WorldWideScience

Sample records for area augmentation system

  1. IMPLEMENTATION OF AERONAUTICAL LOCAL SATELLITE AUGMENTATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Stojce Ilcev

    2011-03-01

    Full Text Available Abstract. This paper introduces development and implementation of new Local Satellite AugmentationSystem as an integration component of the Regional Satellite Augmentation System (RSAS employingcurrent and new Satellite Communications, Navigation and Surveillance (CNS for improvement of the AirTraffic Control (ATC and Air Traffic Management (ATM and for enhancement safety systems includingtransport security and control of flights in all stages, airport approaching, landing, departures and allmovements over airport surface areas. The current first generation of the Global Navigation Satellite SystemGNSS-1 applications are represented by fundamental military solutions for Position, Velocity and Time ofthe satellite navigation and determination systems such as the US GPS and Russian GLONASS (Former-USSR requirements, respectively. The establishment of Aeronautical CNS is also discussed as a part ofGlobal Satellite Augmentation Systems of GPS and GLONASS systems integrated with existing and futureRSAS and LSAS in airports areas. Specific influence and factors related to the Comparison of the Currentand New Aeronautical CNS System including the Integration of RSAS and GNSS solutions are discussedand packet of facts is determined to maximize the new satellite Automatic Dependent Surveillance System(ADSS and Special Effects of the RSAS Networks. The possible future integration of RSAS and GNSS andthe common proposal of the satellite Surface Movement Guidance and Control are presented in thechangeless ways as of importance for future enfacements of ATC and ATM for any hypothetical airportinfrastructure.Keywords: ADSS, ATC, ATM, CNS, GSAS, LRAS, RSAS, SMGC, Special Effects of RSAS.

  2. Cranial implant design using augmented reality immersive system.

    Science.gov (United States)

    Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary

    2007-01-01

    Software tools that utilize haptics for sculpting precise fitting cranial implants are utilized in an augmented reality immersive system to create a virtual working environment for the modelers. The virtual environment is designed to mimic the traditional working environment as closely as possible, providing more functionality for the users. The implant design process uses patient CT data of a defective area. This volumetric data is displayed in an implant modeling tele-immersive augmented reality system where the modeler can build a patient specific implant that precisely fits the defect. To mimic the traditional sculpting workspace, the implant modeling augmented reality system includes stereo vision, viewer centered perspective, sense of touch, and collaboration. To achieve optimized performance, this system includes a dual-processor PC, fast volume rendering with three-dimensional texture mapping, the fast haptic rendering algorithm, and a multi-threading architecture. The system replaces the expensive and time consuming traditional sculpting steps such as physical sculpting, mold making, and defect stereolithography. This augmented reality system is part of a comprehensive tele-immersive system that includes a conference-room-sized system for tele-immersive small group consultation and an inexpensive, easily deployable networked desktop virtual reality system for surgical consultation, evaluation and collaboration. This system has been used to design patient-specific cranial implants with precise fit.

  3. INTEGRATIVE AUGMENTATION OF STANDARDIZED MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Stanislav Karapetrovic

    2008-03-01

    Full Text Available The development, features and integrating abilities of different international standards related to management systems are discussed. A group of such standards that augment the performance of quality management systems in organizations is specifically focused on. The concept, characteristics and an illustrative example of one augmenting standard, namely ISO 10001, are addressed. Integration of standardized augmenting systems, both by themselves and within the overall management system, is examined. It is argued that, in research and practice alike, integrative augmentation represents the future of standardized quality and other management systems.

  4. Augmented Mirror: Interactive Augmented Reality System Based on Kinect

    OpenAIRE

    Vera , Lucía; Gimeno , Jesús; Coma , Inmaculada; Fernández , Marcos

    2011-01-01

    Part 1: Long and Short Papers; International audience; In this paper we present a virtual character controlled by an actor in real time, who talks with an audience through an augmented mirror. The application, which integrates video images, the avatar and other virtual objects within an Augmented Reality system, has been implemented using a mixture of technologies: two kinect systems for motion capture, depth map and real images, a gyroscope to detect head movements, and control algorithms to...

  5. Global navigation satellite systems performance analysis and augmentation strategies in aviation

    Science.gov (United States)

    Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian

    2017-11-01

    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground

  6. Augmenting Locomotion in an Anthropomorphic System

    Directory of Open Access Journals (Sweden)

    Derek Wight

    2005-02-01

    Full Text Available A powered orthosis has applications ranging from assisting the elderly to augmenting astronauts. An assistive control scheme is developed that uses the force from a slave actuator to augment the force of a master actuator. This can be used to augment a closed-loop control scheme applied to the master actuator. Initially, actuator augmentation is explored both theoretically and experimentally using a simple mechanical system. The control scheme is then applied to a scale model of human lower limbs on a stationary bicycle to investigate the feasibility of a powered orthosis using pneumatic muscle actuators.

  7. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones

    Science.gov (United States)

    Chen, Jing; Cao, Ruochen; Wang, Yongtian

    2015-01-01

    Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters. PMID:26690439

  8. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones.

    Science.gov (United States)

    Chen, Jing; Cao, Ruochen; Wang, Yongtian

    2015-12-10

    Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters.

  9. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2015-12-01

    Full Text Available Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters.

  10. Drone-Augmented Human Vision: Exocentric Control for Drones Exploring Hidden Areas.

    Science.gov (United States)

    Erat, Okan; Isop, Werner Alexander; Kalkofen, Denis; Schmalstieg, Dieter

    2018-04-01

    Drones allow exploring dangerous or impassable areas safely from a distant point of view. However, flight control from an egocentric view in narrow or constrained environments can be challenging. Arguably, an exocentric view would afford a better overview and, thus, more intuitive flight control of the drone. Unfortunately, such an exocentric view is unavailable when exploring indoor environments. This paper investigates the potential of drone-augmented human vision, i.e., of exploring the environment and controlling the drone indirectly from an exocentric viewpoint. If used with a see-through display, this approach can simulate X-ray vision to provide a natural view into an otherwise occluded environment. The user's view is synthesized from a three-dimensional reconstruction of the indoor environment using image-based rendering. This user interface is designed to reduce the cognitive load of the drone's flight control. The user can concentrate on the exploration of the inaccessible space, while flight control is largely delegated to the drone's autopilot system. We assess our system with a first experiment showing how drone-augmented human vision supports spatial understanding and improves natural interaction with the drone.

  11. Mobile Collaborative Augmented Reality: The Augmented Stroll

    OpenAIRE

    Renevier , Philippe; Nigay , Laurence

    2001-01-01

    International audience; The paper focuses on Augmented Reality systems in which interaction with the real world is augmented by the computer, the task being performed in the real world. We first define what mobile AR systems, collaborative AR systems and finally mobile and collaborative AR systems are. We then present the augmented stroll and its software design as one example of a mobile and collaborative AR system. The augmented stroll is applied to Archaeology in the MAGIC (Mobile Augmente...

  12. Use of Augmented Reality in Education

    OpenAIRE

    Jeřábek, Tomáš

    2014-01-01

    This thesis deals with phenomena of augmented reality in context of didactics. The thesis aims to define augmented reality in conceptual and content area and focuses on augmented reality in the structure of educational tools and identification of its functions and use from the didactical standpoint. The thesis characterizes augmented reality as a specific technological-perceptual concept and establishes a system of perceptual, technological and resulting aspects that reflect important paramet...

  13. [Interactive augmented reality systems : Aid for personalized patient education and rehabilitation].

    Science.gov (United States)

    Bork, F

    2018-04-01

    During patient education, information exchange plays a critical role both for patient compliance during medical or rehabilitative treatment and for obtaining an informed consent for an operative procedure. In this article the augmented reality system "Magic Mirror" as an additive tool during patient education, rehabilitation as well as anatomical education is highlighted. The Magic Mirror system allows the user of the system to inspect both a detailed model of the 3‑dimensional anatomy of the human body and volumetric slice images in a virtual mirror environment. First preliminary results from the areas of rehabilitation and learning anatomy indicate the broad potential of the Magic Mirror. Similarly, the system also provides interesting advantages for patient education situations in comparison to traditional methods of information exchange. Novel technologies, such as augmented reality are a door opener for many innovations in medicine. In the future, patient-specific systems, such as the Magic Mirror will be used increasingly more in areas such as patient education and rehabilitation. In order to maximize the benefits of such systems, further evaluation studies are necessary to find out about the best use cases and to start an iterative optimization process of these systems.

  14. Deterministic Local Sensitivity Analysis of Augmented Systems - I: Theory

    International Nuclear Information System (INIS)

    Cacuci, Dan G.; Ionescu-Bujor, Mihaela

    2005-01-01

    This work provides the theoretical foundation for the modular implementation of the Adjoint Sensitivity Analysis Procedure (ASAP) for large-scale simulation systems. The implementation of the ASAP commences with a selected code module and then proceeds by augmenting the size of the adjoint sensitivity system, module by module, until the entire system is completed. Notably, the adjoint sensitivity system for the augmented system can often be solved by using the same numerical methods used for solving the original, nonaugmented adjoint system, particularly when the matrix representation of the adjoint operator for the augmented system can be inverted by partitioning

  15. Context-Aware Based Efficient Training System Using Augmented Reality and Gravity Sensor for Healthcare Services

    Science.gov (United States)

    Kim, Seoksoo; Jung, Sungmo; Song, Jae-Gu; Kang, Byong-Ho

    As augmented reality and a gravity sensor is of growing interest, siginificant developement is being made on related technology, which allows application of the technology in a variety of areas with greater expectations. In applying Context-aware to augmented reality, it can make useful programs. A traning system suggested in this study helps a user to understand an effcienct training method using augmented reality and make sure if his exercise is being done propery based on the data collected by a gravity sensor. Therefore, this research aims to suggest an efficient training environment that can enhance previous training methods by applying augmented reality and a gravity sensor.

  16. Fiber Optic Augmented Reality System (FOARS)

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovation: Fiber Optics Augmented Reality System. This system in form of a mobile app interacts real time with the actual FOSS(Fiber Optics Sensing System) data and...

  17. Augmented reality aiding collimator exchange at the LHC

    International Nuclear Information System (INIS)

    Martínez, Héctor; Fabry, Thomas; Laukkanen, Seppo; Mattila, Jouni; Tabourot, Laurent

    2014-01-01

    Novel Augmented Reality techniques have the potential to have a large positive impact on the way remote maintenance operations are carried out in hazardous areas, e.g. areas where radiation doses that imply careful planning and optimization of maintenance operations are present. This paper describes an Augmented Reality strategy, system and implementation for aiding the remote collimator exchange in the LHC, currently the world's largest and highest-energy particle accelerator. The proposed system relies on marker detection and multi-modal augmentation in real-time. A database system has been used to ensure flexibility. The system has been tested in a mock-up facility, showing real time performance and great potential for future use in the LHC. The technical-scientific difficulties identified during the development of the system and the proposed solutions described in this paper may help the development of future Augmented Reality systems for remote handling in scientific facilities

  18. Augmented reality aiding collimator exchange at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Héctor, E-mail: hector.martinez@sensetrix.com [SenseTrix, PL 20 FI-00101 Helsinki (Finland); Fabry, Thomas [European Organization for Nuclear Research, CERN, CH-1211 Genève 23 (Switzerland); Laukkanen, Seppo [SenseTrix, PL 20 FI-00101 Helsinki (Finland); Mattila, Jouni [Tampere University of Technology, PO Box 527, FI-33101 Tampere (Finland); Tabourot, Laurent [SYMME, Université de Savoie, Polytech Annecy-Chambéry, 5 chemin de Bellevue, 74944 Annecy le Vieux (France)

    2014-11-01

    Novel Augmented Reality techniques have the potential to have a large positive impact on the way remote maintenance operations are carried out in hazardous areas, e.g. areas where radiation doses that imply careful planning and optimization of maintenance operations are present. This paper describes an Augmented Reality strategy, system and implementation for aiding the remote collimator exchange in the LHC, currently the world's largest and highest-energy particle accelerator. The proposed system relies on marker detection and multi-modal augmentation in real-time. A database system has been used to ensure flexibility. The system has been tested in a mock-up facility, showing real time performance and great potential for future use in the LHC. The technical-scientific difficulties identified during the development of the system and the proposed solutions described in this paper may help the development of future Augmented Reality systems for remote handling in scientific facilities.

  19. Augmentative biological control of arthropods in Latin America

    NARCIS (Netherlands)

    Lenteren, van J.C.; Bueno, V.H.P.

    2003-01-01

    Augmentative forms of biological control, where natural enemies are periodically introduced, are applied over large areas in various cropping systems in Latin America. About 25% of the world area under augmentative control is situated in this region. Well-known examples are the use of species of the

  20. Research on Design of MUH Attitude Stability Augmentation Control System

    Science.gov (United States)

    Fan, Shigang

    2017-09-01

    Attitude stability augmentation control system with a lower cost need to be designed so that MUH (Mini Unmanned Helicopter) can adapt to different types of geographic environment and fly steadily although the weather may be bad. Attitude feedback was calculated mainly by filtering estimation within attitude acquisition module in this system. Stability augmentation can be improved mainly by PI. This paper will depict running principle and designing process of MUH attitude stability augmentation control system and algorithm that is considered as an important part in this system.

  1. Augmented reality based real-time subcutaneous vein imaging system.

    Science.gov (United States)

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-07-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed.

  2. Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    Science.gov (United States)

    Maida, James C.; Bowen, Charles

    2003-01-01

    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to

  3. Estimating ionospheric delay using kriging: 2. Impact on satellite-based augmentation system availability

    Science.gov (United States)

    Sparks, Lawrence; Blanch, Juan; Pandya, Nitin

    2011-12-01

    An augmentation of the Global Positioning System, the Wide Area Augmentation System (WAAS) broadcasts, at each node of an ionospheric grid, an estimate of the vertical ionospheric delay and an integrity bound on the vertical delay error. To date, these quantities have been determined from a planar fit of slant delay measurements, projected to vertical using an obliquity factor specified by the standard thin shell model of the ionosphere. In a future WAAS upgrade (WAAS Follow-On Release 3), however, they will be calculated using an established, geo-statistical estimation technique known as kriging that generally provides higher estimate accuracy than planar fit estimation. This paper analyzes the impact of kriging on system availability. In a preliminary assessment, kriging is found to produce improvements in availability of up to 15%.

  4. AUGMENTATION-RELATED BRAIN PLASTICITY

    Directory of Open Access Journals (Sweden)

    Giovanni eDi Pino

    2014-06-01

    Full Text Available Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyzes the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain.Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools.Augmentation modifies function and structure of a number of areas, i.e. primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the

  5. Handling Occlusions for Robust Augmented Reality Systems

    Directory of Open Access Journals (Sweden)

    Maidi Madjid

    2010-01-01

    Full Text Available Abstract In Augmented Reality applications, the human perception is enhanced with computer-generated graphics. These graphics must be exactly registered to real objects in the scene and this requires an effective Augmented Reality system to track the user's viewpoint. In this paper, a robust tracking algorithm based on coded fiducials is presented. Square targets are identified and pose parameters are computed using a hybrid approach based on a direct method combined with the Kalman filter. An important factor for providing a robust Augmented Reality system is the correct handling of targets occlusions by real scene elements. To overcome tracking failure due to occlusions, we extend our method using an optical flow approach to track visible points and maintain virtual graphics overlaying when targets are not identified. Our proposed real-time algorithm is tested with different camera viewpoints under various image conditions and shows to be accurate and robust.

  6. Global Navigation Satellite System and Augmentation

    Indian Academy of Sciences (India)

    aircraft-based augmentation system (ABAS). ... segment, the ground segment (or) control segment and the user segment ... control station (MCS), and ground antennas. ... repeatability, multipath rejection, size, profile, and environmental.

  7. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer.

    Science.gov (United States)

    Douglas, David B; Boone, John M; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice.

  8. Research on gesture recognition of augmented reality maintenance guiding system based on improved SVM

    Science.gov (United States)

    Zhao, Shouwei; Zhang, Yong; Zhou, Bin; Ma, Dongxi

    2014-09-01

    Interaction is one of the key techniques of augmented reality (AR) maintenance guiding system. Because of the complexity of the maintenance guiding system's image background and the high dimensionality of gesture characteristics, the whole process of gesture recognition can be divided into three stages which are gesture segmentation, gesture characteristic feature modeling and trick recognition. In segmentation stage, for solving the misrecognition of skin-like region, a segmentation algorithm combing background mode and skin color to preclude some skin-like regions is adopted. In gesture characteristic feature modeling of image attributes stage, plenty of characteristic features are analyzed and acquired, such as structure characteristics, Hu invariant moments features and Fourier descriptor. In trick recognition stage, a classifier based on Support Vector Machine (SVM) is introduced into the augmented reality maintenance guiding process. SVM is a novel learning method based on statistical learning theory, processing academic foundation and excellent learning ability, having a lot of issues in machine learning area and special advantages in dealing with small samples, non-linear pattern recognition at high dimension. The gesture recognition of augmented reality maintenance guiding system is realized by SVM after the granulation of all the characteristic features. The experimental results of the simulation of number gesture recognition and its application in augmented reality maintenance guiding system show that the real-time performance and robustness of gesture recognition of AR maintenance guiding system can be greatly enhanced by improved SVM.

  9. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Science.gov (United States)

    2010-01-01

    ... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to show...

  10. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Science.gov (United States)

    2010-01-01

    ... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  11. Effective augmentation of networked systems and enhancing pinning controllability

    Science.gov (United States)

    Jalili, Mahdi

    2018-06-01

    Controlling dynamics of networked systems to a reference state, known as pinning control, has many applications in science and engineering. In this paper, we introduce a method for effective augmentation of networked systems, while also providing high levels of pinning controllability for the final augmented network. The problem is how to connect a sub-network to an already existing network such that the pinning controllability is maximised. We consider the eigenratio of the augmented Laplacian matrix as a pinning controllability metric, and use graph perturbation theory to approximate the influence of edge addition on the eigenratio. The proposed metric can be effectively used to find the inter-network links connecting the disjoint networks. Also, an efficient link rewiring approach is proposed to further optimise the pinning controllability of the augmented network. We provide numerical simulations on synthetic networks and show that the proposed method is more effective than heuristic ones.

  12. Augmentation of Quasi-Zenith Satellite Positioning System Using High Altitude Platforms Systems (HAPS)

    Science.gov (United States)

    Tsujii, Toshiaki; Harigae, Masatoshi

    Recently, some feasibility studies on a regional positioning system using the quasi-zenith satellites and the geostationary satellites have been conducted in Japan. However, the geometry of this system seems to be unsatisfactory in terms of the positioning accuracy in north-south direction. In this paper, an augmented satellite positioning system by the High Altitude Platform Systems (HAPS) is proposed since the flexibility of the HAPS location is effective to improve the geometry of satellite positioning system. The improved positioning performance of the augmented system is also demonstrated.

  13. ARVIKA - Augmented Reality in Entwicklung, Produktion und Service: Anbindung eines mobilen Augmented Reality Systems an eine stationäre Infrastruktur. Schlussbericht

    OpenAIRE

    Wichert, R.; Balfanz, D.

    2003-01-01

    ARVIKA uses augmented reality (AR) technologies to research and create a user-oriented and system-driven support of operation procedures. It focuses on the development, production, and service of complex technical products and systems. Augmented-reality technologies improve working environments by merging real objects with computer-generated virtual objects to allow for detailed engineering and processing instructions. Augmented reality is a novel approach to the interaction between human and...

  14. COMBINING INDEPENDENT VISUALIZATION AND TRACKING SYSTEMS FOR AUGMENTED REALITY

    Directory of Open Access Journals (Sweden)

    P. Hübner

    2018-05-01

    Full Text Available The basic requirement for the successful deployment of a mobile augmented reality application is a reliable tracking system with high accuracy. Recently, a helmet-based inside-out tracking system which meets this demand has been proposed for self-localization in buildings. To realize an augmented reality application based on this tracking system, a display has to be added for visualization purposes. Therefore, the relative pose of this visualization platform with respect to the helmet has to be tracked. In the case of hand-held visualization platforms like smartphones or tablets, this can be achieved by means of image-based tracking methods like marker-based or model-based tracking. In this paper, we present two marker-based methods for tracking the relative pose between the helmet-based tracking system and a tablet-based visualization system. Both methods were implemented and comparatively evaluated in terms of tracking accuracy. Our results show that mobile inside-out tracking systems without integrated displays can easily be supplemented with a hand-held tablet as visualization device for augmented reality purposes.

  15. Usability engineering: domain analysis activities for augmented-reality systems

    Science.gov (United States)

    Gabbard, Joseph; Swan, J. E., II; Hix, Deborah; Lanzagorta, Marco O.; Livingston, Mark; Brown, Dennis B.; Julier, Simon J.

    2002-05-01

    This paper discusses our usability engineering process for the Battlefield Augmented Reality System (BARS). Usability engineering is a structured, iterative, stepwise development process. Like the related disciplines of software and systems engineering, usability engineering is a combination of management principals and techniques, formal and semi- formal evaluation techniques, and computerized tools. BARS is an outdoor augmented reality system that displays heads- up battlefield intelligence information to a dismounted warrior. The paper discusses our general usability engineering process. We originally developed the process in the context of virtual reality applications, but in this work we are adapting the procedures to an augmented reality system. The focus of this paper is our work on domain analysis, the first activity of the usability engineering process. We describe our plans for and our progress to date on our domain analysis for BARS. We give results in terms of a specific urban battlefield use case we have designed.

  16. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Science.gov (United States)

    2010-01-01

    ... power-operated systems. 25.672 Section 25.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  17. D3D augmented reality imaging system: proof of concept in mammography.

    Science.gov (United States)

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called "depth 3-dimensional (D3D) augmented reality". A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice.

  18. Virtual and Augmented Reality Systems for Renal Interventions: A Systematic Review.

    Science.gov (United States)

    Detmer, Felicitas J; Hettig, Julian; Schindele, Daniel; Schostak, Martin; Hansen, Christian

    2017-01-01

    Many virtual and augmented reality systems have been proposed to support renal interventions. This paper reviews such systems employed in the treatment of renal cell carcinoma and renal stones. A systematic literature search was performed. Inclusion criteria were virtual and augmented reality systems for radical or partial nephrectomy and renal stone treatment, excluding systems solely developed or evaluated for training purposes. In total, 52 research papers were identified and analyzed. Most of the identified literature (87%) deals with systems for renal cell carcinoma treatment. About 44% of the systems have already been employed in clinical practice, but only 20% in studies with ten or more patients. Main challenges remaining for future research include the consideration of organ movement and deformation, human factor issues, and the conduction of large clinical studies. Augmented and virtual reality systems have the potential to improve safety and outcomes of renal interventions. In the last ten years, many technical advances have led to more sophisticated systems, which are already applied in clinical practice. Further research is required to cope with current limitations of virtual and augmented reality assistance in clinical environments.

  19. Use of Augmentative and Alternative Communication Systems in Preschool: teacher perceptions

    Directory of Open Access Journals (Sweden)

    Munique Massaro

    2013-06-01

    Full Text Available Augmentative and Alternative Communication Resources have proven to be helpful in the insertion of students with disabilities and complex communication needs into a variety of pedagogical activities and expand the skills and competencies of the teacher in the teaching-learning. The objective of this research was to identify the perception of teachers regarding the use of augmentative and alternative communication during an intervention program in Preschool. Participants were a special class of Preschool students with disabilities and severe communication complexity, along with their teacher and the researcher. For the development of this research, a Alternative Communication Program was applied. The teacher was provided with systematic guidance concerning language and communication. In a collaborative process, three children’s songs were selected according to the teacher’s pedagogical planning and adapted resources through Augmentative and Alternative Communication Systems. During the intervention program, assisted evaluations also took place immediately after the activities with the music. The data were collected in audio recordings. For data analysis, content analysis was carried out resulting in the outlining of themes and sub-themes. Results indicated that the teacher identified that Augmentative and Alternative Communication Systems can to facilitate expression abilities of students with disabilities; that Augmentative and Alternative Communication Systems can be used by children in Preschool; and that resources adapted through augmentative and alternative communication systems should be in accordance with the specificities of students.

  20. Markerless client-server augmented reality system with natural features

    Science.gov (United States)

    Ning, Shuangning; Sang, Xinzhu; Chen, Duo

    2017-10-01

    A markerless client-server augmented reality system is presented. In this research, the more extensive and mature virtual reality head-mounted display is adopted to assist the implementation of augmented reality. The viewer is provided an image in front of their eyes with the head-mounted display. The front-facing camera is used to capture video signals into the workstation. The generated virtual scene is merged with the outside world information received from the camera. The integrated video is sent to the helmet display system. The distinguishing feature and novelty is to realize the augmented reality with natural features instead of marker, which address the limitations of the marker, such as only black and white, the inapplicability of different environment conditions, and particularly cannot work when the marker is partially blocked. Further, 3D stereoscopic perception of virtual animation model is achieved. The high-speed and stable socket native communication method is adopted for transmission of the key video stream data, which can reduce the calculation burden of the system.

  1. AUGMENTED REALITY - STATE OF KNOWLEDGE, USE AND EXPERIMENTATION

    Directory of Open Access Journals (Sweden)

    Mihaela Filofteia TUTUNEA

    2013-12-01

    Full Text Available Technologies for augmenting reality have been consolidated during the last decades, extending their applicability to more and more socio-economic areas. The rapid evolution of mobile technologies and virtualization of the digital environment have created auspicious conditions for massive extension and implementation of solutions for augmenting reality at global level. Experience has already shown that augmented reality, alongside virtual reality can offer very important support solutions in modeling the real world with the aim of extending the human capabilities of perception, allowing the opening of a new phase in the world’s socio-economic development. Starting from the evident tendencies that have manifested at global level in the development and implementation of augmented reality technologies, the paper begins with the presentation of the most important aspects related to augmented reality technologies, highlighting their main areas of application, and presents the study realized for identifying the level of knowledge, use and effective experimentation of augmented reality applications by mobile device users. The results of this study could be very useful to the socio-economic environment, starting with the field of research, continuing with developers and providers of augmented reality solutions, manufacturers and providers of hardware infrastructure support for augmented reality solutions and systems, final users of these solutions, both individuals and businesses, and experimenting digital communities.

  2. D3D augmented reality imaging system: proof of concept in mammography

    Directory of Open Access Journals (Sweden)

    Douglas DB

    2016-08-01

    Full Text Available David B Douglas,1 Emanuel F Petricoin,2 Lance Liotta,2 Eugene Wilson3 1Department of Radiology, Stanford University, Palo Alto, CA, 2Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 3Department of Radiology, Fort Benning, Columbus, GA, USA Purpose: The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called “depth 3-dimensional (D3D augmented reality”. Materials and methods: A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. Results: The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. Conclusion: The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice. Keywords: augmented reality, 3D medical imaging, radiology, depth perception

  3. Methods and systems relating to an augmented virtuality environment

    Science.gov (United States)

    Nielsen, Curtis W; Anderson, Matthew O; McKay, Mark D; Wadsworth, Derek C; Boyce, Jodie R; Hruska, Ryan C; Koudelka, John A; Whetten, Jonathan; Bruemmer, David J

    2014-05-20

    Systems and methods relating to an augmented virtuality system are disclosed. A method of operating an augmented virtuality system may comprise displaying imagery of a real-world environment in an operating picture. The method may further include displaying a plurality of virtual icons in the operating picture representing at least some assets of a plurality of assets positioned in the real-world environment. Additionally, the method may include displaying at least one virtual item in the operating picture representing data sensed by one or more of the assets of the plurality of assets and remotely controlling at least one asset of the plurality of assets by interacting with a virtual icon associated with the at least one asset.

  4. Camera Based Navigation System with Augmented Reality

    Directory of Open Access Journals (Sweden)

    M. Marcu

    2012-06-01

    Full Text Available Nowadays smart mobile devices have enough processing power, memory, storage and always connected wireless communication bandwidth that makes them available for any type of application. Augmented reality (AR proposes a new type of applications that tries to enhance the real world by superimposing or combining virtual objects or computer generated information with it. In this paper we present a camera based navigation system with augmented reality integration. The proposed system aims to the following: the user points the camera of the smartphone towards a point of interest, like a building or any other place, and the application searches for relevant information about that specific place and superimposes the data over the video feed on the display. When the user moves the camera away, changing its orientation, the data changes as well, in real-time, with the proper information about the place that is now in the camera view.

  5. Development and evaluation of tracking method for augmented reality system for nuclear power plant maintenance support

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Bian, Zhiqiang; Sekiyama, Tomoki; Shimoda, Hiroshi; Yoshikawa, Hidekazu; Izumi, Masanori; Kanehira, Yoshiki; Morishita, Yoshitsugu

    2007-01-01

    This study aims at developing an augmented reality system to support maintenance work of nuclear power plants. An accurate and wide-range tracking method is required as a key technology in order to realize the system. In this study, a new tracking method using multi-camera and gyro sensor has been developed in order to enlarge the area where the tracking is available with limited number of markers. Experimental evaluation result shows that the area where the developed method can cover is about 3 times larger than the method using only single camera. (author)

  6. Development and evaluation of tracking method for augmented reality system for nuclear power plant maintenance support

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Bian, Zhiqiang; Sekiyama, Tomoki; Shimoda, Hiroshi; Yoshikawa, Hidekazu; Izumi, Masanori; Kanehira, Yoshiki; Morishita, Yoshitsugu

    2006-01-01

    This study aims at developing an augmented reality system to support maintenance work of nuclear power plants. An accurate and wide-range tracking method is required as a key technology in order to realize the system. In this study, a new tracking method using multi-camera and gyro sensor has been developed in order to enlarge the area where the tracking is available with limited number of markers. Experimental evaluation result shows that the area where the developed method can cover is about 3 times larger than the method using single camera. (author)

  7. An approach for real-time fast point positioning of the BeiDou Navigation Satellite System using augmentation information

    Science.gov (United States)

    Tu, Rui; Zhang, Rui; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2018-07-01

    This study proposes an approach to facilitate real-time fast point positioning of the BeiDou Navigation Satellite System (BDS) based on regional augmentation information. We term this as the precise positioning based on augmentation information (BPP) approach. The coordinates of the reference stations were highly constrained to extract the augmentation information, which contained not only the satellite orbit clock error correlated with the satellite running state, but also included the atmosphere error and unmodeled error, which are correlated with the spatial and temporal states. Based on these mixed augmentation corrections, a precise point positioning (PPP) model could be used for the coordinates estimation of the user stations, and the float ambiguity could be easily fixed for the single-difference between satellites. Thus, this technique provided a quick and high-precision positioning service. Three different datasets with small, medium, and large baselines (0.6 km, 30 km and 136 km) were used to validate the feasibility and effectiveness of the proposed BPP method. The validations showed that using the BPP model, 1–2 cm positioning service can be provided in a 100 km wide area after just 2 s of initialization. Thus, as the proposed approach not only capitalized on both PPP and RTK but also provided consistent application, it can be used for area augmentation positioning.

  8. A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations

    Directory of Open Access Journals (Sweden)

    Rui Tu

    2017-03-01

    Full Text Available In this study, a unified model for BeiDou Navigation Satellite System (BDS wide area and local area augmentation positioning based on raw observations has been proposed. Applying this model, both the Real-Time Kinematic (RTK and Precise Point Positioning (PPP service can be realized by performing different corrections at the user end. This algorithm was assessed and validated with the BDS data collected at four regional stations from Day of Year (DOY 080 to 083 of 2016. When the users are located within the local reference network, the fast and high precision RTK service can be achieved using the regional observation corrections, revealing a convergence time of about several seconds and a precision of about 2–3 cm. For the users out of the regional reference network, the global broadcast State-Space Represented (SSR corrections can be utilized to realize the global PPP service which shows a convergence time of about 25 min for achieving an accuracy of 10 cm. With this unified model, it can not only integrate the Network RTK (NRTK and PPP into a seamless positioning service, but also recover the ionosphere Vertical Total Electronic Content (VTEC and Differential Code Bias (DCB values that are useful for the ionosphere monitoring and modeling.

  9. Augmented reality system

    Science.gov (United States)

    Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng

    2010-08-01

    In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.

  10. Optimization of Wireless Optical Communication System Based on Augmented Lagrange Algorithm

    International Nuclear Information System (INIS)

    He Suxiang; Meng Hongchao; Wang Hui; Zhao Yanli

    2011-01-01

    The optimal model for wireless optical communication system with Gaussian pointing loss factor is studied, in which the value of bit error probability (BEP) is prespecified and the optimal system parameters is to be found. For the superiority of augmented Lagrange method, the model considered is solved by using a classical quadratic augmented Lagrange algorithm. The detailed numerical results are reported. Accordingly, the optimal system parameters such as transmitter power, transmitter wavelength, transmitter telescope gain and receiver telescope gain can be established, which provide a scheme for efficient operation of the wireless optical communication system.

  11. Aspects of User Experience in Augmented Reality

    DEFF Research Database (Denmark)

    Madsen, Jacob Boesen

    in human factors related to Augmented Reality. This is investigated partly as how Augmented Reality applications are used in unsupervised settings, and partly in specific evaluations related to user performance in supervised settings. The thesis starts by introducing Augmented Reality to the reader......, followed by a presentation of the technical areas related to the field, and different human factor areas. As a contribution to the research area, this thesis presents five separate, but sequential, papers within the area of Augmented Reality.......In Augmented Reality applications, the real environment is annotated or enhanced with computer-generated graphics. This is a topic that has been researched in the recent decades, but for many people this is a brand new and never heard of topic. The main focus of this thesis is investigations...

  12. Development of augmented reality system for servicing electromechanical equipment

    Science.gov (United States)

    Zhukovskiy, Y.; Koteleva, N.

    2018-05-01

    Electromechanical equipment is widely used. It is used in industrial enterprises, in the spheres of public services, in everyday life, etc. Maintenance servicing of electromechanical equipment is an important part of its life cycle. High-quality and timely service can extend the life of the electromechanical equipment. The creation of special systems that simplify the process of servicing electromechanical equipment is an urgent task. Such systems can shorten the time for maintenance of electrical equipment, and, therefore, reduce the cost of maintenance in general. This article presents an analysis of information on the operation of service services for maintenance and repair of electromechanical equipment, identifies the list of services, and estimates the time required to perform basic service operations. The structure of the augmented reality system is presented, the ways of interaction of the augmented reality system with the automated control systems working at the enterprise are presented.

  13. Augmented Reality in Tourism - Research and Applications Overview

    Directory of Open Access Journals (Sweden)

    Anabel L. Kečkeš

    2017-06-01

    Full Text Available Augmented reality is a complex interdisciplinary field utilizing information technologies in diverse areas such as medicine, education, architecture, industry, tourism and others, augmenting the real-time, real-world view with additional superimposed information in chosen format(s. The aim of this paper is to present an overview of both research and application aspects of using augmented reality technologies in tourism domain. While most research, and especially applications, are dealing with and developing visual-based augmented reality systems, there is a relevant amount of research discussing the utilization of other human senses such as tactioception and audioception, both being discussed within this work. A comprehensive literature analysis within this paper resulted with the identification, compilation and categorization of the key factors having the most relevant impact on the success of utilization of augmented technology in tourism domain.

  14. Towards Pervasive Augmented Reality: Context-Awareness in Augmented Reality.

    Science.gov (United States)

    Grubert, Jens; Langlotz, Tobias; Zollmann, Stefanie; Regenbrecht, Holger

    2017-06-01

    Augmented Reality is a technique that enables users to interact with their physical environment through the overlay of digital information. While being researched for decades, more recently, Augmented Reality moved out of the research labs and into the field. While most of the applications are used sporadically and for one particular task only, current and future scenarios will provide a continuous and multi-purpose user experience. Therefore, in this paper, we present the concept of Pervasive Augmented Reality, aiming to provide such an experience by sensing the user's current context and adapting the AR system based on the changing requirements and constraints. We present a taxonomy for Pervasive Augmented Reality and context-aware Augmented Reality, which classifies context sources and context targets relevant for implementing such a context-aware, continuous Augmented Reality experience. We further summarize existing approaches that contribute towards Pervasive Augmented Reality. Based our taxonomy and survey, we identify challenges for future research directions in Pervasive Augmented Reality.

  15. Augmented reality system for oral surgery using 3D auto stereoscopic visualization.

    Science.gov (United States)

    Tran, Huy Hoang; Suenaga, Hideyuki; Kuwana, Kenta; Masamune, Ken; Dohi, Takeyoshi; Nakajima, Susumu; Liao, Hongen

    2011-01-01

    We present an augmented reality system for oral and maxillofacial surgery in this paper. Instead of being displayed on a separated screen, three-dimensional (3D) virtual presentations of osseous structures and soft tissues are projected onto the patient's body, providing surgeons with exact knowledge of depth information of high risk tissues inside the bone. We employ a 3D integral imaging technique which produce motion parallax in both horizontal and vertical direction over a wide viewing area in this study. In addition, surgeons are able to check the progress of the operation in real-time through an intuitive 3D based interface which is content-rich, hardware accelerated. These features prevent surgeons from penetrating into high risk areas and thus help improve the quality of the operation. Operational tasks such as hole drilling, screw fixation were performed using our system and showed an overall positional error of less than 1 mm. Feasibility of our system was also verified with a human volunteer experiment.

  16. A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery.

    Science.gov (United States)

    Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng

    2017-02-15

    Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the "integrated image" on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications.

  17. Augmenting traditional instruments with a motion capture system

    DEFF Research Database (Denmark)

    Götzen, Amalia De; Vidolin, Alvise; Bernardini, Nicola

    2013-01-01

    This paper describes some composition works where the real instruments have been augmented through a motion capture system (Phasespace). While playing his instrument in the traditional way, the player is also controlling some other sound effects by moving his hands: the instrument becomes totally...

  18. Landmark-based augmented reality system for paranasal and transnasal endoscopic surgeries.

    Science.gov (United States)

    Thoranaghatte, Ramesh; Garcia, Jaime; Caversaccio, Marco; Widmer, Daniel; Gonzalez Ballester, Miguel A; Nolte, Lutz-P; Zheng, Guoyan

    2009-12-01

    In this paper we present a landmark-based augmented reality (AR) endoscope system for endoscopic paranasal and transnasal surgeries along with fast and automatic calibration and registration procedures for the endoscope. Preoperatively the surgeon selects natural landmarks or can define new landmarks in CT volume. These landmarks are overlaid, after proper registration of preoperative CT to the patient, on the endoscopic video stream. The specified name of the landmark, along with selected colour and its distance from the endoscope tip, is also augmented. The endoscope optics are calibrated and registered by fast and automatic methods. Accuracy of the system is evaluated in a metallic grid and cadaver set-up. Root mean square (RMS) error of the system is 0.8 mm in a controlled laboratory set-up (metallic grid) and was 2.25 mm during cadaver studies. A novel landmark-based AR endoscope system is implemented and its accuracy is evaluated. Augmented landmarks will help the surgeon to orientate and navigate the surgical field. Studies prove the capability of the system for the proposed application. Further clinical studies are planned in near future. Copyright (c) 2009 John Wiley & Sons, Ltd.

  19. Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models

    Institute of Scientific and Technical Information of China (English)

    Jochen Aβfalg; Frank Allg(o)wer

    2007-01-01

    This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.

  20. Jedi training: playful evaluation of head-mounted augmented reality display systems

    Science.gov (United States)

    Ozbek, Christopher S.; Giesler, Bjorn; Dillmann, Ruediger

    2004-05-01

    A fundamental decision in building augmented reality (AR) systems is how to accomplish the combining of the real and virtual worlds. Nowadays this key-question boils down to the two alternatives video-see-through (VST) vs. optical-see-through (OST). Both systems have advantages and disadvantages in areas like production-simplicity, resolution, flexibility in composition strategies, field of view etc. To provide additional decision criteria for high dexterity, accuracy tasks and subjective user-acceptance a gaming environment was programmed that allowed good evaluation of hand-eye coordination, and that was inspired by the Star Wars movies. During an experimentation session with more than thirty participants a preference for optical-see-through glasses in conjunction with infra-red-tracking was found. Especially the high-computational demand for video-capture, processing and the resulting drop in frame rate emerged as a key-weakness of the VST-system.

  1. Measuring the Latency of an Augmented Reality System for Robot-Assisted Minimally Invasive Surgery

    DEFF Research Database (Denmark)

    Jørgensen, Martin Kibsgaard; Kraus, Martin

    2017-01-01

    Minimal latency is important for augmented reality systems and teleoperation interfaces as even small increases in latency can affect user performance. Previously, we have developed an augmented reality system that can overlay stereoscopic video streams with computer graphics in order to improve....... The latency of the da Vinci S surgical system was on average 62 ms. None of the components of our overlay system (separately or combined) significantly affected the latency. However, the latency of the assistant's monitor increased by 14 ms. Passing the video streams through CPU or GPU memory increased...... visual communication in training for robot-assisted minimally invasive surgery with da Vinci surgical systems. To make sure that our augmented reality system provides the best possible user experience, we investigated the video latency of the da Vinci surgical system and how the components of our system...

