: Black-Right-Pointing-Pointer A Setup for characterization of the GAPD technology in a test beam is presented. Black-Right-Pointing-Pointer Two test beams at DESY (6 GeV) and CERN (120 GeV) are already planned at current time. Black-Right-Pointing-Pointer A GAPD array has been designed and fabricated to fit the test beam requirements. Black-Right-Pointing-Pointer We have prepared a test beam setup to minimize the particle multiscattering. Black-Right-Pointing-Pointer The Expected results at DESY and CERN have been simulated with Geant4.

  4. Conception d'un circuit d'etouffement pour photodiodes a avalanche en mode geiger pour integration heterogene 3d

    Science.gov (United States)

    Boisvert, Alexandre

    Le Groupe de Recherche en Appareillage Medical de Sherbrooke (GRAMS) travaille actuellement sur un programme de recherche portant sur des photodiodes a avalanche mono-photoniques (PAMP) operees en mode Geiger en vue d'une application a la tomographie d'emission par positrons (TEP). Pour operer dans ce mode; la PAMP, ou SPAD selon l'acronyme anglais (Single Photon Avalanche Diode), requiert un circuit d'etouffement (CE) pour, d'une part, arreter l'avalanche pouvant causer sa destruction et, d'autre part. la reinitialiser en mode d'attente d'un nouveau photon. Le role de ce CE comprend egalement une electronique de communication vers les etages de traitement avance de signaux. La performance temporelle optimale du CE est realisee lorsqu'il est juxtapose a la PAMP. Cependant, cela entraine une reduction de la surface photosensible ; un element crucial en imagerie. L'integration 3D, a base d'interconnexions verticales, offre une solution elegante et performante a cette problematique par l'empilement de circuits integres possedant differentes fonctions (PAMP, CE et traitement avance de signaux). Dans l'approche proposee, des circuits d'etouffement de 50 pm x 50 pm realises sur une technologie CMOS 130 mn 3D Tezzaron, contenant chacun 112 transistors, sont matrices afin de correspondre a une matrice de PAMP localisee sur une couche electronique superieure. Chaque circuit d'etouffement possede une gigue temporelle de 7,47 ps RMS selon des simulations faites avec le logiciel Cadence. Le CE a la flexibilite d'ajuster les temps d'etouffement et de recharge pour la PAMP tout en presentant une faible consommation de puissance (~ 0,33 mW a 33 Mcps). La conception du PAMP necessite de supporter des tensions superieures aux 3,3 V de la technologie. Pour repondre a ce probleme, des transistors a drain etendu (DEMOS) ont ete realises. En raison de retards de production par Ies fabricants, les circuits n'ont pu etre testes physiquement par des mesures. Les resultats de ce memoire

  5. Ultra-fast time-correlated single photon counting avalanche photodiodes for time-domain non-contact fluorescence diffuse optical tomography

    Science.gov (United States)

    Robichaud, Vincent; Lapointe, Éric; Bérubé-Lauzière, Yves

    2007-06-01

    Recent advances in the design and fabrication of avalanche photodiodes (APDs) and quenching circuits for timecorrelated single photon counting (TCSPC) have made available detectors with timing resolutions comparable to microchannel plate photomultiplier tubes (MCP-PMTs). The latter, were until recently the best TCSPC detectors in terms of temporal resolution (standard electronics fabrication processes in a near future. This will contribute to further decrease their price and ease their integration in complex multi-channel detection systems, as required in diuse optical imaging (DOI) and tomography (DOT). We present, to our knowledge for the first time, results which demonstrate that, despite their small sensitive area, TCSPC APDs can be used in time-domain (TD) DOT and more generally in TD DOI. With appropriate optical design of the detection channel, our experiments show that it is possible to obtain comparable measurements with APDs as with PMTs.

  6. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching.

    Science.gov (United States)

    Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki

    2014-01-13

    25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.

  7. Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs

    Science.gov (United States)

    Chau, Quan; Jiang, Xudong; Itzler, Mark A.; Entwistle, Mark; Piccione, Brian; Owens, Mark; Slomkowski, Krystyna

    2015-05-01

    Optical crosstalk is a major factor limiting the performance of Geiger-mode avalanche photodiode (GmAPD) focal plane arrays (FPAs). This is especially true for arrays with increased pixel density and broader spectral operation. We have performed extensive experimental and theoretical investigations on the crosstalk effects in InP-based GmAPD FPAs for both 1.06-μm and 1.55-μm applications. Mechanisms responsible for intrinsic dark counts are Poisson processes, and their inter-arrival time distribution is an exponential function. In FPAs, intrinsic dark counts and cross talk events coexist, and the inter-arrival time distribution deviates from purely exponential behavior. From both experimental data and computer simulations, we show the dependence of this deviation on the crosstalk probability. The spatial characteristics of crosstalk are also demonstrated. From the temporal and spatial distribution of crosstalk, an efficient algorithm to identify and quantify crosstalk is introduced.

  8. Active quench and reset integrated circuit with novel hold-off time control logic for Geiger-mode avalanche photodiodes.

    Science.gov (United States)

    Deng, Shijie; Morrison, Alan P

    2012-09-15

    This Letter presents an active quench-and-reset circuit for Geiger-mode avalanche photodiodes (GM-APDs). The integrated circuit was fabricated using a conventional 0.35 μm complementary metal oxide semiconductor process. Experimental results show that the circuit is capable of linearly setting the hold-off time from several nanoseconds to microseconds with a resolution of 6.5 ns. This allows the selection of the optimal afterpulse-free hold-off time for the GM-APD via external digital inputs or additional signal processing circuitry. Moreover, this circuit resets the APD automatically following the end of the hold-off period, thus simplifying the control for the end user. Results also show that a minimum dead time of 28.4 ns is achieved, demonstrating a saturated photon-counting rate of 35.2 Mcounts/s.

  9. First-principle theory of high field carrier transport in semiconductors with application to the study of avalanche photodiodes

    Science.gov (United States)

    Moresco, Michele

    2011-12-01

    The objective of this thesis work is twofold: to present a theoretical framework to study high-field carrier transport in semiconductor materials and to provide a deep understanding of the transport properties of GaN and HgCdTe. The validation of this model is performed by applying it to the study of Avalanche Photodiodes. The model we developed is based on Monte Carlo techniques and it includes the full details of the band structure, derived from the empirical pseudopotential method (EPM), and a numerically calculated impact ionization transition rate based on a wave-vector dependent dielectric function. The nonpolar carrier-phonon interaction is treated within the framework of the rigid pseudoion (RPI) approximation using ab initio techniques to determine the phonon dispersion relation. The calculated phonon scattering rates are consistent with the electronic structure and the phonon dispersion relation thus removing adjustable parameters such as deformation potential coefficients. Band-to-band carrier tunneling has been treated by solving the time-dependent multiband Schroedinger equation. The multiband description predicts a considerable increase of the impact ionization coefficients compared with simulations not considering tunneling. Specifically, the present model has been applied to the study of two distinct semiconductor materials: GaN and HgCdTe. The former is a wide bandgap while the second is a narrow bandgap semiconductor. In spite of their constantly increasing technological reliability both materials lack theoretical understanding of high-field carrier transport. Avalanche photodiodes (APDs) offer an ideal environment to test and validate the model developed in this thesis work because of the large electric field involved in these devices. APDs based on both GaN and HgCdTe are investigated, consistently with the physics-based models described above. Key quantities such as gain, breakdown voltage, bandwidth and noise characteristics are estimated. The

  10. Silicon avalanche photodiodes on the base of metal-resistor-semiconductor (MRS) structures

    CERN Document Server

    Saveliev, V

    2000-01-01

    The development of a high quantum efficiency, fast photodetector, with internal gain amplification for the wavelength range 450-600 nm is one of the critical issues for experimental physics - registration of low-intensity light photons flux. The new structure of Silicon Avalanche Detectors with high internal amplification (10 sup 5 -10 sup 6) has been designed, manufactured and tested for registration of visible light photons and charge particles. The main features of Metal-Resistor-Semiconductor (MRS) structures are the high charge multiplication in nonuniform electric field near the 'needle' pn-junction and negative feedback for stabilization of avalanche process due to resistive layer.

  11. Model of turn-on characteristics of InP-based Geiger-mode avalanche photodiodes suitable for circuit simulations

    Science.gov (United States)

    Jordy, George; Donnelly, Joseph

    2015-05-01

    A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can represent the first order nonlinear differential equations that govern the avalanche current of the APD. This continuous time representation is fundamentally different than the piecewise linear characteristics of other models. The model is based on a driving term for the differential current, which is given by the voltage overbias minus the voltage drop across the device's space-charge resistance RSC. This drop is primarily due to electrons transiting the separate absorber. RSC starts off high and decreases with time as the initial breakdown filament spreads laterally to fill the APD. With constant bias voltage, the initial current grows exponentially until space charge effects reduce the driving function. With increasing current the driving term eventually goes to zero and the APD current saturates. On the other hand, if the APD is biased with a capacitor, the driving term becomes negative as the capacitor discharges, reducing the current and driving the voltage below breakdown. The model parameters depend on device design and are obtained from fitting the model to Monte-Carlo turn-on simulations that include lateral spreading of the carriers of the relevant structure. The Monte-Carlo simulations also provide information on the probability of avalanche, and jitter due to where the photon is absorbed in the APD.

  12. Amplifiers dedicated for large area SiC photodiodes

    Science.gov (United States)

    Doroz, P.; Duk, M.; Korwin-Pawlowski, M. L.; Borecki, M.

    2016-09-01

    Large area SiC photodiodes find applications in optoelectronic sensors working at special conditions. These conditions include detection of UV radiation in harsh environment. Moreover, the mentioned sensors have to be selective and resistant to unwanted signals. For this purpose, the modulation of light at source unit and the rejection of constant current and low frequency component of signal at detector unit are used. The popular frequency used for modulation in such sensor is 1kHz. The large area photodiodes are characterized by a large capacitance and low shunt resistance that varies with polarization of the photodiode and can significantly modify the conditions of signal pre-amplification. In this paper two pre-amplifiers topology are analyzed: the transimpedance amplifier and the non-inverting voltage to voltage amplifier with negative feedback. The feedback loops of both pre-amplifiers are equipped with elements used for initial constant current and low frequency signals rejections. Both circuits are analyzed and compared using simulation and experimental approaches.

  13. First Avalanche-photodiode camera test (FACT): A novel camera using G-APDs for the observation of very high-energy {gamma}-rays with Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Braun, I. [ETH Zurich, CH-8093 Zurich (Switzerland); Commichau, S.C. [ETH Zurich, CH-8093 Zurich (Switzerland)], E-mail: commichau@phys.ethz.ch; Rissi, M. [ETH Zurich, CH-8093 Zurich (Switzerland); Backes, M. [Dortmund University of Technology, D-44221 Dortmund (Germany); Biland, A. [ETH Zurich, CH-8093 Zurich (Switzerland); Bretz, T. [University of Wuerzburg, D-97074 Wuerzburg (Germany); Britvitch, I.; Commichau, V.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Kranich, D. [ETH Zurich, CH-8093 Zurich (Switzerland); Lorenz, E. [ETH Zurich, CH-8093 Zurich (Switzerland); Max-Planck-Institut fuer Physik, D-80805 Muenchen (Germany); Lustermann, W. [ETH Zurich, CH-8093 Zurich (Switzerland); Mannheim, K. [University of Wuerzburg, D-97074 Wuerzburg (Germany); Neise, D. [Dortmund University of Technology, D-44221 Dortmund (Germany); Pauss, F. [ETH Zurich, CH-8093 Zurich (Switzerland); Pohl, M. [University of Geneva, CH-1211 Geneva (Switzerland); Renker, D. [Paul Scherrer Institut (PSI) Villigen, CH-5232 Villigen (Switzerland); Rhode, W. [Dortmund University of Technology, D-44221 Dortmund (Germany)] (and others)

    2009-10-21

    We present a project for a novel camera using Geiger-mode Avalanche Photodiodes (G-APDs), to be installed in a small telescope (former HEGRA CT3) on the MAGIC site in La Palma (Canary Island, Spain). This novel type of semiconductor photon detector provides several superior features compared to conventional photomultiplier tubes (PMTs). The most promising one is a much higher Photon Detection Efficiency.

  14. Geiger mode theoretical study of a wafer-bonded Ge on Si single-photon avalanche photodiode

    Science.gov (United States)

    Ke, Shaoying; Lin, Shaoming; Wei, Huang; Wang, Jianyuan; cheng, Buwen; Liang, Kun; Li, Cheng; Chen, Songyan

    2017-02-01

    The investigation of the single-photon properties of a wafer-bonded Ge/Si single-photon avalanche photodiode (SPAD) is theoretically conducted. We focus on the effect of the natural GeO2 layer (hydrophilic reaction) at the Ge/Si wafer-bonded interface on dark count characteristics and single-photon response. It is found that the wafer-bonded Ge/Si SPAD exhibits very low dark current at 250 K due to the absence of threading dislocation (TD) in the Ge layer. Owing to the increase of the unit-gain bias applied on the SPAD, the primary dark current (I DM) increases with the increase in GeO2 thickness. Furthermore, the dependence of the linear-mode gain and 3 dB bandwidth (BW) for the dark count on GeO2 thickness is also presented. It is observed that the dark count probability of the Ge/Si SPAD significantly increases with the increase in GeO2 thickness due to the increase of the I DM and the reduction of the 3 dB BW. It is also found that with the increase in GeO2 thickness, the external quantum efficiency, which affects the single-photon detection efficiency (SPDE), drastically decreases because of the blocking effect of the GeO2 layer and the serious recombination at the wafer-bonded Ge/Si interface. The afterpulsing probability (AP) shows an abnormal behavior with GeO2 thickness. This results from the decrease in avalanche charge and increase in effective transit time.

  15. Response of avalanche photo-diodes of the CMS Electromagnetic Calorimeter to neutrons from an Americium-Beryllium source.

    CERN Document Server

    Deiters, Konrad; Renker, Dieter

    2010-01-01

    The response of avalanche photo-diodes (APDs) used in the CMS Electromagnetic Calorimeter to low energy neutrons from an Americium-Beryllium source is reported. Signals due to recoil protons from neutron interactions with the hydrogen nuclei in the protective epoxy layer, mainly close to the silicon surface of the APD, have been identified. These signals increase in size with the applied bias voltage more slowly than the nominal gain of the APDs, and appear to have a substantially lower effective gain at the operating voltage. The signals originating from interactions in the epoxy are mostly equivalent to signals of a few GeV in CMS, but range up to a few tens of GeV equivalent. There are also signals not attributed to reactions in the epoxy extending up to the end of the range of these measurements, a few hundreds of GeV equivalent. Signals from the x-rays from the source can also be in the GeV equivalent scale in CMS. Simulations used to describe events due to particle interactions in the APDs need to take ...

  16. Temporal dependence of transient dark counts in an avalanche photodiode: A solution for power-law behavior of afterpulsing

    Science.gov (United States)

    Akiba, M.; Tsujino, K.

    2016-08-01

    This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and its temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p-n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.

  17. Pulse oximeter using a gain-modulated avalanche photodiode operated in a pseudo lock-in light detection mode

    Science.gov (United States)

    Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu

    2006-01-01

    We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.

  18. Time-resolved non-contact fluorescence diffuse optical tomography measurements with ultra-fast time-correlated single photon counting avalanche photodiodes

    Science.gov (United States)

    Bérubé-Lauzière, Yves; Robichaud, Vincent; Lapointe, Éric

    2007-07-01

    The design and fabrication of time-correlated single photon counting (TCSPC) avalanche photodiodes (APDs) and associated quenching circuits have made significant progresses in recent years. APDs with temporal resolutions comparable to microchannel plate photomultiplier tubes (MCP-PMTs) are now available. MCP-PMTs were until these progresses the best TCSPC detectors with timing resolutions down to 30ps. APDs can now achieve these resolutions at a fraction of the cost. Work is under way to make the manufacturing of TCSPC APDs compatible with standard electronics fabrication practices. This should allow to further reduce their cost and render them easier to integrate in complex multi-channel TCSPC electronics, as needed in diffuse optical tomography (DOT) systems. Even if their sensitive area is much smaller than that of the ubiquitous PMT used in TCSPC, we show that with appropriate selection of optical components, TCSPC APDs can be used in time-domain DOT. To support this, we present experimental data and calculations clearly demonstrating that comparable measurements can be obtained with APDs and PMTs. We are, to our knowledge, the first group using APDs in TD DOT, in particular in non-contact TD fluorescence DOT.

  19. Fast scintillation timing detector using proportional-mode avalanche photodiode for nuclear resonant scattering experiments in high-energy synchrotron X-ray region

    Science.gov (United States)

    Inoue, Keisuke; Kishimoto, Shunji

    2016-01-01

    To obtain both a high count rate of >107 s-1 and a detection efficiency sufficient for high-energy X-rays of >30 keV, we propose a scintillation timing detector using a proportional-mode silicon avalanche photodiode (Si-APD) for synchrotron radiation nuclear resonant scattering. We here present results obtained with a prototype detector using a lead-loaded plastic scintillator (EJ-256) mounted on a proportional-mode Si-APD (active area size: 3 mm in diameter). The detector was operated at ‒35 °C for a better signal-to-noise ratio. Using synchrotron X-rays of 67.41 keV, which is the same energy as the first excited level of 61Ni, we successfully measured pulse-height and time spectra of the scintillation light. A good time resolution of 0.50±0.06 ns (full width at half-maximum) was obtained for 67.41 keV X-rays with a scintillator 3 mm in diameter and 2 mm thick.

  20. Participation to the study of the electromagnetic calorimeter calibration for the CMS experiment and to the study of avalanche photodiodes; Participation a l'etude de la calibration du calorimetre electromagnetique de l'experience CMS et a l'etude de photodiodes a avalanche

    Energy Technology Data Exchange (ETDEWEB)

    Da Ponte Puill, V

    1999-12-13

    The electromagnetic calorimeter CMS (Compact Muon Solenoid) has been chosen to study the Higgs boson production. This calorimeter will be constituted of more than 80000 lead tungstate scintillating crystals radiation resistant. Photodiodes have been especially optimized to detect the scintillating light of these crystals: avalanche photodiodes (APD). This thesis includes two separate parts. A first part deals with the APD submitted to high rate of radiations and tested in the Ulysse reactor of the Cea. The second part deals with the calorimeter calibration. (A.L.B.)

  1. Optimization and application of cooled avalanche photodiodes for spectroscopic fluctuation measurements with ultra-fast charge exchange recombination spectroscopy

    Science.gov (United States)

    Truong, D. D.; Fonck, R. J.; McKee, G. R.

    2016-11-01

    The Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic is a highly specialized spectroscopic instrument with 2 spatial channels consisting of 8 spectral channels each and a resolution of ˜0.25 nm deployed at DIII-D to measure turbulent ion temperature fluctuations. Charge exchange emissions are obtained between 528 and 530 nm with 1 μs time resolution to study plasma instabilities. A primary challenge of extracting fluctuation measurements from raw UF-CHERS signals is photon and electronic noise. In order to reduce dark current, the Avalanche Photodiode (APD) detectors are thermo-electrically cooled. State-of-the-art components are used for the signal amplifiers and conditioners to minimize electronic noise. Due to the low incident photon power (≤1 nW), APDs with a gain of up to 300 are used to optimize the signal to noise ratio. Maximizing the APDs' gain while minimizing the excess noise factor (ENF) is essential since the total noise of the diagnostic sets a floor for the minimum level of detectable broadband fluctuations. The APDs' gain should be high enough that photon noise dominates electronic noise, but not excessive so that the ENF overwhelms plasma fluctuations. A new generation of cooled APDs and optimized preamplifiers exhibits significantly enhanced signal-to-noise compared to a previous generation. Experiments at DIII-D have allowed for characterization and optimization of the ENF vs. gain. A gain of ˜100 at 1700 V is found to be near optimal for most plasma conditions. Ion temperature and toroidal velocity fluctuations due to the edge harmonic oscillation in quiescent H-mode plasmas are presented to demonstrate UF-CHERS' capabilities.

  2. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode.

    Science.gov (United States)

    Namekata, Naoto; Adachi, Shunsuke; Inoue, Shuichiro

    2009-04-13

    We report a telecom-band single-photon detector for gigahertz clocked quantum key distribution systems. The single-photon detector is based on a sinusoidally gated InGaAs/InP avalanche photodiode. The gate repetition frequency of the single-photon detector reached 1.5 GHz. A quantum efficiency of 10.8 % at 1550 nm was obtained with a dark count probability per gate of 6.3 x 10(-7) and an afterpulsing probability of 2.8 %. Moreover, the maximum detection rate of the detector is 20 MHz.

  3. Restraint of range walk error in a Geiger-mode avalanche photodiode lidar to acquire high-precision depth and intensity information.

    Science.gov (United States)

    Xu, Lu; Zhang, Yu; Zhang, Yong; Yang, Chenghua; Yang, Xu; Zhao, Yuan

    2016-03-01

    There exists a range walk error in a Geiger-mode avalanche photodiode (Gm-APD) lidar because of the fluctuation in the number of signal photoelectrons. To restrain this range walk error, we propose a new returning-wave signal processing technique based on the Poisson probability response model and the Gaussian functions fitting method. High-precision depth and intensity information of the target at the distance of 5 m is obtained by a Gm-APD lidar using a 6 ns wide pulsed laser. The experiment results show that the range and intensity precisions are 1.2 cm and 0.015 photoelectrons, respectively.

  4. SNOW AVALANCHE ACTIVITY IN PARÂNG SKI AREA REVEALED BY TREE-RINGS

    Directory of Open Access Journals (Sweden)

    F. MESEȘAN

    2014-11-01

    Full Text Available Snow Avalanche Activity in Parâng Ski Area Revealed by Tree-Rings. Snow avalanches hold favorable conditions to manifest in Parâng Mountains but only one event is historically known, without destructive impact upon infrastructure or fatalities and this region wasn’t yet the object of avalanche research. The existing ski infrastructure of Parâng resort located in the west of Parâng Mountains is proposed to be extended in the steep slopes of subalpine area. Field evidence pinpoints that these steep slopes were affected by snow avalanches in the past. In this study we analyzed 11 stem discs and 31 increment cores extracted from 22 spruces (Picea abies (L. Karst impacted by avalanches, in order to obtain more information about past avalanches activity. Using the dendrogeomorphological approach we found 13 avalanche events that occurred along Scărița avalanche path, since 1935 until 2012, nine of them produced in the last 20 years. The tree-rings data inferred an intense snow avalanche activity along this avalanche path. This study not only calls for more research in the study area but also proves that snow avalanches could constitute an important restrictive factor for the tourism infrastructure and related activities in the area. It must be taken into consideration by the future extension of tourism infrastructure. Keywords: snow avalanche, Parâng Mountains, dendrogeomorphology, ski area.

  5. Hummock alignment in Japanese volcanic debris avalanches controlled by pre-avalanche slope of depositional area

    Science.gov (United States)

    Yoshida, Hidetsugu

    2014-10-01

    This paper investigates the relationship of hummock orientation to the flow dynamics of volcanic debris avalanches. There are opposing views on whether hummocks are systematically aligned along debris avalanche paths, or not. To investigate this geomorphologically fundamental question, I investigated hummock orientation for six Japanese debris avalanches of two simple styles: four "freely spreading" debris avalanches, and two "valley-filling" debris avalanches. Quantitative GIS-based data analysis revealed that hummock orientation along the avalanche flow path alternated between dominantly parallel to and dominantly perpendicular to the flow direction. These changes of alignment reflect dynamic changes of the local stress field within the avalanche, alternating between extensional and compressional in response to changes of the slope of the pre-avalanche ground surface. Changes of hummock alignment from perpendicular to parallel indicate that the local stress regime has changed from compressional to extensional. Conversely, changes of hummock alignment from parallel to perpendicular indicate that the local stress regime has changed from extensional to compressional. Thus, this research demonstrated a clear relationship between hummock orientation and dynamic changes of stress regime within avalanches that are related to changes of the slope of the pre-avalanche ground surface.

  6. Autofocus technique for three-dimensional imaging, direct-detection laser radar using Geiger-mode avalanche photodiode focal-plane array.

    Science.gov (United States)

    Oh, Min Seok; Kong, Hong Jin; Kim, Tae Hoon; Jo, Sung Eun

    2010-12-15

    An autofocus technique is proposed for a three-dimensional imaging, direct-detection laser radar system that uses a Geiger-mode avalanche photodiode focal plane array (GmAPD-FPA). This technique is implemented by pointing laser pulses on a target of interest and observing its scattered photon distribution on a GmAPD-FPA. Measuring the standard deviation of the photon distribution on a GmAPD-FPA enables the best focus condition to be found. The feasibility of this technique is demonstrated experimentally by employing a 1 × 8 pixel GmAPD-FPA. It is shown that the spatial resolution improves when the GmAPD-FPA is located in the best focus position found by the autofocus technique.

  7. High-performance AlGaN-based solar-blind avalanche photodiodes with dual-periodic III–nitride distributed Bragg reflectors

    Science.gov (United States)

    Yao, Chujun; Ye, Xuanchao; Sun, Rui; Yang, Guofeng; Wang, Jin; Lu, Yanan; Yan, Pengfei; Cao, Jintao; Gao, Shumei

    2017-03-01

    Separate absorption and multiplication AlGaN solar-blind avalanche photodiodes with dual-periodic III–nitride distributed Bragg reflectors (DBRs) are numerically demonstrated. The designed devices exhibit an improved solar-blind characteristic with a maximum spectral responsivity of 0.184 A/W at λ = 284 nm owing to the optimized optical properties of the dual-periodic III–nitride DBRs. Compared with their conventional counterparts, an increased multiplication gain and a reduced breakdown voltage are achieved by using p-type Al0.15Ga0.85N layers with a lower Al content and multiplication layers. These improvements are attributed to the high p-doping efficiency and large hole ionization coefficient.

  8. Peltier-Cooled and Actively Quenched Operation of InGaAs/InP Avalanche Photodiodes as Photon Counters at a 1.55-mum Wavelength.

    Science.gov (United States)

    Prochazka, I

    2001-11-20

    The performance of commercially available InGaAs/InP avalanche photodiodes as single-photon detectors at a 1.55-mum wavelength has been investigated. A new active quenching and gating circuit, tailored for operation of these diodes at temperatures in the range from room temperature to -60 degrees C and achievable by means of thermoelectrical cooling, has been developed. Careful tuning of the diodes' operating conditions resulted in a significant reduction of afterpulsing effects; it permitted operation of the detectors with high repetition rates. A noise-equivalent power of 7 x 10(-16) W/Hz(1/2) was obtained at a 1.55-mum wavelength.

  9. Automated identification of potential snow avalanche release areas based on digital elevation models

    Directory of Open Access Journals (Sweden)

    Y. Bühler

    2013-05-01

    Full Text Available The identification of snow avalanche release areas is a very difficult task. The release mechanism of snow avalanches depends on many different terrain, meteorological, snowpack and triggering parameters and their interactions, which are very difficult to assess. In many alpine regions such as the Indian Himalaya, nearly no information on avalanche release areas exists mainly due to the very rough and poorly accessible terrain, the vast size of the region and the lack of avalanche records. However avalanche release information is urgently required for numerical simulation of avalanche events to plan mitigation measures, for hazard mapping and to secure important roads. The Rohtang tunnel access road near Manali, Himachal Pradesh, India, is such an example. By far the most reliable way to identify avalanche release areas is using historic avalanche records and field investigations accomplished by avalanche experts in the formation zones. But both methods are not feasible for this area due to the rough terrain, its vast extent and lack of time. Therefore, we develop an operational, easy-to-use automated potential release area (PRA detection tool in Python/ArcGIS which uses high spatial resolution digital elevation models (DEMs and forest cover information derived from airborne remote sensing instruments as input. Such instruments can acquire spatially continuous data even over inaccessible terrain and cover large areas. We validate our tool using a database of historic avalanches acquired over 56 yr in the neighborhood of Davos, Switzerland, and apply this method for the avalanche tracks along the Rohtang tunnel access road. This tool, used by avalanche experts, delivers valuable input to identify focus areas for more-detailed investigations on avalanche release areas in remote regions such as the Indian Himalaya and is a precondition for large-scale avalanche hazard mapping.

  10. Studies of the LHC detection systems: scintillating fibers projective electromagnetic calorimeter prototype and light reading by avalanche photodiodes; Etudes de systemes de detection pour LHC: prototype d`un calorimetre electromagnetique projectif a fibres scintillantes et lecture de la lumiere par des photodiodes a avalanches

    Energy Technology Data Exchange (ETDEWEB)

    Bouhemaid, N.

    1995-09-22

    In this thesis a study concerning the hardware detection system of ATLAS experiment in preparation for L.H.C. is presented. The study is divided in two parts. After a general introduction of the L.H.C. and the ATLAS detector, the first part concerning the electromagnetic calorimeter, and the second part concerning the readout with avalanche photodiodes, are discussed. For both subjects the basic principles are presented before various test results are described. Within the RD1 program three different electromagnetic calorimeter prototypes, which all use the lead scintillating fibres technique, have been built. The first is a non-projective, compensating calorimeter called ``500{mu}m``, the second is a pseudo projective, non-compensating, called ``1 mm``, and the third is fully projective, called ``Radial``. The last prototype is discussed in more detail. Avalanches photodiodes which are used as readout of the ``1 mm`` calorimeter, have been exposed to both, a dedicated test bench in the laboratory as well as to test beams. The results of these tests are also presented. (author). 35 refs., 96 figs., 30 tabs.

  11. Negative feedback avalanche diode

    Science.gov (United States)

    Itzler, Mark Allen (Inventor)

    2010-01-01

    A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.

  12. Large-Area Superconducting Nanowire Single-Photon Detector with Double-Stage Avalanche Structure

    OpenAIRE

    2016-01-01

    We propose a novel design of superconducting nanowire avalanche photodetectors (SNAPs), which combines the advantages of multi-stage avalanche SNAPs to lower the avalanche current I_AV and that of series-SNAPs to reduce the reset time. As proof of principle, we fabricated 800 devices with large detection area (15 um * 15 um) and five different designs on a single silicon chip for comparison, which include standard SNSPDs, series-3-SNAPs and our modified series-SNAPs with double-stage avalanch...

  13. Bias-dependent timing jitter of 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode

    Science.gov (United States)

    Zhu, Ge; Zheng, Fu; Wang, Chao; Sun, Zhibin; Zhai, Guangjie; Zhao, Qing

    2016-11-01

    We characterized the dependence of the timing jitter of an InGaAs/InP single-photon avalanche diode on the excess bias voltage (V ex) when operated in 1-GHz sinusoidally gated mode. The single-photon avalanche diode was cooled to -30 degrees Celsius. When the V ex is too low (0.2 V-0.8 V) or too high (3 V-4.2 V), the timing jitter is increased with the V ex, particularly at high V ex. While at middle V ex (1 V-2.8 V), the timing jitter is reduced. Measurements of the timing jitter of the same avalanche diode with pulsed gating show that this effect is likely related to the increase of both the amplitude of the V ex and the width of the gate-on time. For the 1-GHz sinusoidally gated detector, the best jitter of 93 ps is achieved with a photon detection efficiency of 21.4% and a dark count rate of ˜2.08×10-5 per gate at the V ex of 2.8 V. To evaluate the whole performance of the detector, we calculated the noise equivalent power (NEP) and the afterpulse probability (P ap). It is found that both NEP and P ap increase quickly when the V ex is above 2.8 V. At 2.8-V V ex, the NEP and P ap are ˜2.06×10-16 W/Hz1/2 and 7.11%, respectively. Therefore, the detector should be operated with V ex of 2.8 V to exploit the fast time response, low NEP and low P ap. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275024, 61274024, and 61474123), the Youth Innovation Promotion Association, China (Grant No. 2013105), and the Ministry of Science and Technology of China (Grant Nos. 2013YQ030595-3 and 2011AA120101).

  14. InGaAs/InP Avalanche Photodiode for Single Photon Detection with Zinc Diffusion Process Using Metal Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lee, In Joon; Lee, Min Soo; Kim, Min Su; Jun, Dong-Hwan; Jeong, Hae Yong; Kim, Sangin; Han, Sang-wook; Moon, Sung

    2016-05-01

    In this paper, we describe a design, simulation, and fabrication of an InGaAs/InP single photon avalanche photodiode (SPAD), which requires a much higher gain, compared to APD's for conventional optical communications. To achieve a higher gain, an efficient multiplication width control is essential because it significantly affects the overall performance including not only gain but also noise characteristics. Normally, the multiplication layer width is controlled by the Zinc diffusion process. For the reliable and controllable diffusion process, we used metal organic chemical vapor deposition (MOCVD). The controllability of the proposed diffusion process is proved by the diffusion depth measurement of the fabricated devices which show the proportional dependence on the square root of the diffusion time. As a result, we successfully implemented the SPAD that exhibits a high gain enough to detect single photons and a very low dark current level of about 0.1 nA with 0.95 breakdown voltage. The single photon detection efficiency of 15% was measured at the 100 kHz gate pulse rate and the temperature of 230 K.

  15. Pixel multiplexing technique for real-time three-dimensional-imaging laser detection and ranging system using four linear-mode avalanche photodiodes.

    Science.gov (United States)

    Xu, Fan; Wang, Yuanqing; Li, Fenfang

    2016-03-01

    The avalanche-photodiode-array (APD-array) laser detection and ranging (LADAR) system has been continually developed owing to its superiority of nonscanning, large field of view, high sensitivity, and high precision. However, how to achieve higher-efficient detection and better integration of the LADAR system for real-time three-dimensional (3D) imaging continues to be a problem. In this study, a novel LADAR system using four linear mode APDs (LmAPDs) is developed for high-efficient detection by adopting a modulation and multiplexing technique. Furthermore, an automatic control system for the array LADAR system is proposed and designed by applying the virtual instrumentation technique. The control system aims to achieve four functions: synchronization of laser emission and rotating platform, multi-channel synchronous data acquisition, real-time Ethernet upper monitoring, and real-time signal processing and 3D visualization. The structure and principle of the complete system are described in the paper. The experimental results demonstrate that the LADAR system is capable of achieving real-time 3D imaging on an omnidirectional rotating platform under the control of the virtual instrumentation system. The automatic imaging LADAR system utilized only 4 LmAPDs to achieve 256-pixel-per-frame detection with by employing 64-bit demodulator. Moreover, the lateral resolution is ∼15 cm and range accuracy is ∼4 cm root-mean-square error at a distance of ∼40 m.

  16. A liquid-helium cooled large-area silicon PIN photodiode x-ray detector

    CERN Document Server

    Inoue, Y; Hara, H; Minowa, M; Shimokoshi, F; Inoue, Yoshizumi; Moriyama, Shigetaka; Hara, Hideyuki; Minowa, Makoto; Shimokoshi, Fumio

    1995-01-01

    An x-ray detector using a liquid-helium cooled large-area silicon PIN photodiode has been developed along with a tailor-made charge sensitive preamplifier whose first-stage JFET has been cooled. The operating temperature of the JFET has been varied separately and optimized. The x- and \\gamma-ray energy spectra for an \

  17. Modelization, fabrication and evaluation avalanche photodiodes polarized in Geiger mode for the single photon in astrophysics applications; Modelisation, fabrication et evaluation des photodiodes a avalanche polarisees en mode Geiger pour la detection du photon unique dans les applications Astrophysiques

    Energy Technology Data Exchange (ETDEWEB)

    Pellion, D

    2008-12-15

    The genesis of the work presented in this this is in the field of very high energy astrophysics. One century ago, scientists identified a new type of messenger coming from space: cosmic rays. This radiation consists of particles (photons or other) of very high energy which bombard the Earth permanently. The passage of cosmic radiations in the Earth's atmosphere results in the creation of briefs luminous flashes (5 ns) of very low intensity (1 pW), a Cherenkov flash, and then becomes visible on the ground. In the current state of the art the best detector of light today is the Photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. But there are some drawbacks: low quantum efficiency, cost, weight etc. We present in this thesis a new alternative technology: silicon photon counters, made of photodiodes polarized in Geiger mode. This operating mode makes it possible to obtain an effect of multiplication comparable to that of the PMT. A physical and electrical model was developed to reproduce the behaviour of this detector. We then present in this thesis work an original technological process allowing the realization of these devices in the Center of Technology of LAAS-CNRS, with the simulation of each operation of the process. We developed a scheme for the electric characterization of the device, from the static mode to the dynamic mode, in order to check conformity with SILVACO simulations and to the initial model. Results are already excellent, given this is only a first prototype step, and comparable with the results published in the literature. These silicon devices can intervene in all the applications where there is a photomultiplier and replace it. The applications are thus very numerous and the growth of the market of these detectors is very fast. We present a first astrophysical experiment installed at the 'Pic du Midi' site which has detected Cherenkov flashes from cosmic rays with this new semiconductor technology

  18. Linking snow depth to avalanche release area size: measurements from the Vallée de la Sionne field site

    OpenAIRE

    2016-01-01

    One of the major challenges in avalanche hazard assessment is the correct estimation of avalanche release area size, which is of crucial importance to evaluate the potential danger that avalanches pose to roads, railways or infrastructure. Terrain analysis plays an important role in assessing the potential size of avalanche releases areas and is commonly based on digital terrain models (DTMs) of a snow-free summer terrain. However, a snow-covered winter terrain can significa...

  19. The Effect of Electron versus Hole Photocurrent on Optoelectric Properties of p+-p-n-n+ Wz-GaN Reach-Through Avalanche Photodiodes

    Directory of Open Access Journals (Sweden)

    Moumita Ghosh

    2013-01-01

    Full Text Available The authors have made an attempt to investigate the effect of electron versus hole photocurrent on the optoelectric properties of p+-p-n-n+ structured Wurtzite-GaN (Wz-GaN reach-through avalanche photodiodes (RAPDs. The photo responsivity and optical gain of the devices are obtained within the wavelength range of 300 to 450 nm using a novel modeling and simulation technique developed by the authors. Two optical illumination configurations of the device such as Top Mounted (TM and Flip Chip (FC are considered for the present study to investigate the optoelectric performance of the device separately due to electron dominated and hole dominated photocurrents, respectively, in the visible-blind ultraviolet (UV spectrum. The results show that the peak unity gain responsivity and corresponding optical gain of the device are 555.78 mA W−1 and 9.4144×103, respectively, due to hole dominated photocurrent (i.e., in FC structure; while those are 480.56 mA W−1 and 7.8800×103, respectively, due to electron dominated photocurrent (i.e., in TM structure at the wavelength of 365 nm and for applied reverse bias of 85 V. Thus, better optoelectric performance of Wz-GaN RAPDs can be achieved when the photocurrent is made hole dominated by allowing the UV light to be shined on the n+-layer instead of p+-layer of the device.

  20. Different Avalanche Behaviors in Different Specific Areas of a System Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-Wei; CHEN Tian-Lun

    2003-01-01

    Based on the standard self-organizing map (SOM) neural network model and an integrate-and-fire mecha-nism, we introduce a kind of coupled map lattice system to investigate scale-invariance behavior in the activity of modelneural populations. We find power-law distribution behavior of avalanche size in our model. But more importantly, wefind there are different avalanche distribution behaviors in different specific areas of our system, which are formed by thetopological learning process of the SOM net.

  1. Linking snow depth to avalanche release area size: measurements from the Vallée de la Sionne field site

    Science.gov (United States)

    Veitinger, Jochen; Sovilla, Betty

    2016-08-01

    One of the major challenges in avalanche hazard assessment is the correct estimation of avalanche release area size, which is of crucial importance to evaluate the potential danger that avalanches pose to roads, railways or infrastructure. Terrain analysis plays an important role in assessing the potential size of avalanche releases areas and is commonly based on digital terrain models (DTMs) of a snow-free summer terrain. However, a snow-covered winter terrain can significantly differ from its underlying, snow-free terrain. This may lead to different, and/or potentially larger release areas. To investigate this hypothesis, the relation between avalanche release area size, snow depth and surface roughness was investigated using avalanche observations of artificially triggered slab avalanches over a period of 15 years in a high-alpine field site. High-resolution, continuous snow depth measurements at times of avalanche release showed a decrease of mean surface roughness with increasing release area size, both for the bed surface and the snow surface before avalanche release. Further, surface roughness patterns in snow-covered winter terrain appeared to be well suited to demarcate release areas, suggesting an increase of potential release area size with greater snow depth. In this context, snow depth around terrain features that serve as potential delineation borders, such as ridges or trenches, appeared to be particularly relevant for release area size. Furthermore, snow depth measured at a nearby weather station was, to a considerable extent, related to potential release area size, as it was often representative of snow depth around those critical features where snow can accumulate over a long period before becoming susceptible to avalanche release. Snow depth - due to its link to surface roughness - could therefore serve as a highly useful variable with regard to potential release area definition for varying snow cover scenarios, as, for example, the avalanche

  2. Performance assessment of simulated 3D laser images using Geiger-mode avalanche photo-diode: tests on simple synthetic scenarios

    Science.gov (United States)

    Coyac, Antoine; Hespel, Laurent; Riviere, Nicolas; Briottet, Xavier

    2015-10-01

    In the past few decades, laser imaging has demonstrated its potential in delivering accurate range images of objects or scenes, even at long range or under bad weather conditions (rain, fog, day and night vision). We note great improvements in the conception and development of single and multi infrared sensors, concerning embedability, circuitry reading capacity, or pixel resolution and sensitivity, allowing a wide diversity of applications (i.e. enhanced vision, long distance target detection and reconnaissance, 3D DSM generation). Unfortunately, it is often difficult to dispose of all the instruments to compare their performance for a given application. Laser imaging simulation has shown to be an interesting alternative to acquire real data, offering a higher flexibility to perform this sensors comparison, plus being time and cost efficient. In this paper, we present a 3D laser imaging end-to-end simulator using a focal plane array with Geiger mode detection, named LANGDOC. This work aims to highlight the interest and capability of this new generation of photo-diodes arrays, especially for airborne mapping and surveillance of high risk areas.

  3. Different Avalanche Behaviors in Different Specific Areas of a System Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAOXiao-Wei; CHENTian-Lun

    2003-01-01

    Based on the standard self-organizing map (SOM) neural network model and an integrate-and-fire mecha-nism, we introduce a kind of coupled map lattice system to investigate scale-invariance behavior in the activity of model neural populations. We find power-law distribution behavior of avalanche size in our model. But more importantly, we find there are different avalanche distribution behaviors in different specific areas of our system, which are formed by the topological learning process of the SOM net.

  4. A 1.5k x 1.5k class photon counting HgCdTe linear avalanche photo-diode array for low background space astronomy in the 1-5micron infrared

    Science.gov (United States)

    Hall, Donald

    Under a current award, NASA NNX 13AC13G "EXTENDING THE ASTRONOMICAL APPLICATION OF PHOTON COUNTING HgCdTe LINEAR AVALANCHE PHOTODIODE ARRAYS TO LOW BACKGROUND SPACE OBSERVATIONS" UH has used Selex SAPHIRA 320 x 256 MOVPE L-APD HgCdTe arrays developed for Adaptive Optics (AO) wavefront (WF) sensing to investigate the potential of this technology for low background space astronomy applications. After suppressing readout integrated circuit (ROIC) glow, we have placed upper limits on gain normalized dark current of 0.01 e-/sec at up to 8 volts avalanche bias, corresponding to avalanche gain of 5, and have operated with avalanche gains of up to several hundred at higher bias. We have also demonstrated detection of individual photon events. The proposed investigation would scale the format to 1536 x 1536 at 12um (the largest achievable in a standard reticule without requiring stitching) while incorporating reference pixels required at these low dark current levels. The primary objective is to develop, produce and characterize a 1.5k x 1.5k at 12um pitch MOVPE HgCdTe L-APD array, with nearly 30 times the pixel count of the 320 x 256 SAPHIRA, optimized for low background space astronomy. This will involve: 1) Selex design of a 1.5k x 1.5k at 12um pitch ROIC optimized for low background operation, silicon wafer fabrication at the German XFab foundry in 0.35 um 3V3 process and dicing/test at Selex, 2) provision by GL Scientific of a 3-side close-buttable carrier building from the heritage of the HAWAII xRG family, 3) Selex development and fabrication of 1.5k x 1.5k at 12 um pitch MOVPE HgCdTe L-APD detector arrays optimized for low background applications, 4) hybridization, packaging into a sensor chip assembly (SCA) with initial characterization by Selex and, 5) comprehensive characterization of low background performance, both in the laboratory and at ground based telescopes, by UH. The ultimate goal is to produce and eventually market a large format array, the L

  5. MBE growth HgCdTe avalanche photodiode based on PIN structure%MBE生长的PIN结构碲镉汞红外雪崩光电二极管

    Institute of Scientific and Technical Information of China (English)

    顾仁杰; 沈川; 王伟强; 付祥良; 郭余英; 陈路

    2013-01-01

    对中波红外碲镉汞雪崩光电二极管(APD)特性进行理论计算,获得材料的能量散射因子及电离阈值能级与材料特性的相互关系,从而计算器件的理论雪崩增益与击穿电压.通过对材料特性(组分,外延厚度,掺杂浓度等)的优化,设计并生长了适合制备PIN结构红外雪崩光电二极管的碲镉汞材料,并进行了器件验证.结果显示,在10V反偏电压下,该器件电流增益可达335.%Hg1-xCdxTe (x=0. 3) avalanche photodiodes (APDs) with a PIN structure was investigated theoretically. The energy dispersion factor and the threshold energy are acquired according to the parameters of material. The gain as well as the breakdown voltage of the device was obtained. The composition, thickness, doping level were optimized theoretically for the APD device. A high performance APD device with a gain of 335 at the bias voltage of-lOV was fabricated, which consisted of a PIN structure mad of HgCdTe grown by MBE.

  6. Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode

    CERN Document Server

    Stipčević, Mario; Ursin, Rupert

    2013-01-01

    We characterize a new commercial, back-illuminated reach-through silicon single-photon avalanche photo diode (SPAD) SAP500 (Laser Components. Inc.), operated in Geiger-mode for purpose of photon counting. We show that for this sensor a significant interplay exists between dark counts, detection efficiency, afterpulsing, excess voltage and operating temperature, sometimes requiring a careful optimization tailored for a specific application. We find that a large flat plateau of sensitive area of about 0.5 mm in diameter, a peak quantum efficiency of 73% at 560 nm and timing precision down to 150 ps FWHM are the main distinguishing characteristics of this SPAD.

  7. Potential slab avalanche release area identification from estimated winter terrain: a multi-scale, fuzzy logic approach

    Science.gov (United States)

    Veitinger, Jochen; Purves, Ross Stuart; Sovilla, Betty

    2016-10-01

    Avalanche hazard assessment requires a very precise estimation of the release area, which still depends, to a large extent, on expert judgement of avalanche specialists. Therefore, a new algorithm for automated identification of potential avalanche release areas was developed. It overcomes some of the limitations of previous tools, which are currently not often applied in hazard mitigation practice. By introducing a multi-scale roughness parameter, fine-scale topography and its attenuation under snow influence is captured. This allows the assessment of snow influence on terrain morphology and, consequently, potential release area size and location. The integration of a wind shelter index enables the user to define release area scenarios as a function of the prevailing wind direction or single storm events. A case study illustrates the practical usefulness of this approach for the definition of release area scenarios under varying snow cover and wind conditions. A validation with historical data demonstrated an improved estimation of avalanche release areas. Our method outperforms a slope-based approach, in particular for more frequent avalanches; however, the application of the algorithm as a forecasting tool remains limited, as snowpack stability is not integrated. Future research activity should therefore focus on the coupling of the algorithm with snowpack conditions.

  8. Controls and geomorphic effects of a high-magnitude/low-frequency snow avalanche event in the proglacial area of the Bødalsbreen glacier, Nordfjord, western Norway

    Science.gov (United States)

    Laute, Katja; Beylich, Achim A.

    2014-05-01

    Due to the interactions between the prevalent climatic factors and the local topography snow avalanches are a common phenomena especially in western and northern Norway. Compared to the annually occurring snow avalanches (low-magnitude/high-frequency events) so-called extreme snow avalanches (high-magnitude/low-frequency) are more difficult to record as they are characterized by recurrence intervals often larger than a decade. During the winter-spring period 2011/2012 an extreme snow avalanche occurred within the upper valley part of a steep mountain catchment (Bødalen) in western Norway. The snow avalanche run-out zone was located directly in front of the Bødalsbreen glacier which had a substantial effect with respect to the reworking and remobilization of exposed sediment and debris within the proglacial area. Due to the ongoing glacier retreat of the Bødalsbreen glacier freshly exposed areas are enlarged which e.g. exhibit a comparably higher sediment availability enabling active sediment reworking and re-deposition by secondary transfers (e.g. by snow avalanches or fluvial processes). This study focuses on (i) morphometric and meteorological controls of this specific snow avalanche extreme event and (ii) its related relative role in mass transport as compared to the annually monitored snow avalanche activity within the Bødalen valley. Mapping of the extension and run-out distance of this extreme snow avalanche event is combined with spatial data analysis of possible morphometric controls. The timing and meteorological controls of this event are explored based on meteorological data from two different climate stations located nearby. The volume of the entire snow avalanche, its speed and possible pressure effects are estimated and the total transferred sediment mass is calculated. First results show that this extreme snow avalanche was initiated by a large breakup of the snowpack developed along the cliff of an E-facing rockwall located above the B

  9. 一种基于雪崩二极管电容特性提取通讯波段单光子信号的方法%A Feasible Method for Detecting 1.5 μm Single Photon Based on Capacitance Nature of Avalanche Photodiode

    Institute of Scientific and Technical Information of China (English)

    齐兰; 杨磊; 郭学石; 李小英

    2013-01-01

    InGaAs/InP雪崩二极管(APD)可用于探测光通讯波段的单光子.APD工作于门模盖革模式时,单个光子引起的雪崩电流信号通常淹没在电容瞬时充放电脉冲中,光电流信号提取困难.本文通过调整实验参数和APD的寄生电容,使雪崩信号与放电脉冲在时域上有效叠加,并由高速比较器将光电流信号直接甄别出来.本文设计的基于InGaAs/InP APD的单光子探测系统,运行稳定,方法简单可靠,说明这种利用APD的电容特性提取单光子信号是一种有效的方法.%InGaAs/InP avalanche photodiode(APD) working in gated Geiger mode can be used to measure single photons in the 1550 nm telecom-band.However,it is difficult to extract the photon induced avalanche current,which is usually buried in the charge and discharge pulses due to junction capacitance.When the avalanche signal and discharge pulse are properly overlaped in the time domain,the avalanche photocurrent is directly discriminated by high-speed comparator.The single photon detection system is simple and stable,which proves that it is efficient to extract the photon with this feature.