  2. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    Science.gov (United States)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  3. Architecture and Key Techniques of Augmented Reality Maintenance Guiding System for Civil Aircrafts

    Science.gov (United States)

    hong, Zhou; Wenhua, Lu

    2017-01-01

    Augmented reality technology is introduced into the maintenance related field for strengthened information in real-world scenarios through integration of virtual assistant maintenance information with real-world scenarios. This can lower the difficulty of maintenance, reduce maintenance errors, and improve the maintenance efficiency and quality of civil aviation crews. Architecture of augmented reality virtual maintenance guiding system is proposed on the basis of introducing the definition of augmented reality and analyzing the characteristics of augmented reality virtual maintenance. Key techniques involved, such as standardization and organization of maintenance data, 3D registration, modeling of maintenance guidance information and virtual maintenance man-machine interaction, are elaborated emphatically, and solutions are given.

  4. Augmented reality: a review.

    Science.gov (United States)

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.

  5. Wide area tracking method for augmented reality supporting nuclear power plant maintenance work

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Yan, Weida; Yang, Shou-feng; Shimoda, Hiroshi; Izumi, Masanori

    2010-01-01

    A new fiducial marker for augmented reality was designed along with a method that recognizes the markers captured by a camera and calculates the relative position and orientation between the markers and the camera. These markers can be used at both long and short distances without increasing their number in the environment. Results of the experimental evaluation show that the new marker can be used in a larger area than legacy markers such as square markers and circular markers. (author)

  6. Development of wide area tracking method for augmented reality using multi-range fiducials

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Fujino, Hidenori; Yan, Weida; Yang, Shoufeng; Shimoda, Hiroshi; Izumi, Masanori

    2009-01-01

    A new fiducial marker for augmented reality was designed along with a method that recognizes the markers captured by a camera and calculates the relative position and orientation between the markers and the camera. These markers can be used at both long and short distances without increasing the number of markers pasted in the environment. Results of the experimental evaluation show that the new marker can be used in a larger area than circular markers and more stably than square markers. (author)

  7. An augmented reality system for upper-limb post-stroke motor rehabilitation: a feasibility study.

    Science.gov (United States)

    Assis, Gilda Aparecida de; Corrêa, Ana Grasielle Dionísio; Martins, Maria Bernardete Rodrigues; Pedrozo, Wendel Goes; Lopes, Roseli de Deus

    2016-08-01

    To determine the clinical feasibility of a system based on augmented reality for upper-limb (UL) motor rehabilitation of stroke participants. A physiotherapist instructed the participants to accomplish tasks in augmented reality environment, where they could see themselves and their surroundings, as in a mirror. Two case studies were conducted. Participants were evaluated pre- and post-intervention. The first study evaluated the UL motor function using Fugl-Meyer scale. Data were compared using non-parametric sign tests and effect size. The second study used the gain of motion range of shoulder flexion and abduction assessed by computerized biophotogrammetry. At a significance level of 5%, Fugl-Meyer scores suggested a trend for greater UL motor improvement in the augmented reality group than in the other. Moreover, effect size value 0.86 suggested high practical significance for UL motor rehabilitation using the augmented reality system. System provided promising results for UL motor rehabilitation, since enhancements have been observed in the shoulder range of motion and speed. Implications for Rehabilitation Gain of range of motion of flexion and abduction of the shoulder of post-stroke patients can be achieved through an augmented reality system containing exercises to promote the mental practice. NeuroR system provides a mental practice method combined with visual feedback for motor rehabilitation of chronic stroke patients, giving the illusion of injured upper-limb (UL) movements while the affected UL is resting. Its application is feasible and safe. This system can be used to improve UL rehabilitation, an additional treatment past the traditional period of the stroke patient hospitalization and rehabilitation.

  8. Tracking for Outdoor Mobile Augmented Reality: Further development of the Zion Augmented Reality Application

    OpenAIRE

    Strand, Tor Egil Riegels

    2008-01-01

    This report deals with providing tracking to an outdoor mobile augmented reality system and the Zion Augmented Reality Application. ZionARA is meant to display a virtual recreation of a 13th century castle on the site it once stood through an augmented reality Head Mounted Display. Mobile outdoor augmented/mixed reality puts special demands on what kind of equipment is practical. After briefly evaluating the different existing tracking methods, a solution based on GPS and an augmented inertia...

  9. Augmented Reality for Multi-disciplinary Collaboration

    OpenAIRE

    Wang, Xiangyu; Rui,

    2010-01-01

    This chapter presents a framework for multi-disciplinary collaboration. Tangible Augmented Reality has been raised as one of suitable systems for design collaboration. Furthermore, it emphasizes the advantages of Tangible Augmented Reality to illustrate the needs for integrating the Tangible User Interfaces and Augmented Reality Systems.

  10. A Foreign Language Learning Application using Mobile Augmented Reality

    Directory of Open Access Journals (Sweden)

    Florentin-Alexandru DITA

    2016-01-01

    Full Text Available In this paper is described a foreign language learning application using mobile augmented reality based on gamification method and text recognition. The mobile augmented reality is a technology that extends the real world elements with 2D or 3D computer generated objects and lets the users interact with them. A Gamification system is based on different mechanisms that increase the motivation of students, due to the impact that videogames have in their emotional, cognitive and social areas. The proposed solution applies Optical Character Recognition technique, using the camera of the mobile device, in order to identify the text written on a card. The implementation combines the features of gamification system and mobile augmented reality in order to make the learning process more easy and fun. This paper aims to present the results after testing the foreign language learning application in different scenarios.

  11. A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom.

    Science.gov (United States)

    Cutolo, Fabrizio; Meola, Antonio; Carbone, Marina; Sinceri, Sara; Cagnazzo, Federico; Denaro, Ennio; Esposito, Nicola; Ferrari, Mauro; Ferrari, Vincenzo

    2017-12-01

    Benefits of minimally invasive neurosurgery mandate the development of ergonomic paradigms for neuronavigation. Augmented Reality (AR) systems can overcome the shortcomings of commercial neuronavigators. The aim of this work is to apply a novel AR system, based on a head-mounted stereoscopic video see-through display, as an aid in complex neurological lesion targeting. Effectiveness was investigated on a newly designed patient-specific head mannequin featuring an anatomically realistic brain phantom with embedded synthetically created tumors and eloquent areas. A two-phase evaluation process was adopted in a simulated small tumor resection adjacent to Broca's area. Phase I involved nine subjects without neurosurgical training in performing spatial judgment tasks. In Phase II, three surgeons were involved in assessing the effectiveness of the AR-neuronavigator in performing brain tumor targeting on a patient-specific head phantom. Phase I revealed the ability of the AR scene to evoke depth perception under different visualization modalities. Phase II confirmed the potentialities of the AR-neuronavigator in aiding the determination of the optimal surgical access to the surgical target. The AR-neuronavigator is intuitive, easy-to-use, and provides three-dimensional augmented information in a perceptually-correct way. The system proved to be effective in guiding skin incision, craniotomy, and lesion targeting. The preliminary results encourage a structured study to prove clinical effectiveness. Moreover, our testing platform might be used to facilitate training in brain tumour resection procedures.

  12. Method, apparatus, and system for utilizing augmented reality to improve surgery

    KAUST Repository

    Cali, Corrado

    2016-10-13

    A method, apparatus, and computer readable medium are provided for utilizing augmented reality visualization to assist surgery. An example method includes generating a three dimensional reconstruction of an image stack representing a target area of a patient, and superimposing, by a head-mounted display, a projection of the three dimensional reconstruction onto a field of view of a user. The method further includes maintaining alignment between the projection and the user\\'s actual view of the target area using a plurality of fiducial markers associated with the target area. In some embodiments, the method further includes scanning the target area to generate the image stack.

  13. Augmented nonlinear differentiator design and application to nonlinear uncertain systems.

    Science.gov (United States)

    Shao, Xingling; Liu, Jun; Li, Jie; Cao, Huiliang; Shen, Chong; Zhang, Xiaoming

    2017-03-01

    In this paper, an augmented nonlinear differentiator (AND) based on sigmoid function is developed to calculate the noise-less time derivative under noisy measurement condition. The essential philosophy of proposed AND in achieving high attenuation of noise effect is established by expanding the signal dynamics with extra state variable representing the integrated noisy measurement, then with the integral of measurement as input, the augmented differentiator is formulated to improve the estimation quality. The prominent advantages of the present differentiation technique are: (i) better noise suppression ability can be achieved without appreciable delay; (ii) the improved methodology can be readily extended to construct augmented high-order differentiator to obtain multiple derivatives. In addition, the convergence property and robustness performance against noises are investigated via singular perturbation theory and describing function method, respectively. Also, comparison with several classical differentiators is given to illustrate the superiority of AND in noise suppression. Finally, the robust control problems of nonlinear uncertain systems, including a numerical example and a mass spring system, are addressed to demonstrate the effectiveness of AND in precisely estimating the disturbance and providing the unavailable differential estimate to implement output feedback based controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Testing Augmented Reality Systems for Spotting Sub-Surface Impurities

    DEFF Research Database (Denmark)

    Hald, Kasper; Rehm, Matthias; Moeslund, Thomas B.

    2018-01-01

    This paper describes setup and procedure for testing augmented reality systems for showing sub-surface positions of foreign elements in an opaque mass. The goal is it test four types of setup in terms of user accuracy and speed, the four setups being a head-mounted see-through display, an arm...

  15. Power system stabilising features from wind power plants augmented with energy storage

    DEFF Research Database (Denmark)

    Tarnowski, Germán C.; Kjær, Philip C; Lærke, Rasmus

    2014-01-01

    This paper describes a wind power plant augmented with energy storage, configured to provide ancillary services (primary reserve, inertial response, power oscillation damping) for enhancement of power system stability. Energy storage can complement wind power plants thus reducing the need for any...... overload or curtailment to allow active power modulation. A 12MW + 1.6MW augmented plant is used for demonstration of representative performance of the particular ancillary service control algorithms...

  16. Towards an interactive medical system by augmented reality

    OpenAIRE

    Khawla Ben Abderrahim; Mohamed Kallel; M.S. Bouhlel

    2013-01-01

    Augmented reality is a computer field that progresses rapidly. Its principle is to mix the real world and the virtual world. Many applications already use augmented reality, particularly the medical field. Medical image allows doctors to make diagnosis of the patient. This diagnosis allows him to make the best decision without committing professional mistakes that can cause problems. Hence the idea of integrating augmented reality with medical image analysis to help the doctor to make the bes...

  17. The HART I augmented electric gun facility

    International Nuclear Information System (INIS)

    Fikse, D.A.; Ciesar, J.A.; Wehrli, H.A.; Rimersma, H.; Docherty, E.F.; Pipich, C.W.

    1991-01-01

    This paper reports on an augmented electric gun system that has been commissioned. This system, called HART I (Hypervelocity Augmented Railgun Test), is built around a double augmented rail arrangement with a 1.27-cm square bore. It is powered by the SUVAC II 5.6-MJ distributed capacitor power supply. This arrangement allows operation in a simple, series augmented, or transaugmented gun system configuration. The objective of this facility is to perform materials research augmentation studies, and armature development in the 10-km/s regime. Armature masses of 2 to 4 g will be accelerated in a 4-m long barrel. Baseline bore materials will begin with conventional G9/GlidCop systems and then move into pyrolytic boron nitride/refractory materials. Hybrids, plasma, and ablation stabilized armature systems are planned. The gun system is instrumented with plasma and rail B probes for inbore velocity measurements. In addition, breech and muzzle voltages, currents, and external velocities are measured. The HART I system is currently performing hypervelocity experiments to verify the augmentation models

  18. Augmented marked graphs

    CERN Document Server

    Cheung, King Sing

    2014-01-01

    Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume

  19. Augmented Robotics Dialog System for Enhancing Human–Robot Interaction

    Science.gov (United States)

    Alonso-Martín, Fernando; Castro-González, Aívaro; de Gorostiza Luengo, Francisco Javier Fernandez; Salichs, Miguel Ángel

    2015-01-01

    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications. PMID:26151202

  20. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Science.gov (United States)

    2010-01-01

    ... power-operated systems. 23.672 Section 23.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show compliance with the flight characteristics requirements of this part...

  1. Augmented reality implementation methods in mainstream applications

    Directory of Open Access Journals (Sweden)

    David Procházka

    2011-01-01

    Full Text Available Augmented reality has became an useful tool in many areas from space exploration to military applications. Although used theoretical principles are well known for almost a decade, the augmented reality is almost exclusively used in high budget solutions with a special hardware. However, in last few years we could see rising popularity of many projects focused on deployment of the augmented reality on dif­ferent mobile devices. Our article is aimed on developers who consider development of an augmented reality application for the mainstream market. Such developers will be forced to keep the application price, therefore also the development price, at reasonable level. Usage of existing image processing software library could bring a significant cut-down of the development costs. In the theoretical part of the article is presented an overview of the augmented reality application structure. Further, an approach for selection appropriate library as well as the review of the existing software libraries focused in this area is described. The last part of the article out­lines our implementation of key parts of the augmented reality application using the OpenCV library.

  2. A Projector-Camera System for Augmented Card Playing and a Case Study with the Pelmanism Game

    Directory of Open Access Journals (Sweden)

    Nozomu Tanaka

    2017-05-01

    Full Text Available In this article, we propose a system for augmented card playing with a projector and a camera to add playfulness and increase communication among players of a traditional card game. The functionalities were derived on the basis of a user survey session with actual players. Playing cards are recognized using a video camera on the basis of a template matching without any artificial marker with an accuracy of > 0.96. Players are also tracked to provide person-dependent services using a video camera from the direction of their hands appearing over a table. These functions are provided as an API; therefore, the user of our system, i.e., a developer, can easily augment playing card games. The Pelmanism game was augmented on top of the system to validate the concept of augmentation. The results showed the feasibility of the system’s performance in an actual environment and the potential of enhancing playfulness and communication among players.

  3. Latency and distortion of electromagnetic trackers for augmented reality systems

    CERN Document Server

    Himberg, Henry

    2014-01-01

    Augmented reality (AR) systems are often used to superimpose virtual objects or information on a scene to improve situational awareness. Delays in the display system or inaccurate registration of objects destroy the sense of immersion a user experiences when using AR systems. AC electromagnetic trackers are ideal for these applications when combined with head orientation prediction to compensate for display system delays. Unfortunately, these trackers do not perform well in environments that contain conductive or ferrous materials due to magnetic field distortion without expensive calibration

  4. Designing interactive systems to support and augment creativity - a roadmap for research and design

    DEFF Research Database (Denmark)

    Dalsgaard, Peter; Halskov, Kim; Frich Pedersen, Jonas

    2018-01-01

    and developments, exemplary cases, and future initiatives to study and design systems and tools to augment creative practices. Participation in the workshop requires participants to contribute with a position paper on one of the above topics, and to read and comment on co-participants contributions before......The aims of the workshop are to examine and discuss the current state of research in designing interactive systems to support and augment creative work, and to outline a roadmap for future research initiatives. The workshop will explore methodological issues and approaches, overarching trends...

  5. Optical augmented reality assisted navigation system for neurosurgery teaching and planning

    Science.gov (United States)

    Wu, Hui-Qun; Geng, Xing-Yun; Wang, Li; Zhang, Yuan-Peng; Jiang, Kui; Tang, Le-Min; Zhou, Guo-Min; Dong, Jian-Cheng

    2013-07-01

    This paper proposed a convenient navigation system for neurosurgeon's pre-operative planning and teaching with augmented reality (AR) technique, which maps the three-dimensional reconstructed virtual anatomy structures onto a skull model. This system included two parts, a virtual reality system and a skull model scence. In our experiment, a 73 year old right-handed man initially diagnosed with astrocytoma was selected as an example to vertify our system. His imaging data from different modalities were registered and the skull soft tissue, brain and inside vessels as well as tumor were reconstructed. Then the reconstructed models were overlayed on the real scence. Our findings showed that the reconstructed tissues were augmented into the real scence and the registration results were in good alignment. The reconstructed brain tissue was well distributed in the skull cavity. The probe was used by a neurosurgeon to explore the surgical pathway which could be directly posed into the tumor while not injuring important vessels. In this way, the learning cost for students and patients' education about surgical risks reduced. Therefore, this system could be a selective protocol for image guided surgery(IGS), and is promising for neurosurgeon's pre-operative planning and teaching.

  6. Active glass-type human augmented cognition system considering attention and intention

    Science.gov (United States)

    Kim, Bumhwi; Ojha, Amitash; Lee, Minho

    2015-10-01

    Human cognition is the result of an interaction of several complex cognitive processes with limited capabilities. Therefore, the primary objective of human cognitive augmentation is to assist and expand these limited human cognitive capabilities independently or together. In this study, we propose a glass-type human augmented cognition system, which attempts to actively assist human memory functions by providing relevant, necessary and intended information by constantly assessing intention of the user. To achieve this, we exploit selective attention and intention processes. Although the system can be used in various real-life scenarios, we test the performance of the system in a person identity scenario. To detect the intended face, the system analyses the gaze points and change in pupil size to determine the intention of the user. An assessment of the gaze points and change in pupil size together indicates that the user intends to know the identity and information about the person in question. Then, the system retrieves several clues through speech recognition system and retrieves relevant information about the face, which is finally displayed through head-mounted display. We present the performance of several components of the system. Our results show that the active and relevant assistance based on users' intention significantly helps the enhancement of memory functions.

  7. Interactive Assembly Guide using Augmented Reality

    DEFF Research Database (Denmark)

    Andersen, Martin; Andersen, Rasmus Skovgaard; Larsen, Christian Lindequist

    2009-01-01

    This paper presents an Augmented Reality system for aiding a pump assembling process at Grundfos, one of the leading pump producers. Stable pose estimation of the pump is required in order to augment the graphics correctly. This is achieved by matching image edges with synthesized edges from CAD...... norm. A dynamic visualization of the augmented graphics provides the user with guidance. Usability tests show that the accuracy of the system is sufficient for assembling the pump....

  8. Using Augmented Reality Tools to Enhance Children's Library Services

    Science.gov (United States)

    Meredith, Tamara R.

    2015-01-01

    Augmented reality (AR) has been used and documented for a variety of commercial and educational purposes, and the proliferation of mobile devices has increased the average person's access to AR systems and tools. However, little research has been done in the area of using AR to supplement traditional library services, specifically for patrons aged…

  9. Augmented reality in neurosurgery.

    Science.gov (United States)

    Tagaytayan, Raniel; Kelemen, Arpad; Sik-Lanyi, Cecilia

    2018-04-01

    Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting.

  10. Augmented Reality System for the musealization of archaeological sites

    Directory of Open Access Journals (Sweden)

    Javier Esclapés

    2013-11-01

    Full Text Available In this paper we are presenting a multi-marker and semi-immersive system for augmented reality to visualize and interact with archaeological sites, specifically those located in inaccessible or complex environments, such as caves or underwater locations. The use of this system in museum exhibitions helps visitors to come closer to archaeological heritage. As an example for the implementation of this system, an archaeological site has been used. It is the “Cova del Barranc del Migdia”, located in the “Sierra del Montgó”, Xàbia (Spain. The product obtained has been exhibited in various museums nationwide.

  11. Non-fragile multivariable PID controller design via system augmentation

    Science.gov (United States)

    Liu, Jinrong; Lam, James; Shen, Mouquan; Shu, Zhan

    2017-07-01

    In this paper, the issue of designing non-fragile H∞ multivariable proportional-integral-derivative (PID) controllers with derivative filters is investigated. In order to obtain the controller gains, the original system is associated with an extended system such that the PID controller design can be formulated as a static output-feedback control problem. By taking the system augmentation approach, the conditions with slack matrices for solving the non-fragile H∞ multivariable PID controller gains are established. Based on the results, linear matrix inequality -based iterative algorithms are provided to compute the controller gains. Simulations are conducted to verify the effectiveness of the proposed approaches.

  12. Meta-image navigation augmenters for unmanned aircraft systems (MINA for UAS)

    Science.gov (United States)

    Òªelik, Koray; Somani, Arun K.; Schnaufer, Bernard; Hwang, Patrick Y.; McGraw, Gary A.; Nadke, Jeremy

    2013-05-01

    GPS is a critical sensor for Unmanned Aircraft Systems (UASs) due to its accuracy, global coverage and small hardware footprint, but is subject to denial due to signal blockage or RF interference. When GPS is unavailable, position, velocity and attitude (PVA) performance from other inertial and air data sensors is not sufficient, especially for small UASs. Recently, image-based navigation algorithms have been developed to address GPS outages for UASs, since most of these platforms already include a camera as standard equipage. Performing absolute navigation with real-time aerial images requires georeferenced data, either images or landmarks, as a reference. Georeferenced imagery is readily available today, but requires a large amount of storage, whereas collections of discrete landmarks are compact but must be generated by pre-processing. An alternative, compact source of georeferenced data having large coverage area is open source vector maps from which meta-objects can be extracted for matching against real-time acquired imagery. We have developed a novel, automated approach called MINA (Meta Image Navigation Augmenters), which is a synergy of machine-vision and machine-learning algorithms for map aided navigation. As opposed to existing image map matching algorithms, MINA utilizes publicly available open-source geo-referenced vector map data, such as OpenStreetMap, in conjunction with real-time optical imagery from an on-board, monocular camera to augment the UAS navigation computer when GPS is not available. The MINA approach has been experimentally validated with both actual flight data and flight simulation data and results are presented in the paper.

  13. Origami Creation System with Gesture Operations Based on Augmented Reality

    OpenAIRE

    松澤, 瞬; MATSUZAWA, Shun

    2013-01-01

    Augmented Reality (AR) allows us to enhance our perception of the real world by overlaying artificial objects or information. The AR Technology has been recently applied to commercial products such as game applications and car navigation systems. On the other hand, an origami creation using computer graphics has been developed with advance of graphic hardware. The origami creatio system enables users to fold an origami freely and interactively into complex figure. However the users can manipu...

  14. Real-Time Projection-Based Augmented Reality System for Dynamic Objects in the Performing Arts

    Directory of Open Access Journals (Sweden)

    Jaewoon Lee

    2015-02-01

    Full Text Available This paper describes the case study of applying projection-based augmented reality, especially for dynamic objects in live performing shows, such as plays, dancing, or musicals. Our study aims to project imagery correctly inside the silhouettes of flexible objects, in other words, live actors or the surface of actor’s costumes; the silhouette transforms its own shape frequently. To realize this work, we implemented a special projection system based on the real-time masking technique, that is to say real-time projection-based augmented reality system for dynamic objects in performing arts. We installed the sets on a stage for live performance, and rehearsed particular scenes of a musical. In live performance, using projection-based augmented reality technology enhances technical and theatrical aspects which were not possible with existing video projection techniques. The projected images on the surfaces of actor’s costume could not only express the particular scene of a performance more effectively, but also lead the audience to an extraordinary visual experience.

  15. NASA Communications Augmentation network

    Science.gov (United States)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.

    1990-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  16. From Augmentation Media to Meme Media.

    Science.gov (United States)

    Tanaka, Yuzuru

    Computers as meta media are now evolving from augmentation media vehicles to meme media vehicles. While an augmentation media system provides a seamlessly integrated environment of various tools and documents, meme media system provides further functions to edit and distribute tools and documents. Documents and tools on meme media can easily…

  17. Water augmented indirectly-fired gas turbine systems and method

    Science.gov (United States)

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  18. Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian Algorithms With Directed Gossip Communication

    Science.gov (United States)

    Jakovetic, Dusan; Xavier, João; Moura, José M. F.

    2011-08-01

    We study distributed optimization in networked systems, where nodes cooperate to find the optimal quantity of common interest, x=x^\\star. The objective function of the corresponding optimization problem is the sum of private (known only by a node,) convex, nodes' objectives and each node imposes a private convex constraint on the allowed values of x. We solve this problem for generic connected network topologies with asymmetric random link failures with a novel distributed, decentralized algorithm. We refer to this algorithm as AL-G (augmented Lagrangian gossiping,) and to its variants as AL-MG (augmented Lagrangian multi neighbor gossiping) and AL-BG (augmented Lagrangian broadcast gossiping.) The AL-G algorithm is based on the augmented Lagrangian dual function. Dual variables are updated by the standard method of multipliers, at a slow time scale. To update the primal variables, we propose a novel, Gauss-Seidel type, randomized algorithm, at a fast time scale. AL-G uses unidirectional gossip communication, only between immediate neighbors in the network and is resilient to random link failures. For networks with reliable communication (i.e., no failures,) the simplified, AL-BG (augmented Lagrangian broadcast gossiping) algorithm reduces communication, computation and data storage cost. We prove convergence for all proposed algorithms and demonstrate by simulations the effectiveness on two applications: l_1-regularized logistic regression for classification and cooperative spectrum sensing for cognitive radio networks.

  19. Area-wide integration of lepidopteran F1 sterility and augmentative biological control

    International Nuclear Information System (INIS)

    Carpenter, James E.

    2000-01-01

    Area-wide pest management (APM) and integrated pest management (IPM) originated from two different efforts to combine two or more control techniques into programmes in which each method could synergise the effectiveness of others and thus create a level of pest control that was greater than that of a single technique (Perkins 1982). Since then, the concept of APM has evolved to include many aspects of IPM and often is now referred to as area-wide IPM. Still, the element of total population management is central to this approach of insect pest management. In support of APM, Knipling (1998) stated that of the insect pests that were of major concern to agriculture before the newer classes of insecticides were available, most are still pests today, the major exceptions being the screw-worm fly and the boll weevil in the southeastern US cotton growing region. Knipling also noted that both of these pest species were subjected to area-wide suppression programmes. In response to the USDA IPM Initiative (USDA 1993, 1994) which seeks to achieve the national goal of having 75% of the crop acres under IPM by the year 2000, the Agricultural Research Service developed an Area-wide IPM Programme. This programme combines environmentally-sound pest control techniques with the advantages of APM and develops partnerships with other federal, state, local and private sector entities. Technologies such as the integration of lepidopteran F 1 sterility and augmentative biological control may be considered for future programmes

  20. Augmented reality in dentistry: a current perspective.

    Science.gov (United States)

    Kwon, Ho-Beom; Park, Young-Seok; Han, Jung-Suk

    2018-02-21

    Augmentation reality technology offers virtual information in addition to that of the real environment and thus opens new possibilities in various fields. The medical applications of augmentation reality are generally concentrated on surgery types, including neurosurgery, laparoscopic surgery and plastic surgery. Augmentation reality technology is also widely used in medical education and training. In dentistry, oral and maxillofacial surgery is the primary area of use, where dental implant placement and orthognathic surgery are the most frequent applications. Recent technological advancements are enabling new applications of restorative dentistry, orthodontics and endodontics. This review briefly summarizes the history, definitions, features, and components of augmented reality technology and discusses its applications and future perspectives in dentistry.

  1. Distribution System Augmented by DC Links for Increasing the Hosting Capacity of PV Generation

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Demirok, Erhan; Teodorescu, Remus

    2012-01-01

    This paper presents a concept of enhancing the photovoltaic (PV) power generation hosting capacity of distribution networks. Distribution network serving electrical energy to farm settlements was selected as an example for their large roof area available for PV installation. Further, they are cha......This paper presents a concept of enhancing the photovoltaic (PV) power generation hosting capacity of distribution networks. Distribution network serving electrical energy to farm settlements was selected as an example for their large roof area available for PV installation. Further......, they are characterized by long radial feeders. Such feeders suffer from voltage rise and transformer overloading problems as the total number and capacity of the PV installations increase. The distribution network can be augmented by dc distribution links with power electronic converter interfaces to the traditional ac...... distribution systems. It is shown here that the dc links can be used to interconnect the different radial feeders and the excess power thus could be transferred to the nearby industrial load-center....

  2. Manual signs as augmentative and alternative communication system. Review article

    Directory of Open Access Journals (Sweden)

    Fàtima Vega Llobera

    2014-06-01

    Full Text Available There is a long tradition of scientific evidence about using hand signals simultaneously with oral language to promote the development of communication and language in children with or without disabilities. This article aims to review and analyze intervention work focused on the use of manual signs as augmentative communication system (AAC in hearing participants. Several criteria were used to narrow the search, selection, coding and synthesis of the 50 original scientific papers have finally been part of the review. The included studies were edited from 1970 to the present, at a national and international level and were published in English and Spanish. The bibliographic compilation was performed through searches by keyword in bibliographic databases, with the help of search engines (Google Scholar and through secondary searches. From each of the scientific articles the following data was extracted: year of the study, the country of origin, the characteristics of the participants, the design and the methodology and the obtained results. This information has been analyzed and compared. The results of the study highlight that, despite the diversity in results, the signing use as augmentative communication system is effective to improve language development, receptive and expressive level.

  3. Development of an augmented reality based simulation system for cooperative plant dismantling work

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Man, Zhiyuan; Yan, Weida; Shimoda, Hiroshi; Izumi, Masanori

    2015-01-01

    An augmented reality-based simulation system for cooperative plant dismantling work has been developed and evaluated. In the system, behaviors of virtual objects such as the dismantling target, chain blocks, and trolleys are physically simulated. Their appearance is superimposed on camera images captured with cameras on users' tablet devices. The users can manipulate virtual objects cooperatively via touch operation. They can cut the dismantling targets, lift them on the trolleys using chain blocks, and convey them through narrow passages to ascertain whether the dismantling targets can be conducted without colliding with the passages. During the simulation, collisions between the virtual objects and real work environment are detected based on their three-dimensional shape data measured in advance. The collided parts are visualized using augmented reality superimposition. Four evaluators assessed the simulation system. Results show that the simulation system can be useful for prior examination of dismantling works, but some points were also found to need improvement. (author)

  4. A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation.

    Science.gov (United States)

    Mousavi Hondori, Hossein; Khademi, Maryam; Dodakian, Lucy; Cramer, Steven C; Lopes, Cristina Videira

    2013-01-01

    This paper features a Spatial Augmented Reality system for rehabilitation of hand and arm movement. The table-top home-based system tracks a subject's hand and creates a virtual audio-visual interface for performing rehabilitation-related tasks that involve wrist, elbow, and shoulder movements. It measures range, speed, and smoothness of movements locally and can send the real-time photos and data to the clinic for further assessment. To evaluate the system, it was tested on two normal subjects and proved functional.

  5. Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

  6. A Determinate Model of Thrust-Augmenting Ejectors

    Science.gov (United States)

    Whitley, N.; Krothapalli, A.; van Dommelen, L.

    1996-01-01

    A theoretical analysis of the compressible flow through a constant-area jet-engine ejector in which a primary jet mixes with ambient fluid from a uniform free stream is pursued. The problem is reduced to a determinate mathematical one by prescribing the ratios of stagnation properties between the primary and secondary flows. For some selections of properties and parameters more than one solution is possible and the meaning of these solutions is discussed by means of asymptotic expansions. Our results further show that while under stationary conditions the thrust-augmentation ratio assumes a value of 2 in the large area-ratio limit, for a free-stream Mach number greater than 0.6 very little thrust augmentation is left. Due to the assumptions made, the analysis provides idealized values for the thrust-augmentation ratio and the mass flux entrainment factor.

  7. A head-mounted display system for augmented reality: Initial evaluation for interventional MRI

    International Nuclear Information System (INIS)

    Wendt, M.; Wacker, F.K.

    2003-01-01

    Purpose: To discuss the technical details of a head mounted display with an augmented reality (AR) system and to describe a first pre-clinical evaluation in interventional MRI. Method: The AR system consists of a video-see-through head mounted display (HMD), mounted with a mini video camera for tracking and a stereo pair of mini cameras that capture live images of the scene. The live video view of the phantom/patient is augmented with graphical representations of anatomical structures from MRI image data and is displayed on the HMD. The application of the AR system with interventional MRI was tested using a MRI data set of the head and a head phantom. Results: The HMD enables the user to move around and observe the scene dynamically from various viewpoints. Within a short time the natural hand-eye coordination can easily be adapted to the slightly different view. The 3D perception is based on stereo and kinetic depth cues. A circular target with a diameter of 0.5 square centimeter was hit in 19 of 20 attempts. In a first evaluation the MRI image data augmented reality scene of a head phantom allowed good planning and precise simulation of a puncture. Conclusion: The HMD in combination with AR provides a direct, intuitive guidance for interventional MR procedures. (orig.) [de

  8. Hybrid-augmented intelligence:collaboration and cognition

    Institute of Scientific and Technical Information of China (English)

    Nan-ning ZHENG; Zi-yi LIU; Peng-ju REN; Yong-qiang MA; Shi-tao CHEN; Si-yu YU; Jian-ru XUE

    2017-01-01

    The long-term goal of artificial intelligence (AI) is to make machines learn and think like human beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems that humans are facing, no matter how intelligent machines are, they are unable to completely replace humans. Therefore, it is necessary to introduce human cognitive capabilities or human-like cognitive models into AI systems to develop a new form of AI, that is, hybrid-augmented intelligence. This form of AI or machine intelligence is a feasible and important developing model. Hybrid-augmented intelligence can be divided into two basic models:one is human-in-the-loop augmented intelligence with human-computer collaboration, and the other is cognitive computing based augmented intelligence, in which a cognitive model is embedded in the machine learning system. This survey describes a basic framework for human-computer collaborative hybrid-augmented intelligence, and the basic elements of hybrid-augmented intelligence based on cognitive computing. These elements include intuitive reasoning, causal models, evolution of memory and knowledge, especially the role and basic principles of intuitive reasoning for complex problem solving, and the cognitive learning framework for visual scene understanding based on memory and reasoning. Several typical applications of hybrid-augmented intelligence in related fields are given.

  9. Design and Validation of an Augmented Reality System for Laparoscopic Surgery in a Real Environment

    Science.gov (United States)

    López-Mir, F.; Naranjo, V.; Fuertes, J. J.; Alcañiz, M.; Bueno, J.; Pareja, E.

    2013-01-01

    Purpose. This work presents the protocol carried out in the development and validation of an augmented reality system which was installed in an operating theatre to help surgeons with trocar placement during laparoscopic surgery. The purpose of this validation is to demonstrate the improvements that this system can provide to the field of medicine, particularly surgery. Method. Two experiments that were noninvasive for both the patient and the surgeon were designed. In one of these experiments the augmented reality system was used, the other one was the control experiment, and the system was not used. The type of operation selected for all cases was a cholecystectomy due to the low degree of complexity and complications before, during, and after the surgery. The technique used in the placement of trocars was the French technique, but the results can be extrapolated to any other technique and operation. Results and Conclusion. Four clinicians and ninety-six measurements obtained of twenty-four patients (randomly assigned in each experiment) were involved in these experiments. The final results show an improvement in accuracy and variability of 33% and 63%, respectively, in comparison to traditional methods, demonstrating that the use of an augmented reality system offers advantages for trocar placement in laparoscopic surgery. PMID:24236293

  10. Design and Validation of an Augmented Reality System for Laparoscopic Surgery in a Real Environment

    Directory of Open Access Journals (Sweden)

    F. López-Mir

    2013-01-01

    Full Text Available Purpose. This work presents the protocol carried out in the development and validation of an augmented reality system which was installed in an operating theatre to help surgeons with trocar placement during laparoscopic surgery. The purpose of this validation is to demonstrate the improvements that this system can provide to the field of medicine, particularly surgery. Method. Two experiments that were noninvasive for both the patient and the surgeon were designed. In one of these experiments the augmented reality system was used, the other one was the control experiment, and the system was not used. The type of operation selected for all cases was a cholecystectomy due to the low degree of complexity and complications before, during, and after the surgery. The technique used in the placement of trocars was the French technique, but the results can be extrapolated to any other technique and operation. Results and Conclusion. Four clinicians and ninety-six measurements obtained of twenty-four patients (randomly assigned in each experiment were involved in these experiments. The final results show an improvement in accuracy and variability of 33% and 63%, respectively, in comparison to traditional methods, demonstrating that the use of an augmented reality system offers advantages for trocar placement in laparoscopic surgery.

  11. Usability Evaluation of an Augmented Reality System for Teaching Euclidean Vectors

    Science.gov (United States)

    Martin-Gonzalez, Anabel; Chi-Poot, Angel; Uc-Cetina, Victor

    2016-01-01

    Augmented reality (AR) is one of the emerging technologies that has demonstrated to be an efficient technological tool to enhance learning techniques. In this paper, we describe the development and evaluation of an AR system for teaching Euclidean vectors in physics and mathematics. The goal of this pedagogical tool is to facilitate user's…

  12. Spatial augmented reality merging real and virtual worlds

    CERN Document Server

    Bimber, Oliver

    2005-01-01

    Like virtual reality, augmented reality is becoming an emerging platform in new application areas for museums, edutainment, home entertainment, research, industry, and the art communities using novel approaches which have taken augmented reality beyond traditional eye-worn or hand-held displays. In this book, the authors discuss spatial augmented reality approaches that exploit optical elements, video projectors, holograms, radio frequency tags, and tracking technology, as well as interactive rendering algorithms and calibration techniques in order to embed synthetic supplements into the real

  13. Invisible marker based augmented reality system

    Science.gov (United States)

    Park, Hanhoon; Park, Jong-Il

    2005-07-01

    Augmented reality (AR) has recently gained significant attention. The previous AR techniques usually need a fiducial marker with known geometry or objects of which the structure can be easily estimated such as cube. Placing a marker in the workspace of the user can be intrusive. To overcome this limitation, we present an AR system using invisible markers which are created/drawn with an infrared (IR) fluorescent pen. Two cameras are used: an IR camera and a visible camera, which are positioned in each side of a cold mirror so that their optical centers coincide with each other. We track the invisible markers using IR camera and visualize AR in the view of visible camera. Additional algorithms are employed for the system to have a reliable performance in the cluttered background. Experimental results are given to demonstrate the viability of the proposed system. As an application of the proposed system, the invisible marker can act as a Vision-Based Identity and Geometry (VBIG) tag, which can significantly extend the functionality of RFID. The invisible tag is the same as RFID in that it is not perceivable while more powerful in that the tag information can be presented to the user by direct projection using a mobile projector or by visualizing AR on the screen of mobile PDA.

  14. Augmented reality for art, design and cultural heritage-system design and evaluation

    NARCIS (Netherlands)

    Caarls, J.; Jonker, P.P.; Kolstee, Y.; Rotteveel, J.; Eck, van W.

    2010-01-01

    This paper describes the design of an optical see-through head-mounted display (HMD) system for Augmented Reality (AR). Our goals were to make virtual objects "perfectly" indistinguishable from real objects, wherever the user roams, and to find out to which extent imperfections are hindering

  15. Augmented Reality Comes to Physics

    Science.gov (United States)

    Buesing, Mark; Cook, Michael

    2013-01-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…

  16. Wearable computer for mobile augmented-reality-based controlling of an intelligent robot

    Science.gov (United States)

    Turunen, Tuukka; Roening, Juha; Ahola, Sami; Pyssysalo, Tino

    2000-10-01

    An intelligent robot can be utilized to perform tasks that are either hazardous or unpleasant for humans. Such tasks include working in disaster areas or conditions that are, for example, too hot. An intelligent robot can work on its own to some extent, but in some cases the aid of humans will be needed. This requires means for controlling the robot from somewhere else, i.e. teleoperation. Mobile augmented reality can be utilized as a user interface to the environment, as it enhances the user's perception of the situation compared to other interfacing methods and allows the user to perform other tasks while controlling the intelligent robot. Augmented reality is a method that combines virtual objects into the user's perception of the real world. As computer technology evolves, it is possible to build very small devices that have sufficient capabilities for augmented reality applications. We have evaluated the existing wearable computers and mobile augmented reality systems to build a prototype of a future mobile terminal- the CyPhone. A wearable computer with sufficient system resources for applications, wireless communication media with sufficient throughput and enough interfaces for peripherals has been built at the University of Oulu. It is self-sustained in energy, with enough operating time for the applications to be useful, and uses accurate positioning systems.

  17. Real-Life Challenges in Using Augmentative and Alternative Communication by Persons with Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Ray, Jayanti

    2015-01-01

    Given the linguistic and cognitive demands of communication, adult Augmentative and Alternative Communication (AAC) users with acquired communication disorders may have difficulty using AAC systems consistently and effectively in "real-life" situations. The process of recommending AAC systems and strategies is an area of exploration,…

  18. Virtual and augmented reality for training on maintenance

    International Nuclear Information System (INIS)

    Gonzalez, F.

    2001-01-01

    This paper presents two projects focused to support training on maintenance using new technologies. Both projects aims at specifying. designing, developing, and demonstrating prototypes allowing computer guided maintenance of complex mechanical elements using Virtual Reality (VIRMAN) and Augmented Reality (STARMATE) techniques. VIRMAN project is dedicated to training course development on maintenance using Virtual Reality. It based in the animation of three dimension images for component assembly/de-assembly or equipment movements. STARMATE will rely on Augmented Reality techniques which is a growing area in virtual Reality research. The idea of Augmented Reality is to combine a real scene, viewed by the user, with a virtual scene generated by a computer augmenting the reality with additional information. (Author)

  19. Augmented-Virtual Reality: How to improve education systems

    Directory of Open Access Journals (Sweden)

    Manuel Fernandez

    2017-06-01

    Full Text Available This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students’ learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students’ knowledge acquisition. Stakeholders in the educational role of technology include students, faculty members, institutions, and manufacturers. While the benefits of such technologies are still under investigation, the technology landscape offers opportunities to enhance face-to-face and online teaching, including contributions in the understanding of abstract concepts and training in real environments and situations. Barriers to technology use involve limited adoption of augmented and virtual reality technologies, and, more directly, necessary training of teachers in using such technologies within meaningful educational contexts. The author proposes a six-step methodology to aid adoption of these technologies as basic elements within the regular education: training teachers; developing conceptual prototypes; teamwork involving the teacher, a technical programmer, and an educational architect; and producing the experience, which then provides results in the subsequent two phases wherein teachers are trained to apply augmented- and virtual-reality solutions within their teaching methodology using an available subject-specific experience and then finally implementing the use of the experience in a regular subject with students. The essay concludes with discussion of the business opportunities facing virtual reality in face-to-face education as well as augmented and virtual reality in online education.

  20. Adaptive object placement for augmented reality use in driver assistance systems

    OpenAIRE

    Bordes, Lucie; Breckon, Toby P.; Katramados, Ioannis; Kheyrollahi, Alireza

    2011-01-01

    We present an approach for adaptive object placement for Augmented Reality (AR) use in driver assistance systems. Combined vanishing point and road surface detection enable the real-time adaptive emplacement of AR objects within a drivers' natural field of view for on-road information display. This work combines both automotive vision and multimedia production aspects of real-time visual engineering.

  1. Automatic cell identification and visualization using digital holographic microscopy with head mounted augmented reality devices.

    Science.gov (United States)

    O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram

    2018-03-01

    We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.

  2. CityGuideTour Toruń - tourist application using augmented reality

    Science.gov (United States)

    Węgrzyn, Magdalena; Mościcka, Albina

    2017-12-01

    The aim of the article is to show the possibilities of augmented reality in the fi eld of geodesy and cartography. It discusses the concept of augmented reality, its origins and development, as well as areas of the existing applications. The practical functioning of augmented reality in the area of geodesy and cartography is presented on the example of an application developed for the tourist city of Toruń, created with the use of CityGuideTour software. The principles of developing an application and the way it operates are also discussed. As a result, a fully operational bilingual application is available free of charge on the Web.

  3. Augmented Reality Interfaces for Additive Manufacturing

    DEFF Research Database (Denmark)

    Eiríksson, Eyþór Rúnar; Pedersen, David Bue; Frisvad, Jeppe Revall

    2017-01-01

    This paper explores potential use cases for using augmented reality (AR) as a tool to operate industrial machines. As a baseline we use an additive manufacturing system, more commonly known as a 3D printer. We implement novel augmented interfaces and controls using readily available open source...

  4. ARLearn: augmented reality meets augmented virtuality

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland; Kalz, Marco; Van Ulzen, Patricia; Specht, Marcus

    2012-01-01

    Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., & Specht, M. (2012). ARLearn: augmented reality meets augmented virtuality [Special issue]. Journal of Universal Computer Science - Technology for learning across physical and virtual spaces, 18(15), 2143-2164.

  5. Concept of an immersive assistance system with augmented reality for the support of manual activities in radioactive production environments

    International Nuclear Information System (INIS)

    Eursch, Andreas A.

    2010-01-01

    The thesis on an immersive assistance system concept with augmented reality for the support of manual activities in radioactive production environments covers the following topics: analysis of the situation: production and use of radioactive materials, problem analysis of the work in the production facilities, necessity of manual activities, automation, prediction in hot cells; status of research and development; assistance system concept, immersive camera system; augmented reality support in hot cells; economic evaluation and generalization.

  6. Whistland: An Augmented Reality Crowd-Mapping System for Civil Protection and Emergency Management

    Directory of Open Access Journals (Sweden)

    Gioele Luchetti

    2017-02-01

    Full Text Available The prevention and correct management of natural disaster event sequences play a key role in saving human lives. The availability of embedded and mobile smart computing systems opens new roads for the management of land and infrastructures by civil protection operators. To date, research has explored the use of social networks for the management of disasters connected to meteorological/hydrogeological events or earthquakes, but without emphasis on the importance of an integrated system. The main feature of the Whistland system proposed in this paper is to make synergistic use of augmented reality (AR, crowd-mapping (CM, social networks, the Internet of Things (IoT and wireless sensor networks (WSN by exploiting technologies and frameworks of Web 2.0 and GIS 2.0 to make informed decisions about the chain of events. The Whistland system is composed of a geo-server, a mobile application with AR and an analytics dashboard. The geo-server acts as the hub of the sensor and social networks. The abstracted concept in this sense is the transformation of the user domain into “intelligent sensors” for the whole scope of crisis management. The social network integration is made through an efficient pointer-like mechanism that keeps the storage requirement low through a mobile application based on an augmented reality engine and provides qualitative information that sensors are unable to capture. Real-time analyses, geo-searches and the capability to examine event histories with an augmented reality engine all help the stakeholders to understand better the state of the resources under observation/monitoring. The system has been extensively tested in the programmed maintenance of river basins, where it is necessary to log maintenance activities in order to keep the riverbank clean: a significant use-case in many countries affected by hydro-geological instability.

  7. Personalized augmented reality for anatomy education.

    Science.gov (United States)

    Ma, Meng; Fallavollita, Pascal; Seelbach, Ina; Von Der Heide, Anna Maria; Euler, Ekkehard; Waschke, Jens; Navab, Nassir

    2016-05-01

    Anatomy education is a challenging but vital element in forming future medical professionals. In this work, a personalized and interactive augmented reality system is developed to facilitate education. This system behaves as a "magic mirror" which allows personalized in-situ visualization of anatomy on the user's body. Real-time volume visualization of a CT dataset creates the illusion that the user can look inside their body. The system comprises a RGB-D sensor as a real-time tracking device to detect the user moving in front of a display. In addition, the magic mirror system shows text information, medical images, and 3D models of organs that the user can interact with. Through the participation of 7 clinicians and 72 students, two user studies were designed to respectively assess the precision and acceptability of the magic mirror system for education. The results of the first study demonstrated that the average precision of the augmented reality overlay on the user body was 0.96 cm, while the results of the second study indicate 86.1% approval for the educational value of the magic mirror, and 91.7% approval for the augmented reality capability of displaying organs in three dimensions. The usefulness of this unique type of personalized augmented reality technology has been demonstrated in this paper. © 2015 Wiley Periodicals, Inc.

  8. Augmented postcard

    OpenAIRE

    Bernik , Aleš

    2012-01-01

    The aim of this thesis is the examination of augmented reality technology, which allows us mixing real and virtual elements. Augmented reality is a relatively new technology which is becoming more widespread, thanks to a fairly reasonable price of smart phones. Here we presents the types of augmented reality, the necessary technology and their advantages and disadvantages, its current use in applications, and software for building augmented reality applications. The thesis is mainly focuse...

  9. [Display technologies for augmented reality in medical applications].

    Science.gov (United States)

    Eck, Ulrich; Winkler, Alexander

    2018-04-01

    One of the main challenges for modern surgery is the effective use of the many available imaging modalities and diagnostic methods. Augmented reality systems can be used in the future to blend patient and planning information into the view of surgeons, which can improve the efficiency and safety of interventions. In this article we present five visualization methods to integrate augmented reality displays into medical procedures and the advantages and disadvantages are explained. Based on an extensive literature review the various existing approaches for integration of augmented reality displays into medical procedures are divided into five categories and the most important research results for each approach are presented. A large number of mixed and augmented reality solutions for medical interventions have been developed as research prototypes; however, only very few systems have been tested on patients. In order to integrate mixed and augmented reality displays into medical practice, highly specialized solutions need to be developed. Such systems must comply with the requirements with respect to accuracy, fidelity, ergonomics and seamless integration into the surgical workflow.

  10. Visually Augmented Analysis of Socio-Technical Networks in Engineering Systems Design Research

    DEFF Research Database (Denmark)

    Storga, M.; Stankovic, T.; Cash, Philip

    2013-01-01

    In characterizing systems behaviour, complex-systems scientists use tools from a variety of disciplines, including nonlinear dynamics, information theory, computation theory, evolutionary biology and social network analysis, among others. All of these topics have been studied for some time......, but only fairly recently has the study of networks in general become a major topic of research in complex engineering systems. The research reported in this paper is discussing how the visually augmented analysis of complex socio-networks (networks of people and technology engaged in a product...

  11. Initial Model of Social Acceptability for Human Augmentation Technologies

    NARCIS (Netherlands)

    Eghtebas, Chloe; Pay, Yun Suen; Väänänen, Kaisa; Pfeiffer, Ties; Meyer, Joachim; Lukosch, S.G.

    2017-01-01

    Academia and industry engage in major efforts to develop technologies for augmenting human senses and activities. Many of these technologies, such as augmented reality (AR) and virtual reality (VR) head mounted displays (HMD), haptic augmentation systems, and exoskeletons can be applied in numerous

  12. Integrating Hypermedia Techniques with Augmented Reality Environments

    OpenAIRE

    Sinclair, Patrick

    2004-01-01

    Augmented Reality systems, which overlay virtual information over the real world, can benefit greatly from the techniques established by the Open Hypermedia research field. Storing information and links separately from a document can be advantageous for augmented reality applications and can enable the adaption of content to suit users’ preferences. This thesis explores how Open Hypermedia systems might be used as the information systems behind AR environments. This provides benefits to augme...

  13. Development of Augmented Spark Impinging Igniter System for Methane Engines

    Science.gov (United States)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.

  14. Augmented REality Sandtables (ARESs) Impact on Learning

    Science.gov (United States)

    2016-07-01

    ARL-CR-0803 ● JULY 2016 US Army Research Laboratory Augmented REality Sandtable’s (ARES’s) Impact on Learning by Tarah N......The use of augmented reality (AR) to supplement training tools, specifically sand tables, can produce highly effective systems at relatively low

  15. Design of a Stability Augmentation System for an Unmanned Helicopter Based on Adaptive Control Techniques

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-09-01

    Full Text Available The task of control of unmanned helicopters is rather complicated in the presence of parametric uncertainties and measurement noises. This paper presents an adaptive model feedback control algorithm for an unmanned helicopter stability augmentation system. The proposed algorithm can achieve a guaranteed model reference tracking performance and speed up the convergence rates of adjustable parameters, even when the plant parameters vary rapidly. Moreover, the model feedback strategy in the algorithm further contributes to the improvement in the control quality of the stability augmentation system in the case of low signal to noise ratios, mainly because the model feedback path is noise free. The effectiveness and superiority of the proposed algorithm are demonstrated through a series of tests.

  16. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study

    Science.gov (United States)

    Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi

    2013-01-01

    To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710

  17. Generic precise augmented reality guiding system and its calibration method based on 3D virtual model.

    Science.gov (United States)

    Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua

    2016-05-30

    Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique.

  18. Mental Workload and Situational Awareness Evaluation of APR1400 Engineered Safety Features- Component Control Activation Systems using Augmented Reality

    International Nuclear Information System (INIS)

    Murungi, Mwongeera; Jung, JaeCheon

    2016-01-01

    In the study, an Augmented Reality procedure guidance support system concept was designed and used as a tool for the measurement of mental workload and Situational awareness of an SRO (Senior Reactor Operator). The EOP was chosen as the scenario for testing because it is the one of the critical plant conditions that requires human intervention and it represents (one of the more) conservative approaches to the test scenarios that are possible. The system is expected to realize an improvement in the level of Situational Awareness and mental workload which have been demonstrated by previous studies to be directly linked with the system response to an emergency situation in the MCR. The planning and design of the project adhered to a Systems Engineering approach in order to provide an optimized framework for ensuring the successful implementation of the system design. Previous study and research into this topic has emphasized the importance of situational awareness in determining the human factor performance issues in the nuclear power plant Control Room operations. This paper broadly defined a technique that successfully used the operator’s mental workload (using NASATLX) and Situational Awareness (using SART) as quantifying measures to evaluate the performance of specific ESF-CCS functions based on human factors. These results show that an improvement of the SA/workload could lead to an improvement of the level of certainty that the emergency situation can be brought under control. It is expected that future development work in this area will yield an actualized Augmented Reality system that could incorporate MCR team control and possibly be implemented in the system validation of other I and C systems

  19. Mental Workload and Situational Awareness Evaluation of APR1400 Engineered Safety Features- Component Control Activation Systems using Augmented Reality

    Energy Technology Data Exchange (ETDEWEB)

    Murungi, Mwongeera; Jung, JaeCheon [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    In the study, an Augmented Reality procedure guidance support system concept was designed and used as a tool for the measurement of mental workload and Situational awareness of an SRO (Senior Reactor Operator). The EOP was chosen as the scenario for testing because it is the one of the critical plant conditions that requires human intervention and it represents (one of the more) conservative approaches to the test scenarios that are possible. The system is expected to realize an improvement in the level of Situational Awareness and mental workload which have been demonstrated by previous studies to be directly linked with the system response to an emergency situation in the MCR. The planning and design of the project adhered to a Systems Engineering approach in order to provide an optimized framework for ensuring the successful implementation of the system design. Previous study and research into this topic has emphasized the importance of situational awareness in determining the human factor performance issues in the nuclear power plant Control Room operations. This paper broadly defined a technique that successfully used the operator’s mental workload (using NASATLX) and Situational Awareness (using SART) as quantifying measures to evaluate the performance of specific ESF-CCS functions based on human factors. These results show that an improvement of the SA/workload could lead to an improvement of the level of certainty that the emergency situation can be brought under control. It is expected that future development work in this area will yield an actualized Augmented Reality system that could incorporate MCR team control and possibly be implemented in the system validation of other I and C systems.

  20. The Augmented REality Sandtable (ARES)

    Science.gov (United States)

    2015-10-01

    Introduction The US Army Research Laboratory (ARL) Human Sciences Campaign calls out the topic of Virtual /Mixed and Augmented Reality as one of the...type of virtual environment. In virtual reality (VR), the totality of the environment is computer generated. In AR, the real world is augmented by...tangible user interfaces; and the effectiveness of virtual sand tables and similar systems. A market survey was also done to discover the state of

  1. Augmented reality for improved safety

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    Sometimes, CERN experts have to operate in low visibility conditions or in the presence of possible hazards. Minimising the duration of the operation and reducing the risk of errors is therefore crucial to ensuring the safety of personnel. The EDUSAFE project integrates different technologies to create a wearable personnel safety system based on augmented reality.    The EDUSAFE integrated safety system uses a camera mounted on the helmet to monitor the working area.  In its everyday operation of machines and facilities, CERN adopts a whole set of measures and safety equipment to ensure the safety of its personnel, including personal wearable safety devices and access control systems. However, sometimes, scheduled and emergency maintenance work needs to be done in zones with potential cryogenic hazards, in the presence of radioactive equipment or simply in demanding conditions where visibility is low and moving around is difficult. The EDUSAFE Marie Curie Innovative&...

  2. Dynamic augmentation restores anterior tibial translation in ACL suture repair: a biomechanical comparison of non-, static and dynamic augmentation techniques.

    Science.gov (United States)

    Hoogeslag, Roy A G; Brouwer, Reinoud W; Huis In 't Veld, Rianne; Stephen, Joanna M; Amis, Andrew A

    2018-02-03

    There is a lack of objective evidence investigating how previous non-augmented ACL suture repair techniques and contemporary augmentation techniques in ACL suture repair restrain anterior tibial translation (ATT) across the arc of flexion, and after cyclic loading of the knee. The purpose of this work was to test the null hypotheses that there would be no statistically significant difference in ATT after non-, static- and dynamic-augmented ACL suture repair, and they will not restore ATT to normal values across the arc of flexion of the knee after cyclic loading. Eleven human cadaveric knees were mounted in a test rig, and knee kinematics from 0° to 90° of flexion were recorded by use of an optical tracking system. Measurements were recorded without load and with 89-N tibial anterior force. The knees were tested in the following states: ACL-intact, ACL-deficient, non-augmented suture repair, static tape augmentation and dynamic augmentation after 10 and 300 loading cycles. Only static tape augmentation and dynamic augmentation restored ATT to values similar to the ACL-intact state directly postoperation, and maintained this after cyclic loading. However, contrary to dynamic augmentation, the ATT after static tape augmentation failed to remain statistically less than for the ACL-deficient state after cyclic loading. Moreover, after cyclic loading, ATT was significantly less with dynamic augmentation when compared to static tape augmentation. In contrast to non-augmented ACL suture repair and static tape augmentation, only dynamic augmentation resulted in restoration of ATT values similar to the ACL-intact knee and decreased ATT values when compared to the ACL-deficient knee immediately post-operation and also after cyclic loading, across the arc of flexion, thus allowing the null hypotheses to be rejected. This may assist healing of the ruptured ACL. Therefore, this study would support further clinical evaluation of dynamic augmentation of ACL repair.

  3. Muzzle shunt augmentation of conventional railguns

    International Nuclear Information System (INIS)

    Parker, J.V.

    1991-01-01

    This paper reports on augmentation which is a technique for reducing the armature current and hence the armature power dissipation in a plasma armature railgun. In spite of the advantages, no large augmented railguns have been built, primarily due to the mechanical and electrical complexity introduced by the extra conductors required. it is possible to achieve some of the benefits of augmentation in a conventional railgun by diverting a fraction φ of the input current through a shunt path at the muzzle of the railgun. In particular, the relation between force and armature current is the same as that obtained in an n-turn, series-connected augmented railgun with n = 1/(1 - φ). The price of this simplification is a reduction in electrical efficiency and some additional complexity in the external electrical system

  4. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study

    Science.gov (United States)

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365

  5. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

    Directory of Open Access Journals (Sweden)

    Liang Li

    Full Text Available To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery.In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems.The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons.The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.

  6. Alternative realities : from augmented reality to mobile mixed reality

    OpenAIRE

    Claydon, Mark

    2015-01-01

    This thesis provides an overview of (mobile) augmented and mixed reality by clarifying the different concepts of reality, briefly covering the technology behind mobile augmented and mixed reality systems, conducting a concise survey of existing and emerging mobile augmented and mixed reality applications and devices. Based on the previous analysis and the survey, this work will next attempt to assess what mobile augmented and mixed reality could make possible, and what related applications an...

  7. Partial sleep in the context of augmentation of brain function.

    Directory of Open Access Journals (Sweden)

    Ivan N. Pigarev

    2014-05-01

    Full Text Available Inability to solve complex problems or errors in decision making is often attributed to poor brain processing, and raises the issue of brain augmentation. Investigation of neuronal activity in the cerebral cortex in the sleep-wake cycle offers insights into the mechanisms underlying the reduction in mental abilities for complex problem solving. Some cortical areas may transit into a sleep state while an organism is still awake. Such local sleep would reduce behavioral ability in the tasks for which the sleeping areas are crucial. The studies of this phenomenon have indicated that local sleep develops in high order cortical areas. This is why complex problem solving is mostly affected by local sleep, and prevention of local sleep might be a potential way of augmentation of brain function. For this approach to brain augmentation not to entail negative consequences for the organism, it is necessary to understand the functional role of sleep. Our studies have given an unexpected answer to this question. It was shown that cortical areas that process signals from extero- and proprioreceptors during wakefulness, switch to the processing of interoceptive information during sleep. It became clear that during sleep all computational power of the brain is directed to the restoration of the vital functions of internal organs. These results explain the logic behind the initiation of total and local sleep. Indeed, a mismatch between the current parameters of any visceral system and the genetically determined normal range would provide the feeling of tiredness, or sleep pressure. If an environmental situation allows falling asleep, the organism would transit to a normal total sleep in all cortical areas. However, if it is impossible to go to sleep immediately, partial sleep may develop in some cortical areas in the still behaviorally awake organism. This local sleep may reduce both the intellectual power and the restorative function of sleep for visceral

  8. Interactive augmented reality system for product design review

    Science.gov (United States)

    Caruso, Giandomenico; Re, Guido Maria

    2010-01-01

    The product development process, of industrial products, includes a phase dedicated to the design review that is a crucial phase where various experts cooperate in selecting the optimal product shape. Although computer graphics allows us to create very realistic virtual representations of the products, it is not uncommon that designers decide to build physical mock-ups of their newly conceived products because they need to physically interact with the prototype and also to evaluate the product within a plurality of real contexts. This paper describes the hardware and software development of our Augmented Reality design review system that allows to overcome some issues related to the 3D visualization and to the interaction with the virtual objects. Our system is composed by a Video See Through Head Mounted Display, which allows to improve the 3D visualization by controlling the convergence of the video cameras automatically, and a wireless control system, which allows us to create some metaphors to interact with the virtual objects. During the development of the system, in order to define and tune the algorithms, we have performed some testing sessions. Then, we have performed further tests in order to verify the effectiveness of the system and to collect additional data and comments about usability and ergonomic aspects.

  9. Augmented Reality, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Augmented Reality systems come with many benefits derived by co-locating information with a user's environment through the use of one or more output modalities such...

  10. System for synthetic vision and augmented reality in future flight decks

    Science.gov (United States)

    Behringer, Reinhold; Tam, Clement K.; McGee, Joshua H.; Sundareswaran, Venkataraman; Vassiliou, Marius S.

    2000-06-01

    Rockwell Science Center is investigating novel human-computer interface techniques for enhancing the situational awareness in future flight decks. One aspect is to provide intuitive displays which provide the vital information and the spatial awareness by augmenting the real world with an overlay of relevant information registered to the real world. Such Augmented Reality (AR) techniques can be employed during bad weather scenarios to permit flying in Visual Flight Rules (VFR) in conditions which would normally require Instrumental Flight Rules (IFR). These systems could easily be implemented on heads-up displays (HUD). The advantage of AR systems vs. purely synthetic vision (SV) systems is that the pilot can relate the information overlay to real objects in the world, whereas SV systems provide a constant virtual view, where inconsistencies can hardly be detected. The development of components for such a system led to a demonstrator implemented on a PC. A camera grabs video images which are overlaid with registered information, Orientation of the camera is obtained from an inclinometer and a magnetometer, position is acquired from GPS. In a possible implementation in an airplane, the on-board attitude information can be used for obtaining correct registration. If visibility is sufficient, computer vision modules can be used to fine-tune the registration by matching visual clues with database features. Such technology would be especially useful for landing approaches. The current demonstrator provides a frame-rate of 15 fps, using a live video feed as background and an overlay of avionics symbology in the foreground. In addition, terrain rendering from a 1 arc sec. digital elevation model database can be overlaid to provide synthetic vision in case of limited visibility. For true outdoor testing (on ground level), the system has been implemented on a wearable computer.

  11. Modeling, performance analysis and economic feasibility of a mirror-augmented photovoltaic system

    International Nuclear Information System (INIS)

    Fortunato, B.; Torresi, M.; Deramo, A.

    2014-01-01

    Highlights: • Mathematical modeling for the energy yield in Mirror Augmented PV systems. • Simplified analytical expression for skyview factor applicable to MAPV. • Economic appraisal of MAPV systems: NPV, DPBP, IRR and LCC. - Abstract: In the last years, solar photovoltaic (PV) systems have had great impetus with research and demonstration projects, both in Italy and other European countries. The main problems with solar PV are the cost of solar electricity, which is still higher compared with other renewables (such as wind or biomass), due to the cost of semi-conductors, and the low conversion efficiency. However, PV panel prices are rapidly decreasing benefiting from favorable economies of scale. For instance, according to the Energy Information Administration (EIA) the US average levelized costs for plants entering service in the 2018 should be 144.3$/MW h for solar PV, whereas 111.0$/MW h for biomass and 86.6$/MW h for wind (Levelized Cost of New Generation Resources in the Annual Energy Outlook, 2013). In order to increase the electric yield of PV modules (which can be even doubled with respect to constant tilt configurations), without significantly increasing the system costs, it was decided to consider the addition of inclined mirrors at both sides of the PV modules, so as to deflect more solar rays towards them, as in Mirror-Augmented Photovoltaic (MAPV) systems. The system preserves its constructive simplicity with commercial flat PV modules even though dual axis tracker must be implemented, since MAPV systems harness mainly the direct radiation. The performance analysis of MAPV systems starts from the calculation of the global irradiation on the surface of the PV module which is a sum of the direct sunlight on it and the irradiation reflected by the mirrors. A mathematical model of a MAPV system is presented, which takes into account not only the increase of direct (or beam) radiation, due to the mirrors, but also the reduction of both the diffuse

  12. A Sun Path Observation System Based on Augment Reality and Mobile Learning

    OpenAIRE

    Tarng, Wernhuar; Ou, Kuo-Liang; Lu, Yun-Chen; Shih, Yi-Syuan; Liou, Hsin-Hun

    2018-01-01

    This study uses the augmented reality technology and sensor functions of GPS, electronic compass, and three-axis accelerometer on mobile devices to develop a Sun path observation system for applications in astronomy education. The orientation and elevation of the Sun can be calculated by the system according to the user’s location and local time to simulate the Sun path. When holding the mobile device toward the sky, the screen will show the virtual Sun at the same position as that of the rea...

  13. Simulation-Augmented Methods for Safe and Efficient Manoeuvres in Harbour Areas

    Directory of Open Access Journals (Sweden)

    Knud Benedict

    2016-07-01

    Full Text Available Safety of navigation is especially challenging and critical when a ship approaches and manoeuvres in harbour areas. Improving the safety especially in the first and last phase of a voyage is crucial and requires measures addressing both the human and technical-technological elements including support systems that shall provide human operators with information relevant for decision making. The present situation is characterized by the introduction of numerous sophisticated technical and support systems often integrated with several components becoming increasingly complex. On the users end, changes are not that obvious and not that rapid as for technology. However, new approaches are under development or already in use. They are characterized by applying and adapting solutions from other transport modes. In this way, tasks and procedures on ships, that are highly safety-relevant and containing high portions of manoeuvring activities have been changed to high back-up procedures as in air planes. For port manoeuvres e.g. the system of pilot/co-pilot was introduced on ferries in a sense that one officer is operating and the other is monitoring and checking the safe performance. In cruise shipping, new structures replacing the traditional rank-based with a flexible system based on job functions. This system creates a kind of a safety net around the person conning the vessel. Each operation is cross checked before execution by one or two other persons. The first obvious consequence is higher costs due to doubling personnel. On the other hand there is also a need for a technology appropriately supporting the checking officer by enabling her or him to monitor what the conning officer is doing. “Fast-Time Manoeuvring Simulation Technology” (FTS developed at the Institute for Innovative Ship Simulation and Maritime Systems (ISSIMS has huge potential to fulfil this task. FTS calculates within one second of computing time up to 1000 seconds of real

  14. Cosmetic tourism for breast augmentation: a systematic review.

    Science.gov (United States)

    Brightman, Louise; Ng, Sze; Ahern, Susannah; Cooter, Rodney; Hopper, Ingrid

    2017-12-03

    The medical tourism industry, and in particular cosmetic tourism for breast augmentation, is becoming an increasingly popular global phenomenon. The objective of this study is to determine the extent of medical literature and the patient risk profiles associated with cosmetic tourism for breast augmentation both locally and abroad. OVID MEDLINE, OVID Embase, Cochrane Central and Proquest electronic databases. The search was conducted through to April 2017. Studies pertaining entirely or partly to cosmetic tourism for breast augmentation were considered for inclusion. Exclusion criteria included non-English articles, studies relating to non-cosmetic or non-implant breast augmentation, and studies that did not separately report on findings associated with breast augmentation abroad. We identified 17 observational studies. Common destinations included Europe, South America and South East Asia. Infectious complications were common. Wound dehiscence and aesthetic dissatisfaction also featured. Catastrophic outcomes such as sepsis, intubation and ventilation, radical bilateral mastectomy, irreversible hypoxic brain injury and death were also reported. There were expectations that home country health systems would treat complications and provide non-medically indicated revision procedures. The burden on home country health systems was evident from a public health perspective. Determining the extent of cosmetic tourism for breast augmentation, including outcomes and complications, will help to inform Australian patients who this seek procedure abroad. Furthermore, it will aid in better understanding the health system implications and may help to guide future research and public health interventions both locally and internationally. © 2017 Royal Australasian College of Surgeons.

  15. Hybrid diffractive-refractive optical system design of head-mounted display for augmented reality

    Science.gov (United States)

    Zhang, Huijuan

    2005-02-01

    An optical see-through head-mounted display for augmented reality is designed in this paper. Considering the factors, such as the optical performance, the utilization ratios of energy of real world and virtual world, the feelings of users when he wears it and etc., a structure of the optical see-through is adopted. With the characteristics of the particular negative dispersive and the power of realizing random-phase modulation, the diffractive surface is helpful for optical system of reducing weight, simplifying structure and etc., and a diffractive surface is introduced in our optical system. The optical system with 25 mm eye relief, 12 mm exit pupil and 20° (H)x15.4° (V) field-of-view is designed. The utilization ratios of energy of real world and virtual world are 1/4 and 1/2, respectively. The angular resolution of display is 0.27 mrad and it less than that of the minimum of human eyes. The diameter of this system is less than 46mm, and it applies the binocular. This diffractive-refractive optical system of see-through head-mounted display not only satisfies the demands of user"s factors in structure, but also with high resolution, very small chromatic aberration and distortion, and satisfies the need of augmented reality. In the end, the parameters of the diffractive surface are discussed.

  16. Preliminary development of augmented reality systems for spinal surgery

    Science.gov (United States)

    Nguyen, Nhu Q.; Ramjist, Joel M.; Jivraj, Jamil; Jakubovic, Raphael; Deorajh, Ryan; Yang, Victor X. D.

    2017-02-01

    Surgical navigation has been more actively deployed in open spinal surgeries due to the need for improved precision during procedures. This is increasingly difficult in minimally invasive surgeries due to the lack of visual cues caused by smaller exposure sites, and increases a surgeon's dependence on their knowledge of anatomical landmarks as well as the CT or MRI images. The use of augmented reality (AR) systems and registration technologies in spinal surgeries could allow for improvements to techniques by overlaying a 3D reconstruction of patient anatomy in the surgeon's field of view, creating a mixed reality visualization. The AR system will be capable of projecting the 3D reconstruction onto a field and preliminary object tracking on a phantom. Dimensional accuracy of the mixed media will also be quantified to account for distortions in tracking.

  17. Augmented Reality Development Environment for Electronic Procedure systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Evolvable Mars Campaign (EMC) has identified technology needs for Autonomous Crew Operations.  Augmented Reality (AR) is part of the solution to enable crew...

  18. Study on a High-frequency Multi-GNSS Real-time Precise Clock Estimation Algorithm and Application in GNSS Augment System

    Directory of Open Access Journals (Sweden)

    CHEN Liang

    2017-05-01

    Full Text Available GNSS satellite-based differential augment system is based on real-time orbit and clock augment message. The multi-GNSS real-time precise clock error estimation model is studied, and then the parameters estimated in traditional un-difference model are optimized and a high-efficient real-time clock simplified model is proposed and realized. The real-time orbit data processing based on PANDA is also analyzed. The results indicate that the real-time orbit radial accuracy of GPS, BeiDou MEO and Galileo is 1~5 cm, and the radial accuracy of the BeiDou GEO/IGSO satellite is about 10 cm. It is found that the optimized real-time clock simplified model is more efficient in one epoch than un-difference model and can be applied to high-frequency (such as 1 Hz updating of real-time clock augment message. The results show that the real-time clock error obtained by this model is absolute value and there is no constant bias. Based on the real-time orbit, the GPS real-time clock precision of the simplified model is about 0.24 ns, BeiDou GEO is about 0.50 ns, IGSO/MEO is about 0.22 ns and Galileo is about 0.32 ns. Using the multi-GNSS real-time data stream in GFZ, a multi-GNSS real-time augment prototype system is built and the real-time augment message is being broadcasted on the Internet. The real-time PPP centimeter-level service and meter-level navigation service based on pseudorange are realized based on this prototype system.

  19. Online evaluation of a commercial video image analysis system (Computer Vision System) to predict beef carcass red meat yield and for augmenting the assignment of USDA yield grades. United States Department of Agriculture.

    Science.gov (United States)

    Cannell, R C; Belk, K E; Tatum, J D; Wise, J W; Chapman, P L; Scanga, J A; Smith, G C

    2002-05-01

    Objective quantification of differences in wholesale cut yields of beef carcasses at plant chain speeds is important for the application of value-based marketing. This study was conducted to evaluate the ability of a commercial video image analysis system, the Computer Vision System (CVS) to 1) predict commercially fabricated beef subprimal yield and 2) augment USDA yield grading, in order to improve accuracy of grade assessment. The CVS was evaluated as a fully installed production system, operating on a full-time basis at chain speeds. Steer and heifer carcasses (n = 296) were evaluated using CVS, as well as by USDA expert and online graders, before the fabrication of carcasses into industry-standard subprimal cuts. Expert yield grade (YG), online YG, CVS estimated carcass yield, and CVS measured ribeye area in conjunction with expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, hot carcass weight) accounted for 67, 39, 64, and 65% of the observed variation in fabricated yields of closely trimmed subprimals. The dual component CVS predicted wholesale cut yields more accurately than current online yield grading, and, in an augmentation system, CVS ribeye measurement replaced estimated ribeye area in determination of USDA yield grade, and the accuracy of cutability prediction was improved, under packing plant conditions and speeds, to a level close to that of expert graders applying grades at a comfortable rate of speed offline.

  20. Impact of Virtual and Augmented Reality Based on Intraoperative Magnetic Resonance Imaging and Functional Neuronavigation in Glioma Surgery Involving Eloquent Areas.

    Science.gov (United States)

    Sun, Guo-Chen; Wang, Fei; Chen, Xiao-Lei; Yu, Xin-Guang; Ma, Xiao-Dong; Zhou, Ding-Biao; Zhu, Ru-Yuan; Xu, Bai-Nan

    2016-12-01

    The utility of virtual and augmented reality based on functional neuronavigation and intraoperative magnetic resonance imaging (MRI) for glioma surgery has not been previously investigated. The study population consisted of 79 glioma patients and 55 control subjects. Preoperatively, the lesion and related eloquent structures were visualized by diffusion tensor tractography and blood oxygen level-dependent functional MRI. Intraoperatively, microscope-based functional neuronavigation was used to integrate the reconstructed eloquent structure and the real head and brain, which enabled safe resection of the lesion. Intraoperative MRI was used to verify brain shift during the surgical process and provided quality control during surgery. The control group underwent surgery guided by anatomic neuronavigation. Virtual and augmented reality protocols based on functional neuronavigation and intraoperative MRI provided useful information for performing tailored and optimized surgery. Complete resection was achieved in 55 of 79 (69.6%) glioma patients and 20 of 55 (36.4%) control subjects, with average resection rates of 95.2% ± 8.5% and 84.9% ± 15.7%, respectively. Both the complete resection rate and average extent of resection differed significantly between the 2 groups (P virtual and augmented reality based on functional neuronavigation and intraoperative MRI can facilitate resection of gliomas involving eloquent areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Superconducting augmented rail gun (SARG)

    International Nuclear Information System (INIS)

    Homan, C.G.; Cummings, C.E.; Fowler, C.M.

    1986-01-01

    Superconducting augmentation consists of a superconducting coil operating in the persistent mode closely coupled magnetically with a normally conducting rail gun. A theoretical investigation of the effect of this system on a rail gun has shown that two benefits occur. Projectile velocities and launch efficiencies increase significantly depending on the magnetic coupling between the rail and augmentation circuits. Previous work evaluated an idealized system by neglecting energy dissipation effects. In this paper, the authors extend the analysis to include the neglected terms and show improved actual launch efficiencies for the SARG configuration. In this paper, the authors discuss details of projectile design in depth and present preliminary results of rail gun performance

  2. Human-Assisted AI: an Intelligence Augmentation Approach

    OpenAIRE

    Alicea, Bradly

    2018-01-01

    As a flavor of Human-Computer Interaction (HCI), Human-Assisted AI can serve to both augment both human performance and artificial systems. This talk will feature a discussion of Human-assisted AI as an instance of Intelligence Augmentation (IA). We will discuss instances of weak and strong IA, in addition to contemporary examples of and paths forward for such systems. In the variety of models presented, data plays a critical role in the structure of interactions between human and artificial ...

  3. Secondary Breast Augmentation.

    Science.gov (United States)

    Brown, Mitchell H; Somogyi, Ron B; Aggarwal, Shagun

    2016-07-01

    After studying this article, the participant should be able to: 1. Assess common clinical problems in the secondary breast augmentation patient. 2. Describe a treatment plan to correct the most common complications of breast augmentation. 3. Provide surgical and nonsurgical options for managing complications of breast augmentation. 4. Decrease the incidence of future complications through accurate assessment, preoperative planning, and precise surgical technique. Breast augmentation has been increasing steadily in popularity over the past three decades. Many of these patients present with secondary problems or complications following their primary breast augmentation. Two of the most common complications are capsular contracture and implant malposition. Familiarity and comfort with the assessment and management of these complications is necessary for all plastic surgeons. An up-to-date understanding of current devices and techniques may decrease the need to manage future complications from the current cohort of breast augmentation patients.

  4. Augmented reality-assisted skull base surgery.

    Science.gov (United States)

    Cabrilo, I; Sarrafzadeh, A; Bijlenga, P; Landis, B N; Schaller, K

    2014-12-01

    Neuronavigation is widely considered as a valuable tool during skull base surgery. Advances in neuronavigation technology, with the integration of augmented reality, present advantages over traditional point-based neuronavigation. However, this development has not yet made its way into routine surgical practice, possibly due to a lack of acquaintance with these systems. In this report, we illustrate the usefulness and easy application of augmented reality-based neuronavigation through a case example of a patient with a clivus chordoma. We also demonstrate how augmented reality can help throughout all phases of a skull base procedure, from the verification of neuronavigation accuracy to intraoperative image-guidance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning.

    Science.gov (United States)

    Badiali, Giovanni; Ferrari, Vincenzo; Cutolo, Fabrizio; Freschi, Cinzia; Caramella, Davide; Bianchi, Alberto; Marchetti, Claudio

    2014-12-01

    We present a newly designed, localiser-free, head-mounted system featuring augmented reality as an aid to maxillofacial bone surgery, and assess the potential utility of the device by conducting a feasibility study and validation. Our head-mounted wearable system facilitating augmented surgery was developed as a stand-alone, video-based, see-through device in which the visual features were adapted to facilitate maxillofacial bone surgery. We implement a strategy designed to present augmented reality information to the operating surgeon. LeFort1 osteotomy was chosen as the test procedure. The system is designed to exhibit virtual planning overlaying the details of a real patient. We implemented a method allowing performance of waferless, augmented-reality assisted bone repositioning. In vitro testing was conducted on a physical replica of a human skull, and the augmented reality system was used to perform LeFort1 maxillary repositioning. Surgical accuracy was measured with the aid of an optical navigation system that recorded the coordinates of three reference points (located in anterior, posterior right, and posterior left positions) on the repositioned maxilla. The outcomes were compared with those expected to be achievable in a three-dimensional environment. Data were derived using three levels of surgical planning, of increasing complexity, and for nine different operators with varying levels of surgical skill. The mean error was 1.70 ± 0.51 mm. The axial errors were 0.89 ± 0.54 mm on the sagittal axis, 0.60 ± 0.20 mm on the frontal axis, and 1.06 ± 0.40 mm on the craniocaudal axis. The simplest plan was associated with a slightly lower mean error (1.58 ± 0.37 mm) compared with the more complex plans (medium: 1.82 ± 0.71 mm; difficult: 1.70 ± 0.45 mm). The mean error for the anterior reference point was lower (1.33 ± 0.58 mm) than those for both the posterior right (1.72 ± 0.24 mm) and posterior left points (2.05 ± 0.47 mm). No significant difference

  6. Altitude Performance Characteristics of Turbojet-engine Tail-pipe Burner with Variable-area Exhaust Nozzle Using Several Fuel Systems and Flame Holders

    Science.gov (United States)

    Johnson, Lavern A; Meyer, Carl L

    1950-01-01

    A tail-pipe burner with a variable-area exhaust nozzle was investigated. From five configurations a fuel-distribution system and a flame holder were selected. The best configuration was investigated over a range of altitudes and flight Mach numbers. For the best configuration, an increase in altitude lowered the augmented thrust ratio, exhaust-gas total temperature, and tail-pipe combustion efficiency, and raised the specific fuel consumption. An increase in flight Mach number raised the augmented thrust ratio but had no apparent effect on exhaust-gas total temperature, tail-pipe combustion efficiency, or specific fuel consumption.