  10. Turn-on and turn-off voltages of an avalanche p-n junction

    Institute of Scientific and Technical Information of China (English)

    Zhang Guoqing; Han Dejun; Zhu Changjun; Zhai Xuejun

    2012-01-01

    Characteristics of the turn-on and turn-off voltage of avalanche p-n junctions were demonstrated and studied.As opposed to existing reports,the differences between the turn-on and turn-off voltage cannot be neglected when the size of the p-n junction is in the order of microns.The difference increases inversely with the area of a junction,exerting significant influences on characterizing some parameters of devices composed of small avalanche junctions.Theoretical analyses show that the mechanism for the difference lies in the increase effect of the threshold multiplication factor at the turn-on voltage of a junction when the area of a junction decreases.Moreover,the "breakdown voltage" in the formula of the avalanche asymptotic current is,in essence,the avalanche turn-off voltage,and consequently,the traditional expression of the avalanche asymptotic current and the gain of a Geiger mode avalanche photodiode were modified.

  11. Geomorphological analysis, monitoring and modeling of large rock avalanches in northern Chile (Iquique area) for regional hazard assessment.

    Science.gov (United States)

    Yugsi Molina, F. X.; Hermanns, R. L.; Crosta, G. B.; Dehls, J.; Sosio, R.; Sepúlveda, S. A.

    2012-04-01

    Iquique is a city of about 215,000 inhabitants (Chilean national census 2002) settled on one of the seismic gaps in the South American subduction zone, where a M >8 earthquake with overdue return periods of ca. 100 yr is expected in the near future. The city has only two access roads coming from the east and south. The road to the east comes down along the escarpment that connects the Coastal Cordillera to the Coastal Plain. The road has been blocked by small magnitude earthquake-triggered landslides at least once in recent years. The second road, coming from the south, crosses along the Coastal Plain and connects the city to the airport where at least ten ancient debris deposits related to rock avalanches are found. These facts show the importance of determining the effects of a future high magnitude earthquake on the stability of the slopes in the area and the impact of possible slope failures on people, infrastructure and emergency management. The present work covers an area of approximately 130 km2 parallel to the coastline to the south of Iquique, divided into the two main morphological units briefly mentioned above. The eastern part corresponds to the Coastal Cordillera, a set of smoothed hills and shallow valleys that reaches up to 1200 m asl. This sector is limited to the west by a steep escarpment followed by the Coastal Plain and a narrow emerged marine plateau (1-3 km wide) locally overlaid by deposits of recent rock avalanches. Rock avalanche events have recurrently occurred at two sites to the north and center of the study area on the Coastal Cordillera escarpment. Another major single event has been mapped to the south. Marls, red and black shales, and shallow marine glauconitic deposits from Jurassic constitute the source rock for the rock avalanches in all sites. Clusters of deposits are found in the first two sites (retrogressive advance) with younger events running shorter distances and partially overlaying the older ones. Multiple lobes have been

  12. Hole-Initiated-Avalanche, Linear-Mode, Single-Photon-Sensitive Avalanche Photodetector with Reduced Excess Noise and Low Dark Count Rate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A radiation hard, single photon sensitive InGaAs avalanche photodiode (APD) receiver technology will be demonstrated useful for long range space based optical...

  13. Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes.

    Science.gov (United States)

    Gallivanoni, A; Rech, I; Resnati, D; Ghioni, M; Cova, S

    2006-06-12

    A new integrated active quenching circuit (i-AQC) designed in a standard CMOS process is presented, capable of operating with any available single photon avalanche diode (SPAD) over wide temperature range. The circuit is suitable for attaining high photon timing resolution also with wide-area SPADs. The new i-AQC integrates the basic active-quenching loop, a patented low-side timing circuit comprising a fast pulse pick-up scheme that substantially improves time-jitter performance, and a novel active-load passive quenching mechanism (consisting of a current mirror rather than a traditional high-value resistor) greatly improves the maximum counting rate. The circuit is also suitable for portable instruments, miniaturized detector modules and SPAD-array detectors. The overall features of the circuit may open the way to new developments in diversified applications of time-correlated photon counting in life sciences and material sciences.

  14. On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas

    Directory of Open Access Journals (Sweden)

    L. Fischer

    2012-01-01

    Full Text Available The ongoing debate about the effects of changes in the high-mountain cryosphere on rockfalls and rock avalanches suggests a need for more knowledge about characteristics and distribution of recent rock-slope instabilities. This paper investigates 56 sites with slope failures between 1900 and 2007 in the central European Alps with respect to their geological and topographical settings and zones of possible permafrost degradation and glacial recession. Analyses of the temporal distribution show an increase in frequency within the last decades. A large proportion of the slope failures (60% originated from a relatively small area above 3000 m a.s.l. (i.e. 10% of the entire investigation area. This increased proportion of detachment zones above 3000 m a.s.l. is postulated to be a result of a combination of factors, namely a larger proportion of high slope angles, high periglacial weathering due to recent glacier retreat (almost half of the slope failures having occurred in areas with recent deglaciation, and widespread permafrost occurrence. The lithological setting appears to influence volume rather than frequency of a slope failure. However, our analyses show that not only the changes in cryosphere, but also other factors which remain constant over long periods play an important role in slope failures.

  15. Dune Avalanche Scars

    Science.gov (United States)

    2004-01-01

    05 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows large, low albedo (dark) sand dunes in Kaiser Crater near 47.2oS, 340.4oW. The dunes are--ever so slowly--moving east to west (right to left) as sand avalanches down the steeper, slip face slopes of each. Avalanching sand in the Kaiser dune field has left deep scars on these slopes, suggesting that the sand is not loose but is instead weakly cemented. The image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  16. Avalanche Initiaition Mechanism - A Finite-element Approach

    Directory of Open Access Journals (Sweden)

    S. Senthil

    2003-01-01

    Full Text Available The Himalayas, the longest chain of mountains in the world, experiences extensive snowfall and avalanche activity during winter. Some of these areas are densely populated, and death and destruction on large scale due to avalanche activity has been reported in these areas. One of the ways of reducing the loss of life and material due to avalanches is through prediction of avalanches. An understanding of weather forecasting, terrain, and avalanche initiation mechanism is a prerequisite for avalanche prediction. In the present paper mathematical modelling of avalanche initiation mechanism has been discussed.

  17. Avalanche dynamics on a rough inclined plane.

    Science.gov (United States)

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2008-07-01

    The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.

  18. Aging Avalanches

    Science.gov (United States)

    Boettcher, Stefan; Paczuski, Maya

    1997-03-01

    We have shown that in an analytically solvable model of Self-Organized Criticality (SOC)(S. Boettcher & M. Paczuski, Phys. Rev. Lett. 76), 348 (1996). the evolving avalanche is governed by an equation of motion with a memory term that ranges over all past events.(S. Boettcher & M. Paczuski, Phys. Rev. E 54), 1082 (1996). The solution for the propagator shows sub-diffusive behavior with a broad exponential tail. Numerical studies of the temporal correlations during avalanches in a variety of SOC systems indicate that history dependence and hierarchical structures are generic features which emerge dynamically from simple local update rules. In particular, we find(S. Boettcher & M. Paczuski, ``Off-Equilibrium Behavior and Aging in Self-Organized Criticality'', (in preparation).) ``aging'' similar to the slow relaxation behavior in disordered systems that move through ``rugged landscapes'' in phase space, such as spin glasses.

  19. Reuyl Crater Dust Avalanches

    Science.gov (United States)

    2002-01-01

    't the Alps, you will find quite a few avalanches. Avalanches of dust, however, not snow. Martian dust can become so thick in this area that it eventually slides down the steep slopes, creating runaway avalanches of dust. No dedicated, Swiss-like avalanche rescue teams would be needed much on Mars, however. Unlike snow, the dust doesn't pile up and accumulate at the bottom. Instead, dust particles are so small that they get launched into the atmosphere where they remain suspended until . . . poof! They are blown away and distributed lightly elsewhere. For evidence of past avalanches, check out the dark streaks running down the bright, sunlit slopes (western side of the peaks about 1/3 of the way down the image). These avalanche scars are dark because the underlying surface is not as bright as the removed dust. Eventually, new dust will settle over these scars, and the streaks will brighten until they fade into the background. The neat thing is that we'll be able to see all of these changes happening over time. Our current two Mars orbiters (called Mars Global Surveyor and 2001 Mars Odyssey) are showing that avalanche action is happening right now, all of the time on Mars. For example, the camera on Mars Global Surveyor has already taken pictures of the Martian surface in some areas that showed no avalanches - the first time the picture was snapped, that is. The next time around, the camera took a picture of the same area, only voila! New streaks, meaning new avalanches! That's why it can be so exciting to look at the Martian landscape over time to see how it changes. The THEMIS camera on Odyssey will continue to map out the places where the avalanches occur and how often. This information will really help scientists understand how dust is works to shape the terrain and to influence the Martian climate as it constantly swings into the atmosphere, falls down to the ground, and rises back up again. Stay tuned to see if you too can pick out the changes over time!

  20. Technological advances in avalanche survival.

    Science.gov (United States)

    Radwin, Martin I; Grissom, Colin K

    2002-01-01

    Over the last decade, a proliferation of interest has emerged in the area of avalanche survival, yielding both an improved understanding of the pathophysiology of death after avalanche burial and technological advances in the development of survival equipment. The dismal survival statistics born out of the modern era of winter recreation unmistakably reveal that elapsed time and depth of burial are the most critical variables of survival and the focus of newer survival devices on the market. Although blunt trauma may kill up to one third of avalanche victims, early asphyxiation is the predominant mechanism of death, and hypothermia is rare. A survival plateau or delay in asphyxiation may be seen in those buried in respiratory communication with an air pocket until a critical accumulation of CO2 or an ice lens develops. The newest survival devices available for adjunctive protection, along with a transceiver and shovel, are the artificial air pocket device (AvaLung), the avalanche air bag system (ABS), and the Avalanche Ball. The artificial air pocket prolongs adequate respiration during snow burial and may improve survival by delaying asphyxiation. The ABS, which forces the wearer to the surface of the avalanche debris by inverse segregation to help prevent burial, has been in use in Europe for the last 10 years with an impressive track record. Finally, the Avalanche Ball is a visual locator device in the form of a spring-loaded ball attached to a tether, which is released from a fanny pack by a rip cord. Despite the excitement surrounding these novel technologies, avalanche avoidance through knowledge and conservative judgment will always be the mainstay of avalanche survival, never to be replaced by any device.

  1. Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area

    Directory of Open Access Journals (Sweden)

    J. Gaume

    2014-12-01

    Full Text Available Dry-snow slab avalanches are generally caused by a sequence of fracture processes including failure initiation in a weak snow layer underlying a cohesive slab followed by crack propagation within the weak layer (WL and tensile fracture through the slab. During past decades, theoretical and experimental work has gradually improved our knowledge of the fracture process in snow. However, our limited understanding of crack propagation and fracture arrest propensity prevents the evaluation of avalanche release sizes and thus impedes hazard assessment. To address this issue, slab tensile failure propensity is examined using a mechanically-based statistical model of the slab–WL system based on the finite element method. This model accounts for WL heterogeneity, stress redistribution by elasticity of the slab and the slab possible tensile failure. Two types of avalanche release are distinguished in the simulations: (1 full-slope release if the heterogeneity is not sufficient to stop crack propagation and to trigger a tensile failure within the slab, (2 partial-slope release if fracture arrest and slab tensile failure occurs due to the WL heterogeneity. The probability of these two release types is presented as a function of the characteristics of WL heterogeneity and of the slab. One of the main outcomes is that, for realistic values of the parameters, the tensile failure propensity is mainly influenced by slab properties. Hard and thick snow slabs are more prone to wide-scale crack propagation and thus lead to larger avalanches (full-slope release. In this case, the avalanche size is mainly influenced by topographical and morphological features such as rocks, trees, slope curvature and the spatial variability of the snow depth as it is often claimed in the literature.

  2. [Avalanche accidents and treatment of avalanche victims].

    Science.gov (United States)

    Skaiaa, Sven Christjar; Thomassen, Øyvind

    2016-03-15

    Avalanches may be provoked spontaneously or as a result of human activity, and they trigger the need for considerable rescue resources. Avalanche search and rescue operations are complex and characterised by physical and mental stress. The guidelines for resuscitation of avalanche victims may be perceived as complex and abstruse, which can lead to suboptimal treatment and an increased strain on rescue teams. The purpose of this article is to summarise the principles for medical treatment of avalanche victims.

  3. Assessment of the Perchertal avalanche in Tyrol, Austria

    OpenAIRE

    KURT, Tayfun

    2014-01-01

    The present study has been conducted to analyze the Perchertal avalanche area near Bärenkopf Mountain, which has several avalanche-prone areas on its slopes, within the area of Pertisau, Tyrol, in Austria. The main focus is on identifying the characteristics of the avalanche process itself to determine the potential risk to endangered objects, which include an important road and a hotel. Another focus is to evaluate the current local hazard map. Based on the dynamic avalanche models (Samos-AT...

  4. Remote detection of artificially triggered avalanches below a fixed avalanche control installation

    Science.gov (United States)

    van Herwijnen, Alec; Simioni, Stephan; Schweizer, Juerg

    2014-05-01

    Avalanche control by explosives is widely used as a temporary preventive measure to reduce avalanche hazard. The goal is to artificially trigger smaller less destructive avalanches, by detonating charges either above or on the snow surface. Hand charges are most often used, whereby the explosives are deployed by manually hand tossing or lowering onto the snow slope. Given the inherent dangers and limitations of this type of avalanche control, fixed avalanche control installations are increasingly used. These consist of strategically placed remote controlled installations that generate an explosion above the snow pack in an avalanche starting zone. While fixed installations can be used at any time and minimize the risk to avalanche control personnel, visual confirmation is still required to verify if an avalanche released. In order to remotely detect artificially triggered avalanches, we therefore developed a low-cost seismic monitoring system. We deployed the monitoring system in a ski area above the town of Davos , in the eastern Swiss Alps, below a Gazex installation, a remote controlled installation that generates an air blast by detonating a fuel-air explosive above the snow pack. The monitoring system consists of three vertical component geophones inserted in the ground at approximately 14, 27 and 46 meters from the Gazex installation. Our results show that, despite the relatively low precision of the monitoring equipment, both the detonation and the resulting avalanches can clearly be identified in the seismic data. Specifically, detonations are characterized by short, high amplitude broadband signals, while avalanches generate much longer, low frequency signals. Furthermore, information on the size of the artificially triggered avalanches is also obtained as it directly relates to the duration of the generated seismic signal. The overall goal is to assess the effectiveness of the fixed avalanche control installation with regards to yield (i.e. number of

  5. Characterization of Large Area APDs for the EXO-200 Detector

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, R.; LePort, F.; Pocar, A.; /Stanford U., Phys. Dept.; Kumar, K.; /Massachusetts U., Amherst; Odian, A.; Prescott, C.Y.; /SLAC; Tenev, V.; /Stanford U., Phys. Dept.; Ackerman, N.; /SLAC; Akimov, D.; /Moscow, ITEP; Auger, M.; /Bern U., LHEP; Benitez-Medina, C.; /Colorado State U.; Breidenbach, M.; /SLAC; Burenkov, A.; /Moscow, ITEP; Conley, R.; /SLAC; Cook, S.; /Colorado State U.; deVoe, R.; Dolinski, M.J.; /Stanford U., Phys. Dept.; Fairbank, W., Jr.; /Colorado State U.; Farine, J.; /Laurentian U.; Fierlinger, P.; Flatt, B.; /Stanford U., Phys. Dept. /Bern U., LHEP /Stanford U., Phys. Dept. /Maryland U. /Colorado State U. /Laurentian U. /Carleton U. /SLAC /Maryland U. /Moscow, ITEP /Alabama U. /SLAC /Colorado State U. /Stanford U., Phys. Dept. /Alabama U. /Stanford U., Phys. Dept. /Alabama U. /SLAC /Carleton U. /SLAC /Maryland U. /Moscow, ITEP /Carleton U. /Stanford U., Phys. Dept. /Bern U., LHEP /SLAC /Laurentian U. /SLAC /Maryland U.

    2011-12-02

    EXO-200 uses 468 large area avalanche photodiodes (LAAPDs) for detection of scintillation light in an ultra-low-background liquid xenon (LXe) detector. We describe initial measurements of dark noise, gain and response to xenon scintillation light of LAAPDs at temperatures from room temperature to 169 K - the temperature of liquid xenon. We also describe the individual characterization of more than 800 LAAPDs for selective installation in the EXO-200 detector.

  6. Characterization of large area APDs for the EXO-200 detector

    CERN Document Server

    Neilson, R; Pocar, A; Kumar, K; Odian, A; Prescott, C Y; Tenev, V; Ackerman, N; Akimov, D; Auger, M; Benitez-Medina, C; Breidenbach, M; Burenkov, A; Conley, R; Cook, S; deVoe, R; Dolinski, M J; Fairbank, W; Farine, J; Fierlinger, P; Flatt, B; Gornea, R; Gratta, G; Green, M; Hall, C; Hall, K; Hallman, D; Hargrove, C; Herrin, S; Hodgson, J; Kaufman, L J; Kovalenko, A; Leonard, D S; Mackay, D; Mong, B; Diez, M Montero; Niner, E; O'Sullivan, K; Piepke, A; Rowson, P C; Sinclair, D; Skarpaas, K; Slutsky, S; Stekhanov, V; Strickland, V; Twelker, K; Vuilleumier, J -L; Wamba, K; Wichoski, U; Wodin, J; Yang, L; Yen, Y -R

    2009-01-01

    EXO-200 uses 468 large area avalanche photodiodes (LAAPDs) for detection of scintillation light in an ultra-low-background liquid xenon (LXe) detector. We describe initial measurements of dark noise, gain and response to xenon scintillation light of LAAPDs at temperatures from room temperature to 169K - the temperature of liquid xenon. We also describe the individual characterization of more than 800 LAAPDs for selective installation in the EXO-200 detector.

  7. High Efficiency UV Photodiodes fabricated on p-type Substrate

    NARCIS (Netherlands)

    Ramachandra Rao, P.; Milosavljevic, S.; Kroth, U.; Laubis, C.; Nihtianov, S.

    2014-01-01

    Newly developed “pure-boron” photodiodes, with high sensitivity and stability in the whole ultraviolet range (UV), are described. The main purpose of this work is to create and characterize a large-area UV photodiode, representing a structure of a pixel in a backside illuminated CMOS image sensor, f

  8. SiC Avalanche Photodiodes and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase 2 SBIR program submitted to National Aeronautics and Space Administration (NASA) in response to Topic S1.05 (Detector Technologies for UV, X-Ray,...

  9. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    Science.gov (United States)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  10. Assessing the importance of terrain parameters on glide avalanche release

    Science.gov (United States)

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  11. Development of Active Pixel Photodiode Sensors for Gamma Camera Application

    CERN Document Server

    Salahuddin, Nur Sultan; Heruseto, Brahmantyo; Parmentier, Michel

    2011-01-01

    We designed new photodiodes sensors including current mirror amplifiers. These photodiodes have been fabricated using a CMOS 0.6 micrometers process from Austria Micro System (AMS). The Photodiode areas are respectiveley 1mm x 1mm and 0.4mm x 0.4mm with fill factor 98 % and total chip area is 2 square millimetres. The sensor pixels show a logarithmic response in illumination and are capable of detecting very low blue light (less than 0.5 lux) . These results allow to use our sensor in new Gamma Camera solid-state concept.

  12. Thermal energy in dry snow avalanches

    Science.gov (United States)

    Steinkogler, W.; Sovilla, B.; Lehning, M.

    2015-09-01

    Avalanches can exhibit many different flow regimes from powder clouds to slush flows. Flow regimes are largely controlled by the properties of the snow released and entrained along the path. Recent investigations showed the temperature of the moving snow to be one of the most important factors controlling the mobility of the flow. The temperature of an avalanche is determined by the temperature of the released and entrained snow but also increases by frictional processes with time. For three artificially released avalanches, we conducted snow profiles along the avalanche track and in the deposition area, which allowed quantifying the temperature of the eroded snow layers. This data set allowed to calculate the thermal balance, from release to deposition, and to discuss the magnitudes of different sources of thermal energy of the avalanches. For the investigated dry avalanches, the thermal energy increase due to friction was mainly depending on the effective elevation drop of the mass of the avalanche with a warming of approximately 0.3 °C per 100 vertical metres. Contrarily, the temperature change due to entrainment varied for the individual avalanches, from -0.08 to 0.3 °C, and depended on the temperature of the snow along the path and the erosion depth. Infrared radiation thermography (IRT) was used to assess the surface temperature before, during and just after the avalanche with high spatial resolution. This data set allowed to identify the warmest temperatures to be located in the deposits of the dense core. Future research directions, especially for the application of IRT, in the field of thermal investigations in avalanche dynamics are discussed.

  13. Thermal energy in dry snow avalanches

    Directory of Open Access Journals (Sweden)

    W. Steinkogler

    2014-11-01

    Full Text Available Avalanches can exhibit many different flow regimes from powder clouds to slush flows. Flow regimes are largely controlled by the properties of the snow released and entrained along the path. Recent investigations showed the temperature of the moving snow to be one of the most important factors controlling the mobility of the flow. The temperature of an avalanche is determined by the temperature of the released and entrained snow but also increases by frictional and collisional processes with time. For three artificially released avalanches, we conducted snow profiles along the avalanche track and in the deposition area, which allowed quantifying the temperature of the eroded snow layers. Infrared radiation thermography (IRT was used to assess the surface temperature before, during and just after the avalanche with high spatial resolution. This data set allowed to calculate the thermal balance, from release to deposition, and to discuss the magnitudes of different sources of thermal energy of the avalanches. We could confirm that, for the investigated dry avalanches, the thermal energy increase due to friction was mainly depending on the elevation drop of the avalanche with a warming of approximately 0.5 °C per 100 height meters. Contrary, warming due to entrainment was very specific to the individual avalanche and depended on the temperature of the snow along the path and the erosion depth ranging from nearly no warming to a maximum observed warming of 1 °C. Furthermore, we could observe the warmest temperatures are located in the deposits of the dense core. Future research directions, especially for the application of IRT, in the field of thermal investigations in avalanche dynamics are discussed.

  14. Determining avalanche modelling input parameters using terrestrial laser scanning technology

    OpenAIRE

    2013-01-01

    International audience; In dynamic avalanche modelling, data about the volumes and areas of the snow released, mobilized and deposited are key input parameters, as well as the fracture height. The fracture height can sometimes be measured in the field, but it is often difficult to access the starting zone due to difficult or dangerous terrain and avalanche hazards. More complex is determining the areas and volumes of snow involved in an avalanche. Such calculations require high-resolution spa...

  15. Monitoring and modelling snow avalanches in Svalbard

    Science.gov (United States)

    Humlum, O.; Christiansen, H.; Neumann, U.; Eckerstorfer, M.; Sjöblom, A.; Stalsberg, K.; Rubensdotter, L.

    2009-04-01

    Monitoring and modelling snow avalanches in Svalbard Ole Humlum 1,3, Hanne H. Christiansen 1, Ulrich Neumann 1, Markus Eckerstorfer 1, Anna Sjöblom 1, Knut Stalsberg 2 and Lena Rubensdotter 2. 1: The University Centre in Svalbard (UNIS). 2: Geological Survey of Norway (NGU) 3: University of Oslo Ground based transportation in Svalbard landscape all takes place across mountainous terrain affected by different geomorphological slope processes. Traffic in and around the Svalbard settlements is increasing, and at the same time global climate models project substantial increases in temperature and precipitation in northern high latitudes for coming century. Therefore improved knowledge on the effect of climatic changes on slope processes in such high arctic landscapes is becoming increasingly important. Motivated by this, the CRYOSLOPE Svalbard research project since 2007 has carried out field observations on snow avalanche frequency and associated meteorological conditions. Snow avalanches are important geomorphic agents of erosion and deposition, and have long been a source of natural disasters in many mid-latitude mountain areas. Avalanches as a natural hazard has thereby been familiar to inhabitants of the Alps and Scandinavia for centuries, while it is a more recent experience in high arctic Svalbard. In addition, overall climate, topography and especially high winter wind speeds makes it difficult to apply snow avalanche models (numerical or empirical) developed for use at lower latitudes, e.g. in central Europe. In the presentation we examplify results from the ongoing (since winter 2006-07) monitoring of snow avalanches in Svalbard along a 70 km long observational route in the mountains. In addition, we present observations on the geomorphological impact of avalanches, with special reference to the formation of rock glaciers. Finally, we also present some initial results from numerical attempts of snow avalanche risk modelling within the study area.

  16. Towards an automated detection of avalanche deposits using their directional properties

    OpenAIRE

    2009-01-01

    Snow avalanches killed more people in the Swiss alpine area during the past decades than any other natural hazard. To further improve the avalanche prediction and the protection of people and infrastructure, information about the occurrence and the distribution of avalanche activity is crucial. Nevertheless this information is missing for large parts of the Alpine area. The surface roughness of avalanche deposits differs considerably from the adjacent undisturbed snow cover and is an impor...

  17. Contribution of generation-recombination processes at inner interface of MBE-grown Hg1-xCdxTe heterostucture to dark current of small active area photodiode

    Science.gov (United States)

    Chekanova, Galina V.; Drugova, Albina A.; Kholodnov, Viacheslav; Nikitin, Mikhail S.

    2009-09-01

    Multilayer heterostructures of Hg1-xCdxTe alloy grown by Molecular Beam Epitaxy (MBE) on large size alternative substrates Si, GaAs and Ge are considered as one of productive alternative materials for issue of large format photovoltaic (PV) infrared (IR) focal plane arrays. However reaching of ultimate performance of small-pitched photodiode's (PD) covering spectral range from 8 to 12 μm depends on electronic properties of both individual layers and heterostructure interfaces. Due to small thickness of heterostructure layers, interfaces are located close to active regions of p-n junction and hence generation-recombination processes at interfaces will contribute to value of current flowing through junction. As usual measured dark current value of small-sized PD is higher than estimated from calculation and cannot be explained by discrepancy between real and estimated charge carriers concentration in absorption layers where p-n junction is formed. Objective of the present work was to calculate the contribution of recombination of charge carriers via electronic states on nearby inner interface to dark current of Hg1-xCdxTe LWIR PD (λco equals to 9.5-10.3 μm at Top=77 K) and its variation with absorption layer parameters and compare it to measured data on small-pitched arrays. We have concluded previously that at high recombination rate dark current can grow in orders of value.

  18. Rock avalanches on glaciers

    OpenAIRE

    Shugar, Daniel

    2011-01-01

    This thesis examines relations between rock avalanches and the glaciers on which they are deposited. I have attempted to understand a geophysical phenomenon from two viewpoints: sedimentology and glaciology. The contributions are both methodological, and practical. I have used a GIS to quantify debris sheet geomorphology. A thorough characterization of rock avalanche debris is a necessary step in understanding the flow mechanics of large landslide. I have also developed a technique for solvin...

  19. Avalanche effects near nanojunctions

    Science.gov (United States)

    Nandigana, Vishal V. R.; Aluru, N. R.

    2016-07-01

    In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1 /f "-type dynamics for the voltage chaos and "1 /f2 "-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps.

  20. Single-Photon Avalanche Diodes (SPAD) in CMOS 0.35 µm technology

    Energy Technology Data Exchange (ETDEWEB)

    Pellion, D.; Jradi, K.; Brochard, N. [Le2i – CNRS/Univ. de Bourgogne, Dijon (France); Prêle, D. [APC – CNRS/Univ. Paris Diderot, Paris (France); Ginhac, D. [Le2i – CNRS/Univ. de Bourgogne, Dijon (France)

    2015-07-01

    Some decades ago single photon detection used to be the terrain of photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. However, PMT has several disadvantages such as low quantum efficiency, overall dimensions, and cost, making them unsuitable for compact design of integrated systems. So, the past decade has seen a dramatic increase in interest in new integrated single-photon detectors called Single-Photon Avalanche Diodes (SPAD) or Geiger-mode APD. SPAD are working in avalanche mode above the breakdown level. When an incident photon is captured, a very fast avalanche is triggered, generating an easily detectable current pulse. This paper discusses SPAD detectors fabricated in a standard CMOS technology featuring both single-photon sensitivity, and excellent timing resolution, while guaranteeing a high integration. In this work, we investigate the design of SPAD detectors using the AMS 0.35 µm CMOS Opto technology. Indeed, such standard CMOS technology allows producing large surface (few mm{sup 2}) of single photon sensitive detectors. Moreover, SPAD in CMOS technologies could be associated to electronic readout such as active quenching, digital to analog converter, memories and any specific processing required to build efficient calorimeters (Silicon PhotoMultiplier – SiPM) or high resolution imagers (SPAD imager). The present work investigates SPAD geometry. MOS transistor has been used instead of resistor to adjust the quenching resistance and find optimum value. From this first set of results, a detailed study of the dark count rate (DCR) has been conducted. Our results show a dark count rate increase with the size of the photodiodes and the temperature (at T=22.5 °C, the DCR of a 10 µm-photodiode is 2020 count s{sup −1} while it is 270 count s{sup −1} at T=−40 °C for a overvoltage of 800 mV). A small pixel size is desirable, because the DCR per unit area decreases with the pixel size. We also found that the adjustment

  1. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    DEFF Research Database (Denmark)

    Duun, Sune Bro; Haahr, Rasmus Grønbek; Hansen, Ole;

    2010-01-01

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized....../2) cm(-1) are achieved. The photodiodes are incorporated into a wireless pulse oximetry sensor system embedded in an adhesive patch presented elsewhere as 'The Electronic Patch'. The annular photodiodes are fabricated using two masked diffusions of first boron and subsequently phosphor. The surface...

  2. Rock avalanches: significance and progress (Invited)

    Science.gov (United States)

    Davies, T. R.

    2013-12-01

    1. The probability distribution of landslide volumes follows a power-law indicating that large rock avalanches dominate the terrestrial sediment supply from mountains, and that their source area morphologies dominate mountain topography. 2. Large rock slope failures (~ 106 m3 or greater) often mobilise into rock avalanches, which can travel extraordinarily long distances with devastating effect. This hypermobility has been the subject of many investigations; we have demonstrated that it can be explained quantitatively and accurately by considering the energetics of the intense rock fragmentation that always occurs during motion of a large rock mass. 3. Study of rock avalanche debris psd shows that the energy used in creating new rock surface area during fragmentation is not lost to surface energy, but is recycled generating a high-frequency elastic energy field that reduces the frictional resistance to motion during runout. 4. Rock avalanches that deposit on glaciers can eventually form large terminal moraines that have no connection with any climatic event; unless these are identified as rock-avalanche-influenced they can confuse palaeoclimatic inferences drawn from moraine ages. Rock-avalanche-derived fines, however, can be identified in moraine debris up to ten thousand years old by the characteristic micron-scale agglomerates that form during intense fragmentation, and which are absent from purely climatically-induced moraines; there is thus a strong case for re-examining existing palaeoclimatic databases to eliminate potentially rock-avalanche-influenced moraine ages. 5. Rock avalanches (especially coseismic ones) are a serious hazard, being very destructive in their own right; they also block river valleys, forming landslide dams and potentially devastating dambreak floods, and subsequent severe decade-scale aggradation of downstream fans and floodplains. Rock avalanches falling into lakes or fiords can cause catastrophic tsunami that pose a serious risk to

  3. High Resolution Radar Measurements of Snow Avalanches

    Science.gov (United States)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  4. Small Signal Circuit Model of Double Photodiodes

    Institute of Scientific and Technical Information of China (English)

    HAN Jian-zhong; Ni Guo-qiang; MAO Lu-hong

    2004-01-01

    The transmission delay of photogenerated carriers in a CMOS-process-compatible double photodiode (DPD) is analyzed by using device simulation. The DPD small signal equivalent circuit model which includes transmission delay of photogenerated carriers is given. From analysis on the frequency domain of the circuit model the device has two poles. One has the relationship with junction capacitance and the DPD's load,the other with the depth and the doping concentration of the N-well in the DPD. Different depth of the Nwell and different area of the DPDs with bandwidth were compared. The analysis results are important to design the high speed DPDs.

  5. Non-Markovian property of afterpulsing effect in single-photon avalanche detector

    CERN Document Server

    Wang, Fang-Xiang; Li, Ya-Ping; He, De-Yong; Wang, Chao; Han, Yun-Guang; Wang, Shuang; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-01-01

    The single-photon avalanche photodiode(SPAD) has been widely used in research on quantum optics. The afterpulsing effect, which is an intrinsic character of SPAD, affects the system performance in most experiments and needs to be carefully handled. For a long time, afterpulsing has been presumed to be determined by the pre-ignition avalanche. We studied the afterpulsing effect of a commercial InGaAs/InP SPAD (The avalanche photodiode model is: Princeton Lightwave PGA-300) and demonstrated that its afterpulsing is non-Markovian, with a memory effect in the avalanching history. Theoretical analysis and experimental results clearly indicate that the embodiment of this memory effect is the afterpulsing probability, which increases as the number of ignition-avalanche pulses increase. This conclusion makes the principle of the afterpulsing effect clearer and is instructive to the manufacturing processes and afterpulsing evaluation of high-count-rate SPADs. It can also be regarded as a fundamental premise to handle ...

  6. High sensitivity InAs photodiodes for mid-infrared detection

    Science.gov (United States)

    Ng, Jo Shien; Zhou, Xinxin; Auckloo, Akeel; White, Benjamin; Zhang, Shiyong; Krysa, Andrey; David, John P. R.; Tan, Chee Hing

    2016-10-01

    Sensitive detection of mid-infrared light (2 to 5 μm wavelengths) is crucial to a wide range of applications. Many of the applications require high-sensitivity photodiodes, or even avalanche photodiodes (APDs), with the latter generally accepted as more desirable to provide higher sensitivity when the optical signal is very weak. Using the semiconductor InAs, whose bandgap is 0.35 eV at room temperature (corresponding to a cut-off wavelength of 3.5 μm), Sheffield has developed high-sensitivity APDs for mid-infrared detection for one such application, satellite-based greenhouse gases monitoring at 2.0 μm wavelength. With responsivity of 1.36 A/W at unity gain at 2.0 μm wavelength (84 % quantum efficiency), increasing to 13.6 A/W (avalanche gain of 10) at -10V, our InAs APDs meet most of the key requirements from the greenhouse gas monitoring application, when cooled to 180 K. In the past few years, efforts were also made to develop planar InAs APDs, which are expected to offer greater robustness and manufacturability than mesa APDs previously employed. Planar InAs photodiodes are reported with reasonable responsivity (0.45 A/W for 1550 nm wavelength) and planar InAs APDs exhibited avalanche gain as high as 330 at 200 K. These developments indicate that InAs photodiodes and APDs are maturing, gradually realising their potential indicated by early demonstrations which were first reported nearly a decade ago.

  7. Practical methods for using vegetation patterns to estimate avalanche frequency and magnitude

    Science.gov (United States)

    Simonson, S.; Fassnacht, S. R.

    2011-12-01

    Practitioners working in avalanche terrain may never witness an extreme event, but understanding extreme events is important for categorizing avalanches that occur within a given season. Historical records of avalanche incidents and direct observations are the most reliable evidence of avalanche activity, but patterns in vegetation can be used to further quantify and map the frequency and magnitude of past events. We surveyed published literature to synthesize approaches for using vegetation sampling to characterize avalanche terrain, and developed examples to identify the benefits and caveats of using different practical field methods to estimate avalanche frequency and magnitude. Powerful avalanches can deposit massive piles of snow, rocks, and woody debris in runout zones. Large avalanches (relative to the path) can cut fresh trimlines, widening their tracks by uprooting, stripping, and breaking trees. Discs and cores can be collected from downed trees to detect signals of past avalanche disturbance recorded in woody plant tissue. Signals of disturbance events recorded in tree rings can include direct impact scars from the moving snow and wind blast, development of reaction wood in response to tilting, and abrupt variation in the relative width of annual growth rings. The relative ages of trees in avalanche paths and the surrounding landscape can be an indicator of the area impacted by past avalanches. Repeat photography can also be useful to track changes in vegetation over time. For Colorado, and perhaps elsewhere, several vegetation ecology methods can be used in combination to accurately characterize local avalanche frequency and magnitude.

  8. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    Science.gov (United States)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  9. Statistical theory of hierarchical avalanche ensemble

    OpenAIRE

    Olemskoi, Alexander I.

    1999-01-01

    The statistical ensemble of avalanche intensities is considered to investigate diffusion in ultrametric space of hierarchically subordinated avalanches. The stationary intensity distribution and the steady-state current are obtained. The critical avalanche intensity needed to initiate the global avalanche formation is calculated depending on noise intensity. The large time asymptotic for the probability of the global avalanche appearance is derived.

  10. Photodiode circuits for retinal prostheses.

    Science.gov (United States)

    Loudin, J D; Cogan, S F; Mathieson, K; Sher, A; Palanker, D V

    2011-10-01

    Photodiode circuits show promise for the development of high-resolution retinal prostheses. While several of these systems have been constructed and some even implanted in humans, existing descriptions of the complex optoelectronic interaction between light, photodiode, and the electrode/electrolyte load are limited. This study examines this interaction in depth with theoretical calculations and experimental measurements. Actively biased photoconductive and passive photovoltaic circuits are investigated, with the photovoltaic circuits consisting of one or more diodes connected in series, and the photoconductive circuits consisting of a single diode in series with a pulsed bias voltage. Circuit behavior and charge injection levels were markedly different for platinum and sputtered iridium-oxide film (SIROF) electrodes. Photovoltaic circuits were able to deliver 0.038 mC/cm(2) (0.75 nC/phase) per photodiode with 50- μm platinum electrodes, and 0.54-mC/cm(2) (11 nC/phase) per photodiode with 50-μ m SIROF electrodes driven with 0.5-ms pulses of light at 25 Hz. The same pulses applied to photoconductive circuits with the same electrodes were able to deliver charge injections as high as 0.38 and 7.6 mC/cm(2) (7.5 and 150 nC/phase), respectively. We demonstrate photovoltaic stimulation of rabbit retina in-vitro, with 0.5-ms pulses of 905-nm light using peak irradiance of 1 mW/mm(2). Based on the experimental data, we derive electrochemical and optical safety limits for pixel density and charge injection in various circuits. While photoconductive circuits offer smaller pixels, photovoltaic systems do not require an external bias voltage. Both classes of circuits show promise for the development of high-resolution optoelectronic retinal prostheses.

  11. Symmetric two-coordinate photodiode

    Directory of Open Access Journals (Sweden)

    Dobrovolskiy Yu. G.

    2008-12-01

    Full Text Available The two-coordinate photodiode is developed and explored on the longitudinal photoeffect, which allows to get the coordinate descriptions symmetric on the steepness and longitudinal resistance great exactness. It was shown, that the best type of the coordinate description is observed in the case of scanning by the optical probe on the central part of the photosensitive element. The ways of improvement of steepness and linear of its coordinate description were analyzed.

  12. AVALANCHES - EXTREME WINTER EVENTS. MONITORING AND AVALANCHE RISK

    Directory of Open Access Journals (Sweden)

    NARCISA MILIAN

    2012-03-01

    Full Text Available This paper presents the avalanches monitored by the National Meteorological Administration within the nivo-meteorological program since february 2004. Daily observations and weekly snow measurements are made at the weather stations from Bucegi Mountains - Vârful Omu (2504 m, Sinaia (1500 m şi Predeal (1100m and Făgăraş Mountains – Bâlea-Lac (2055m, to provide data for avalanche risk estimation using the european avalanche danger scale. Increasing winter sport activities had led to several avalanche accidents, some of them fatal.

  13. Measuring acoustic emissions in an avalanche slope

    Science.gov (United States)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  14. Novel vertical silicon photodiodes based on salicided polysilicon trenched contacts

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Yelena [Department of Chemical Engineering, Technion, Haifa (Israel); TowerJazz Ltd. Migdal Haemek (Israel); Shauly, Eitan [TowerJazz Ltd. Migdal Haemek (Israel); Paz, Yaron, E-mail: paz@tx.technion.ac.il [Department of Chemical Engineering, Technion, Haifa (Israel)

    2015-12-07

    The classical concept of silicon photodiodes comprises of a planar design characterized by heavily doped emitters. Such geometry has low collection efficiency of the photons absorbed close to the surface. An alternative, promising, approach is to use a vertical design. Nevertheless, realization of such design is technologically challenged, hence hardly explored. Herein, a novel type of silicon photodiodes, based on salicided polysilicon trenched contacts, is presented. These contacts can be prepared up to 10 μm in depth, without showing any leakage current associated with the increase in the contact area. Consequently, the trenched photodiodes revealed better performance than no-trench photodiodes. A simple two dimensional model was developed, allowing to estimate the conditions under which a vertical design has the potential to have better performance than that of a planar design. At large, the deeper the trench is, the better is the vertical design relative to the planar (up to 10 μm for silicon). The vertical design is more advantageous for materials characterized by short diffusion lengths of the carriers. Salicided polysilicon trenched contacts open new opportunities for the design of solar cells and image sensors. For example, these contacts may passivate high contact area buried contacts, by virtue of the conformity of polysilicon interlayer, thus lowering the via resistance induced recombination enhancement effect.

  15. Avalanche Debris Detection Using Satellite- and Drone Based Radar and Optical Remote Sensing

    Science.gov (United States)

    Eckerstorfer, M.; Malnes, E.; Vickers, H.; Solbø, S. A.; Tøllefsen, A.

    2014-12-01

    The mountainous fjord landscape in the county of Troms, around its capital Tromsø in Northern Norway is prone to high avalanche activity during the snow season. Large avalanches pose a hazard to infrastructure, such as buildings and roads, located between the steep mountainsides and the fjords. A prolonged cold spell during January and February 2014 was followed by rapid new-snow loading during March 2014, inducing a significant avalanche cycle with many spontaneous, size D4 avalanches that affected major transport veins. During and shortly after the avalanche cycle of March 2014, we obtained 11 Radarsat-2 Ultrafine mode scenes, chosen according to reported avalanche activity. We further collected four Radarsat-2 ScanSAR mode scenes and two Landsat-8 scenes covering the entire county of Troms. For one particular avalanche, we obtained a drone-based orthophoto, from which a DEM of the avalanche debris surface was derived, using structure-from-motion photogrammetry. This enabled us to calculate the debris volume accurately. We detected avalanche debris in the radar images visually, by applying two detection algorithms that make use of the increased backscatter in avalanche debris. This backscatter increase is a product of increased snow water equivalent and surface roughness, roughly of the order of 3 dB. In addition, we applied a multi-temporal approach by repeatedly detecting avalanche debris at different acquisition times, as well as a multi-sensor approach, covering similar areas with different sensors. This multi-temporal and multi-sensor approach enabled us to map the spatial extent and magnitude of the March 2014 avalanche cycle in the county Troms. With ESA's Sentinel-1 satellite, providing high-resolution, large swath radar images with a short repeat cycle, a complete avalanche record for a forecasting region could become feasible. In this first test season, we detected more than 550 avalanches that were released during a one-month period over an area of

  16. A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging

    Science.gov (United States)

    Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.

    2016-11-01

    Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.

  17. Characteristics of avalanche accidents and a overview of avalanche equipment

    Directory of Open Access Journals (Sweden)

    Mateusz Biela

    2015-12-01

    Full Text Available Avalanches are one of the most spectacular phenomena which may occur in the mountains. Unfortunately they are often caused by humans and pose for him a big danger. In the Polish Tatras alone they represent 18% of all causes of death among 1996-2013. One fourth of the people caught by an avalanche dies, and their chances of survival depends on the depth of burial, burial time, the presence of an air pocket and the degree of injuries. The most common cause of death is asphyxiation, the next is injuries and hypothermia is the rarest cause of death. The fate of the buried people depends on their equipment such as avalanche transceiver, ABS backpack and AvaLung, and also from the equipment of the people who are seeking (avalanche probes, avalanche transceiver and shovels, which has been proven in practice and research.

  18. A revision of the Haiming rock avalanche (Eastern Alps)

    Science.gov (United States)

    Dufresne, Anja; Ostermann, Marc; Kelfoun, Karim; Ring, Max; Asam, Dario; Prager, Christoph

    2016-04-01

    The carbonate Haiming rock avalanche is directly neighbouring the larger Tschirgant rock avalanche deposit, both located in the upper Inn valley (Tyrol, Austria). Based on detailed morpho-lithologic mapping of the deposit, which has not been done at Haiming before, the sedimentology of the Holocene landslide debris is characterised. Structural-tectonic elements of the bedrock units at the scarp area are supplemented with borehole data from drillings at the source area giving valuable insights into the complex geological bedrock composition and structure. New source and runout reconstructions allow updated volumetric calculations, which are subsequently integrated into numerical runout modelling. Haiming is one of few topographically unobstructed rock avalanches, yet its morphology was greatly influenced by fluvial terraces, which are still discernible through the deposit on LiDAR hillshade images. We also address the influence of the rock avalanche on the valley floor and local river system as a short-lived dam and its interaction with fluvial incision. Finally, we discuss the Haiming rock avalanche in view of the other massive rock slope failures in the area ("Fernpass cluster"), their spatio-temporal distribution, and point out further highlights of this simple(?) rock avalanche deposit.

  19. Recent advances in organic photodiodes (Conference Presentation)

    Science.gov (United States)

    Kippelen, Bernard; Khan, Talha M.; Fuentes-Hernandez, Canek; Diniz, Larissa; Lukens, Julia M.; Larrain, Felipe

    2016-09-01

    Although the detection of photons is ubiquitous, man-made photon detectors still limits the effectiveness of applications such as light/laser detection, photography, astronomy, quantum information science, medical imaging, microscopy, communications, and others. The performance of the technologically most advanced detectors based on CMOS semiconductor technology has improved during the last decades but at the detriment of increased complexity, higher cost, limited portability and compactness, and limited area. On the other hand, nature has produced a relatively simple detector with remarkable properties: the human eye. The exploration of new paradigms in photon detection using new material platforms might therefore provide a path to further challenge the frontiers of applications enabled by light. In this talk, we will report on the realization of solution-processed organic semiconductor visible spectrum photodetectors with a high specific detectivity above 1014 Jones, at least an order of magnitude larger than values found in photodiodes based on silicon. These detectors demonstrate a sub-pA current under reverse bias in the dark, making them suitable for detecting very low levels of light. The small dark current under reverse bias allows the characterization of these devices over 9 orders of magnitude of increasing light irradiance. The detectors are based on the device structure: tin-doped indium oxide / ethoxylated polyethylenimine / poly(3-hexylthiophene) : indene C60 bisadduct / molybdenum oxide / silver and present a path toward fabrication on flexible substrates. We will show that these detectors can operate over a large dynamic range in the self-powered photovoltaic mode where the light produces a photovoltage that can be measured directly without any external bias source. We believe that large-area flexible photodetectors with detectivity values comparable to or better than those displayed by silicon-based photodiodes will enable a wide variety of

  20. Recent progress in thin film organic photodiodes

    NARCIS (Netherlands)

    Inganäs, Olle; Roman, Lucimara S.; Zhang, Fengling; Johansson, D.M.; Andersson, M.R.; Hummelen, J.C.

    2001-01-01

    We review current developments in organic photodiodes, with special reference to multilayer thin film optics, and modeling of organic donor-acceptor photodiodes. We indicate possibilities to enhance light absorption in devices by nanopatterning as well as by blending, and also discuss materials scie

  1. Neuronal avalanches in spontaneous activity in vivo.

    Science.gov (United States)

    Hahn, Gerald; Petermann, Thomas; Havenith, Martha N; Yu, Shan; Singer, Wolf; Plenz, Dietmar; Nikolic, Danko

    2010-12-01

    Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called "neuronal avalanches," were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1-32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above -1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of -1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches.

  2. Morphometric and meteorological controls of snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway

    Science.gov (United States)

    Laute, Katja; Beylich, Achim A.

    2013-04-01

    Snow avalanches are common phenomena in Norway due to the interactions between the prevalent climatic factors and local topography. Research on snow avalanches provides insights into possible effects of predicted climate change on avalanche activity and connected sediment transport in mountain areas. This study focuses on (i) controlling factors of avalanche distribution and activity, and (ii) their relative importance regarding mass transfers in two steep, parabolic-shaped and glacier-connected tributary valleys (Erdalen and Bødalen) in western Norway. Mapping of distribution, extension and run-out distances of avalanches is combined with spatial data analysis of morphometric controls. Based on correlation of climate data with monitored avalanche events the timing and frequency of avalanches is explored and debris mass transfer on hillslopes caused by avalanches is estimated. The denudative effect of snow avalanches occurs in two steps: firstly throughout erosion directly on the surface of the rockwall and secondly due to their transport ability which causes significant remobilization and transport of available debris further downslope. The spatial distribution of snow avalanches depends on the valley orientation, slope aspect and rockwall morphometry. Especially distinct laterally convex-shaped leeside upper rockwall areas allow a high accumulation rate of snow during winter which is then released as avalanches during spring. The timing and frequency of avalanches in both valleys depend mainly on snowfall intensity, periods with strong winds combined with a stable wind direction or sudden air temperature changes. Snow avalanche activity leads in some valley areas to significant hillslope-channel coupling because debris is transported far enough by avalanches to reach channels. Snow avalanches represent one of the dominant denudational processes and have a high relative importance regarding mass transfer within the sedimentary budgets of the entire valleys.

  3. Photodiodes based on fullerene semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Voz, C. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain)], E-mail: cvoz@eel.upc.edu; Puigdollers, J. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain); Cheylan, S. [ICFO- Institut de Ciencies Fotoniques, Mediterranean Technology Park, Av. del Canal Olimpic s/n, 08860-Castelldefels (Spain); Fonrodona, M.; Stella, M.; Andreu, J. [Solar Energy Group, Departament Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, 08028-Barcelona (Spain); Alcubilla, R. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain)

    2007-07-16

    Fullerene thin films have been deposited by thermal evaporation on glass substrates at room temperature. A comprehensive optical characterization was performed, including low-level optical absorption measured by photothermal deflection spectroscopy. The optical absorption spectrum reveals a direct bandgap of 2.3 eV and absorption bands at 2.8 and 3.6 eV, which are related to the creation of charge-transfer excitons. Various photodiodes on indium-tin-oxide coated glass substrates were also fabricated, using different metallic contacts in order to compare their respective electrical characteristics. The influence of a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layer between the indium-tin-oxide electrode and the fullerene semiconductor is also demonstrated. These results are discussed in terms of the workfunction for each electrode. Finally, the behaviour of the external quantum efficiency is analyzed for the whole wavelength spectrum.

  4. Note: Effect of photodiode aluminum cathode frame on spectral sensitivity in the soft x-ray energy band

    Energy Technology Data Exchange (ETDEWEB)

    McGarry, M. B., E-mail: mbmcgarry@wisc.edu; Den Hartog, D. J.; Goetz, J. A.; Johnson, J. [Department of Physics, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Franz, P. [Consorzio RFX, Associazione Euratom-ENEA per la Fusione, Padova (Italy)

    2014-09-15

    Silicon photodiodes used for soft x-ray detection typically have a thin metal electrode partially covering the active area of the photodiode, which subtly alters the spectral sensitivity of the photodiode. As a specific example, AXUV4BST photodiodes from International Radiation Detectors have a 1.0 μm thick aluminum frame covering 19% of the active area of the photodiode, which attenuates the measured x-ray signal below ∼6 keV. This effect has a small systematic impact on the electron temperature calculated from measurements of soft x-ray bremsstrahlung emission from a high-temperature plasma. Although the systematic error introduced by the aluminum frame is only a few percent in typical experimental conditions on the Madison Symmetric Torus, it may be more significant for other instruments that use similar detectors.

  5. Estimating the avalanche contribution to the mass balance of debris covered glaciers

    Directory of Open Access Journals (Sweden)

    A. Banerjee

    2014-01-01

    Full Text Available Avalanche from high head walls dominates the net accumulation in many debris covered glaciers in the Himalaya. These avalanche contributions are difficult to directly measure and may cause a systematic bias in glaciological mass balance measurements. In this paper we develop a method to estimate the avalanche contribution using available data, within the context of an idealised flowline model of the glacier. We focus on Hamtah glacier in Western Himalaya and estimate the magnitude of the avalanche accumulation to its specific mass balance profile. Our estimate explains the reported discrepancy between values of recent glaciological and geodetic net mass balance for this glacier. Model estimate of accumulation area ratio (AAR for this glacier is small (0.1 even at a steady state. This shows that empirical mass balance–AAR relationships derived from glaciers which do not have a significant avalanche contribution will not apply to a large region containing a significant fraction avalanche fed ones.

  6. Imaging findings of avalanche victims

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Alexandra B.; Grosse, Claudia A.; Anderson, Suzanne [University Hospital of Berne, Inselspital, Department of Diagnostic, Pediatric and Interventional Radiology, Berne (Switzerland); Steinbach, Lynne S. [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Zimmermann, Heinz [University Hospital of Berne, Inselspital, Department of Trauma and Emergency Medicine, Berne (Switzerland)

    2007-06-15

    Skiing and hiking outside the boundaries remains an attractive wilderness activity despite the danger of avalanches. Avalanches occur on a relatively frequent basis and may be devastating. Musculoskeletal radiologists should be acquainted with these injuries. Fourteen avalanche victims (11 men and 3 women; age range 17-59 years, mean age 37.4 years) were air transported to a high-grade trauma centre over a period of 2 years. Radiographs, CT and MR images were prospectively evaluated by two observers in consensus. Musculoskeletal findings (61%) were more frequent than extraskeletal findings (39%). Fractures were most commonly seen (36.6%), involving the spine (14.6%) more frequently than the extremities (9.8%). Blunt abdominal and thoracic trauma were the most frequent extraskeletal findings. A wide spectrum of injuries can be found in avalanche victims, ranging from extremity fractures to massive polytrauma. Asphyxia remains the main cause of death along with hypoxic brain injury and hypothermia. (orig.)

  7. PiN photodiode performance comparison for dosimetry in radiology applications.

    Science.gov (United States)

    Oliveira, Charles N P; Khoury, Helen J; Santos, Edval J P

    2016-12-01

    Performance comparison of selected photodiodes for usage as radiation detectors for radio-protection is presented. In this study, based on the criteria of minimum sensitive area of 5mm(2), minimum half angle 60° and low cost, four commercial photodiodes are selected for evaluation: SFH205, SFH206, BPW34, and BPX90F. Photodiodes are low cost, small volume and lightweight detectors. As an electronic transducer, photodiode detector is an attractive approach for the development of low power portable electronic dosimeter for direct-reading real-time radiation dose measurement. The devices have been studied with respect to sensitivity (efficiency) in X-rays and gamma rays detection, repeatability and linearity in air kerma.

  8. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    Science.gov (United States)

    Duun, Sune; Haahr, Rasmus G.; Hansen, Ole; Birkelund, Karen; Thomsen, Erik V.

    2010-07-01

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized for minimizing the optical power needed in reflectance pulse oximetry. To simplify packaging, backside photodiodes are made which are compatible with assembly using surface mounting technology without pre-packaging. Quantum efficiencies up to 95% and area-specific noise equivalent powers down to 30 fW Hz-1/2 cm-1 are achieved. The photodiodes are incorporated into a wireless pulse oximetry sensor system embedded in an adhesive patch presented elsewhere as 'The Electronic Patch'. The annular photodiodes are fabricated using two masked diffusions of first boron and subsequently phosphor. The surface is passivated with a layer of silicon nitride also serving as an optical filter. As the final process, after metallization, a hole in the center of the photodiode is etched using deep reactive ion etch.

  9. Sediment Transport by Spring Avalanches in the Southern Swiss Alps

    Science.gov (United States)

    Egloff, J. M.; Hunziker, M.; Moore, J. R.; Christen, M.

    2010-12-01

    Dense wet-snow avalanches breaking through to the base of the snow pack or overriding snow-free surfaces can entrain basal material and act as important agents of sediment transport in steep Alpine catchments. As part of an ongoing study, we investigated two debris fans in the Matter Valley of southern Switzerland during spring 2009 and 2010, with emphasis on quantifying avalanche sediment transport. Deposited debris ranged from soil parcels and plant material to cobbles and boulders greater than 1 m3. Large boulders were generally angular and fresh with clear signs of recent impacts. The seasonal sediment load transported by avalanches was estimated at one fan by sampling the debris content within a number of representative areas, and then extrapolating the cumulative volume. Results reveal a total transported sediment volume of ~150 m3 in 2009 and ~15 m3 in 2010, which likely reflects varying snowfall and avalanche frequency between years. When distributed over the deposition area on the fan, these results imply an average accumulated sediment thickness of 12 mm in 2009 and 3 mm in 2010. Calculated catchment-wide erosion rates are ~0.1 mm/yr for 2009 and ~0.01 mm/yr for 2010. Cross-sections through avalanche debris revealed that transported sediment generally resides on top of the snow surface. As the avalanches melt, entrained sediment is set down gently, often resulting in precariously balanced boulders and rows of blocks perched on the walls of the fan’s channels. In flat lying areas, snowmelt resulted in sparse sediment deposits with no clear structure or sorting. Observations show that the fan surface is usually protected from erosion by snow and older avalanche deposits, which provide a smooth gliding plane for new events. Within the bedrock gulley adjacent to the fan, and in the avalanche source region above, signs of abrasive wear were evident on exposed bedrock surfaces. These include rounded and scoured bedrock, fresh signs of boulder impacts, and

  10. Comparison of pulse height spectra on CsI(T1)/PIN photodiode radiation detector due to surface encapsulant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Ha, Jang Ho; Jeong, Man Hee; Kim, Young Soo; Kim, Dong Jin; Cho, Woo Jin; Choi, Hyo Jeong [Korea Atomic Energy Research Institute, Seoul (Korea, Republic of); Cho, Seung Yeon [Environmental Health Center, Yonsei University, Seoul (Korea, Republic of)

    2014-04-15

    Scintillation crystal converts the energy deposited by an X-ray or gamma ray to light. Usually this scintillation light is collected, converted to electrons and amplified by an photomultiplier tube (PMT). The PMT has the drawbacks of being bulky and requiring a high voltage (HV) to operate it. This scinitllation light can also be collected in a solid state photo-detector, such as a silicon PIN photodiode and an avanlanche photodiode. PIN photodiode, which have 10 mm X 10 mm{sup 2} active area, were fabricated with anti-reflective coating and match with CsI(Tl) scintillator. In this study, radiation reasonabilities were compared with and without surface encapsulant epoxy. Silicon PIN Photodiodes were fabricated with AR coating. To match with CsI(Tl) scintillator, surface encapsulant was applied on the PIN photodiodes. Leakage currents for all the PIN photodiodes show several nA up to 100 V. The pulse height spectra and comparison of the CsI(Tl)PIN photodiode in case of surface encapsulation on PIN photodiode will be presented at the conference.

  11. Solid-state flat panel imager with avalanche amorphous selenium

    Science.gov (United States)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  12. InGaAsP Avalanche Photodetectors for Non-Gated 1.06 micrometer Photon-Counting Receivers

    Science.gov (United States)

    Itzler, Mark A.; Jiang, Xudong; Ben-Michael, Rafael; Slomkowski, Krystyna; Krainak, Michael A.

    2007-01-01

    The efficient detection of single photons at 1.06 micron is of considerable interest for lidar/ladar systems designed for remote sensing an d ranging as well as for free-space optical transmission in photon-st arved applications. However, silicon-based single photon avalanche diodes (SPADs) used at shorter wavelengths have very low single photon d etection efficiency (approximately 1 - 2%) at 1.06 micron, and InP/In GaAs SPADs designed for telecommunications wavelengths near 1.5 micro n exhibit high dark count rates that generally inhibit non-gated (free-running) operation. To bridge this "single photon detection gap" for wavelengths just beyond 1 micron, we have developed high performance , large area (80 - 200 micron diameter) InP-based InGaAsP quaternary absorber SPADs optimized for operation at 1.06 micron and based on a highly reliable planar geometry avalanche photodiode structure. We wil l show that dark count rates are sufficiently low to allow for non-ga ted operation while achieving detection efficiencies far surpassing t hose found for Si SPADs. At a detection efficiency of 10%, 80 micron diameter devices exhibit dark count rates below 1000 Hz and count rate s of at least 3 MHz when operated at -40 C. Significantly higher dete ction efficiencies (30 - 50%) are achievable with acceptable tradeoff s in dark count rate. In this paper, we will also discuss performance modeling for these devices and compare their behavior with longer wav elength InP-based InGaAs ternary absorber SPADs fabricated on a relat ed device design platform.

  13. Test of DEP hybrid photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Baumbaugh, A.; Binkley, M.; Elias, J. [and others

    1997-08-01

    The goal of the measurement was to study some parameters of DEP HYBRID PHOTODIODES (HPD), and the check its performance for CMS calorimetry at LHC. The principal of the HPD operation is described. The schematic view of the HPD. The HPD is vacuum photo device composed of photocathode (PC) and a silicon PIN diode (Si) as multiplication system in a very close proximity geometry. The distance between PC and Si is of the order of several mm and has an electric field < 10 kV. The photoelectron emited by the photocathode multiply by a factor of several thousand in the silicon and the charge is collected on the HPD`s anode. Several types of HPD`s were tested. There was a single channel HPD, called {open_quotes}E-type{close_quotes} with p-side of the silicon facing the HPD`s photocathode and two multipixel HPD (DEP) namely a 25 pixel HPD and a 7 pixel HPD. Both were of {open_quotes}T-type{close_quotes} structure with n-side of silicon facing the photocathode.

  14. Avalanche mapping and related G.I.S. applications in the Catalan Pyrenees

    Science.gov (United States)

    Furdada, G.; Martí, G.; Oller, P.; García, C.; Mases, M.; Vilaplana, J. M.

    1995-11-01

    The Avalanche Risk Project for the Catalan Pyrenees was started in 1986 by the Servei Geològic de Catalunya and the Dpt. de Geologia Dinàmica, Geofísica i Paleontologia. One of the aims of this project is to carry out the “Map of Probable Avalanche Paths”, which is a thematic map in where the land areas affected by avalanches are represented. This information is the result of: 1) aerial photointerpretation, 2) field work: observations of the avalanche effects and interviews to the inhabitants and people who work in the mountain areas. All the descriptive complementary information about each avalanche zone has been stored in a database, thus constituting the avalanche Cadastre. A Geographic Information System (G.I.S.) is an informatic system which can acquire, store and manipulate data that describe the land surface. The Cadastre and Map of Probable Avalanche Paths constitutes a complex document. It is also a basic document to perform further analysis, risk maps and defense actions, so it must have the following characteristics: easy to update, possibility to combine with other documents and to exploit as a source of diverse informations. Therefore, a G.I.S. is the most appropriate tool to store, manage, analyze and restore this avalanche data. The area of the Catalan Pyrenees that has been mapped and automated until now is also presented.

  15. Observations and modelling of snow avalanche entrainment

    OpenAIRE

    2002-01-01

    In this paper full scale avalanche dynamics measurements from the Italian Pizzac and Swiss Vallée de la Sionne test sites are used to develop a snowcover entrainment model. A detailed analysis of three avalanche events shows that snowcover entrainment at the avalanche front appears to dominate over bed erosion at the basal sliding surface. Furthermore, the distribution of mass within the avalanche body is primarily a function of basal fric...

  16. Non-Markov property of afterpulsing effect in single-photon avalanche detector

    CERN Document Server

    Wang, Fang-Xiang; Li, Ya-Ping; He, De-Yong; Wang, Chao; Han, Yun-Guang; Wang, Shuang; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-01-01

    Single-photon avalanche photodiode(SPAD) has been widely used in researching of quantum optics. Afterpulsing effect, which is an intrinsic character of SPAD, affects the system performance in most of the experiments and needs to be carefully handled. For a long time, afterpulsing has been presumed to be determined by the pre-ignition avalanche. We studied the afterpulsing effect of a commercial InGaAs/InP SPAD (APD: Princeton Lightwave PGA-300) and demonstrated that its afterpulsing is non-Markov, which has memory effect of the avalanching history. Theoretical analysis and the experimental results clearly indicate that the embodiment of this memory effect is the afterpulsing probability, which increases as the number of ignition-avalanche pulses increase. The conclusion makes the principle of afterpulsing effect clearer and is instructive to the manufacturing processes and afterpulsing evaluation of high-count-rate SPADs. It can also be regarded as an fundamental premise to handle the afterpulsing signals in ...

  17. Low dose digital X-ray imaging with avalanche amorphous selenium

    Science.gov (United States)

    Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei

    2015-03-01

    Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.

  18. Theory of high field carrier transport and impact ionization in wurtzite GaN. Part II: Application to avalanche photodetectors

    Science.gov (United States)

    Moresco, Michele; Bertazzi, Francesco; Bellotti, Enrico

    2009-09-01

    The coming to age of GaN-based ultraviolet avalanche photodiodes (APDs) has made them increasingly preferred over PIN photodetectors in several areas spanning from communication to defense systems, and from commercial to scientific applications. In this work, which is the second article of a two-part series, we study the physics and performance of GaN APDs using the full-band Monte Carlo (FBMC) model described in Part I. The proposed FBMC model is based on a realistic electronic structure obtained by pseudopotential calculations and a phonon dispersion relation determined by ab initio techniques. We determine the key performance figures such as the carrier multiplication gain and the breakdown voltage for several GaN APD structures that have been fabricated by a number of experimental groups. The calculated electron and hole multiplication gains as a function of the applied bias, as well as the breakdown voltage, are found to be in good agreement with the experimental data available. Based on the FBMC results we also propose an efficient recurrence equation model, which provides a first-order estimate of the multiplication gain without resorting to the full fledge microscopic approach.

  19. Single Photon Sensitive HgCdTe Avalanche Photodiode Detector (APD) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging Phase I SBIR successes, in Phase II, a single photon sensitive LIDAR receiver will be fabricated and delivered to NASA. In Phase I, high-gain,...

  20. The SAPHIRA Near-Infrared Avalanche Photodiode Array: Telescope Deployments and Future Developments

    Science.gov (United States)

    Atkinson, Dani Eleanor; Hall, Donald; Baranec, Christoph

    2015-01-01

    We present our recent achievements of the Selex SAPHIRA APD arrays, which this year have seen deployment at three different telescopes, most notably demonstrating tip-tilt wavefront sensing in conjunction with the Palomar 1.5-m Telescope's Robo-AO system. A cooperative effort to provide enhanced speckle nulling capability to the SCExAO instrument on the Subaru telescope is also underway. We present the progress and development timeframe for the SAPHIRA and expected future applications, including targets and observational parameter space we expect the detectors to open to the astronomical community.

  1. High Performance Avalanche Photodiodes for Photon Counting at 1064 nm Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for higher performance fiber optic telecommunications receivers has provided the impetus for substantial progress during the last decade in the...

  2. Low-cost, High Performance Avalanche Photodiodes for Enabling High Sensitivity Bio-fluorescence Detection

    Science.gov (United States)

    2012-04-01

    224–231. 9. Muth, J. F.; Brown, J. D.; Johnson , M.A.L.; Yu, Shonghai; Kolbas, R. M.; Cook , Jr. J. W.; Schetzina, J. F. Absorption Coefficient and...using a titanium (Ti)/Al/nickel (Ni)/gold (Au) ohmic metal ring contact on the top n-GaN layer and a Ni/Ti/Al/Ni ohmic contact to the p-SiC layer

  3. High-Performance, Radiation-Hard, 2-D, Near-Infrared, Avalanche Photodiode Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this STTR project we will address the radiation hardness issues using radiation hard (RH) materials. We will based on the RH material to develop our photon...

  4. Maximum detection range limitation of pulse laser radar with Geiger-mode avalanche photodiode array

    Science.gov (United States)

    Luo, Hanjun; Xu, Benlian; Xu, Huigang; Chen, Jingbo; Fu, Yadan

    2015-05-01

    When designing and evaluating the performance of laser radar system, maximum detection range achievable is an essential parameter. The purpose of this paper is to propose a theoretical model of maximum detection range for simulating the Geiger-mode laser radar's ranging performance. Based on the laser radar equation and the requirement of the minimum acceptable detection probability, and assuming the primary electrons triggered by the echo photons obey Poisson statistics, the maximum range theoretical model is established. By using the system design parameters, the influence of five main factors, namely emitted pulse energy, noise, echo position, atmospheric attenuation coefficient, and target reflectivity on the maximum detection range are investigated. The results show that stronger emitted pulse energy, lower noise level, more front echo position in the range gate, higher atmospheric attenuation coefficient, and higher target reflectivity can result in greater maximum detection range. It is also shown that it's important to select the minimum acceptable detection probability, which is equivalent to the system signal-to-noise ratio for producing greater maximum detection range and lower false-alarm probability.

  5. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes

    Science.gov (United States)

    Liu, Fei; Zhou, Dong; Lu, Hai; Chen, Dun-Jun; Ren, Fang-Fang; Zhang, Rong; Zheng, You-Dou

    2015-12-01

    Not Available Supported by the National Basic Research Program of China under Grant Nos 2011CB301900 and 2011CB922100, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  6. High-Performance, Radiation-Hard, 2-D, Near-Infrared, Avalanche Photodiode Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — AdTech Photonics, in collaboration with the Center for Advanced Studies in Photonics Research (CASPR) at UMBC, is pleased to submit this Phase II proposal entitled...

  7. FMCW laser range-finder with an avalanche photodiode working as an optoelectronic mixer

    Science.gov (United States)

    Dupuy, David; Lescure, Marc; Tap-Beteille, Helene

    2002-01-01

    A Frequency Modulation Continuous Wave (FMCW) laser range- finder has been designed for distances from 1 m to 20 m with cooperative or diffusing targets. This range-finder is compared to a phase shift laser range-finder. A heterodyne photoreception method is studied. In order to reduce noise, the nonlinear current-voltage characteristic of the APD is used to obtain an optoelectronic mixer. The photocurrent gain is modulated by the VCO signal working as a local oscillator (LO). The optical and electrical LO injection methods are studied. The theoretical analysis using the Miller model and thermal effects are compared with the first experimental results. The electrical LO injection gives a better ratio-to-noise than the optical LO injection. For electrical injection, it is shown that the heterodyne conversion gain can reach the maximal theoretical value 0.5.

  8. Response of cooled PWO scintillators readout with avalanche photodiodes to low-energy gamma-rays

    Science.gov (United States)

    Melnychuk, D.; Czarnacki, W.; Kalicy, G.; Keşik, G.; Korman, A.; Kozlowski, T.; Mykulyak, A.; Novotny, R. W.; Wojtkowska, J.; Zwieglinski, B.

    2009-08-01

    Identification of π0 and η mesons by detecting both γ-rays from their decay is a prerequisite for suppressing undesired background in studies of photon transitions between the states of charmonium in the physics program of PANDA. To achieve this goal the detection threshold of the PANDA electromagnetic calorimeter (EMC) should be as low as possible. An experimental setup intended for measurements of the response of cooled PWO scintillators in the energy range 4.4-20 MeV has been designed and constructed. The setup uses γ-rays emitted in reactions induced by protons with light nuclei. Events with full-energy expended in PWO are selected by enclosing the studied 20×20×200 mm PWO-II scintillator in a cylinder of EJ-200 plastic scintillator, whose two halves are read out independently. A comparison of the relative Gaussian dispersions, σ/E, obtained by us for the three energies in the above energy range, indicates that a smooth dependence established at MAMI, for a matrix of 3×3 PWO-II scintillators between 40.9 and 674.5 MeV, also gives a valid extrapolation into the range of these very low energies.

  9. High Sensitivity Indium Phosphide Based Avalanche Photodiode Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight has demonstrated highly-uniform APD arrays based on the highly sensitive InGaAs/InP material system. These results provide great promise for achieving the...

  10. High Sensitivity Indium Phosphide Based Avalanche Photodiode Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a monolithically integrated FPA of densely packed APDs (70-um pitch) operating at or around 1500 nm wavelength that is suitable for the solicited...

  11. Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array

    Science.gov (United States)

    Yang, Li; Sheng-Kai, Liao; Fu-Tian, Liang; Qi, Shen; Hao, Liang; Cheng-Zhi, Peng

    2016-03-01

    Not Available Supported by the Chinese Academy of Sciences Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Shanghai Branch, University of Science and Technology of China, and the National Natural Science Foundation of China under Grant No 11405172.

  12. Lumped transmission line avalanche pulser

    Science.gov (United States)

    Booth, Rex

    1995-01-01

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  13. Vertical Isolation for Photodiodes in CMOS Imagers

    Science.gov (United States)

    Pain, Bedabrata

    2008-01-01

    In a proposed improvement in complementary metal oxide/semi conduct - or (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.

  14. Custom single-photon avalanche diode with integrated front-end for parallel photon timing applications.

    Science.gov (United States)

    Cammi, C; Panzeri, F; Gulinatti, A; Rech, I; Ghioni, M

    2012-03-01

    Emerged as a solid state alternative to photo multiplier tubes (PMTs), single-photon avalanche diodes (SPADs) are nowadays widely used in the field of single-photon timing applications. Custom technology SPADs assure remarkable performance, in particular a 10 counts/s dark count rate (DCR) at low temperature, a high photon detection efficiency (PDE) with a 50% peak at 550 nm and a 30 ps (full width at half maximum, FWHM) temporal resolution, even with large area devices, have been obtained. Over the past few years, the birth of novel techniques of analysis has led to the parallelization of the measurement systems and to a consequent increasing demand for the development of monolithic arrays of detectors. Unfortunately, the implementation of a multidimensional system is a challenging task from the electrical point of view; in particular, the avalanche current pick-up circuit, used to obtain the previously reported performance, has to be modified in order to enable high parallel temporal resolution, while minimizing the electrical crosstalk probability between channels. In the past, the problem has been solved by integrating the front-end electronics next to the photodetector, in order to reduce the parasitic capacitances and consequently the filtering action on the current signal of the SPAD, leading to an improvement of the timing jitter at higher threshold. This solution has been implemented by using standard complementary metal-oxide-semiconductor (CMOS) technologies, which, however, do not allow a complete control on the SPAD structure; for this reason the intrinsic performance of CMOS SPADs, such as DCR, PDE, and afterpulsing probability, are worse than those attainable with custom detectors. In this paper, we propose a pixel architecture, which enables the development of custom SPAD arrays in which every channel maintains the performance of the best single photodetector. The system relies on the integration of the timing signal pick-up circuit next to the

  15. STUDY ON SIMULATION METHOD OF AVALANCHE : FLOW ANALYSIS OF AVALANCHE USING PARTICLE METHOD

    OpenAIRE

    2015-01-01

    In this paper, modeling for the simulation of the avalanche by a particle method is discussed. There are two kinds of the snow avalanches, one is the surface avalanche which shows a smoke-like flow, and another is the total-layer avalanche which shows a flow like Bingham fluid. In the simulation of the surface avalanche, the particle method in consideration of a rotation resistance model is used. The particle method by Bingham fluid is used in the simulation of the total-layer avalanche. At t...

  16. Avalanche Survival After Rescue With the RECCO Rescue System: A Case Report.

    Science.gov (United States)

    Grasegger, Katharina; Strapazzon, Giacomo; Procter, Emily; Brugger, Hermann; Soteras, Inigo

    2016-06-01

    We report a case of survival of a completely buried avalanche victim after being located with the radar-based RECCO Rescue System. In the winter of 2015, 2 off-piste skiers were completely buried in an avalanche near the secured ski area in Baqueira Beret, Spain. The first victim was located with the RECCO Rescue System in less than 35 minutes and was alive and conscious at extrication. This system emits radio waves and requires a specific reflector. It is a portable device that is used by more than 600 rescue organizations worldwide, especially in secured ski areas. The device should be brought to the avalanche site together with electronic avalanche transceivers, a probing team, and avalanche dogs. In the hands of experienced professionals, the device may allow rapid location of victims not carrying an electronic avalanche transceiver. Although it is not the first successful extrication of a victim with the RECCO Rescue System, it is the first case published in the medical literature and is intended to encourage data collection and to increase our understanding of the effectiveness of this device in avalanche rescue.

  17. The prehospital management of avalanche victims.

    Science.gov (United States)

    Kornhall, Daniel K; Martens-Nielsen, Julie

    2016-12-01

    Avalanche accidents are frequently lethal events with an overall mortality of 23%. Mortality increases dramatically to 50% in instances of complete burial. With modern day dense networks of ambulance services and rescue helicopters, health workers often become involved during the early stages of avalanche rescue. Historically, some of the most devastating avalanche accidents have involved military personnel. Armed forces are frequently deployed to mountain regions in order to train for mountain warfare or as part of ongoing conflicts. Furthermore, military units are frequently called to assist civilian organised rescue in avalanche rescue operations. It is therefore important that clinicians associated with units operating in mountain regions have an understanding of, the medical management of avalanche victims, and of the preceding rescue phase. The ensuing review of the available literature aims to describe the pathophysiology particular to avalanche victims and to outline a structured approach to the search, rescue and prehospital medical management.

  18. Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA

    Science.gov (United States)

    Fagre, Daniel B.; Peitzsch, Erich H.

    2010-01-01

    Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.

  19. Bio-inspired nano-photodiode for Low Light, High Resolution and crosstalk-free CMOS image sensing

    KAUST Repository

    Saffih, Faycal

    2011-05-01

    Previous attempts have been devoted to mimic biological vision intelligence at the architectural system level. In this paper, a novel imitation of biological visual system intelligence is suggested, at the device level with the introduction of novel photodiode morphology. The proposed bio-inspired nanorod photodiode puts the depletion region length on the path of the incident photon instead of on its width, as the case is with the planar photodiodes. The depletion region has a revolving volume to increase the photodiode responsivity, and thus its photosensitivity. In addition, it can virtually boost the pixel fill factor (FF) above the 100% classical limit due to decoupling of its vertical sensing area from its limited planar circuitry area. Furthermore, the suggested nanorod photodiode photosensitivity is analytically proven to be higher than that of the planar photodiode. We also show semi-empirically that the responsivity of the suggested device varies linearly with its height; this important feature has been confirmed using Sentaurus simulation. The proposed nano-photorod is believed to meet the increasingly stringent High-Resolution-Low-Light (HRLL) detection requirements of the camera-phone and biomedical imaging markets. © 2011 IEEE.

  20. High resolution tree-ring based spatial reconstructions of snow avalanche activity in Glacier National Park, Montana, USA

    Science.gov (United States)

    Pederson, Gregory T.; Reardon, Blase; Caruso, C.J.; Fagre, Daniel B.

    2006-01-01

    Effective design of avalanche hazard mitigation measures requires long-term records of natural avalanche frequency and extent. Such records are also vital for determining whether natural avalanche frequency and extent vary over time due to climatic or biophysical changes. Where historic records are lacking, an accepted substitute is a chronology developed from tree-ring responses to avalanche-induced damage. This study evaluates a method for using tree-ring chronologies to provide spatially explicit differentiations of avalanche frequency and temporally explicit records of avalanche extent that are often lacking. The study area - part of John F. Stevens Canyon on the southern border of Glacier National Park – is within a heavily used railroad and highway corridor with two dozen active avalanche paths. Using a spatially geo-referenced network of avalanche-damaged trees (n=109) from a single path, we reconstructed a 96-year tree-ring based chronology of avalanche extent and frequency. Comparison of the chronology with historic records revealed that trees recorded all known events as well as the same number of previously unidentified events. Kriging methods provided spatially explicit estimates of avalanche return periods. Estimated return periods for the entire avalanche path averaged 3.2 years. Within this path, return intervals ranged from ~2.3 yrs in the lower track, to ~9-11 yrs and ~12 to >25 yrs in the runout zone, where the railroad and highway are located. For avalanche professionals, engineers, and transportation managers this technique proves a powerful tool in landscape risk assessment and decision making.

  1. [Avalanche emergencies. Review of the current situation].

    Science.gov (United States)

    Paal, P; Beikircher, W; Brugger, H

    2006-03-01

    In North America and Europe around 140 persons die every year due to avalanches, approximately 35 in North America, 100 in the European Alps, and 5 in other parts of Europe. Most of the victims are skiers and snowboarders. This article outlines the specific pathophysiology of avalanche burials, such as hypoxia, hypercapnia, and hypothermia and also other factors which influence survival. Strategies to minimize the mortality due to avalanches and the on-site treatment of buried persons are discussed. Finally, possibilities to reduce the number of avalanche deaths are pointed out.

  2. Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes

    Science.gov (United States)

    Francis, P. W.; Wells, G. L.

    1988-01-01

    Remote sensing with the Landsat Thematic Mapper of debris avalanche deposits in the Central Andes between 18 and 27 deg S revealed, for the first time, the presence of 28 breached volcanic cones and 11 major volcanic debris avalanche deposits, several of which cover areas in excess of 100 sq km. It is concluded that such avalanche deposits are normal products of the evolution of large composite volcanoes, comparable with lava and pyroclastic flow deposits. A statistical survey of 578 composite volcanoes in the same area indicated that a majority of cones which achieve edifice heights between 2000 and 3000 m may undergo sector collapse. The paper describes morphological criteria for identifying breached composite cones and volcanic debris avalanches using orbital images.

  3. Two early Holocene rock avalanches in the Bernese Alps (Rinderhorn, Switzerland)

    Science.gov (United States)

    Grämiger, Lorenz M.; Moore, Jeffrey R.; Vockenhuber, Christof; Aaron, Jordan; Hajdas, Irka; Ivy-Ochs, Susan

    2016-09-01

    Large rock avalanches constitute a critical process modulating the evolution of alpine landscapes; however, the relatively infrequent occurrence of these high-magnitude events makes identifying underlying process controls challenging. Here we describe two rock avalanches in the Rinderhorn area of the Bernese Alps, Switzerland, providing new mapping of rock avalanche source areas and deposits, refined volume estimates for each event, runout modeling back-analyses, and absolute age constraint from cosmogenic 36Cl surface exposure dating. Results reveal that the Daubensee rock avalanche released ~ 4 million m3 of limestone sliding from the western crest of the Rinderhorn. Debris ran out across a Lateglacial moraine before reaching the valley bottom and spreading, leaving thin (on average 7 m) deposits across a broad area. The runout resulted in a Fahrböschung angle of 21°. Part of the deposit now lies beneath Lake Daubensee. The Klein Rinderhorn rock avalanche released ~ 37 million m3 of limestone along a dip-slope sliding plane, with a maximum runout distance of 4.3 km and estimated Fahrböschung angle of 14°. Deposits bulked to ~ 47 million m3 running up the opposing slope, with distinct hummocky morphology in the proximal area and a distal longitudinal flow ridge. These deposits were later modified and partly obscured by ice avalanches from the nearby Altels peak. Cosmogenic 36Cl surface exposure dating revealed nearly coincident ages for both rock avalanches of 9.8 ± 0.5 ka. The large lag time between local deglaciation and failure suggests that the events were not directly triggered by deglaciation. Rather, the concurrent exposure ages, also coinciding with the nearby Kander valley rock avalanche as well as paleoseismic records from nearby lakes, strongly suggest seismic triggering.

  4. Quantification of basal friction for technical and silvicultural glide-snow avalanche mitigation measures

    OpenAIRE

    2014-01-01

    A long-standing problem in avalanche engineering is to design defense structures and manage forest stands such that they can withstand the forces of the natural snow cover. In this way, glide-snow avalanches can be prevented. Ground friction plays a crucial role in this process. To verify existing guidelines, we collected data on the vegetation cover and terrain characteristics of 101 glide-snow release areas in Davos, Switzerland. We quantified the Coulomb friction paramete...

  5. On the temporal organization of neuronal avalanches.

    Science.gov (United States)

    Lombardi, Fabrizio; Herrmann, Hans J; Plenz, Dietmar; De Arcangelis, Lucilla

    2014-01-01

    Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their size and duration distribution, typical features of balanced systems in a critical state. Recently it has been shown that the distribution of quiet times between consecutive avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power law decay at short time scales. This behavior has been attributed to the slow alternation between up and down-states. Here we further characterize the avalanche process and investigate how the functional behavior of the quiet time distribution depends on the fine structure of avalanche sequences. By systematically removing smaller avalanches from the experimental time series we show that size and quiet times are correlated and highlight that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations, which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger ones are associated with slower θ and 1-2 Hz oscillations. In particular, large avalanches corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency. This temporal structure follows closely the one of nested θ - β/γ oscillations. Finally we demonstrate that, because of the multiple time scales characterizing avalanche dynamics, the distributions of quiet times between avalanches larger than a certain size do not collapse onto a unique function when rescaled by the average occurrence rate. However, when considered separately in the up-state and in the down-state, these distributions are solely controlled by the respective average rate and two different unique function can be identified.

  6. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    Science.gov (United States)

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years

  7. Transport and emplacement mechanisms of channelised long-runout debris avalanches, Ruapehu volcano, New Zealand

    Science.gov (United States)

    Tost, M.; Cronin, S. J.; Procter, J. N.

    2014-12-01

    The steep flanks of composite volcanoes are prone to collapse, producing debris avalanches that completely reshape the landscape. This study describes new insights into the runout of large debris avalanches enhanced by topography, using the example of six debris avalanche deposits from Mount Ruapehu, New Zealand. Individual large flank collapses (>1 km3) produced all of these units, with four not previously recognised. Five major valleys within the highly dissected landscape surrounding Mount Ruapehu channelled the debris avalanches into deep gorges (≥15 m) and resulted in extremely long debris avalanche runouts of up to 80 km from source. Classical sedimentary features of debris avalanche deposits preserved in these units include the following: very poor sorting with a clay-sand matrix hosting large subrounded boulders up to 5 m in diameter, jigsaw-fractured clasts, deformed clasts and numerous rip-up clasts of late-Pliocene marine sediments. The unusually long runouts led to unique features in distal deposits, including a pervasive and consolidated interclast matrix, and common rip-up clasts of Tertiary mudstone, as well as fluvial gravels and boulders. The great travel distances can be explained by the debris avalanches entering deep confined channels (≥15 m), where friction was minimised by a reduced basal contact area along with loading of water-saturated substrates which formed a basal lubrication zone for the overlying flowing mass. Extremely long-runout debris avalanches are most likely to occur in settings where initially partly saturated collapsing masses move down deep valleys and become thoroughly liquified at their base. This happens when pore water is available within the base of the flowing mass or in the sediments immediately below it. Based on their H/L ratio, confined volcanic debris avalanches are two to three times longer than unconfined, spreading flows of similar volume. The hybrid qualities of the deposits, which have some similarities to

  8. Triaging multiple victims in an avalanche setting: the Avalanche Survival Optimizing Rescue Triage algorithmic approach.

    Science.gov (United States)

    Bogle, Lee B; Boyd, Jeff J; McLaughlin, Kyle A

    2010-03-01

    As winter backcountry activity increases, so does exposure to avalanche danger. A complicated situation arises when multiple victims are caught in an avalanche and where medical and other rescue demands overwhelm resources in the field. These mass casualty incidents carry a high risk of morbidity and mortality, and there is no recommended approach to patient care specific to this setting other than basic first aid principles. The literature is limited with regard to triaging systems applicable to avalanche incidents. In conjunction with the development of an electronic avalanche rescue training module by the Canadian Avalanche Association, we have designed the Avalanche Survival Optimizing Rescue Triage algorithm to address the triaging of multiple avalanche victims to optimize survival and disposition decisions.

  9. Avalanche!--Teachable Moments in Outdoor Education

    Science.gov (United States)

    Galloway, Shayne

    2005-01-01

    Rarely do outdoor educators get the opportunity to safely incorporate an avalanche while the topic of the day is actually avalanche awareness and forecasting. Many similar possibilities exist in the expeditionary context, but even brief excursions may result in incredible learning experiences. These "teachable moments" occur regularly in the…

  10. Merging Terrestrial Laser Scanning Technology with Photogrammetric and Total Station Data for the Determination of Avalanche Modeling Parameters

    Science.gov (United States)

    Prokop, Alexander; Schön, Peter; Singer, Florian; Pulfer, Gaëtan; Naaim, Mohamed; Thibert, Emmanuel

    2015-04-01

    Dynamic avalanche modeling requires as input the volumes and areas of the snow released, entrained and deposited, as well as the fracture heights. Determining these parameters requires high-resolution spatial snow surface data from before and after the avalanche. In snow and avalanche research, terrestrial laser scanners are used increasingly to efficiently and accurately map snow surfaces and depths over an area of several km². In practice however, several problems may occur, which must be recognized and accounted for during post-processing and interpretation, especially under the circumstances of surveying an artificially triggered avalanche at a test site, where time pressure due to operational time constraints may also cause less than ideal circumstances and surveying setups. Thus, we combine terrestrial laser scanning with photogrammetry, total station measurements and field snow observations to document and accurately survey an artificially triggered avalanche at the Col du Lautaret test site (2058 m) in the French Alps. The ability of TLS to determine avalanche modeling input parameters efficiently and accurately is shown, and we demonstrate how, merging TLS with the other methods facilitates and improves data post-processing and interpretation. Finally, we present for this avalanche the data required for the parameterization and validation of dynamic avalanche models and discuss using newest data, how the new laser scanning device generation (e.g Riegl VZ6000) further improves such surveying campaigns.

  11. Observations and modelling of snow avalanche entrainment

    Directory of Open Access Journals (Sweden)

    B. Sovilla

    2002-01-01

    Full Text Available In this paper full scale avalanche dynamics measurements from the Italian Pizzac and Swiss Vallée de la Sionne test sites are used to develop a snowcover entrainment model. A detailed analysis of three avalanche events shows that snowcover entrainment at the avalanche front appears to dominate over bed erosion at the basal sliding surface. Furthermore, the distribution of mass within the avalanche body is primarily a function of basal friction. We show that the mass distribution in the avalanche changes the flow dynamics significantly. Two different dynamical models, the Swiss Voellmy-fluid model and the Norwegian NIS model, are used to back calculate the events. Various entrainment methods are investigated and compared to measurements. We demon-strate that the Norwegian NIS model is clearly better able to simulate the events once snow entrainment has been included in the simulations.

  12. Differences of silicon photodiode spectral reflectance among the same batch

    Institute of Scientific and Technical Information of China (English)

    A.L.Mu(n)oz Zurita; J.Campos Acosta; A.Pons Aglio; A.Shcherbakov

    2008-01-01

    Photodiode's reflectance plays an important role regarding the relation between responsivity and the incident flux. In this work we analyze how the spectral reflectance changes among photodiodes from the same manufacturer and batch and how the reflectance of three standard photodiodes has drifted during six years. The results show that the reflectance changes from diode to diode within the same batch and also show th.at the reflectance ofphotodiodes changes on time. This ageing is spectrally dependent.

  13. Silicon photodiodes with high photoconductive gain at room temperature.

    Science.gov (United States)

    Li, X; Carey, J E; Sickler, J W; Pralle, M U; Palsule, C; Vineis, C J

    2012-02-27

    Silicon photodiodes with high photoconductive gain are demonstrated. The photodiodes are fabricated in a complementary metal-oxide-semiconductor (CMOS)-compatible process. The typical room temperature responsivity at 940 nm is >20 A/W and the dark current density is ≈ 100 nA/cm2 at 5 V reverse bias, yielding a detectivity of ≈ 10(14) Jones. These photodiodes are good candidates for applications that require high detection sensitivity and low bias operation.

  14. Equilibrium avalanches in spin glasses

    Science.gov (United States)

    Le Doussal, Pierre; Müller, Markus; Wiese, Kay Jörg

    2012-06-01

    We study the distribution of equilibrium avalanches (shocks) in Ising spin glasses which occur at zero temperature upon small changes in the magnetic field. For the infinite-range Sherrington-Kirkpatrick (SK) model, we present a detailed derivation of the density ρ(ΔM) of the magnetization jumps ΔM. It is obtained by introducing a multicomponent generalization of the Parisi-Duplantier equation, which allows us to compute all cumulants of the magnetization. We find that ρ(ΔM)˜ΔM-τ with an avalanche exponent τ=1 for the SK model, originating from the marginal stability (criticality) of the model. It holds for jumps of size 1≪ΔMmodel. For finite-range models, using droplet arguments, we obtain the prediction τ=(df+θ)/dm where df,dm, and θ are the fractal dimension, magnetization exponent, and energy exponent of a droplet, respectively. This formula is expected to apply to other glassy disordered systems, such as the random-field model and pinned interfaces. We make suggestions for further numerical investigations, as well as experimental studies of the Barkhausen noise in spin glasses.

  15. Characterization of the artificially triggered avalanches in the MonterosaSki resort (North-western Italian Alps)

    Science.gov (United States)

    Maggioni, Margherita; Brulport, A.; Freppaz, M.; Welf, A.; Purves, R.

    2010-05-01

    Artificially triggering methods are nowadays commonly used for avalanche prevention within ski-resorts. The knowledge of possible relations between the characteristics of the avalanche events and the snowpack and weather conditions might help to foresee the avalanche release probability after a favorable weather cycle. The forecast might be helped by models, like for example snowpack evolution models or nearest neighbor models. The latters are based on statistics performed on large databases where the avalanche events, together with the related snow and weather conditions, are well recorded. Within the Operational programme 'Italy - France (Alps - ALCOTRA)', Project "Gestion en sécurité des territories de montagne transfrontalière - Risk-Nat", from winter 2009-2010, in the MonterosaSki resort all the artificially triggered avalanches are registered with their characteristics (e.g. outline, type of avalanches, elevation, aspect), the triggering method (e.g. explosive, Daisy-Bell) and the snow and weather conditions. The aim of this project is to create a well documented database in order to perform some simple statistical analysis to find possible relation between the characteristics of the avalanches (e.g. type, size, run-out distance), the topography of the site (e.g. slope angle, aspect), snowpack condition (e.g. snow crystal type, snow temperature, density) and meteorological parameters (e.g. new snow, air temperature, wind). Moreover, the avalanche release method and the result of the triggering are recorded, in order to understand which are the most favorable conditions for avalanche release. This project is at its first operational winter, therefore in this work we present preliminary data concerning the study area, the methodology and the results from the first winter season, which might be useful to improve our knowledge about artificially triggered avalanches and to help the ski-piste security personnel to take decisions about the avalanche situation

  16. Limited Geiger-mode microcell silicon photodiode: new results

    CERN Document Server

    Bondarenko, G B; Dolgoshein, B A; Golovin, V; Guschin, E; Ilyin, A; Kaplin, V; Karakas, A I; Klanner, Robert; Pokachalov, V; Popova, E; Smirnov, K V

    2000-01-01

    Recent results on Limited Geiger-mode Microcell Silicon Photodiode (LGP) are described. Two new modifications of LGP have been designed and produced. Each of them consists of 10 sup 4 pixels 10x10 mu m sup 2 size with area of 1 mm sup 2. These pixels operate as an independent photon counters, giving the output signal as a sum of the signals from pixels fired by photons. The effective 'gain' is large (approx 10 sup 5). The efficiency of the visible light photon detection of few percents has been measured. Low-temperature dark rate dependence has been studied. The timing by LGP at the level of 100 ps (FWHM) was found.

  17. Light induced tunnel effect in CNT-Si photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Aramo, C., E-mail: aramo@na.infn.it [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Ambrosio, M. [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Bonavolontà, C. [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Dip. di Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Via Cintia 2, 80126 Napoli (Italy); Boscardin, M. [Centro per Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Via Sommarive 18, Povo di Trento, 38123 Trento (Italy); Castrucci, P. [INFN, Sezione di Roma “Tor Vergata”, Dip. di Fisica, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Crivellari, M. [Centro per Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Via Sommarive 18, Povo di Trento, 38123 Trento (Italy); De Crescenzi, M. [INFN, Sezione di Roma “Tor Vergata”, Dip. di Fisica, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy); De Lisio, C. [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Dip. di Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Via Cintia 2, 80126 Napoli (Italy); Fiandrini, E. [INFN, Sezione di Perugia, Dip. di Fisica, Università degli Studi di Perugia, Piazza Università 1, 06100 Perugia (Italy); and others

    2016-07-11

    Negative differential resistance (NDR), for which the current is a decreasing function of the voltage, has been observed in the current–voltage curves of several types of structures. We measured tunnelling current and NDR by illuminating large area heterojunction obtained by growing Multi Wall Carbon Nanotubes on the surface of n-doped Silicon substrate. In the absence of light, the current flow is null until a junction threshold of about 2.4 V is reached, beyond which the dark current flows at room temperature with a very low intensity of few nA. When illuminated, a current of tens nA is observed at a drain voltage of about 1.5 V. At higher voltage the current intensity decreases according to a negative resistance of the order of MΩ. In the following we report details of tunneling photodiode realized and negative resistance characteristics.

  18. Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction

    Science.gov (United States)

    Juntunen, Mikko A.; Heinonen, Juha; Vähänissi, Ville; Repo, Päivikki; Valluru, Dileep; Savin, Hele

    2016-12-01

    Ideal photodiodes can detect all incoming photons independently of the wavelength, angle or intensity of the incident light. Present-day photodiodes notably suffer from optical losses and generated charge carriers are often lost via recombination. Here, we demonstrate a device with an external quantum efficiency above 96% over the wavelength range 250-950 nm. Instead of a conventional p-n junction, we use negatively charged alumina to form an inversion layer that generates a collecting junction extending to a depth of 30 µm in n-type silicon with bulk resistivity larger than 10 kΩ cm. We enhance the collection efficiency further by nanostructuring the photodiode surface, which results in higher effective charge density and increased charge-carrier concentration in the inversion layer. Additionally, nanostructuring and efficient surface passivation allow for a reliable device response with incident angles up to 70°. We expect the considered device to improve data quality, reduce the area of photodiodes as well as decrease the cost per pixel.

  19. Temporal correlations in neuronal avalanche occurrence.

    Science.gov (United States)

    Lombardi, F; Herrmann, H J; Plenz, D; de Arcangelis, L

    2016-04-20

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.

  20. Temporal correlations in neuronal avalanche occurrence

    Science.gov (United States)

    Lombardi, F.; Herrmann, H. J.; Plenz, D.; de Arcangelis, L.

    2016-04-01

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.

  1. High-performance fused indium gallium arsenide/silicon photodiode

    Science.gov (United States)

    Kang, Yimin

    Modern long haul, high bit rate fiber-optic communication systems demand photodetectors with high sensitivity. Avalanche photodiodes (APDs) exhibit superior sensitivity performance than other types of photodetectors by virtual of its internal gain mechanism. This dissertation work further advances the APD performance by applying a novel materials integration technique. It is the first successful demonstration of wafer fused InGaAs/Si APDs with low dark current and low noise. APDs generally adopt separate absorption and multiplication (SAM) structure, which allows independent optimization of materials properties in two distinct regions. While the absorption material needs to have high absorption coefficient in the target wavelength range to achieve high quantum efficiency, it is desirable for the multiplication material to have large discrepancy between its electron and hole ionization coefficients to reduce noise. According to these criteria, InGaAs and Si are the ideal materials combination. Wafer fusion is the enabling technique that makes this theoretical ideal an experimental possibility. APDs fabricated on the fused InGaAs/Si wafer with mesa structure exhibit low dark current and low noise. Special device fabrication techniques and high quality wafer fusion reduce dark current to nano ampere level at unity gain, comparable to state-of-the-art commercial III/V APDs. The small excess noise is attributed to the large difference in ionization coefficients between electrons and holes in silicon. Detailed layer structure designs are developed specifically for fused InGaAs/Si APDs based on principles similar to those used in traditional InGaAs/InP APDs. An accurate yet straightforward technique for device structural parameters extraction is also proposed. The extracted results from the fabricated APDs agree with device design parameters. This agreement also confirms that the fusion interface has negligible effect on electric field distributions for devices fabricated

  2. Spatial aspects of vulnerability and risk resulting from snow avalanches

    Science.gov (United States)

    Fuchs, S.; Koltermann, P.; Sokratov, S.; Seliverstov, Y.; Shnyparkov, A.