  7. Augmented reality for breast imaging.

    Science.gov (United States)

    Rancati, Alberto; Angrigiani, Claudio; Nava, Maurizio B; Catanuto, Giuseppe; Rocco, Nicola; Ventrice, Fernando; Dorr, Julio

    2018-02-21

    Augmented reality (AR) enables the superimposition of virtual reality reconstructions onto clinical images of a real patient, in real time. This allows visualization of internal structures through overlying tissues, thereby providing a virtual transparency vision of surgical anatomy. AR has been applied to neurosurgery, which utilizes a relatively fixed space, frames, and bony references; the application of AR facilitates the relationship between virtual and real data. Augmented Breast imaging (ABI) is described. Breast MRI studies for breast implant patients with seroma were performed using a Siemens 3T system with a body coil and a four-channel bilateral phased-array breast coil as the transmitter and receiver, respectively. The contrast agent used was (CA) gadolinium (Gd) injection (0.1 mmol/kg at 2 ml/s) by a programmable power injector. Dicom formated images data from 10 MRI cases of breast implant seroma and 10 MRI cases with T1-2 N0 M0 breast cancer, were imported and transformed into Augmented reality images. Augmented breast imaging (ABI) demonstrated stereoscopic depth perception, focal point convergence, 3D cursor use, and joystick fly-through. Augmented breast imaging (ABI) to the breast can improve clinical outcomes, giving an enhanced view of the structures to work on. It should be further studied to determine its utility in clinical practice.

  8. Applied Augmented Reality for High Precision Maintenance

    Science.gov (United States)

    Dever, Clark

    Augmented Reality had a major consumer breakthrough this year with Pokemon Go. The underlying technologies that made that app a success with gamers can be applied to improve the efficiency and efficacy of workers. This session will explore some of the use cases for augmented reality in an industrial environment. In doing so, the environmental impacts and human factors that must be considered will be explored. Additionally, the sensors, algorithms, and visualization techniques used to realize augmented reality will be discussed. The benefits of augmented reality solutions in industrial environments include automated data recording, improved quality assurance, reduction in training costs and improved mean-time-to-resolution. As technology continues to follow Moore's law, more applications will become feasible as performance-per-dollar increases across all system components.

  9. Computer Augmented Learning; A Survey.

    Science.gov (United States)

    Kindred, J.

    The report contains a description and summary of computer augmented learning devices and systems. The devices are of two general types programed instruction systems based on the teaching machines pioneered by Pressey and developed by Skinner, and the so-called "docile" systems that permit greater user-direction with the computer under student…

  10. A novel rotational matrix and translation vector algorithm: geometric accuracy for augmented reality in oral and maxillofacial surgeries.

    Science.gov (United States)

    Murugesan, Yahini Prabha; Alsadoon, Abeer; Manoranjan, Paul; Prasad, P W C

    2018-06-01

    Augmented reality-based surgeries have not been successfully implemented in oral and maxillofacial areas due to limitations in geometric accuracy and image registration. This paper aims to improve the accuracy and depth perception of the augmented video. The proposed system consists of a rotational matrix and translation vector algorithm to reduce the geometric error and improve the depth perception by including 2 stereo cameras and a translucent mirror in the operating room. The results on the mandible/maxilla area show that the new algorithm improves the video accuracy by 0.30-0.40 mm (in terms of overlay error) and the processing rate to 10-13 frames/s compared to 7-10 frames/s in existing systems. The depth perception increased by 90-100 mm. The proposed system concentrates on reducing the geometric error. Thus, this study provides an acceptable range of accuracy with a shorter operating time, which provides surgeons with a smooth surgical flow. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Utilizing image guided surgery for user interaction in medical augmented reality

    OpenAIRE

    Fischer, Jan; Bartz, Dirk

    2005-01-01

    The graphical overlay of additional medical information over the patient during a surgical procedure has long been considered one of the most promising applications of augmented reality. While many experimental systems for augmented reality in medicine have reached an advanced state and can deliver high-quality augmented video streams, they usually depend heavily on specialized dedicated hardware. Such dedicated system components, which originally have been designed for engineering applicatio...

  12. The Trans-Visible Navigator: A See-Through Neuronavigation System Using Augmented Reality.

    Science.gov (United States)

    Watanabe, Eiju; Satoh, Makoto; Konno, Takehiko; Hirai, Masahiro; Yamaguchi, Takashi

    2016-03-01

    The neuronavigator has become indispensable for brain surgery and works in the manner of point-to-point navigation. Because the positional information is indicated on a personal computer (PC) monitor, surgeons are required to rotate the dimension of the magnetic resonance imaging/computed tomography scans to match the surgical field. In addition, they must frequently alternate their gaze between the surgical field and the PC monitor. To overcome these difficulties, we developed an augmented reality-based navigation system with whole-operation-room tracking. A tablet PC is used for visualization. The patient's head is captured by the back-face camera of the tablet. Three-dimensional images of intracranial structures are extracted from magnetic resonance imaging/computed tomography and are superimposed on the video image of the head. When viewed from various directions around the head, intracranial structures are displayed with corresponding angles as viewed from the camera direction, thus giving the surgeon the sensation of seeing through the head. Whole-operation-room tracking is realized using a VICON tracking system with 6 cameras. A phantom study showed a spatial resolution of about 1 mm. The present system was evaluated in 6 patients who underwent tumor resection surgery, and we showed that the system is useful for planning skin incisions as well as craniotomy and the localization of superficial tumors. The main advantage of the present system is that it achieves volumetric navigation in contrast to conventional point-to-point navigation. It extends augmented reality images directly onto real surgical images, thus helping the surgeon to integrate these 2 dimensions intuitively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Measuring the Usability of Augmented Reality e-Learning Systems: A User-Centered Evaluation Approach

    Science.gov (United States)

    Pribeanu, Costin; Balog, Alexandru; Iordache, Dragoş Daniel

    The development of Augmented Reality (AR) systems is creating new challenges and opportunities for the designers of e-learning systems. The mix of real and virtual requires appropriate interaction techniques that have to be evaluated with users in order to avoid usability problems. Formative usability aims at finding usability problems as early as possible in the development life cycle and is suitable to support the development of such novel interactive systems. This work presents an approach to the user-centered usability evaluation of an e-learning scenario for Biology developed on an Augmented Reality educational platform. The evaluation has been carried on during and after a summer school held within the ARiSE research project. The basic idea was to perform usability evaluation twice. In this respect, we conducted user testing with a small number of students during the summer school in order to get a fast feedback from users having good knowledge in Biology. Then, we repeated the user testing in different conditions and with a relatively larger number of representative users. In this paper we describe both experiments and compare the usability evaluation results.

  14. Soldier-worn augmented reality system for tactical icon visualization

    Science.gov (United States)

    Roberts, David; Menozzi, Alberico; Clipp, Brian; Russler, Patrick; Cook, James; Karl, Robert; Wenger, Eric; Church, William; Mauger, Jennifer; Volpe, Chris; Argenta, Chris; Wille, Mark; Snarski, Stephen; Sherrill, Todd; Lupo, Jasper; Hobson, Ross; Frahm, Jan-Michael; Heinly, Jared

    2012-06-01

    This paper describes the development and demonstration of a soldier-worn augmented reality system testbed that provides intuitive 'heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a robust soldier pose estimation capability with a helmet mounted see-through display to accurately overlay geo-registered iconography (i.e., navigation waypoints, blue forces, aircraft) on the soldier's view of reality. Applied Research Associates (ARA), in partnership with BAE Systems and the University of North Carolina - Chapel Hill (UNC-CH), has developed this testbed system in Phase 2 of the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program. The ULTRA-Vis testbed system functions in unprepared outdoor environments and is robust to numerous magnetic disturbances. We achieve accurate and robust pose estimation through fusion of inertial, magnetic, GPS, and computer vision data acquired from helmet kit sensors. Icons are rendered on a high-brightness, 40°×30° field of view see-through display. The system incorporates an information management engine to convert CoT (Cursor-on-Target) external data feeds into mil-standard icons for visualization. The user interface provides intuitive information display to support soldier navigation and situational awareness of mission-critical tactical information.

  15. Measuring the Latency of an Augmented Reality System for Robot-Assisted Minimally Invasive Surgery

    DEFF Research Database (Denmark)

    Jørgensen, Martin Kibsgaard; Kraus, Martin

    2017-01-01

    visual communication in training for robot-assisted minimally invasive surgery with da Vinci surgical systems. To make sure that our augmented reality system provides the best possible user experience, we investigated the video latency of the da Vinci surgical system and how the components of our system...... affect the overall latency. To measure the photon-to-photon latency, we used a microcontroller to determine the time between the activation of a lightemitting diode in front of the endoscopic camera and the corresponding increase in intensity of the surgeon's display as measured by a phototransistor...

  16. An Integrative Introduction to Human Augmentation Science

    OpenAIRE

    Alicea, Bradly

    2018-01-01

    Human Augmentation (HA) spans several technical fields and methodological approaches, including Experimental Psychology, Human-Computer Interaction, Psychophysiology, and Artificial Intelligence. Augmentation involves various strategies for optimizing and controlling cognitive states, which requires an understanding of biological plasticity, dynamic cognitive processes, and models of adaptive systems. As an instructive lesson, we will explore a few HA-related concepts and outstanding issues. ...

  17. Augmented reality

    Directory of Open Access Journals (Sweden)

    Patrik Pucer

    2011-08-01

    Full Text Available Today we can obtain in a simple and rapid way most of the information that we need. Devices, such as personal computers and mobile phones, enable access to information in different formats (written, pictorial, audio or video whenever and wherever. Daily we use and encounter information that can be seen as virtual objects or objects that are part of the virtual world of computers. Everyone, at least once, wanted to bring these virtual objects from the virtual world of computers into real environments and thus mix virtual and real worlds. In such a mixed reality, real and virtual objects coexist in the same environment. The reality, where users watch and use the real environment upgraded with virtual objects is called augmented reality. In this article we describe the main properties of augmented reality. In addition to the basic properties that define a reality as augmented reality, we present the various building elements (possible hardware and software that provide an insight into such a reality and practical applications of augmented reality. The applications are divided into three groups depending on the information and functions that augmented reality offers, such as help, guide and simulator.

  18. Bibliography on augmentation of convective heat and mass transfer

    International Nuclear Information System (INIS)

    Bergles, A.E.; Webb, R.L.; Junkhan, G.H.; Jensen, M.K.

    1979-05-01

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report

  19. Pose estimation for mobile devices and augmented reality

    NARCIS (Netherlands)

    Caarls, J.

    2009-01-01

    In this thesis we introduce the reader to the field of Augmented Reality (AR) and describe aspects of an AR system. We show the current uses in treatment of phobias, games, sports and industry. We present the challenges for Optical See-Through Augmented Reality in which the real world is perceived

  20. Augmentation of Cognition and Perception Through Advanced Synthetic Vision Technology

    Science.gov (United States)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Arthur, Jarvis J.; Williams, Steve P.; McNabb, Jennifer

    2005-01-01

    Synthetic Vision System technology augments reality and creates a virtual visual meteorological condition that extends a pilot's cognitive and perceptual capabilities during flight operations when outside visibility is restricted. The paper describes the NASA Synthetic Vision System for commercial aviation with an emphasis on how the technology achieves Augmented Cognition objectives.

  1. Augmented halal food traceability system: analysis and design using UML

    Science.gov (United States)

    Usman, Y. V.; Fauzi, A. M.; Irawadi, T. T.; Djatna, T.

    2018-04-01

    Augmented halal food traceability is expanding the range of halal traceability in food supply chain where currently only available for tracing from the source of raw material to the industrial warehouse or inbound logistic. The halal traceability system must be developed in the integrated form that includes inbound and outbound logistics. The objective of this study was to develop a reliable initial model of integrated traceability system of halal food supply chain. The method was based on unified modeling language (UML) such as use case, sequence, and business process diagram. A goal programming model was formulated considering two objective functions which include (1) minimization of risk of halal traceability failures happened potentially during outbound logistics activities and (2) maximization of quality of halal product information. The result indicates the supply of material is the most important point to be considered in minimizing the risk of failure of halal food traceability system whereas no risk observed in manufacturing and distribution.

  2. Human-in-the-loop evaluation of RMS Active Damping Augmentation

    Science.gov (United States)

    Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.

    1993-01-01

    Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).

  3. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    Science.gov (United States)

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study

  4. Augmented Virtual Reality: How to Improve Education Systems

    Science.gov (United States)

    Fernandez, Manuel

    2017-01-01

    This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students' learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students' knowledge acquisition.…

  5. Augmented reality aided operation and maintenance system for indoor environments

    International Nuclear Information System (INIS)

    Tamura, Yuichi; Umetani, Tomohiro; Kubo, Shin

    2013-01-01

    This paper proposes an Augmented Reality (AR) system to assist operation and maintenance tasks in an indoor environment, such as a nuclear fusion reactor and its building. AR is a technology that enhances real information by adding 3D virtual objects, images, sounds, or movies via a web camera. The AR system often uses “markers” such as QR code to detect the place where the virtual content should appear. However, these markers are unnatural and they can disturb the scenery. We propose an AR system that can detect natural markers, which provides AR content via a network. This system stores the information related to markers and virtual objects on a server. A device connected to this system automatically downloads this content so that the user can watch the AR content via a web camera. We add a real-time numerical simulation function that allows us to simulate physical phenomena by touching AR contents. It also enables us to observe simulation results by downloading a movie of numerical simulation results from the simulation server. Overall, this system allows us to watch the same content with multiple devices and to simulate physical phenomena using various parameters. (author)

  6. Calcium phosphate barrier for augmentation of bone in noncontained periodontal osseous defects: a novel approach.

    Science.gov (United States)

    Chopra, Aditi; Sivaraman, Karthik; Awataramaney, Tarun K

    2014-11-01

    The aim of this technique is to augment bone in non-contained osseous deformities using a unique self-sustaining calcium phosphate barrier. Bone has the inherent ability to regenerate completely if it is provided with a fracture space or an undisturbed enclosed scaffold. A secluded environment is essential as it provides a secured, sterile and stable wound system that regenerates lost bone by a process of osteopromotion. Reconstructive techniques using bone grafts and barrier membranes utilize this principle for augmentation of deficient bony sites by providing a closed environment that promotes clot stability, graft retention, and facilitates correct cell repopulation. However, in noncontained bone defects like one walled infrabony periodontal defect or sites with horizontal bone loss, regeneration of bone still remains an unrealistic situation since osseous topography at such sites does not favor membrane stability or bone grafts retention. This case report presents a promising technique to augment bone in areas with horizontal loss. Augmentation of bone in the interdental area with horizontal bone loss was accomplished by building a contained defect using a unique self sustaining calcium phosphate cement formulation. The calcium phosphate barrier stimulates the lost cortical plates and promotes graft retention and clot stability. At 6 months, there was a significant bone fill and trabecular formation in the interdental area and reduction in tooth mobility. This promising technique could prove to be a good alternative to the conventional approaches for treating osseous deformities. Calcium phosphate is a promising barrier graft for repair of noncontained periodontal osseous defect. This technique cues both the clinicians and manufacturers to develop moldable tissue engineered constructs for osseous repair.

  7. Lbs Augmented Reality Assistive System for Utilities Infrastructure Management Through Galileo and Egnos

    Science.gov (United States)

    Stylianidis, E.; Valaria, E.; Smagas, K.; Pagani, A.; Henriques, J.; Garca, A.; Jimeno, E.; Carrillo, I.; Patias, P.; Georgiadis, C.; Kounoudes, A.; Michail, K.

    2016-06-01

    There is a continuous and increasing demand for solutions, both software and hardware-based, that are able to productively handle underground utilities geospatial data. Innovative approaches that are based on the use of the European GNSS, Galileo and EGNOS, sensor technologies and LBS, are able to monitor, document and manage utility infrastructures' data with an intuitive 3D augmented visualisation and navigation/positioning technology. A software and hardware-based system called LARA, currently under develop- ment through a H2020 co-funded project, aims at meeting that demand. The concept of LARA is to integrate the different innovative components of existing technologies in order to design and develop an integrated navigation/positioning and information system which coordinates GNSS, AR, 3D GIS and geodatabases on a mobile platform for monitoring, documenting and managing utility infrastruc- tures on-site. The LARA system will guide utility field workers to locate the working area by helping them see beneath the ground, rendering the complexity of the 3D models of the underground grid such as water, gas and electricity. The capacity and benefits of LARA are scheduled to be tested in two case studies located in Greece and the United Kingdom with various underground utilities. The paper aspires to present the first results from this initiative. The project leading to this application has received funding from the European GNSS Agency under the European Union's Horizon 2020 research and innovation programme under grant agreement No 641460.

  8. LBS AUGMENTED REALITY ASSISTIVE SYSTEM FOR UTILITIES INFRASTRUCTURE MANAGEMENT THROUGH GALILEO AND EGNOS

    Directory of Open Access Journals (Sweden)

    E. Stylianidis

    2016-06-01

    Full Text Available There is a continuous and increasing demand for solutions, both software and hardware-based, that are able to productively handle underground utilities geospatial data. Innovative approaches that are based on the use of the European GNSS, Galileo and EGNOS, sensor technologies and LBS, are able to monitor, document and manage utility infrastructures’ data with an intuitive 3D augmented visualisation and navigation/positioning technology. A software and hardware-based system called LARA, currently under develop- ment through a H2020 co-funded project, aims at meeting that demand. The concept of LARA is to integrate the different innovative components of existing technologies in order to design and develop an integrated navigation/positioning and information system which coordinates GNSS, AR, 3D GIS and geodatabases on a mobile platform for monitoring, documenting and managing utility infrastruc- tures on-site. The LARA system will guide utility field workers to locate the working area by helping them see beneath the ground, rendering the complexity of the 3D models of the underground grid such as water, gas and electricity. The capacity and benefits of LARA are scheduled to be tested in two case studies located in Greece and the United Kingdom with various underground utilities. The paper aspires to present the first results from this initiative. The project leading to this application has received funding from the European GNSS Agency under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641460.

  9. Augmented reality tools and learning practice in mobile-learning

    OpenAIRE

    Figueiredo, Mauro; Gomes, José; Gomes, Cristina; Lopes, João

    2014-01-01

    There are many augmented reality (AR) applications available that can be used to create educational contents for these mobile devices. This paper surveys the most popular augmented reality applications and we select AR eco-systems to be used in daily teaching activities which are user friendly, do not require programming skills and are free. Different augmented reality technologies are explored in this paper to create teaching activities with animations, videos and other information to be sho...

  10. Development of a Real-Time Detection System for Augmented Reality Driving

    OpenAIRE

    Hsu, Kuei-Shu; Wang, Chia-Sui; Jiang, Jinn-Feng; Wei, Hung-Yuan

    2015-01-01

    Augmented reality technology is applied so that driving tests may be performed in various environments using a virtual reality scenario with the ultimate goal of improving visual and interactive effects of simulated drivers. Environmental conditions simulating a real scenario are created using an augmented reality structure, which guarantees the test taker’s security since they are not subject to real-life elements and dangers. Furthermore, the accuracy of tests conducted through virtual real...

  11. A Novel Augmented Reality-Based Navigation System in Perforator Flap Transplantation - A Feasibility Study.

    Science.gov (United States)

    Jiang, Taoran; Zhu, Ming; Zan, Tao; Gu, Bin; Li, Qingfeng

    2017-08-01

    In perforator flap transplantation, dissection of the perforator is an important but difficult procedure because of the high variability in vascular anatomy. Preoperative imaging techniques could provide substantial information about vascular anatomy; however, it cannot provide direct guidance for surgeons during the operation. In this study, a navigation system (NS) was established to overlie a vascular map on surgical sites to further provide a direct guide for perforator flap transplantation. The NS was established based on computed tomographic angiography and augmented reality techniques. A virtual vascular map was reconstructed according to computed tomographic angiography data and projected onto real patient images using ARToolKit software. Additionally, a screw-fixation marker holder was created to facilitate registration. With the use of a tracking and display system, we conducted the NS on an animal model and measured the system error on a rapid prototyping model. The NS assistance allowed for correct identification, as well as a safe and precise dissection of the perforator. The mean value of the system error was determined to be 3.474 ± 1.546 mm. Augmented reality-based NS can provide precise navigation information by directly displaying a 3-dimensional individual anatomical virtual model onto the operative field in real time. It will allow rapid identification and safe dissection of a perforator in free flap transplantation surgery.

  12. Collaboration in Augmented Reality

    NARCIS (Netherlands)

    Lukosch, S.; Billinghurst, M.; Alem, L.; Kiyokawa, K.

    2015-01-01

    Augmented Reality (AR) is a technology that allows users to view and interact in real time with virtual images seamlessly superimposed over the real world. AR systems can be used to create unique collaborative experiences. For example, co-located users can see shared 3D virtual objects that they

  13. Real-time markerless Augmented Reality for Remote Handling system in bad viewing conditions

    International Nuclear Information System (INIS)

    Ziaei, Z.; Hahto, A.; Mattila, J.; Siuko, M.; Semeraro, L.

    2011-01-01

    Remote Handling (RH) in harsh environments usually has to tackle the lack of sufficient visual feedback for the human operator due to the limited number of on-site cameras, the not optimized position of the cameras, the poor viewing angles, occlusion, failure, etc. Augmented Reality (AR) enables the user to perceive virtual computer-generated objects in a real scene. The most common goals usually include visibility enhancement and provision of extra information, such as positional data of various objects. The proposed AR system first recognizes and locates the markerless object by using a template based matching algorithm, and then augments the virtual model on top of the recognized item. The tracking algorithm is exploited for locating the object in a continuous sequence of frames. Conceptually, the template is found by computing the similarity between the template and the image frame, for all the relevant template poses (rotation and translation). As a case study, AR interface was displaying measured orientation and transformation of the Water Hydraulic Manipulator (WHMAN) Divertor preloading tool, in near real-time tracking. The bad viewing condition implies on the case when the view angle is such that the interesting features of the object are not in the field of view. The method in this paper was validated in concrete operational context at DTP2. The developed method proved to deliver robust positional and orientation information while augmenting and tracking the moving tool object.

  14. Comparing two types of augmentative and alternative communication systems for children with autism.

    Science.gov (United States)

    Son, Seung-Hyun; Sigafoos, Jeff; O'Reilly, Mark; Lancioni, Giulio E

    2006-01-01

    This study compared acquisition and preference for two types of augmentative and alternative communication (AAC) systems in three pre-schoolers with autism. Acquisition of requesting behaviour using a picture-exchange system vs a voice-output communication aide (VOCA) was compared in an alternating treatments design. Following acquisition, both ACC systems were simultaneously available and the child could select which one of the two systems to use. There was little difference between picture-exchange and VOCA in terms of acquisition rates. Two children demonstrated a consistent preference for picture-exchange and the third showed a preference for the VOCA. Both speed of acquisition and system preference should be considered when designing AAC interventions for children with autism and related developmental disabilities.

  15. Applying Augmented Reality to a Mobile-Assisted Learning System for Martial Arts Using Kinect Motion Capture

    Science.gov (United States)

    Hsu, Wen-Chun; Shih, Ju-Ling

    2016-01-01

    In this study, to learn the routine of Tantui, a branch of martial arts was taken as an object of research. Fitts' stages of motor learning and augmented reality (AR) were applied to a 3D mobile-assisted learning system for martial arts, which was characterized by free viewing angles. With the new system, learners could rotate the viewing angle of…

  16. AUGMENTED REALITY

    DEFF Research Database (Denmark)

    Skov, Kirsten; Bahn, Anne Louise

    2017-01-01

    Projektets grundlæggende idé er udvikling af visuel, æstetisk læring med Augmented Reality, hvor intentionen er at bidrage med konkrete undersøgelser og udforskning af begrebet Augmented Reality – herunder koblingen mellem det analoge og digitale i forhold til læring, multimodalitet og it...

  17. Human Performance Assessments when Using Augmented Reality for Navigation

    National Research Council Canada - National Science Library

    Goldiez, Brian F; Saptoka, Nabin; Aedunuthula, Prashanth

    2006-01-01

    Human performance executing search and rescue type of navigation is one area that can benefit from augmented reality technology when the proper computer generated information is added to a real scene...

  18. Augmented Reality og kulturarv

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Kirkedahl Lysholm

    2013-01-01

    Museerne står overfor at skulle omfavne den digitale kultur i håndteringen af den store mængde viden, institutionerne repræsenterer. Augmented Reality-systemer forbinder ved hjælp af moderne teknologi det virtuelle med det virkelige, og kan derfor synes som en oplagt anvendelsesmulighed i...

  19. Bibliography on augmentation of convective heat and mass transfer-II

    Energy Technology Data Exchange (ETDEWEB)

    Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.; Webb, R.L.

    1983-12-01

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performance evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.

  20. Recent Development of Augmented Reality in Surgery: A Review

    Science.gov (United States)

    Vávra, P.; Zonča, P.; Ihnát, P.; El-Gendi, A.

    2017-01-01

    Introduction The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures. Methods We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms “augmented reality” and “surgery.” Results. The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review. Conclusions The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice. PMID:29065604

  1. Recent Development of Augmented Reality in Surgery: A Review

    Directory of Open Access Journals (Sweden)

    P. Vávra

    2017-01-01

    Full Text Available Introduction. The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures. Methods. We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms “augmented reality” and “surgery.” Results. The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review. Conclusions. The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice.

  2. Fiia: A Model-Based Approach to Engineering Collaborative Augmented Reality

    Science.gov (United States)

    Wolfe, Christopher; Smith, J. David; Phillips, W. Greg; Graham, T. C. Nicholas

    Augmented reality systems often involve collaboration among groups of people. While there are numerous toolkits that aid the development of such augmented reality groupware systems (e.g., ARToolkit and Groupkit), there remains an enormous gap between the specification of an AR groupware application and its implementation. In this chapter, we present Fiia, a toolkit which simplifies the development of collaborative AR applications. Developers specify the structure of their applications using the Fiia modeling language, which abstracts details of networking and provides high-level support for specifying adapters between the physical and virtual world. The Fiia.Net runtime system then maps this conceptual model to a runtime implementation. We illustrate Fiia via Raptor, an augmented reality application used to help small groups collaboratively prototype video games.

  3. Improvement of registration accuracy of a handheld augmented reality system for urban landscape simulation

    Directory of Open Access Journals (Sweden)

    Tomohiro Fukuda

    2014-12-01

    Full Text Available The need for visual landscape assessment in large-scale projects for the evaluation of the effects of a particular project on the surrounding landscape has grown in recent years. Augmented reality (AR has been considered for use as a landscape simulation system in which a landscape assessment object created by 3D models is included in the present surroundings. With the use of this system, the time and the cost needed to perform a 3DCG modeling of present surroundings, which is a major issue in virtual reality, are drastically reduced. This research presents the development of a 3D map-oriented handheld AR system that achieves geometric consistency using a 3D map to obtain position data instead of GPS, which has low position information accuracy, particularly in urban areas. The new system also features a gyroscope sensor to obtain posture data and a video camera to capture live video of the present surroundings. All these components are mounted in a smartphone and can be used for urban landscape assessment. Registration accuracy is evaluated to simulate an urban landscape from a short- to a long-range scale. The latter involves a distance of approximately 2000 m. The developed AR system enables users to simulate a landscape from multiple and long-distance viewpoints simultaneously and to walk around the viewpoint fields using only a smartphone. This result is the tolerance level of landscape assessment. In conclusion, the proposed method is evaluated as feasible and effective.

  4. Understanding augmented reality concepts and applications

    CERN Document Server

    Craig, Alan B

    2013-01-01

    Augmented reality is not a technology. Augmented reality is a medium. Likewise, a book on augmented reality that only addresses the technology that is required to support the medium of augmented reality falls far short of providing the background that is needed to produce, or critically consume augmented reality applications. One reads a book. One watches a movie. One experiences augmented reality. Understanding Augmented Reality addresses the elements that are required to create compelling augmented reality experiences. The technology that supports

  5. Midfacial analysis and planning for midface augmentation with injectable filling materials: an anatomical approach.

    Science.gov (United States)

    Taheri, A; Mansoori, P

    2012-06-01

      Midfacial augmentation improves the appearance of patients with flat or ptotic cheek.   To develop a simple method of preoperative delineating the location of the ideal malar prominence and determining the best area to augment with injectable filling materials.   We used detailed analysis of the facial features of some Caucasian men and women as the basis for this study.   We described a technique to locate the ideal malar prominence and proposed a classification of midfacial contour defects.   This method greatly simplifies the surgeon's task of determining the area to be augmented. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  6. Coronary Heart Disease Preoperative Gesture Interactive Diagnostic System Based on Augmented Reality.

    Science.gov (United States)

    Zou, Yi-Bo; Chen, Yi-Min; Gao, Ming-Ke; Liu, Quan; Jiang, Si-Yu; Lu, Jia-Hui; Huang, Chen; Li, Ze-Yu; Zhang, Dian-Hua

    2017-08-01

    Coronary heart disease preoperative diagnosis plays an important role in the treatment of vascular interventional surgery. Actually, most doctors are used to diagnosing the position of the vascular stenosis and then empirically estimating vascular stenosis by selective coronary angiography images instead of using mouse, keyboard and computer during preoperative diagnosis. The invasive diagnostic modality is short of intuitive and natural interaction and the results are not accurate enough. Aiming at above problems, the coronary heart disease preoperative gesture interactive diagnostic system based on Augmented Reality is proposed. The system uses Leap Motion Controller to capture hand gesture video sequences and extract the features which that are the position and orientation vector of the gesture motion trajectory and the change of the hand shape. The training planet is determined by K-means algorithm and then the effect of gesture training is improved by multi-features and multi-observation sequences for gesture training. The reusability of gesture is improved by establishing the state transition model. The algorithm efficiency is improved by gesture prejudgment which is used by threshold discriminating before recognition. The integrity of the trajectory is preserved and the gesture motion space is extended by employing space rotation transformation of gesture manipulation plane. Ultimately, the gesture recognition based on SRT-HMM is realized. The diagnosis and measurement of the vascular stenosis are intuitively and naturally realized by operating and measuring the coronary artery model with augmented reality and gesture interaction techniques. All of the gesture recognition experiments show the distinguish ability and generalization ability of the algorithm and gesture interaction experiments prove the availability and reliability of the system.

  7. Augmented reality in neurovascular surgery: feasibility and first uses in the operating room.

    Science.gov (United States)

    Kersten-Oertel, Marta; Gerard, Ian; Drouin, Simon; Mok, Kelvin; Sirhan, Denis; Sinclair, David S; Collins, D Louis

    2015-11-01

    The aim of this report is to present a prototype augmented reality (AR) intra-operative brain imaging system. We present our experience of using this new neuronavigation system in neurovascular surgery and discuss the feasibility of this technology for aneurysms, arteriovenous malformations (AVMs), and arteriovenous fistulae (AVFs). We developed an augmented reality system that uses an external camera to capture the live view of the patient on the operating room table and to merge this view with pre-operative volume-rendered vessels. We have extensively tested the system in the laboratory and have used the system in four surgical cases: one aneurysm, two AVMs and one AVF case. The developed AR neuronavigation system allows for precise patient-to-image registration and calibration of the camera, resulting in a well-aligned augmented reality view. Initial results suggest that augmented reality is useful for tailoring craniotomies, localizing vessels of interest, and planning resection corridors. Augmented reality is a promising technology for neurovascular surgery. However, for more complex anomalies such as AVMs and AVFs, better visualization techniques that allow one to distinguish between arteries and veins and determine the absolute depth of a vessel of interest are needed.

  8. Augmentative and alternative communication: from qualification to speech, language and hearing science clinical practice

    Directory of Open Access Journals (Sweden)

    Carla Ciceri Cesa

    Full Text Available ABSTRACT Purpose: to investigate the qualification of the speech language and hearing therapists and their clinical performance with Augmentative and Alternative Communication. Methods: a descriptive, transversal, individual and contemporary study. Data were collected through a questionnaire, filled by twenty-four speech therapists, selected by a convenience sample. Content analysis was chosen for data study. Results: regarding access to the information media, all speech therapists in the sample presented the initiative to supply the absence of language training with Augmentative and Alternative Communication by different means. Regarding the dual focus on intervention, all speech therapists were favorable to this practice. However, according to experience, they reported resistance from the family, school and other therapists. The results showed two different types of introduction implementation and use of Augmentative and Alternative Communication, predominantly formed by strategies contemplating the pragmatic use of language through the contextualization of significant activities for the user. The other way used the Picture Exchange Communication System. Conclusion: the speech-language and hearing therapists in the present study inserted different interlocutors in the intervention, guided by implicit or explicit linguistic principles, by theoretical frameworks specific to the area of Augmentative and Alternative Communication knowledge, by global neuromotor elements and, finally, by principles of functionality and general wellness.

  9. Augmented kinematic feedback from haptic virtual reality for dental skill acquisition.

    Science.gov (United States)

    Suebnukarn, Siriwan; Haddawy, Peter; Rhienmora, Phattanapon; Jittimanee, Pannapa; Viratket, Piyanuch

    2010-12-01

    We have developed a haptic virtual reality system for dental skill training. In this study we examined several kinds of kinematic information about the movement provided by the system supplement knowledge of results (KR) in dental skill acquisition. The kinematic variables examined involved force utilization (F) and mirror view (M). This created three experimental conditions that received augmented kinematic feedback (F, M, FM) and one control condition that did not (KR-only). Thirty-two dental students were randomly assigned to four groups. Their task was to perform access opening on the upper first molar with the haptic virtual reality system. An acquisition session consisted of two days of ten trials of practice in which augmented kinematic feedback was provided for the appropriate experimental conditions after each trial. One week after, a retention test consisting of two trials without augmented feedback was completed. The results showed that the augmented kinematic feedback groups had larger mean performance scores than the KR-only group in Day 1 of the acquisition and retention sessions (ANOVA, p0.05). The trends in acquisition and retention sessions suggest that the augmented kinematic feedback can enhance the performance earlier in the skill acquisition and retention sessions.

  10. Evaluation of wearable haptic systems for the fingers in Augmented Reality applications

    DEFF Research Database (Denmark)

    Chinello, Francesco

    2017-01-01

    Although Augmented Reality (AR) has been around for almost five decades, only recently we have witnessed AR systems and applications entering in our everyday life. Representative examples of this technological revolution are the smartphone games “Pok´emon GO” and “Ingress” or the Google Translate...... real-time sign interpretation app. Even if AR applications are already quite compelling and widespread, users are still not able to physically interact with the computer-generated reality. In this respect, wearable haptics can provide the compelling illusion of touching the superimposed virtual objects...

  11. Functional Reflective Polarizer for Augmented Reality and Color Vision Deficiency

    Science.gov (United States)

    2016-03-03

    augment reality system is relatively high as compared to a polarizing beam splitter or a conventional reflective polarizer. Such a functional reflective...brightness of the display [7]. A key component for polarization management is polarizing beam splitter (PBS). Even though the PBS has exceptional...polarizer that can be incorporated into a compact augmented reality system. The design principle of the functional reflective polarizer is explained and

  12. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    Science.gov (United States)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  13. Augmented reality building operations tool

    Science.gov (United States)

    Brackney, Larry J.

    2014-09-09

    A method (700) for providing an augmented reality operations tool to a mobile client (642) positioned in a building (604). The method (700) includes, with a server (660), receiving (720) from the client (642) an augmented reality request for building system equipment (612) managed by an energy management system (EMS) (620). The method (700) includes transmitting (740) a data request for the equipment (612) to the EMS (620) and receiving (750) building management data (634) for the equipment (612). The method (700) includes generating (760) an overlay (656) with an object created based on the building management data (634), which may be sensor data, diagnostic procedures, or the like. The overlay (656) is configured for concurrent display on a display screen (652) of the client (642) with a real-time image of the building equipment (612). The method (700) includes transmitting (770) the overlay (656) to the client (642).

  14. A Prototype of Tropospheric Delay Correction in L1-SAIF Augmentation

    Science.gov (United States)

    Takeichi, Noboru; Sakai, Takeyasu; Fukushima, Sounosuke; Ito, Ken

    L1-SAIF signal is one of the navigation signals of Quasi-Zenith Satellite System, which provides an augmentation function for mobile users in Japan. This paper presents the detail of the tropospheric delay correction in L1-SAIF augmentation. The tropospheric delay correction information is generated at the ground station using the data collected at GEONET (GPS Earth Observation NETwork) stations. The correction message contains the information of the zenith tropospheric delay (ZTD) values at 105 Tropospheric Grid Points (TGP) in the experiment area. From this message a mobile user can acquire the ZTD value at some neighboring TGPs, and estimate the local ZTD value accurately by using a suitable ZTD model function. Only 3 L1-SAIF messages are necessary to provide all of the tropospheric correction information. Several investigations using the actual data observed at many GEONET stations overall Japan have proved that it is possible to achieve the correction accuracy of 13.2mm (rms).

  15. Dual-component video image analysis system (VIASCAN) as a predictor of beef carcass red meat yield percentage and for augmenting application of USDA yield grades.

    Science.gov (United States)

    Cannell, R C; Tatum, J D; Belk, K E; Wise, J W; Clayton, R P; Smith, G C

    1999-11-01

    An improved ability to quantify differences in the fabrication yields of beef carcasses would facilitate the application of value-based marketing. This study was conducted to evaluate the ability of the Dual-Component Australian VIASCAN to 1) predict fabricated beef subprimal yields as a percentage of carcass weight at each of three fat-trim levels and 2) augment USDA yield grading, thereby improving accuracy of grade placement. Steer and heifer carcasses (n = 240) were evaluated using VIASCAN, as well as by USDA expert and online graders, before fabrication of carcasses to each of three fat-trim levels. Expert yield grade (YG), online YG, VIASCAN estimates, and VIASCAN estimated ribeye area used to augment actual and expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, and hot carcass weight), respectively, 1) accounted for 51, 37, 46, and 55% of the variation in fabricated yields of commodity-trimmed subprimals, 2) accounted for 74, 54, 66, and 75% of the variation in fabricated yields of closely trimmed subprimals, and 3) accounted for 74, 54, 71, and 75% of the variation in fabricated yields of very closely trimmed subprimals. The VIASCAN system predicted fabrication yields more accurately than current online yield grading and, when certain VIASCAN-measured traits were combined with some USDA yield grade factors in an augmentation system, the accuracy of cutability prediction was improved, at packing plant line speeds, to a level matching that of expert graders applying grades at a comfortable rate.

  16. Transforming Polar Research with Google Glass Augmented Reality (Invited)

    Science.gov (United States)

    Ruthkoski, T.

    2013-12-01

    Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device

  17. Jointly Optimize Data Augmentation and Network Training: Adversarial Data Augmentation in Human Pose Estimation

    OpenAIRE

    Peng, Xi; Tang, Zhiqiang; Yang, Fei; Feris, Rogerio; Metaxas, Dimitris

    2018-01-01

    Random data augmentation is a critical technique to avoid overfitting in training deep neural network models. However, data augmentation and network training are usually treated as two isolated processes, limiting the effectiveness of network training. Why not jointly optimize the two? We propose adversarial data augmentation to address this limitation. The main idea is to design an augmentation network (generator) that competes against a target network (discriminator) by generating `hard' au...

  18. Neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole augment the effects of antidepressants acting via serotonergic system in the forced swimming test in rats.

    Science.gov (United States)

    Ulak, Güner; Mutlu, Oguz; Akar, Füruzan Yildiz; Komsuoğlu, F Ipek; Tanyeri, Pelin; Erden, B Faruk

    2008-10-01

    Treatment-resistant depression has necessitated new therapeutic strategies in augmenting the therapeutic actions of currently existing antidepressant drugs. The aim of this study was to investigate the possibility of synergistic interaction between 1-(2-trifluoromethylphenyl)-imidazole (TRIM), a novel neuronal nitric oxide synthase (nNOS) inhibitor and conventional antidepressants of different classes in the forced swimming test (FST) in rats. TRIM decreased the immobility time at 50 mg/kg doses in the FST in rats. Treatment with a behaviourally subeffective dose of TRIM (20 mg/kg) augmented the behavioural effect of tricyclic antidepressant imipramine, selective serotonin re-uptake inhibitor (SSRI) citalopram and fluoxetine or selective serotonin reuptake enhancer tianeptine but failed to augment the antidepressant effect of reboxetine, a noradrenaline re-uptake inhibitor, in this test. Therefore inhibition of NOS augments the effects of antidepressants acting on serotonergic system in the FST. Neither TRIM (10-50 mg/kg) nor other drug treatments affected the locomotor activity of animals. These findings are in agreement with the view that antidepressant effects or augmentation of these effects in the FST may be explained with inhibition of NOS activity and this may be a new approach in offering greater therapeutic efficacy of antidepressants acting via serotonergic system.