    2012-04-01

    Mountain regions provide a significant proportion of areas used for human settlements, economic purpose, and recreation. Simultaneously, due to steep vertical gradients mountain areas are prone to mass movement processes. The intersection of such processes with areas used by human action turns them into hazards. In particular in arctic regions, which show a greater susceptibility to disturbances than many landscapes, considerable efforts have been undertaken in recent decades to reduce the adverse effects of mountain hazards. The concept of risk supplemented the traditional engineering approaches of technical mitigation since the 1990s to comprehensively manage these threats, and to develop strategies for a sustainable use of these areas. The concept of risk is based on a mathematical combination of hazards and consequences, but is static over time. However, three major dynamic systems interact in the field of mountain hazard risk management: the physical environment, which includes hazardous events; the social and demographic characteristics of the communities that experience them; and the values at risk such as buildings, roads, and other components of the built environment. These dynamics have not sufficiently been taken into account so far in natural hazard risk management, in particular with respect to industrialised artic regions. Within the city of Kirovsk, Kola Peninsula, Russian Federation, these dynamics were assessed by taking snow avalanche risk as an example. The test site is exposed to multiple avalanche tracks with repeated releases during individual winter seasons, endangering the built environment and any kind of infrastructure lines. The aim was to contribute to the development of a spatial risk model for mountain regions on different temporal scales. The spatial characteristics of the long-term avalanche risk, as a result of the evolution of the built environment, was analysed on an annual as well as inter-annual level. This long-term development

  3. Spike avalanches exhibit universal dynamics across the sleep-wake cycle.

    Directory of Open Access Journals (Sweden)

    Tiago L Ribeiro

    Full Text Available BACKGROUND: Scale-invariant neuronal avalanches have been observed in cell cultures and slices as well as anesthetized and awake brains, suggesting that the brain operates near criticality, i.e. within a narrow margin between avalanche propagation and extinction. In theory, criticality provides many desirable features for the behaving brain, optimizing computational capabilities, information transmission, sensitivity to sensory stimuli and size of memory repertoires. However, a thorough characterization of neuronal avalanches in freely-behaving (FB animals is still missing, thus raising doubts about their relevance for brain function. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we employed chronically implanted multielectrode arrays (MEA to record avalanches of action potentials (spikes from the cerebral cortex and hippocampus of 14 rats, as they spontaneously traversed the wake-sleep cycle, explored novel objects or were subjected to anesthesia (AN. We then modeled spike avalanches to evaluate the impact of sparse MEA sampling on their statistics. We found that the size distribution of spike avalanches are well fit by lognormal distributions in FB animals, and by truncated power laws in the AN group. FB data surrogation markedly decreases the tail of the distribution, i.e. spike shuffling destroys the largest avalanches. The FB data are also characterized by multiple key features compatible with criticality in the temporal domain, such as 1/f spectra and long-term correlations as measured by detrended fluctuation analysis. These signatures are very stable across waking, slow-wave sleep and rapid-eye-movement sleep, but collapse during anesthesia. Likewise, waiting time distributions obey a single scaling function during all natural behavioral states, but not during anesthesia. Results are equivalent for neuronal ensembles recorded from visual and tactile areas of the cerebral cortex, as well as the hippocampus. CONCLUSIONS

  4. Rockfall and snow avalanche impacts leave different anatomical signatures in tree rings of juvenile Larix decidua.

    Science.gov (United States)

    Stoffel, Markus; Hitz, Oliver M

    2008-11-01

    Rockfall and snow avalanche events often cause injury to European larch (Larix decidua Mill.) trees, giving rise to the formation of callus tissue and tangential rows of traumatic resin ducts (TRDs). We analyzed and quantified anatomical reactions of juvenile trees injured before the start of the growing season by snow avalanches (15 trees, 324 cross sections) or rockfalls (18 trees, 270 cross sections). Traumatic resin ducts were observed in the growth ring formed following injury in 94.3% of the rockfall samples and 87.3% of the snow avalanche samples. Traumatic resin ducts were formed at the beginning of the new annual ring around wounds caused by rockfalls. In contrast, in trees injured by snow avalanches, TRDs were not formed until after the formation of several rows of early earlywood (EE) tracheids (mean +/- SD = 4.19 +/- 2.56 rows). The dimensions of the EE tracheids observed in the snow avalanche samples were greatly reduced in the tissues bordering the wound, with radial width reaching an average of only 50% and lumen cross-sectional area an average of only 46% of pre-event values. It is therefore possible to differentiate injuries due to past snow avalanches from injuries due to rockfall based on anatomical growth reactions in the tissues bordering scars.

  5. Radon measurements with a PIN photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Martin, A. [Laboratorio de Investigacion en Baja Radiactividad (LIBRA), Edificio I-D, Campus Miguel Delibes, Universidad de Valladolid, Valladolid 47011 (Spain) and Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain)]. E-mail: alonsomm@libra.uva.es; Gutierrez-Villanueva, J.L. [Laboratorio de Investigacion en Baja Radiactividad (LIBRA), Edificio I-D, Campus Miguel Delibes, Universidad de Valladolid, Valladolid 47011 (Spain); Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain); Munoz, J.M. [Departamento de Electricidad y Electronica, Universidad de Valladolid, Valladolid 47011 (Spain); Garcia-Talavera, M. [Laboratorio de Investigacion en Baja Radiactividad (LIBRA), Edificio I-D, Campus Miguel Delibes, Universidad de Valladolid, Valladolid 47011 (Spain); Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain); Adamiec, G. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain); Iniguez, M.P. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain)

    2006-10-15

    Silicon photodiodes are well suited to detect alphas coming from different sources as neutron reactions or radon daughters. In this work a radon in air detecting device, using an 18x18 mm silicon PIN photodiode is studied. The ionized airborne decay products formed during radon diffusion were focused by an accelerating high voltage to the PIN surface. Several conducting rings were disposed inside a cylindrical PVC vessel in such a way that they reproduced the electric field created by a punctual charge located behind PIN position. Alpha spectra coming from the neutral and ionized species deposited on the PIN surface, dominated by {sup 218}Po and {sup 214}Po progeny peaks, were recorded for varying conditions. Those include radon concentration from a Pylon source, high voltage (thousands of volts) and PIN inverse bias voltage. Different parameters such as temperature and humidity were also registered during data acquisition. The increase in the particle collection efficiency with respect to zero electric field was compared with the corresponding to a parallel plates configuration. A discussion is made in terms of the most appropriate voltages for different radon concentrations.

  6. The Tancitaro Debris Avalanche: Characterization, propagation and modeling

    Science.gov (United States)

    Morelli, Stefano; Monroy, Victor Hugo Garduño; Gigli, Giovanni; Falorni, Giacomo; Rocha, Eleazar Arreygue; Casagli, Nicola

    2010-06-01

    The Tancitaro volcano (3860 m) is an andesitic-dacitic stratovolcano located in the western portion of the Trans-Mexican Volcanic Belt within the state of Michoacán (Mexico). The tectonic activity of this area has likely contributed to a large sector collapse of the volcano. The first findings of a multidisciplinary investigation into this debris avalanche are presented here. Geomorphological analyses, based on the interpretation of orthophotos, satellite imagery and on GIS elaborations, had the objective of determining the main morphometric features of the landslide. The collapse structure is an east-facing horseshoe-shaped crater (4 km wide and 5.3 km long), while the deposit forms a large fan that is 66 km long, covers an area of approximately 1155 km 2 and has an estimated volume of 18 km 3. Event volume was established by reconstructing the paleo-edifice in a GIS and taking into account volumetric expansion. Cross sections measured in the field were also used for this purpose. Field investigations also highlighted the presence of two texturally distinct units, which are referred to as the "block facies" and the "matrix facies", respectively. The first is responsible for the typical hummock morphologies found in the proximal area. A transitional zone contains a "mixed block and matrix facies" while in the distal portion blocks and megablocks, some of which have a jigsaw puzzle texture, gradually decrease in size until they disappear entirely. A number of matrix samples were collected to conduct direct shear tests, granulometric analyses and classification of the materials. The data and analyses described above were used to discuss the mechanism controlling the long runout of the avalanche. Based on the comparison between the Tancitaro debris avalanche and similar events we propose that mechanical fluidization was the mechanism responsible for the remarkable mobility of the landslide. The predisposing factors leading to the collapse were also considered. Field

  7. Cartographic modeling of snow avalanche path location within Glacier National Park, Montana

    Science.gov (United States)

    Walsh, Stephen J.; Brown, Daniel G.; Bian, Ling; Butler, David R.

    1990-05-01

    Geographic information system (GIS) techniques were applied to the study of snow-avalanche path location within Glacier National Park, Montana. Aerial photointerpretation and field surveys confirmed the location of 121 avalanche paths within the selected study area. Spatial and nonspatial information on each path were integrated using the ARC/INFO GIS. Lithologic, structural, hydrographic, topographic, and land-cover impacts on path location were analyzed. All path frequencies within variable classes were normalized by the area of class occurrence relative to the total area of the study area and were added to the morphometric information contained within INFO tables. The normalized values for each GIS coverage were used to cartographically model, by means of composite factor weightings, avalanche path locations.

  8. Cartographic modeling of snow avalanche path location within Glacier National Park, Montana

    Science.gov (United States)

    Walsh, Stephen J.; Brown, Daniel G.; Bian, Ling; Butler, David R.

    1990-01-01

    Geographic information system (GIS) techniques were applied to the study of snow-avalanche path location within Glacier National Park, Montana. Aerial photointerpretation and field surveys confirmed the location of 121 avalanche paths within the selected study area. Spatial and nonspatial information on each path were integrated using the ARC/INFO GIS. Lithologic, structural, hydrographic, topographic, and land-cover impacts on path location were analyzed. All path frequencies within variable classes were normalized by the area of class occurrence relative to the total area of the study area and were added to the morphometric information contained within INFO tables. The normalized values for each GIS coverage were used to cartographically model, by means of composite factor weightings, avalanche path locations.

  9. Statistics of Electron Avalanches and Streamers

    Directory of Open Access Journals (Sweden)

    T. Ficker

    2007-01-01

    Full Text Available We have studied the severe systematic deviations of populations of electron avalanches from the Furry distribution, which has been held to be the statistical law corresponding to them, and a possible explanation has been sought. A  new theoretical concept based on fractal avalanche multiplication has been proposed and is shown to be a convenient candidate for explaining these deviations from Furry statistics. 

  10. Catastrophic avalanches and methods of their control

    Directory of Open Access Journals (Sweden)

    N. A. Volodicheva

    2014-01-01

    Full Text Available Definition of such phenomenon as “catastrophic avalanche” is presented in this arti-cle. Several situations with releases of catastrophic avalanches in mountains of Caucasus, Alps, and Central Asia are investigated. Materials of snow-avalanche ob-servations performed since 1960s at the Elbrus station of the Lomonosov Moscow State University (Central Caucasus were used for this work. Complex-valued measures of engineering protection demonstrating different efficiencies are consid-ered.

  11. A Ring-shaped photodiode designed for use in a reflectance pulse oximetry sensor in wireless health monitoring applications

    DEFF Research Database (Denmark)

    Duun, Sune; Haahr, Rasmus Grønbek; Birkelund, Karen

    2010-01-01

    We report a photodiode for use in a reflectance pulse oximeter for use in autonomous and low-power homecare applications. The novelty of the reflectance pulse oximeter is a large ring shaped backside silicon pn photodiode. The ring-shaped photodiode gives optimal gathering of light and thereby en...... is demonstrated to work in a laboratory setup with a Ledtronics dual LED with wavelengths of 660 and 940 nm. Using this setup photoplethysmograms which clearly show the cardiovascular cycle have been recorded. The sensor is shown to work very well with low currents of less than 10 mA....... a radius of 3.68 mm and a width of 0.78 mm giving an area of 18 mm2. The capacitance of the photodiode is measured to 34.5 nF. The quantum efficiency of the photodiode is measured to 55% and 62% at 660 nm and 940 nm, respectively. It is acceptable for this prototype but can be improved. The sensor also has...

  12. Evolution of the average avalanche shape with the universality class.

    Science.gov (United States)

    Laurson, Lasse; Illa, Xavier; Santucci, Stéphane; Tore Tallakstad, Ken; Måløy, Knut Jørgen; Alava, Mikko J

    2013-01-01

    A multitude of systems ranging from the Barkhausen effect in ferromagnetic materials to plastic deformation and earthquakes respond to slow external driving by exhibiting intermittent, scale-free avalanche dynamics or crackling noise. The avalanches are power-law distributed in size, and have a typical average shape: these are the two most important signatures of avalanching systems. Here we show how the average avalanche shape evolves with the universality class of the avalanche dynamics by employing a combination of scaling theory, extensive numerical simulations and data from crack propagation experiments. It follows a simple scaling form parameterized by two numbers, the scaling exponent relating the average avalanche size to its duration and a parameter characterizing the temporal asymmetry of the avalanches. The latter reflects a broken time-reversal symmetry in the avalanche dynamics, emerging from the local nature of the interaction kernel mediating the avalanche dynamics.

  13. Internal quantum efficiency modeling of silicon photodiodes.

    Science.gov (United States)

    Gentile, T R; Brown, S W; Lykke, K R; Shaw, P S; Woodward, J T

    2010-04-01

    Results are presented for modeling of the shape of the internal quantum efficiency (IQE) versus wavelength for silicon photodiodes in the 400 nm to 900 nm wavelength range. The IQE data are based on measurements of the external quantum efficiencies of three transmission optical trap detectors using an extensive set of laser wavelengths, along with the transmittance of the traps. We find that a simplified version of a previously reported IQE model fits the data with an accuracy of better than 0.01%. These results provide an important validation of the National Institute of Standards and Technology (NIST) spectral radiant power responsivity scale disseminated through the NIST Spectral Comparator Facility, as well as those scales disseminated by other National Metrology Institutes who have employed the same model.

  14. A Single-Chip Solar Energy Harvesting IC Using Integrated Photodiodes for Biomedical Implant Applications.

    Science.gov (United States)

    Chen, Zhiyuan; Law, Man-Kay; Mak, Pui-In; Martins, Rui P

    2017-02-01

    In this paper, an ultra-compact single-chip solar energy harvesting IC using on-chip solar cell for biomedical implant applications is presented. By employing an on-chip charge pump with parallel connected photodiodes, a 3.5 × efficiency improvement can be achieved when compared with the conventional stacked photodiode approach to boost the harvested voltage while preserving a single-chip solution. A photodiode-assisted dual startup circuit (PDSC) is also proposed to improve the area efficiency and increase the startup speed by 77%. By employing an auxiliary charge pump (AQP) using zero threshold voltage (ZVT) devices in parallel with the main charge pump, a low startup voltage of 0.25 V is obtained while minimizing the reversion loss. A 4 Vin gate drive voltage is utilized to reduce the conduction loss. Systematic charge pump and solar cell area optimization is also introduced to improve the energy harvesting efficiency. The proposed system is implemented in a standard 0.18- [Formula: see text] CMOS technology and occupies an active area of 1.54 [Formula: see text]. Measurement results show that the on-chip charge pump can achieve a maximum efficiency of 67%. With an incident power of 1.22 [Formula: see text] from a halogen light source, the proposed energy harvesting IC can deliver an output power of 1.65 [Formula: see text] at 64% charge pump efficiency. The chip prototype is also verified using in-vitro experiment.

  15. Photonic microwave generation with high-power photodiodes

    CERN Document Server

    Fortier, Tara M; Hati, Archita; Nelson, Craig; Taylor, Jennifer A; Fu, Yang; Campbell, Joe; Diddams, Scott A

    2013-01-01

    We utilize and characterize high-power, high-linearity modified uni-traveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division. When illuminated with picosecond pulses from a repetition-rate-multiplied gigahertz Ti:sapphire modelocked laser, the photodiodes can achieve 10 GHz signal power of +14 dBm. Using these diodes, a 10 GHz microwave tone is generated with less than 500 attoseconds absolute integrated timing jitter (1 Hz-10 MHz) and a phase noise floor of -177 dBc/Hz. We also characterize the electrical response, amplitude-to-phase conversion, saturation and residual noise of the MUTC photodiodes.

  16. X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate

    NARCIS (Netherlands)

    Gelinck, G.H.; Kumar, A.; Moet, D.; Steen, J.L. van der; Shafique, U.; Malinowski, P.E.; Myny, K.; Rand, B.P.; Simon, M.; Rütten, W.; Douglas, A.; Jorritsma, J.; Heremans, P.L.; Andriessen, H.A.J.M.

    2013-01-01

    We describe the fabrication and characterization of large-area active-matrix X-ray/photodetector array of high quality using organic photodiodes and organic transistors. All layers with the exception of the electrodes are solution processed. Because it is processed on a very thin plastic substrate o

  17. Initial characterization of a position-sensitive photodiode/BGO detector for PET (positron emission tomography)

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, S.E.; Moses, W.W.; Jackson, H.G.; Turko, B.T.; Cahoon, J.L.; Geyer, A.B.; Vuletich, T.

    1988-11-01

    We present initial results of a position-sensitive photodiode/BGO detector for high resolution, multi-layer positron emission tomography (PET). Position sensitivity is achieved by dividing the 3 mm /times/ 20 mm rectangular photosensitive area along the diagonal to form two triangular segments. Each segment was individually connected to a low-noise amplifier. The photodiodes and crystals were cooled to /minus/100/degree/C to reduce dark current and increase the BGO signal. With an amplifier peaking time of 17 ..mu..sec, the sum of the signals (511 keV photopeak) was 3200 electrons with a full width at half maximum (fwhm) of 750 electrons. The ratio of one signal to the sum determined the depth of interaction with a resolution of 11 mm fwhm. 27 refs., 7 figs.

  18. Characterization of Al0.8Ga0.2As geiger photodiode

    Science.gov (United States)

    Chen, X. J.; Ren, Min; Chen, Yaojia; Johnson, E. B.; Campbell, Joe C.; Christian, James F.

    2015-08-01

    Solid-state photomultipliers (SSPM) are high gain photodetectors composed of Geiger photodiodes (GPD) operating above device breakdown voltage. In scintillation based radiation detection applications, SSPMs fabricated using silicon (SiPMs, MPPCs, etc) provide a compact, low cost alternative to photomultiplier tubes (PMTs), however, the high dark count rate due to its low band-gap (1.1eV) limits the signal-to-noise performance as the silicon SSPM is scaled to large areas. SSPMs fabricated in materials with a larger band-gap have the potential to surmount the performance limitations experienced by silicon. AlGaAs is a material that provides a bandgap from 1.55eV to 2.13 eV, depending on Al concentration. Using high Al concentration AlGaAs to engineer a wideband- gap (>2eV) SSPM is very desirable in terms of reducing dark noise, which promises better signal-to-noise performances when large detector areas is needed. This work describes the development of Geiger photodiodes (GPDs), the individual elements of a SSPM, fabricated in AlGaAs with 80% Al concentration. We present the design of the GPDs, the fabrication process, along with characterization data of fabricated GPD samples. To the best of our knowledge, we have demonstrated for the first time, a passively quenched Geiger photodiode in Al0.8Ga0.2As.

  19. Photodiode forward bias to reduce temporal effects in a-Si based flat panel detectors

    Science.gov (United States)

    Mollov, Ivan; Tognina, Carlo; Colbeth, Richard

    2008-03-01

    Lag and sensitivity modulation are well known temporal artifacts of a-Si photodiode based flat panel detectors. Both effects are caused by charge carriers being trapped in the semiconductor. Trapping and releasing of these carriers is a statistical process with time constants much longer than the frame time of flat panel detectors. One way to reduce these temporal artifacts is to keep the traps filled by applying a pulse of light over the entire detector area every frame before the x-ray exposure. This paper describes an alternative method, forward biasing the a-Si photodiodes and supplying free carriers to fill the traps. The array photodiodes are forward biased and then reversed biased again every frame between the panel readout and x-ray exposure. The method requires no change to the mechanical construction of the detector, only minor modifications of the detector electronics and no image post processing. An existing flat panel detector was modified and evaluated for lag and sensitivity modulation. The required changes of the panel configuration, readout scheme and readout timing are presented in this paper. The results of applying the new technique are presented and compared to the standard mode of operation. The improvements are better than an order of magnitude for both sensitivity modulation and lag; lowering their values to levels comparable to the scintillator afterglow. To differentiate the contribution of the a-Si array, from that of the scintillator, a large area light source was used. Possible implementations and applications of the method are discussed.

  20. Deterministically Driven Avalanche Models of Solar Flares

    Science.gov (United States)

    Strugarek, Antoine; Charbonneau, Paul; Joseph, Richard; Pirot, Dorian

    2014-08-01

    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick-slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy-loading process. The model design leads to a systematic deficit of small-scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.

  1. Deterministically Driven Avalanche Models of Solar Flares

    CERN Document Server

    Strugarek, Antoine; Joseph, Richard; Pirot, Dorian

    2014-01-01

    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick--slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy loading process. The model design leads to a systematic deficit of small scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global st...

  2. Electron avalanches in liquid argon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  3. Infrared vertically-illuminated photodiode for chip alignment feedback

    CERN Document Server

    Alloatti, Luca

    2016-01-01

    We report on vertically-illuminated photodiodes fabricated in the GlobalFoundries 45nm 12SOI node and on a packaging concept for optically-interconnected chips. The photodiodes are responsive at 1180 nm, a wavelength currently used in chip-to-chip communications. They have further a wide field-of-view which enables chip-to-board positional feedback in chip-board assemblies. Monolithic integration enables on-chip processing of the positional data.

  4. Photodiode Circuit Macro-model for SPICE Simulation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An accurate photodiode circuit macro-model is proposed for SPICE simulation. The definition and implementation of the macro-model is based on carrier stationary continuity equation. In this macro-model, the photodiode is a device of three pins, one for light intensity input and the other two for photocurrent output, which represent the relationship between photocurrent and incident light. The validity of the proposed macro-model is demonstrated with its PSPICE simulation result compared with reported experimental data.

  5. Configurable Electronics with Low Noise and 14-bit Dynamic Range for Photodiode-based Photon Detectors

    CERN Document Server

    Müller, H; Yin, Z; Zhou, D; Cao, X; Li, Q; Liu, Y; Zou, F; Skaali, B; Awes, T C

    2006-01-01

    We describe the principles and measured performance characteristics of custom configurable 32-channel shaper/digitizer Front End Electronics (FEE) cards with 14-bit dynamic range for use with gain-adjustable photon detectors. The electronics has been designed for the PHOS calorimeter of ALICE with avalanche photodiode (APD) readout operated at -25 C ambient temperature and a signal shaping time of $1 {\\mu}s$. The electronics has also been adopted by the EMCal detector of ALICE with the same APD readout, but operated at an ambient temperature of +20 C and with a shaping time of 100ns. The CR-RC2 signal shapers on the FEE cards are implemented in discrete logic on a 10-layer board with two shaper sections for each input channel. The two shaper sections with gain ratio of 16:1 are digitized by 10-bit ADCs and provide an effective dynamic range of 14 bits. Gain adjustment for each individual APD is available through 32 bias voltage control registers of 10-bit range. The fixed gains and shaping times of the pole-z...

  6. Performance Analysis of OCDMA Based on AND Detection in FTTH Access Network Using PIN & APD Photodiodes

    Science.gov (United States)

    Aldouri, Muthana; Aljunid, S. A.; Ahmad, R. Badlishah; Fadhil, Hilal A.

    2011-06-01

    In order to comprise between PIN photo detector and avalanche photodiodes in a system used double weight (DW) code to be a performance of the optical spectrum CDMA in FTTH network with point-to-multi-point (P2MP) application. The performance of PIN against APD is compared through simulation by using opt system software version 7. In this paper we used two networks designed as follows one used PIN photo detector and the second using APD photo diode, both two system using with and without erbium doped fiber amplifier (EDFA). It is found that APD photo diode in this system is better than PIN photo detector for all simulation results. The conversion used a Mach-Zehnder interferometer (MZI) wavelength converter. Also we are study, the proposing a detection scheme known as AND subtraction detection technique implemented with fiber Bragg Grating (FBG) act as encoder and decoder. This FBG is used to encode and decode the spectral amplitude coding namely double weight (DW) code in Optical Code Division Multiple Access (OCDMA). The performances are characterized through bit error rate (BER) and bit rate (BR) also the received power at various bit rate.

  7. A debris avalanche at Süphan stratovolcano (Turkey) and implications for hazard evaluation

    Science.gov (United States)

    Özdemir, Yavuz; Akkaya, İsmail; Oyan, Vural; Kelfoun, Karim

    2016-02-01

    The Quaternary Süphan debris avalanche deposit is located in Eastern Anatolia, Turkey. The avalanche formed by the sector collapse of a major stratovolcano towards the north, possibly during a single catastrophic event. The deposit has an estimated volume of 4 km3 and ran out over 25 km to cover an area of approximately 200 km2. Products of the collapse are overlain by younger eruptive units from the Süphan volcano. We have tested the numerical code VolcFlow to first reproduce the emplacement of the Quaternary Süphan debris avalanche and then to develop a hazard assessment for potential future sector collapses and subsequent emplacement of debris avalanches and associated tsunami. The numerical model captures the main features of the propagation process, including travel distance, lateral spread, and run up. The best fit obtained for the existing flow has a constant retarding stress of 50 kPa and a collapse scar volume of 4 km3. Analysis of potential future collapse scenarios reveals that northern sector debris avalanches (up to 6 km3) could affect several towns. In the case of a sector collapse towards the south, a tsunami will reach the city of Van and several of the biggest towns on the southern shoreline of Lake Van. Cities most affected by the larger amplitude waves would be Van, Edremit, Gevaş, Tatvan, and, to a lesser extent, Erciş, with wave amplitudes (first waves after the onset of the collapse) between 8 and 10 m.

  8. Avalanche Distribution Analysis in Anjoula Mountain to Guxiang Section of Sichuan-Tibet Highway%川藏公路安久拉山至古乡段雪崩分布规律

    Institute of Scientific and Technical Information of China (English)

    赵鑫; 程尊兰; 李亚军; 杨天军; 强巴

    2015-01-01

    The characteristics of avalanche distribution. We counted and analyzed the 90 avalanche locations. And found the characteristics of avalanche distribution on space. Further,we analyzed the relationship between ava-lanche distribution and topographic factors,such as altitude,slope,aspect,relative elevation. Through statistical analysis,we obtain the characteristics of avalanche distribution:Avalanche geomorphology effect,that avalanche is mainly distributed in the upper reaches of the canyon area;Avalanche altitude effect,that the avalanche is mainly distributed in the 4 300~4 900 m height range,the area where too high and too low avalanche are less developed;( Relative elevation of the avalanche effect,that the majority of avalanche relative elevation between 300 ~1 100 m,accounting for 74. 44%,the relative elevation is a concrete manifestation of the avalanche of matter and energy;Avalanche slope effect,that avalanche of the study area are most distribute in the range of 30°~ 40°,avalanche on larger or smaller slope than this interregional are less developed;Avalanche aspect effect,that shady significantly compared to the number of sunny slope avalanche dominant.%根据对川藏公路安久拉山至古乡段调查所得的90处雪崩资料,运用统计方法得出研究区雪崩的分布情况。通过对该区灾害的发育与流域地貌的相关关系分析,发现安久拉山至古乡段的雪崩分布规律与地貌特征因子之间具有以下特性:1.雪崩主要分布在上游4300~4900 m峡谷地貌区段,海拔过高和过低较少发育;2.雪崩分布相对高差在300~1100 m,占总数的74.44%;3.雪崩主要分布地形坡度为30°~40°,大于或小于这个范围较少发育;4.雪崩主要分布在阳坡。

  9. Adjoint method and runaway electron avalanche

    Science.gov (United States)

    Liu, Chang; Brennan, Dylan P.; Boozer, Allen H.; Bhattacharjee, Amitava

    2017-02-01

    The adjoint method for the study of runaway electron dynamics in momentum space Liu et al (2016 Phys. Plasmas 23 010702) is rederived using the Green’s function method, for both the runaway probability function (RPF) and the expected loss time (ELT). The RPF and ELT obtained using the adjoint method are presented, both with and without the synchrotron radiation reaction force. The adjoint method is then applied to study the runaway electron avalanche. Both the critical electric field and the growth rate for the avalanche are calculated using this fast and novel approach.

  10. Relating rock avalanche morphology to emplacement processes

    Science.gov (United States)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  11. Full-depth avalanches and soil erosion: an experimental site in NW Italy

    Science.gov (United States)

    Ceaglio, Elisabetta; Freppaz, Michele; Maggioni, Margherita; Filippa, Gianluca; Godone, Danilo; Zanini, Ermanno

    2010-05-01

    In the future the combined effect of changes in climate and land use could contribute to the intensification of soil erosion, related to snowpack movements as snow gliding and full-depth avalanches. Often, with particular meteorological conditions, the snow movement along a slope is associated with erosion and transport of the upper soil horizons, with the release of significant amount of material in the runout zone. Moreover the chemical composition of the snow in the deposition zone is usually different from the snow in the starting zone, revealing a potential release of ionic species mainly by the organic debris transported by the avalanche itself. The aim of this work is to characterize the quantity and quality of the material released by full-depth avalanches in the deposition zone. The study area is located in Aosta Valley (NW-Italy), on a SW exposed avalanche path, running from 2000 m a.s.l. of the triggering zone to 1200 m a.s.l. of the deposition zone. At this site, snow gliding and glide cracks, generally followed by full-depth avalanches, have been frequently observed. In the starting area, two plots located at the same elevation, slope and aspect, but with different soil moisture content, are equipped with moisture and temperature sensors, located at different depth in the soil, at the snow-soil interface and in the basal snowpack layer, and with glide shoes. The recorded data are related to the snow physical properties, measured by periodical investigations. In the deposition area, after a full-depth avalanche event occurred in March 2009, the mixed material was collected through snow avalanche coring, and a snow pit was dug in the deposit, in order to evaluate the quantity and the distribution of the material transported by the avalanche. First results show that the average density of the snow in the deposition zone was 624 kg m-3. The solid material was distributed mainly in the upper 5 cm of the avalanche deposit, with a mean concentration of the

  12. Design and TCAD simulation of double-sided pixelated low gain avalanche detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: gianfranco.dallabetta@unitn.it [Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Pancheri, Lucio [Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Boscardin, Maurizio [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Paternoster, Giovanni [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Piemonte, Claudio [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Cartiglia, Nicolo; Cenna, Francesca [INFN Sezione di Torino, Via P. Giuria 2, 10125 Torino (Italy); Bruzzi, Mara [Dipartimento di FIsica e Astronomia, Università di Firenze, and INFN Sezione di Firenze, Via Giovanni Sansone 1, 50019 Sesto Fiorentino (Italy)

    2015-10-01

    We introduce a double-sided variant of low gain avalanche detector, suitable for pixel arrays without dead-area in between the different read-out elements. TCAD simulations were used to validate the device concept and predict its performance. Different design options and selected simulation results are presented, along with the proposed fabrication process.

  13. Possible effects of ongoing and predicted climate change on snow avalanche activity in western Norway

    Science.gov (United States)

    Laute, Katja; Beylich, Achim A.

    2016-04-01

    As snow avalanche formation is mainly governed by meteorological conditions as, e.g., air temperature fluctuations, heavy precipitation and wind conditions, it is likely that the frequency and magnitude of both ordinary and extreme snow avalanche events is modified through the documented effects of current and future climate change. In the Northern Hemisphere, 1983-2013 was likely the warmest 30-year period of the last 1400 years (IPCC, 2013). Meteorological records of western Norway show the general trend that the last 100 years, especially the last three decades, have been warmer and wetter than the time periods before. However, it is not evident that snow avalanche activity will increase in the near future. Today, the number of studies assessing the impact of climate change on the occurrence and magnitude of snow avalanches is limited. This work focuses on recent and possible future effects of climate change on snow avalanche activity along the western side of the Jostedalsbreen ice cap representing one of the areas with the highest snow avalanche activity in entire Norway. We have analyzed long-term homogenized meteorological data from five meteorological stations in different elevations above sea level, three of them with a long-term record of 120 years (1895-2015). In addition to the statistical analyses of long-term datasets, gained results and insights from a four-year (2009-2012) high-resolution snow avalanche monitoring study conducted in the same study area are incorporated. The statistical analyses of mean monthly air temperature, monthly precipitation sums and mean monthly snow depths showed that there is a trend of increasing air temperatures and precipitation sums whereas no clear trend was found for mean snow depths. Magnitude-frequency analyses conducted for three defined time intervals (120, 90, 60 years) of monthly precipitation sums exhibit an increase of precipitation especially during the last 30 years with the tendency that more precipitation

  14. Low-temperature-dependent property in an avalanche photodiode based on GaN/AlN periodically-stacked structure

    Science.gov (United States)

    Zheng, Jiyuan; Wang, Lai; Yang, Di; Yu, Jiadong; Meng, Xiao; Hao, Zhibiao; Sun, Changzheng; Xiong, Bing; Luo, Yi; Han, Yanjun; Wang, Jian; Li, Hongtao; Li, Mo; Li, Qian

    2016-01-01

    In ultra-high sensitive APDs, a vibrate of temperature might bring a fatal decline of the multiplication performance. Conventional method to realize a temperature-stable APD focuses on the optimization of device structure, which has limited effects. While in this paper, a solution by reducing the carrier scattering rate based on an GaN/AlN periodically-stacked structure (PSS) APD is brought out to improve temperature stability essentially. Transport property is systematically investigated. Compared with conventional GaN homojunction (HJ) APDs, electron suffers much less phonon scatterings before it achieves ionization threshold energy and more electrons occupy high energy states in PSS APD. The temperature dependence of ionization coefficient and energy distribution is greatly reduced. As a result, temperature stability on gain is significantly improved when the ionization happens with high efficiency. The change of gain for GaN (10 nm)/AlN (10 nm) PSS APD from 300 K to 310 K is about 20% lower than that for HJ APD. Additionally, thicker period length is found favorable to ionization coefficient ratio but a bit harmful to temperature stability, while increasing the proportion of AlN at each period in a specific range is found favorable to both ionization coefficient ratio and temperature stability. PMID:27775088

  15. Receiver Performance of CO2 and CH4 Lidar with Low Noise HgCdTe Avalanche Photodiodes

    Science.gov (United States)

    Sun, X.; Abshire, J. B.

    2012-12-01

    NASA Goddard Space Flight Center (GSFC) is currently developing CO2 lidars at 1.57 μm wavelength for the Active Sensing of CO2 Emission over Days, Nights, and Seasons (ASCENDS) mission. One of the major technical challenges is the photodetectors that have to operate in short wave infrared (SWIR) wavelength region and sensitive to received laser pulses of only a few photons. We have been using InGaAs photocathode photomultiplier tubes (PMT) in our airborne simulator of the CO2 lidar that can detect single photon with up to 10% quantum efficiency at photodetector for our CO2 lidars. The new HgCdTe APDs have typically a >50% quantum efficiency, including the effect of fill-factor, from 0.9 to 4.5 μm wavelength. DRS RSTA will integrate a low noise read-out integrated circuit (ROIC) with the HgCdTe APD array into a low noise analog SWIR detector with near single photon sensitivity. The new HgCdTe APD SWIR detector assembly is expected to improve the receiver sensitivity of our CO2 lidar by at least a factor of two and provide a sufficient wide signal dynamic range. The new SWIR detector systems can also be used in the CH4 lidars at 1.65 μm wavelength currently being developed at GSFC. The near infrared PMTs have diminishing quantum efficiency as the wavelength exceeds 1.6 μm. InGaAs APDs have a high quantum efficiency but too high an excess noise factor to achieve near quantum limited performance. The new HgCdTe APDs is expected to give a much superior performance than the PMTs and the InGaAs APDs. In this paper, we will give a brief description of the new HgCdTe APD assembly and present a receiver performance analysis of our CO2 lidar and a CH4 lidar with the new detector system in comparison to the near infrared PMTs and InGaAs APDs.

  16. The Vaigat Rock Avalanche Laboratory, west-central Greenland

    Science.gov (United States)

    Dunning, S.; Rosser, N. J.; Szczucinski, W.; Norman, E. C.; Benjamin, J.; Strzelecki, M.; Long, A. J.; Drewniak, M.

    2013-12-01

    Rock avalanches have unusually high mobility and pose both an immediate hazard, but also produce far-field impacts associated with dam breach, glacier collapse and where they run-out into water, tsunami. Such secondary hazards can often pose higher risks than the original landslide. The prediction of future threats posed by potential rock avalanches is heavily reliant upon understanding of the physics derived from an interpretation of deposits left by previous events, yet drawing comparisons between multiple events is normally challenging as interactions with complex mountainous terrain makes deposits from each event unique. As such numerical models and the interpretation of the underlying physics which govern landslide mobility is commonly case-specific and poorly suited to extrapolation beyond the single events the model is tuned to. Here we present a high-resolution LiDAR and hyperspectral dataset captured across a unique cluster of large rock avalanche source areas and deposits in the Vaigat straight, west central Greenland. Vaigat offers the unprecedented opportunity to model a sample of > 15 rock avalanches of various age sourced from an 80 km coastal escarpment. At Vaigat many of the key variables (topography, geology, post-glacial history) are held constant across all landslides providing the chance to investigate the variations in dynamics and emplacement style related to variable landslide volume, drop-heights, and thinning/spreading over relatively simple, unrestricted run-out zones both onto land and into water. Our data suggest that this region represents excellent preservation of landslide deposits, and hence is well suited to calibrate numerical models of run out dynamics. We use this data to aid the interpretation of deposit morphology, structure lithology and run-out characteristics in more complex settings. Uniquely, we are also able to calibrate our models using a far-field dataset of well-preserved tsunami run-up deposits, resulting from the 21

  17. GIS FOR PREDICTING THE AVALANCHE ZONES IN THE MOUNTAIN REGIONS OF KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Zh. T. Omirzhanova

    2015-10-01

    Full Text Available Foothills of Trans Ili Alatau is a recreational area with buildings and sports facilities and resorts, sanatoriums, etc. In summer and winter there are a very large number of skiers, climbers, tourists and workers of organizations which located in the mountains. In this regard, forecasting natural destructive phenomena using GIS software is an important task of many scientific fields. The formation of avalanches, except meteorological conditions, such as temperature, wind speed, snow thickness, especially affecting mountainous terrain. Great importance in the formation of avalanches play steepness (slope of the slope and exposure. If steep slopes contribute to the accumulation of snow in some places, increase the risk of flooding of the slope, the various irregularities can delay an avalanche. According to statistics, the bulk of the avalanche is formed on the slopes steeper than 30°. In the course of research a 3D model of the terrain was created with the help of programs ArcGIS and Surfer. Identified areas with steep slopes, the exposure is made to the cardinal. For dangerous terrain location is divided into three groups: favorable zone, danger zone and the zone of increased risk. The range of deviations from 30-45° is dangerous, since the angle of inclination of more than 30°, there is a maximum thickness of sliding snow, water, the upper layer of the surface and there is an increase rate of moving array, and the mountain slopes at an angle 450 above are the area increased risk. Created on DTM data are also plotted Weather Service for the winter of current year. The resulting model allows to get information upon request and display it on map base, assess the condition of the terrain by avalanches, as well as to solve the problem of life safety in mountainous areas, to develop measures to prevent emergency situations and prevent human losses.

  18. GIS for Predicting the Avalanche Zones in the Mountain Regions of Kazakhstan

    Science.gov (United States)

    Omirzhanova, Zh. T.; Urazaliev, A. S.; Aimenov, A. T.

    2015-10-01

    Foothills of Trans Ili Alatau is a recreational area with buildings and sports facilities and resorts, sanatoriums, etc. In summer and winter there are a very large number of skiers, climbers, tourists and workers of organizations which located in the mountains. In this regard, forecasting natural destructive phenomena using GIS software is an important task of many scientific fields. The formation of avalanches, except meteorological conditions, such as temperature, wind speed, snow thickness, especially affecting mountainous terrain. Great importance in the formation of avalanches play steepness (slope) of the slope and exposure. If steep slopes contribute to the accumulation of snow in some places, increase the risk of flooding of the slope, the various irregularities can delay an avalanche. According to statistics, the bulk of the avalanche is formed on the slopes steeper than 30°. In the course of research a 3D model of the terrain was created with the help of programs ArcGIS and Surfer. Identified areas with steep slopes, the exposure is made to the cardinal. For dangerous terrain location is divided into three groups: favorable zone, danger zone and the zone of increased risk. The range of deviations from 30-45° is dangerous, since the angle of inclination of more than 30°, there is a maximum thickness of sliding snow, water, the upper layer of the surface and there is an increase rate of moving array, and the mountain slopes at an angle 450 above are the area increased risk. Created on DTM data are also plotted Weather Service for the winter of current year. The resulting model allows to get information upon request and display it on map base, assess the condition of the terrain by avalanches, as well as to solve the problem of life safety in mountainous areas, to develop measures to prevent emergency situations and prevent human losses.

  19. X-ray imaging using avalanche multiplication in amorphous selenium: investigation of depth dependent avalanche noise.

    Science.gov (United States)

    Hunt, D C; Tanioka, Kenkichi; Rowlands, J A

    2007-03-01

    The past decade has seen the swift development of the flat-panel detector (FPD), also known as the active matrix flat-panel imager, for digital radiography. This new technology is applicable to other modalities, such as fluoroscopy, which require the acquisition of multiple images, but could benefit from some improvements. In such applications where more than one image is acquired less radiation is available to form each image and amplifier noise becomes a serious problem. Avalanche multiplication in amorphous selenium (a-Se) can provide the necessary amplification prior to read out so as to reduce the effect of electronic noise of the FPD. However, in direct conversion detectors avalanche multiplication can lead to a new source of gain fluctuation noise called depth dependent avalanche noise. A theoretical model was developed to understand depth dependent avalanche noise. Experiments were performed on a direct imaging system implementing avalanche multiplication in a layer of a-Se to validate the theory. For parameters appropriate for a diagnostic imaging FPD for fluoroscopy the detective quantum efficiency (DQE) was found to drop by as much as 50% with increasing electric field, as predicted by the theoretical model. This drop in DQE can be eliminated by separating the collection and avalanche regions. For example by having a region of low electric field where x rays are absorbed and converted into charge that then drifts into a region of high electric field where the x-ray generated charge undergoes avalanche multiplication. This means quantum noise limited direct conversion FPD for low exposure imaging techniques are a possibility.

  20. pSNOWPACK: a forecasting tool for avalanche warning services

    Directory of Open Access Journals (Sweden)

    S. Bellaire

    2011-08-01

    Full Text Available Avalanche danger is often estimated based on snow cover stratigraphy and snow stability data. In Canada, single forecasting regions are very large (>50 000 km2 and snow cover data are often not available. To provide additional information on the snow cover and its seasonal evolution the Swiss snow cover model SNOWPACK was therefore coupled with a regional weather forecasting model GEM15. We assess the capability of this model chain (pSNOWPACK to forecast three key factors of snow cover instability at a single point: new snow amounts, surface hoar formation and crust formation. The output of GEM15 was compared to meteorological data from Mt. Fidelity, British Columbia, Canada, for five winters between 2005 and 2010. Forecasted precipitation amounts were generally over-estimated. The forecasted data were therefore filtered and used as input for the snow cover model. Comparison between the model output and manual observations showed that after pre-processing the input data the snow depth, new snow events and amounts were well modelled. Relevant critical layers, i.e. melt-freeze crusts and surface hoar layers were reproduced. Overall, the model chain pSNOWPACK shows promising potential as a forecasting tool for avalanche warning services in Canadian data sparse areas and could thus well be applied to similarly large regions elsewhere.

  1. Applicability Of C-Band SAR Data For Characterization Of Avalanche Risk

    Science.gov (United States)

    Malnes, Eirik; Eckerstorfer, Marus; Haarpaintner, Jorg; Jonsson, Magni Hreinn; Grimsdottir, Harpa

    2013-12-01

    Snowpack stability in steep terrain is determined by the snowpack's seasonal development, influenced by external factors such as snow accumulation and wind drift, and internal factors such as temperature driven formation of snow layers. Of special interest is the creation of melt-freeze crusts and associated weak layers, above or beneath them. Due to fluctuating air temperatures, surface snow layers can become wet and consequently refreeze. The formed crusts, when buried, may act as sliding plans for avalanches. They can also act as vapor barriers within the snowpack, favoring the formation of faceted crystal layers. This process can be monitored with suitable meteorological stations at higher altitudes. However, such a network of meteorological stations is mostly lacking which makes it challenging to monitor melt-freeze cycles and their influence on avalanche activity. In this paper we demonstrate how we apply Radarsat-2 data to map wet snow in four avalanche prone areas in northern Europe. The areas are mapped as frequently as possible, and the time series of wet snow maps are subsequently used to analyze whether wet snow, as well as refrozen wet snow played a role in avalanche activity.

  2. Post-glacial rock avalanche causing epigenetic gorge incision (Strassberg gorge, Eastern Alps).

    Science.gov (United States)

    Sanders, Diethard

    2015-04-01

    In the western part of the Eastern Alps, the Strassberg gorge 1.5 km in length and down to 100 m in depth shows a marked asymmetry in height of its right/left brinklines. The gorge is incised into Upper Triassic dolostones, and parallels an older valley filled with Quaternary deposits. Upstream, the valley-fill consists of (a) glacial till (Last Glacial Maximum, LGM), overlain by (b) a rock avalanche deposit (RAD) at least a few tens of meters thick, and (c) alluvial deposits shed over the RAD (except for projecting boulders); the RAD is locally also downlapped by scree slopes. Downstream, the valley-fill consists of glacio-fluvial deposits overlain by LGM till and, on top, the RAD. The rock avalanche defaced from the west slope of mount Hohe Munde (2662 m asl), and consists exclusively of clasts of Wetterstein Limestone (Triassic p. p.). Rock avalanche defacement was tied to a system of NW-SE trending strike-slip faults (Telfs fault zone). The rock avalanche descended before the old valley was significantly cleared of glaciofluvial/glacial deposits of the LGM. On a plateau west of the present bedrock gorge, LGM till is veneered over a large area by RAD; the till and the RAD both were later involved in slumping. The RAD covers a total planview area of ~3.7 square kilometers. The fahrböschung of the rock avalanche is reconstructed between 16°-14.5°. In its proximal part, the rock avalanche propagated by dynamic fragmentation; in the distal part, propagation was by sheet-like 'plug flow', perhaps in part over a snow cover. The filling of the old valley by the RAD led to: (a) formation and filling of a small intramontane basin directly upstream, and (b) incision of the present Strassberg gorge along a course westward-parallel to the old valley. Mean rates of bedrock incision required to form the deepest reach of the present canyon range from 1 cm/a (since 10 ka) to 0.7 cm/a (since 15 ka). In the considered area, talus breccias of pre-LGM age locally show zones of

  3. Analogue modelling of rock avalanches and structural analysis of the deposits

    Science.gov (United States)

    Longchamp, C.; Charrière, M.; Jaboyedoff, M.

    2012-04-01

    Rock avalanches are catastrophic events in which granular masses of rock debris flow at high speeds, commonly with unusual runout. A great volume of material (>106 m3) is involved and the flowing mass can reach velocities up to ten meters per second. Rock avalanches can travel long distances on the order of kilometres and covering an area over 0.1 km2. These are extremely destructive and uncontrollable events. Due to the rarity of these events, analogue modelling plays a fundamental role in the understanding of the behaviour such events. The main objective of this research is to link the granular physics with the modelling of rock avalanches. Firstly, we attempt to model the debris avalanche and its spreading on a slope with different substratum to understand the relationship between the volume and the reach angle, or Fahrböschung, i.e. angle of the line joining the top of the scar and the end of the deposit. For a better understanding of the sliding mass motion and its spreading, the deposit is scanned with a micro Lidar Minolta. The different datasets are compared in order to see how the grainsize and volume influence a debris avalanche. In a general way, the travel distance is greater with coarse material and varies between 32° for the coarser grainsize and 37° for the finer one. It is interesting to note that the highest Fahrböschung, 41°, is reached for the highest slope angle (60°) and varies between 32 and 34.5° for a slope of 40°. Secondly, a detailed structural analysis of the deposit is performed in order to understand how the sliding mass stops. Several authors (e.g. Shea and van Wyk de Vries (2008)) highlighted that faults and folds are present in rock avalanches deposits and reproduced these features in analogue modelling. Our experiments are recorded by a height speed precision camera to see the development of these structures during the flowing of the mass. The most important impacts of this study is a better understanding of the effects of

  4. Depth Averaged Equations Applied To Study of Defense Structures Effects On Dense Avalanche Flows

    Science.gov (United States)

    Naaim, M.; Bouvet-Naaim, F.; Faug, T.; Lachamp, P.

    Avalanche zoning and protection devices are the complementary tools used to assess avalanche risk and protect persons and human activities in mountainous areas. Despite the intensive use of defense structures as protection against avalanches, their hydraulic and structural effects are not well known. Many structures were designed empirically using expert knowledge or knowledge developed in other domain such as hydraulic. Defence structures effects in terms of energy dissipation, deviation and snow retention are difficult to study in situ. The cost and difficulties of experiments, the danger and the weak annual number of avalanches in a given site, are the reasons why scientists oriented their research towards the use of numerical or laboratory physical models. This paper presents and discuss the possibilities to use depth averaged equations to study dense avalanche flows around defence structures. The used numerical resolu- tion method is based on an upwind numerical scheme. Equations are integrated on each cell of the mesh and the numerical fluxes are calculated thanks to a simplified Riemann solver where the retained solution is obtained as a combination of shock and rarefaction founctions. This allows taking into account the topography variation and jets and surges presence. These two characteristics are needed because both exper- imental and in situ observations showed a significant topography modifications and jets and surges formations during interaction between avalanche flows and structures. The case of vertical surfaces such as those made of concrete destined to deviate flows are treated by appropriated boundary condition functions. A discussion about the best way to integrate defence structures in such model is presented and discussed. This modelisation has, in a first time, been tested on analytical solutions and on experimen- tal laboratory scale model results. These tests have shown the capacity of this model, despite the strong hypothesis, to

  5. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    Science.gov (United States)

    Ohno, M.; Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K.; Wada, Y.; Nakazawa, K.; Mimura, T.; Kataoka, J.; Ichinohe, Y.; Uchida, Y.; Katsuragawa, M.; Yoneda, H.; Sato, G.; Sato, R.; Kawaharada, M.; Harayama, A.; Odaka, H.; Hayashi, K.; Ohta, M.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Takeda, S.; Kinoshita, M.; Yamaoka, K.; Tajima, H.; Yatsu, Y.; Uchiyama, H.; Saito, S.; Yuasa, T.; Makishima, K.

    2016-09-01

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5-80 keV) and soft gamma-rays (60-600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector.