  19. Confronting an augmented reality

    Directory of Open Access Journals (Sweden)

    John Hedberg

    2012-08-01

    Full Text Available How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself? In this article, we seek to initiate a discussion that focuses on these questions, and suggest that they be used as drivers for research into effective educational applications of augmented reality. We discuss how multi-modal, sensorial augmentation of reality links to existing theories of education and learning, focusing on ideas of cognitive dissonance and the confrontation of new realities implied by exposure to new and varied perspectives. We also discuss connections with broader debates brought on by the social and cultural changes wrought by the increased digitalisation of our lives, especially the concept of the extended mind. Rather than offer a prescription for augmentation, our intention is to throw open debate and to provoke deep thinking about what interacting with and creating an augmented reality might mean for both teacher and learner.

  20. New education system for construction of optical holography setup – Tangible learning with Augmented Reality

    International Nuclear Information System (INIS)

    Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2013-01-01

    In case of teaching optical system construction, it is difficult to prepare the optical components for the attendance student. However the tangible learning is very important to master the optical system construction. It helps learners understand easily to use an inexpensive learning system that provides optical experiments experiences. Therefore, we propose the new education system for construction of optical setup with the augmented reality. To use the augmented reality, the proposed system can simulate the optical system construction by the direct hand control. Also, this system only requires an inexpensive web camera, printed makers and a personal computer. Since this system does not require the darkroom and the expensive optical equipments, the learners can study anytime, anywhere when they want to do. In this paper, we developed the system that can teach the optical system construction of the Denisyuk hologram and 2-step transmission type hologram. For the tangible learning and the easy understanding, the proposed system displays the CG objects of the optical components on the markers which are controlled by the learner's hands. The proposed system does not only display the CG object, but also display the light beam which is controlled by the optical components. To display the light beam that is hard to be seen directly, the learners can confirm about what is happening by the own manipulation. For the construction of optical holography setup, we arrange a laser, mirrors, a PBS (polarizing beam splitter), lenses, a polarizer, half-wave plates, spatial filters, an optical power meter and a recording plate. After the construction, proposed system can check optical setup correctly. In comparison with the learners who only read a book, the learners who use the system can construct the optical holography setup more quickly and correctly.

  1. Leap Motion controller application in augmented reality technology

    OpenAIRE

    Artemčiukas, Edgaras; Sakalauskas, Leonidas

    2014-01-01

    In this work the analysis of interaction techniques, devices and its’ possibilities were accomplished. It was determined that the problem, which many researchers tries to solve – more natural interaction between users and computers. Interaction system in augmented reality environment using Leap Motion controller was developed. To achieve this goal augmented reality NyARToolkit and Leap Motion controller libraries were used. Solution ensures extensive information about hand, finger...

  2. A Radiation Learning Support System by Tri-sensory Augmented Reality using a Mobile Phone

    International Nuclear Information System (INIS)

    Shimoda, Hiroshi; Zhao, Yue; Yan, Weida; Ishii, Hirotake

    2011-01-01

    A radiation learning support system has been developed to support learning basic knowledge of radiation and its influence on the human body by using tri-sensory Augmented Reality (AR) technology with presenting information to visual, auditory and tactile sensation. The system consists of a knowledge learning mode in which learners can learn basic knowledge of radiation and an experience learning mode in which they can virtually experience its influence on the human body under various conditions. As the result of a simple evaluation, it was suggested that the system improves the learners' intuitive understanding, and information presentation to auditory and tactile sensation is more effective than that to visual sensation

  3. Using wide area differential GPS to improve total system error for precision flight operations

    Science.gov (United States)

    Alter, Keith Warren

    Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.

  4. Construction of Interactive Teaching System for Course of Mechanical Drawing Based on Mobile Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Juan Cheng

    2018-02-01

    Full Text Available The teaching aim of Mechanical Drawing is to cultivate the students' graphics interpreting ability, plotting ability, inter-space imagination and innovation ability. For engineering students in China Universities, Mechanical Drawing course with the characteristics of 3D and 2D inter-space transformation, is often difficult to master. The ordinary dull teaching method is not enough for stimulating students’ spatial imagination capability, interest in learning, and cannot meet teachers’ teaching needs to explain complicated graphs relationships. In this paper, we design an interactive teaching system based on mobile augmented reality to improve the learning efficiency of Mechanical Drawing course. To check the effect of the proposed system, we carried out a case study of course teaching of Mechanical Drawing. The results demonstrate that the class for which interactive teaching system based on mobile augmented reality technology was adopted is significantly superior to the class for which the ordinary dull teaching approach was adopted with regard to the degree of proficiency of course key and difficult points content,spatial imagination capability, students’ interest in learning and study after class, especially in respect of students’ learning interest and spatial imagination capability.

  5. Media-Augmented Exercise Machines

    Science.gov (United States)

    Krueger, T.

    2002-01-01

    Cardio-vascular exercise has been used to mitigate the muscle and cardiac atrophy associated with adaptation to micro-gravity environments. Several hours per day may be required. In confined spaces and long duration missions this kind of exercise is inevitably repetitive and rapidly becomes uninteresting. At the same time, there are pressures to accomplish as much as possible given the cost- per-hour for humans occupying orbiting or interplanetary. Media augmentation provides a the means to overlap activities in time by supplementing the exercise with social, recreational, training or collaborative activities and thereby reducing time pressures. In addition, the machine functions as an interface to a wide range of digital environments allowing for spatial variety in an otherwise confined environment. We hypothesize that the adoption of media augmented exercise machines will have a positive effect on psycho-social well-being on long duration missions. By organizing and supplementing exercise machines, data acquisition hardware, computers and displays into an interacting system this proposal increases functionality with limited additional mass. This paper reviews preliminary work on a project to augment exercise equipment in a manner that addresses these issues and at the same time opens possibilities for additional benefits. A testbed augmented exercise machine uses a specialty built cycle trainer as both input to a virtual environment and as an output device from it using spatialized sound, and visual displays, vibration transducers and variable resistance. The resulting interactivity increases a sense of engagement in the exercise, provides a rich experience of the digital environments. Activities in the virtual environment and accompanying physiological and psychological indicators may be correlated to track and evaluate the health of the crew.

  6. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system

    Directory of Open Access Journals (Sweden)

    Linliang Guo

    2017-04-01

    Full Text Available To satisfy the validation requirements of flight control law for advanced aircraft, a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel. A 3-degree-of-freedom gimbal, ventrally installed in the model, was used in conjunction with an actively controlled dynamically similar model of aircraft, which was equipped with the inertial measurement unit, attitude and heading reference system, embedded computer and servo-actuators. The model, which could be rotated around its center of gravity freely by the aerodynamic moments, together with the flow field, operator and real time control system made up the closed-loop testing circuit. The model is statically unstable in longitudinal direction, and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws. The experimental results indicate that the model responds well to the operator’s instructions. The response of the model in the tests shows reasonable agreement with the simulation results. The difference of response of angle of attack is less than 0.5°. The effect of stability augmentation and attitude control law was validated in the test, meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.

  7. Head-worn display-based augmented reality system for manufacturing

    Science.gov (United States)

    Sarwal, Alok; Baker, Chris; Filipovic, Dragan

    2005-05-01

    This system provides real-time guidance for training and problem-solving on production-line machinery. A prototype of a wearable, real-time, video guidance, interactive system for use in manufacturing, has been developed and demonstrated. Anticipated benefits are: relatively inexperienced personnel can provide machine servicing and the dependency on the vendor to repair or maintain equipment is significantly reduced. Additionally, servicing, training or part change-over schedules can be exercised more predictably and with less training. This approach utilizes Head Worn Display or Head Mounted Display (HMD) technology that can be readily adapted for various machines on the factory floor with training steps for a new location. Such a system can support various applications in manufacturing such as direct video guiding or applying scheduled maintenance and training to effectively resolve servicing emergencies and reduce machine downtime. It can also provide training of inexperienced operators and maintenance personnel. The gap between production line complexity and ability of production personnel to effectively maintain equipment is expected to widen in the future and advanced equipment will require complex servicing procedures that are neither well documented nor user-friendly. This system offers benefits in increased manufacturing equipment availability by facilitating effective servicing and training and can interface to a server system for additional computational resources on an as-needed basis. This system utilizes markers to guide the user and enforces a well defined sequence of operations. It performs augmentation of information on the display in order to provide guidance in real-time.

  8. Augmented reality-based navigation system for wrist arthroscopy: feasibility.

    Science.gov (United States)

    Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L; Obdeijn, Miryam; Liverneaux, Philippe A

    2013-11-01

    In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration.

  9. Augmented Virtual Reality: How to Improve Education Systems

    OpenAIRE

    Fernández-Utrilla Miguel, Manuel

    2017-01-01

    This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students’ learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students’ knowledge acquisition. Stakeholders in the educational role of technology include students, faculty members, institutions, and manufacturers. While the benefits of suc...

  10. Survey on Urban Warfare Augmented Reality

    Directory of Open Access Journals (Sweden)

    Xiong You

    2018-01-01

    Full Text Available Urban warfare has become one of the main forms of modern combat in the twenty-first century. The main reason why urban warfare results in hundreds of casualties is that the situational information of the combatant is insufficient. Accessing information via an Augmented Reality system can elevate combatants’ situational awareness to effectively improve the efficiency of decision-making and reduce the injuries. This paper begins with the concept of Urban Warfare Augmented Reality (UWAR and illuminates the objectives of developing UWAR, i.e., transparent battlefield, intuitional perception and natural interaction. Real-time outdoor registration, information presentation and natural interaction are presented as key technologies of a practical UWAR system. Then, the history and current research state of these technologies are summarized and their future developments are highlighted from three perspectives, i.e., (1 Better integration with Geographic Information System and Virtual Geographic Environment; (2 More intelligent software; (3 More powerful hardware.

  11. Multi-area market clearing in wind-integrated interconnected power systems: A fast parallel decentralized method

    International Nuclear Information System (INIS)

    Doostizadeh, Meysam; Aminifar, Farrokh; Lesani, Hamid; Ghasemi, Hassan

    2016-01-01

    Highlights: • A parallel-decentralized multi-area energy & reserve clearance model is proposed. • A fictitious area and joint variables coordinate & parallelize area market models. • Adjustable intervals of random variables compromise optimality and robustness. • The stochastic nature of problem is tackled in an efficient deterministic manner. • The model is compact and applicable in multi-area real-scale systems. - Abstract: The growing evolution of regional electricity markets and proliferation of wind power penetration underline the prominence of coordinated operation of interconnected regional power systems. This paper develops a parallel decentralized methodology for multi-area energy and reserve clearance under wind power uncertainty. Preserving the independency of regional markets while fully taking the advantages of interconnection is a salient feature of the new model. Additionally, the parallel procedure simultaneously clears regional markets for the sake of acceleration particularly in large-scale systems. In order to achieve the optimal solution in a distributed fashion, the augmented Lagrangian relaxation along with alternative direction method of multipliers are applied. The wind power intermittency and uncertainty are tackled through the interval optimization approach. Opposed to the conventional wisdom, adjustable intervals, as subsets of conventional predefined intervals, are introduced here to compromise the cost and conservatism of the solution. The confidence level approach is employed to accommodate the stochastic nature of wind power in a computationally efficient deterministic manner. The effectiveness and robustness of the proposed method are evaluated through several case studies on a two-area 6-bus and the modified three-area IEEE 118-bus test systems.

  12. Ligament Augmentation and Reconstruction System Failures in Repair of Grade V Acromioclavicular Joint Dislocation

    Directory of Open Access Journals (Sweden)

    Martin K.-H. Li

    2017-01-01

    Full Text Available The Ligament Augmentation and Reconstruction System® (LARS® represents a popular synthetic anatomical reduction method for acromioclavicular joint dislocation by means of coracoclavicular ligament reconstruction. To our knowledge, no early failure has been documented in the literature. We present two unusual cases of LARS failure, one at four months after implant and the other at three weeks, without obvious causes, requiring re-do reconstruction, and discuss potential contributory factors.

  13. Augmented Reality Head-Up-Display for Advanced Driver Assistance System: A Driving Simulation Study

    OpenAIRE

    HALIT, Lynda; KEMENY, Andras; GARBAYA, Samir; MERIENNE, Frédéric; MICHELIN, Sylvain; ALBAUT, Valentin

    2014-01-01

    Research and technological advance in the field of Augmented Reality (AR) is growing rapidly (Mas, 2011). One of the new application domains is the automobile industry, linked to the necessary men machine aspects of Advanced Driving Assistance Systems (ADAS). Relevant road traffic as well as useful navigation or path planning information may be displayed using partially or totally the windshield surface thanks to these emerging technologies. However, the way road traffic, signs or vehicle inf...

  14. Augmented Reality Head-Up-Display for Advanced Driver Assistance System: A Driving Simulation Study

    OpenAIRE

    HALIT , Lynda; Kemeny , Andras; Mohellebi , Hakim; GARBAYA , Samir; Merienne , Frédéric; Michelin , Sylvain; ALBAUT , Valentin

    2014-01-01

    International audience; Research and technological advance in the field of Augmented Reality (AR) is growing rapidly (Mas, 2011). One of the new application domains is the automobile industry, linked to the necessary men machine aspects of Advanced Driving Assistance Systems (ADAS). Relevant road traffic as well as useful navigation or path planning information may be displayed using partially or totally the windshield surface thanks to these emerging technologies. However, the way road traff...

  15. A see through future: augmented reality and health information systems.

    Science.gov (United States)

    Monkman, Helen; Kushniruk, Andre W

    2015-01-01

    Augmented Reality (AR) is a method whereby virtual objects are superimposed on the real world. AR technology is becoming increasingly accessible and affordable and it has many potential health applications. This paper discusses current research on AR health applications such as medical education and medical practice. Some of the potential future uses for this technology (e.g., health information systems, consumer health applications) will also be presented. Additionally, there will be a discussion outlining some of usability and human factors challenges associated with AR in healthcare. It is expected that AR will become increasingly prevalent in healthcare; however, further investigation is required to demonstrate that they provide benefits over traditional methods. Moreover, AR applications must be thoroughly tested to ensure they do not introduce new errors into practice and have patient safety implications.

  16. Advanced Navigation Aids System based on Augmented Reality

    Directory of Open Access Journals (Sweden)

    Jaeyong OH

    2016-12-01

    Full Text Available Many maritime accidents have been caused by human-error including such things as inadequate watch keeping and/or mistakes in ship handling. Also, new navigational equipment has been developed using Information Technology (IT technology to provide various kinds of information for safe navigation. Despite these efforts, the reduction of maritime accidents has not occurred to the degree expected because, navigational equipment provides too much information, and this information is not well organized, such that users feel it to be complicated rather than helpful. In this point of view, the method of representation of navigational information is more important than the quantity of that information and research is required on the representation of information to make that information more easily understood and to allow decisions to be made correctly and promptly. In this paper, we adopt Augmented Reality (AR technologies for the representation of information. AR is a 3D computer graphics technology that blends virtual reality and the real world. Recently, this technology has been widely applied in our daily lives because it can provide information more effectively to users. Therefore, we propose a new concept, a navigational system based on AR technology; we review experimental results from a ship-handling simulator and from an open sea test to verify the efficiency of the proposed system.

  17. An augmented reality system validation for the treatment of cockroach phobia.

    Science.gov (United States)

    Bretón-López, Juani; Quero, Soledad; Botella, Cristina; García-Palacios, Azucena; Baños, Rosa Maria; Alcañiz, Mariano

    2010-12-01

    Augmented reality (AR) is a new technology in which various virtual elements are incorporated into the user's perception of the real world. The most significant aspect of AR is that the virtual elements add relevant and helpful information to the real scene. AR shares some important characteristics with virtual reality as applied in clinical psychology. However, AR offers additional features that might be crucial for treating certain problems. An AR system designed to treat insect phobia has been used for treating phobia of small animals, and positive preliminary data about the global efficacy of the system have been obtained. However, it is necessary to determine the capacity of similar AR systems and their elements that are designed to evoke anxiety in participants; this is achieved by testing the correspondence between the inclusion of feared stimuli and the induction of anxiety. The objective of the present work is to validate whether the stimuli included in the AR-Insect Phobia system are capable of inducing anxiety in six participants diagnosed with cockroach phobia. Results support the adequacy of each element of the system in inducing anxiety in all participants.

  18. Augmented reality application for industrial non-destructive inspection training

    Science.gov (United States)

    Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav

    2018-02-01

    Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.

  19. Mobile Augmented Reality Applications

    OpenAIRE

    Prochazka, David; Stencl, Michael; Popelka, Ondrej; Stastny, Jiri

    2011-01-01

    Augmented reality have undergone considerable improvement in past years. Many special techniques and hardware devices were developed, but the crucial breakthrough came with the spread of intelligent mobile phones. This enabled mass spread of augmented reality applications. However mobile devices have limited hardware capabilities, which narrows down the methods usable for scene analysis. In this article we propose an augmented reality application which is using cloud computing to enable using...

  20. FEATURES OF USING AUGMENTED REALITY TECHNOLOGY TO SUPPORT EDUCATIONAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Yury A. Kravchenko

    2014-01-01

    Full Text Available The paper discusses the concept and technology of augmented reality, the rationale given the relevance and timeliness of its use to support educational processes. Paper is a survey and study of the possibility of using augmented reality technology in education. Architecture is proposed and constructed algorithms of the software system management QR-codes media objects. An overview of the features and uses of augmented reality technology to support educational processes is displayed, as an option of a new form of visual demonstration of complex objects, models and processes. 

  1. A radiation learning support system by tri-sensory augmented reality using a mobile phone

    International Nuclear Information System (INIS)

    Shimoda, Hiroshi; Zhao, Yue; Yan, Weida; Ishii, Hirotake

    2011-01-01

    A radiation learning support system has been developed to support learning basic knowledge of radiation and its strength of human body impact by using tri-sensory Augmented Reality (AR) technology with presenting information to visual, auditory and haptic sensation. The system consists of a knowledge learning mode in which learners can learn basic knowledge of radiation and an experience learning mode in which they can virtually experience its strength of human body impact under various conditions. As the result of a simple evaluation, it was suggested that the system improves the learners' intuitive understanding, and information presentation of the radiation strength to auditory and haptic sensation is more comprehensive than that to visual sensation. (author)

  2. Synthesis of the unmanned aerial vehicle remote control augmentation system

    International Nuclear Information System (INIS)

    Tomczyk, Andrzej

    2014-01-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system

  3. Synthesis of the unmanned aerial vehicle remote control augmentation system

    Energy Technology Data Exchange (ETDEWEB)

    Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl [Department of Avionics and Control Systems, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstañców Warszawy 12, 35-959 Rzeszów (Poland)

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  4. Augmenting Clozapine With Sertindole

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Emborg, Charlotte; Gydesen, Susanne

    2012-01-01

    Clozapine augmentation with antipsychotic drugs is widely used despite sparse evidence supporting this strategy. Sertindole is a nonsedating atypical antipsychotic drug with low affinity for cholinergic receptors, which makes it potentially suitable for augmentation of clozapine. The study design...... glucose, lipids, and electrocardiogram. Clozapine augmentation with sertindole was not superior to placebo regarding total score or subscale score of the Positive and Negative Syndrome Scale, Clinical Global Impression, World Health Organization Quality of Life Brief, or Drug Attitude Inventory....... No increased adverse effects compared with placebo were found. Four patients randomized to sertindole experienced a significant worsening of psychosis, and 2 of them required psychiatric admission. Metabolic parameters were unchanged during the study, but augmentation of clozapine with sertindole...

  5. [Augmentation technique on the proximal humerus].

    Science.gov (United States)

    Scola, A; Gebhard, F; Röderer, G

    2015-09-01

    The treatment of osteoporotic fractures is still a challenge. The advantages of augmentation with respect to primary in vitro stability and the clinical use for the proximal humerus are presented in this article. In this study six paired human humeri were randomized into an augmented and a non-augmented group. Osteosynthesis was performed with a PHILOS plate (Synthes®). In the augmented group the two screws finding purchase in the weakest cancellous bone were augmented. The specimens were tested in a 3-part fracture model in a varus bending test. The augmented PHILOS plates withstood significantly more load cycles until failure. The correlation to bone mineral density (BMD) showed that augmentation could partially compensate for low BMD. The augmentation of the screws in locked plating in a proximal humerus fracture model is effective in improving the primary stability in a cyclic varus bending test. The targeted augmentation of two particular screws in a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality could be more effective in enhancing the primary stability of a proximal humerus locking plate because the effect of augmentation can be exploited more effectively limiting it to the degree required. The technique of augmentation is simple and can be applied in open and minimally invasive procedures. When the correct procedure is used, complications (cement leakage into the joint) can be avoided.

  6. Augmented reality and ubiquitous computing : The hidden potentialities of augmented reality

    NARCIS (Netherlands)

    Liberati, Nicola

    2016-01-01

    The aim of this paper was to highlight the augmented reality’s potentialities, depicting its main characteristics and focusing attention on what its goal should be in order to have a new technology completely different from those that already exist. From a technological point of view, augmented

  7. Fully nonlinear phenomenology of the Berk-Breizman augmentation of the Vlasov-Maxwell system

    International Nuclear Information System (INIS)

    Vann, R.G.L.; Dendy, R.O.; Rowlands, G.; Arber, T.D.; D'Ambrumenil, N.

    2003-01-01

    The Berk-Breizman augmentation of the Vlasov-Maxwell system is widely used to model self-consistent resonant excitation and damping of wave fields by evolving energetic particle populations in magnetic fusion plasmas. The key model parameters are the particle annihilation rate ν a , which drives bump-on-tail structure, and the linear wave damping rate γ d . A code, based on the piecewise parabolic method, is used to integrate the fully nonlinear Berk-Breizman system of equations across the whole (ν a ,γ d ) parameter space. The results of this code show that the system's behavior can be classified into one of four types, each of which occurs in a well-defined region of parameter space: chaotic, periodic, steady state, and damped. The corresponding evolution in (x,v) phase space is also examined

  8. Capillary Refill using Augmented Reality

    OpenAIRE

    Clausen, Christoffer

    2017-01-01

    Master's thesis in Computer science The opportunities within augmented reality is growing. Augmented reality is a combination of the real and the virtual world in real time, and large companies like Microsoft and Google is now investing heavily in the technology. This thesis presents a solution for simulating a medical test called capillary refill, by using augmented reality. The simulation is performed with an augmented reality headset called HoloLens. The HoloLens will recognise a mark...

  9. Localized ridge defect augmentation using human pericardium membrane and demineralized bone matrix.

    Science.gov (United States)

    Vidyadharan, Arun Kumar; Ravindran, Anjana

    2014-01-01

    Patient wanted to restore her lost teeth with implants in the lower left first molar and second premolar region. Cone beam computerized tomography (CBCT) revealed inadequate bone width and height around future implant sites. The extraction socket of second premolar area revealed inadequate socket healing with sparse bone fill after 4 months of extraction. To evaluate the clinical feasibility of using a collagen physical resorbable barrier made of human pericardium (HP) to augment localized alveolar ridge defects for the subsequent placement of dental implants. Ridge augmentation was done in the compromised area using Puros® demineralized bone matrix (DBM) Putty with chips and an HP allograft membrane. Horizontal (width) and vertical hard tissue measurements with CBCT were recorded on the day of ridge augmentation surgery, 4 month and 7 months follow-up. Intra oral periapical taken 1 year after implant installation showed minimal crestal bone loss. Bone volume achieved through guided bone regeneration was a gain of 4.8 mm horizontally (width) and 6.8 mm vertically in the deficient ridge within a period of 7 months following the procedure. The results suggested that HP Allograft membrane may be a suitable component for augmentation of localized alveolar ridge defects in conjunction with DBM with bone chips.

  10. Application results for an augmented video tracker

    Science.gov (United States)

    Pierce, Bill

    1991-08-01

    The Relay Mirror Experiment (RME) is a research program to determine the pointing accuracy and stability levels achieved when a laser beam is reflected by the RME satellite from one ground station to another. This paper reports the results of using a video tracker augmented with a quad cell signal to improve the RME ground station tracking system performance. The video tracker controls a mirror to acquire the RME satellite, and provides a robust low bandwidth tracking loop to remove line of sight (LOS) jitter. The high-passed, high-gain quad cell signal is added to the low bandwidth, low-gain video tracker signal to increase the effective tracking loop bandwidth, and significantly improves LOS disturbance rejection. The quad cell augmented video tracking system is analyzed, and the math model for the tracker is developed. A MATLAB model is then developed from this, and performance as a function of bandwidth and disturbances is given. Improvements in performance due to the addition of the video tracker and the augmentation with the quad cell are provided. Actual satellite test results are then presented and compared with the simulated results.

  11. Reimplantation of cultivated human bone cells from the posterior maxilla for sinus floor augmentation. Histological results from a randomized controlled clinical trial

    DEFF Research Database (Denmark)

    Hermund, N.U.; Stavropoulos, Andreas; Donatsky, O

    2012-01-01

    OBJECTIVES: The aim of the present randomized clinical study was to evaluate histologically whether the addition of cultivated, autogenous bone cells to a composite graft of deproteinized bovine bone mineral (DBBM) and autogenous bone (AB) for sinus floor augmentation (SFA) enhance bone formation...... bone cells, which were cultivated from a bone biopsy harvested earlier from the tuberosity area. Four months after SFA, two cylindrical biopsies were taken from the augmented sinuses concomitantly with the implant site preparation by means of a trephine bur. An additional biopsy was taken from...... the tuberosity area. Bone density at the augmented sinus and the tuberosity area and the height of augmentation were estimated on non-decalcified histological sections prepared from the biopsies. A relative bone density index (RBD) was also calculated by dividing bone density at the augmented sinus with bone...

  12. Adaptive multimodal interaction in mobile augmented reality: A conceptual framework

    Science.gov (United States)

    Abidin, Rimaniza Zainal; Arshad, Haslina; Shukri, Saidatul A'isyah Ahmad

    2017-10-01

    Recently, Augmented Reality (AR) is an emerging technology in many mobile applications. Mobile AR was defined as a medium for displaying information merged with the real world environment mapped with augmented reality surrounding in a single view. There are four main types of mobile augmented reality interfaces and one of them are multimodal interfaces. Multimodal interface processes two or more combined user input modes (such as speech, pen, touch, manual gesture, gaze, and head and body movements) in a coordinated manner with multimedia system output. In multimodal interface, many frameworks have been proposed to guide the designer to develop a multimodal applications including in augmented reality environment but there has been little work reviewing the framework of adaptive multimodal interface in mobile augmented reality. The main goal of this study is to propose a conceptual framework to illustrate the adaptive multimodal interface in mobile augmented reality. We reviewed several frameworks that have been proposed in the field of multimodal interfaces, adaptive interface and augmented reality. We analyzed the components in the previous frameworks and measure which can be applied in mobile devices. Our framework can be used as a guide for designers and developer to develop a mobile AR application with an adaptive multimodal interfaces.

  13. A support system for water system isolation task of nuclear power plant by using augmented reality and RFID

    International Nuclear Information System (INIS)

    Shimoda, Hiroshi; Ishii, Hirotake; Yamazaki, Yuichiro; Yoshikawa, Hidekazu

    2004-01-01

    Aiming at improvement of task performance and reduction of human error of water system isolation task in NPP periodic maintenance, a support system using state-of-art information technology. Augmented Reality (AR) and Radio Frequency Identification (RFID) has been proposed under the concept of off-site operation and maintenance support center, and a prototype system has been developed. The system has navigation function of which an indication is superimposed directly on the user's view to help to find the designated valves by AR. It also has valve confirmation function by scanning RFID tag attached on the valve. Using the prototype system, an evaluation experiment has been conducted in order to confirm its effectiveness and to reveal its problems. As the result of the experiment, it was found that the system improved efficiency and reliability of water system isolation task, and it was also found that the visibility of HMD and its troublesome feeling to wear were the problems of the system. (author)

  14. A support system for water system isolation task of nuclear power plant by using augmented reality and RFID

    Energy Technology Data Exchange (ETDEWEB)

    Shimoda, Hiroshi; Ishii, Hirotake; Yamazaki, Yuichiro; Yoshikawa, Hidekazu [Kyoto Univ., Graduate School of Energy Science, Uji, Kyoto (Japan)

    2004-07-15

    Aiming at improvement of task performance and reduction of human error of water system isolation task in NPP periodic maintenance, a support system using state-of-art information technology. Augmented Reality (AR) and Radio Frequency Identification (RFID) has been proposed under the concept of off-site operation and maintenance support center, and a prototype system has been developed. The system has navigation function of which an indication is superimposed directly on the user's view to help to find the designated valves by AR. It also has valve confirmation function by scanning RFID tag attached on the valve. Using the prototype system, an evaluation experiment has been conducted in order to confirm its effectiveness and to reveal its problems. As the result of the experiment, it was found that the system improved efficiency and reliability of water system isolation task, and it was also found that the visibility of HMD and its troublesome feeling to wear were the problems of the system. (author)

  15. A revolutionary lunar space transportation system architecture using extraterrestrial LOX-augmented NTR propulsion

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; Culver, Donald W.; Bulman, Melvin J.; McIlwain, Mel C.

    1994-08-01

    The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on

  16. Augmentative Communication Services in the Schools.

    Science.gov (United States)

    Blackstone, Sarah W.

    1989-01-01

    The article considers current issues concerning service delivery systems and practices concerning augmentative and alternative communication (AAC) services in U.S. schools. Concerns in AAC program development are noted and service delivery models (center-based, community-based, or collaborative) are compared. (DB)

  17. Accurate overlaying for mobile augmented reality

    NARCIS (Netherlands)

    Pasman, W; van der Schaaf, A; Lagendijk, RL; Jansen, F.W.

    1999-01-01

    Mobile augmented reality requires accurate alignment of virtual information with objects visible in the real world. We describe a system for mobile communications to be developed to meet these strict alignment criteria using a combination of computer vision. inertial tracking and low-latency

  18. Orthobiologics in the augmentation of osteoporotic fractures.

    Science.gov (United States)

    Watson, J Tracy; Nicolaou, Daemeon A

    2015-02-01

    Many orthobiologic adjuvants are available and widely utilized for general skeletal restoration. Their use for the specific task of osteoporotic fracture augmentation is less well recognized. Common conductive materials are reviewed for their value in this patient population including the large group of allograft adjuvants categorically known as the demineralized bone matrices (DBMs). Another large group of alloplastic materials is also examined-the calcium phosphate and sulfate ceramics. Both of these materials, when used for the proper indications, demonstrate efficacy for these patients. The inductive properties of bone morphogenic proteins (BMPs) and platelet concentrates show no clear advantages for this group of patients. Systemic agents including bisphosphonates, receptor activator of nuclear factor κβ ligand (RANKL) inhibitors, and parathyroid hormone augmentation all demonstrate positive effects with this fracture cohort. Newer modalities, such as trace ion bioceramic augmentation, are also reviewed for their positive effects on osteoporotic fracture healing.

  19. AR DOC: Augmented reality documentaries

    DEFF Research Database (Denmark)

    Vistisen, Peter

    2014-01-01

    Augmented Reality Documentaries (AR DOC) er et ’lille’ Shareplay projekt (ansøgte midler augmented reality cross media løsninger, til at skabe engagerende publikumsformidling...... indenfor oplevelsesindustrien. Projektet har genereret ny viden omkring, hvordan fysisk og digital formidling kan understøttes via Augmented Reality som formidlingsformat....

  20. Issues of Mitigation Strategies in Augmented System for Next Generation Control Room

    Energy Technology Data Exchange (ETDEWEB)

    Tuan Q. Tran

    2007-08-01

    Past research on augmented systems has been predominately concerned with measuring and classifying an operator’s functional states. Only recently has the field begun researching mitigation strategies. The purpose of this paper is to add further conceptual understanding to mitigation strategies. Based upon the decision making literature, we pose three issues that mitigation strategies need to resolve: the types of decision strategies an operator uses, the structure of the information that an operator processes, and finally, the cue or pattern of cues that the operator relies on in making decisions. These issues are important to ensure that mitigation strategies are congruent to operator’s decision-making behaviors.

  1. Augmented Automated Material Accounting Statistics System (AMASS)

    International Nuclear Information System (INIS)

    Lumb, R.F.; Messinger, M.; Tingey, F.H.

    1983-01-01

    This paper describes an extension of the AMASS methodology which was previously presented at the 1981 INMM annual meeting. The main thrust of the current effort is to develop procedures and a computer program for estimating the variance of an Inventory Difference when many sources of variability, other than measurement error, are admitted in the model. Procedures also are included for the estimation of the variances associated with measurement error estimates and their effect on the estimated limit of error of the inventory difference (LEID). The algorithm for the LEID measurement component uncertainty involves the propagated component measurement variance estimates as well as their associated degrees of freedom. The methodology and supporting computer software is referred to as the augmented Automated Material Accounting Statistics System (AMASS). Specifically, AMASS accommodates five source effects. These are: (1) measurement errors (2) known but unmeasured effects (3) measurement adjustment effects (4) unmeasured process hold-up effects (5) residual process variation A major result of this effort is a procedure for determining the effect of bias correction on LEID, properly taking into account all the covariances that exist. This paper briefly describes the basic models that are assumed; some of the estimation procedures consistent with the model; data requirements, emphasizing availability and other practical considerations; discusses implications for bias corrections; and concludes by briefly describing the supporting computer program

  2. Crime Scenes as Augmented Reality

    DEFF Research Database (Denmark)

    Sandvik, Kjetil

    2010-01-01

    Using the concept of augmented reality, this article will investigate how places in various ways have become augmented by means of different mediatization strategies. Augmentation of reality implies an enhancement of the places' emotional character: a certain mood, atmosphere or narrative surplus......, physical damage: they are all readable and interpretable signs. As augmented reality the crime scene carries a narrative which at first is hidden and must be revealed. Due to the process of investigation and the detective's ability to reason and deduce, the crime scene as place is reconstructed as virtual...

  3. In-Situ Visualization for Cultural Heritage Sites using Novel Augmented Reality Technologies

    Directory of Open Access Journals (Sweden)

    Didier Stricker

    2010-05-01

    Full Text Available Mobile Augmented Reality is an ideal technology for presenting information in an attractive, comprehensive and personalized way to visitors of cultural heritage sites. One of the pioneer projects in this area was certainly the European project ArcheoGuide (IST-1999-11306 which developed and evaluated Augmented Reality (AR at a very early stage. Many progresses have been done since then, and novel devices and algorithms offer novel possibilities and functionalities. In this paper we present current research work and discuss different approaches of Mobile AR for cultural heritage. Since this area is very large we focus on the visual aspects of such technologies, namely tracking and computer vision, as well as visualization.

  4. Designing Android Based Augmented Reality Location-Based Service Application

    Directory of Open Access Journals (Sweden)

    Alim Hardiansyah

    2018-01-01

    Full Text Available Android is an operating system for Linux based smartphone. Android provides an open platform for the developers to create their own application. The most developed and used application now is location based application. This application gives personalization service for mobile device user and is customized to their location. Location based service also gives an opportunity for the developers to develop and increase the value of service. One of the technologies that could be combined with location based application is augmented reality. Augmented reality combines the virtual world with the real one. By the assistance of augmented reality, our surrounding environment could interact in digital form. Information of objects and environment surround us could be added to the augmented reality system and presented. Based on the background, the writers tried to implement those technologies on now rapidly developing android application as a final project to achieve bachelor degree in Department of Informatics Engineering, Faculty of Information Technology and Visual Communication, Al Kamal Science and Technology Institute. This application could be functioned to locate school by using location based service technology with the assistance of navigational applications such as waze and google maps, in form of live direction process through the smartphone

  5. Volumetric, dashboard-mounted augmented display

    Science.gov (United States)

    Kessler, David; Grabowski, Christopher

    2017-11-01

    The optical design of a compact volumetric display for drivers is presented. The system displays a true volume image with realistic physical depth cues, such as focal accommodation, parallax and convergence. A large eyebox is achieved with a pupil expander. The windshield is used as the augmented reality combiner. A freeform windshield corrector is placed at the dashboard.

  6. Performance analysis of an IMU-augmented GNSS tracking system on board the MAIUS-1 sounding rocket

    Science.gov (United States)

    Braun, Benjamin; Grillenberger, Andreas; Markgraf, Markus

    2018-05-01

    Satellite navigation receivers are adequate tracking sensors for range safety of both orbital launch vehicles and suborbital sounding rockets. Due to high accuracy and its low system complexity, satellite navigation is seen as well-suited supplement or replacement of conventional tracking systems like radar. Having the well-known shortcomings of satellite navigation like deliberate or unintentional interferences in mind, it is proposed to augment the satellite navigation receiver by an inertial measurement unit (IMU) to enhance continuity and availability of localization. The augmented receiver is thus enabled to output at least an inertial position solution in case of signal outages. In a previous study, it was shown by means of simulation using the example of Ariane 5 that the performance of a low-grade microelectromechanical IMU is sufficient to bridge expected outages of some ten seconds, and still meeting the range safety requirements in effect. In this publication, these theoretical findings shall be substantiated by real flight data that were recorded on MAIUS-1, a sounding rocket launched from Esrange, Sweden, in early 2017. The analysis reveals that the chosen representative of a microelectromechanical IMU is suitable to bridge outages of up to thirty seconds.

  7. Intuitive Robot Tasks with Augmented Reality and Virtual Obstacles

    OpenAIRE

    Gaschler, Andre;Springer, Maximilian;Rickert, Markus;Knoll, Alois

    2017-01-01

    Today's industrial robots require expert knowledge and are not profitable for small and medium sized enterprises with their small lot sizes. It is our strong belief that more intuitive robot programming in an augmented reality robot work cell can dramatically simplify re-programming and leverage robotics technology in short production cycles. In this paper, we present a novel augmented reality system for defining virtual obstacles, specifying tool positions, and specifying robot tasks. We eva...

  8. Design and implementation of a GPS guidance system for agricultural tractors using augmented reality technology.

    Science.gov (United States)

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor's position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems.

  9. Design and Implementation of a GPS Guidance System for Agricultural Tractors Using Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Laura del-Pozo-San-Cirilo

    2010-11-01

    Full Text Available Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor’s position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems.

  10. PleurAlert: an augmented chest drainage system with electronic sensing, automated alerts and internet connectivity.

    Science.gov (United States)

    Leeson, Cory E; Weaver, Robert A; Bissell, Taylor; Hoyer, Rachel; McClain, Corinne; Nelson, Douglas A; Samosky, Joseph T

    2012-01-01

    We have enhanced a common medical device, the chest tube drainage container, with electronic sensing of fluid volume, automated detection of critical alarm conditions and the ability to automatically send alert text messages to a nurse's cell phone. The PleurAlert system provides a simple touch-screen interface and can graphically display chest tube output over time. Our design augments a device whose basic function dates back 50 years by adding technology to automate and optimize a monitoring process that can be time consuming and inconvenient for nurses. The system may also enhance detection of emergency conditions and speed response time.

  11. Visual Enhancement for Sports Entertainment by Vision-Based Augmented Reality

    Directory of Open Access Journals (Sweden)

    Hideo Saito

    2008-09-01

    Full Text Available This paper presents visually enhanced sports entertainment applications: AR Baseball Presentation System and Interactive AR Bowling System. We utilize vision-based augmented reality for getting immersive feeling. First application is an observation system of a virtual baseball game on the tabletop. 3D virtual players are playing a game on a real baseball field model, so that users can observe the game from favorite view points through a handheld monitor with a web camera. Second application is a bowling system which allows users to roll a real ball down a real bowling lane model on the tabletop and knock down virtual pins. The users watch the virtual pins through the monitor. The lane and the ball are also tracked by vision-based tracking. In those applications, we utilize multiple 2D markers distributed at arbitrary positions and directions. Even though the geometrical relationship among the markers is unknown, we can track the camera in very wide area.