  6. Low-energy X-ray and gamma spectrometry using silicon photodiodes; Espectrometria de raios X e gama de baixa energia utilizando fotodiodos de silicio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Iran Jose Oliveira da

    2000-08-01

    The use of semiconductor detectors for radiation detection has increased in recent years due to advantages they present in comparison to other types of detectors. As the working principle of commercially available photodiodes is similar to the semiconductor detector, this study was carried out to evaluate the use of Si photodiodes for low energy x-ray and gamma spectrometry. The photodiodes investigated were SFH-205, SFH-206, BPW-34 and XRA-50 which have the following characteristics: active area of 0,07 cm{sup 2} and 0,25 cm{sup 2}, thickness of the depletion ranging from 100 to 200 {mu}m and junction capacitance of 72 pF. The photodiode was polarized with a reverse bias and connected to a charge sensitive pre-amplifier, followed by a amplifier and multichannel pulse analyzer. Standard radiation source used in this experiment were {sup 241} Am, {sup 109} Cd, {sup 57} Co and {sup 133} Ba. The X-ray fluorescence of lead and silver were also measured through K- and L-lines. All the measurements were made with the photodiodes at room temperature.The results show that the responses of the photodiodes very linear by the x-ray energy and that the energy resolution in FWHM varied between 1.9 keV and 4.4 keV for peaks corresponding to 11.9 keV to 59 keV. The BPW-34 showed the best energy resolution and the lower dark current. The full-energy peak efficiency was also determined and it was observed that the peak efficiency decreases rapidly above 50 keV. The resolution and efficiency are similar to the values obtained with other semiconductor detectors, evidencing that the photodiodes used in that study can be used as a good performance detector for low energy X-ray and gamma spectrometry. (author)

  7. Avalanche-to-streamer transition near hydrometeors in thunderstorms

    Science.gov (United States)

    Rutjes, Casper; Dubinova, Anna; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Trinh, Gia

    2016-04-01

    In the early phase of lightning initiation, streamers must form near water droplets and or ice crystals, collectively called hydrometeors, as it is generally believed that the electric fields in a thunderstorm are below classical breakdown [1]. The hydrometeors, due to their dielectric property, electrically polarize and will enhance the thunderstorm electric field in localized areas just outside the surface, potentially above breakdown. Available electrons, from for example a cosmic ray event, are drawn towards the positive side of the polarized hydrometeor. Some electrons reach the localized area above breakdown, while oxygen molecules have absorbed others. In the area above breakdown electrons begin to multiply in number, creating electron avalanches towards the surface, leaving positive ions behind. This results in a charge separation, which potentially can initiate a positive streamer. The final outcome however strongly depends on several parameters, such as the strength of the thunderstorm electric field, the size and shape of the hydrometeor and the initial amount of electrons. In our letter [1] we introduced a dimensionless quantity M that we call the Meek number, based on the historical and well-used Reather-Meek criterion [2], as a measure of how likely it is to create an avalanche-to-streamer transition near a hydrometeor. Results from simulations showed that streamers can start in a field of only 15% of breakdown from large elongated shaped hydrometeors. Now we extended and generalized our method to arbitrary shaped hydrometeors and we take into account that potentially several electrons can reach the area above breakdown. Due to these effects we can predict smaller hydrometeors to be able to start streamers. We will present the latest results. [1] Dubinova, A., Rutjes, C., Ebert, U., Buitink, S., Scholten, O., & Trinh, G. T. N. (2015). Prediction of lightning inception by large ice particles and extensive air showers. Physical review letters, 115

  8. Single electron multiplication distribution in GEM avalanches

    CERN Document Server

    Laszlo, Andras; Kiss, Gabor; Varga, Dezso

    2016-01-01

    In this paper measurement results and experimental methodology is presented on the determination of multiplication distributions of avalanches in GEM foils initiated by a single electron. The measurement relies on the amplification of photoelectrons by the GEM under study, which is subsequently amplified in an MWPC. The intrinsic detector resolution, namely the sigma over mean ratio of this distribution is also elaborated. Small gain dependence of the avalanche size is observed in the range of net effective gain of 15 to 100. The distribution has an exponentially decaying tail at large amplitudes, whereas the applied working gas is seen to have a well visible effect on the shape of the multiplication distribution at low amplitudes; or equivalently, the working gas has an influence on the intrinsic detector resolution of GEMs via suppression of the low amplitude responses. A sigma over mean ratio down to 0.75 was reached using neon based mixture, whereas other gases provided an intrinsic detector resolution cl...

  9. Avalanches in functional materials and geophysics

    CERN Document Server

    Saxena, Avadh; Planes, Antoni

    2017-01-01

    This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.

  10. Do Neural Avalanches Indicate Criticality After All?

    CERN Document Server

    Dehghani, Mohammad; Shahbazi, Farhad

    2016-01-01

    Neural avalanches in size and duration exhibit a power law distribution illustrating as a straight line when plotted on the logarithmic scales. The power-law exponent is interpreted as the signature of criticality and it is assumed that the resting brain operates near criticality. However, there is no clear evidence that supports this assumption, and even there are extensive research studies conflicting one another. The model of the current paper is an extension of a previous publication wherein we used an integrate-and-fire model on a regular lattice with periodic boundary conditions and introduced the temporal complexity as a genuine signature of criticality. However, in that model the power-law distribution of neural avalanches were manifestation of super-criticality rather than criticality. Here, however, we show that replacing the discrete noise in the model with a Gaussian noise and continuous time solution of the equation leads to coincidence of temporal complexity and spatiotemporal patterns of neural...

  11. Fractal properties of LED avalanche breakdown

    Directory of Open Access Journals (Sweden)

    Antonina S. Shashkina

    2016-12-01

    Full Text Available The conventional model of the processes occurring in the course of a p–n-junction's partial avalanche breakdown has been analyzed in this paper. Microplasma noise spectra of industrially produced LEDs were compared with those predicted by the model. It was established that the data obtained experimentally on reverse-biased LEDs could not be described in terms of this model. The degree to which the fractal properties were pronounced was shown to be variable by changing the reverse voltage. The discovered fractal properties of microplasma noise can serve as the basis for further studies which are bound to explain the breakdown characteristics of real LEDs and to correct the conventional model of p–n-junction's avalanche breakdown.

  12. Electrothermal simulation of superconducting nanowire avalanche photodetectors

    Science.gov (United States)

    Marsili, Francesco; Najafi, Faraz; Herder, Charles; Berggren, Karl K.

    2011-02-01

    We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.

  13. A two-dimensional model for the dynamics of granular avalanches

    OpenAIRE

    2005-01-01

    Zoning of avalanche risk areas is one important task of land-use planning in alpine areas. The lack of records, due to the low frequency of these events, makes it dicult to implement a statistical analysis. Simulations made with physical and mathematical models can improve the knowledge of the dynamics of these events. In this thesis three didifferent mathematical and numerical models, based on the rheological theory of Savage and Hutter for granular flows, are introduced. A one dimensi...

  14. Edge effect on the power law distribution of granular avalanches.

    Science.gov (United States)

    Lorincz, Kinga A; Wijngaarden, Rinke J

    2007-10-01

    Many punctuated phenomena in nature are claimed [e.g., by the theory of self-organized criticality (SOC)] to be power-law distributed. In our experiments on a three-dimensional pile of long-grained rice, we find that by only changing the boundary condition of the system, we switch from such power-law-distributed avalanche sizes to quasiperiodic system-spanning avalanches. Conversely, by removing ledges the incidence of system-spanning avalanches is significantly reduced. This may offer a perspective on new avalanche prevention schemes. In addition, our findings may help to explain why the archetype of SOC, the sandpile, was found to have power-law-distributed avalanches in some experiments, while in other experiments quasiperiodic system-spanning avalanches were found.

  15. Modelling avalanche danger and understanding snow depth variability

    OpenAIRE

    2010-01-01

    This thesis addresses the causes of avalanche danger at a regional scale. Modelled snow stratigraphy variables were linked to [1] forecasted avalanche danger and [2] observed snowpack stability. Spatial variability of snowpack parameters in a region is an additional important factor that influences the avalanche danger. Snow depth and its change during individual snow fall periods are snowpack parameters which can be measured at a high spatial resolution. Hence, the spatial distribution of sn...

  16. Applications of a silicon photodiode detector for radon progeny measurements

    CERN Document Server

    Voytchev, M; Chambaudet, A; Georgiev, G; Iovtchev, M

    1999-01-01

    An application of our developed silicon photodiode detector for radon progeny measurements is presented in this paper. It was determined the deposition velocity for free (3.6+-0.7)x10 sup - sup 3 m s sup - sup 1 and attached (1.0+-0.5)x10 sup - sup 5 m s sup - sup 1 fraction of short living radon progeny.

  17. Fundamental Characteristics of a Pinned Photodiode CMOS Pixels

    NARCIS (Netherlands)

    Xu, Y.

    2015-01-01

    This thesis gives an insightful analysis of the pinned photodiode 4T CMOS pixel from three different aspects. Firstly, from the charge accumulated aspect, the PPD full well capacity and related parameters of influence are investigated such as the pinning voltage, and transfer gate potential barrier.

  18. BiCMOS-integrated photodiode exploiting drift enhancement

    Science.gov (United States)

    Swoboda, Robert; Schneider-Hornstein, Kerstin; Wille, Holger; Langguth, Gernot; Zimmermann, Horst

    2014-08-01

    A vertical pin photodiode with a thick intrinsic layer is integrated in a 0.5-μm BiCMOS process. The reverse bias of the photodiode can be increased far above the circuit supply voltage, enabling a high-drift velocity. Therefore, a highly efficient and very fast photodiode is achieved. Rise/fall times down to 94 ps/141 ps at a bias of 17 V were measured for a wavelength of 660 nm. The bandwidth was increased from 1.1 GHz at 3 V to 2.9 GHz at 17 V due to the drift enhancement. A quantum efficiency of 85% with a 660-nm light was verified. The technological measures to avoid negative effects on an NPN transistor due to the Kirk effect caused by the low-doped I-layer epitaxy are described. With a high-energy collector implant, the NPN transit frequency is held above 20 GHz. CMOS devices are unaffected. This photodiode is suitable for a wide variety of high-sensitivity optical sensor applications, for optical communications, for fiber-in-the-home applications, and for optical interconnects.

  19. Reading a CD-ROM without a photodiode

    Science.gov (United States)

    Wishon, Michael J.; Mourozeau, G.; Ng, K.; Sahai, A. A.; Locquet, Alexandre; Citrin, D. S.

    2016-04-01

    We use a laser diode from a commercial CD/DVD-ROM drive to detect changes in the surface of a diffraction grating without a photodiode. Specifically, we exploit the changing terminal voltage in the laser-diode due to changing feedback strength as the laser is rastered across the grating's surface.

  20. Noise and oscillations in gold-doped germanium photodiodes

    NARCIS (Netherlands)

    Bolwijn, P.T.; Rijst, C. v. d.; Ast, W.G. van; Lam, T.

    1967-01-01

    Considerable noise effects in excess of shot noise and oscillations found in commercially available, gold-doped germanium photodiodes have been investigated. The noise and oscillation effects occur in the photocurrent of reversely biased diodes at temperatures below about 100°K. The dependence of th

  1. An evaluation of the new compact hybrid photodiodes R7110U-07/40 from Hamamatsu in high-speed light detection mode

    CERN Document Server

    Mirzoyan, R; Lorenz, E

    2000-01-01

    The main parameters of hybrid photodiodes (HPD) are constantly improving. In the new 20 mm diameter HPDs from Hamamatsu an avalanche diode (AD) serves as anode. Due to high gain of the used ADs the HPDs show a total gain of 6-8x10 sup 4 at nominal HV. This allows one to use HPDs with very fast low-noise voltage amplifiers and to detect fast pulses (down to the single photoelectron level) with very good amplitude resolution. Of special interest are HPDs of the type R7110U-40 with GaAsP photocathode which provide a quantum efficiency of approx 40% in maximum at approx 500 nm. Results on the evaluation of the above-mentioned HPDs and their comparison with HPDs from INTEVAC will be presented.

  2. High-density avalanche chambers for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Manfrass, P.; Enghardt, W.; Fromm, W.D.; Wohlfarth, D.; Hohmuth, K.

    1988-12-15

    A positron tomograph for radiopharmaceutical and medical research is under construction. In its final stage it will cover six high-density avalanche chambers (HIDAC) in a hexagonal arrangement. Each detector with a sensitive area of 50x28 cm/sup 2/ will consist of a stack of four pairs of multihole photon-to-electron converters with a multiwire proportional counter (MWPC) in between. An experimental investigation of detector properties as time and spatial resolutions as well as detector efficiency in dependence to converter structure, electric field strength and counting gas mixture preceded the final design of these detectors. Results of these studies are outlined. Furthermore, longitudinal tomograms taken with a stationary test camera are presented.

  3. Linear array of photodiodes to track a human speaker for video recording

    Science.gov (United States)

    DeTone, D.; Neal, H.; Lougheed, R.

    2012-12-01

    Communication and collaboration using stored digital media has garnered more interest by many areas of business, government and education in recent years. This is due primarily to improvements in the quality of cameras and speed of computers. An advantage of digital media is that it can serve as an effective alternative when physical interaction is not possible. Video recordings that allow for viewers to discern a presenter's facial features, lips and hand motions are more effective than videos that do not. To attain this, one must maintain a video capture in which the speaker occupies a significant portion of the captured pixels. However, camera operators are costly, and often do an imperfect job of tracking presenters in unrehearsed situations. This creates motivation for a robust, automated system that directs a video camera to follow a presenter as he or she walks anywhere in the front of a lecture hall or large conference room. Such a system is presented. The system consists of a commercial, off-the-shelf pan/tilt/zoom (PTZ) color video camera, a necklace of infrared LEDs and a linear photodiode array detector. Electronic output from the photodiode array is processed to generate the location of the LED necklace, which is worn by a human speaker. The computer controls the video camera movements to record video of the speaker. The speaker's vertical position and depth are assumed to remain relatively constant- the video camera is sent only panning (horizontal) movement commands. The LED necklace is flashed at 70Hz at a 50% duty cycle to provide noise-filtering capability. The benefit to using a photodiode array versus a standard video camera is its higher frame rate (4kHz vs. 60Hz). The higher frame rate allows for the filtering of infrared noise such as sunlight and indoor lighting-a capability absent from other tracking technologies. The system has been tested in a large lecture hall and is shown to be effective.

  4. TCAD simulation of Low Gain Avalanche Detectors

    Science.gov (United States)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh; Ranjan, Kirti

    2016-11-01

    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  5. Avalanche Effect in Improperly Initialized CAESAR Candidates

    Directory of Open Access Journals (Sweden)

    Martin Ukrop

    2016-12-01

    Full Text Available Cryptoprimitives rely on thorough theoretical background, but often lack basic usability features making them prone to unintentional misuse by developers. We argue that this is true even for the state-of-the-art designs. Analyzing 52 candidates of the current CAESAR competition has shown none of them have an avalanche effect in authentication tag strong enough to work properly when partially misconfigured. Although not directly decreasing their security profile, this hints at their security usability being less than perfect. Paper details available at crcs.cz/papers/memics2016

  6. Bilayer avalanche spin-diode logic

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Joseph S., E-mail: joseph.friedman@u-psud.fr; Querlioz, Damien [Institut d’Electronique Fondamentale, Univ. Paris-Sud, CNRS, 91405 Orsay (France); Fadel, Eric R. [Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wessels, Bruce W. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208 (United States); Sahakian, Alan V. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 (United States)

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  7. Mapping snow avalanche risk using GIS technique and 3D modeling in Ceahlau Mountain

    Science.gov (United States)

    Covasnianu, A.; Grigoras, I. R.; State, L. E.; Balin, D.; Hogas, S.; Balin, I.

    2009-04-01

    This study consisted in a precise mapping project (GPS field campaign and on-screen digitization of the topographic maps at 1:5.000 scale) of the Ceahlau mountain area in Romanian Carpathians in order to address the snow avalanche risk management, surveying and monitoring. Thus we considered the slope, aspect, altitude, landforms and roughness derived from a high resolute numerical terrain model (31 km2 at 1: 5.000 scale resulted in a spatial resolution of 3 m by the help of Topo to Raster tool). These parameters were classified according to a model applied into Tatra Mountains and used over Ceahlau Massive. The results were adapted and interpreted considering to the European Avalanche Hazard Scale. This work was made in the context of the elaboration of Risk Map and is directly concerning both the security of tourism activities but also the management of the Natural Park Ceahlau. The extension of this method to similar mountain areas is ongoing.

  8. Validation of DEM prediction for granular avalanches on irregular terrain

    Science.gov (United States)

    Mead, Stuart R.; Cleary, Paul W.

    2015-09-01

    Accurate numerical simulation can provide crucial information useful for a greater understanding of destructive granular mass movements such as rock avalanches, landslides, and pyroclastic flows. It enables more informed and relatively low cost investigation of significant risk factors, mitigation strategy effectiveness, and sensitivity to initial conditions, material, or soil properties. In this paper, a granular avalanche experiment from the literature is reanalyzed and used as a basis to assess the accuracy of discrete element method (DEM) predictions of avalanche flow. Discrete granular approaches such as DEM simulate the motion and collisions of individual particles and are useful for identifying and investigating the controlling processes within an avalanche. Using a superquadric shape representation, DEM simulations were found to accurately reproduce transient and static features of the avalanche. The effect of material properties on the shape of the avalanche deposit was investigated. The simulated avalanche deposits were found to be sensitive to particle shape and friction, with the particle shape causing the sensitivity to friction to vary. The importance of particle shape, coupled with effect on the sensitivity to friction, highlights the importance of quantifying and including particle shape effects in numerical modeling of granular avalanches.

  9. Avalanches mediate crystallization in a hard-sphere glass.

    Science.gov (United States)

    Sanz, Eduardo; Valeriani, Chantal; Zaccarelli, Emanuela; Poon, Wilson C K; Cates, Michael E; Pusey, Peter N

    2014-01-07

    By molecular-dynamics simulations, we have studied the devitrification (or crystallization) of aged hard-sphere glasses. First, we find that the dynamics of the particles are intermittent: Quiescent periods, when the particles simply "rattle" in their nearest-neighbor cages, are interrupted by abrupt "avalanches," where a subset of particles undergo large rearrangements. Second, we find that crystallization is associated with these avalanches but that the connection is not straightforward. The amount of crystal in the system increases during an avalanche, but most of the particles that become crystalline are different from those involved in the avalanche. Third, the occurrence of the avalanches is a largely stochastic process. Randomizing the velocities of the particles at any time during the simulation leads to a different subsequent series of avalanches. The spatial distribution of avalanching particles appears random, although correlations are found among avalanche initiation events. By contrast, we find that crystallization tends to take place in regions that already show incipient local order.

  10. Avalanche Statistics of Driven Granular Slides in a Miniature Mound

    CERN Document Server

    Juanico, D E; Batac, R; Monterola, C

    2008-01-01

    We examine avalanche statistics of rain- and vibration-driven granular slides in miniature soil mounds using experimental and numerical approaches. A crossover from power-law to non power-law avalanche-size statistics is demonstrated as a generic driving rate $\

  11. Quantification of basal friction for glide-snow avalanche mitigation measures in forested and non-forested terrain

    Directory of Open Access Journals (Sweden)

    T. Feistl

    2014-04-01

    Full Text Available A long-standing problem in avalanche engineering is to design defense structures and manage forest stands such that they can withstand the forces of the natural snow cover. In this way glide-snow avalanches can be prevented. Ground friction plays a crucial role in this process. To verify existing guidelines, we collected data on the vegetation cover and terrain characteristics of 101 glide-snow release areas in Davos, Switzerland. We quantified the Coulomb friction parameter μ by applying a physical model that accounts for the dynamic forces of the moving snow on the stauchzone. We investigated the role of glide length, slope steepness and friction on avalanche release. Our calculations revealed that the slope angle and slab length for smooth slopes corresponds to the technical guidelines for defense structure distances in Switzerland. Artificial defense structures, built in accordance with guidelines, prevent glide-snow avalanche releases, even when the terrain is smooth. Slopes over 40 m length and 45° steepness require a ground friction of μ = 0.7 corresponding to stumps or tree regeneration to assure protection. Forest management guidelines which define maximum forest gap sizes to prevent glide-snow avalanche release neglect the role of surface roughness and therefore underestimate the danger on smooth slopes.

  12. Modelisation de photodetecteurs a base de matrices de diodes avalanche monophotoniques pour tomographie d'emission par positrons

    Science.gov (United States)

    Corbeil Therrien, Audrey

    La tomographie d'emission par positrons (TEP) est un outil precieux en recherche preclinique et pour le diagnostic medical. Cette technique permet d'obtenir une image quantitative de fonctions metaboliques specifiques par la detection de photons d'annihilation. La detection des ces photons se fait a l'aide de deux composantes. D'abord, un scintillateur convertit l'energie du photon 511 keV en photons du spectre visible. Ensuite, un photodetecteur convertit l'energie lumineuse en signal electrique. Recemment, les photodiodes avalanche monophotoniques (PAMP) disposees en matrice suscitent beaucoup d'interet pour la TEP. Ces matrices forment des detecteurs sensibles, robustes, compacts et avec une resolution en temps hors pair. Ces qualites en font un photodetecteur prometteur pour la TEP, mais il faut optimiser les parametres de la matrice et de l'electronique de lecture afin d'atteindre les performances optimales pour la TEP. L'optimisation de la matrice devient rapidement une operation difficile, car les differents parametres interagissent de maniere complexe avec les processus d'avalanche et de generation de bruit. Enfin, l'electronique de lecture pour les matrices de PAMP demeure encore rudimentaire et il serait profitable d'analyser differentes strategies de lecture. Pour repondre a cette question, la solution la plus economique est d'utiliser un simulateur pour converger vers la configuration donnant les meilleures performances. Les travaux de ce memoire presentent le developpement d'un tel simulateur. Celui-ci modelise le comportement d'une matrice de PAMP en se basant sur les equations de physique des semiconducteurs et des modeles probabilistes. Il inclut les trois principales sources de bruit, soit le bruit thermique, les declenchements intempestifs correles et la diaphonie optique. Le simulateur permet aussi de tester et de comparer de nouvelles approches pour l'electronique de lecture plus adaptees a ce type de detecteur. Au final, le simulateur vise a

  13. GIS FOR PREDICTING THE AVALANCHE ZONES IN THE MOUNTAIN REGIONS OF KAZAKHSTAN

    OpenAIRE

    2015-01-01

    Foothills of Trans Ili Alatau is a recreational area with buildings and sports facilities and resorts, sanatoriums, etc. In summer and winter there are a very large number of skiers, climbers, tourists and workers of organizations which located in the mountains. In this regard, forecasting natural destructive phenomena using GIS software is an important task of many scientific fields. The formation of avalanches, except meteorological conditions, such as temperature, wind speed, snow thicknes...

  14. Avalanche behavior of power MOSFETs under different temperature conditions

    Institute of Scientific and Technical Information of China (English)

    Lu Jiang; Wang Lixin; Lu Shuojin; Wang Xuesheng; Han Zhengsheng

    2011-01-01

    The ability of high-voltage power MOSFETs to withstand avalanche events under different temperature conditions are studied by experiment and two-dimensional device simulation. The experiment is performed to investigate dynamic avalanche failure behavior of the domestic power MOSFETs which can occur at the rated maximum operation temperature range (-55 to 150 ℃). An advanced ISE TCAD two-dimensional mixed mode simulator with thermodynamic non-isothermal model is used to analyze the avalanche failure mechanism. The unclamped inductive switching measurement and simulation results show that the parasitic components and thermal effect inside the device will lead to the deterioration of the avalanche reliability of power MOSFETs with increasing temperature. The main failure mechanism is related to the parasitic bipolar transistor activity during the occurrence of the avalanche behavior.

  15. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.

    2011-04-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  16. Design, fabrication and physical analysis of TiN/AlN deep UV photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Barkad, H A; Soltani, A; Mattalah, M; Gerbedoen, J-C; Rousseau, M; De Jaeger, J-C [IEMN, UMR-CNRS 8520, Avenue Poincare, Universite de Lille1, 59652 Villeneuve d' Ascq (France); BenMoussa, A [Royal Observatory of Belgium (ROB, STCE), Circular 3, B-1180 Brussels (Belgium); Mortet, V; Haenen, K [Institute for Materials Research, Hasselt University, Wetenschapark 1, B-3590 Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Wetenschapark 1, B-3590 Diepenbeek (Belgium); Benbakhti, B [DEEE, Rankine Building, Oakfield Avenue. University of Glasgow, G12 8LT Glasgow, Scotland (United Kingdom); Moreau, M [LASIR, USTL, C5, BP 69, 59652 Villeneuve d' Ascq Cedex (France); Dupuis, R [CCS-SECE, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA 30332-0250 (United States); Ougazzaden, A, E-mail: ali.soltani@iemn.univ-lille1.f [Georgia Tech-Lorraine (GTL), UMI 2958 GT-CNRS, 2-3 rue Marconi, 57070 Metz (France)

    2010-11-24

    Deep-ultraviolet solar-blind photodiodes based on high-quality AlN films grown on sapphire substrates with a metal-semiconductor-metal configuration were simulated and fabricated. The Schottky contact is based on TiN metallization. The material is characterized by the micro-Raman spectroscopy and x-ray diffraction technique. The detector presents an extremely low dark current of 100 fA at -100 V dc bias for large device area as high as 3.1 mm{sup 2}. It also exhibits a rejection ratio between 180 and 300 nm of three orders of magnitude with a very sharp cut-off wavelength at 203 nm ({approx}6.1 eV). The simulation to optimize the photodiode topology is based on a 2D energy-balance model using the COMSOL (registered) software. Simulation performed for different spacing for a given bias between electrodes show that a compromise must be found between the dark current and the responsivity for the optimization of the device performance. The measurement results are in good agreement with the model predictions.

  17. Vertically illuminated TW-UTC photodiodes for terahertz generation

    Science.gov (United States)

    Barrientos Z., Claudio M.; Calle G., Victor H.; Alvarez, Jaime A.; Mena, F. Patricio; Vukusic, Josip; Stake, Jan; Michael, Ernest A.

    2012-09-01

    More efficient and powerful continuous-wave photonic mixers as terahertz sources are motivated by the need of more versatile local oscillators for submillimeter/terahertz receiver systems. Uni-Travelling Carrier (UTC) photodiodes are very prospective candidates for reaching this objective, but so far only have been reported as lumped-elements or as edge-illuminated optical-waveguide travelling-wave (TW) devices. To overcome the associated power limitations of those implementations, we are developing a novel implementation of the UTC photodiodes which combines a travelingwave photomixer with vertical velocity-matched illumination in a distributed structure. In this implementation called velocity-matched travelling-wave uni-travelling carrier photodiode, it is possible to obtain in-situ velocity matching of the beat-fringes of the two angled laser beams with the submm/THz-wave on the stripline. In this way, minimum frequency roll-off is achieved by tuning the angle between the two laser beams. A first design of these TW-UTC PDs from our Terahertz Photonics Laboratory at University of Chile has been micro-fabricated at the MC2 cleanroom facility at Chalmers Technical University.

  18. The effect of vegetation cover on the formation of glide-snow avalanches

    Science.gov (United States)

    Feistl, Thomas; Bebi, Peter; Bartelt, Perry

    2014-05-01

    Glide snow avalanches release on steep, smooth slopes and can be prevented either by protection forests or by artificial defense structures. To minimize the risk for people and infrastructure, guidelines have been formulated concerning structure, height and distance between avalanche prevention bridges. These guidelines assure the major functions of the defense structures: first to prevent the release of avalanches and second to withstand the static and dynamic forces of the moving snow cover. The major functions of protection forests are generally similar and therefore guidelines on the maximum tolerable size of forest gaps exist in Switzerland. These guidelines are based on a static relationship between the pressure of the snow cover and the resistance of the defense structure and on empirical observations (forest). Whereas ground friction is only qualitatively taken into account, we assume it to play a crucial role in glide snow avalanche formation. To prove this assumption we collected data on the predominant vegetation cover of 67 release areas in the region of Davos, Switzerland. Our observations reveal a strong relationship between vegetation cover type, slope angle and slab length. We were able to quantify the Coulomb friction parameter μ by applying a physical model that accounts for the dynamic forces of the moving snow on the stauchwall, the fixed snow cover below the release area. The stauchwall resists the dynamic forces of the snow cover, until a critical strain rate is reached and then fails in brittle compression. This failure strongly depends on the friction between snow cover and soil. A typical value of μ for grassy slopes is 0.2. Snow characteristics like density are implemented in the model as constants. We compared the model results with the guidelines for defense structures and forest gap sizes and found accordance for certain friction parameter values. Forest gaps of 40 meter length and a 35° slope angle require friction values of 0

  19. Development of avalanche risk between 1950 and 2000 in the Municipality of Davos, Switzerland

    Science.gov (United States)

    Fuchs, S.; Bründl, M.; Stötter, J.

    2004-04-01

    In recent years, risk assessment has become increasingly important for the protection of settlements against natural hazards because the public authorities have to economise their budgets and therefore to legitimate their investments. To quantify risk, information is needed on both, recurrence intervals of the potentially damaging natural processes and on the associated damage potential. In the past, high efforts were undertaken to assess the former, while the latter was almost ignored. The aim of this study was to determine the development of the avalanche risk in the inhabited areas of the municipality of Davos, canton of Grisons, Switzerland, for the period between 1950 and 2000. The extent of avalanche prone areas was quantified using the numerical avalanche model AVAL-1D and the current legal hazard maps. The damage potential was quantified by the number and reinstatement values of buildings and by the number of persons per building. It has been demonstrated that, contrary to the frequently expressed statement that the vulnerability of communities has increased, the risk for this settlement in fact decreased substantially. This can mainly be attributed to the realisation of mitigation measures, such as defence structures in avalanche starting zones. The only exception regarding the development of risk was in the category of residential buildings, were an increase in risk was already detectable at medium recurrence intervals. This is remarkable because methods of land use planning, such as hazard mapping, are intended to protect residential buildings from the impact of hazardous processes. However, general statements referring to a larger area (region, country) might be difficult to make, since small-scale disparities have a very important influence on the diversification of risk and risk management. Furthermore, it has to be emphasized that the results are highly dependent on the assumptions made in this study.

  20. The Large-Scale Debris Avalanche From The Tancitaro Volcano (Mexico): Characterization And Modeling

    Science.gov (United States)

    Morelli, S.; Gigli, G.; Falorni, G.; Garduno Monroy, V. H.; Arreygue, E.

    2008-12-01

    The Tancitaro is an andesitic-dacitic stratovolcano located in the Michoacán Guanajuato volcanic field within the west-central portion of the trans-Mexican Volcanic Belt. The volcanism in this area is characterized by two composite volcanoes, the highest of which is the Tancitaro volcanic edifice (3840 m), some low angle lava cones and more than 1,000 monogenetic cinder cones. The distribution of the cinder cones is controlled by NE-SW active faults, although there are also additional faults with NNW-SSE trends along which some cones are aligned. The Tancitaro stratovolcano is located at the intersection of the tectonical structures that originate these alignments. All this geological activity has contributed to the gravitational instability of the volcano, leading to a huge sector collapse which produced the investigated debris avalanche. The collapse structure is an east-facing horseshoe-shaped crater (4 km wide and 5.3 km long), related with a large fan that was deposited within the Tepalcatepec depression. The deposit starts only 7 km downslope from the failure scar, it is 66 km long and covers an area of approximately 1155 km2. The landslide magnitude is about 20 km3 and it was firstly determined by the reconstruction of the paleo-edifice using a GIS software and then validated by the observation of significant outcrops. The fan was primarily formed by the deposit of this huge debris avalanche and subsequently by debris flow and fluvial deposits. Field investigations on the fan area highlighted the presence of two texturally distinct parts, which are referred to the 'block facies' and the 'matrix facies'. The first sedimentary structure is responsible for the typical hummock morphologies in the proximal area, as seen in many other debris avalanche deposits. Instead in the distal zones, the deposit is made up by the 'mixed block and matrix facies'. Blocks and megablocks, some of which are characterized by a jigsaw puzzle texture, gradually decrease in size

  1. Mobility statistics and automated hazard mapping for debris flows and rock avalanches

    Science.gov (United States)

    Griswold, Julia P.; Iverson, Richard M.

    2008-01-01

    Power-law equations that are physically motivated and statistically tested and calibrated provide a basis for forecasting areas likely to be inundated by debris flows, rock avalanches, and lahars with diverse volumes. The equations A=α1V2/3 and B=α2V2/3 are based on the postulate that the maximum valley cross-sectional area (A) and total valley planimetric area (B) likely to be inundated by a flow depend only on its volume (V) and the topography of the flow path. Testing of these equations involves determining whether or not they fit data for documented flows satisfactorily, and calibration entails determining best-fit values of the coefficients α1 and α2 for debris flows, rock avalanches, and lahars. This report describes statistical testing and calibration of the equations by using field data compiled from many sources, and it describes application of the equations to delineation of debris-flow hazard zones. Statistical results show that for each type of flow (debris flows, rock avalanches, and lahars), the dependence of A and B on V is described well by power laws with exponents equal to 2/3. This value of the exponent produces fits that are effectively indistinguishable from the best fits obtained by using adjustable power-law exponents. Statistically calibrated values of the coefficients α1 and α2 provide scale-invariant indices of the relative mobilities of rock avalanches (α1 = 0.2, α2 = 20), nonvolcanic debris flows (α1 = 0.1, α2 = 20), and lahars (α1 = 0.05, α2 = 200). These values show, for example, that a lahar of specified volume can be expected to inundate a planimetric area ten times larger than that inundated by a rock avalanche or nonvolcanic debris flow of the same volume. The utility of the calibrated debris-flow inundation equations A=0.1V2/3 and B=20V2/3 is demonstrated by using them within the GIS program LAHARZ to delineate nested hazard zones for future debris flows in an area bordering the Umpqua River in the south-central Oregon

  2. Investigation and modeling of the avalanche effect in MOSFETs with non-uniform finger spacing

    Institute of Scientific and Technical Information of China (English)

    Liu Jun; Sun Lingling; Marissa Condon

    2011-01-01

    This paper investigates the effect of a non-uniform gate-finger spacing layout structure on the avalanche breakdown performance of RF CMOS technology.Compared with a standard multi-finger device with uniform gate-finger spacing,a device with non-uniform gate-finger spacing represents an improvement of 8.5% for the drain-source breakdown voltage(BVds)and of 20% for the thermally-related drain conductance.A novel compact model is proposed to accurately predict the variation of BVds with the total area of devices,which is dependent on the different finger spacing sizes.The model is verified and validated by the excellent match between the measured and simulated avalanche breakdown characteristics for a set of uniform and non-uniform gate-finger spacing arranged nMOSFETs.

  3. Large rock avalanches in southern Perù: the Cerro Caquilluco - Cerrillos Negros rock slide - avalanche (Tacna, Tomasiri, Perù)

    Science.gov (United States)

    Crosta, G.; Hermanns, R. L.; Murillo, P. V.

    2012-04-01

    The Andean bent which coincides with the Peruvian-Chilean border region is characterised by one of the largest relief contrasts on earth with depth of the subduction trench ranging from 5000 to 6000 m below sea level and mountain tops ranging from 5500 to 6300 m a.s.l.. The western flank of the Andes is subdivided in 4 major geologic zones (i.e. Coastal Cordillera, longitudinal Basin or depression, the Precordillera or western escarpment and western Cordillera). Local relief contrasts are also pronounced due to the incision of deep canyons into several million old uplifted surfaces, preserved because of the extremely dry climate with precipitation averaging a few mm and less per year. The Lluta collapse (minimum age of 2.5 Ma; volume 26 km3) is one of the largest non-volcanic non-marine landslides on Earth and has been mapped in that area (Wörner et al., 2002). Systematic mapping in northern Chile and Southern Peru has revealed that this is not the only gigantic landslide in the area but that further landslides of similar size occurred in the area, located both along the canyon slopes and along the western escarpment of the Cordillera. This suggests that landsliding has been a major factor in controlling erosion. This contribution describes first results on mapping a giant landslide complex in southern Perù called the Cerro Caquilluco - Cerrillos Negros Tomasiri rock slide - avalanche complex. The systematic mapping we have carried out in the area is presented in a further contribution to this conference. The Cerro Caquilluco - Cerrillos Negros Tomasiri rock slide - avalanche complex affected the upper part of a SW dipping paleosurface (8° to 9°) cut by a disconnected and regular primitive drainage network organized in a series of SW trending parallel valleys. This network developed within the lower Miocene pinkish tuffaceous deposits of the Huaylillas formation, whereas the main landslide scarp lies within the conglomerates of the Upper Moquegua formation

  4. Disordered artificial spin ices: Avalanches and criticality (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Cynthia J. Olson, E-mail: cjrx@lanl.gov; Chern, Gia-Wei; Reichhardt, Charles [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Libál, Andras [Faculty of Mathematics and Computer Science, Babes-Bolyai University, RO-400591 Cluj-Napoca (Romania)

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  5. Use of silicon photodiode optically connected to scintillator in measurement of gamma dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Gilar, O. (Tesla, Premysleni (Czechoslovakia). Vyzkumny Ustav Pristroju Jaderne Techniky); Petr, I. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Jaderna a Fysikalne Inzenyrska)

    1984-06-01

    Contributing to the signal which is produced in the photodiode by direct interaction with radiation may also be light photons produced by scintillation in the scintillator which is in optical contact with the photodiode. The scintillator/photodiode combination may increase sensitivity in comparison with the photodiode alone. The energy dependence of the detector will change according to the scintillator material and size. The configuration is described of a detector with CsI(Tl) scintillator. The detector is suitable for medium and large dose rates, the limiting factor for measuring small dose rates is the intensity of the photodiode dark current and its temperature dependence. A higher sensitivity of the designed detector configuration may be achieved by selecting a scintillator with a more suitable emission spectrum or by technological modifications of the photodiode.

  6. Statistical analyses support power law distributions found in neuronal avalanches.

    Science.gov (United States)

    Klaus, Andreas; Yu, Shan; Plenz, Dietmar

    2011-01-01

    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  7. Statistical analyses support power law distributions found in neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Andreas Klaus

    Full Text Available The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii model parameter estimation to determine the specific exponent of the power law, and (iii comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect. This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  8. IFKIS a basis for organizational measures in avalanche risk management

    Science.gov (United States)

    Bründl, M.; Etter, H.-J.; Klingler, Ch.; Steiniger, M.; Rhyner, J.; Ammann, W.

    2003-04-01

    The avalanche winter 1999 in Switzerland showed that the combination of protection measures like avalanche barriers, hazard zone mapping, artificial avalanche release and organisational measures (closure of roads, evacuation etc.) proved to perform well. However, education as well as information and communication between the involved organizations proved to be a weak link in the crisis management. In the first part of the project IFKIS we developed a modular education and training course program for security responsibles of settlements and roads. In the second part an information system was developed which improves on the one hand the information fluxes between the national center for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local forecasters. On the other hand the communication between the avalanche security services in the communities can be enhanced. During the last two years an information system based on Internet technology has been developed for this purpose. This system allows the transmission of measured data and observations to a central database at SLF and visualization of the data for different users. It also provides the possibility to exchange information on organizational measures like closure of roads, artificial avalanche release etc. on a local and regional scale. This improves the information fluxes and the coordination of safety-measures because all users, although at different places, are on the same information level. Inconsistent safety-measures can be avoided and information and communication concerning avalanche safety becomes much more transparent for all persons involved in hazard management. The training program as well the concept for the information-system are important basics for an efficient avalanche risk management but also for other natural processes and catastrophes.

  9. Geological history and within-island diversity: a debris avalanche and the Tenerife lizard Gallotia galloti.

    Science.gov (United States)

    Brown, Richard P; Hoskisson, Paul A; Welton, John-Henry; Báez, Marcos

    2006-10-01

    Several processes have been described that could explain geographical variation and speciation within small islands, including fragmentation of populations through volcanic eruptions. Massive landslides, or debris avalanches, could cause similar effects. Here we analyse the potential impact of the 0.8 million-year-ago (Ma) Güimar valley debris avalanche on the phylogeography of the lizard Gallotia galloti on the Canary Island of Tenerife. Distributions of mitochondrial DNA lineages (based on cytochrome b sequences) were analysed on a 60-km southeastern coast transect centred on this area. Three main clades were detected, which can be divided into northern (one clade) and southern (two clades) groups that introgress across the valley. Maximum-likelihood estimates of migration rates (scaled for mutation rate) revealed highly asymmetric patterns, indicating that long-term gene flow into this region from both the northern and the southern populations greatly exceeded that in the opposite directions, consistent with recolonization of the area. The ancestral Tenerife node on the G. galloti tree is estimated at 0.80 Ma, matching closely with the geological estimate for the debris avalanche. Morphological variation (body dimensions and scalation) was also analysed and indicated a stepped cline in female scalation across the valley, although the patterns for male scalation and male and female body dimensions were not as clear. Together these findings provide support for the hypothesis that the debris avalanche has shaped the phylogeography of G. galloti and may even have been a primary cause of the within-island cladogenesis through population fragmentation and isolation. Current estimates of timing of island unification mean that the original hypothesis that within-island diversity is explained by the secondary contact of populations from the two ancient precursor islands of Teno and Anaga is less plausible for this and some other Tenerife species. Large-scale landslides

  10. Snow Mass Quantification and Avalanche Victim Search By Ground Penetrating Radar

    Science.gov (United States)

    Jaedicke, C.

    Ground penetrating radar (GPR) systems can be used in many applications of snow and ice research. The information from the GPR is interpreted to identify layers, ob- ject and different structures in the snow. A commercially available GPR system was further developed to work in the rough environment of snow and ice. The applied GPR is a 900 MHz system that easily reaches snow depths of ten meters. The system is cal- ibrated by several manual snow depth measurements during each survey. The depth resolution is depending on the snow type and ranges around +/- 0.1 m. The GPR sys- tem carried along a line of interest and is triggered by an odometer wheel at regular adjustable steps. All equipment is mounted in a sledge and is moved by a snow mo- bile over the surface. This setup allows the efficient coverage of several kilometers of profiles. The radar profiles give a real time two-dimensional impression of structures and objects and the interface between snow and underlying ground. The actual radar profile is shown on a screen on the sledge allowing the immediate marking of objects and structures. During the past three years the instrument was successfully used for the study of snow distributions, for the detection of glacier crevasses under the snow cover and for the search of avalanche victims in avalanche debris. The results show the capability of the instrument to detect persons and objects in the snow cover. In the future this could be new tool for avalanche rescue operations. Today the size and weight of the system prevents the access to very steep slopes and areas not accessible for snowmobile. Further development will decrease the size of the system and make it a valuable tool to quantify the snow mass in avalanche release zones and run out areas.

  11. Guided-wave photodiode using through-absorber quantum-well-intermixing and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Skogen, Erik J.

    2016-10-25

    The present invention includes a high-speed, high-saturation power detector (e.g., a photodiode) compatible with a relatively simple monolithic integration process. In particular embodiments, the photodiode includes an intrinsic bulk absorption region, which is grown above a main waveguide core including a number of quantum wells (QWs) that are used as the active region of a phase modulator. The invention also includes methods of fabricating integrated photodiode and waveguide assemblies using a monolithic, simplified process.

  12. A simulated avalanche search and rescue mission induces temporary physiological and behavioural changes in military dogs.

    Science.gov (United States)

    Diverio, Silvana; Barbato, Olimpia; Cavallina, Roberta; Guelfi, Gabriella; Iaboni, Martina; Zasso, Renato; Di Mari, Walter; Santoro, Michele Matteo; Knowles, Toby G

    2016-09-01

    Saving human lives is of paramount importance in avalanche rescue missions. Avalanche military dogs represent an invaluable resource in these operations. However, their performance can be influenced by several environmental, social and transport challenges. If too severe, these are likely to activate a range of responses to stress, which might put at risk the dogs' welfare. The aim of this study was to assess the physiological and behavioural responses of a group of military dogs to a Simulated Avalanche Search and Rescue mission (SASR). Seventeen avalanche dogs from the Italian Military Force Guardia di Finanza (SAGF dogs) were monitored during a simulated search for a buried operator in an artificial avalanche area (SASR). Heart rate (HR), body temperature (RBT) and blood samples were collected at rest the day before the trial (T0), immediately after helicopter transport at the onset of the SASR (T1), after the discovery of the buried operator (T2) and 2h later (T3). Heart rate (HR), rectal body temperature (RBT), cortisol, aspartate aminotransferase (AST), creatine kinase (CK), non-esterified fatty acids (NEFA) and lactate dehydrogenase (LDH) were measured. During the search mission the behaviour of each SAGF dog was measured by focal animal sampling and qualitatively assessed by its handler and two observers. Inter-rater agreement was evaluated. Snow and environmental variables were also measured. All dogs successfully completed their search for the buried, simulated victim within 10min. The SASR was shown to exert significant increases on RBT, NEFA and cortisol (Psearch and rescue exercise. However, changes were moderate and limited over time, progressively decreasing with complete recovery at T3 except for sera cortisol that showed a slightly slower decline. More time walking within the search was related to lower RBT, conversely to walking. Standing still with head up and exploring with head-up were inversely related with HR. Agreement between handler and

  13. A mineralogical and granulometric study of Cayambe volcano debris avalanche deposit

    Science.gov (United States)

    Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Bustillos, J.; Sonnet, P.; Opfergelt, S.

    2013-12-01

    Volcano flank/sector collapse represents one of the most catastrophic volcanic hazards. Various volcanic and non-volcanic processes are known to decrease the stability of a volcanic cone, eventually precipitating its gravitational failure. Among them, hydrothermal alteration of volcanic rocks leading to clay mineral formation is recognized as having a large negative impact on rock strength properties. Furthermore, the presence of hydrothermal clays in the collapsing mass influences the behavior of the associated volcanic debris avalanche. In particular, clay-containing debris avalanches seem to travel farther and spread more widely than avalanches of similar volume but which do not incorporate hydrothermally-altered materials. However, the relationship between hydrothermal alteration, flank collapse and debris avalanche behavior is not well understood. The objective of this study is to better determine the volume and composition of hydrothermal clay minerals in the poorly characterized debris avalanche deposit (DAD) of Cayambe composite volcano, located in a densely populated area ~70 km northeast of Quito, Ecuador. Cayambe DAD originated from a sector collapse, which occurred less than 200 ka ago. The DAD is 10-20 m thick and has an estimated total volume of ~0.85 Km3. The H/L ratio (where H is the vertical drop and L is the travel distance of the avalanche) for Cayambe DAD is ~0.095, suggesting a high mobility. In the medial-distal zone, at 9-20 km from its source, the DAD consists of an unstratified and unsorted matrix supporting millimetric to metric clasts. It has a matrix facies (i.e. rich in particles < 2 mm) enriched in hydrothermally-altered materials. Preliminary results of granulometry measurements indicate that the matrix corresponds to ~55 wt.% of the deposit and suggest that the DAD behaved as a cohesive debris flow. Analysis of 13 matrix samples reveals a large variability in particle size distribution. This may reflect poor mixing of the collapsed

  14. Seeded excitation avalanches in off-resonantly driven Rydberg gases

    CERN Document Server

    Simonelli, Cristiano; Masella, Guido; Asteria, Luca; Arimondo, Ennio; Ciampini, Donatella; Morsch, Oliver

    2016-01-01

    We report an experimental investigation of the facilitated excitation dynamics in off-resonantly driven Rydberg gases by separating the initial off-resonant excitation phase from the facilitation phase, in which successive facilitation events lead to excitation avalanches. We achieve this by creating a controlled number of initial seed excitations. Greater insight into the avalanche mechanism is obtained from an analysis of the full counting distributions. We also present simple mathematical models and numerical simulations of the excitation avalanches that agree well with our experimental results.

  15. Overspill avalanching in a dense reservoir network

    CERN Document Server

    Mamede, G L; Schneider, C M; de Araújo, J C; Herrmann, H J

    2012-01-01

    Sustainability of communities, agriculture, and industry is strongly dependent on an effective storage and supply of water resources. In some regions the economic growth has led to a level of water demand which can only be accomplished through efficient reservoir networks. Such infrastructures are not always planned at larger scale but rather made by farmers according to their local needs of irrigation during droughts. Based on extensive data from the upper Jaguaribe basin, one of the world's largest system of reservoirs, located in the Brazilian semiarid northeast, we reveal that surprisingly it self-organizes into a scale-free network exhibiting also a power-law in the distribution of the lakes and avalanches of discharges. With a new self-organized-criticality-type model we manage to explain the novel critical exponents. Implementing a flow model we are able to reproduce the measured overspill evolution providing a tool for catastrophe mitigation and future planning.

  16. Avalanche of particles in evaporating coffee drops

    CERN Document Server

    Marin, Alvaro G; Snoeijer, Jacco; Lohse, Detlef

    2010-01-01

    The pioneering work of Deegan et al. [Nature 389, (1997)] showed how a drying sessile droplet suspension of particles presents a maximum evaporating flux at its contact line which drags liquid and particles creating the well known coffee stain ring. In this Fluid Dynamics Video, measurements using micro Particle Image Velocimetry and Particle Tracking clearly show an avalanche of particles being dragged in the last moments, for vanishing contact angles and droplet height. This explains the different characteristic packing of the particles in the layers of the ring: the outer one resembles a crystalline array, while the inner one looks more like a jammed granular fluid. Using the basic hydrodynamic model used by Deegan et al. [Phys. Rev. E 62, (2000)] it will be shown how the liquid radial velocity diverges as the droplet life comes to an end, yielding a good comparison with the experimental data.

  17. Combination of a silicon photodiode and a scintillator as a dose rate detector

    Energy Technology Data Exchange (ETDEWEB)

    Gilar, O. (Tesla, Premysleni (Czechoslovakia). Vyzkumny Ustav Pristroju Jaderne Techniky); Petr, I. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Jaderna a Fysikalne Inzenyrska)

    1985-03-16

    The combination of a silicon photodiode adjacent to a CsI(Tl) scintillator as a detector of ..gamma..-rays is described. Theoretical conclusions are verified by an experiment and prove that the photodiode absorption spectrum as well as the quantum efficiency can be varied by an appropriate photodiode technology. The contribution of scintillation photons emitted by the CsI(Tl) scintillator in the photon field can enhance the total photocurrent more than an order of magnitude compared to the current response of the photodiode alone, placed in a photon field of equal exposure rate.

  18. Lautaret avalanche test site: outcomes from the 11th april 2012 event

    OpenAIRE

    2012-01-01

    International audience; The Lautaret full-scale avalanche test site has been used by Cemagref-Irstea since the early 70's. The first studies were dedicated to avalanche released systems. Later, experiments focused on avalanche dynamics and avalanche impact pressures both in relation with the fundamental knowledge of snow flow rheology and the engineering of defense structures and avalanche hazard zoning. Recent instrumentation developments now provide rich-documented in situ measurements of a...