  12. Controlling bistability by linear augmentation

    International Nuclear Information System (INIS)

    Sharma, Pooja Rani; Shrimali, Manish Dev; Prasad, Awadhesh; Feudel, Ulrike

    2013-01-01

    In many bistable oscillating systems only one of the attractors is desired to possessing certain system performance. We present a method to drive a bistable system to a desired target attractor by annihilating the other one. This shift from bistability to monostability is achieved by augmentation of the nonlinear oscillator with a linear control system. For a proper choice of the control function one of the attractors disappears at a critical coupling strength in an control-induced boundary crisis. This transition from bistability to monostability is demonstrated with two paradigmatic examples, the autonomous Chua oscillator and a neuronal system with a periodic input signal.

  13. An Application of Augmented Reality for Teaching Modeling of Structural Systems

    Directory of Open Access Journals (Sweden)

    Claudia Susie Camargo Rodrigues

    2010-10-01

    Full Text Available Many studies have shown that students learn best when a variety of teaching techniques are used, and that some students respond best to certain methods. Based on this, the use of computers in classroom is more and more stimulated and many applications of computational techniques are being developed as educational tools, with the aim of providing a vast field of learning experiences for the students. One of the most difficult pedagogical problems in architectural education is the interface between structural and architectural design issues. This paper presents an Augmented Reality application implemented as a teaching tool in the Faculty of Architecture and Urbanism at Federal University of Rio de Janeiro (UFRJ, to introduce the novice students to the study of structural systems, in a pleasant manner suitable for the architecture student profile.

  14. Augmenting real-time video with virtual models for enhanced visualization for simulation, teaching, training and guidance

    Science.gov (United States)

    Potter, Michael; Bensch, Alexander; Dawson-Elli, Alexander; Linte, Cristian A.

    2015-03-01

    In minimally invasive surgical interventions direct visualization of the target area is often not available. Instead, clinicians rely on images from various sources, along with surgical navigation systems for guidance. These spatial localization and tracking systems function much like the Global Positioning Systems (GPS) that we are all well familiar with. In this work we demonstrate how the video feed from a typical camera, which could mimic a laparoscopic or endoscopic camera used during an interventional procedure, can be used to identify the pose of the camera with respect to the viewed scene and augment the video feed with computer-generated information, such as rendering of internal anatomy not visible beyond the imaged surface, resulting in a simple augmented reality environment. This paper describes the software and hardware environment and methodology for augmenting the real world with virtual models extracted from medical images to provide enhanced visualization beyond the surface view achieved using traditional imaging. Following intrinsic and extrinsic camera calibration, the technique was implemented and demonstrated using a LEGO structure phantom, as well as a 3D-printed patient-specific left atrial phantom. We assessed the quality of the overlay according to fiducial localization, fiducial registration, and target registration errors, as well as the overlay offset error. Using the software extensions we developed in conjunction with common webcams it is possible to achieve tracking accuracy comparable to that seen with significantly more expensive hardware, leading to target registration errors on the order of 2 mm.

  15. AMI: Augmented Michelson Interferometer

    Science.gov (United States)

    Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel

    2015-10-01

    Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.

  16. Use of display technologies for augmented reality enhancement

    Science.gov (United States)

    Harding, Kevin

    2016-06-01

    Augmented reality (AR) is seen as an important tool for the future of user interfaces as well as training applications. An important application area for AR is expected to be in the digitization of training and worker instructions used in the Brilliant Factory environment. The transition of work instructions methods from printed pages in a book or taped to a machine to virtual simulations is a long step with many challenges along the way. A variety of augmented reality tools are being explored today for industrial applications that range from simple programmable projections in the work space to 3D displays and head mounted gear. This paper will review where some of these tool are today and some of the pros and cons being considered for the future worker environment.

  17. Developing augmented reality solutions through user involvement

    OpenAIRE

    Siltanen, Sanni

    2015-01-01

    Augmented reality (AR) technology merges digital information into the real world. It is an effective visualization method; AR enhances user's spatial perception skills and helps to understand spatial dimensions and relationships. It is beneficial for many professional application areas such as assembly, maintenance and repair. AR visualization helps to concretize building and construction projects and interior design plans – also for non-technically oriented people, who might otherwise have d...

  18. Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport?

    DEFF Research Database (Denmark)

    Lundby, C; Robach, P; Boushel, R

    2008-01-01

    This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during...... before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery....

  19. Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders

    Science.gov (United States)

    Chicchi Giglioli, Irene Alice; Pedroli, Elisa

    2015-01-01

    Augmented Reality is a new technological system that allows introducing virtual contents in the real world in order to run in the same representation and, in real time, enhancing the user's sensory perception of reality. From another point of view, Augmented Reality can be defined as a set of techniques and tools that add information to the physical reality. To date, Augmented Reality has been used in many fields, such as medicine, entertainment, maintenance, architecture, education, and cognitive and motor rehabilitation but very few studies and applications of AR exist in clinical psychology. In the treatment of psychological disorders, Augmented Reality has given preliminary evidence to be a useful tool due to its adaptability to the patient needs and therapeutic purposes and interactivity. Another relevant factor is the quality of the user's experience in the Augmented Reality system determined from emotional engagement and sense of presence. This experience could increase the AR ecological validity in the treatment of psychological disorders. This paper reviews the recent studies on the use of Augmented Reality in the evaluation and treatment of psychological disorders, focusing on current uses of this technology and on the specific features that delineate Augmented Reality a new technique useful for psychology. PMID:26339283

  20. Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders.

    Science.gov (United States)

    Chicchi Giglioli, Irene Alice; Pallavicini, Federica; Pedroli, Elisa; Serino, Silvia; Riva, Giuseppe

    2015-01-01

    Augmented Reality is a new technological system that allows introducing virtual contents in the real world in order to run in the same representation and, in real time, enhancing the user's sensory perception of reality. From another point of view, Augmented Reality can be defined as a set of techniques and tools that add information to the physical reality. To date, Augmented Reality has been used in many fields, such as medicine, entertainment, maintenance, architecture, education, and cognitive and motor rehabilitation but very few studies and applications of AR exist in clinical psychology. In the treatment of psychological disorders, Augmented Reality has given preliminary evidence to be a useful tool due to its adaptability to the patient needs and therapeutic purposes and interactivity. Another relevant factor is the quality of the user's experience in the Augmented Reality system determined from emotional engagement and sense of presence. This experience could increase the AR ecological validity in the treatment of psychological disorders. This paper reviews the recent studies on the use of Augmented Reality in the evaluation and treatment of psychological disorders, focusing on current uses of this technology and on the specific features that delineate Augmented Reality a new technique useful for psychology.

  1. Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders

    Directory of Open Access Journals (Sweden)

    Irene Alice Chicchi Giglioli

    2015-01-01

    Full Text Available Augmented Reality is a new technological system that allows introducing virtual contents in the real world in order to run in the same representation and, in real time, enhancing the user’s sensory perception of reality. From another point of view, Augmented Reality can be defined as a set of techniques and tools that add information to the physical reality. To date, Augmented Reality has been used in many fields, such as medicine, entertainment, maintenance, architecture, education, and cognitive and motor rehabilitation but very few studies and applications of AR exist in clinical psychology. In the treatment of psychological disorders, Augmented Reality has given preliminary evidence to be a useful tool due to its adaptability to the patient needs and therapeutic purposes and interactivity. Another relevant factor is the quality of the user’s experience in the Augmented Reality system determined from emotional engagement and sense of presence. This experience could increase the AR ecological validity in the treatment of psychological disorders. This paper reviews the recent studies on the use of Augmented Reality in the evaluation and treatment of psychological disorders, focusing on current uses of this technology and on the specific features that delineate Augmented Reality a new technique useful for psychology.

  2. Bayesian Alternation During Tactile Augmentation

    Directory of Open Access Journals (Sweden)

    Caspar Mathias Goeke

    2016-10-01

    Full Text Available A large number of studies suggest that the integration of multisensory signals by humans is well described by Bayesian principles. However, there are very few reports about cue combination between a native and an augmented sense. In particular, we asked the question whether adult participants are able to integrate an augmented sensory cue with existing native sensory information. Hence for the purpose of this study we build a tactile augmentation device. Consequently, we compared different hypotheses of how untrained adult participants combine information from a native and an augmented sense. In a two-interval forced choice (2 IFC task, while subjects were blindfolded and seated on a rotating platform, our sensory augmentation device translated information on whole body yaw rotation to tactile stimulation. Three conditions were realized: tactile stimulation only (augmented condition, rotation only (native condition, and both augmented and native information (bimodal condition. Participants had to choose one out of two consecutive rotations with higher angular rotation. For the analysis, we fitted the participants’ responses with a probit model and calculated the just notable difference (JND. Then we compared several models for predicting bimodal from unimodal responses. An objective Bayesian alternation model yielded a better prediction (χred2 = 1.67 than the Bayesian integration model (χred2= 4.34. Slightly higher accuracy showed a non-Bayesian winner takes all model (χred2= 1.64, which either used only native or only augmented values per subject for prediction. However the performance of the Bayesian alternation model could be substantially improved (χred2= 1.09 utilizing subjective weights obtained by a questionnaire. As a result, the subjective Bayesian alternation model predicted bimodal performance most accurately among all tested models. These results suggest that information from augmented and existing sensory modalities in

  3. Augmented Reality

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher; Kjeldsen, Lars Peter Bech; Rahn, Annette

    2015-01-01

    This chapter describes the use of iPad-facilitated application of augmented reality in the teaching of highly complex anatomical and physiological subjects in the training of nurses at undergraduate level. The general aim of the project is to investigate the potentials of this application in terms...... of making the complex content and context of these subjects more approachable to the students through the visualization made possible through the use of this technology. A case study is described in this chapter. Issues and factors required for the sustainable use of the mobile-facilitated application...... of augmented reality are discussed....

  4. Affordances in Mobile Augmented Reality Applications

    OpenAIRE

    Gjøsæter, Tor

    2014-01-01

    This paper explores the affordances of augmented reality content in a mobile augmented reality application. A user study was conducted by performing a multi-camera video recording of seven think aloud sessions. The think aloud sessions consisted of individual users performing tasks, exploring and experiencing a mobile augmented reality (MAR) application we developed for the iOS platform named ARad. We discuss the instrumental affordances we observed when users interacted with augmented realit...

  5. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  6. Augment-type two stage accelerator

    International Nuclear Information System (INIS)

    Ogino, Mutsuo; Azuma, Kingo.

    1995-01-01

    When a flying body accelerated by a gas gun at a first stage enters into an augment rail passing through an introduction tube, an ignition capacitor for initial plasmas is turned ON to apply a voltage between the augment rails. Subsequently, the accelerating gas present behind the flying body is formed into plasmas by a laser, to flow electric current from one of the inner augment rails → plasma armature → the other of the inner augment rails, and additionally accelerate the flying body by Lorentz force formed in this case. Since the plasmas are maintained in a state of higher density than the plasmas obtained by using all of the augment rails, the ignition capacitor for initial plasmas in switched to a power source. As a result, it is possible to flow the maximum current before the plasmas expand, and a large accelerating force and a high magnetic flux density are attained, to improve acceleration performance of the flying body. (N.H.)

  7. 2-Dimensional changes of the soft tissue profile of augmented and non-augmented human extraction sockets: a randomized pilot study.

    Science.gov (United States)

    Flügge, Tabea; Nelson, Katja; Nack, Claudia; Stricker, Andres; Nahles, Susanne

    2015-04-01

    This study identified the soft tissue changes of the alveolar ridge at different time points within 12 weeks after tooth extraction with and without socket augmentation. In 38 patients with single tooth extractions, 40 sockets were augmented and 39 extraction sockets were not augmented. At 2, 4, 6, 8 and 12 weeks impressions were taken and casts digitized with a laser scanner. The horizontal and vertical changes were compared between augmented and non-augmented sites. A p-value sockets were between 0.4 mm (2 weeks) and 0.8 mm (12 weeks). In non-augmented sockets changes of 0.7 mm (2 weeks) and of 1.0 mm (12 weeks) were demonstrated. The mean values differed significantly between the buccal and oral region (p sockets showed less resorption within 4 weeks after extraction compared to non-augmented sockets. Non-augmented sockets showed a continuous dimensional loss with a great variation over 12 weeks whereas augmented sockets had the highest degree of resorption between 4 and 6 weeks. At 12 weeks a comparable resorption in augmented and non-augmented sockets was observed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Augmented assessment as a means to augmented reality.

    Science.gov (United States)

    Bergeron, Bryan

    2006-01-01

    Rigorous scientific assessment of educational technologies typically lags behind the availability of the technologies by years because of the lack of validated instruments and benchmarks. Even when the appropriate assessment instruments are available, they may not be applied because of time and monetary constraints. Work in augmented reality, instrumented mannequins, serious gaming, and similar promising educational technologies that haven't undergone timely, rigorous evaluation, highlights the need for assessment methodologies that address the limitations of traditional approaches. The most promising augmented assessment solutions incorporate elements of rapid prototyping used in the software industry, simulation-based assessment techniques modeled after methods used in bioinformatics, and object-oriented analysis methods borrowed from object oriented programming.

  9. Thrust Augmented Nozzle for a Hybrid Rocket with a Helical Fuel Port

    Science.gov (United States)

    Marshall, Joel H.

    A thrust augmented nozzle for hybrid rocket systems is investigated. The design lever-ages 3-D additive manufacturing to embed a helical fuel port into the thrust chamber of a hybrid rocket burning gaseous oxygen and ABS plastic as propellants. The helical port significantly increases how quickly the fuel burns, resulting in a fuel-rich exhaust exiting the nozzle. When a secondary gaseous oxygen flow is injected into the nozzle downstream of the throat, all of the remaining unburned fuel in the plume spontaneously ignites. This secondary reaction produces additional high pressure gases that are captured by the nozzle and significantly increases the motor's performance. Secondary injection and combustion allows a high expansion ratio (area of the nozzle exit divided by area of the throat) to be effective at low altitudes where there would normally be significantly flow separation and possibly an embedded shock wave due. The result is a 15 percent increase in produced thrust level with no loss in engine efficiency due to secondary injection. Core flow efficiency was increased significantly. Control tests performed using cylindrical fuel ports with secondary injection, and helical fuel ports without secondary injection did not exhibit this performance increase. Clearly, both the fuel-rich plume and secondary injection are essential features allowing the hybrid thrust augmentation to occur. Techniques for better design optimization are discussed.

  10. Development of a Lunar-Phase Observation System Based on Augmented Reality and Mobile Learning Technologies

    OpenAIRE

    Tarng, Wernhuar; Lin, Yu-Sheng; Lin, Chiu-Pin; Ou, Kuo-Liang

    2016-01-01

    Observing the lunar phase requires long-term involvement, and it is often obstructed by bad weather or tall buildings. In this study, a lunar-phase observation system is developed using the augmented reality (AR) technology and the sensor functions of GPS, electronic compass, and 3-axis accelerometer on mobile devices to help students observe and record lunar phases easily. By holding the mobile device towards the moon in the sky, the screen will show the virtual moon at the position of the r...

  11. An Efficiency Analysis of Augmented Reality Marker Recognition Algorithm

    Directory of Open Access Journals (Sweden)

    Kurpytė Dovilė

    2014-05-01

    Full Text Available The article reports on the investigation of augmented reality system which is designed for identification and augmentation of 100 different square markers. Marker recognition efficiency was investigated by rotating markers along x and y axis directions in range from −90° to 90°. Virtual simulations of four environments were developed: a an intense source of light, b an intense source of light falling from the left side, c the non-intensive light source falling from the left side, d equally falling shadows. The graphics were created using the OpenGL graphics computer hardware interface; image processing was programmed in C++ language using OpenCV, while augmented reality was developed in Java programming language using NyARToolKit. The obtained results demonstrate that augmented reality marker recognition algorithm is accurate and reliable in the case of changing lighting conditions and rotational angles - only 4 % markers were unidentified. Assessment of marker recognition efficiency let to propose marker classification strategy in order to use it for grouping various markers into distinct markers’ groups possessing similar recognition properties.

  12. Augmented Reality Using JavaScript

    OpenAIRE

    Hailemichael, Aida

    2013-01-01

    The project goal was to provide a mobile application, for a venue called Kulturhuset Karelia which is located in Tammisaari Finland. In this paper, the concept of Augmented Reality technology is briefly discussed along with the mobile application for the venue. The utilisation of JavaScript for creating Augmented reality content for mobile Augmented reality browser is also demonstrated. The application was created by using Architecht API which is Jacvascript library based on the Wikitude...

  13. A Study on Tracking and Augmentation in Mobile AR for e-Leisure

    Directory of Open Access Journals (Sweden)

    Seong-Wook Jang

    2018-01-01

    Full Text Available Recently, a mobile augmented reality (AR system with AR technology that requires high performance has become popular due to the improved performance of smartphones. In particular, mobile AR that directly interacts with outdoor environments has been in development because of increasing interest in e-leisure due to improvements in living standards. Therefore, this paper aims to study tracking and augmentation in mobile AR for e-leisure. We analyzed the performance of human body tracking application implemented in a mobile system (smartphone using three methods (marker-based, markerless, and sensor-based for the feasibility examination of human body tracking in mobile AR. Furthermore, game information augmentation was examined through the implementation of mobile AR using two methods (marker- and sensor-based.

  14. A support system for water system isolation task in NPP by using augmented reality and RFID

    Energy Technology Data Exchange (ETDEWEB)

    Shimoda, Hiroshi; Ishii, Hirotake; Yamazaki, Yuichiro [Kyoto Univ., Uji (Japan). Graduate School of Energy Science; Wu, Wei [Mitsubishi Electric Corp., Amagasaki, Hyogo (Japan); Yoshikawa, Hidekazu [Kyoto Univ., Kyoto (Japan). Graduate School of Energy Science

    2004-07-01

    Aiming at improvement of task performance and reduction of human error of water system isolation task in NPP periodic maintenance, a support system using state-of-art information technology, Augmented Reality (AR) and Radio Frequency Identification (RFID) has been proposed, and a prototype system has been developed. The system has navigation function of which an indication is superimposed directly on the user's view to help to find the designated valves by AR. It also has valve confirmation function by scanning RFID tag attached on the valve. In case of applying it to practical use, its information presentation device is important because it affects the task performance. In this study, therefore, a suitable information presentation device has been pursued by conducting subject experiments employing psychological experimental technique. The candidates of the devices are one-eye video see-through HMD (SCOPO) and both-eye video see-through HMD (Glasstron) as wearable system configuration, and tablet PC and compact TV as handheld system configuration. In the experiment, task completion time, number of errors, NASA-TLX score as subjects' mental workload and subjective usability questionnaire were measured when using the above devices. As the results, it was found that one-eye video see-through head mounted display, SCOPO was suitable device as wearable system configuration, and compact TV was suitable device as handheld system configuration. (author)

  15. A support system for water system isolation task in NPP by using augmented reality and RFID

    International Nuclear Information System (INIS)

    Shimoda, Hiroshi; Ishii, Hirotake; Yamazaki, Yuichiro; Yoshikawa, Hidekazu

    2004-01-01

    Aiming at improvement of task performance and reduction of human error of water system isolation task in NPP periodic maintenance, a support system using state-of-art information technology, Augmented Reality (AR) and Radio Frequency Identification (RFID) has been proposed, and a prototype system has been developed. The system has navigation function of which an indication is superimposed directly on the user's view to help to find the designated valves by AR. It also has valve confirmation function by scanning RFID tag attached on the valve. In case of applying it to practical use, its information presentation device is important because it affects the task performance. In this study, therefore, a suitable information presentation device has been pursued by conducting subject experiments employing psychological experimental technique. The candidates of the devices are one-eye video see-through HMD (SCOPO) and both-eye video see-through HMD (Glasstron) as wearable system configuration, and tablet PC and compact TV as handheld system configuration. In the experiment, task completion time, number of errors, NASA-TLX score as subjects' mental workload and subjective usability questionnaire were measured when using the above devices. As the results, it was found that one-eye video see-through head mounted display, SCOPO was suitable device as wearable system configuration, and compact TV was suitable device as handheld system configuration. (author)

  16. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  17. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  18. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  19. Physical hypermedia: augmenting physical material with hypermedia structures

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Ørbæk, Peter; Kristensen, Jannie Friis

    2003-01-01

    This paper introduces the notion of physical hypermedia, addressing the problem of organizing material in mixed digital and physical environments. Based on empirical studies, we propose concepts for collectional actions and meta-data actions, and present prototypes combining principles from...... augmented reality and hypermedia to support organization of mixtures of digital and physical materials. Our prototype of a physical hypermedia system is running on an augmented architect's desk and digital walls utilizing Radio Frequency Identifier (RFID) tags as well as visual tags tracked by cameras....... It allows users to tag physical materials, and have these tracked by readers (antennas) that may become pervasive in our work environments. In the physical hypermedia system, we work with three categories of RFID tags: simple object tags, collectional tags, and tooltags invoking operations such as grouping...

  20. Performance of a self-augmented railgun

    International Nuclear Information System (INIS)

    Burton, R.L.; Witherspoon, F.D.; Goldstein, S.A.

    1991-01-01

    The accelerating force of a railgun 1/2L'I 2 a can be increased by augmenting the self-induced magnetic field created by the armature current. Augmentation fields can be produced by external current coils or, as is done here, by shorting the railgun muzzle, and using the gun rails as the augmentation coil. Experimental results are presented for a 3.6-m railgun operated in this self-augmented mode, and effective inductance gradients are achieved which are as much as 9.3 times that of the unaugmented gun. A circuit model is presented which explains features of the measured shunt current and voltage. It is concluded that self-augmentation is an effective way to reduce ohmic heating in the armature of a railgun

  1. Centers of Excellence Contribution to Knowledge Augmentation

    International Nuclear Information System (INIS)

    Mignone, O.

    2016-01-01

    Full text: Knowledge management is a key need of the nuclear industry to cope with the knowledge limited augmentation and the risks of knowledge loss due to a number of reasons, such as: staff attrition, organizational changes, upgraded technologies, new projects implementation, and the nuclear power evolution in recent years (i.e., post-Fukushima upgrades). This document describes the contribution of nuclear centers of excellence to knowledge augmentation. The effective implementation of nuclear centers of excellence is a key success factor for the knowledge management programme of nuclear organizations. This document, is based on a real example of operating organization approach in launching such initiative for staff knowledge augmentation and performance improvement. Eventually, any type of organizations in the nuclear sector could apply the proposed technique to reach better knowledge usage. The nuclear centers of excellence are a key knowledge management initiative for the learning organizations that are caring about organizational intellectual capital and striving for performance improvement. The nuclear centers of excellence can be realized as a forum to exchange ideas, knowledge, information, experiences; to collect lessons learned; and to identify areas for improvement where further organizational competence building is needed. Usual realization of this initiative is going through an active staff involvement in knowledge sharing in a form of different technical communities of practice focusing on specific knowledge domains. (author

  2. INFORMATION VIA AUGMENTED

    OpenAIRE

    Tetteh, Sampson

    2015-01-01

    The vast majority of mobile technology today has developed over the past dec-ades. The thirst for information and communication has brought about high data transfer speed on modern mobile handset devices. This makes it possible for Augmented Reality to be used on mobile phones. Vaasa University of Applied Science, Technobothnia science resource center and Lumivaara Museum saw the importance of information and decided to embark on a pilot project where Augmented Reality will not be only us...

  3. Flow interaction of diffuser augmented wind turbines

    Science.gov (United States)

    Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.

    2016-09-01

    Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.

  4. Visualizing UAS-collected imagery using augmented reality

    Science.gov (United States)

    Conover, Damon M.; Beidleman, Brittany; McAlinden, Ryan; Borel-Donohue, Christoph C.

    2017-05-01

    One of the areas where augmented reality will have an impact is in the visualization of 3-D data. 3-D data has traditionally been viewed on a 2-D screen, which has limited its utility. Augmented reality head-mounted displays, such as the Microsoft HoloLens, make it possible to view 3-D data overlaid on the real world. This allows a user to view and interact with the data in ways similar to how they would interact with a physical 3-D object, such as moving, rotating, or walking around it. A type of 3-D data that is particularly useful for military applications is geo-specific 3-D terrain data, and the visualization of this data is critical for training, mission planning, intelligence, and improved situational awareness. Advances in Unmanned Aerial Systems (UAS), photogrammetry software, and rendering hardware have drastically reduced the technological and financial obstacles in collecting aerial imagery and in generating 3-D terrain maps from that imagery. Because of this, there is an increased need to develop new tools for the exploitation of 3-D data. We will demonstrate how the HoloLens can be used as a tool for visualizing 3-D terrain data. We will describe: 1) how UAScollected imagery is used to create 3-D terrain maps, 2) how those maps are deployed to the HoloLens, 3) how a user can view and manipulate the maps, and 4) how multiple users can view the same virtual 3-D object at the same time.

  5. Precise Haptic Device Co-Location for Visuo-Haptic Augmented Reality.

    Science.gov (United States)

    Eck, Ulrich; Pankratz, Frieder; Sandor, Christian; Klinker, Gudrun; Laga, Hamid

    2015-12-01

    Visuo-haptic augmented reality systems enable users to see and touch digital information that is embedded in the real world. PHANToM haptic devices are often employed to provide haptic feedback. Precise co-location of computer-generated graphics and the haptic stylus is necessary to provide a realistic user experience. Previous work has focused on calibration procedures that compensate the non-linear position error caused by inaccuracies in the joint angle sensors. In this article we present a more complete procedure that additionally compensates for errors in the gimbal sensors and improves position calibration. The proposed procedure further includes software-based temporal alignment of sensor data and a method for the estimation of a reference for position calibration, resulting in increased robustness against haptic device initialization and external tracker noise. We designed our procedure to require minimal user input to maximize usability. We conducted an extensive evaluation with two different PHANToMs, two different optical trackers, and a mechanical tracker. Compared to state-of-the-art calibration procedures, our approach significantly improves the co-location of the haptic stylus. This results in higher fidelity visual and haptic augmentations, which are crucial for fine-motor tasks in areas such as medical training simulators, assembly planning tools, or rapid prototyping applications.

  6. Confronting an Augmented Reality

    Science.gov (United States)

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  7. Advanced Intellect-Augmentation Techniques.

    Science.gov (United States)

    Engelbart, D. C.

    This progress report covers a two-year project which is part of a program that is exploring the value of computer aids in augmenting human intellectual capability. The background and nature of the program, its resources, and the activities it has undertaken are outlined. User experience in applying augmentation tools and techniques to various…

  8. The inertial attitude augmentation for ambiguity resolution in SF/SE-GNSS attitude determination.

    Science.gov (United States)

    Zhu, Jiancheng; Hu, Xiaoping; Zhang, Jingyu; Li, Tao; Wang, Jinling; Wu, Meiping

    2014-06-26

    The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary sensor that carries out the inertial attitude augmentation. Firstly, based on the SF/SE-GNSS compass model, the Inertial Derived Baseline Vector (IDBV) is defined to connect the MEMS-IMU attitude measurement with the SF/SE-GNSS ambiguity search space, and the mechanism of inertial attitude augmentation is revealed from the perspective of geometry. Then, through the quantitative description of model strength by Ambiguity Dilution of Precision (ADOP), two ADOPs are specified for the unaided SF/SE-GNSS compass model and its inertial attitude augmentation counterparts, respectively, and a sufficient condition is proposed for augmenting the SF/SE-GNSS model strength with inertial attitude measurement. Finally, in the framework of an integer aperture estimator with fixed failure rate, the performance of SF/SE-GNSS ambiguity resolution with inertial attitude augmentation is analyzed when the model strength is varying from strong to weak. The simulation results show that, in the SF/SE-GNSS attitude determination application, MEMS-IMU can satisfy the requirements of ambiguity resolution with inertial attitude augmentation.

  9. The Inertial Attitude Augmentation for Ambiguity Resolution in SF/SE-GNSS Attitude Determination

    Science.gov (United States)

    Zhu, Jiancheng; Hu, Xiaoping; Zhang, Jingyu; Li, Tao; Wang, Jinling; Wu, Meiping

    2014-01-01

    The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary sensor that carries out the inertial attitude augmentation. Firstly, based on the SF/SE-GNSS compass model, the Inertial Derived Baseline Vector (IDBV) is defined to connect the MEMS-IMU attitude measurement with the SF/SE-GNSS ambiguity search space, and the mechanism of inertial attitude augmentation is revealed from the perspective of geometry. Then, through the quantitative description of model strength by Ambiguity Dilution of Precision (ADOP), two ADOPs are specified for the unaided SF/SE-GNSS compass model and its inertial attitude augmentation counterparts, respectively, and a sufficient condition is proposed for augmenting the SF/SE-GNSS model strength with inertial attitude measurement. Finally, in the framework of an integer aperture estimator with fixed failure rate, the performance of SF/SE-GNSS ambiguity resolution with inertial attitude augmentation is analyzed when the model strength is varying from strong to weak. The simulation results show that, in the SF/SE-GNSS attitude determination application, MEMS-IMU can satisfy the requirements of ambiguity resolution with inertial attitude augmentation. PMID:24971472

  10. A New Hybrid Approach for Augmented Reality Maintenance in Scientific Facilities

    Directory of Open Access Journals (Sweden)

    Héctor Martínez

    2013-09-01

    Full Text Available Maintenance in scientific facilities is a difficult issue, especially in large and hazardous facilities, due to the complexity of tasks and equipment. Augmented reality is a technology that has already shown great promise in the maintenance field. With the help of augmented reality applications, maintenance tasks can be carried out faster and more safely. The problem with current applications is that they are small-scale prototypes that do not easily scale to large facility maintenance applications. This paper presents a new hybrid approach that enables the creation of augmented reality maintenance applications for large and hazardous scientific facilities. In this paper, a new augmented reality marker and the algorithm for its recognition is proposed. The performance of the algorithm is verified in three test cases, showing promising results in two of them. Improvements in robustness in the third test case in which the camera is moving quickly or when light conditions are extreme are subject to further studies. The proposed new approach will be integrated into an existing augmented reality maintenance system.

  11. Novel Augmentation Strategies in Major Depression

    DEFF Research Database (Denmark)

    Martiny, Klaus

    2017-01-01

    Hypothesis The hypotheses of all the four included studies share the common idea that it is possible to augment the effect of antidepressant drug treatment by applying different interventions and with each intervention attain a clinically meaningful better effect compared to a control condition...... and randomised to augmentation with either active or placebo matching pindolol tablets. In the PEMF study patients were continued on ongoing medication and randomised to augmentation with active or inactive (sham) 30 minutes daily PEMF treatment on weekdays. In the Chronos study all patients were treated...... The results from the Pindolol study showed that pindolol did not augment the effect of venlafaxine for the whole sample. However, for those patients classified as slow metabolizers, based on their O-desmethylvenlafaxine/venlafaxine ratio (ODV/V), pindolol did augment the antidepressant effect. For patients...

  12. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  13. Shifting the paradigm of music instruction: Implications of embodiment stemming from an augmented reality guitar learning system

    Directory of Open Access Journals (Sweden)

    Joseph Roland Keebler

    2014-05-01

    Full Text Available Musical instruction often includes materials that can act as a barrier to learning. New technologies using augmented reality may aid in reducing the initial difficulties involved in learning music by lowering these barriers characteristic of traditional instructional materials. Therefore, this set of studies examined a novel augmented reality guitar learning system (i.e., the Fretlight® guitar in regards to current theories of embodied music cognition. Specifically, we examined the effects of using this system in comparison to a standard instructional material (i.e. diagrams. First, we review major theories related to musical embodiment and specify a niche within this research space we call embodied music technology for learning. Following, we explicate two parallel experiments that were conducted to address the learning effects of this system. Experiment 1 examined short-term learning effects within one experimental session, while Experiment 2 examined both short-term and long-term effects across two sessions spaced at a two-week interval. Analyses demonstrated that, for many of our dependent variables, all participants increased in performance across time. Further, the Fretlight® condition consistently led to significantly better outcomes via interactive effects, including significantly better long term retention for the learned information across a two week time interval. These results are discussed in the context of embodied cognition theory as it relates to music. Potential limitations and avenues for future research are described.

  14. Augmented Reality on Android

    OpenAIRE

    Chunghan Li; Chang-Shyh Peng; Daisy F. Sang

    2013-01-01

    Augmented Reality is an application which combines a live view of real-world environment and computer-generated images. This paper studies and demonstrates an efficient Augmented Reality development in the mobile Android environment with the native Java language and Android SDK. Major components include Barcode Reader, File Loader, Marker Detector, Transform Matrix Generator, and a cloud database.

  15. Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas

    Directory of Open Access Journals (Sweden)

    Isaque Daniel Rocha Eberhardt

    2016-03-01

    Full Text Available The potential of optical remote sensing data to identify, map and monitor croplands is well recognized. However, clouds strongly limit the usefulness of optical imagery for these applications. This paper aims at assessing cloud cover conditions over four states in the tropical and sub-tropical Center-South region of Brazil to guide the development of an appropriate agricultural monitoring system based on Landsat-like imagery. Cloudiness was assessed during overlapping four months periods to match the typical length of crop cycles in the study area. The percentage of clear sky occurrence was computed from the 1 km resolution MODIS Cloud Mask product (MOD35 considering 14 years of data between July 2000 and June 2014. Results showed high seasonality of cloud occurrence within the crop year with strong variations across the study area. The maximum seasonality was observed for the two states in the northern part of the study area (i.e., the ones closer to the Equator line, which also presented the lowest averaged values (15% of clear sky occurrence during the main (summer cropping period (November to February. In these locations, optical data faces severe constraints for mapping summer crops. On the other hand, relatively favorable conditions were found in the southern part of the study region. In the South, clear sky values of around 45% were found and no significant clear sky seasonality was observed. Results underpin the challenges to implement an operational crop monitoring system based solely on optical remote sensing imagery in tropical and sub-tropical regions, in particular if short-cycle crops have to be monitored during the cloudy summer months. To cope with cloudiness issues, we recommend the use of new systems with higher repetition rates such as Sentinel-2. For local studies, Unmanned Aircraft Vehicles (UAVs might be used to augment the observing capability. Multi-sensor approaches combining optical and microwave data can be another

  16. Facilitating efficient augmentation of transmission networks to connect renewable energy generation: the Australian experience

    International Nuclear Information System (INIS)

    Wright, Glen

    2012-01-01

    Australia is heavily dependent on coal for electricity generation. The Renewable Energy Target has spurred growth in the utilization of renewable energy sources, with further growth expected into the future. Australia's strongest renewable energy sources are generally distant from the transmission network in resource ‘basins’. Investment is needed to augment the transmission network to enable delivery of electricity from these sources to consumers. Considerable economies of scale flow from anticipating the connection of numerous generators in an area over time and sizing augmentations accordingly. Following a lengthy rulemaking process, the National Electricity Rules were recently amended by a new rule, designed to facilitate the construction of such efficiently sized augmentations. However, the new rule is more conservative than initially envisaged, making little substantive change to the current frameworks for augmentation and connection. This paper outlines these frameworks and the rulemaking process and identifies the key debates surrounding the rule change are identified. This paper then provides a detailed analysis of the new rule, concluding that it is defective in a number of respects and is unlikely to result in the efficient and timely augmentation of the network needed to unlock the potential of Australia's strongest renewable energy resources. - Highlights: ► Remoteness of renewable energy sources is a barrier to greater renewable energy utilization. ► Significant economies of scale flow from efficiently-sized transmission network augmentation. ► Current frameworks in Australia do not incentivise efficiently-sized network augmentations. ► The lack of property rights in an augmentation is particularly problematic. ► The new Scale Efficient Network Extensions rule is not apt to facilitate efficiently-sized network augmentations.

  17. Virtual and augmented reality for training on maintenance; Realidad virutal y aumentada para la formacion en mantenimiento

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, F.

    2001-07-01

    This paper presents two projects focused to support training on maintenance using new technologies. Both projects aims at specifying. designing, developing, and demonstrating prototypes allowing computer guided maintenance of complex mechanical elements using Virtual Reality (VIRMAN) and Augmented Reality (STARMATE) techniques. VIRMAN project is dedicated to training course development on maintenance using Virtual Reality. It based in the animation of three dimension images for component assembly/de-assembly or equipment movements. STARMATE will rely on Augmented Reality techniques which is a growing area in virtual Reality research. The idea of Augmented Reality is to combine a real scene, viewed by the user, with a virtual scene generated by a computer augmenting the reality with additional information. (Author)

  18. The role of imaging in pediatric bladder augmentation

    Energy Technology Data Exchange (ETDEWEB)

    Breen, Micheal; Chow, Jeanne S. [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States); Phelps, Andrew [UCSF Benioff Children' s Hospital San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Estrada, Carlos [Boston Children' s Hospital, Department of Urology, Boston, MA (United States)

    2015-09-15

    Bladder augmentation (also called augmentation cystoplasty) refers to a number of surgical methods that increase the capacity and compliance of the urinary bladder. Imaging has an important role in the postoperative evaluation of bladder augmentation. The most common augmentation procedures utilize enteric segments to augment the bladder. The various types of bladder augmentation have characteristic appearances on different imaging modalities. Spontaneous bladder perforation is a complication that is seen in both early and late post-operative periods and it is one of the most important complications for radiologists to be aware of as it is life-threatening. We review the indications for bladder augmentation in children, the surgical techniques employed, the normal postoperative appearances on imaging studies and the role of imaging complications of bladder augmentation including delayed spontaneous bladder rupture, which is life-threatening. (orig.)

  19. FlyAR: augmented reality supported micro aerial vehicle navigation.

    Science.gov (United States)

    Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard

    2014-04-01

    Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicle’s position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the user’s view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding.

  20. Characterization of Personal Privacy Devices (PPD) radiation pattern impact on the ground and airborne segments of the local area augmentation system (LAAS) at GPS L1 frequency

    Science.gov (United States)

    Alkhateeb, Abualkair M. Khair

    Personal Privacy Devices (PPDs) are radio-frequency transmitters that intentionally transmit in a frequency band used by other devices for the intent purpose of denying service to those devices. These devices have shown the potential to interfere with the ground and air sub-systems of the Local Area Augmentation Systems (LAAS), a GPS-based navigation aids at commercial airports. The Federal Aviation Administration (FAA) is concerned by the potential impact of these devices to GPS navigation aids at airports and has commenced an activity to determine the severity of this threat. In support of this situation, the research in this dissertation has been conducted under (FAA) Cooperative Agreement 2011-G-012, to investigate the impact of these devices on the LAAS. In order to investigate the impact of PPDs Radio Frequency Interference (RFI) on the ground and air sub-systems of the LAAS, the work presented in phase one of this research is intended to characterize the vehicle's impact on the PPD's Effective Isotropic Radiated Power (EIRP). A study was conceived in this research to characterize PPD performance by examining the on-vehicle radiation patterns as a function of vehicle type, jammer type, jammer location inside a vehicle and jammer orientation at each location. Phase two was to characterize the GPS Radiation Pattern on Multipath Limiting Antenna. MLA has to meet stringent requirements for acceptable signal detection and multipath rejection. The ARL-2100 is the most recent MLA antenna proposed to be used in the LAAS ground segment. The ground-based antenna's radiation pattern was modeled. This was achieved via (HFSS) a commercial-off the shelf CAD-based modeling code with a full-wave electromagnetic software simulation package that uses the Finite Element Analysis. Phase three of this work has been conducted to study the characteristics of the GPS Radiation Pattern on Commercial Aircraft. The airborne GPS antenna was modeled and the resulting radiation pattern on

  1. Repeated vertebral augmentation for new vertebral compression fractures of postvertebral augmentation patients: a nationwide cohort study

    Directory of Open Access Journals (Sweden)

    Liang CL

    2015-03-01

    Full Text Available Cheng-Loong Liang,1 Hao-Kwan Wang,1 Fei-Kai Syu,2 Kuo-Wei Wang,1 Kang Lu,1 Po-Chou Liliang1 1Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan; 2Department of Pharmacy, China Medical University Hospital, Taichung City, Taiwan Purpose: Postvertebral augmentation vertebral compression fractures are common; repeated vertebral augmentation is usually performed for prompt pain relief. This study aimed to evaluate the incidence and risk factors of repeat vertebral augmentation.Methods: We performed a retrospective, nationwide, population-based longitudinal observation study, using the National Health Insurance Research Database (NHIRD of Taiwan. All patients who received vertebral augmentation for vertebral compression fractures were evaluated. The collected data included patient characteristics (demographics, comorbidities, and medication exposure and repeat vertebral augmentation. Kaplan–Meier and stratified Cox proportional hazard regressions were performed for analyses.Results: The overall incidence of repeat vertebral augmentation was 11.3% during the follow-up until 2010. Patients with the following characteristics were at greater risk for repeat vertebral augmentation: female sex (AOR=1.24; 95% confidence interval [CI]: 1.10–2.36, advanced age (AOR=1.60; 95% CI: 1.32–2.08, diabetes mellitus (AOR=4.31; 95% CI: 4.05–5.88, cerebrovascular disease (AOR=4.09; 95% CI: 3.44–5.76, dementia (AOR=1.97; 95% CI: 1.69–2.33, blindness or low vision (AOR=3.72; 95% CI: 2.32–3.95, hypertension (AOR=2.58; 95% CI: 2.35–3.47, and hyperlipidemia (AOR=2.09; 95% CI: 1.67–2.22. Patients taking calcium/ vitamin D (AOR=2.98; 95% CI: 1.83–3.93, bisphosphonates (AOR=2.11; 95% CI: 1.26–2.61, or calcitonin (AOR=4.59; 95% CI: 3.40–5.77 were less likely to undergo repeat vertebral augmentation; however, those taking steroids (AOR=7.28; 95% CI: 6.32–8.08, acetaminophen (AOR=3.54; 95% CI: 2.75–4.83, or nonsteroidal

  2. ARSC: Augmented Reality Student Card--An Augmented Reality Solution for the Education Field

    Science.gov (United States)

    El Sayed, Neven A. M.; Zayed, Hala H.; Sharawy, Mohamed I.

    2011-01-01

    Augmented Reality (AR) is the technology of adding virtual objects to real scenes through enabling the addition of missing information in real life. As the lack of resources is a problem that can be solved through AR, this paper presents and explains the usage of AR technology we introduce Augmented Reality Student Card (ARSC) as an application of…

  3. An Augmented Reality-Based Mobile Learning System to Improve Students' Learning Achievements and Motivations in Natural Science Inquiry Activities

    Science.gov (United States)

    Chiang, Tosti H. C.; Yang, Stephen J. H.; Hwang, Gwo-Jen

    2014-01-01

    In this study, an augmented reality-based mobile learning system is proposed for conducting inquiry-based learning activities. An experiment has been conducted to examine the effectiveness of the proposed approach in terms of learning achievements and motivations. The subjects were 57 fourth graders from two classes taught by the same teacher in…

  4. Mersiline mesh in premaxillary augmentation.

    Science.gov (United States)

    Foda, Hossam M T

    2005-01-01

    Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant.

  5. Augmented Reality-Guided Lumbar Facet Joint Injections.

    Science.gov (United States)

    Agten, Christoph A; Dennler, Cyrill; Rosskopf, Andrea B; Jaberg, Laurenz; Pfirrmann, Christian W A; Farshad, Mazda

    2018-05-08

    The aim of this study was to assess feasibility and accuracy of augmented reality-guided lumbar facet joint injections. A spine phantom completely embedded in hardened opaque agar with 3 ring markers was built. A 3-dimensional model of the phantom was uploaded to an augmented reality headset (Microsoft HoloLens). Two radiologists independently performed 20 augmented reality-guided and 20 computed tomography (CT)-guided facet joint injections each: for each augmented reality-guided injection, the hologram was manually aligned with the phantom container using the ring markers. The radiologists targeted the virtual facet joint and tried to place the needle tip in the holographic joint space. Computed tomography was performed after each needle placement to document final needle tip position. Time needed from grabbing the needle to final needle placement was measured for each simulated injection. An independent radiologist rated images of all needle placements in a randomized order blinded to modality (augmented reality vs CT) and performer as perfect, acceptable, incorrect, or unsafe. Accuracy and time to place needles were compared between augmented reality-guided and CT-guided facet joint injections. In total, 39/40 (97.5%) of augmented reality-guided needle placements were either perfect or acceptable compared with 40/40 (100%) CT-guided needle placements (P = 0.5). One augmented reality-guided injection missed the facet joint space by 2 mm. No unsafe needle placements occurred. Time to final needle placement was substantially faster with augmented reality guidance (mean 14 ± 6 seconds vs 39 ± 15 seconds, P Augmented reality-guided facet joint injections are feasible and accurate without potentially harmful needle placement in an experimental setting.

  6. AMPS: An Augmented Matrix Formulation for Principal Submatrix Updates with Application to Power Grids

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, Yu-Hong; Pothen, Alex; Halappanavar, Mahantesh; Huang, Zhenyu

    2017-10-09

    We present an augmented matrix approach to update the solution to a linear system of equations when the coefficient matrix is modified by a few elements within a principal submatrix. This problem arises in the dynamic security analysis of a power grid, where operators need to perform $N-x$ contingency analysis, i.e., determine the state of the system when up to $x$ links from $N$ fail. Our algorithms augment the coefficient matrix to account for the changes in it, and then compute the solution to the augmented system without refactoring the modified matrix. We provide two algorithms, a direct method, and a hybrid direct-iterative method for solving the augmented system. We also exploit the sparsity of the matrices and vectors to accelerate the overall computation. Our algorithms are compared on three power grids with PARDISO, a parallel direct solver, and CHOLMOD, a direct solver with the ability to modify the Cholesky factors of the coefficient matrix. We show that our augmented algorithms outperform PARDISO (by two orders of magnitude), and CHOLMOD (by a factor of up to 5). Further, our algorithms scale better than CHOLMOD as the number of elements updated increases. The solutions are computed with high accuracy. Our algorithms are capable of computing $N-x$ contingency analysis on a $778K$ bus grid, updating a solution with $x=20$ elements in $1.6 \\times 10^{-2}$ seconds on an Intel Xeon processor.

  7. [CSE vs. augmented epidural anesthesia for cesarean section. Spinal and epidural anesthesia with bupivacaine 0.5% "isobar" require augmentation].

    Science.gov (United States)

    Halter, F; Niesel, H C; Gladrow, W; Kaiser, H

    1998-09-01

    Incomplete anaesthesia is a major clinical problem both in single spinal and in single epidural anaesthesia. The clinical efficacy of epidural anaesthesia with augmentation (aEA) and combined epidural and spinal anesthesia (CSE) for cesarean section was investigated in a prospective randomized study on 45 patients. Anaesthesia extending up to Th5 was aimed for. Depending on the patient's height, epidural anaesthesia was administered with a dose of 18-22 ml 0.5% bupivacaine and spinal anaesthesia with a dose of 11-15 mg 0.5% bupivacaine. Augmentation was carried out in all cases in epidural anaesthesia, initially with 7.5 ml 1% Lidocaine with epinephrine 1:400,000, raised by 1.5 ml per missing segment. The epidural reinjection in CSE was carried out as necessary with 9.5-15 ml 1% lidocaine with epinephrine, depending on the height and difference from the segment Th5. The extension of anaesthesia achieved in epidural anaesthesia after an initial dose of 101.8 mg bupivacaine and augmenting dose of 99 mg lidocaine reached the segment Th5. The primary spinal anaesthesia dose up to 15 mg corresponding to height led to a segmental extension to a maximum of Th3 under CSE. Augmentation was necessary in 13 patients; in 5 cases because of inadequate extent of anaesthesia and 8 cases because of pain resulting from premature reversion. The augmenting dose required was 13.9 ml. Readiness for operation was attained after 19.8 min (aEA) and after 10.5 min (CSE). No patient required analgesics before delivery. The additional analgesic requirement during operation was 63.6% (aEA) and 39.1% (CSE). Taking into account pain in the area of surgery, the requirement of analgesics was 50% (aEA) vs. 17.4% (CSE). Antiemetics were required in 18.2 (aEA) and in 65.2% (CSE). The systolic blood pressure fell by 17.7% (aEA) and in 30.3% (CSE). The minimum systolic pressure was observed after 13.4 min in aEA, and after 9.5 min in CSE. The APGAR score and the umbilical pH did not show any

  8. Instrument Motion Metrics for Laparoscopic Skills Assessment in Virtual Reality and Augmented Reality.

    Science.gov (United States)

    Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A

    2016-11-01

    To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.

  9. Intelligent Augmented Reality Training for Motherboard Assembly

    Science.gov (United States)

    Westerfield, Giles; Mitrovic, Antonija; Billinghurst, Mark

    2015-01-01

    We investigate the combination of Augmented Reality (AR) with Intelligent Tutoring Systems (ITS) to assist with training for manual assembly tasks. Our approach combines AR graphics with adaptive guidance from the ITS to provide a more effective learning experience. We have developed a modular software framework for intelligent AR training…

  10. An Innovative Direct-Interaction-Enabled Augmented-Reality 3D System

    Directory of Open Access Journals (Sweden)

    Sheng-Hsiung Chang

    2013-01-01

    Full Text Available Previous augmented-reality (AR applications have required users to observe the integration of real and virtual images on a display. This study proposes a novel concept regarding AR applications. By integrating AR techniques with marker identification, virtual-image output, imaging, and image-interaction processes, this study rendered virtual images that can interact with predefined markers in a real three-dimensional (3D environment.

  11. Shielding augmentation of roll-on shield from NAPS to Kaiga-2

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Kumar, A.N.

    2000-01-01

    Extensive radiation field surveys were conducted in NAPS and KAPS reactor buildings as a part of commissioning checks on radiation shielding. During such surveys, dose rate higher than the expected values were noticed in fuelling machine service areas. A movable shield, separating high field area fuelling machine vault and low field area fuelling machine service area, known as roll-on shield was identified as one of the causes of high field in fuelling machine service area along with weaker end-shield. This paper discusses systematic approach adopted in bringing down the dose rates in fuelling machine service area by augmentation of roll-on shield. (author)

  12. [Cement augmentation on the spine : Biomechanical considerations].

    Science.gov (United States)

    Kolb, J P; Weiser, L; Kueny, R A; Huber, G; Rueger, J M; Lehmann, W

    2015-09-01

    Vertebral compression fractures are the most common osteoporotic fractures. Since the introduction of vertebroplasty and screw augmentation, the management of osteoporotic fractures has changed significantly. The biomechanical characteristics of the risk of adjacent fractures and novel treatment modalities for osteoporotic vertebral fractures, including pure cement augmentation by vertebroplasty, and cement augmentation of screws for posterior instrumentation, are explored. Eighteen human osteoporotic lumbar spines (L1-5) adjacent to vertebral bodies after vertebroplasty were tested in a servo-hydraulic machine. As augmentation compounds we used standard cement and a modified low-strength cement. Different anchoring pedicle screws were tested with and without cement augmentation in another cohort of human specimens with a simple pull-out test and a fatigue test that better reflects physiological conditions. Cement augmentation in the osteoporotic spine leads to greater biomechanical stability. However, change in vertebral stiffness resulted in alterations with the risk of adjacent fractures. By using a less firm cement compound, the risk of adjacent fractures is significantly reduced. Both screw augmentation techniques resulted in a significant increase in the withdrawal force compared with the group without cement. Augmentation using perforated screws showed the highest stability in the fatigue test. The augmentation of cement leads to a significant change in the biomechanical properties. Differences in the stability of adjacent vertebral bodies increase the risk of adjacent fractures, which could be mitigated by a modified cement compound with reduced strength. Screws that were specifically designed for cement application displayed greatest stability in the fatigue test.

  13. Development and evaluation of temporary placement and conveyance operation simulation system using augmented reality

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Weida; Aoyama, Shuhei; Ishii, Hirotake; Shimoda, Hiroshi [Graduate School of Energy Science, Kyoto University, Kyoto (Japan); Sang, Tran T.; Inge, Solhang Lars [AR Lab, Halden (Norway); Lygren, Toppe Aleksander; Terje, Johnsen [Institute for Energy Technolog, Halden (Norway); Izumi, Masanori [Fugen Decommissioning Engineering Center, Japan Atomic Energy Agency, Fukui (Japan)

    2012-06-15

    When decommissioning a nuclear power plant, it is difficult to make an appropriate plan to ensure sufficient space for temporary placement and conveyance operations of dismantling targets. This paper describes a system to support temporary placement and conveyance operations using augmented reality (AR). The system employs a laser range scanner to measure the three-dimensional (3D) information of the environment and a dismantling target to produce 3D surface polygon models. Then, the operator simulates temporary placement and conveyance operations using the system by manipulating the obtained 3D model of the dismantling target in the work field. Referring to the obtained 3D model of the environment, a possible collision between the dismantling target and the environment is detectable. Using AR, the collision position is presented intuitively. After field workers evaluated this system, the authors concluded that the system is feasible and acceptable to verify whether spaces for passage and temporary storage are sufficient for temporary placement and conveyance operations. For practical use in the future, some new functions must be added to improve the system. For example, it must be possible for multiple workers to use the system simultaneously by sharing the view of dismantling work.

  14. Development and evaluation of temporary placement and conveyance operation simulation system using augmented reality

    International Nuclear Information System (INIS)

    Yan, Weida; Aoyama, Shuhei; Ishii, Hirotake; Shimoda, Hiroshi; Sang, Tran T.; Inge, Solhang Lars; Lygren, Toppe Aleksander; Terje, Johnsen; Izumi, Masanori

    2012-01-01

    When decommissioning a nuclear power plant, it is difficult to make an appropriate plan to ensure sufficient space for temporary placement and conveyance operations of dismantling targets. This paper describes a system to support temporary placement and conveyance operations using augmented reality (AR). The system employs a laser range scanner to measure the three-dimensional (3D) information of the environment and a dismantling target to produce 3D surface polygon models. Then, the operator simulates temporary placement and conveyance operations using the system by manipulating the obtained 3D model of the dismantling target in the work field. Referring to the obtained 3D model of the environment, a possible collision between the dismantling target and the environment is detectable. Using AR, the collision position is presented intuitively. After field workers evaluated this system, the authors concluded that the system is feasible and acceptable to verify whether spaces for passage and temporary storage are sufficient for temporary placement and conveyance operations. For practical use in the future, some new functions must be added to improve the system. For example, it must be possible for multiple workers to use the system simultaneously by sharing the view of dismantling work.

  15. Perancangan Game Kartu Interaktif Berbasis Android Menggunakan Augmented Reality

    Directory of Open Access Journals (Sweden)

    Andry Chowanda

    2011-12-01

    Full Text Available By utilizing the augmented reality technology which now develops well, a card game system design and the game prototype are created on through this study Android-based Smartphone. This study is expected to increase the children’s interest to play cards in a modern way, to be utilized as a reference material for business actors in the world, and to be an alternative facility for marketing officers to market their products. The scope of this study is limited only to the system design and the prototype making of the game. The combination of waterfall methodology and a game design by Jesse is used in this study. From the results of the study it is concluded that the augmented reality technology is able to make the game more interesting. 

  16. The role of the temporal sequences in the Augmentative and Alternative Communication Systems for the Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Saverio Fontani

    2014-12-01

    Full Text Available The Augmentative and Alternative Communication systems (AAC represent a promising integration for more effective models of special education specifically developed for the special educational needs of children with Autism Spectrum Disorders. In this paper the historical foundations of the approach are presented, and its implications on the promotion of functional spontaneous communication skills based on the temporal sequences approach are discussed.  

  17. Mobile Augmented Reality enhances indoor navigation for wheelchair users

    Directory of Open Access Journals (Sweden)

    Luciene Chagas de Oliveira

    Full Text Available Introduction: Individuals with mobility impairments associated with lower limb disabilities often face enormous challenges to participate in routine activities and to move around various environments. For many, the use of wheelchairs is paramount to provide mobility and social inclusion. Nevertheless, they still face a number of challenges to properly function in our society. Among the many difficulties, one in particular stands out: navigating in complex internal environments (indoors. The main objective of this work is to propose an architecture based on Mobile Augmented Reality to support the development of indoor navigation systems dedicated to wheelchair users, that is also capable of recording CAD drawings of the buildings and dealing with accessibility issues for that population. Methods Overall, five main functional requirements are proposed: the ability to allow for indoor navigation by means of Mobile Augmented Reality techniques; the capacity to register and configure building CAD drawings and the position of fiducial markers, points of interest and obstacles to be avoided by the wheelchair user; the capacity to find the best route for wheelchair indoor navigation, taking stairs and other obstacles into account; allow for the visualization of virtual directional arrows in the smartphone displays; and incorporate touch or voice commands to interact with the application. The architecture is proposed as a combination of four layers: User interface; Control; Service; and Infrastructure. A proof-of-concept application was developed and tests were performed with disable volunteers operating manual and electric wheelchairs. Results The application was implemented in Java for the Android operational system. A local database was used to store the test building CAD drawings and the position of fiducial markers and points of interest. The Android Augmented Reality library was used to implement Augmented Reality and the Blender open source

  18. Testing and evaluation of a wearable augmented reality system for natural outdoor environments

    Science.gov (United States)

    Roberts, David; Menozzi, Alberico; Cook, James; Sherrill, Todd; Snarski, Stephen; Russler, Pat; Clipp, Brian; Karl, Robert; Wenger, Eric; Bennett, Matthew; Mauger, Jennifer; Church, William; Towles, Herman; MacCabe, Stephen; Webb, Jeffrey; Lupo, Jasper; Frahm, Jan-Michael; Dunn, Enrique; Leslie, Christopher; Welch, Greg

    2013-05-01

    This paper describes performance evaluation of a wearable augmented reality system for natural outdoor environments. Applied Research Associates (ARA), as prime integrator on the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program, is developing a soldier-worn system to provide intuitive `heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a novel pose estimation capability, a helmet-mounted see-through display, and a wearable processing unit to accurately overlay geo-registered iconography (e.g., navigation waypoints, sensor points of interest, blue forces, aircraft) on the soldier's view of reality. We achieve accurate pose estimation through fusion of inertial, magnetic, GPS, terrain data, and computer-vision inputs. We leverage a helmet-mounted camera and custom computer vision algorithms to provide terrain-based measurements of absolute orientation (i.e., orientation of the helmet with respect to the earth). These orientation measurements, which leverage mountainous terrain horizon geometry and mission planning landmarks, enable our system to operate robustly in the presence of external and body-worn magnetic disturbances. Current field testing activities across a variety of mountainous environments indicate that we can achieve high icon geo-registration accuracy (<10mrad) using these vision-based methods.

  19. [Anterior bridges with the IPS-Empress-2 System after alveolar ridge augmentation. A case report].

    Science.gov (United States)

    Zawta, C; Bernhard, M

    2000-01-01

    The success of a prosthesis is judged according to optimal function, good chewing comfort, adequate phonetics and white and pink esthetics. The aim of a treatment is to approach the perfection of nature. For anterior bridgework, the all-ceramic System IPS Empress 2 offers light transmission and reflection comparable to that of natural teeth, provided that the pink esthetics are optimised in the preprosthetic phase. The provision of an anterior bridge in the IPS Empress 2-system is presented here in the form of a case report. After extraction of the anterior teeth, a ridge augmentation including preparation of the pontic bed was carried out. The type of post and core, preparation and cementation are important parameters for the success of all-ceramic restorations.

  20. Experimental study on power augmentation of Savonius rotor; Savonius gata fusha no shutsuryoku zokyo ni kansuru jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Kikuchi, K; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1997-11-25

    Wind power now being used is mostly for power generation, and the power generating rotor is represented by the horizontal propeller type. The vertical type, such as Savonius rotor which uses drag force, may be used for special purposes. The Savonius rotor has been used for water pumping-up and ventilation for its characteristics of low rotational speed and high torque. The authors have proposed, based on the data collected by operating a wind mill of 10W, a method for reducing resistance by deflecting wind flowing onto the return bucket to augment drag force, in an attempt to make the system more functional. The Savonius rotor is equipped with a semi-cylindrical cover, and guide and side plates, to follow their effects. It is found that these plates work to augment power without needing expansion of sweeping area. 4 refs., 12 figs.

  1. Augmented Reality in Sports: Today and Tomorrow

    Directory of Open Access Journals (Sweden)

    Zafer BOZYER

    2015-08-01

    Full Text Available The rapid change experienced in the field of Information Technologies makes the informati cs more tangible in daily life. Today, it became possible to encounter with the informatics applications almost all the disciplines. As a matter of course, many informatics applications are put into the practice regarding the sports discipline. Because of the condition that the power of information processing has increased and the studies on wearable technol ogies in addition to the expert system design, augmented reality (AR has become a topic which gains imp ortance in the field of sports. There are many studies that are conducted with the aim of increasing the efficiency of physical activities done in many sports branches, ensuring a more fair management of competitions and providing the opportunity for spectators to watch the competitions in a more comfortable and efficient way. In this study; the information about the current augmented reality practices th at are used in various sports branches has been given and the mobile and interactive augmented reality practices which are possible to be seen in future have been mentioned. In addition, there is an augmented reality practice which is designed with the aim of ensuring that the shoots of sports people who are interested in archery, are more stable and of ensuring that the trainings and exercises are more efficient by stating to the sports people whether he or she is in the right position for shoot which is c alled as T shape seen at the time of releasing the arrow.

  2. Equivalence ratio and constriction effects on RBCC thrust augmentation

    Science.gov (United States)

    Koupriyanov, M.; Etele, J.

    2011-06-01

    A theoretical analysis of a variable area rocket based combined cycle engine with and without simultaneous mixing and combustion is presented. The flowfield is solved using a steady, quasi-one-dimensional, inviscid control volume formulation with combustion effects included via a generalized equilibrium calculation. Compression augmentation is shown to be sensitive to the equivalence ratio within the primary rocket chamber, where ejector section performance is greatest at both low and high equivalence ratios but near a minimum at stoichiometric conditions. The thrust generated by the RBCC engine compared to that generated by the same rocket in isolation can be increased by as much as 12% at constriction ratios of between 45% and 50%. Thrust augmentation is also shown to vary with equivalence ratio, where for a fixed geometry the maximum thrust is generated at equivalence ratios slightly below unity.

  3. Problems Inherent to Augmentation of Natural Enemies in Open Agriculture.

    Science.gov (United States)

    Michaud, J P

    2018-04-01

    Augmentation biological control has successfully replaced a lot of insecticide use in 'closed system' agriculture (e.g., greenhouses). The profitable commercialization of biocontrol agents in greenhouses has created an incentive to expand markets for mass-reared beneficial insects into open agricultural systems, often without sufficient scientific justification. However, the semi-contained nature of greenhouse culture is often critical to the success of augmentation and can serve to mask potential pitfalls and intrinsic limitations of this approach in open systems. Factors contributing to greenhouse successes include the reduced biological diversity of contained agroecosystems, the prevention of agent dispersal, the ability to maintain environmental conditions within a range favorable for the agent, the exclusion of competitors and natural enemies of the agent that might otherwise diminish its efficacy, and the absence of alternative prey/hosts that could divert predation/parasitism from the target pest. There are also problems arising from collection of source material from locally adapted populations, and the inadvertent imposition of artificial selection in the course of laboratory rearing. Besides highlighting these pitfalls, this paper aims to encourage more consideration of conservation approaches prior to investment in augmentation programs which entice farmers into perpetual cycles of 'rear and release.' I argue that although augmentation can benefit agriculture whenever it replaces pesticide applications, it does not constitute an ecologically sustainable solution because it requires continued inputs, and it can distract research attention away from more sustainable objectives. Sustainable biological control is best achieved through modifications to cultural practices that increasingly 'naturalize' agroecosystems, thus facilitating the natural recruitment and persistence of beneficial arthropod fauna, combined with habitat management geared to increasing

  4. Chin augmentation

    Science.gov (United States)

    ... or bigger compared to the nose. The best candidates for chin augmentation are people with weak or ... www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. ...

  5. Augmentation Mammaplasty Using Implants: A Review

    Directory of Open Access Journals (Sweden)

    Susumu Takayanagi

    2012-09-01

    Full Text Available One of the techniques for augmentation mammaplasty is the procedure using implants. Eventhough this technique has been used for many years, there are still several controversial issuesto be discussed and overcome for patient safety. In this review article, capsular contracture,leak or rupture of the implants, possible systemic disease, relation with breast cancer, andrecent problems with Poly Implant Prothese implants are described and discussed.

  6. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.

    Science.gov (United States)

    Belouka, Sofia-Maria; Strietzel, Frank Peter

    To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and

  7. Sample size of the reference sample in a case-augmented study.

    Science.gov (United States)

    Ghosh, Palash; Dewanji, Anup

    2017-05-01

    The case-augmented study, in which a case sample is augmented with a reference (random) sample from the source population with only covariates information known, is becoming popular in different areas of applied science such as pharmacovigilance, ecology, and econometrics. In general, the case sample is available from some source (for example, hospital database, case registry, etc.); however, the reference sample is required to be drawn from the corresponding source population. The required minimum size of the reference sample is an important issue in this regard. In this work, we address the minimum sample size calculation and discuss related issues. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Prototyping Augmented Reality

    CERN Document Server

    Mullen, Tony

    2011-01-01

    Learn to create augmented reality apps using Processing open-source programming language Augmented reality (AR) is used all over, and you may not even realize it. Smartphones overlay data onto live camera views to show homes for sale, restaurants, or historical sites. American football broadcasts use AR to show the invisible first-down line on the field to TV viewers. Nike and Budweiser, among others, have used AR in ads. Now, you can learn to create AR prototypes using 3D data, Processing open-source programming language, and other languages. This unique book is an easy-to-follow guide on how

  9. Stereoscopic Augmented Reality System for Supervised Training on Minimal Invasive Surgery Robots

    DEFF Research Database (Denmark)

    Matu, Florin-Octavian; Thøgersen, Mikkel; Galsgaard, Bo

    2014-01-01

    the need for efficient training. When training with the robot, the communication between the trainer and the trainee is limited, since the trainee often cannot see the trainer. To overcome this issue, this paper proposes an Augmented Reality (AR) system where the trainer is controlling two virtual robotic...... arms. These arms are virtually superimposed on the video feed to the trainee, and can therefore be used to demonstrate and perform various tasks for the trainee. Furthermore, the trainer is presented with a 3D image through a stereoscopic display. Because of the added depth perception, this enables...... the procedure, and thereby enhances the training experience. The virtual overlay was also found to work as a good and illustrative approach for enhanced communication. However, the delay of the prototype made it difficult to use for actual training....

  10. Augmented reality som wearable technology

    DEFF Research Database (Denmark)

    Rahn, Annette

    “How Augmented reality can facilitate learning in visualizing human anatomy “ At this station I demonstrate how Augmented reality can be used to visualize the human lungs in situ and as a wearable technology which establish connection between body, image and technology in education. I will show...

  11. Passive Infrared Signature Augmentation of Full-Scale Plastic Targets

    National Research Council Canada - National Science Library

    Gebus, Lisa M; Sanders, Jeffrey S

    2002-01-01

    ... (IR), and radar signatures of threat systems. To address this need, a program was initiated by TMO to augment an existing full-scale, vacuum-formed plastic target with sufficient signature fidelity to adequately stress U.S...

  12. Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices

    OpenAIRE

    Wang, Yu-Jen; Chen, Po-Ju; Liang, Xiao; Lin, Yi-Hsin

    2017-01-01

    Augmented reality (AR), which use computer-aided projected information to augment our sense, has important impact on human life, especially for the elder people. However, there are three major challenges regarding the optical system in the AR system, which are registration, vision correction, and readability under strong ambient light. Here, we solve three challenges simultaneously for the first time using two liquid crystal (LC) lenses and polarizer-free attenuator integrated in optical-see-...

  13. Prediction of Driver's Intention of Lane Change by Augmenting Sensor Information Using Machine Learning Techniques.

    Science.gov (United States)

    Kim, Il-Hwan; Bong, Jae-Hwan; Park, Jooyoung; Park, Shinsuk

    2017-06-10

    Driver assistance systems have become a major safety feature of modern passenger vehicles. The advanced driver assistance system (ADAS) is one of the active safety systems to improve the vehicle control performance and, thus, the safety of the driver and the passengers. To use the ADAS for lane change control, rapid and correct detection of the driver's intention is essential. This study proposes a novel preprocessing algorithm for the ADAS to improve the accuracy in classifying the driver's intention for lane change by augmenting basic measurements from conventional on-board sensors. The information on the vehicle states and the road surface condition is augmented by using an artificial neural network (ANN) models, and the augmented information is fed to a support vector machine (SVM) to detect the driver's intention with high accuracy. The feasibility of the developed algorithm was tested through driving simulator experiments. The results show that the classification accuracy for the driver's intention can be improved by providing an SVM model with sufficient driving information augmented by using ANN models of vehicle dynamics.

  14. An application of augmented MDA for the extended healthcare enterprise

    NARCIS (Netherlands)

    Jones, Valerie M.; van Halteren, Aart; Konstantas, D.; Widya, I.A.; Bults, Richard G.A.

    2007-01-01

    Mobile health systems extend the Enterprise Computing System (ECS) of the healthcare provider by bringing services to the patient any time and anywhere. We propose a methodology for the development of such extended ECSs which applies a model-driven design and development approach augmented with

  15. Stereoscopic augmented reality for laparoscopic surgery.

    Science.gov (United States)

    Kang, Xin; Azizian, Mahdi; Wilson, Emmanuel; Wu, Kyle; Martin, Aaron D; Kane, Timothy D; Peters, Craig A; Cleary, Kevin; Shekhar, Raj

    2014-07-01

    Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field. The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine. The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy. We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and

  16. Intelligence Context Aware Mobile Navigation using Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Ahmad Hoirul Basori

    2018-04-01

    Full Text Available Most of the technologies of today’s world, which are enriched with various powerful features and amazing quality characteristics, enables software developers to come up with best possible software solutions, no matter what the context of the particular issue. Technologies such as Augmented Reality (AR, is utilized almost every kind of fields in today’s society. As computers become more advanced through mobile devices and wearable technology, augmented reality will become a seamless experience that is a part of our everyday lives. In the context of this work, an Intelligence mobile navigation application for the King Abdul Aziz University Rabigh is developed enabling the user to find specific locations on campus and offers the ability to explore the campus environment via AR. Furthermore, the system, Mobile Campus Navigation with Augmented Reality application is capable of giving guidance in outdoor location navigating and retrieving details of campus officials and lecturers. With the proposed system, it is expected to serve as a useful and informative navigate helper for both students of King Abdul Aziz University and for the visitors, at outdoor locations and to use as an application to check officials and lecturer availability and retrieve detail about them when they are not available at the office at any time.

  17. An Augmented Lecture Feedback System to Support Learner and Teacher Communication

    Science.gov (United States)

    Zarraonandia, Telmo; Aedo, Ignacio; Diaz, Paloma; Montero, Alvaro

    2013-01-01

    In this paper, it is advocated that the feedback loop between learners and teachers could be improved by making use of augmented reality (AR) techniques. The bidirectional communication between teacher and learners is sometimes hampered by students' fear of showing themselves up in front of their classmates. In order to overcome this problem, a…

  18. Hands in space: gesture interaction with augmented-reality interfaces.

    Science.gov (United States)

    Billinghurst, Mark; Piumsomboon, Tham; Huidong Bai

    2014-01-01

    Researchers at the Human Interface Technology Laboratory New Zealand (HIT Lab NZ) are investigating free-hand gestures for natural interaction with augmented-reality interfaces. They've applied the results to systems for desktop computers and mobile devices.

  19. A CT-ultrasound-coregistered augmented reality enhanced image-guided surgery system and its preliminary study on brain-shift estimation

    International Nuclear Information System (INIS)

    Huang, C H; Hsieh, C H; Lee, J D; Huang, W C; Lee, S T; Wu, C T; Sun, Y N; Wu, Y T

    2012-01-01

    With the combined view on the physical space and the medical imaging data, augmented reality (AR) visualization can provide perceptive advantages during image-guided surgery (IGS). However, the imaging data are usually captured before surgery and might be different from the up-to-date one due to natural shift of soft tissues. This study presents an AR-enhanced IGS system which is capable to correct the movement of soft tissues from the pre-operative CT images by using intra-operative ultrasound images. First, with reconstructing 2-D free-hand ultrasound images to 3-D volume data, the system applies a Mutual-Information based registration algorithm to estimate the deformation between pre-operative and intra-operative ultrasound images. The estimated deformation transform describes the movement of soft tissues and is then applied to the pre-operative CT images which provide high-resolution anatomical information. As a result, the system thus displays the fusion of the corrected CT images or the real-time 2-D ultrasound images with the patient in the physical space through a head mounted display device, providing an immersive augmented-reality environment. For the performance validation of the proposed system, a brain phantom was utilized to simulate brain-shift scenario. Experimental results reveal that when the shift of an artificial tumor is from 5mm ∼ 12mm, the correction rates can be improved from 32% ∼ 45% to 87% ∼ 95% by using the proposed system.

  20. A unique radiation area monitoring system

    International Nuclear Information System (INIS)

    Murphy, P.C.; Allen, G.C.

    1978-01-01

    The Remote Area Monitoring Systems (RAMS) monitors four radiation areas with two independent systems in each area. Each system consists of power supplies, four ionization chambers, and four analog and digital circuits. The first system controls the warning beacons, horns, annunciation panel and interlocks. The second system presents a quantitative dose rate indication at the console and in the radiation area

  1. Estimating the Augmented Reflectance Ratio of the Ocean Surface When Whitecaps Appear

    Directory of Open Access Journals (Sweden)

    Zhantang Xu

    2015-10-01

    Full Text Available The presence of foam influences the accuracy of satellite-derived water-leaving radiance. A model has been developed to estimate the augmented reflectance ratio (A(λ,U due to differences in the fraction of whitecap coverage (w on the ocean surface. A(λ,U can be calculated from the product of w and ρ(λ,U, where ρ(λ,U is the augmented ratio of the reflectance of background water (Rb(λ caused by the presence of whitecaps. Our results showed that the average A(400~700,U in the visible region was approximately 1.3% at U = 9 m∙s−1, 2.2% at U = 10 m∙s−1, 4.4% at U = 12 m∙s−1, 7.4% at U = 14 m∙s−1, 19% at U = 19 m∙s−1 and 37.9% at U = 24 m∙s−1, making it is necessary to consider the augmented reflectance ratio for remote sensing applications. By estimating remote sensing augmented reflectance using A(λ,U, it was found that the result was in good agreement with previous studies conducted in other areas with U from 9 to 12 m∙s−1. Since Rb(λ is temporally and spatially variable, our model considered the variation of Rb(λ, whereas existing models have assumed that Rb(λ is constant. Therefore, the proposed model is more suitable for estimating the augmented reflectance ratio due to whitecaps.

  2. Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance.

    Science.gov (United States)

    Shenai, Mahesh B; Dillavou, Marcus; Shum, Corey; Ross, Douglas; Tubbs, Richard S; Shih, Alan; Guthrie, Barton L

    2011-03-01

    Surgery is a highly technical field that combines continuous decision-making with the coordination of spatiovisual tasks. We designed a virtual interactive presence and augmented reality (VIPAR) platform that allows a remote surgeon to deliver real-time virtual assistance to a local surgeon, over a standard Internet connection. The VIPAR system consisted of a "local" and a "remote" station, each situated over a surgical field and a blue screen, respectively. Each station was equipped with a digital viewpiece, composed of 2 cameras for stereoscopic capture, and a high-definition viewer displaying a virtual field. The virtual field was created by digitally compositing selected elements within the remote field into the local field. The viewpieces were controlled by workstations mutually connected by the Internet, allowing virtual remote interaction in real time. Digital renderings derived from volumetric MRI were added to the virtual field to augment the surgeon's reality. For demonstration, a fixed-formalin cadaver head and neck were obtained, and a carotid endarterectomy (CEA) and pterional craniotomy were performed under the VIPAR system. The VIPAR system allowed for real-time, virtual interaction between a local (resident) and remote (attending) surgeon. In both carotid and pterional dissections, major anatomic structures were visualized and identified. Virtual interaction permitted remote instruction for the local surgeon, and MRI augmentation provided spatial guidance to both surgeons. Camera resolution, color contrast, time lag, and depth perception were identified as technical issues requiring further optimization. Virtual interactive presence and augmented reality provide a novel platform for remote surgical assistance, with multiple applications in surgical training and remote expert assistance.

  3. Identifiability of Additive, Time-Varying Actuator and Sensor Faults by State Augmentation

    Science.gov (United States)

    Upchurch, Jason M.; Gonzalez, Oscar R.; Joshi, Suresh M.

    2014-01-01

    Recent work has provided a set of necessary and sucient conditions for identifiability of additive step faults (e.g., lock-in-place actuator faults, constant bias in the sensors) using state augmentation. This paper extends these results to an important class of faults which may affect linear, time-invariant systems. In particular, the faults under consideration are those which vary with time and affect the system dynamics additively. Such faults may manifest themselves in aircraft as, for example, control surface oscillations, control surface runaway, and sensor drift. The set of necessary and sucient conditions presented in this paper are general, and apply when a class of time-varying faults affects arbitrary combinations of actuators and sensors. The results in the main theorems are illustrated by two case studies, which provide some insight into how the conditions may be used to check the theoretical identifiability of fault configurations of interest for a given system. It is shown that while state augmentation can be used to identify certain fault configurations, other fault configurations are theoretically impossible to identify using state augmentation, giving practitioners valuable insight into such situations. That is, the limitations of state augmentation for a given system and configuration of faults are made explicit. Another limitation of model-based methods is that there can be large numbers of fault configurations, thus making identification of all possible configurations impractical. However, the theoretical identifiability of known, credible fault configurations can be tested using the theorems presented in this paper, which can then assist the efforts of fault identification practitioners.

  4. An Augmented γ-Spray System to Visualize Biological Effects for Human Body

    Science.gov (United States)

    Manabe, Seiya; Tenzou, Hideki; Kasuga, Takaaki; Iwakura, Yukiko; Johnston, Robert

    2017-09-01

    The purpose of this study was to develop a new educational system with an easy-to-use interface in order to support comprehension of the biological effects of radiation on the human body within a short period of time. A paint spray-gun was used as a gamma rays source mock-up for the system. The application screen shows the figure of a human body for radiation deposition using the γ-Sprayer, a virtual radiation source, as well as equivalent dosage and a panel for setting the irradiation conditions. While the learner stands in front of the PC monitor, the virtual radiation source is used to deposit radiation on the graphic of the human body that is displayed. Tissue damage is calculated using an interpolation method from the data calculated by the PHITS simulation code in advance while the learner is pulling the trigger with respect to the irradiation time, incident position, and distance from the screen. It was confirmed that the damage was well represented by the interpolation method. The augmented ?-Spray system was assessed by questionnaire. Pre-post questionnaire was taken for our 41 students in National Institute of Technology, Kagawa College. It was also confirmed that the system has a capability of teaching the basic radiation protection concept, quantitative feeling of the radiation dose, and the biological effects

  5. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  6. Augmented switching linear dynamical system model for gas concentration estimation with MOX sensors in an open sampling system.

    Science.gov (United States)

    Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne

    2014-07-11

    In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.

  7. Augmented “Ouch!”. : How to create intersubjective augmented objects into which we can bump

    NARCIS (Netherlands)

    Liberati, Nicola

    2015-01-01

    The aim of this work is to provide the elements to design an intersubjective augmented reality in order to make the augmented objects part of our everyday world. This work will analyse intersubjectivity from a phenomenological point of view using the works by Husserl and Schutz. Thanks to these two

  8. Breast Augmentation

    African Journals Online (AJOL)

    1974-04-13

    Apr 13, 1974 ... Complications encountered after breast augmentation are dealt with in .... in Phisohex or other suitable preparation for a few days before surgery ... In all cases, the prosthesis causes a fibrous tissue capsule to form around it.

  9. Feasibility of an Autism-Focused Augmented Reality Smartglasses System for Social Communication and Behavioral Coaching.

    Science.gov (United States)

    Liu, Runpeng; Salisbury, Joseph P; Vahabzadeh, Arshya; Sahin, Ned T

    2017-01-01

    Autism spectrum disorder (ASD) is a childhood-onset neurodevelopmental disorder with a rapidly rising prevalence, currently affecting 1 in 68 children, and over 3.5 million people in the United States. Current ASD interventions are primarily based on in-person behavioral therapies that are both costly and difficult to access. These interventions aim to address some of the fundamental deficits that clinically characterize ASD, including deficits in social communication, and the presence of stereotypies, and other autism-related behaviors. Current diagnostic and therapeutic approaches seldom rely on quantitative data measures of symptomatology, severity, or condition trajectory. Given the current situation, we report on the Brain Power System (BPS), a digital behavioral aid with quantitative data gathering and reporting features. The BPS includes customized smartglasses, providing targeted personalized coaching experiences through a family of gamified augmented-reality applications utilizing artificial intelligence. These applications provide children and adults with coaching for emotion recognition, face directed gaze, eye contact, and behavioral self-regulation. This preliminary case report, part of a larger set of upcoming research reports, explores the feasibility of the BPS to provide coaching in two boys with clinically diagnosed ASD, aged 8 and 9 years. The coaching intervention was found to be well tolerated and rated as being both engaging and fun. Both males could easily use the system, and no technical problems were noted. During the intervention, caregivers reported improved non-verbal communication, eye contact, and social engagement during the intervention. Both boys demonstrated decreased symptoms of ASD, as measured by the aberrant behavior checklist at 24-h post-intervention. Specifically, both cases demonstrated improvements in irritability, lethargy, stereotypy, hyperactivity/non-compliance, and inappropriate speech. Smartglasses using augmented

  10. CNN-SVM for Microvascular Morphological Type Recognition with Data Augmentation.

    Science.gov (United States)

    Xue, Di-Xiu; Zhang, Rong; Feng, Hui; Wang, Ya-Lei

    2016-01-01

    This paper focuses on the problem of feature extraction and the classification of microvascular morphological types to aid esophageal cancer detection. We present a patch-based system with a hybrid SVM model with data augmentation for intraepithelial papillary capillary loop recognition. A greedy patch-generating algorithm and a specialized CNN named NBI-Net are designed to extract hierarchical features from patches. We investigate a series of data augmentation techniques to progressively improve the prediction invariance of image scaling and rotation. For classifier boosting, SVM is used as an alternative to softmax to enhance generalization ability. The effectiveness of CNN feature representation ability is discussed for a set of widely used CNN models, including AlexNet, VGG-16, and GoogLeNet. Experiments are conducted on the NBI-ME dataset. The recognition rate is up to 92.74% on the patch level with data augmentation and classifier boosting. The results show that the combined CNN-SVM model beats models of traditional features with SVM as well as the original CNN with softmax. The synthesis results indicate that our system is able to assist clinical diagnosis to a certain extent.