  19. A new experimental site for the study of snow avalanches in the Aosta Valley (NW-Italy)

    Science.gov (United States)

    Segor, Valerio; Barbero, Monica; Barpi, Fabrizio; Borri Brunetto, Mauro; Bovet, Eloise; Brulport, Antoine; Ceaglio, Elisabetta; Chiaia, Bernardino; Fassin, Daniele; Freppaz, Michele; Frigo, Barbara; Godone, Danilo; Maggioni, Margherita; Pallara, Oronzo; Torretta, Franco; Viglietti, Davide; Welf, Arnoldo

    2010-05-01

    slope, to measure the snow properties in the release zone, to perimeter the avalanche outline, to dig profiles of the avalanche deposit. To detect the behavior of structures impacted by avalanches and their influence on the snow flow, the test site will be equipped with an instrumented obstacle. The galvanized steel obstacle is composed of two masts whose height is about 4 m that support instrumented horizontal plates for measuring the impact forces. The plates can be separately positioned at different levels or grouped together to form a panel with area of 1m2. The exact positioning of the obstacle is one of the goals of the first experiments for winter 2009/2010, as well as the calibration of the sensors and the study of the behavior of the obstacle under different loads in the laboratory. The obstacle will be built in summer 2010. The data (impact forces, pressures, accelerations, etc…) will be continuously acquired and transmitted via optical fiber to a control room remotely located. All the activities will be conducted according to an operational plan, which governs all the different steps of an experiment: from the alert system, to the role of each operator during the experiment, to the security plan.

  20. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    Science.gov (United States)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  1. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Müller, O., E-mail: o.mueller@uni-wuppertal.de; Lützenkirchen-Hecht, D.; Frahm, R. [Bergische Universität Wuppertal, Gaußstraße 20, Wuppertal 42119 (Germany)

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  2. Dynamic intermittency in discrete erodible-bed avalanches

    Science.gov (United States)

    Arran, Matthew; Vriend, Nathalie

    2016-11-01

    The coexistence of fluid-like and solid-like behaviour in granular matter allows avalanches of grains to flow on the surface of a static but erodible bed. For sufficiently slow inflow, these avalanches are discrete, with previous experimentalists reporting that avalanche fronts pass a given point quasi-periodically. We report instead observations of dynamic intermittency between two regimes, one in which avalanches occur quasi-periodically and another in which the intervals between them are irregular. Finding the first regime consistent with existing models, we introduce a model for the second regime within the framework of Self-Organised Criticality, and describe the transition between the regimes with reference to the state of the erodible bed.

  3. Avalanche statistics from data with low time resolution.

    Science.gov (United States)

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J; Gu, Xiaojun; Uhl, J T; Dahmen, Karin A

    2016-11-01

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.

  4. UNIQUENESS OF SOLUTIONS FOR SEMICONDUCTOR EQUATIONS WITH AVALANCHE TERM

    Institute of Scientific and Technical Information of China (English)

    Xing Jiasheng; Wang Yuanming

    2000-01-01

    In this paper, we consider the initial and mixed boundary value problems for the semiconductor equations with avalanche term, the uniqueness of the weak solution for the semiconductor equation has been proved.

  5. Avalanche mode of high-voltage overloaded p{sup +}–i–n{sup +} diode switching to the conductive state by pulsed illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kyuregyan, A. S., E-mail: ask@vei.ru [Lenin All-Russia Electrical Engineering Institute (Russian Federation)

    2015-07-15

    A simple analytical theory of the picosecond switching of high-voltage overloaded p{sup +}–i–n{sup +} photodiodes to the conductive state by pulsed illumination is presented. The relations between the parameters of structure, light pulse, external circuit, and main process characteristics, i.e., the amplitude of the active load current pulse, delay time, and switching duration, are derived and confirmed by numerical simulation. It is shown that the picosecond light pulse energy required for efficient switching can be decreased by 6–7 orders of magnitude due to the intense avalanche multiplication of electrons and holes. This offers the possibility of using pulsed semiconductor lasers as a control element of optron pairs.

  6. Flood avalanches in a semiarid basin with a dense reservoir network

    CERN Document Server

    Peter, Samuel J; Araújo, N A M; Herrmann, H J

    2014-01-01

    This study investigates flood avalanches in a dense reservoir network in the semiarid north-eastern Brazil. The population living in this area strongly depends on the availability of the water from this network. Water is stored during intense wet-season rainfall events and evaporates from the reservoir surface during the dry season. These seasonal changes are the driving forces behind the water dynamics in the network. The reservoir network and its connectivity properties during flood avalanches are investigated with a model called ResNetM, which simulates each reservoir explicitly. It runs on the basis of daily calculated water balances for each reservoir. A spilling reservoir contributes with water to the reservoir downstream, which can trigger avalanches affecting, in some cases, large fractions of the network. The main focus is on the study of the relation between the total amount of water stored and the largest observable cluster of connected reservoirs that overspill in the same day. It is shown that th...

  7. Crosstalk properties of the CMS HCAL hybrid photodiode

    CERN Document Server

    Cushman, P B; Pearson, N; Elias, J; Freeman, J; Green, D; Los, S; Ronzhin, A

    2003-01-01

    The requirements of large dynamic range, 40 MHz readout and 4T magnetic field of the CMS Hadronic calorimeter have led to the development of a custom Hybrid PhotoDiode (HPD). In the last 5 years many improvements have been made in cooperation with DEP B.V. Delft Electronische Producten, Roden, Netherlands. and Canberra Semiconductor N.V., Olen, Belgium. to the basic HPD concept to improve the performance. A 200-mum thick 19-channel PIN diode array with various surface treatments has been developed to ensure fast pulse behavior and low optical and capacitive crosstalk.

  8. Influence of snow-cover properties on avalanche dynamics

    Science.gov (United States)

    Steinkogler, W.; Sovilla, B.; Lehning, M.

    2012-04-01

    Snow avalanches with the potential of reaching traffic routes and settlements are a permanent winter threat for many mountain communities. Snow safety officers have to take the decision whether to close a road, a railway line or a ski slope. Those decisions are often very difficult as they demand the ability to interpret weather forecasts, to establish their implication for the stability and the structure of the snow cover and to evaluate the influence of the snow cover on avalanche run-out distances. In the operational programme 'Italy-Switzerland, project STRADA' we focus on the effects of snow cover on avalanche dynamics, and thus run-out distance, with the aim to provide a better understanding of this influence and to ultimately develop tools to support snow safety officers in their decision process. We selected five avalanches, measured at the Vallée de la Sionne field site, with similar initial mass and topography but different flow dynamics and run-out distances. Significant differences amongst the individual avalanches could be observed for front and internal velocities, impact pressures, flow regimes, deposition volumes and run-out distances. For each of these avalanches, the prevailing snow conditions at release were reconstructed using field data from local snowpits or were modeled with SNOWPACK. Combining flow dynamical data with snow cover properties shows that erodible snow depth, snow density and snow temperature in the snow pack along the avalanche track are among the decisive variables that appear to explain the observed differences. It is further discussed, how these influencing factors can be quantified and used for improved predictions of site and time specific avalanche hazard.

  9. Effect of volume fraction on granular avalanche dynamics.

    Science.gov (United States)

    Gravish, Nick; Goldman, Daniel I

    2014-09-01

    We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches.

  10. Avalanche Phenomenon of Runaway Electrons During Additional Fuelling

    Institute of Scientific and Technical Information of China (English)

    杨进蔚; 曹建勇; 曾庆希; 张炜; 唐年益; 董贾福; 邓中朝; 肖正贵; 姚良骅

    2002-01-01

    During pellet injection and supersonic molecular beam injection, we have observed the increase of electron density and the enhancement of hard x-ray radiation, but the runaway electrons normally decrease without additional fuelling when the density of plasma increases. This phenomenon may come from the synergetic effects of Dreicer and avalanche runaway electrons. The experimental results are consistent with the calculation based on the theory of avalanche runaway in the HL-1M tokamak.

  11. Development of a testbed for flexible a-Si:H photodiode sensing arrays

    Science.gov (United States)

    Dominguez, Alfonso; Kunnen, George; Vetrano, Michael; Smith, Joseph; Marrs, Michael; Allee, David R.

    2013-05-01

    Large area, flexible sensing arrays for imaging, biochemical sensing and radiation detection are now possible with the development of flexible active matrix display technology. In particular, large-area flexible imaging arrays can provide considerable advancement in defense and security industries because of their inherent low manufacturing costs and physical plasticity that allows for increased adaptability to non-planar mounting surfaces. For example, a flexible array of photodetectors and lenslets formed into a cylinder could image simultaneously with a 360 degree view without the need for expensive bulky optics or a gimbaled mount. Here we report the design and development of a scalable 16x16 pixel testbed for flexible sensor arrays using commercial-off-the-shelf (COTS) parts and demonstrate the capture of a shadow image with an array of photodiodes and active pixel sensors on a plastic substrate. The image capture system makes use of an array of low-noise, InGaZnO active pixel amplifiers to detect changes in current in 2.4 μm-thick reverse-biased a-Si:H PIN diodes. A thorough characterization of the responsivity, detectivity, and optical gain of an a- Si:H photodiode is also provided. At the back end, analog capture circuitry progressively scans the array and constructs an image based on the electrical activity in each pixel. The use of correlated-double-sampling to remove fixed pattern noise is shown to significantly improve spatial resolution due to process variations. The testbed can be readily adapted for the development of neutron, alpha-particle, or X-ray detection arrays given an appropriate conversion layer.

  12. Repertoires of spike avalanches are modulated by behavior and novelty

    Directory of Open Access Journals (Sweden)

    Tiago Lins Ribeiro

    2016-03-01

    Full Text Available Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here we show that spike avalanches, recorded from hippocampus and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  13. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty.

    Science.gov (United States)

    Ribeiro, Tiago L; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  14. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    Science.gov (United States)

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  15. Spatio-temporal avalanche forecasting with Support Vector Machines

    Directory of Open Access Journals (Sweden)

    A. Pozdnoukhov

    2011-02-01

    Full Text Available This paper explores the use of the Support Vector Machine (SVM as a data exploration tool and a predictive engine for spatio-temporal forecasting of snow avalanches. Based on the historical observations of avalanche activity, meteorological conditions and snowpack observations in the field, an SVM is used to build a data-driven spatio-temporal forecast for the local mountain region. It incorporates the outputs of simple physics-based and statistical approaches used to interpolate meteorological and snowpack-related data over a digital elevation model of the region. The interpretation of the produced forecast is discussed, and the quality of the model is validated using observations and avalanche bulletins of the recent years. The insight into the model behaviour is presented to highlight the interpretability of the model, its abilities to produce reliable forecasts for individual avalanche paths and sensitivity to input data. Estimates of prediction uncertainty are obtained with ensemble forecasting. The case study was carried out using data from the avalanche forecasting service in the Locaber region of Scotland, where avalanches are forecast on a daily basis during the winter months.

  16. Avalanches and hysteresis in frustrated superconductors and XY spin glasses.

    Science.gov (United States)

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T=0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support.

  17. Type-II superlattice photodiodes: an alternative for VLWIR detection

    Science.gov (United States)

    Brown, Gail J.; Houston, Shanee; Szmulowicz, Frank; Mahalingam, Krishnamur; Haugan, Heather; Wei, Yajun; Gin, Aaron; Razeghi, Manijeh

    2003-09-01

    In the very long wavelength infrared (VLWIR) band, λ>14 microns, the detector materials are currently limited to extrinsic semiconductors. These extrinsic materials can be either heavily doped bulk semiconductor, like silicon or germanium, or a doped quantum well heterostructure. An alternative choice that provides the opportunity for higher temperature operation for VLWIR sensing is an intrinsic material based on a type-II InAs/Ga(In)Sb superlattice. There are many possible designs for these superlattices which will produce the same narrow band gap by adjusting individual layer thicknesses, indium content or substrate orientation. The infrared properties of various compositions and designs of these type-II superlattices have been studied. In the past few years, excellent results have been obtained on photoconductive and photodiode samples designed for infrared detection beyond 15 microns. An overview of the status of this material system will be presented. In addition, the latest experimental results for superlattice photodiodes with cut-off wavelengths as long as 30 microns will be covered.

  18. Linearity of P-N junction photodiodes under pulsed irradiation

    CERN Document Server

    Stuik, R

    2002-01-01

    The dependence of the sensitivity on the radiation pulse length for a P-N junction photodiode has been investigated over an extended range of pulse lengths, from 170 ns to 1.2 ms. The power incident on the diode surface was varied between 1.6 and 118 mW. A novel method was used to generate the light pulses with variable length, while keeping the temporal pulse shape and the intensity constant. The method consists of using a rotating mirror in combination with a DC light source, in our case at 633 and 532 nm. In this way, the pulse shape only depends on the geometry of the setup, with the pulse length solely determined by the rotation frequency of the mirror. No further calibration is needed for determination of the pulse intensity and shape. Accuracies obtained are better than 2%, mainly determined by instabilities in the setup. The sensitivity of an IRD AXUV-100 photodiode was studied, both with and without a reverse bias voltage applied. At unbiased conditions and irradiation levels well below the saturatio...

  19. Performance Analysis of Si-Based Ultra-Shallow Junction Photodiodes for UV Radiation Detection

    NARCIS (Netherlands)

    Shi, L.

    2013-01-01

    This thesis presents a performance investigation of newly-developed ultra-shallow junction photodiodes (PureB-diodes) for ultraviolet (UV) radiation detection. The photodiodes are fabricated by pure boron chemical vapor deposition (PureB CVD) technology, which can provide nanometer-thin boron cappin

  20. A Novel Ring Shaped Photodiode for Reflectance Pulse Oximetry in Wireless Applications

    DEFF Research Database (Denmark)

    Duun, Sune; Haahr, Rasmus Grønbek; Birkelund, Karen;

    2007-01-01

    We present a pulse oximeter for use in home-care applications in a sticking patch with integrated electronics. The core in the pulse oximeter is a large ring shaped backside silicon pn photodiode placed around a Ledtronics dual LED with wavelengths of 660 nm and 940 nm. The concentric photodiode...

  1. COMPARISON OF CHARACTERIZATION TECHNIQUES IN P-ON-N HgCdTe LWIR PHOTODIODES TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper standard techniques for characterization of HgCdTe liquid phase epitaxial layers (LPE) were presented. The performance of long wavelength p-on-n HgCdTe photodiodes fabricated by arsenic diffusion was described. The correlation between LPE HgCdTe material parameters and properties of the infrared photodiodes was demonstrated.

  2. Skier triggering of backcountry avalanches with skilled route selection

    Science.gov (United States)

    Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce

    2015-04-01

    Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for

  3. A Novel Photodiode for Reflectance Pulse Oximetry in low-power applications

    DEFF Research Database (Denmark)

    Haahr, Rasmus Grønbek; Duun, Sune; Birkelund, Karen;

    2007-01-01

    The amount of light collected is crucial for low-power applications of pulse oximetry. In this work a novel ring-shaped backside photodiode has been developed for a wearable reflectance pulse oximeter. The photodiode is proven to work with a dual LED with wavelengths of 660 nm and 940 nm. For the......The amount of light collected is crucial for low-power applications of pulse oximetry. In this work a novel ring-shaped backside photodiode has been developed for a wearable reflectance pulse oximeter. The photodiode is proven to work with a dual LED with wavelengths of 660 nm and 940 nm....... For the purpose of continuously monitoring vital signs of a human, a temperature sensor is integrated onto the chip containing the photodiode. This biomedical multisensor chip is made for integration into "the electronic patch", an autonomous monitoring system for humans....

  4. Distribution of joint local and total size and of extension for avalanches in the Brownian force model.

    Science.gov (United States)

    Delorme, Mathieu; Le Doussal, Pierre; Wiese, Kay Jörg

    2016-05-01

    The Brownian force model is a mean-field model for local velocities during avalanches in elastic interfaces of internal space dimension d, driven in a random medium. It is exactly solvable via a nonlinear differential equation. We study avalanches following a kick, i.e., a step in the driving force. We first recall the calculation of the distributions of the global size (total swept area) and of the local jump size for an arbitrary kick amplitude. We extend this calculation to the joint density of local and global sizes within a single avalanche in the limit of an infinitesimal kick. When the interface is driven by a single point, we find new exponents τ_{0}=5/3 and τ=7/4, depending on whether the force or the displacement is imposed. We show that the extension of a "single avalanche" along one internal direction (i.e., the total length in d=1) is finite, and we calculate its distribution following either a local or a global kick. In all cases, it exhibits a divergence P(ℓ)∼ℓ^{-3} at small ℓ. Most of our results are tested in a numerical simulation in dimension d=1.

  5. Distribution of joint local and total size and of extension for avalanches in the Brownian force model

    Science.gov (United States)

    Delorme, Mathieu; Le Doussal, Pierre; Wiese, Kay Jörg

    2016-05-01

    The Brownian force model is a mean-field model for local velocities during avalanches in elastic interfaces of internal space dimension d , driven in a random medium. It is exactly solvable via a nonlinear differential equation. We study avalanches following a kick, i.e., a step in the driving force. We first recall the calculation of the distributions of the global size (total swept area) and of the local jump size for an arbitrary kick amplitude. We extend this calculation to the joint density of local and global sizes within a single avalanche in the limit of an infinitesimal kick. When the interface is driven by a single point, we find new exponents τ0=5 /3 and τ =7 /4 , depending on whether the force or the displacement is imposed. We show that the extension of a "single avalanche" along one internal direction (i.e., the total length in d =1 ) is finite, and we calculate its distribution following either a local or a global kick. In all cases, it exhibits a divergence P (ℓ ) ˜ℓ-3 at small ℓ . Most of our results are tested in a numerical simulation in dimension d =1 .

  6. Functioning of the avalanche starting zones which undergo snow-transport by wind: Field observations and computer modeling

    Science.gov (United States)

    Sivardière, F.; Castelle, T.; Guyomarc'h, G.; Mérindol, L.; Buisson, L.

    1995-11-01

    For two years, three French and Swiss laboratories have been making field observations and measurements on two high altitude slopes in a Northern French Alps site. The aim of this work is to study the functioning of the avalanche sites which, in their starting zones, undergo snow-transport by wind. The experimental site is located in the French Alps, at 2,800 m, above Grenoble. It is an open area, equipped with an automatic meteorological station and an altitude laboratory. The two slopes that are studied face East. One of them is artificially released but the other has a natural avalanche activity. The investigations concern: -snow deposition in avalanche starting zones; -temporal evolution of the snowpack characteristics; -avalanche release. For the field observations and measurements, continuous recording of the meteorological conditions on the site, photogrammetrical techniques and two snow depth profiles, as well as stratigraphical snow profiles and video are used. The computer modeling is based on existing computer models developed by the CEMAGREF-Nivologie (ELSA) and the CEN/Météo-France (SAFRAN-CROCUS-MEPRA), which analyse the snowpack and its stability. The field observations and measurements aim at improving snow-transport by wind modeling modules, in order to improve their whole analysis.

  7. Granular avalanches down inclined and vibrated planes

    Science.gov (United States)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  8. The structure of powder snow avalanches

    Science.gov (United States)

    Sovilla, Betty; McElwaine, Jim N.; Louge, Michel Y.

    2015-01-01

    Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried RADAR and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.

  9. Avalanche outbreaks emerging in cooperative contagions

    Science.gov (United States)

    Cai, Weiran; Chen, Li; Ghanbarnejad, Fakhteh; Grassberger, Peter

    2015-11-01

    The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs , ), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions.

  10. Avalanches in a stochastic model of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Marc Benayoun

    Full Text Available Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons. When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be "critical" for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.

  11. Avalanches in a stochastic model of spiking neurons.

    Science.gov (United States)

    Benayoun, Marc; Cowan, Jack D; van Drongelen, Wim; Wallace, Edward

    2010-07-08

    Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons). When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be "critical" for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.

  12. Infrasonic monitoring of snow avalanches in the Alps

    Science.gov (United States)

    Marchetti, E.; Ulivieri, G.; Ripepe, M.; Chiambretti, I.; Segor, V.

    2012-04-01

    Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2010 we installed a permanent 4-element, small aperture (100 m), infrasound array in the Alps, after a pilot experiment carried out in Gressonay during the 2009-2010 winter season. The array has been deployed in the Ayas Valley, at an elevation of 2000 m a.s.l., where natural avalanches are expected and controlled events are regularly performed. The array consists into 4 Optimic 2180 infrasonic microphones, with a sensitivity of 10-3 Pa in the 0.5-50 Hz frequency band and a 4 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. Data are transmitted to the Department of Earth Sciences of the University of Firenze, where data is recorded and processed in real-time. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This permanent installation in Italy will allow to verify the efficiency of the system in short-to-medium range (2-8 km) avalanche detection, and might represent an important validation to model avalanches activity during this winter season. Moreover, the real-time processing of infrasonic array data, might strongly contribute to avalanche risk assessments providing an up-to-description of ongoing events.

  13. Si/Ge photodiodes for coherent and analog communication

    Science.gov (United States)

    Piels, Molly

    High-speed photodiodes have diverse applications in wireless and fiber communications. They can be used as output stages for antenna systems as well as receivers for fiber optic networks. Silicon is an attractive substrate material for photonic components for a number of reasons. Low cost manufacturing in CMOS fabrication facilities, low material loss at telecommunications wavelengths, and relatively simple co-packaging with electronics are all driving interest in silicon photonic devices. Since silicon does not absorb light at telecommunications wavelengths, photodetector fabrication requires the integration of either III-V materials or germanium. Recent work on germanium photodetectors has focused on low-capacitance devices suitable for integration with silicon electronics. These devices have excellent bandwidth and efficiency, but have not been designed for the levels of photocurrent required by coherent and analog systems. This thesis explores the design, fabrication, and measurement of photodetectors fabricated on silicon with germanium absorbing regions for high speed and high power performance. There are numerous design trade-offs between speed, efficiency, and output power. Designing for high bandwidth favors small devices for low capacitance. Small devices require abrupt absorption profiles for good efficiency, but design for high output power favors large devices with dilute absorption. The absorption profile can be controlled by the absorber layer thickness, but this will also affect the bandwidth and power handling. This work quantifies the trade-offs between high speed, high efficiency, and high power design. Intrinsic region thickness and absorption profile are identified as the most important design variables. For PIN structures, the absorption profile and intrinsic region thickness are both functions of the Ge thickness, but in uni-traveling carrier (UTC) structures the absorption profile and intrinsic region can be designed independently. This

  14. Arrest of Avalanche Propagation by Discontinuities on Snow Cover

    Science.gov (United States)

    Frigo, B.; Chiaia, B.

    2009-04-01

    Considering the spatial variability of the snow cover, the paper analyses, in the framework of Fracture Mechanics, the Mode II fracture propagation on snow cover that leads to large dry slab avalanches. Under the hypothesis of a perfectly brittle phenomenon, avalanche triggering is usually investigated numerically by means of Linear Elastic Fracture Mechanics (McClung, 1979; Chiaia et al., 2008). Since, however, the real phenomenon is intrinsically dynamical, another aspect to investigate is represented by dynamic fracture propagation. In this paper, we model dynamic crack propagation into a dry snow slab, to assess the possibility of crack arrest due to the presence of weak zones distributed along the snow slope. As a consequence of the first triggering mechanism (the Mode II fracture propagation on the weak plane), the secondary Mode I crack propagation in the crown is studied by means of numerical simulations based on Dynamic Elastic Fracture Mechanics and on the theory of crack arresters. By taking into account kinetic energy and using the FEM software FRANC 2D (Wawrzynek and Ingraffea, 1993), several paths of crown fracture propagation and their stability have been investigated. The snowpack is considered as a linear-elastic plate (2D problem), whose physical and mechanical parameters are chosen according to classical literature values. To investigate the possible arrest of crown fracture, we apply the theory of crack arresters, usually adopted for pipelines and perforated steel sheets fracture problems. To study crack arrest, different crack paths are simulated, in discontinuous (equipped with different shapes and geometries of artificial voids) snowpacks. The simulations show the effectiveness of these weak zones, to reduce substantially the crack driving force of the propagating fracture. This means that, increasing spatial variability tends to stabilize the snow slope, eventually splitting a major avalanche event into smaller, independent avalanches. Our

  15. Infrasound monitoring of snow avalanches in the Italian Alps

    Science.gov (United States)

    Ripepe, Maurizio; Ulivieri, Giacomo; Marchetti, Emanuele; Chiambretti, Igor; Segor, Valerio; Pitet, Luca

    2010-05-01

    Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2009 we installed a temporary 4-element, small aperture (100 m), infrasound array in the Alps. The array has been deployed south of Mt. Rosa, at an elevation of 2000 m a.s.l. in the valley of Gressoney, where natural avalanches are expected and triggered ones are regularly programmed. The array consists into 4 absolute pressure transducers with a sensitivity of 0.01 Pa in the 0.1-50 Hz frequency band and a 7 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. The array is completely buried in snow. Gel cell batteries and 200 W solar panels provide the array power requirements (~3 W) and should allow a continuous operation during the winter season. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This pilot experiment in Italy will allow to verify the efficiency of the system, and might represent an important validation to modeled avalanches activity during this winter season.

  16. Snow avalanche friction relation based on extended kinetic theory

    Science.gov (United States)

    Rauter, Matthias; Fischer, Jan-Thomas; Fellin, Wolfgang; Kofler, Andreas

    2016-11-01

    Rheological models for granular materials play an important role in the numerical simulation of dry dense snow avalanches. This article describes the application of a physically based model from the field of kinetic theory to snow avalanche simulations. The fundamental structure of the so-called extended kinetic theory is outlined and the decisive model behavior for avalanches is identified. A simplified relation, covering the basic features of the extended kinetic theory, is developed and implemented into an operational avalanche simulation software. To test the obtained friction relation, simulation results are compared to velocity and runout observations of avalanches, recorded from different field tests. As reference we utilize a classic phenomenological friction relation, which is commonly applied for hazard estimation. The quantitative comparison is based on the combination of normalized residuals of different observation variables in order to take into account the quality of the simulations in various regards. It is demonstrated that the extended kinetic theory provides a physically based explanation for the structure of phenomenological friction relations. The friction relation derived with the help of the extended kinetic theory shows advantages to the classic phenomenological friction, in particular when different events and various observation variables are investigated.

  17. The effectiveness of mean-field theory for avalanche distributions

    Science.gov (United States)

    Lee, Edward; Raju, Archishman; Sethna, James

    We explore the mean-field theory of the pseudogap found in avalanche systems with long-range anisotropic interactions using analytical and numerical tools. The pseudogap in the density of low-stability states emerges from the competition between stabilizing interactions between spins in an avalanche and the destabilizing random movement towards the threshold caused by anisotropic couplings. Pazmandi et al. have shown that for the Sherrington-Kirkpatrick model, the pseudogap scales linearly and produces a distribution of avalanche sizes with exponent t=1 in contrast with that predicted from RFIM t=3/2. Lin et al. have argued that the scaling exponent ? of the pseudogap depends on the tail of the distribution of couplings and on non-universal values like the strain rate and the magnitude of the coupling strength. Yet others have argued that the relationship between the pseudogap scaling and the distribution of avalanche sizes is dependent on dynamical details. Despite the theoretical arguments, the class of RFIM mean-field models is surprisingly good at predicting the distribution of avalanche sizes in a variety of different magnetic systems. We investigate these differences with a combination of theory and simulation.

  18. Segregation induced fingering instabilities in granular avalanches

    Science.gov (United States)

    Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico

    2013-04-01

    It is important to be able to predict the distance to which a hazardous natural granular flows (e.g. snow slab avalanches, debris-flows and pyroclastic flows) might travel, as this information is vital for accurate assessment of the risks posed by such events. In the high solids fraction regions of these flows the large particles commonly segregate to the surface, where they are transported to the margins to form bouldery flow fronts. In many natural flows these bouldery margins experience a much greater frictional force, leading to frontal instabilities. These instabilities create levees that channelize the flow vastly increasing the run-out distance. A similar effect can be observed in dry granular experiments, which use a combination of small round and large rough particles. When this mixture is poured down an inclined plane, particle size segregation causes the large particles to accumulate near the margins. Being rougher, the large particles experience a greater friction force and this configuration (rougher material in front of smoother) can be unstable. The instability causes the uniform flow front to break up into a series of fingers. A recent model for particle size-segregation has been coupled to existing avalanche models through a particle concentration dependent friction law. In this talk numerical solutions of this coupled system are presented and compared to both large scale experiments carried out at the USGS flume and more controlled small scale laboratory experiments. The coupled depth-averaged model captures the accumulation of large particles at the flow front. We show this large particle accumulation at the head of the flow can lead to the break-up of the initially uniform front into a series of fingers. However, we are unable to obtain a fully grid-resolved numerical solution; the width of the fingers decreases as the grid is refined. By considering the linear stability of a steady, fully-developed, bidisperse granular layer it is shown that

  19. Precision Blasting Techniques For Avalanche Control

    Science.gov (United States)

    Powell, Kevin M.

    Experimental firings sponsored by the Center For Snow Science at Alta, Utah have demonstrated the potential of a unique prototype shaped charge device designed to stimulate snow pack and ice. These studies, conducted against stable snow pack, demonstrated a fourfold increase in crater volume yield and introduced a novel application of Shock Tube technology to facilitate position control, detonation and dud recovery of manually deployed charges. The extraordinary penetration capability of the shaped charge mechanism has been exploited in many non-military applications to meet a wide range of rapidpiercing and/or cutting requirements. The broader exploitation of the potential of the shaped charge mechanism has nevertheless remained confined to defence based applications. In the studies reported in this paper, the inimitable ability of the shaped charge mechanism to project shock energy, or a liner material, into a highly focussed energetic stream has been applied uniquely to the stimulation of snow pack. Recent research and development work, conducted within the UK, has resulted in the integration of shaped charge technology into a common Avalauncher and hand charge device. The potential of the common charge configuration and spooled Shock Tube fire and control system to improve the safety and cost effectiveness of explosives used in avalanche control operations was successfully demonstrated at Alta in March 2001. Future programmes of study will include focussed shock/blast mechanisms for suspended wire traverse techniques, application of the shaped charge mechanism to helibombing, and the desig n and development of non-fragmenting shaped charge ammunition formilitary artillery gun systems.

  20. Cubic Composite Sensor with Photodiodes for Tracking Solar Orientation

    Directory of Open Access Journals (Sweden)

    Yong-Nong Chang

    2013-01-01

    Full Text Available A cubic composite solar sensor with photo diode is proposed for tracking the relative solar orientation. The proposed solar sensor composes of five photodiode detectors which are placed on the front, rear, left, right, and horizontal facets in a cubic body, respectively. The solar detectors placed on five facets can detect solar power of different facets. Based on the geometric coordinate transformation principle, the relationship equations of solar light orientation between measured powers with respect to various facets can be conducted. As a result, the solar orientation can be precisely achieved without needing any assistance of electronic compass and extra orientation angle corrector. Eventually, the relative solar light orientation, the elevation angle, and azimuth angle of the solar light can be measured precisely.

  1. Innovative Detection System of Ochratoxin A by Thin Film Photodiodes

    Directory of Open Access Journals (Sweden)

    Riccardo Scipinotti

    2007-07-01

    Full Text Available In this work we present, for the first time, a rapid, compact and innovativemethod for detection of Ochratoxin A (OTA based on hydrogenated amorphous silicon (a-Si:H sensors. 2 μl of acidified toluene containing OTA at different concentrations werespotted on the silica side of a High Performance Thin Layer Cromatography plate andaligned with a a-Si:H p-i-n photodiode deposited by Plasma Enhanced Chemical VaporDeposition on a different glass substrate. As an UV radiation excites the mycotoxin, the re-emitted light is detected by the a-Si:H sensor. Results show a very good linearity betweenOTA concentration and the sensor photocurrent over almost three orders of magnitude. Theminimum detected OTA concentration is equal to 0.1ng, showing that the presented systemhas the potential for a low cost system suitable for the early detection of toxins in foods.

  2. Innovative Detection System of Ochratoxin A by Thin Film Photodiodes

    Science.gov (United States)

    Caputo, Domenico; de Cesare, Giampiero; Fanelli, Corrado; Nascetti, Augusto; Ricelli, Alessandra; Scipinotti, Riccardo

    2007-01-01

    In this work we present, for the first time, a rapid, compact and innovative method for detection of Ochratoxin A (OTA) based on hydrogenated amorphous silicon (a-Si:H) sensors. 2 μl of acidified toluene containing OTA at different concentrations were spotted on the silica side of a High Performance Thin Layer Cromatography plate and aligned with a a-Si:H p-i-n photodiode deposited by Plasma Enhanced Chemical Vapor Deposition on a different glass substrate. As an UV radiation excites the mycotoxin, the re-emitted light is detected by the a-Si:H sensor. Results show a very good linearity between OTA concentration and the sensor photocurrent over almost three orders of magnitude. The minimum detected OTA concentration is equal to 0.1ng, showing that the presented system has the potential for a low cost system suitable for the early detection of toxins in foods.

  3. Development and Improvement of Position Sensitive Parallel Plate Avalanche Counter (PS-PPAC)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of PS-PPAC was developed and the position resolution was successively improved by us in order to meet the need of heavy ion physics research.The PS-PPAC may be divided into two groups.1 PS-PPAC used for stable(ion)bearna)Double grid position sensitive avalanche chamber(DGAC)~[1].DGAC consists of 4 electrodes:anode A,cathode C,grids K and G,which are made of wire planes.The sensitive area was 25×20 cm~2.A position

  4. Inventory of large landslides and rock avalanches in the European Alps

    Science.gov (United States)

    Crosta, Giovanni B.; Frattini, Paolo; Agliardi, Federico

    2013-04-01

    Large deep-seated landslides include a broad range of instability phenomena (e.g. rockslide, rock slump, lateral spread, rock mass creep and sackung, rock avalanche) which in some cases can be found as combined or sequential processes, representing the progressive evolution of a complex slope instability. Complementing the orogen-scale inventory of DSGSD that has been recently presented for the European Alps (Crosta et al 2008, Agliardi et al 2012), we created an orogen scale inventory of large landslides (mainly rockslides) and rock avalanches. The inventory includes 1701 large landslides ranging in area between 0.1 and 17 km2, and 81 rock avalanches ranging between 0.09 and 15.5 km2. The inventory covers an area of about 110,000 km2 extending over the alpine territories of Italy, France, Switzerland, and Austria, and was prepared by using available satellite imagery (multi-temporal, Google Earth, Google, Inc.) and topographic data at different resolutions (DEMs from 1 m x 1m up to 20 m x 20 m for different areas). The inventory was validated against local or regional landslide inventories already available at different scales prepared by different subjects and using different means.. Geometrical features and geomorphological parameters have been collected and related to the different phenomena and local settings. The frequency-area relationship for the mapped features is presented. The inventory shows that large landslides are widespread in the Alps. Their spatial distribution has been analysed though bivariate and multivariate analysis (mainly Principal Component Analysis and Discriminant Analysis) against a variety of factors, including: lithology, proximity to tectonic structures, seismicity, uplift and exhumation rates, position within the mountain belt and along main and tributary valleys, slope morphometry (e.g. relief, elevation, gradient, etc.), ice thickness of glaciers during LGM, and mean annual rainfall. The analysis allowed a preliminary assessment

  5. Numerical modeling of debris avalanches at Nevado de Toluca (Mexico): implications for hazard evaluation and mapping

    Science.gov (United States)

    Grieco, F.; Capra, L.; Groppelli, G.; Norini, G.

    2007-05-01

    The present study concerns the numerical modeling of debris avalanches on the Nevado de Toluca Volcano (Mexico) using TITAN2D simulation software, and its application to create hazard maps. Nevado de Toluca is an andesitic to dacitic stratovolcano of Late Pliocene-Holocene age, located in central México near to the cities of Toluca and México City; its past activity has endangered an area with more than 25 million inhabitants today. The present work is based upon the data collected during extensive field work finalized to the realization of the geological map of Nevado de Toluca at 1:25,000 scale. The activity of the volcano has developed from 2.6 Ma until 10.5 ka with both effusive and explosive events; the Nevado de Toluca has presented long phases of inactivity characterized by erosion and emplacement of debris flow and debris avalanche deposits on its flanks. The largest epiclastic events in the history of the volcano are wide debris flows and debris avalanches, occurred between 1 Ma and 50 ka, during a prolonged hiatus in eruptive activity. Other minor events happened mainly during the most recent volcanic activity (less than 50 ka), characterized by magmatic and tectonic-induced instability of the summit dome complex. According to the most recent tectonic analysis, the active transtensive kinematics of the E-W Tenango Fault System had a strong influence on the preferential directions of the last three documented lateral collapses, which generated the Arroyo Grande and Zaguàn debris avalanche deposits towards E and Nopal debris avalanche deposit towards W. The analysis of the data collected during the field work permitted to create a detailed GIS database of the spatial and temporal distribution of debris avalanche deposits on the volcano. Flow models, that have been performed with the software TITAN2D, developed by GMFG at Buffalo, were entirely based upon the information stored in the geological database. The modeling software is built upon equations

  6. Controlling avalanche criticality in 2D nano arrays.

    Science.gov (United States)

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  7. [Death by avalanche in the minor mountain range].

    Science.gov (United States)

    Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Pollak, Stefan

    2015-01-01

    On 30 Jan 2015, two avalanche accidents happened in the Black Forest (at the foot of the 1493 m high Feldberg and the Herzogenhorn situated next to it), in which experienced ski tourers--a 58-year-old woman and a 20-year-old man--were completely buried by snow masses. Both victims were recovered dead after nearly 2 hours under the snow. The avalanches were promoted by strong snowfalls, snowdrift by the wind and steep downwind slopes. One of the victims, the 20-year-old man, underwent a forensic autopsy. The findings suggested death by protracted asphyxiation with agonal hypothermia. A mechanical traumatization with internal injuries suspected by the emergency doctor at the scene could not be confirmed at autopsy. The possible causes of death in the avalanche are discussed using the reported case as an example and in reference to the relevant literature.

  8. Elementary excitations and avalanches in the Coulomb glass

    Science.gov (United States)

    Palassini, Matteo; Goethe, Martin

    2012-07-01

    We study numerically the statistics of elementary excitations and charge avalanches in the classical Coulomb glass model of localized charges with unscreened Coulomb interaction and disorder. We compute the single-particle density of states with an energy minimization algorithm for systems of up to 1003 sites. The shape of the Coulomb gap is consistent with a power-law with exponent δ simeq 2.4 and marginally consistent with exponential behavior. The results are also compared with a recently proposed self-consistent approach. We then analyze the size distribution of the charge avalanches produced by a small perturbation of the system. We show that the distribution decays as a power law in the limit of large system size, and explain this behavior in terms of the elementary excitations. Similarities and differences with the scale-free avalanches observed in mean-field spin glasses are discussed.

  9. Studies of Electron Avalanche Behavior in Liquid Argon

    CERN Document Server

    Kim, J G; Jackson, K H; Kadel, R W; Kadyk, J A; Peskov, Vladimir; Wenzel, W A

    2002-01-01

    Electron avalanching in liquid argon is being studied as a function of voltage, pressure, radiation intensity, and the concentrations of certain additives, especially xenon. The avalanches produced in an intense electric field at the tip of a tungsten needle are initiated by ionization from a moveable americium (241Am) gamma ray source. Photons from xenon excimers are detected as photomultiplier signals in coincidence with the current pulse from the needle. In pure liquid argon the avalanche behavior is erratic, but the addition of even a small amount of xenon (>100ppm) stabilizes the performance. Similar attempts with neon (30%) as an additive to argon have been unsuccessful. Tests with higher energy gamma rays (57Co) yield spectra and other performance characteristics quite similar to those using the 241Am source. Two types of signal pulses are commonly observed: a set of pulses that are sensitive to ambient pressure, and a set of somewhat smaller pulses that are not pressure dependent.

  10. Flux avalanches in Nb superconducting shifted strip arrays

    Science.gov (United States)

    Tsuchiya, Y.; Mawatari, Y.; Ibuka, J.; Tada, S.; Pyon, S.; Nagasawa, S.; Hidaka, M.; Maezawa, M.; Tamegai, T.

    2013-09-01

    Flux penetrations into three-dimensional Nb superconducting strip arrays, where two layers of strip arrays are stacked by shifting a half period, are studied using a magneto-optical imaging method. Flux avalanches are observed when the overlap between the top and bottom layers is large even if the width of each strip is well below the threshold value. In addition, anomalous linear avalanches perpendicular to the strip are observed in the shifted strip array when the overlap is very large and the thickness of the superconductor is greater than the penetration depth. We discuss possible origins for the flux avalanches, including linear ones, by considering flux penetration calculated by the Campbell method assuming the Bean model.

  11. Modeling and monitoring avalanches caused by rain-on-snow events

    Science.gov (United States)

    Havens, S.; Marshall, H. P.; Trisca, G. O.; Johnson, J. B.; Nicholson, B.

    2014-12-01

    Direct-action avalanches occur during large storm cycles in mountainous regions, when stresses on the snowpack increase rapidly due to the load of new snow and outpace snow strengthening due to compaction. If temperatures rise above freezing during the storm and snowfall turns to rain, the near-surface snow undergoes rapid densification caused by the introduction of liquid water. This shock to the snowpack, if stability is near critical, can cause widespread immediate avalanching due to the large induced strain rates in the slab, followed by secondary delayed avalanches due to both the increased load as well as water percolation to the depth of a weak layer. We use the semi-empirical SNOow Slope Stability model (SNOSS) to estimate the evolution of stability prior to large avalanches during rain-on-snow events on Highway 21 north of Boise, Idaho. We have continuously monitored avalanche activity using arrays of infrasound sensors in the avalanche-prone section of HW21 near Stanley, in collaboration with the Idaho Transportation Department's avalanche forecasting program. The autonomous infrasound avalanche monitoring system provides accurate timing of avalanche events, in addition to capturing avalanche dynamics during some major releases adjacent to the array. Due to the remote location and low winter traffic volume, the highway is typically closed for multiple days during major avalanche cycles. Many major avalanches typically release naturally and reach the road, but due the complex terrain and poor visibility, manual observations are often not possible until several days later. Since most avalanche programs typically use explosives on a regular basis to control slope stability, the infrasound record of avalanche activity we have recorded on HW21 provides a unique opportunity to study large naturally triggered avalanches. We use a first-order physically based stability model to estimate the importance of precipitation phase, amount, and rate during major rain

  12. Modelling the system behaviour of wet snow avalanches using an expert system approach for risk management on high alpine traffic roads

    Directory of Open Access Journals (Sweden)

    A. Zischg

    2005-01-01

    Full Text Available The presented approach describes a model for a rule-based expert system calculating the temporal variability of the release of wet snow avalanches, using the assumption of avalanche triggering without the loading of new snow. The knowledge base of the model is created by using investigations on the system behaviour of wet snow avalanches in the Italian Ortles Alps, and is represented by a fuzzy logic rule-base. Input parameters of the expert system are numerical and linguistic variables, measurable meteorological and topographical factors and observable characteristics of the snow cover. Output of the inference method is the quantified release disposition for wet snow avalanches. Combining topographical parameters and the spatial interpolation of the calculated release disposition a hazard index map is dynamically generated. Furthermore, the spatial and temporal variability of damage potential on roads exposed to wet snow avalanches can be quantified, expressed by the number of persons at risk. The application of the rule base to the available data in the study area generated plausible results. The study demonstrates the potential for the application of expert systems and fuzzy logic in the field of natural hazard monitoring and risk management.

  13. Modelling the system behaviour of wet snow avalanches using an expert system approach for risk management on high alpine traffic roads

    Science.gov (United States)

    Zischg, A.; Fuchs, S.; Keiler, M.; Meißl, G.

    2005-10-01

    The presented approach describes a model for a rule-based expert system calculating the temporal variability of the release of wet snow avalanches, using the assumption of avalanche triggering without the loading of new snow. The knowledge base of the model is created by using investigations on the system behaviour of wet snow avalanches in the Italian Ortles Alps, and is represented by a fuzzy logic rule-base. Input parameters of the expert system are numerical and linguistic variables, measurable meteorological and topographical factors and observable characteristics of the snow cover. Output of the inference method is the quantified release disposition for wet snow avalanches. Combining topographical parameters and the spatial interpolation of the calculated release disposition a hazard index map is dynamically generated. Furthermore, the spatial and temporal variability of damage potential on roads exposed to wet snow avalanches can be quantified, expressed by the number of persons at risk. The application of the rule base to the available data in the study area generated plausible results. The study demonstrates the potential for the application of expert systems and fuzzy logic in the field of natural hazard monitoring and risk management.

  14. Experimental method to predict avalanches based on neural networks

    Directory of Open Access Journals (Sweden)

    V. V. Zhdanov

    2016-01-01

    Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.

  15. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, M., E-mail: ohno@hep01.hepl.hiroshima-u.ac.jp [Department of Physical Sciences, Hiroshima University, Hiroshima 739-8526 (Japan); Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y. [Department of Physical Sciences, Hiroshima University, Hiroshima 739-8526 (Japan); Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); and others

    2016-09-21

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5–80 keV) and soft gamma-rays (60–600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector. - Highlights: • A detail of development of signal processing system for ASTRO-H is presented. • Digital filer with FPGA instead of discrete analog circuit is applied. • Expected performance is verified after integration of the satellite.

  16. Mapping and evaluation of snow avalanche risk using GIS technique in Rodnei National Park

    Science.gov (United States)

    Covǎsnianu, Adrian; Grigoraş, Ioan-Rǎducu; Covǎsnianu, Liliana-Elena; Iordache, Iulian; Balin, Daniela

    2010-05-01

    The study consisted in a precise mapping project (GPS field campaign, on-screen digitization of the topographic maps at 1:25.000 scale and updated with ASTER mission) of the Rodnei National Park area (Romanian Carpathians) with a focus on snow avalanche risk survey. Parameters taken into account were slope, aspect, altitude, landforms and roughness resulted from a high resolute numerical terrain model obtained by ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) mission. The resulted digital surface model with a spatial resolution of 10 m covered a total area of 187 square kilometers and was improved by the help of Topo to Raster tool. All these parameters were calibrated after a model applied onto Tatra Massive and also Ceahlău Mountain. The results were adapted and interpreted in accordance with European avalanche hazard scale. This work was made in the context of the elaboration of Risk Map and is directly concerning both the security of tourism activities but also the management of the Rodnei Natural Park. The extension of this method to similar mountain areas is ongoing.

  17. High gain multigap avalanche detectors for Cerenkov ring imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  18. Test of BESⅢ RPC in the avalanche mode

    Institute of Scientific and Technical Information of China (English)

    HAN Ji-Feng; ZHANG Jia-Wen; CHEN Jin; ZHANG Qing-Min; LIU Qian; XIE Yu-Guang; QIAN Sen; MA Lie-Hua

    2008-01-01

    The installation of the BESⅢ RPC system has been completed.Cosmic ray test results show that they perform very well in streamer mode and meet the BESⅢ requirements.We have tested several RPCs in the avalanche mode with the addition of extra SF6 in the gas mixture.We find an efficiency plateau that reaches~95%.and a time resolution of 1.8 ns.This demonstrates that the BESⅢ-type RPC can work in the avalanche mode as well.

  19. Magnetar Outbursts from Avalanches of Hall Waves and Crustal Failures

    CERN Document Server

    Li, Xinyu; Belovorodov, Andrei M

    2016-01-01

    We explore the interaction between Hall waves and mechanical failures inside a magnetar crust, using detailed one-dimentional models that consider temperature-sensitive plastic flow, heat transport and cooling by neutrino emission, as well as the coupling of the crustal motion to the magnetosphere. We find that the dynamics is enriched and accelerated by the fast, short-wavelength Hall waves that are emitted by each failure. The waves propagate and cause failures elsewhere, triggering avalanches. We argue that these avalanches are the likely sources of outbursts in transient magnetars.

  20. Cold seeps associated with a submarine debris avalanche deposit at Kick'em Jenny volcano, Grenada (Lesser Antilles)

    Science.gov (United States)

    Carey, Steven; Ballard, Robert; Bell, Katherine L. C.; Bell, Richard J.; Connally, Patrick; Dondin, Frederic; Fuller, Sarah; Gobin, Judith; Miloslavich, Patricia; Phillips, Brennan; Roman, Chris; Seibel, Brad; Siu, Nam; Smart, Clara

    2014-11-01

    Remotely operated vehicle (ROV) exploration at the distal margins of a debris avalanche deposit from Kick'em Jenny submarine volcano in Grenada has revealed areas of cold seeps with chemosynthetic-based ecosystems. The seeps occur on steep slopes of deformed, unconsolidated hemipelagic sediments in water depths between 1952 and 2042 m. Two main areas consist of anastomosing systems of fluid flow that have incised local sediments by several tens of centimeters. No temperature anomalies were observed in the vent areas and no active flow was visually observed, suggesting that the venting may be waning. An Eh sensor deployed on a miniature autonomous plume recorder (MAPR) recorded a positive signal and the presence of live organisms indicates at least some venting is still occurring. The chemosynthetic-based ecosystem included giant mussels (Bathymodiolus sp.) with commensal polychaetes (Branchipolynoe sp.) and cocculinid epibionts, other bivalves, Siboglinida (vestimentiferan) tubeworms, other polychaetes, and shrimp, as well as associated heterotrophs, including gastropods, anemones, crabs, fish, octopods, brittle stars, and holothurians. The origin of the seeps may be related to fluid overpressure generated during the collapse of an ancestral Kick'em Jenny volcano. We suggest that deformation and burial of hemipelagic sediment at the front and base of the advancing debris avalanche led to fluid venting at the distal margin. Such deformation may be a common feature of marine avalanches in a variety of geological environments especially along continental margins, raising the possibility of creating large numbers of ephemeral seep-based ecosystems.

  1. Inventory of rock avalanches in western Glacier Bay National Park and Preserve, Alaska, 1984-2016: a baseline data set for evaluating the impact of climate change on avalanche magnitude, mobility, and frequency

    Science.gov (United States)

    Bessette-Kirton, Erin; Coe, Jeffrey A.

    2016-01-01

    The effects of climate change have the potential to impact slope stability. Negative impacts are expected to be greatest at high northerly latitudes where degradation of permafrost in rock and soil, debuttressing of slopes as a result of glacial retreat, and changes in ocean ice-cover are likely to increase the susceptibility of slopes to landslides. In the United States, the greatest increases in air temperature and precipitation are expected to occur in Alaska. In order to assess the impact that these environmental changes will have on landslide size (magnitude), mobility, and frequency, inventories of historical landslides are needed. These inventories provide baseline data that can be used to identify changes in historical and future landslide magnitude, mobility, and frequency.  This data release presents GIS and attribute data for an inventory of rock avalanches in a 5000 km2 area of western Glacier Bay National Park and Preserve, Alaska. We created the inventory from 30 m resolution Landsat imagery acquired from June 1984 to September 2016.  For each calendar year, we visually examined a minimum of one Landsat image obtained between the months of May and October. We examined a total of 104 Landsat images. The contrast between the spectral signatures of freshly exposed rock avalanche source areas and deposits and surrounding undisturbed snow and ice was typically significant enough to detect surficial changes. We identified and mapped rock avalanches by locating areas with 1) high contrast compared to surrounding snow and ice, 2) different spectral signatures between successive Landsat images, and 3) lobate forms typical of rock-avalanche deposits. Using these criteria, we mapped a total of 24 rock avalanches ranging in size from 0.1 to 22 km2.Attribute data for each rock avalanche includes: a date, or range in possible dates, of occurrence; the name of the Landsat image(s) used to identify and map the avalanche; the total area covered by the rock avalanche

  2. High performance x-ray imaging detectors on foil using solution-processed organic photodiodes with extremely low dark leakage current (Presentation Recording)

    Science.gov (United States)

    Kumar, Abhishek; Moet, Date; van der Steen, Jan Laurens; van Breemen, Albert; Shanmugam, Santhosh; Gilot, Jan; Andriessen, Ronn; Simon, Matthias; Ruetten, Walter; Douglas, Alexander; Raaijmakers, Rob; Malinowski, Pawel E.; Myny, Kris; Gelinck, Gerwin

    2015-10-01

    High performance X-ray imaging detectors on foil using solution-processed organic photodiodes with extremely low dark leakage current Abhishek Kumara, Date Moeta, Albert van Breemena, Santhosh Shanmugama, Jan-Laurens van der Steena, Jan Gilota, Ronn Andriessena, Matthias Simonb, Walter Ruettenb, Alexander U. Douglasb, Rob Raaijmakersc, Pawel E. Malinowskid, Kris Mynyd and Gerwin H. Gelincka,e a. Holst Centre/TNO, High Tech Campus 31, Eindhoven 5656 AE, The Netherlands b. Philips Research, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands c. Philips Healthcare, Veenpluis 6-8, 5684 PC Best, The Netherlands d. Department of Large Area Electronics, imec vzw, Kapeldreef 75, Leuven B3001, Belgium e. Applied Physics Department, TU Eindhoven, Eindhoven, The Netherlands We demonstrate high performance X-ray imaging detectors on foil suitable for medical grade X-ray imaging applications. The detectors are based on solution-processed organic photodiodes forming bulk-heterojunctions from photovoltaic donor and acceptor blend. The organic photodiodes are deposited using an industrially compatible slot die coating technique with end of line processing temperature below 100°C. These photodiodes have extremely low dark leakage current density of 10-7 mA/cm2 at -2V bias with very high yield and have peak absorption around 550 nm wavelength. We combine these organic photodiodes with high mobility metal oxide semiconductor based thin film transistor arrays with high pixel resolution of 200ppi on thin plastic substrate. When combined with a typical CsI(TI) scintillator material on top, they are well suited for low dose X-ray imaging applications. The optical crosstalk is insignificant upto resolution of 200 ppi despite the fact that the photodiode layer is one continuous layer and is non-pixelated. Low processing temperatures are another key advantage since they can be fabricated on plastic substrate. This implies that we can make X-ray detectors on flexible foil. Those

  3. Geological and geotechnical characterization of the debris avalanche and pyroclastic deposits of Cotopaxi Volcano (Ecuador). A contribute to instability-related hazard studies

    Science.gov (United States)

    Vezzoli, L.; Apuani, T.; Corazzato, C.; Uttini, A.

    2017-02-01

    The huge volcanic debris avalanche occurred at 4.5 ka is a major event in the evolution of the Cotopaxi volcano, Ecuador. The present volcanic hazard in the Cotopaxi region is related to lahars generated by volcanic eruptions and concurrent ice melting. This paper presents the geological and geotechnical field and laboratory characterization of the 4.5 ka Cotopaxi debris avalanche deposit and of the younger unconsolidated pyroclastic deposits, representing the probable source of future shallow landslides. The debris avalanche formed a deposit with a well-developed hummocky topography, and climbed a difference in height of about 260 m along the slopes of the adjacent Sincholagua volcano. The debris avalanche deposit includes four lithofacies (megablock, block, mixed, and sheared facies) that represent different flow regimes and degrees of substratum involvement. The facies distribution suggests that, in the proximal area, the debris avalanche slid predominantly confined to the valleys along the N and NE flank of the volcanic cone, emplacing a stack of megablocks. When the flow reached the break in slope at the base of the edifice, it became unconfined and spread laterally over most of the area of the Rio Pita valley. A dynamic block fragmentation and dilation occurred during the debris avalanche transport, emplacing the block facies. The incorporation of the older Chalupas Ignimbrite is responsible for the mixed facies and the sheared facies. Geotechnical results include a full-range grain size characterization, which enabled to make broader considerations on possible variability among the sampled facies. Consolidated drained triaxial compression tests, carried out on the fine fraction Failure surfaces are always well developed, indicating that the poorly consolidated pyroclastic cover could undergo failure leading to the formation of a gravity driven instability phenomena, like granular or debris flows, which are mainly controlled by the fine fraction. This work

  4. ALS-based hummock size-distance relationship assessment of Mt Shasta debris avalanche deposit, Northern California, USA

    Science.gov (United States)

    Tortini, Riccardo; Carn, Simon; van Wyk de Vries, Benjamin

    2015-04-01

    The failure of destabilized volcano flanks is a likely occurrence during the lifetime of a stratovolcano, generating large debris avalanches and drastically changing landforms around volcanoes. The significant hazards associated with these events in the Cascade range were demonstrated, for example, by the collapse of Mt St Helens (WA), which triggered its devastating explosive eruption in 1980. The rapid modification of the landforms due to these events makes it difficult to estimate the magnitude of prehistoric avalanches. However, the widespread preservation of hummocks along the course of rockslide-debris avalanches is highly significant for understanding the physical characteristics of these landslides. Mt Shasta is a 4,317 m high, snow-capped, steep-sloped stratovolcano located in Northern California. The current edifice began forming on the remnants of an ancestral Mt Shasta that collapsed ~300-380k years ago producing one of the largest debris avalanches known on Earth. The debris avalanche deposit (DAD) covers a surface of ~450 km2 across the Shasta valley, with an estimated volume of ~26 km3. We analyze ALS data on hummocks from the prehistoric Shasta valley DAD in northern California (USA) to derive the relationship between hummock size and distance from landslide source, and interpret the geomorphic significance of the intercept and slope coefficients of the observed functional relationships. Given the limited extent of the ALS survey (i.e. 40 km2), the high-resolution dataset is used for validation of the morphological parameters extracted from freely available, broader coverage DTMs such as the National Elevation Dataset (NED). The ALS dataset also permits the identification of subtle topographic features not apparent in the field or in coarser resolution datasets, including a previously unmapped fault, of crucial importance for both seismic and volcanic hazard assessment in volcanic areas. We present evidence from the Shasta DAD of neotectonic

  5. CsI(Tl)-photodiode detectors for gamma-ray spectroscopy

    CERN Document Server

    Fioretto, E; Viesti, G; Cinausero, M; Zuin, L; Fabris, D; Lunardon, M; Nebbia, G; Prete, G

    2000-01-01

    We report on the performances of CsI(Tl)-photodiode detectors for gamma-ray spectroscopy applications. Light output yield and energy resolution have been measured for different crystals and read-out configurations.

  6. AN INVESTIGATION ON PHOTODIODE SWITCHING TIMES FOR PULSED HIGH RADIANT POWERS

    Directory of Open Access Journals (Sweden)

    Erdem ÖZÜTÜRK

    2004-02-01

    Full Text Available In many applications the light impinging on photodiode surface is pulsed. The change in parameter values in the equivalent circuit of photodiode is important if the amplitude of light pulses are large. In this situation, the change of parameter values with the amplitude of light pulse is nonlinear. Because of this, the nonlinear model of photodiode has been used in this search. By the reasons of photoconductive operation mode is a fast operation, the photoconductive circuit has been examined. In this study, according to the nonlinear behavior of photodiode at pulsed high radiant powers the changes of switching times have been investigated by using SPICE program and the changing of switching times with increasing radiant power has been showed.

  7. Electric field distribution and simulation of avalanche formation due to the passage of heavy ions in a parallel grid avalanche counter

    Indian Academy of Sciences (India)

    D Kanjilal; S Saha

    2009-05-01

    Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that the crossed grid geometry has marginally higher gain at larger electric fields close to the avalanche region. The spatial uniformity of response in the two wire grid configurations is also compared.

  8. Hypoxia and hypercapnia during respiration into an artificial air pocket in snow: implications for avalanche survival.

    Science.gov (United States)

    Brugger, Hermann; Sumann, Günther; Meister, Roland; Adler-Kastner, Liselotte; Mair, Peter; Gunga, Hanns Christian; Schobersberger, Wolfgang; Falk, Markus

    2003-07-01

    Snow avalanche case reports have documented the survival of skiers apparently without permanent hypoxic sequelae, after prolonged complete burial despite there being only a small air pocket on extrication. We investigated the underlying pathophysiological changes in a prospective, randomised 2 x 2 crossover study in 12 volunteers (28 tests) breathing into an artificial air pocket (1- or 2-l volume) in snow. Peripheral SpO(2), ETCO(2), arterialised capillary blood variables, air pocket O(2) and CO(2), snow density, and snow conditions at the inner surface of the air pocket were determined. SpO(2) decreased from a median of 99% (93-100%) to 88% (71-94%; Psnow density (r=0.50, P=0.021, partial correlation coefficient). ETCO(2) rose simultaneously from median 5.07 kPa (3.47-6.93 kPa) to 6.8 kPa (5.87-8.27 kPa; Pavalanche burial is dependent on air pocket volume, snow density and unknown individual personal characteristics, yet long-term survival is possible with only a small air pocket. Hence, the definition of an air pocket, "any space surrounding mouth and nose with the proviso of free air passages" is validated as the main criterion for triage and management of avalanche victims. Our experimental model will facilitate evaluating the interrelation between volume and inner surface area of an air pocket for survival of avalanche victims, whilst the present findings have laid the basis for future investigation of possible interactions between hypoxia, hypercapnia, and hypothermia (triple H syndrome) in snow burial.

  9. Hybrid phase transition into an absorbing state: Percolation and avalanches.

    Science.gov (United States)

    Lee, Deokjae; Choi, S; Stippinger, M; Kertész, J; Kahng, B

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent β_{m} of the order parameter is 1/2 under general conditions, while the value of the exponent γ_{m} characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, β_{a} and γ_{a}. These two critical behaviors are coupled by a scaling law: 1-β_{m}=γ_{a}.

  10. Avalanches in dry and saturated disordered media at fracture.

    Science.gov (United States)

    Milanese, Enrico; Yılmaz, Okan; Molinari, Jean-François; Schrefler, Bernhard

    2016-04-01

    This paper analyzes fracturing in inhomogeneous media under dry and fully saturated conditions. We adopt a central force model with continuous damage to study avalanche behavior in a two-dimensional truss lattice undergoing dilation. Multiple fractures can develop at once and a power-law distribution of the avalanche size is observed. The values for the power-law exponent are compared with the ones found in the literature and scale-free behavior is suggested. The fracture evolves intermittently in time because only some avalanches correspond to fracture advancement. A fully saturated model with continuous damage based on the extended Biot's theory is developed and avalanche behavior is studied in the presence of fluid, varying the fluid boundary conditions. We show that power-law behavior is destroyed when the fluid flux governs the problem. Fluid pressure behavior during intermittent crack tip advancement is studied for the continuous-damage fully saturated model. It is found that when mechanical loading prevails, the pressure rises when the crack advances, while when fluid loading prevails, the pressure drops when the crack advances.

  11. Group Dynamics and Decision Making: Backcountry Recreationists in Avalanche Terrain

    Science.gov (United States)

    Bright, Leslie Shay

    2010-01-01

    The purpose of this study was to describe and determine the prevalence of decision-making characteristics of recreational backcountry groups when making a decision of where to travel and ride in avalanche terrain from the perspective of individuals. Decision-making characteristics encompassed communication, decision-making processes, leadership,…

  12. Teaching Avalanche Safety Courses: Instructional Techniques and Field Exercises.

    Science.gov (United States)

    Watters, Ron

    This paper discusses course structure, teaching techniques, and field exercises for enhancing winter travelers' avalanche knowledge and skills. In two class sessions, the course typically consists of a historical perspective; a section on snow physics (clouds, types of snow crystals, effects of riming, identification of precipitated snow crystals,…

  13. Reducing the Odds: Backcountry Powder Skiing in Avalanche Terrain.

    Science.gov (United States)

    Daffern, Tony

    This paper provides information and strategies to reduce the risk of encountering an avalanche when skiing or climbing on steep slopes. Skiers must recognize that the risk exists, be aware of their own tolerance for risk, and not allow companions to pressure them into taking more risk than they can tolerate. Ideally, one should ski with a small…

  14. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile

    Science.gov (United States)

    Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.

    1985-01-01

    Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.

  15. Gridded snow maps supporting avalanche forecasting in Norway

    Science.gov (United States)

    Müller, K.; Humstad, T.; Engeset, R. V.; Andersen, J.

    2012-04-01

    We present gridded maps indicating key parameters for avalanche forecasting with a 1 km x 1 km resolution. Based on the HBV hydrology model, snow parameters are modeled based on observed and interpolated precipitation and temperature data. Modeled parameters include for example new snow accumulated the last 24 and 72 hours, snow-water equivalent, and snow-water content. In addition we use meteorological parameters from the UK weather prediction model "Unified Model" such as wind and radiation to model snow-pack properties. Additional loading in lee-slopes by wind-transport is modeled based on prevailing wind conditions, snow-water content and snow age. A depth hoar index accounts for days with considerable negative temperature gradients in the snow pack. A surface hoar index based on radiation and humidity is currently under development. The maps are tested against field reports from avalanche observers throughout Norway. All data is available via a web-platform that combines maps for geo-hazards such as floods, landslides and avalanches. The maps are used by the Norwegian avalanche forecasting service, which is currently in a test phase. The service will be operational by winter 2012/2013.

  16. Electron avalanche structure determined by random walk theory

    Science.gov (United States)

    Englert, G. W.

    1973-01-01

    A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is made possible by a random walk technique. Results show that the electric field patterns in the early formation stages of avalanches in helium are close to those obtained from theory based on constant transport coefficients. Regions of maximum and minimum induced electrostatic potential phi are located on the axis of symmetry and within the volume covered by the electron swarm. As formation time continues, however, the region of minimum phi moves to slightly higher radii and the electric field between the extrema becomes somewhat erratic. In the intermediate formation periods the avalanche growth is slightly retarded by the high concentration of ions in the tail which oppose the external electric field. Eventually the formation of ions and electrons in the localized regions of high field strength more than offset this effect causing a very abrupt increase in avalanche growth.

  17. Soft X-ray detection and photon counting spectroscopy with commercial 4H-SiC Schottky photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, S., E-mail: Shifan.Zhao@sussex.ac.uk; Gohil, T.; Lioliou, G.; Barnett, A.M.

    2016-09-11

    The results of electrical characterisation and X-ray detection measurements of two different active area (0.06 mm{sup 2} and 0.5 mm{sup 2}) commercial 4H-SiC Schottky photodiodes at room temperature are reported. The devices exhibited low dark currents (less than 10 pA) even at a high electric field strengths (403 kV/cm for 0.06 mm{sup 2} diodes; 227 kV/cm for 0.5 mm{sup 2} diodes). The results of the X-ray measurements indicate that the diodes can be used as photon counting spectroscopic X-ray detectors with modest energy resolutions: FWHM at 5.9 keV of 1.8 keV and 3.3 keV, for the 0.06 mm{sup 2} and 0.5 mm{sup 2} devices, respectively. Noise analysis of the photodiodes coupled to a custom low noise charge sensitive preamplifier is also presented.

  18. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two

  19. Imaging Findings of a Survivor of Avalanche without Any Life Support at Very High Altitude and Extreme Low Temperatures

    Directory of Open Access Journals (Sweden)

    Abhishek Dwivedi

    2016-10-01

    Full Text Available Survival at high altitude is very challenging and in spite of adequate training and acclimatization, injuries are frequent. The fate of mountaineers and soldiers at such areas largely depends on the mercy of the climate. An avalanche causes physical trauma, cold injury and asphyxia to the victim. The patient in our report had diffuse cerebral edema, bilateral pulmonary consolidation and pneumothorax. In spite of the best efforts the victim succumbed to the injuries. There are many incidents of high altitude accidents in India. This case report is of a soldier deployed at the high altitude, is a lone ever reported survivor above 5000 meters, under 35 feet snow and below - 45°C for greater than 5 days of exposure to an avalanche

  20. Dealing with the white death: avalanche risk management for traffic routes.

    Science.gov (United States)

    Rheinberger, Christoph M; Bründl, Michael; Rhyner, Jakob

    2009-01-01

    This article discusses mitigation strategies to protect traffic routes from snow avalanches. Up to now, mitigation of snow avalanches on many roads and railways in the Alps has relied on avalanche sheds, which require large initial investments resulting in high opportunity costs. Therefore, avalanche risk managers have increasingly adopted organizational mitigation measures such as warning systems and closure policies instead. The effectiveness of these measures is, however, greatly dependent on human decisions. In this article, we present a method for optimizing avalanche mitigation for traffic routes in terms of both their risk reduction impact and their net benefit to society. First, we introduce a generic framework for assessing avalanche risk and for quantifying the impact of mitigation. This allows for sound cost-benefit comparisons between alternative mitigation strategies. Second, we illustrate the framework with a case study from Switzerland. Our findings suggest that site-specific characteristics of avalanche paths, as well as the economic importance of a traffic route, are decisive for the choice of optimal mitigation strategies. On routes endangered by few avalanche paths with frequent avalanche occurrences, structural measures are most efficient, whereas reliance on organizational mitigation is often the most appropriate strategy on routes endangered by many paths with infrequent or fuzzy avalanche risk. Finally, keeping a traffic route open may be very important for tourism or the transport industry. Hence, local economic value may promote the use of a hybrid strategy that combines organizational and structural measures to optimize the resource allocation of avalanche risk mitigation.

  1. Snow avalanche detection and identification for near real-time application

    Science.gov (United States)

    Havens, S.; Johnson, J. B.; Marshall, H.; Nicholson, B.; Trisca, G. O.

    2013-12-01

    A near real-time avalanche detection system will provide highway avalanche forecasters with a tool to remotely monitor major avalanche paths and provide information about regional avalanche activity and timing. For the last three winters, a network of infrasound arrays has been remotely monitoring both avalanche and non-avalanche events along a 10 mile section of Highway 21 in Idaho. To provide the best results to avalanche forecasters, the system must be robust and detect all major avalanche events of interest that affect the highway. Over the last three winters, the infrasound arrays recorded multiple avalanche cycles and we explore different methods of event detection for both large dry avalanches (strong infrasound signal) and small wet avalanches (weak infrasound signal). We compare the F-statistic and cross-correlation techniques (i.e. PMCC) to determine the most robust method and develop computationally efficient algorithms to implement in near-real time using parallel processing and GPU computing. Once an event has been detected, we use the artificial intelligence method of recursive neural networks to classify based on similar characteristics to past known signals.

  2. Use of a magnetic field to modify and detect avalanche behavior on a conical bead pile

    Science.gov (United States)

    Johnson, Nathan; Lehman, Susan

    2015-03-01

    A conical bead pile subject to slow driving and an external magnetic field is used to test the effects of drop height and cohesion on avalanche statistics. Magnetically susceptible beads were dropped onto a pile from different heights and into different strengths of magnetic field. Avalanches were recorded by the change in mass as beads fall off the pile. For beads dropped from a low drop height with no cohesion, the avalanche size distribution follows a power law. As cohesion increases, we observe an increase in the probability of very large avalanches and decreases in the mid-size avalanches. The resulting bump in the avalanche distribution moves to larger avalanche size as the cohesion in the system is increased, matching the prediction by an analytic theory from a mean-field model of slip avalanches. The model also makes predictions for avalanche duration, which is not measurable with our current system. Since the steel beads are magnetized while in the applied magnetic field, their motion during an avalanche creates a change in magnetic flux. To detect this motion, we have placed a large-diameter pick-up coil around the pile. Results of the testing and calibration of this coil to measure avalanche duration are presented.

  3. El reconocimiento de avalanchas de rocas y deslizamientos de bloques rocosos prehistoricos en el área andina de Neuquén (37°15´ - 37°30´S Reconnaissance of prehistoric rock-avalanches and rock blocks slides in the Andean area of Neuquén (37°15´- 37°30´S

    Directory of Open Access Journals (Sweden)

    E.F. González Díaz

    2005-09-01

    pendientes, proceso que se interpreta promovido por un inductor sísmico, el que mostraría una relación adecuada con el marco sismotectónico y estructural de la región. Se destaca la influencia que pudo alcanzar la disposición periclinal de las acumulaciones volcánicas en el desprendimiento del flanco de una depresión caldérica. La consiguiente ameliorización climática postglaciaria, caracterizada por mayor humedad y precipitaciones, contribuyó a una disminución de la fricción y cohesión de los componentes de las pendientes. La edad de estos fenómenos no ha sido determinada, pero se la considerara posterior al englazamiento local cuaternario.Five prehistoric rock-avalanches are described in the northern cordilleran region of Neuquén Province, between 37º15' and 37º30'S and between 70º55' and 71º05'W. These slides and their deposits were not previously identified and moreover they were classified as glacial and glaciofluvial in origin. All of them are developed on volcanic-sedimentary deposits. They are named after local places: Cerro Piche Moncol, Cerro Guañaco, Cerro Coronal, Laguna Negra and Laguna Lauquen Mallín avalanches. The first three form a group of avalanches situated north of Reñileuvú creek, in the vicinity of the previously described Moncol rockavalanche. Their break-away zones are located on the lateral slopes of a pre-existing deep glacial valley. The biggest rock-avalanche is the Cerro Piche Moncol and its deposits are due to the collapse of the southern flank of a volcanic edifice with a small caldera. The Cerro Guañaco, Cerro Coronal and Laguna Negra rock-avalanches began as a slump slide to evolving distally into a flow. The slides of Laguna Lauquen Mallín are big rock-block slides. Some local factors, principally contrasting lithology and physical properties, structural factors and more humid conditions during postglacial times favourable conditions for the loss of slope equilibrium. The authors suggest that these gravitational

  4. Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado

    Science.gov (United States)

    Coe, J. A.; Baum, R. L.; Allstadt, K.; Kochevar, B. F.; Schmitt, R. G.; Morgan, M. L.; White, J. L.; Stratton, B. T.; Hayashi, T. A.; Kean, J. W.

    2015-12-01

    The rain-on-snow induced West Salt Creek rock avalanche occurred on May 25, 2014 on the northern flank of Grand Mesa. The avalanche was rare for the contiguous U.S. because of its large size (59 M m3) and high mobility (Length/Height=7.2). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, Unmanned Aircraft System (UAS) imagery as a base for our field mapping and analyzed seismic data from 22 broadband stations (distances avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with a landslide/debris flow that started about 10 hours before the main avalanche. The main avalanche lasted just over 3 minutes and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich, strike-slip bound core continued to move slowly. Following movement of the core, numerous shallow landslides, rock slides, and rock falls created new structures and modified topography. Mobility of the main avalanche and central core were likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a liquefied basal layer; and a thicker and stronger overriding layer.

  5. Maximum speeds and alpha angles of flowing avalanches

    Science.gov (United States)

    McClung, David; Gauer, Peter

    2016-04-01

    A flowing avalanche is one which initiates as a slab and, if consisting of dry snow, will be enveloped in a turbulent snow dust cloud once the speed reaches about 10 m/s. A flowing avalanche has a dense core of flowing material which dominates the dynamics by serving as the driving force for downslope motion. The flow thickness typically on the order of 1 -10 m which is on the order of about 1% of the length of the flowing mass. We have collected estimates of maximum frontal speed um (m/s) from 118 avalanche events. The analysis is given here with the aim of using the maximum speed scaled with some measure of the terrain scale over which the avalanches ran. We have chosen two measures for scaling, from McClung (1990), McClung and Schaerer (2006) and Gauer (2012). The two measures are the √H0-;√S0-- (total vertical drop; total path length traversed). Our data consist of 118 avalanches with H0 (m)estimated and 106 with S0 (m)estimated. Of these, we have 29 values with H0 (m),S0 (m)and um (m/s)estimated accurately with the avalanche speeds measured all or nearly all along the path. The remainder of the data set includes approximate estimates of um (m/s)from timing the avalanche motion over a known section of the path where approximate maximum speed is expected and with either H0or S0or both estimated. Our analysis consists of fitting the values of um/√H0--; um/√S0- to probability density functions (pdf) to estimate the exceedance probability for the scaled ratios. In general, we found the best fits for the larger data sets to fit a beta pdf and for the subset of 29, we found a shifted log-logistic (s l-l) pdf was best. Our determinations were as a result of fitting the values to 60 different pdfs considering five goodness-of-fit criteria: three goodness-of-fit statistics :K-S (Kolmogorov-Smirnov); A-D (Anderson-Darling) and C-S (Chi-squared) plus probability plots (P-P) and quantile plots (Q-Q). For less than 10% probability of exceedance the results show that

  6. High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions

    Science.gov (United States)

    Tang, Yin; Cai, Qing; Yang, Lian-Hong; Dong, Ke-Xiu; Chen, Dun-Jun; Lu, Hai; Zhang, Rong; Zheng, You-Dou

    2017-01-01

    Not Available Supported by the State Key Project of Research and Development Plan of China under Grant No 2016YFB0400903, the National Natural Science Foundation of China under Grant Nos 61634002, 61274075 and 61474060, the Key Project of Jiangsu Province under Grant No BE2016174, the Anhui University Natural Science Research Project under Grant No KJ2015A153, and the Open Fund of State KeyLab of Optical Technologies on Nano-fabrication and Micro-engineering.

  7. Photodiode read-out of the ALICE photon spectrometer $PbWO_{4}$ crystals

    CERN Document Server

    Man'ko, V I; Sibiryak, Yu; Volkov, M; Klovning, A; Maeland, O A; Odland, O H; Rongved, R; Skaali, B

    1999-01-01

    Proposal of abstract for LEB99, Snowmass, Colorado, 20-24 September 1999The PHOton Spectrometer of the ALICE experiment is an electromagnetic calorimeter of high granularity consisting of 17280 lead-tungstate (PWO) crystals of dimensions 22x22x180 mm3, read out by large-area PIN-diodes with very low-noise front-end electronics. The crystal assembly is operated at -25C to increase the PWO light yield. A 16.1x17.1 mm2 photodiode, optimized for the PWO emissio spectrum at 400-500 nm, has been developed. The 20x20 mm2 preamplifier PCB is attached to the back side of the diode ceramic frame. The charge sensitive preamplifier is built in discrete logic with two input JFETs for optimum matching with the ~150pF PIN-diode. A prototype shaper has been designed and built in discrete logic. For a detector matrix of 64 units the measured ENCs are between 450-550e at -25C. Beam tests demonstrate that the required energy resolution is reached.Summary:The PHOton Spectrometer of the ALICE experiment is an electromagnetic calo...

  8. A view on progress of silicon single-photon avalanche diodes and quenching circuits

    Science.gov (United States)

    Cova, Sergio; Ghioni, Massimo; Zappa, Franco; Rech, Ivan; Gulinatti, Angelo

    2006-10-01

    Silicon Single-Photon Avalanche-Diodes (SPAD) are nowadays considered a solid-state alternative to Photomultiplier Tubes (PMT) in single photon counting (SPC) and time-correlated single photon-counting (TCSPC) over the visible spectral range up to 1 micron wavelength. SPADs implemented in planar epitaxial technology compatible with CMOS circuits offer the typical advantages of microelectronic devices (small size, ruggedness, low voltage and low power, etc.). Furthermore, they have inherently higher photon detection efficiency, since they do not rely on electron emission in vacuum from a photocathode as PMT, but instead on the internal photoelectric effect. However, PMTs offer much wider sensitive area, which greatly simplifies the design of optical systems; they provide position-sensitive photon detection and imaging capability; they attain remarkable performance at high counting rate and offer picosecond timing resolution with Micro-Channel Plate (MCP) models. In order to make SPADs more competitive in a broader range of SPC and TCPC applications it is necessary to face both semiconductor technology issues and circuit design issues, which will be here dealt with. Technology issues will be discussed in the context of two possible approaches: employing a standard industrial high-voltage compatible CMOS technology or developing a dedicated CMOS-compatible technology. Circuit design issues will be discussed taking into account problems arising from conflicting requirements set by various required features, such as fast and efficient avalanche quenching and reset, high resolution photon timing, etc.

  9. Testing the hypothesis of the Earth's magnetosphere behaving like an avalanching system

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2004-01-01

    Full Text Available The global auroral dissipation power as observed by the imager on the Polar spacecraft is used as a proxy for the power dissipation of the Earth's magnetosphere to examine whether or not the magnetosphere is an avalanching system. It is found that the probability density distributions for the area and power of auroral activity sites have a power law component within a finite scale range, suggestive of a scale-free nature in this finite-size system. This property is robust, prevailing with variations in the threshold used to define auroral activity sites and in the strength of the external driver, namely, the solar wind. The statistical characteristics on the temporal evolution of auroral sites are then examined, which leads to a criterion that can be used to predict about 42min in advance the total energy dissipation during the lifetime of an auroral activity site. The scale-free characteristics of auroral activity appears to be an intrinsic feature of the magnetosphere based on a comparison of the probability density distribution in the total auroral brightness power with that of the solar wind power input parameters in the same period as the auroral observations. These results are consistent with the hypothesis of the magnetosphere behaving like an avalanching system.

  10. Rock avalanche and rock glacier: A compound landform study from Hornsund, Svalbard

    Science.gov (United States)

    Hartvich, Filip; Blahut, Jan; Stemberk, Josef

    2017-01-01

    On the northern coast of the Hornsund fjord at SW Svalbard, numerous rock block accumulations flank the foot of Rotjesfjellet ridge. Whereas these accumulations are widely described as rock glaciers, this study shows that other factors also influence formation of these landforms. In this study, morphometric profiling and terrain analyses, lichenometry, optical granulometry, Schmidt hammer measurements, geophysical measurements using electric resistivity tomography, geodetic measurements using terrestrial LiDAR and rockfall modelling were used to clarify the formation of one unusual block accumulation. The morphometric analysis of a detailed (0.5 m) DEM and relief profiles showed distinctly different morphology of one of four studied block accumulations. The electric resistivity tomography revealed an ice core in the accumulation, the Schmidt hammer sampling helped to establish relatively younger age of the lobe-like left part of accumulation and finally, the lichenometry was employed to place the event on the approximate position on the timescale. In conclusion, the unusual block accumulation is a result of two consequent processes: first, a typical foothill rock glacier has developed, and consequently a large rock avalanche occurred, adding material and deforming the NW part of the accumulation. Based on the results of lichenometry, the rock avalanche was estimated to be 250 ± 50 years old. The study thus presents one of the few reported slope deformation events from the recently deglaciated Arctic areas.

  11. First prototypes of two-tier avalanche pixel sensors for particle detection

    Science.gov (United States)

    Pancheri, L.; Brogi, P.; Collazuol, G.; Dalla Betta, G.-F.; Ficorella, A.; Marrocchesi, P. S.; Morsani, F.; Ratti, L.; Savoy-Navarro, A.

    2017-02-01

    In this paper, we present the implementation and preliminary evaluation of a new type of silicon sensor for charged particle detection operated in Geiger-mode. The proposed device, formed by two vertically-aligned pixel arrays, exploits the coincidence between two simultaneous avalanche events to discriminate between particle-triggered detections and dark counts. A proof-of-concept two-layer sensor with per-pixel coincidence circuits was designed and fabricated in a 150 nm CMOS process and vertically integrated through bump bonding. The sensor includes a 48×16 pixel array with 50 μ m × 75 μ m pixels. This work describes the sensor architecture and reports a selection of results from the characterization of the avalanche detectors in the two layers. Detectors with an active area of 43 × 45 μ m2 have a median dark count rate of 3 kHz at 3.3 V excess bias and a breakdown voltage non-uniformity lower than 20 mV.

  12. LOCAL CONDITIONS AND IMPACTS OF THE AVALANCHES. CASE STUDIES IN REPRESENTATIVE SECTORS WITHIN PIATRA CRAIULUI AND FĂGĂRAȘ MOUNTAINS

    Directory of Open Access Journals (Sweden)

    ANCA MUNTEANU

    2014-05-01

    Full Text Available Genesis conditions and effects of avalanches. Case studies in representative sectors within Piatra Craiului and Fagars mountains. The present paper aims at investigating the avalanches and their impact on the environment components. Snow avalanches are natural phenomena, which are controlled by the specific features of the mountain realm. They start suddenly due to the combination of meteorological and non-meteorological factors, which make the loose materials (snow, ice, detritus, vegetation or soil collapse or slide down along the slope. In consequence, erosion is increased or facilitated because of the impact they have on the other components of the environment (thalwegs deepening, forest destruction. The distribution of avalanches is hard to be highlighted, because of the inaccessible lands and the adverse meteorological conditions. From this reason, one needs to know their complex features, namely the morphology, vegetation and spatial dynamics of the areas prone to such phenomena. The effects on the environment can be easily identified in the mountain realm, inasmuch as they create typical corridors along the streams crossing the forests. At the same time, however, they have certain effects on the slope deposits, too. These will be further presented with examples for the eastern slope of the Piatra Craiului Mts. and the Suru – Negoiu section in the Făgăraș Mts. These areas are deemed representative for each of the mentioned mountain massifs.

  13. Rescue missions for totally buried avalanche victims: conclusions from 12 years of experience.

    Science.gov (United States)

    Hohlrieder, Matthias; Thaler, Stephanie; Wuertl, Walter; Voelckel, Wolfgang; Ulmer, Hanno; Brugger, Hermann; Mair, Peter

    2008-01-01

    The planning and execution of avalanche rescue missions to search for totally buried avalanche victims are mostly based on personal experience and preference, as evidence-based information from literature is almost completely missing. Hence, the aim of this study was to identify major factors determining the survival probability of totally buried victims during avalanche rescue missions carried out by organized rescue teams (Austrian Mountain Rescue Service, Tyrol). During the 12-year period studied, 109 totally buried persons (56 off-piste, 53 backcountry), were rescued or recovered; 18.3% survived to hospital discharge. Median depth of burial was 1.25 m; median duration of burial was 85 min. The majority (61.6%) of the rescue missions were conducted under considerably dangerous avalanche conditions. The probability of survival was highest when located visually and lowest for those located by avalanche transceiver; survival did not significantly differ between those found by rescue dogs and those located with avalanche probes. Multivariate analysis revealed short duration of burial and off-piste terrain to be the two independent predictors of survival. Whenever companion rescue fails, snow burial in an avalanche is associated with extraordinarily high mortality. Searching the avalanche debris with probe lines seems to be equally effective as compared to searching with rescue dogs. The potential hazard for rescuers during avalanche rescue missions comes mainly from self-triggered avalanches, hence thorough mission planning and critical risk-benefit assessment are of utmost importance for risk reduction.

  14. A new web-based system to improve the monitoring of snow avalanche hazard in France

    Science.gov (United States)

    Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael

    2016-05-01

    Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.

  15. A voluminous avalanche-induced lahar from Citlaltépetl volcano, Mexico: Implications for hazard assessment

    Science.gov (United States)

    Carrasco-Núñez, Gerardo; Vallance, James W.; Rose, William I.

    1993-12-01

    During the late Pleistocene the ancestral edifice of Citlaltépetl volcano (also known as Pico de Orizaba) collapsed to form a clay-rich deposit that extends 85 km from its source, has a volume of 1.8 km 3, and covers an area of 143 km 2 east of the volcano. The deposit has clay content ranging from 10 to 16% and contains secondary alteration minerals such as smectite and kaolinite. The deposit's features suggest that it had an origin as a sector collapse of hydrothermally altered rock that transformed from a debris avalanche to a cohesive lahar very close to its source. The presence of glacier ice and a hydrothermal system during late Pleistocene times apparently provided a source of pore water which enhanced the hydrothermal alteration of the summit of Citlaltépetl and was the origin of most of the water for the lahar. This deposit and several others suggest that glaciated volcanoes are sites where hydrothermal alteration and resulting cohesive lahars are most likely. Although cohesive lahars and debris avalanches both have origins as sector collapses, cohesive lahars are more mobile than similar-sized debris avalanches. Thus potential hazard of edifice collapse at glaciated volcanoes, especially those with large volumes of hydrothermally altered rock, includes the possibility of large-volume cohesive lahars.

  16. Stability of the discretization of the electron avalanche phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Andrea, E-mail: andrea.villa@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Barbieri, Luca, E-mail: luca.barbieri@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Gondola, Marco, E-mail: marco.gondola@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Leon-Garzon, Andres R., E-mail: andresricardo.leon@polimi.it [CMIC Department “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano (Italy); Malgesini, Roberto, E-mail: roberto.malgesini@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy)

    2015-09-01

    The numerical simulation of the discharge inception is an active field of applied physics with many industrial applications. In this work we focus on the drift-reaction equation that describes the electron avalanche. This phenomenon is one of the basic building blocks of the streamer model. The main difficulty of the electron avalanche equation lies in the fact that the reaction term is positive when a high electric field is applied. It leads to exponentially growing solutions and this has a major impact on the behavior of numerical schemes. We analyze the stability of a reference finite volume scheme applied to this latter problem. The stability of the method may impose a strict mesh spacing, therefore a proper stabilized scheme, which is stable whatever spacing is used, has been developed. The convergence of the scheme is treated as well as some numerical experiments.

  17. Avalanche effect and gain saturation in high harmonic generation

    CERN Document Server

    Serrat, Carles; Budesca, Josep M; Seres, Jozsef; Seres, Enikoe; Aurand, Bastian; Hoffmann, Andreas; Namba, Shinichi; Kuehl, Thomas; Spielmann, Christian

    2015-01-01

    Optical amplifiers in all ranges of the electromagnetic spectrum exhibit two essential characteristics: i) the input signal during the propagation in the medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth and ii) the amplification saturates at increasing input signal. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of both the avalanche and saturation effects in the amplification of extreme ultraviolet attosecond pulse trains. We confirm that the amplification takes place only if the seed pulses are perfectly synchronized with the driving strong field in the amplifier. We performed an experimental study and subsequent model calculation on He gas driven by intense 30-fs-long laser pulses, which was seeded with an attosecond pulse train at 110 eV generated in a separated Ne gas jet. The comparison of the performed calculations with the measurements clearly demonstrates that the pumped He gas med...

  18. Magnetic avalanches in granular ferromagnets: thermal activated collective behavior

    Science.gov (United States)

    Chern, Gia-Wei

    2017-02-01

    We present a numerical study on the thermal activated avalanche dynamics in granular materials composed of ferromagnetic clusters embedded in a non-magnetic matrix. A microscopic dynamical simulation based on the reaction-diffusion process is developed to model the magnetization process of such systems. The large-scale simulations presented here explicitly demonstrate inter-granular collective behavior induced by thermal activation of spin tunneling. In particular, we observe an intriguing criticality controlled by the rate of energy dissipation. We show that thermal activated avalanches can be understood in the framework of continuum percolation and the emergent dissipation induced criticality is in the universality class of 3D percolation transition. Implications of these results to the phase-separated states of colossal magnetoresistance materials and other artificial granular magnetic systems are also discussed.

  19. Photon avalanche up-conversion in holmium doped fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.H.; Liu, G.K.; Beitz, J.V. [Argonne National Lab., IL (United States). Chemistry Division; Jie Wang [Shanghai Institute of Optics and Fine Mechanics, Shanghai (China)

    1996-08-01

    Photon avalanche green up-conversion emission centered at 545 nm has been observed in Ho{sup 3+} doped and Ho{sup 3+}, Tm{sup 3+} co-doped ZrF{sub 4}-based fluoride glasses when excited near 585 nm which is off resonance with any ground state absorption bands of either Ho{sup 3+} or Tm{sup 3+} ions. Detailed spectral measurements and analysis suggest that the 545 nm emission occurs from the {sup 5}S{sub 2},{sup 5}F{sub 4} states of Ho{sup 3+} that are populated by excited state absorption from the {sup 5}I{sub 7} state of Ho{sup 3+}. Strong cross-relaxation that efficiently populates the {sup 5}I{sub 7} state makes the photon avalanche process possible in this system.

  20. Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes

    Science.gov (United States)

    Smith, Michael D.; Zorzano, María-Paz; Lemmon, Mark; Martín-Torres, Javier; Mendaza de Cal, Teresa

    2016-12-01

    Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately 1.75 Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270°, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time.

  1. Performances of photodiode detectors for top and bottom counting detectors of ISS-CREAM experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, H.J. [Kyungpook National University, Daegu 702-701 (Korea, Republic of); Anderson, T. [Pennsylvania State University, University Park, PA 16802 (United States); Angelaszek, D. [University of Maryland, College Park, MD 20740 (United States); Baek, S.J. [Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Copley, M. [University of Maryland, College Park, MD 20740 (United States); Coutu, S. [Pennsylvania State University, University Park, PA 16802 (United States); Han, J.H.; Huh, H.G. [University of Maryland, College Park, MD 20740 (United States); Hwang, Y.S. [Kyungpook National University, Daegu 702-701 (Korea, Republic of); Im, S. [Pennsylvania State University, University Park, PA 16802 (United States); Jeon, H.B.; Kah, D.H.; Kang, K.H.; Kim, H.J. [Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, K.C.; Kwashnak, K. [University of Maryland, College Park, MD 20740 (United States); Lee, J. [Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, M.H. [University of Maryland, College Park, MD 20740 (United States); Link, J.T. [NASA GSFC, Greenbelt, MD 20771 (United States); CRESST(USRA), Columbia, MD 21044 (United States); Lutz, L. [University of Maryland, College Park, MD 20740 (United States); and others

    2015-07-01

    The Cosmic Ray Energetics and Mass (CREAM) experiment at the International Space Station (ISS) aims to elucidate the source and acceleration mechanisms of high-energy cosmic rays by measuring the energy spectra from protons to iron. The instrument is planned for launch in 2015 at the ISS, and it comprises a silicon charge detector, a carbon target, top and bottom counting detectors, a calorimeter, and a boronated scintillator detector. The top and bottom counting detectors are developed for separating the electrons from the protons, and each of them comprises a plastic scintillator and a 20×20 silicon photodiode array. Each photodiode is 2.3 cm×2.3 cm in size and exhibits good electrical characteristics. The leakage current is measured to be less than 20 nA/cm{sup 2} at an operating voltage. The signal-to-noise ratio is measured to be better than 70 using commercial electronics, and the radiation hardness is tested using a proton beam. A signal from the photodiode is amplified by VLSI (very-large-scale integration) charge amp/hold circuits, the VA-TA viking chip. Environmental tests are performed using whole assembled photodiode detectors of a flight version. Herein, we present the characteristics of the developed photodiode along with the results of the environmental tests.

  2. Speed Response and Performance Degradation of High Temperature Gamma Irradiated Silicon PIN Photodiodes

    Directory of Open Access Journals (Sweden)

    Abd El-Naser A. Mohamed

    2011-05-01

    Full Text Available In the present paper, we have been investigated deeply and parametrically the speed response of Si PIN photodiodes employed in high temperature-irradiated environment. The radiation-induced photodiodes defects can modify the initial doping concentrations, creating generation recombination centres and introducing trapping of carriers. Additionally, rate of the lattice defects is thermally activated and reduces for increasing irradiation temperature as a result of annealing of the damage. Nonlinear relations are correlated to investigate the current-voltage and capacitance-voltage dependences of the Si PIN photodiodes, where thermal and gamma irradiation effects are considered over the practical ranges of interest. Both the ambient temperature and the irradiation dose possess sever effects on the electro-optical characteristics and consequently the photo-response time and SNR of Si PIN photodiodes. In this paper, we derive the transient response of a Si PIN photodiode for photogeneration currents, when it is exposed to gamma radiation at high temperature. An exact model is obtained, which may be used to optimize the responsivity and speed of these irradiated devices over wide range of the affecting parameters.

  3. Three hydrogenated amorphous silicon photodiodes stacked for an above integrated circuit colour sensor

    Energy Technology Data Exchange (ETDEWEB)

    Gidon, Pierre; Giffard, Benoit; Moussy, Norbert; Parrein, Pascale; Poupinet, Ludovic [CEA-LETI, MINATEC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2010-03-15

    We present theoretical simulation and experimental results of a new colour pixel structure. This pixel catches the light in three stacked amorphous silicon photodiodes encompassed between transparent electrodes. The optical structure has been simulated for signal optimisation. The thickness of each stacked layer is chosen in order to absorb the maximum of light and the three signals allow to linearly calculate the CIE colour coordinates 1 with minimum error and noise. The whole process is compatible with an above integrated circuit (IC) approach. Each photodiode is an n-i-p structure. For optical reason, the upper diode must be controlled down to 25 nm thickness. The first test pixel structure allows a good recovering of colour coordinates. The measured absorption spectrum of each photodiode is in good agreement with our simulations. This specific stack with three photodiodes per pixel totalises two times more signal than an above IC pixel under a standard Bayer pattern 2,3. In each square of this GretagMacbeth chart is the reference colour on the right and the experimentally measured colour on the left with three amorphous silicon photodiodes per pixel. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Aerosol Optical Depth as Observed by the Mars Science Laboratory REMS UV Photodiodes

    Science.gov (United States)

    Smith, M. D.; Zorzano, M.-P.; Lemmon, M.; Martin-Torres, J.; Mendaza de Cal, T.

    2017-01-01

    Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately two Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270deg, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time. A full description of these observations, the retrieval algorithm, and the results can be found in Smith et al. (2016).

  5. Sixteen-year follow-up of childhood avalanche survivors

    Science.gov (United States)

    Thordardottir, Edda Bjork; Valdimarsdottir, Unnur Anna; Hansdottir, Ingunn; Hauksdóttir, Arna; Dyregrov, Atle; Shipherd, Jillian C.; Elklit, Ask; Resnick, Heidi; Gudmundsdottir, Berglind

    2016-01-01

    Background Every year a substantial number of children are affected by natural disasters worldwide. However, data are scarce on long-term psychological impact of natural disasters on children's health. Identifying risk factors and outcomes associated with the long-term sequelae of posttraumatic stress disorder (PTSD) can provide a gateway to recovery as well as enhancement of preventive measures. Objective Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES) and PTSD symptoms in adulthood. Methods Childhood survivors (aged 2–19 at the time of exposure) of two avalanches were identified through nationwide registers 16 years later. The Posttraumatic Diagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors, as well as associations with current SES. Predictors of PTSD symptoms were examined by multivariable regression analysis. Results Response rate was 66% (108/163). Results from univariate ANOVA analysis revealed that female sex was associated with PTSD symptoms (F=5.96, punemployment and/or disability (F=3.04, p<0.05). In a multivariable regression model, when adjusting for age and sex, lack of social support (t=4.22, p<0.001) and traumatic reactions of caregivers (t=2.49, p<0.05) in the aftermath of the disaster independently predicted PTSD 16 years post-trauma. Conclusions Lingering PTSD symptoms after childhood exposure to a disaster may negatively influence socioeconomic development in adulthood. Strengthening children's support systems post-disaster may prevent the long-term sequelae of symptoms. Highlights of the article PTSD symptoms following avalanche exposure during childhood were associated with poorer socioeconomic status in adulthood. Lack of social support and traumatic reactions of caregivers in the aftermath of avalanches predicted PTSD symptoms among childhood

  6. A micropixel avalanche phototransistor for time of flight measurements

    Science.gov (United States)

    Sadigov, A.; Suleymanov, S.; Ahmadov, F.; Ahmadov, G.; Abdullayev, K.; Akberov, R.; Heydarov, N.; Madatov, R.; Mukhtarov, R.; Nazarov, M.; Valiyev, R.

    2017-02-01

    This paper presents results of studies of the silicon based new micropixel avalanche phototransistor (MAPT). MAPT is a modification of well-known silicon photomultipliers (SiPMs) and differs since each photosensitive pixel of the MAPT operates in Geiger mode and comprises an individual micro-transistor operating in binary mode. This provides a high amplitude single photoelectron signal with significantly shorter rise time. The obtained results are compared with appropriate parameters of known SiPMs.

  7. Gullies and avalanche scars on Martian dark dunes

    OpenAIRE

    Reiss, D.; Jaumann, Ralf; Kereszturi, A.,; Sik, A.; Neukum, G.

    2007-01-01

    Gullies on Mars occur on slopes of impact craters, pits, valleys and hills. However, in some cases gullies are cut into dark dune slopes. Other mass movement features on dark dune slopes are avalanche scars which occur on most dune fields beside the gully features. We classified the mass movement features based on their morphology and analyzed them with respect to their distribution, slope angle, orientation and seasonal climatic conditions to constrain the possible formation process causing ...

  8. Simulation of a flowing snow avalanche using molecular dynamics

    OpenAIRE

    2010-01-01

    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2010. Thesis (Master's) -- Bilkent University, 2010. Includes bibliographical references leaves 45-50. This thesis presents an approach for modeling and simulation of a flowing snow avalanche, which is formed of dry and liquefied snow that slides down a slope, by using molecular dynamics and discrete element method. A particle system is utilized as a base method for th...

  9. Integrated snow and avalanche monitoring syatem for Indian Himalaya using multi-temporal satellite imagery and ancillary data

    Science.gov (United States)

    Sharma, S. S.; Mani, Sneh; Mathur, P.

    The variations in the local climate, environment and altitude as well as fast snow cover build up and rapid changes in snow characteristics with passage of winter are major contributing factors to make snow avalanches as one of the threatening problems in the North West Himalaya. For sustainable development of these mountainous areas, a number of multi-purpose projects are being planned. In recent times, the danger of natural and man-made hazards is increasing and the availability of water is fluctuating; and thus, making the project implementation difficult. To overcome these difficulties to a great extent, an integrated monitoring system is required for short term as well as long term assessment of snowcover variation and avalanche hazard. In order to monitor the spatial extent of snow cover, satellite data can be employed on an operational basis. Spectral settings as well as the temporal and spatial resolution make time series NOAA-AVHHR and MODIS sensor data well suited for operational snow cover monitoring at regional or continental scale; Indian Remote Sensing Satellite (IRS) LISS, WiFS and AWiFS sensor data suitable for studies at larger scale; and microwave data for extraction of snow wetness information.. In the present paper, an attempt is made to study the trends of changes in snow characteristics and related avalanche phenomenon using time series multi-temporal, multi-resolution satellite data with respect to different ranges in Western Himalaya, namely Pir Panjal range, Great Himalaya range, Zanskar range, Ladakh range and Great Karakoram range. The operational processing of these data included geocoding, calibration, terrain normalization, classification, statistical post classification and derivation of snow cover statistics. The calibration and normalization of imageries allowed the application of physically based classification thresholds possible for albedo, brightness temperature and the Normalized Difference Snow Index (NDSI) parameters

  10. Integrated snow and avalanche monitoring system for Indian Himalaya using multi-temporal satellite imagery and ancillary data

    Science.gov (United States)

    Sharma, S. S.; Mani, Sneh; Mathur, P.

    The variations in the local climate, environment and altitude as well as fast snow cover build up and rapid changes in snow characteristics with passage of winter are major contributing factors to make snow avalanches as one of the threatening problems in the North West Himalaya. For sustainable development of these mountainous areas, a number of multi-purpose projects are being planned. In recent times, the danger of natural and man-made hazards is increasing and the availability of water is fluctuating; and thus, making the project implementation difficult. To overcome these difficulties to a great extent, an integrated monitoring system is required for short term as well as long term assessment of snowcover variation and avalanche hazard. In order to monitor the spatial extent of snow cover, satellite data can be employed on an operational basis. Spectral settings as well as the temporal and spatial resolution make time series NOAA-AVHHR and MODIS sensor data well suited for operational snow cover monitoring at regional or continental scale; Indian Remote Sensing Satellite (IRS) LISS, WiFS and AWiFS sensor data suitable for studies at larger scale; and microwave data for extraction of snow wetness information.. In the present paper, an attempt is made to study the trends of changes in snow characteristics and related avalanche phenomenon using time series multi-temporal, multi-resolution satellite data with respect to different ranges in Western Himalaya, namely Pir Panjal range, Great Himalaya range, Zanskar range, Ladakh range and Great Karakoram range. The operational processing of these data included geocoding, calibration, terrain normalization, classification, statistical post classification and derivation of snow cover statistics. The calibration and normalization of imageries allowed the application of physically based classification thresholds possible for albedo, brightness temperature and the Normalized Difference Snow Index (NDSI) parameters

  11. InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy.

    Science.gov (United States)

    Natrella, Michele; Rouvalis, Efthymios; Liu, Chin-Pang; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J

    2012-08-13

    We report the first InGaAsP-based uni-travelling carrier photodiode structure grown by Solid Source Molecular Beam Epitaxy; the material contains layers of InGaAsP as thick as 300 nm and a 120 nm thick InGaAs absorber. Large area vertically illuminated test devices have been fabricated and characterised; the devices exhibited 0.1 A/W responsivity at 1550 nm, 12.5 GHz -3 dB bandwidth and -5.8 dBm output power at 10 GHz for a photocurrent of 4.8 mA. The use of Solid Source Molecular Beam Epitaxy enables the major issue associated with the unintentional diffusion of zinc in Metal Organic Vapour Phase Epitaxy to be overcome and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of Gas Source Molecular Beam Epitaxy.

  12. Turn-key Near-Infrared Photon-Counting Detector Module for LIDAR Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and deliver a turn-key photon counting detector module for near-infrared wavelengths, based on large-area InGaAs/InP avalanche photodiodes...

  13. Low-Noise Analog APDs with Impact Ionization Engineering and Negative Feedback Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA LIDAR missions require low noise and large area photodetectors operated at short-wave infrared (SWIR) wavelengths. Silicon avalanche photodiodes have...

  14. Ultra-low Noise, High Bandwidth, 1550nm HgCdTe APD Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Voxtel Inc. proposes to optimize the design of a large area, 1.55?m sensitive HgCdTe avalanche photodiode (APD) that achieves high gain with nearly no excess noise....

  15. Scale-free avalanches in the multifractal random walk

    CERN Document Server

    Bartolozzi, M

    2007-01-01

    Avalanches, or Avalanche-like, events are often observed in the dynamical behaviour of many complex systems which span from solar flaring to the Earth's crust dynamics and from traffic flows to financial markets. Self-organized criticality (SOC) is one of the most popular theories able to explain this intermittent charge/discharge behaviour. Despite a large amount of theoretical work, empirical tests for SOC are still in their infancy. In the present paper we address the common problem of revealing SOC from a simple time series without having much information about the underlying system. As a working example we use a modified version of the multifractal random walk originally proposed as a model for the stock market dynamics. The study reveals, despite the lack of the typical ingredients of SOC, an avalanche-like dynamics similar to that of many physical systems. While, on one hand, the results confirm the relevance of cascade models in representing turbulent-like phenomena, on the other, they also raise the ...

  16. Scale-free avalanches in the multifractal random walk

    Science.gov (United States)

    Bartolozzi, M.

    2007-06-01

    Avalanches, or Avalanche-like, events are often observed in the dynamical behaviour of many complex systems which span from solar flaring to the Earth's crust dynamics and from traffic flows to financial markets. Self-organized criticality (SOC) is one of the most popular theories able to explain this intermittent charge/discharge behaviour. Despite a large amount of theoretical work, empirical tests for SOC are still in their infancy. In the present paper we address the common problem of revealing SOC from a simple time series without having much information about the underlying system. As a working example we use a modified version of the multifractal random walk originally proposed as a model for the stock market dynamics. The study reveals, despite the lack of the typical ingredients of SOC, an avalanche-like dynamics similar to that of many physical systems. While, on one hand, the results confirm the relevance of cascade models in representing turbulent-like phenomena, on the other, they also raise the question about the current state of reliability of SOC inference from time series analysis.

  17. Particle-size segregation in dense granular avalanches

    Science.gov (United States)

    Gray, John Mark Nicholas Timm; Gajjar, Parmesh; Kokelaar, Peter

    2015-01-01

    Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid-fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.

  18. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Hood, A. W.; Cargill, P. J.; Tam, K. V. [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS (United Kingdom); Browning, P. K., E-mail: awh@st-andrews.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-01-20

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.

  19. Determination of snow avalanche return periods using a tree-ring based reconstruction in the French Alps: cross validation with the predictions of a statistical-dynamical model

    Science.gov (United States)

    Schläppy, Romain; Eckert, Nicolas; Jomelli, Vincent; Grancher, Delphine; Brunstein, Daniel; Stoffel, Markus; Naaim, Mohamed

    2013-04-01

    Documenting past avalanche activity represents an indispensable step in avalanche hazard assessment. Nevertheless, (i) archival records of past avalanche events do not normally yield data with satisfying spatial and temporal resolution and (ii) precision concerning runout distance is generally poorly defined. In addition, historic documentation is most often (iii) biased toward events that caused damage to structure or loss of life on the one hand and (iv) undersampled in unpopulated areas on the other hand. On forested paths dendrogeomorphology has been demonstrated to represent a powerful tool to reconstruct past activity of avalanches with annual resolution and for periods covering the past decades to centuries. This method is based on the fact that living trees may be affected by snow avalanches during their flow and deposition phases. Affected trees will react upon these disturbances with a certain growth response. An analysis of the responses recorded in tree rings coupled with an evaluation of the position of reacting trees within the path allows the dendrogeomorphic expert to identify past snow avalanche events and deduced their minimum runout distance. The objective of the work presented here is firstly to dendrochronogically -reconstruct snow avalanche activity in the Château Jouan path located near Montgenèvre in the French Alps. Minimal runout distances are then determined for each reconstructed event by considering the point of further reach along the topographic profile. Related empirical return intervals are evaluated, combining the extent of each event with the average local frequency of the dendrological record. In a second step, the runout distance distribution derived from dendrochronological reconstruction is compared to the one derived from historical archives and to high return period avalanches predicted by an up-to-date locally calibrated statistical-numerical model. It appears that dendrochronological reconstructions correspond mostly to

  20. A high-efficiency high-power evanescently coupled UTC-photodiode

    Institute of Scientific and Technical Information of China (English)

    Zhang Yunxiao; Liao Zaiyi; Zhao Lingjuan; Zhu Hongliang; Pan Jiaoqing; Wang Wei

    2009-01-01

    The effects of the multimode diluted waveguide on quantum efficiency and saturation behavior of the evanescently coupled uni-traveling carrier(UTC)photodiode structures are reported.Two kinds of evanescently coupled uni-traveling carrier photodiodes(EC-UTC-PD)were designed and characterized:one is a conventional EC-UTC-PD structure with a multimode diluted waveguide integrated with a UTC-PD;and the other is a compact EC-UTC-PD structure which fused the multimode diluted waveguide and the UTC-PD structure together.The effect of the absorption behavior of the photodiodes on the efficiency and saturation characteristics of the EC-UTC-PDs is analyzed using 3-D beam propagation method,and the results indicate that both the responsivity and saturation power of the compact EC-UTC-PD structures can be further improved by incorporating an optimized compact multimode diluted waveguide.

  1. Reverse current reduction of Ge photodiodes on Si without post-growth annealing Invited Paper

    Institute of Scientific and Technical Information of China (English)

    Sungbong Park; Shinya Takita; Yasuhiko; Ishikawa; Jiro Osaka; Kazumi Wada

    2009-01-01

    A new approach to reduce the reverse current of Ge pin photodiodes on Si is presented, in which an i-Si layer is inserted between Ge and top Si layers to reduce the electric field in the Ge layer. Without post- growth annealing, the reverse current density is reduced to ~10 mA/cm2 at -1 V, i.e., over one order of magnitude lower than that of the reference photodiode without i-Si layer. However, the responsivity of the photodiodes is not severely compromised. This lowered-reverse-current is explained by band-pinning at the i-Si/i-Ge interface. Barrier lowering mechanism induced by E-field is also discussed. The presented "non-thermal" approach to reduce reverse current should accelerate electronics-photonics convergence by using Ge on the Si complementary metal oxide semiconductor (CMOS) platform.

  2. Fast, Deep-Record-Length, Fiber-Coupled Photodiode Imaging Array for Plasma Diagnostics

    Science.gov (United States)

    Brockington, Samuel; Case, Andrew; Witherspoon, F. Douglas

    2015-11-01

    HyperV Technologies has been developing an imaging diagnostic comprised of an array of fast, low-cost, long-record-length, fiber-optically-coupled photodiode channels to investigate plasma dynamics and other fast, bright events. By coupling an imaging fiber bundle to a bank of amplified photodiode channels, imagers and streak imagers can be constructed. By interfacing analog photodiode systems directly to commercial analog-to-digital converters and modern memory chips, a scalable solution for 100 to 1000 pixel systems with 14 bit resolution and record-lengths of 128k frames has been developed. HyperV is applying these techniques to construct a prototype 1000 Pixel framing camera with up to 100 Msamples/sec rate and 10 to 14 bit depth. Preliminary experimental results as well as future plans will be discussed. Work supported by USDOE Phase 2 SBIR Grant DE-SC0009492.

  3. High-performance evanescently-coupled uni-traveling-carrier photodiodes

    Institute of Scientific and Technical Information of China (English)

    Zhang Yun-Xiao; Liao Zai-Yi; Wang Wei

    2009-01-01

    A new evanescently-coupled uni-traveling-carrier photodiode (EC-UTC PD) based on a multimode diluted waveguide (MDW) structure is fabricated, analysed and characterized. Optical and electrical characteristics of the device are investigated. The excellent characteristics are demonstrated such as a responsivity of 0.36 A/W, a bandwidth of 11.5 GHz and a small-signal 1-dB compression current greater than 18 mA at 10 GHz. The saturation current is significantly improved compared with those of similar evanescently-coupled pin photodiodes. The radio frequency (RF)bandwidth can be further improved by eliminating RF losses induced by the cables, the probe and the bias tee between the photodiode and the spectrum analyzer.

  4. Non-invasive assessment of animal exercise stress: real-time PCR of GLUT4, COX2, SOD1 and HSP70 in avalanche military dog saliva.

    Science.gov (United States)

    Diverio, S; Guelfi, G; Barbato, O; Di Mari, W; Egidi, M G; Santoro, M M

    2015-01-01

    Exercise has been shown to increase mRNA expression of a growing number of genes. The aim of this study was to assess if mRNA expression of the metabolism- and oxidative stress-related genes GLUT4 (glucose transporter 4), COX2 (cyclooxygenase 2), SOD1 (superoxide dismutase 1) and HSP70 (heat shock protein 70) in saliva changes following acute exercise stress in dogs. For this purpose, 12 avalanche dogs of the Italian Military Force Guardia di Finanza were monitored during simulation of a search for a buried person in an artificial avalanche area. Rectal temperature (RT) and saliva samples were collected the day before the trial (T0), immediately after the descent from a helicopter at the onset of a simulated avalanche search and rescue operation (T1), after the discovery of the buried person (T2) and 2 h later (T3). Expressions of GLUT4, SOD1, COX2 and HSP70 were measured by real-time PCR. The simulated avalanche search and rescue operation was shown to exert a significant effect on RT, as well as on the expression of all metabolism- and oxidative stress-related genes investigated, which peaked at T2. The observed expression patterns indicate an acute exercise stress-induced upregulation, as confirmed by the reductions in expression at T3. Moreover, our findings indicate that saliva is useful for assessing metabolism- and oxidative stress-related genes without the need for restraint, which could affect working dog performance.

  5. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    Science.gov (United States)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  6. Avalanche risk assessment for mountain roads - a comparison of case studies from Iceland and the Alps

    Science.gov (United States)

    Wastl, M.; Stötter, J.

    2009-04-01

    While the management of alpine natural hazards in settlements follows highly developed operational standardised procedures in many countries, there are very few approaches for a systematic survey and assessment of these natural hazard processes and the related risks and for a sustainable planning of measures for roads. This is even more surprising against the background of the ongoing increase of traffic in Europe and its economic importance. This contribution compares the results of a regional scale assessment of the avalanche risk on mountain roads for case studies from Austria, Italy and Iceland. It provides the first assessment of the natural hazard situation for roads outside closed settlements in Iceland and discusses the applicability of regional scale risk based approaches developed in the Alps to the specific natural, economic and social situation. It also compares the role of risk in the assessment and management of natural hazards in these countries. The assessment of the risk by natural hazard processes for roads follows approaches developed by Wilhelm (1997, 1998, 1999) and Borter (1999a, 1999b) in the Alps adapted to comply with the data availability of the regional scale. These approaches distinguish between the individual risk on the one hand and the collective risk for the society on the other hand for each process area as well as the cumulative risk for the investigated road section. As the spatial and temporal distribution of avalanches is relatively well documented in some of the Alpine countries practical approaches have been developed for the assessment of this natural hazard process. These have been successfully applied e.g. to roads in inner Oetz and inner Stubai Valley, Tyrol, Austria by Huttenlau (2004) and Gufler (2007) and Sulden road, Ortles Alps, Southern Tyrol, Italy by Zischg et al. (2004). On the basis of these investigations the individual, collective and cumulative death risk for avalanches was determined for Siglufjar

  7. Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We report highly efficient avalanche multiphoton luminescence(MPL)from ordered-arrayed gold nanowires(NWs).The time-average excitation intensity I_(exc) is as low as 5.0-9.1 kW/cm~2.The intensity of avalanche MPL I_(MPL) is about 10~4 times larger than that of three-photon luminescence,the slope ■logI_(MPL)/■logI_(exc) of avalanche MPL reaches as high as 18.3 and the corresponding polarization dependence of I_(MPL) has a form of cos~(50)■_p.The emission dynamics of avalanche MPL and three-photon luminesc...

  8. Information processing occurs via critical avalanches in a model of the primary visual cortex

    Science.gov (United States)

    Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.

    2016-01-01

    We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit.

  9. Snow Avalanche Disturbance Ecology: Examples From the San Juan Mountains, Colorado.

    Science.gov (United States)

    Simonson, S.; Fassnacht, S. R.

    2008-12-01

    We evaluated landscape ecology approaches to characterize snow avalanche paths based on patterns of plant species composition and evidence of disturbance. Historical records of avalanche incidents, patterns in the annual growth layers of woody plants, and distributions of plant species can be used to quantify and map the frequency and magnitude of snow slide events. Near Silverton, Colorado, a series of snow storms in January of 2005 resulted in many avalanche paths running full track at 30 and 100 year return frequency. Many avalanches cut fresh trimlines, widening their tracks by uprooting, stripping, and breaking mature trees. Powerful avalanches deposited massive piles of snow, rocks, and woody debris in their runout zones. We used cross-section discs and cores of representative downed trees to detect dendro-ecological signals of past snow avalanche disturbance. Avalanche signals included impact scars from the moving snow and associated wind blast, relative width of annual growth rings, and development of reaction wood in response to tilting. Initial measurements of plant diversity and disturbance along the elevation gradient of an avalanche path near Silverton indicate that avalanche activity influences patterns of forest cover, contributes to the high local plant species diversity, and provides opportunities for new seedling establishment.

  10. Application of PIN photodiodes on the detection of X-rays generated in an electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mondragon-Contreras, L. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de Mexico (Mexico); Instituto Tecnologico de Toluca, Departamento de Estudios de Posgrado e Investigacion, Av. Tecnologico S/N, ExRancho La Virgen, 52140 Metepec (Mexico); Ramirez-Jimenez, F.J. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de Mexico (Mexico); Instituto Tecnologico de Toluca, Departamento de Estudios de Posgrado e Investigacion, Av. Tecnologico S/N, ExRancho La Virgen, 52140 Metepec (Mexico)], E-mail: francisco.ramirez@inin.gob.mx; Garcia-Hernandez, J.M.; Torres-Bribiesca, M.A.; Lopez-Callejas, R. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de Mexico (Mexico); Instituto Tecnologico de Toluca, Departamento de Estudios de Posgrado e Investigacion, Av. Tecnologico S/N, ExRancho La Virgen, 52140 Metepec (Mexico); Aguilera-Reyes, E.F.; Pena-Eguiluz, R.; Lopez-Valdivia, H.; Carrasco-Abrego, H. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de Mexico (Mexico)

    2009-10-11

    PIN photodiodes are used in a novel application for the determination, within the energy range from 90 to 485 keV, of the intensity of X-rays generated by an experimental electron accelerator. An easily assembled X-ray monitor has been built with a low-cost PIN photodiode and operational amplifiers. The output voltage signal obtained from this device can be related to the electron beam current and the accelerating voltage of the accelerator in order to estimate the dose rate delivered by bremsstrahlung.

  11. Comparative Study of Gamma Radiation Effects on Solar Cells, Photodiodes, and Phototransistors

    Directory of Open Access Journals (Sweden)

    Dejan Nikolić

    2013-01-01

    Full Text Available This paper presents the behavior of various optoelectronic devices after gamma irradiation. A number of PIN photodiodes, phototransistors, and solar panels have been exposed to gamma irradiation. Several types of photodiodes and phototransistors were used in the experiment. I-V characteristics (current dependance on voltage of these devices have been measured before and after irradiation. The process of annealing has also been observed. A comparative analysis of measurement results has been performed in order to determine the reliability of optoelectronic devices in radiation environments.

  12. An indirect flat-panel detector with avalanche gain for low dose x-ray imaging: SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout)

    Science.gov (United States)

    Zhao, Wei; Li, Dan; Rowlands, J. A.; Egami, N.; Takiguchi, Y.; Nanba, M.; Honda, Y.; Ohkawa, Y.; Kubota, M.; Tanioka, K.; Suzuki, K.; Kawai, T.

    2008-03-01

    An indirect flat-imager with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose x-ray imaging with high resolution. It is made by optically coupling a structured x-ray scintillator CsI (Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The charge image created by HARP is read out by electron beams generated by the FEA. The proposed detector is called SAPHIRE (Scintillator Avalanche Photoconductor with HIgh Resolution Emitter readout). The avalanche gain of HARP depends on both a-Se thickness and applied electric field E Se. At E Se of > 80 V/μm, the avalanche gain can enhance the signal at low dose (e.g. fluoroscopy) and make the detector x-ray quantum noise limited down to a single x-ray photon. At high exposure (e.g. radiography), the avalanche gain can be turned off by decreasing E Se to < 70 V/μm. In this paper the imaging characteristics of the FEA readout method, including the spatial resolution and noise, were investigated experimentally using a prototype optical HARP-FEA image sensor. The potential x-ray imaging performance of SAPHIRE, especially the aspect of programmable gain to ensure wide dynamic range and x-ray quantum noise limited performance at the lowest exposure in fluoroscopy, was investigated.

  13. Assessment of thermal change in cold avalanching glaciers in relation to climate warming

    Science.gov (United States)

    Gilbert, A.; Vincent, C.; Gagliardini, O.; Krug, J.; Berthier, E.

    2015-08-01

    High-elevation glaciers covered by cold firn are undergoing substantial warming in response to ongoing climate change. This warming is affecting the ice/rock interface temperature, the primary driver of avalanching glacier instability on steep slopes. Prediction of future potential instability therefore requires appropriate modeling of the thermal evolution of these glaciers. Application of a state-of-the-art model to a glacier in the French Alps (Taconnaz) has provided the first evaluation of the temperature evolution of a cold hanging glacier through this century. Our observations and three-dimensional modeling of the glacier response (velocity, thickness, temperature, density, and water content) to climate change indicate that Taconnaz glacier will become temperate and potentially unstable over a large area by the end of the 21st century. The risk induced by this glacier hazard is high for the populated region below and makes observation and modeling of such glaciers a priority.

  14. Dark Current Reduction of P3HT-Based Organic Photodiode Using a Ytterbium Fluoride Buffer Layer in Electron Transport

    CERN Document Server

    Lim, Seong Bin; Kim, Ki Tae; Oh, Se Young

    2016-01-01

    Photodiodes are widely used to convert lights into electrical signals. The conventional silicon (Si) based photodiodes boast high photoelectric conversion efficiency and detectivity. However, in general, inorganic-based photodiodes have low visible wavelength sensitivity due to their infrared wavelength absorption. Recently, electrical conducting polymer-based photodiodes have received significant attention due to their flexibility, low cost of production and high sensitivity of visible wavelength ranges. In the present work, we fabricated an organic photodiode (OPD) consisting of ITO/ NiOx/ P3HT:PC60BM/ YbF3/ Al. In the OPD, a yitterbium fluoride (YbF3) buffer layer was used as the electron transport layer. The OPD was analyzed for its optical-electrical measurements, including J-V characteristics, detectivity and dynamic characteristics. We have investigated the physical effects of the YbF3 buffer layer on the performance of OPD such as its carrier extraction, leakage current and ohmic characteristics.

  15. Prediction of avalanches on the basis of the 27‐day Solar activity variations

    Directory of Open Access Journals (Sweden)

    N. A. Kazakov

    2015-01-01

    Full Text Available Many natural processes on the Earth are the cyclic ones and they are self-sustaining within a system of the Sun–Earth relations. To verify our hypothesis on a cyclic occurrence of the avalanche processes and to estimate a possibility to predict avalanches as a cyclic process we had analyzed information about avalanches and meteorological processes (number of avalanches per a day, their total and maximal volumes, and daily sums of precipitation using the method of 27-day Sun (solar calendars by A. Chizhevskiy. Analysis of results of such studies obtained in Khibini (Kola peninsula, for 1935–1986 and on a Chamginskiy mountain pass (the Sakhalin Island, Vostochno-Sakhalinskie Mountains, for 1982–1992 had shown that activity of the avalanche processes and the atmospheric precipitation had evident 27-day solar cycle. Cyclicity of appearance and volume of avalanches of both syngenetic and epigenetic types is established as well as of the precipitation in quantitative gradations. Procedures of prediction of number and volume of avalanches and daily precipitation were developed on the basis of their relationship with the Sun cycles. Verification of the method proposed in this article by the data obtained in Khibini (Kukisvum mountain pass, 1987–1988 and on the Sakhalin Island (Chamginskiy mountain pass, 1993–1995; Yuzhno-Sahalinsk; Tomari, 1991–1999 had demonstrated that correctness of such forecast with earliness of 60 days is as follows: for precipitation – 85–90%; the new snow avalanches of new snow – 90–95%; avalanches of recrystallization snow – 75–80%. At that with earliness of 10 days: precipitation – 90–95%; avalanches of new snow – 95%; avalanches of r recrystallization snow – 75–80%. 

  16. Magnetic field modification to the relativistic runaway electron avalanche length

    Science.gov (United States)

    Cramer, E. S.; Dwyer, J. R.; Rassoul, H. K.

    2016-11-01

    This paper explores the impact of the geomagnetic field on the relativistic runaway electron avalanche length, λe-. Coleman and Dwyer (2006) developed an analytical fit to Monte Carlo simulations using the Runaway Electron Avalanche Model. In this work, we repeat this process but with the addition of the geomagnetic field in the range of [100,900]/n μT, where n is the ratio of the density of air at altitude to the sea level density. As the ambient electric field approaches the runaway threshold field (Eth≈284 kV/m sea level equivalent), it is shown that the magnetic field has an impact on the orientation of the resulting electron beam. The runaway electrons initially follow the vertically oriented electric field but then are deflected in the v × B direction, and as such, the electrons experience more dynamic friction due to the increase in path length. This will be shown to result in a difference in the avalanche length from the case where B = 0. It will also be shown that the average energy of the runaway electrons will decrease while the required electric field to produce runaway electrons increases. This study is also important in understanding the physics of terrestrial gamma ray flashes (TGFs). Not only will this work impact relativistic feedback rates determined from simulations, it may also be useful in studying spectroscopy of TGFs observed from balloon and aircraft measurements. These models may also be used in determining beaming properties of TGFs originating in the tropical regions seen from orbiting spacecraft.

  17. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    Science.gov (United States)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  18. Subsampling effects in neuronal avalanche distributions recorded in vivo

    Directory of Open Access Journals (Sweden)

    Munk Matthias HJ

    2009-04-01

    Full Text Available Abstract Background Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s, and sigma = 1, are hallmark features of self-organized critical (SOC systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s and sigma by imposing subsampling on three different SOC models. We then compared f(s and sigma of the subsampled models with those of multielectrode local field potential (LFP activity recorded in three macaque monkeys performing a short term memory task. Results Neither the LFP nor the subsampled SOC models showed a power law for f(s. Both, f(s and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only one of the SOC models, the Abelian Sandpile Model, exhibited f(s and sigma similar to those calculated from LFP activity. Conclusion Since subsampling can prevent the observation of the characteristic power law and sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible. Nevertheless, the system specific scaling of f(s and sigma under subsampling conditions may prove useful to select physiologically motivated models of brain function. Models that better reproduce f(s and sigma calculated from the physiological

  19. Experimental analysis of a novel and low-cost pin photodiode dosimetry system for diagnostic radiology

    Science.gov (United States)

    Nazififard, Mohammad; Suh, Kune Y.; Mahmoudieh, Afshin

    2016-07-01

    Silicon PIN photodiode has recently found broad and exciting applications in the ionizing radiation dosimetry. In this study a compact and novel dosimetry system using a commercially available PIN photodiode (BPW34) has been experimentally tested for diagnostic radiology. The system was evaluated with clinical beams routinely used for diagnostic radiology and calibrated using a secondary reference standard. Measured dose with PIN photodiode (Air Kerma) varied from 10 to 430 μGy for tube voltages from 40 to 100 kVp and tube current from 0.4 to 40 mAs. The minimum detectable organ dose was estimated to be 10 μGy with 20% uncertainty. Results showed a linear correlation between the PIN photodiode readout and dose measured with standard dosimeters spanning doses received. The present dosimetry system having advantages of suitable sensitivity with immediate readout of dose values, low cost, and portability could be used as an alternative to passive dosimetry system such as thermoluminescent dosimeter for dose measurements in diagnostic radiology.

  20. Scintillation light read-out by thin photodiodes in silicon wells

    CERN Document Server

    Allier, C P; Sarro, P M; Eijk, C W E

    2000-01-01

    Several applications of X-ray and gamma ray imaging detectors, e.g. in medical diagnostics, require millimeter or sub-millimeter spatial resolution and good energy resolution. In order to achieve such features we have proposed a new type of camera, which takes advantage of micromachining technology. It consists of an array of scintillator crystals encapsulated in silicon wells with photodiodes at the bottom. Several parameters of the photodiode need to be optimised: uniformity and efficiency of the light detection, gain, electronic noise and breakdown voltage. In order to evaluate these parameters we have processed 3x3 arrays of 1.8 mm sup 2 , approx 10 mu m thick photodiodes using (1 0 0) wafers etched in a KOH solution. Their optical response at 675 nm wavelength is comparable to that of a 500 mu m thick silicon PIN diode. Their low light detection efficiency is compensated by internal amplification. Several scintillator materials have been positioned in the wells on top of the thin photodiodes, i.e. a 200 ...

  1. HPLC-photodiode array detection analysis of curcuminoids in Curcuma species indigenous to Indonesia

    NARCIS (Netherlands)

    Bos, Rein; Windono, Tri; Woerdenbag, Herman J.; Boersma, Ykelien L.; Koulman, Albert; Kayser, Oliver

    2007-01-01

    An optimized HPLC method with photodiode array detection was developed and applied to analyse the curcuminoids curcumin, demethoxycurcumin, and bis-demethoxycurcumin in rhizomes of Curcuma mangga Val &. v. Zijp, C. heyneana Val. & v. Zijp, C. aeruginosa Roxb. and C. soloensis Val. (Zingiberaceae), i

  2. Fabrication and performance of intrinsic germanium photodiodes. [for atmospheric IR spectroscopy

    Science.gov (United States)

    Beiting, E. J., III; Feldman, P. D.

    1977-01-01

    The paper presents fabrication details for an intrinsic germanium photodiode developed for study of atmospheric constituents, the airglow and auroras in the 1-2 micron spectral range. Attention is given to cutting of the single crystal, spreading of the lithium dispersion, sputtering of a gold coating, and surface passivation. A wavelength response curve is presented.

  3. Passivation of MBE grown InGaSb/InAs superlattice photodiodes

    Science.gov (United States)

    Hill, Cory J.; Keo, Sam S.; Mumolo, Jason M.; Gunapala, Sarath D.

    2005-01-01

    We have performed wet chemical passivation tests on InGaSb/InAs superlattice photodiode structures grown molecular beam epitaxy. The details of the devices growth and characterization as well as the results of chemical passivation involving RuCl3 and H2SO4 with SiO2 dielectric depositions are presented.

  4. A Prototype RICH Detector Using Multi-Anode Photo Multiplier Tubes and Hybrid Photo-Diodes

    CERN Document Server

    Albrecht, E; Bibby, J H; Brook, N H; Doucas, G; Duane, A; Easo, S; Eklund, L; French, M; Gibson, V; Gys, Thierry; Halley, A W; Harnew, N; John, M; Piedigrossi, D; Rademacker, J; Simmons, B; Smale, N J; Teixeira-Dias, P; Toudup, L W; Websdale, David M; Wilkinson, G R; Wotton, S A

    2001-01-01

    The performance of a prototype Ring Imaging Cherenkov Detector is studied using a charged particle beam. The detector performance, using CF4 and air as radiators, is described. Cherenkov angle precision and photoelectron yield using hybrid photo-diodes and multi-anode PMTs agree with simulations and are assessed in terms of the requirements of the LHCb experiment.

  5. Behavioral electromagnetic models of high‐speed p‐i‐n photodiodes

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Krozer, Viktor; Johansen, Tom Keinicke

    2011-01-01

    This article presents a methodology for developing small‐signal behavioral electromagnetic (EM) models of p‐i‐n photodiodes (PDs) for high‐speed applications. The EM model includes RC bandwidth limitation effect and transit‐time effect. The model is capable of accurately modeling arbitrary complex...

  6. Temperature-Dependent Detectivity of Near-Infrared Organic Bulk Heterojunction Photodiodes.

    Science.gov (United States)

    Wu, Zhenghui; Yao, Weichuan; London, Alexander E; Azoulay, Jason D; Ng, Tse Nga

    2017-01-18

    Bulk heterojunction photodiodes are fabricated using a new donor-acceptor polymer with a near-infrared absorption edge at 1.2 μm, achieving a detectivity up to 10(12) Jones at a wavelength of 1 μm and an excellent linear dynamic range of 86 dB. The photodiode detectivity is maximized by operating at zero bias to suppress dark current, while a thin 175 nm active layer is used to facilitate charge collection without reverse bias. Analysis of the temperature dependence of the dark current and spectral response demonstrates a 2.8-fold increase in detectivity as the temperature was lowered from 44 to -12 °C, a relatively small change when compared to that of inorganic-based devices. The near-infrared photodiode shows a switching speed reaching up to 120 μs without an external bias. An application using our NIR photodiode to detect arterial pulses of a fingertip is demonstrated.

  7. Energy pumping in electrical circuits under avalanche noise.

    Science.gov (United States)

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

    2014-07-01

    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  8. Flowers in flour: avalanches in cohesive granular matter.

    Science.gov (United States)

    Freyssingeas, E; Dalbe, M-J; Géminard, J-C

    2011-05-01

    We report on the intermittent dynamics of the free surface of a cohesive granular material during a silo discharge. In absence of cohesion, one observes the formation and the growth of a conical crater whose angle is well defined and constant in time. When the cohesion is involved the free surface exhibits a complex dynamics and the crater, resulting from a series of individual avalanches, is no longer axisymmetric. However, in spite of the intermittent behavior of the free surface, the flow rate is observed to remain constant throughout the discharge.

  9. Analysis of inter-event times for avalanches on a conical bead pile with cohesion

    Science.gov (United States)

    Lehman, Susan; Johnson, Nathan; Tieman, Catherine; Wainwright, Elliot

    2015-03-01

    We investigate the critical behavior of a 3D conical bead pile built from uniform 3 mm steel spheres. Beads are added to the pile by dropping them onto the apex one at a time; avalanches are measured through changes in pile mass. We investigate the dynamic response of the pile by recording avalanches from the pile over tens of thousands of bead drops. We have previously shown that the avalanche size distribution follows a power law for beads dropped onto the pile apex from a low drop height. We are now tuning the critical behavior of the system by adding cohesion from a uniform magnetic field and find an increase in both size and number for very large avalanches and decreases in the mid-size avalanches. The resulting bump in the avalanche distribution moves to larger avalanche size as the cohesion in the system is increased. We compare the experimental inter-event time distribution to both the Brownian passage-time and Weibull distributions, and observe a shift from the Weibull to Brownian passage-time as we raise the threshold from measuring time between events of all sizes to time between only the largest system-spanning events. These results are both consistent with those from a mean-field model of slip avalanches in a shear system [Dahmen, Nat Phys 7, 554 (2011)].

  10. Morphological analysis of hummocks in debris avalanche deposits using UAS-derived high-definition topographic data

    Science.gov (United States)

    Hayakawa, Yuichi S.; Obanawa, Hiroyuki; Yoshida, Hidetsugu; Naruhashi, Ryutaro; Okumura, Koji; Zaiki, Masumi

    2016-04-01

    Debris avalanche caused by sector collapse of a volcanic mountain often forms depositional landforms with characteristic surface morphology comprising hummocks. Geomorphological and sedimentological analyses of debris avalanche deposits (DAD) at the northeastern face of Mt. Erciyes in central Turkey have been performed to investigate the mechanisms and processes of the debris avalanche. The morphometry of hummocks provides an opportunity to examine the volumetric and kinematic characteristics of the DAD. Although the exact age has been unknown, the sector collapse of this DAD was supposed to have occurred in the late Pleistocene (sometime during 90-20 ka), and subsequent sediment supply from the DAD could have affected ancient human activities in the downstream basin areas. In order to measure detailed surface morphology and depositional structures of the DAD, we apply structure-from-motion multi-view stereo (SfM-MVS) photogrammetry using unmanned aerial system (UAS) and a handheld camera. The UAS, including small unmanned aerial vehicle (sUAV) and a digital camera, provides low-altitude aerial photographs to capture surface morphology for an area of several square kilometers. A high-resolution topographic data, as well as an orthorectified image, of the hummocks were then obtained from the digital elevation model (DEM), and the geometric features of the hummocks were examined. A handheld camera is also used to obtain photographs of outcrop face of the DAD along a road to support the seimentological investigation. The three-dimensional topographic models of the outcrop, with a panoramic orthorectified image projected on a vertical plane, were obtained. This data enables to effectively describe sedimentological structure of the hummock in DAD. The detailed map of the DAD is also further examined with a regional geomorphological map to be compared with other geomorphological features including fluvial valleys, terraces, lakes and active faults.

  11. The geomorphological effect of cornice fall avalanches in the Longyeardalen valley, Svalbard

    Science.gov (United States)

    Eckerstorfer, M.; Christiansen, H. H.; Rubensdotter, L.; Vogel, S.

    2013-09-01

    The study of snow avalanches and their geomorphological effect in the periglacial parts of the cryosphere is important for enhanced geomorphological process understanding as well as hazard-related studies. Only a few field studies, and particularly few in the High Arctic, have quantified avalanche sedimentation. Snow avalanches are traditionally ranked behind rockfall in terms of their significance for mass-wasting processes of rockslopes. Cornice fall avalanches are at present the most dominant snow avalanche type at two slope systems, called Nybyen and Larsbreen, in the valley Longyeardalen in central Svalbard. Both slope systems are on northwest-facing lee slopes underneath a large summit plateau, with annual cornices forming on the top. High-frequency and magnitude cornice fall avalanching is observed by daily automatic time-lapse photography. In addition, rock debris sedimentation by cornice fall avalanches was measured directly in permanent sediment traps or by snow inventories. The results from a maximum of seven years of measurements in a total of 13 catchments show maximum mean rock debris sedimentation rates ranging from 8.2 to 38.7 kg m-2 at Nybyen, and from 0.8 to 55.4 kg m-2 at Larsbreen. Correspondingly, avalanche fan surfaces accreted from 2.6 to 8.8 mm yr-1 at Nybyen, and from 0.2 to 13.9 mm yr-1 at Larsbreen. This comparably efficient rockslope mass wasting is due to collapsing cornices producing cornice fall avalanches containing large amounts of rock debris throughout the entire winter. The rock debris of different origin stems from the plateau crests, the adjacent free rock face and the transport pathway, accumulating distinct avalanche fans at both slope systems. Cornice fall avalanche sedimentation also contributed to the development of a rock glacier at the Larsbreen site during the Holocene. We have recorded present maximum rockwall retreat rates of 0.9 mm yr-1 at Nybyen, but as much as 6.7 mm yr-1 at Larsbreen, while average Holocene

  12. Two examples of expert knowledge based system for avalanche forecasting and protection

    Science.gov (United States)

    Buisson, Laurent; Giraud, Gérald

    1995-11-01

    In avalanche modelling and control and in avalanche forecasting, most of the knowledge is based on scientific theory but the experience of specialists (field practitioners, forecasters...) plays a large role. This paper presents two French computer-based systems dedicated to avalanche modelling and control and to avalanche forecasting. They are both based on expert knowledge. ELSA (Etude et Limites de Sites d'Avalanches), is a computer system dedicated to the modelling of the knowledge of avalanche experts and to the integration of new symbolic computer models with classical numerical models. The basic aim of integration is to build a unique computer system incorporating all these models. After a description of the terrain representation, we present the different scenarios that ELSA takes into account. Then, the methods which deal with some phenomena occurring in avalanches are described. The problems involved in the integration of these methods close this first part. MEPRA is an expert system built to create an objective tool in avalanche risk forecasting. This development allowed us to imagine a processing system for 2 of the most important problems in avalanche risk forecasting: representation of the present snow cover characteristics and evaluation of avalanche instability and risk. In this way, mechanics and thermodynamics play a major role in the system. After a punctual validation at the location of a snow weather station and in order to describe the great variability of the snow pack and the avalanche risk in a massif, the MEPRA expert system was connected with a meteorological analysis system, SAFRAN and a numerical model to simulate the snow cover CROCUS. Then, every day, a MEPRA expert analysis is carried out in different locations with different orientations, slopes and altitudes. Its results were used successfully during the Winter Olympic Games of Albertville and by avalanche forecasters during the 92/93 winter season. The daily avalanche risks

  13. The geomorphological effect of cornice fall avalanches in the Longyeardalen valley, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Eckerstorfer

    2013-09-01

    Full Text Available The study of snow avalanches and their geomorphological effect in the periglacial parts of the cryosphere is important for enhanced geomorphological process understanding as well as hazard-related studies. Only a few field studies, and particularly few in the High Arctic, have quantified avalanche sedimentation. Snow avalanches are traditionally ranked behind rockfall in terms of their significance for mass-wasting processes of rockslopes. Cornice fall avalanches are at present the most dominant snow avalanche type at two slope systems, called Nybyen and Larsbreen, in the valley Longyeardalen in central Svalbard. Both slope systems are on northwest-facing lee slopes underneath a large summit plateau, with annual cornices forming on the top. High-frequency and magnitude cornice fall avalanching is observed by daily automatic time-lapse photography. In addition, rock debris sedimentation by cornice fall avalanches was measured directly in permanent sediment traps or by snow inventories. The results from a maximum of seven years of measurements in a total of 13 catchments show maximum mean rock debris sedimentation rates ranging from 8.2 to 38.7 kg m−2 at Nybyen, and from 0.8 to 55.4 kg m−2 at Larsbreen. Correspondingly, avalanche fan surfaces accreted from 2.6 to 8.8 mm yr−1 at Nybyen, and from 0.2 to 13.9 mm yr−1 at Larsbreen. This comparably efficient rockslope mass wasting is due to collapsing cornices producing cornice fall avalanches containing large amounts of rock debris throughout the entire winter. The rock debris of different origin stems from the plateau crests, the adjacent free rock face and the transport pathway, accumulating distinct avalanche fans at both slope systems. Cornice fall avalanche sedimentation also contributed to the development of a rock glacier at the Larsbreen site during the Holocene. We have recorded present maximum rockwall retreat rates of 0.9 mm yr−1 at Nybyen, but as much as 6.7 mm yr−1 at

  14. SWAD: inherent photon counting performance of amorphous selenium multi-well avalanche detector

    Science.gov (United States)

    Stavro, Jann; Goldan, Amir H.; Zhao, Wei

    2016-03-01

    Photon counting detectors (PCDs) have the potential to improve x-ray imaging, however they are still hindered by several performance limitations and high production cost. By using amorphous Selenium (a-Se) the cost of PCDs can be significantly reduced compared to crystalline materials and enable large area detector fabrication. To overcome the problem of low carrier mobility and low charge conversion gain in a-Se, we are developing a novel direct conversion a- Se field-Shaping multi-Well Avalanche Detector (SWAD). SWAD circumvents the charge transport limitation by using a Frisch grid built within the readout circuit, reducing charge collection time to ~200 ns. Field shaping permits depth independent avalanche gain in wells, resulting in total conversion gain that is comparable to Si and CdTe. In the present work we investigate the effects of charge sharing and energy loss to understand the inherent photon counting performance for SWAD at x-ray energies used in breast imaging applications (20-50keV). The energy deposition profile for each interacting x-ray was determined with Monte Carlo simulation. For the energy ranges we are interested in, photoelectric interaction dominates, with a k-fluorescence yield of approximately 60%. Using a monoenergetic 45 keV beam incident on a target pixel in 400um of a-Se, our results show that only 20.42 % and 22.4 % of primary interacting photons have kfluorescence emissions which escape the target pixel for 100um and 85um pixel sizes respectively, demonstrating SWAD's potential for high spatial resolution applications.

  15. Scaling Behavior of Barkhausen Avalanches along the Hysteresis loop in Nucleation-Mediated Magnetization Reversal Process

    Energy Technology Data Exchange (ETDEWEB)

    Im, Mi-Young; Fischer, Peter; Kim, D.-H.; Shin, S.-C.

    2008-10-14

    We report the scaling behavior of Barkhausen avalanches for every small field step along the hysteresis loop in CoCrPt alloy film having perpendicular magnetic anisotropy. Individual Barkhausen avalanche is directly observed utilizing a high-resolution soft X-ray microscopy that provides real space images with a spatial resolution of 15 nm. Barkhausen avalanches are found to exhibit power-law scaling behavior at all field steps along the hysteresis loop, despite their different patterns for each field step. Surprisingly, the scaling exponent of the power-law distribution of Barkhausen avalanches is abruptly altered from 1 {+-} 0.04 to 1.47 {+-} 0.03 as the field step is close to the coercive field. The contribution of coupling among adjacent domains to Barkhausen avalanche process affects the sudden change of the scaling behavior observed at the coercivity-field region on the hysteresis loop of CoCrPt alloy film.

  16. Averaged model for probabilistic coalescence avalanches in two-dimensional emulsions: Insights into uncertainty propagation

    Science.gov (United States)

    Danny Raj, M.; Rengaswamy, R.

    2017-03-01

    A two-dimensional concentrated emulsion exhibits spontaneous rapid destabilization through an avalanche of coalescence events which propagate through the assembly stochastically. We propose a deterministic model to explain the average dynamics of the avalanching process. The dynamics of the avalanche phenomenon is studied as a function of a composite parameter, the decay time ratio, which characterizes the ratio of the propensity of coalescence to cease propagation to that of propagation. When this ratio is small, the avalanche grows autocatalytically to destabilize the emulsion. Using a scaling analysis, we unravel the relation between a local characteristic of the system and a global system wide effect. The anisotropic nature of local coalescence results in a system size dependent transition from nonautocatalytic to autocatalytic behavior. By incorporating uncertainty into the parameters in the model, several possible realizations of the coalescence avalanche are generated. The results are compared with the Monte Carlo simulations to derive insights into how the uncertainty propagates in the system.

  17. Assessing wet snow avalanche activity using detailed physics based snowpack simulations

    Science.gov (United States)

    Wever, N.; Vera Valero, C.; Fierz, C.

    2016-06-01

    Water accumulating on microstructural transitions inside a snowpack is often considered a prerequisite for wet snow avalanches. Recent advances in numerical snowpack modeling allow for an explicit simulation of this process. We analyze detailed snowpack simulations driven by meteorological stations in three different climate regimes (Alps, Central Andes, and Pyrenees), with accompanying wet snow avalanche activity observations. Predicting wet snow avalanche activity based on whether modeled water accumulations inside the snowpack locally exceed 5-6% volumetric liquid water content is providing a higher prediction skill than using thresholds for daily mean air temperature, or the daily sum of the positive snow energy balance. Additionally, the depth of the maximum water accumulation in the simulations showed a significant correlation with observed avalanche size. Direct output from detailed snow cover models thereby is able to provide a better regional assessment of dangerous slope aspects and potential avalanche size than traditional methods.

  18. Reevaluation of tsunami formation by debris avalanche at Augustine Volcano, Alaska

    Science.gov (United States)

    Waythomas, C.F.

    2000-01-01

    Debris avalanches entering the sea at Augustine Volcano, Alaska have been proposed as a mechanism for generating tsunamis. Historical accounts of the 1883 eruption of the volcano describe 6- to 9-meter-high waves that struck the coastline at English Bay (Nanwalek), Alaska about 80 kilometers east of Augustine Island. These accounts are often cited as proof that volcanigenic tsunamis from Augustine Volcano are significant hazards to the coastal zone of lower Cook Inlet. This claim is disputed because deposits of unequivocal tsunami origin are not evident at more than 50 sites along the lower Cook Inlet coastline where they might be preserved. Shallow water (Augustine Island, in the run-out zone for debris avalanches, limits the size of an avalanche-caused wave. If the two most recent debris avalanches, Burr Point (A.D. 1883) and West Island (Augustine Volcano appears minor, unless a very large debris avalanche occurs at high tide.

  19. High-speed, high-voltage pulse generation using avalanche transistor

    Science.gov (United States)

    Yong-sheng, Gou; Bai-yu, Liu; Yong-lin, Bai; Jun-jun, Qin; Xiao-hong, Bai; Bo, Wang; Bing-li, Zhu; Chuan-dong, Sun

    2016-05-01

    In this work, the conduction mechanism of avalanche transistors was demonstrated and the operation condition for generating high-speed pulse using avalanche transistors was illustrated. Based on the above analysis, a high-speed and high-voltage pulse (HHP) generating circuit using avalanche transistors was designed, and its working principle and process were studied. To improve the speed of the output pulse, an approach of reducing the rise time of the leading edge is proposed. Methods for selecting avalanche transistor and reducing the parasitic inductance and capacitance of printed circuit board (PCB) were demonstrated. With these instructions, a PCB with a tapered transmission line was carefully designed and manufactured. Output pulse with amplitude of 2 kV and rise time of about 200 ps was realized with this PCB mounted with avalanche transistors FMMT417, indicating the effectiveness of the HHP generating circuit design.

  20. Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    A. Casteller

    2008-05-01

    Full Text Available The damage caused by snow avalanches to property and human lives is underestimated in many regions around the world, especially where this natural hazard remains poorly documented. One such region is the Argentinean Andes, where numerous settlements are threatened almost every winter by large snow avalanches. On 1 September 2002, the largest tragedy in the history of Argentinean mountaineering took place at Cerro Ventana, Northern Patagonia: nine persons were killed and seven others injured by a snow avalanche. In this paper, we combine both numerical modeling and dendrochronological investigations to reconstruct this event. Using information released by local governmental authorities and compiled in the field, the avalanche event was numerically simulated using the avalanche dynamics programs AVAL-1D and RAMMS. Avalanche characteristics, such as extent and date were determined using dendrochronological techniques. Model simulation results were compared with documentary and tree-ring evidences for the 2002 event. Our results show a good agreement between the simulated projection of the avalanche and its reconstructed extent using tree-ring records. Differences between the observed and the simulated avalanche, principally related to the snow height deposition in the run-out zone, are mostly attributed to the low resolution of the digital elevation model used to represent the valley topography. The main contributions of this study are (1 to provide the first calibration of numerical avalanche models for the Patagonian Andes and (2 to highlight the potential of Nothofagus pumilio tree-ring records to reconstruct past snow-avalanche events in time and space. Future research should focus on testing this combined approach in other forested regions of the Andes.