  11. Experiencing 3D interactions in virtual reality and augmented reality

    NARCIS (Netherlands)

    Martens, J.B.; Qi, W.; Aliakseyeu, D.; Kok, A.J.F.; Liere, van R.; Hoven, van den E.; Ijsselsteijn, W.; Kortuem, G.; Laerhoven, van K.; McClelland, I.; Perik, E.; Romero, N.; Ruyter, de B.

    2004-01-01

    We demonstrate basic 2D and 3D interactions in both a Virtual Reality (VR) system, called the Personal Space Station, and an Augmented Reality (AR) system, called the Visual Interaction Platform. Since both platforms use identical (optical) tracking hardware and software, and can run identical

  12. Marketing and Augmented Reality

    OpenAIRE

    Zelený, Martin

    2010-01-01

    The main goal of this diploma thesis is to identify the usage of augmented reality in contemporary marketing practice and the expectations of marketers for the future use. This will be achieved by conducting a quantitative and qualitative research among existing creative and advertising companies. Secondary goal is introducing the concept of augmented reality from the theoretical point of view and also description of potential utilization based on known examples. The tools for the practical p...

  13. Augmented reality and its practical application

    OpenAIRE

    ZÍTKOVÁ, Helena

    2011-01-01

    This thesis combines topic of augmented reality with tourism. For analyzing the state of the use of augmented reality was composed case studies. It was created product, which is called Guide to mobile phone.

  14. Augmented Fotonovelas: A Visual Methodology for Community Engaged Research

    OpenAIRE

    Hidalgo, LeighAnna Grace

    2014-01-01

    Augmented Fotonovelas draw upon the aesthetic of traditional fotonovelas, but incorporate new technologies--such as video interviews, interactive mapping, smart phone technology, and Augmented Reality (AR). Augmented Fotonovelas also make the most of the classic form, utilizing photographs, text, and bubble captions. Through this methodology, new and old come together to produce Augmented Scholarship. I define Augmented Scholarship as knowledge production bridging the gap between communities ...

  15. Augmentation Mammaplasty Using Implants: A Review

    Directory of Open Access Journals (Sweden)

    Susumu Takayanagi

    2012-09-01

    Full Text Available One of the techniques for augmentation mammaplasty is the procedure using implants. Even though this technique has been used for many years, there are still several controversial issues to be discussed and overcome for patient safety. In this review article, capsular contracture, leak or rupture of the implants, possible systemic disease, relation with breast cancer, and recent problems with Poly Implant Prothese implants are described and discussed.

  16. Healing of extraction sockets and augmented alveolar defects following 1-year treatment with bisphosphonate.

    Science.gov (United States)

    Khojasteh, Arash; Behnia, Hossein; Morad, Golnaz; Dashti, Seyedeh Ghazaleh; Dehghan, Mohammad Mehdi; Shahab, Shahriyar; Abbas, Fatemeh Mashhadi

    2013-01-01

    To assess the effect of bisphosphonates on healing of extraction sockets and augmented alveolar defects, 12 adult female mongrel dogs were assigned to 2 experimental groups and a control group. The experimental groups received oral alendronate (ALN, 3.5 mg/kg/wk) or IV pamidronate (PAM, 1 mg/kg/wk) for 12 months. Animals were randomly tested for serum C-terminal telopeptide of collagen I (CTx). The right first and second premolars were extracted. After 8 weeks, extraction sites were evaluated for healing. Subsequently, 3-wall defects were created in ridges and filled with human mineralized cortical particulate bone. Two months post-augmentation, animals were sacrificed and mandibles were collected for cone-beam computed tomography (CBCT) and histomorphometric appraisal. The obtained data were compared using 1-way ANOVA test. CTx test results in both experimental groups were comparable (alveolar bone in the PAM group and the upper rim of the alveoli in the ALN group. Histologically, bone sequestra from the PAM group demonstrated empty osteocyte lacunae, while in the ALN group areas of necrotic bone along with evidence of active bone remodeling was distinguished. Eight weeks post-augmentation, the experimental groups showed no evidence of bone formation in the augmented area, while bone formation ratio was measured to be 18.32% in the control group. The mean amount of pixel intensity calculated from the CBCT images of the ALN, PAM, and control group was 113.69 ± 11.04, 124.94 ± 4.72, and 113.69 ± 6.63, respectively. Pixel intensity in PAM-treated group was significantly higher than both other groups. This study demonstrated that 1-year treatment with ALN/PAM was associated with impairment of post-extraction and post-augmentation bone healing in dogs.

  17. Augmenting the Web through Open Hypermedia

    DEFF Research Database (Denmark)

    Bouvin, N.O.

    2003-01-01

    Based on an overview of Web augmentation and detailing the three basic approaches to extend the hypermedia functionality of the Web, the author presents a general open hypermedia framework (the Arakne framework) to augment the Web. The aim is to provide users with the ability to link, annotate, a......, and otherwise structure Web pages, as they see fit. The paper further discusses the possibilities of the concept through the description of various experiments performed with an implementation of the framework, the Arakne Environment......Based on an overview of Web augmentation and detailing the three basic approaches to extend the hypermedia functionality of the Web, the author presents a general open hypermedia framework (the Arakne framework) to augment the Web. The aim is to provide users with the ability to link, annotate...

  18. Usability Engineering of Text Drawing Styles in Augmented Reality User Interfaces

    OpenAIRE

    Gabbard, Joseph L.

    2008-01-01

    In the coming years, augmented reality, mobile computing, and related technologies have the potential to completely redefine how we interact with and use computers. No longer will we be bound to desktops and laptops, nor will we be bound to monitors, two-dimensional (2D) screens, and graphical user interface (GUI) backgrounds. Instead we will employ wearable systems to move about and augmented reality displays to overlay 2D and three-dimensional (3D) graphics onto the real world. Whe...

  19. Aplikasi Web Augmented Reality Villa

    Directory of Open Access Journals (Sweden)

    Gede Yudha Prema Pangestu

    2017-07-01

    Full Text Available Bali is one of the highly developed tourist destination in Indonesia. The arrival of tourists having holiday in Bali led to increase residential needs with complete amenities. The occupancy rate of hotel and villa in Bali is increase significantlly during the long vacation. The emergence of new villa and hotel occupancy raises the level of competition in business, so it needs a correct use good marketing communication strategy in marketing the product in order to attract the attention of consumers. Web Application Augmented Reality Villa can help visualize the residential villa in three-dimensional shapes that look more attractive and practical. The use of brochures as written information and the application of augmented reality technology on the Web Application Augmented Reality Villa aims to develop an application that can provide information about the villa to visitors. Web Application uses Augmented Reality Villa designed by FlarToolkit library. Based on the test results show the application can display 3-dimensional objects by scanning marker villa in a brochure which already contain marker.

  20. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.

    Science.gov (United States)

    Besharati Tabrizi, Leila; Mahvash, Mehran

    2015-07-01

    An augmented reality system has been developed for image-guided neurosurgery to project images with regions of interest onto the patient's head, skull, or brain surface in real time. The aim of this study was to evaluate system accuracy and to perform the first intraoperative application. Images of segmented brain tumors in different localizations and sizes were created in 10 cases and were projected to a head phantom using a video projector. Registration was performed using 5 fiducial markers. After each registration, the distance of the 5 fiducial markers from the visualized tumor borders was measured on the virtual image and on the phantom. The difference was considered a projection error. Moreover, the image projection technique was intraoperatively applied in 5 patients and was compared with a standard navigation system. Augmented reality visualization of the tumors succeeded in all cases. The mean time for registration was 3.8 minutes (range 2-7 minutes). The mean projection error was 0.8 ± 0.25 mm. There were no significant differences in accuracy according to the localization and size of the tumor. Clinical feasibility and reliability of the augmented reality system could be proved intraoperatively in 5 patients (projection error 1.2 ± 0.54 mm). The augmented reality system is accurate and reliable for the intraoperative projection of images to the head, skull, and brain surface. The ergonomic advantage of this technique improves the planning of neurosurgical procedures and enables the surgeon to use direct visualization for image-guided neurosurgery.

  1. Natural Environment Illumination: Coherent Interactive Augmented Reality for Mobile and Non-Mobile Devices.

    Science.gov (United States)

    Rohmer, Kai; Jendersie, Johannes; Grosch, Thorsten

    2017-11-01

    Augmented Reality offers many applications today, especially on mobile devices. Due to the lack of mobile hardware for illumination measurements, photorealistic rendering with consistent appearance of virtual objects is still an area of active research. In this paper, we present a full two-stage pipeline for environment acquisition and augmentation of live camera images using a mobile device with a depth sensor. We show how to directly work on a recorded 3D point cloud of the real environment containing high dynamic range color values. For unknown and automatically changing camera settings, a color compensation method is introduced. Based on this, we show photorealistic augmentations using variants of differential light simulation techniques. The presented methods are tailored for mobile devices and run at interactive frame rates. However, our methods are scalable to trade performance for quality and can produce quality renderings on desktop hardware.

  2. Model reference adaptive control and adaptive stability augmentation

    DEFF Research Database (Denmark)

    Henningsen, Arne; Ravn, Ole

    1993-01-01

    A comparison of the standard concepts in MRAC design suggests that a combination of the implicit and the explicit design techniques may lead to an improvement of the overall system performance in the presence of unmodelled dynamics. Using the ideas of adaptive stability augmentation a combined...... stability augmented model reference design is proposed. By utilizing the closed-loop control error, a simple auxiliary controller is tuned, using a normalized MIT rule for the parameter adjustment. The MIT adjustment is protected against the effects of unmodelled dynamics by lowpass filtering...... of the gradient. The proposed method is verified through simulation results indicating that the method may lead to an improvement of the model reference controller in the presence of unmodelled dynamics...

  3. Augmented reality system using lidar point cloud data for displaying dimensional information of objects on mobile phones

    OpenAIRE

    Gupta, S.; Lohani, B.

    2014-01-01

    Mobile augmented reality system is the next generation technology to visualise 3D real world intelligently. The technology is expanding at a fast pace to upgrade the status of a smart phone to an intelligent device. The research problem identified and presented in the current work is to view actual dimensions of various objects that are captured by a smart phone in real time. The methodology proposed first establishes correspondence between LiDAR point cloud, that are stored in a ser...

  4. Applying the principles of augmented learning to photonics laboratory work

    Science.gov (United States)

    Fischer, U. H. P.; Haupt, Matthias; Reinboth, Christian; Just, Jens-Uwe

    2007-06-01

    Most modern communication systems are based on opto-electrical methods, wavelength division multiplex (WDM) being the most widespread. Likewise, the use of polymeric fibres (POF) as an optical transmission medium is expanding rapidly. Therefore, enabling students to understand how WDM and/or POF systems are designed and maintained is an important task of universities and vocational schools that offer education in photonics. In the current academic setting, theory is mostly being taught in the classroom, while students gain practical knowledge by performing lab experiments utilizing specialized teaching systems. In an ideal setting, students should perform such experiments with a high degree of autonomy. By applying the principles of augmented learning to photonics training, contemporary lab work can be brought closer to these ideal conditions. This paper introduces "OPTOTEACH", a new teaching system for photonics lab work, designed by Harz University and successfully released on the German market by HarzOptics. OPTOTEACH is the first POF-WDM teaching system, specifically designed to cover a multitude of lab experiments in the field of optical communication technology. It is illustrated, how this lab system is supplemented by a newly developed optical teaching software - "OPTOSOFT" - and how the combination of system and software creates a unique augmented learning environment. The paper details, how the didactic concept for the software was conceptualised and introduces the latest beta version. OPTOSOFT is specifically designed not only as an attachment to OPTOTEACH, it also allows students to rehearse various aspects of theoretical optics and experience a fully interactive and feature-rich self-learning environment. The paper further details the first experiences educators at Harz University have made working with the lab system as well as the teaching software. So far, the augmented learning concept was received mostly positive, although there is some potential

  5. A clinical pilot study of a modular video-CT augmentation system for image-guided skull base surgery

    Science.gov (United States)

    Liu, Wen P.; Mirota, Daniel J.; Uneri, Ali; Otake, Yoshito; Hager, Gregory; Reh, Douglas D.; Ishii, Masaru; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2012-02-01

    Augmentation of endoscopic video with preoperative or intraoperative image data [e.g., planning data and/or anatomical segmentations defined in computed tomography (CT) and magnetic resonance (MR)], can improve navigation, spatial orientation, confidence, and tissue resection in skull base surgery, especially with respect to critical neurovascular structures that may be difficult to visualize in the video scene. This paper presents the engineering and evaluation of a video augmentation system for endoscopic skull base surgery translated to use in a clinical study. Extension of previous research yielded a practical system with a modular design that can be applied to other endoscopic surgeries, including orthopedic, abdominal, and thoracic procedures. A clinical pilot study is underway to assess feasibility and benefit to surgical performance by overlaying CT or MR planning data in realtime, high-definition endoscopic video. Preoperative planning included segmentation of the carotid arteries, optic nerves, and surgical target volume (e.g., tumor). An automated camera calibration process was developed that demonstrates mean re-projection accuracy (0.7+/-0.3) pixels and mean target registration error of (2.3+/-1.5) mm. An IRB-approved clinical study involving fifteen patients undergoing skull base tumor surgery is underway in which each surgery includes the experimental video-CT system deployed in parallel to the standard-of-care (unaugmented) video display. Questionnaires distributed to one neurosurgeon and two otolaryngologists are used to assess primary outcome measures regarding the benefit to surgical confidence in localizing critical structures and targets by means of video overlay during surgical approach, resection, and reconstruction.

  6. Augmented reality (AR and virtual reality (VR applied in dentistry

    Directory of Open Access Journals (Sweden)

    Ta-Ko Huang

    2018-04-01

    Full Text Available The OSCE is a reliable evaluation method to estimate the preclinical examination of dental students. The most ideal assessment for OSCE is used the augmented reality simulator to evaluate. This literature review investigated a recently developed in virtual reality (VR and augmented reality (AR starting of the dental history to the progress of the dental skill. As result of the lacking of technology, it needs to depend on other device increasing the success rate and decreasing the risk of the surgery. The development of tracking unit changed the surgical and educational way. Clinical surgery is based on mature education. VR and AR simultaneously affected the skill of the training lesson and navigation system. Widely, the VR and AR not only applied in the dental training lesson and surgery, but also improved all field in our life. Keywords: OSCE, Dental simulator, Augmented reality, Virtual reality, Dentistry

  7. Least cost pathways to a low carbon electricity system for Australia: impacts of transmission augmentation and extension

    Science.gov (United States)

    Dargaville, R. J.

    2016-12-01

    Designing the pathway to a low carbon energy system is complex, requiring consideration of the variable nature of renewables at the hourly timescale, emission intensity and ramp rate constraints of dispatchable technologies (both fossil and renewable) and transmission and distribution network limitations. In this work, an optimization framework taking into account these considerations has been applied to find the lowest cost ways to reduce carbon emissions by either 80% or 100% in 2050 while keeping the system operating reliably along the way. Technologies included are existing and advanced coal and gas technologies (with and without carbon capture and storage), rooftop PV, utility scale PV, concentrating solar thermal, hydro with and without pumped storage, bioenergy, and nuclear. In this study we also also the optimisation to increase transmission capacity along existing lines, and to extend key trunk lines into currently unserved areas. These augementations and extensions come at a cost. The otpimisation chooses these options when the benefits of accessing high quality renewable energy resources outweights the costs. Results show that for the 80% emission reduction case, there is limited need for transmission capacity increase, and that the existing grid copes well with the increased flows due to conversion to distrubuted renewable energy resources. However, in the 100% case the increased reliance on renewables means that signficant transmission augmentation is beneficial to the overall cost. This strongly suggests that it is important to understand the long term emission target early so that infrastructure investments can be optimised.

  8. Suppressive versus augmenting effect of the same pretreatment regimen in two murine tumor systems with distinct effector mechanisms

    International Nuclear Information System (INIS)

    Fujiwara, Hiromi; Hamaoka, Toshiyuki; Kitagawa, Masayasu

    1978-01-01

    The effect of presensitization with x-irradiated tumor cells on the development of host's immune resistance against the tumor-associated transplantation antigens (TATA) was investigated in two syngeneic tumor systems with distinct effector mechanisms. When X5563 plasmacytoma, to which immune resistance was mediated exclusively by killer T lymphocytes, was intravenously inoculated into syngeneic C3H/He mice with lower number after 7000 R x-irradiation, the mice failed to exhibit any protective immunity against the subsequent challenge with viable tumor cells. Moreover, these mice lost their capability to develop any immune resistance even after an appropriate immunization procedure. The immunodepression induced by such a pretreatment regimen was specific for X5563 tumor. While no suppressor cell activity was detected in the above pretreated mice, serum factor(s) from these mice was virtually responsible for this suppression. When the serum factor mediating this tumor-specific suppression was fractionated on the Sephadex G-200 column, the suppressive activity was found in albumin-corresponding fraction, free of any immunoglobulin component. In contrast, in MM102 mammary tumor system, in which immune resistance is solely mediated by tumor-specific antibody, the pretreatment with x-irradiated MM102 cells augmented the induction of anti-tumor immunity. These results indicate that while tumor antigens given in the form of x-irradiated tumor cells suppress the induction of killer T cell-mediated immunity in one system, the same presensitization regimen of tumor antigens augments the antibody-mediated immunity in another system, thus giving a divergent effect on the distinct effector mechanisms of syngeneic tumor immunity. (author)

  9. SU-E-J-134: An Augmented-Reality Optical Imaging System for Accurate Breast Positioning During Radiotherapy

    International Nuclear Information System (INIS)

    Nazareth, D; Malhotra, H; French, S; Hoffmann, K; Merrow, C

    2014-01-01

    Purpose: Breast radiotherapy, particularly electronic compensation, may involve large dose gradients and difficult patient positioning problems. We have developed a simple self-calibrating augmented-reality system, which assists in accurately and reproducibly positioning the patient, by displaying her live image from a single camera superimposed on the correct perspective projection of her 3D CT data. Our method requires only a standard digital camera capable of live-view mode, installed in the treatment suite at an approximately-known orientation and position (rotation R; translation T). Methods: A 10-sphere calibration jig was constructed and CT imaged to provide a 3D model. The (R,T) relating the camera to the CT coordinate system were determined by acquiring a photograph of the jig and optimizing an objective function, which compares the true image points to points calculated with a given candidate R and T geometry. Using this geometric information, 3D CT patient data, viewed from the camera's perspective, is plotted using a Matlab routine. This image data is superimposed onto the real-time patient image, acquired by the camera, and displayed using standard live-view software. This enables the therapists to view both the patient's current and desired positions, and guide the patient into assuming the correct position. The method was evaluated using an in-house developed bolus-like breast phantom, mounted on a supporting platform, which could be tilted at various angles to simulate treatment-like geometries. Results: Our system allowed breast phantom alignment, with an accuracy of about 0.5 cm and 1 ± 0.5 degree. Better resolution could be possible using a camera with higher-zoom capabilities. Conclusion: We have developed an augmented-reality system, which combines a perspective projection of a CT image with a patient's real-time optical image. This system has the potential to improve patient setup accuracy during breast radiotherapy, and could possibly be

  10. SU-E-J-134: An Augmented-Reality Optical Imaging System for Accurate Breast Positioning During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nazareth, D; Malhotra, H; French, S [Roswell Park Cancer Institute, Buffalo, NY (United States); Hoffmann, K [Neurosurgery at SUNY at Buffalo, Buffalo, NY (United States); Merrow, C [Bassett Healthcare, Oneonta, NY (United States)

    2014-06-01

    Purpose: Breast radiotherapy, particularly electronic compensation, may involve large dose gradients and difficult patient positioning problems. We have developed a simple self-calibrating augmented-reality system, which assists in accurately and reproducibly positioning the patient, by displaying her live image from a single camera superimposed on the correct perspective projection of her 3D CT data. Our method requires only a standard digital camera capable of live-view mode, installed in the treatment suite at an approximately-known orientation and position (rotation R; translation T). Methods: A 10-sphere calibration jig was constructed and CT imaged to provide a 3D model. The (R,T) relating the camera to the CT coordinate system were determined by acquiring a photograph of the jig and optimizing an objective function, which compares the true image points to points calculated with a given candidate R and T geometry. Using this geometric information, 3D CT patient data, viewed from the camera's perspective, is plotted using a Matlab routine. This image data is superimposed onto the real-time patient image, acquired by the camera, and displayed using standard live-view software. This enables the therapists to view both the patient's current and desired positions, and guide the patient into assuming the correct position. The method was evaluated using an in-house developed bolus-like breast phantom, mounted on a supporting platform, which could be tilted at various angles to simulate treatment-like geometries. Results: Our system allowed breast phantom alignment, with an accuracy of about 0.5 cm and 1 ± 0.5 degree. Better resolution could be possible using a camera with higher-zoom capabilities. Conclusion: We have developed an augmented-reality system, which combines a perspective projection of a CT image with a patient's real-time optical image. This system has the potential to improve patient setup accuracy during breast radiotherapy, and could

  11. Augmented paper maps: Exploring the design space of a mixed reality system

    Science.gov (United States)

    Paelke, Volker; Sester, Monika

    Paper maps and mobile electronic devices have complementary strengths and shortcomings in outdoor use. In many scenarios, like small craft sailing or cross-country trekking, a complete replacement of maps is neither useful nor desirable. Paper maps are fail-safe, relatively cheap, offer superior resolution and provide large scale overview. In uses like open-water sailing it is therefore mandatory to carry adequate maps/charts. GPS based mobile devices, on the other hand, offer useful features like automatic positioning and plotting, real-time information update and dynamic adaptation to user requirements. While paper maps are now commonly used in combination with mobile GPS devices, there is no meaningful integration between the two, and the combined use leads to a number of interaction problems and potential safety issues. In this paper we explore the design space of augmented paper maps in which maps are augmented with additional functionality through a mobile device to achieve a meaningful integration between device and map that combines their respective strengths.

  12. Prediction of Driver’s Intention of Lane Change by Augmenting Sensor Information Using Machine Learning Techniques

    Science.gov (United States)

    Kim, Il-Hwan; Bong, Jae-Hwan; Park, Jooyoung; Park, Shinsuk

    2017-01-01

    Driver assistance systems have become a major safety feature of modern passenger vehicles. The advanced driver assistance system (ADAS) is one of the active safety systems to improve the vehicle control performance and, thus, the safety of the driver and the passengers. To use the ADAS for lane change control, rapid and correct detection of the driver’s intention is essential. This study proposes a novel preprocessing algorithm for the ADAS to improve the accuracy in classifying the driver’s intention for lane change by augmenting basic measurements from conventional on-board sensors. The information on the vehicle states and the road surface condition is augmented by using an artificial neural network (ANN) models, and the augmented information is fed to a support vector machine (SVM) to detect the driver’s intention with high accuracy. The feasibility of the developed algorithm was tested through driving simulator experiments. The results show that the classification accuracy for the driver’s intention can be improved by providing an SVM model with sufficient driving information augmented by using ANN models of vehicle dynamics. PMID:28604582

  13. Prediction of Driver’s Intention of Lane Change by Augmenting Sensor Information Using Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Il-Hwan Kim

    2017-06-01

    Full Text Available Driver assistance systems have become a major safety feature of modern passenger vehicles. The advanced driver assistance system (ADAS is one of the active safety systems to improve the vehicle control performance and, thus, the safety of the driver and the passengers. To use the ADAS for lane change control, rapid and correct detection of the driver’s intention is essential. This study proposes a novel preprocessing algorithm for the ADAS to improve the accuracy in classifying the driver’s intention for lane change by augmenting basic measurements from conventional on-board sensors. The information on the vehicle states and the road surface condition is augmented by using an artificial neural network (ANN models, and the augmented information is fed to a support vector machine (SVM to detect the driver’s intention with high accuracy. The feasibility of the developed algorithm was tested through driving simulator experiments. The results show that the classification accuracy for the driver’s intention can be improved by providing an SVM model with sufficient driving information augmented by using ANN models of vehicle dynamics.

  14. Augmentative and alternative communication in adolescents with severe intellectual disability: a clinical experience.

    Science.gov (United States)

    Uliano, D; Falciglia, G; Del Viscio, C; Picelli, A; Gandolfi, M; Passarella, A

    2010-06-01

    Augmentative and alternative communication devices proved to be effective in patients with severe intellectual disability to overcome their communication impairments. In order to give a contribution for design of augmentative and alternative communication systems that better meet the needs of beginning communicators we decided to report our clinical experience about using augmentative and alternative communication in adolescents with severe intellectual disability. Five patients who underwent a long time traditional speech rehabilitation program (at least 5 years) with scant improvements in linguistic function were recruited and evaluated by means of the Vineland Adaptive Behaviour Scale before and after a three years augmentative and alternative communication intervention carried out by a multidisciplinary team. After the rehabilitative intervention patients showed an improvement in communication, daily living skills and socialization as measured by the Vineland Adaptive Behaviour Scale. Augmentative and alternative communication is an effective rehabilitation approach to people with severe intellectual disability and impairments in linguistic expression. Moreover augmentative and alternative communication is a useful tool allowing these patients to increase their social participation also enhancing their self-esteem. Our clinical experience confirmed these topics also in adolescents who underwent a long time traditional speech rehabilitation program with scant improvements, providing practical information to clinicians.

  15. Comparative Hydrology, Water Quality, and Ecology of Selected Natural and Augmented Freshwater Wetlands in West-Central Florida

    Science.gov (United States)

    Lee, T.M.; Haag, K.H.; Metz, P.A.; Sacks, L.A.

    2009-01-01

    Comparing altered wetlands to natural wetlands in the same region improves the ability to interpret the gradual and cumulative effects of human development on freshwater wetlands. Hydrologic differences require explicit attention because they affect nearly all wetland functions and are an overriding influence on other comparisons involving wetland water quality and ecology. This study adopts several new approaches to quantify wetland hydrologic characteristics and then describes and compares the hydrology, water quality, and ecology of 10 isolated freshwater marsh and cypress wetlands in the mantled karst landscape of central Florida. Four of the wetlands are natural, and the other six have water levels indirectly lowered by ground-water withdrawals on municipally owned well fields. For several decades, the water levels in four of these altered wetlands have been raised by adding ground water in a mitigation process called augmentation. The two wetlands left unaugmented were impaired because their water levels were lowered. Multifaceted comparisons between the altered and natural wetlands are used to examine differences between marshes and cypress wetlands and to describe the effects of augmentation practices on the wetland ecosystems. In the karstic geologic setting, both natural and altered wetlands predominantly lost water to the surficial aquifer. Water leaking out of the wetlands created water-table mounds below the wetlands. The smallest mounds radiated only slightly beyond the vegetated area of the wetlands. The largest and steepest mounds occurred below two of the augmented wetlands. There, rapid leakage rates regenerated a largely absent surficial aquifer and mounds encompassed areas 7-8 times as large as the wetlands. Wetland leakage rates, estimated using a daily water-budget analysis applied over multiple years and normalized as inches per day, varied thirtyfold from the slowest leaking natural wetland to the fastest leaking augmented wetland. Leakage

  16. Augmented reality som wearable

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR-applikat......Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  17. Use of radiation maps in augmented reality

    International Nuclear Information System (INIS)

    Droeivoldsmo, Asgeir; Reigstad, Magnus; Shimoda, Hiroshi; Louka, Michael N.; Helgar, Stein; Gustavsen, Morten; Nystad, Espen

    2002-07-01

    The entrance of small wireless computers opens for application of computers in a number of new areas. In the near future, operators will be able to wear a computer much in the same way as eyeglasses or clothing are worn today. One example of a potentially useful application of this technology is visualisation of radiation. With the augmented reality (AR) technique, combining computer-generated pictures with the real world, information of variation in radiation levels can be presented for field operator working in contaminated areas. Using the AR system prototype developed for the experiment described in this report, information about radiation was presented to the subjects using different sensing modalities. The visual mode was chosen as the main mode and compared to a combination of visual, auditory and haptic presentations. A control group presented with paper-based information about levels of radiation performed the same task as the groups using the AR prototype. The results indicate that the operators' awareness of radiation was the same after using the AR prototype as in the control group. The auditory and haptic information presented seemed to have a positive effect on the operators' radiation awareness. The report discusses the results from the experimental test and from a usability test of the prototype. Based on these results and current technology status in the domain of AR, recommendations for further development are given.

  18. The application of natural language processing to augmentative and alternative communication.

    Science.gov (United States)

    Higginbotham, D Jeffery; Lesher, Gregory W; Moulton, Bryan J; Roark, Brian

    2011-01-01

    Significant progress has been made in the application of natural language processing (NLP) to augmentative and alternative communication (AAC), particularly in the areas of interface design and word prediction. This article will survey the current state-of-the-science of NLP in AAC and discuss its future applications for the development of next generation of AAC technology.

  19. archAR: an archaeological augmented reality experience

    Science.gov (United States)

    Wiley, Bridgette; Schulze, Jürgen P.

    2015-03-01

    We present an application for Android phones or tablets called "archAR" that uses augmented reality as an alternative, portable way of viewing archaeological information from UCSD's Levantine Archaeology Laboratory. archAR provides a unique experience of flying through an archaeological dig site in the Levantine area and exploring the artifacts uncovered there. Using a Google Nexus tablet and Qualcomm's Vuforia API, we use an image target as a map and overlay a three-dimensional model of the dig site onto it, augmenting reality such that we are able to interact with the plotted artifacts. The user can physically move the Android device around the image target and see the dig site model from any perspective. The user can also move the device closer to the model in order to "zoom" into the view of a particular section of the model and its associated artifacts. This is especially useful, as the dig site model and the collection of artifacts are very detailed. The artifacts are plotted as points, colored by type. The user can touch the virtual points to trigger a popup information window that contains details of the artifact, such as photographs, material descriptions, and more.

  20. A Sun Path Observation System Based on Augment Reality and Mobile Learning

    Directory of Open Access Journals (Sweden)

    Wernhuar Tarng

    2018-01-01

    Full Text Available This study uses the augmented reality technology and sensor functions of GPS, electronic compass, and three-axis accelerometer on mobile devices to develop a Sun path observation system for applications in astronomy education. The orientation and elevation of the Sun can be calculated by the system according to the user’s location and local time to simulate the Sun path. When holding the mobile device toward the sky, the screen will show the virtual Sun at the same position as that of the real Sun. The user can record the Sun path and the data of observation date, time, longitude, and latitude using the celestial hemisphere and the pole shadow on the system. By setting different observation times and locations, it can be seen that the Sun path changes with seasons and latitudes. The system provides contextual awareness of the Sun path concepts, and it can convert the observation data into organized and meaningful astronomical knowledge to enable combination of situated learning with spatial cognition. The system can solve the problem of being not able to record the Sun path due to a bad weather or topographical restrictions, and therefore it is helpful for elementary students when conducting observations. A teaching experiment has been conducted to analyze the learning achievement of students after using the system, and the results show that it is more effective than traditional teaching aids. The questionnaire results also reveal that the system is easy to operate and useful in recording the Sun path data. Therefore, it is an effective tool for astronomy education in elementary schools.

  1. Augmented virtualised reality-Applications and benefits in remote handling for fusion

    International Nuclear Information System (INIS)

    King, Ryan; Hamilton, David

    2009-01-01

    Over the last 10 years VR has been used at JET in an increasingly important role. It now finds use in various aspects of task preparation including planning, mock-up, training and task overview. It also plays an important role in actual operations where it is used to gain a more complete view of the work area. The JET VR implementation does not have on-line monitoring of the remote environment and the robot modelling has accuracy limitations, so this system cannot be used as the primary means of viewing. Work is currently underway with the aim of allowing such as system to run at ITER with full remote environment monitoring with high enough precision and accuracy so as to allow its use as the primary viewing method. This paper looks at how this augmented virtualised reality solution would be applied and considers some of the additional benefits AVR could have in remote handling for fusion.

  2. World Area Forecast System (WAFS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Area Forecast System (WAFS) is a worldwide system by which world area forecast centers provide aeronautical meteorological en-route forecasts in uniform...

  3. Empirical evaluation of augmented prototyping effectiveness

    Directory of Open Access Journals (Sweden)

    Tomáš Koubek

    2012-01-01

    Full Text Available Augmented reality is a scientific field well known for more than twenty years. Although there is a huge number of projects that present promising results, the real usage of augmented reality applications for fulfilling common tasks is almost negligible. We believe that one of the principal reasons is insufficient usability of these applications. The situation is analogous to the desktop, mobile or cloud application development or even to the web pages design. The first phase of a technology adoption is the exploration of its potential. As soon as the technical problems are overcome and the technology is widely accepted, the usability is a principal issue. The usability is utmost important also from the business point of view. The cost of augmented reality implementation into the production process is substantial, therefore, the usability that is directly responsible for the implemented solution effectiveness must be appropriately tested. Consequently, the benefit of the implemented solution can be measured.This article briefly outlines common techniques used for usability evaluation. Discussed techniques were designed especially for evaluation of desktop applications, mobile solutions and web pages. In spite of this drawback, their application on augmented reality products is usually possible. Further, a review of existing augmented reality project evaluations is presented.Based on this review, a usability evaluation method for our augmented prototyping application is proposed. This method must overcome the fact that the design is a creative process. Therefore, it is not possible to take into account common criteria such as time consumption.

  4. Enhancing a Multi-body Mechanism with Learning-Aided Cues in an Augmented Reality Environment

    International Nuclear Information System (INIS)

    Sidhu, Manjit Singh

    2013-01-01

    Augmented Reality (AR) is a potential area of research for education, covering issues such as tracking and calibration, and realistic rendering of virtual objects. The ability to augment real world with virtual information has opened the possibility of using AR technology in areas such as education and training as well. In the domain of Computer Aided Learning (CAL), researchers have long been looking into enhancing the effectiveness of the teaching and learning process by providing cues that could assist learners to better comprehend the materials presented. Although a number of works were done looking into the effectiveness of learning-aided cues, but none has really addressed this issue for AR-based learning solutions. This paper discusses the design and model of an AR based software that uses visual cues to enhance the learning process and the outcome perception results of the cues.

  5. Enhancing a Multi-body Mechanism with Learning-Aided Cues in an Augmented Reality Environment

    Science.gov (United States)

    Singh Sidhu, Manjit

    2013-06-01

    Augmented Reality (AR) is a potential area of research for education, covering issues such as tracking and calibration, and realistic rendering of virtual objects. The ability to augment real world with virtual information has opened the possibility of using AR technology in areas such as education and training as well. In the domain of Computer Aided Learning (CAL), researchers have long been looking into enhancing the effectiveness of the teaching and learning process by providing cues that could assist learners to better comprehend the materials presented. Although a number of works were done looking into the effectiveness of learning-aided cues, but none has really addressed this issue for AR-based learning solutions. This paper discusses the design and model of an AR based software that uses visual cues to enhance the learning process and the outcome perception results of the cues.

  6. Sensor fusion in head pose tracking for augmented reality

    NARCIS (Netherlands)

    Persa, S.F.

    2006-01-01

    The focus of this thesis is on studying diverse techniques, methods and sensors for position and orientation determination with application to augmented reality applications. In Chapter 2 we reviewed a variety of existing techniques and systems for position determination. From a practical point of

  7. Augmented Reality

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Radmer, Ole

    2017-01-01

    Artiklen præsenterer resultater fra pilotafprøvning i 7.-klasses fysik/kemi og biologi af to Augmented Reality (AR)-apps til naturfagsundervisning. Muligheder og udfordringer ved lærerens stilladsering af elevernes undersøgende samtale og modelleringskompetence er undersøgt med interview...

  8. Augmented Reality for Art, Design and Cultural Heritage—System Design and Evaluation

    Directory of Open Access Journals (Sweden)

    Joachim Rotteveel

    2009-01-01

    Full Text Available This paper describes the design of an optical see-through head-mounted display (HMD system for Augmented Reality (AR. Our goals were to make virtual objects “perfectly” indistinguishable from real objects, wherever the user roams, and to find out to which extent imperfections are hindering applications in art and design. For AR, fast and accurate measuring of head motions is crucial. We made a head-pose tracker for the HMD that uses error-state Kalman filters to fuse data from an inertia tracker with data from a camera that tracks visual markers. This makes on-line head-pose based rendering of dynamic virtual content possible. We measured our system, and found that with an A4-sized marker viewed from >20∘ at 5 m distance with an SXGA camera (FOV 108∘, the RMS error in the tracker angle was <0.5∘ when moving the head slowly. Our Kalman filters suppressed the pose error due to camera delay, which is proportional to the angular and linear velocities, and the dynamic misalignment was comparable to the static misalignment. Applications of artists and designers lead to observations on the profitable use of our AR system. Their exhibitions at world-class museums showed that AR is a powerful tool for disclosing cultural heritage.

  9. Graphical user interface concepts for tactical augmented reality

    Science.gov (United States)

    Argenta, Chris; Murphy, Anne; Hinton, Jeremy; Cook, James; Sherrill, Todd; Snarski, Steve

    2010-04-01

    Applied Research Associates and BAE Systems are working together to develop a wearable augmented reality system under the DARPA ULTRA-Vis program†. Our approach to achieve the objectives of ULTRAVis, called iLeader, incorporates a full color 40° field of view (FOV) see-thru holographic waveguide integrated with sensors for full position and head tracking to provide an unobtrusive information system for operational maneuvers. iLeader will enable warfighters to mark-up the 3D battle-space with symbologic identification of graphical control measures, friendly force positions and enemy/target locations. Our augmented reality display provides dynamic real-time painting of symbols on real objects, a pose-sensitive 360° representation of relevant object positions, and visual feedback for a variety of system activities. The iLeader user interface and situational awareness graphical representations are highly intuitive, nondisruptive, and always tactically relevant. We used best human-factors practices, system engineering expertise, and cognitive task analysis to design effective strategies for presenting real-time situational awareness to the military user without distorting their natural senses and perception. We present requirements identified for presenting information within a see-through display in combat environments, challenges in designing suitable visualization capabilities, and solutions that enable us to bring real-time iconic command and control to the tactical user community.

  10. Smart maintenance of riverbanks using a standard data layer and Augmented Reality

    Science.gov (United States)

    Pierdicca, Roberto; Frontoni, Emanuele; Zingaretti, Primo; Mancini, Adriano; Malinverni, Eva Savina; Tassetti, Anna Nora; Marcheggiani, Ernesto; Galli, Andrea

    2016-10-01

    Linear buffer strips (BS) along watercourses are commonly adopted to reduce run-off, accumulation of bank-top sediments and the leaking of pesticides into fresh-waters, which strongly increase water pollution. However, the monitoring of their conditions is a difficult task because they are scattered over wide rural areas. This work demonstrates the benefits of using a standard data layer and Augmented Reality (AR) in watershed control and outlines the guideline of a novel approach for the health-check of linear BS. We designed a mobile environmental monitoring system for smart maintenance of riverbanks by embedding the AR technology within a Geographical Information System (GIS). From the technological point of view, the system's architecture consists of a cloud-based service for data sharing, using a standard data layer, and of a mobile device provided with a GPS based AR engine for augmented data visualization. The proposed solution aims to ease the overall inspection process by reducing the time required to run a survey. Indeed, ordinary operational survey conditions are usually performed basing the fieldwork on just classical digitized maps. Our application proposes to enrich inspections by superimposing information on the device screen with the same point of view of the camera, providing an intuitive visualization of buffer strip location. This way, the inspection officer can quickly and dynamically access relevant information overlaying geographic features, comments and other contents in real time. The solution has been tested in fieldwork to prove at what extent this cutting-edge technology contributes to an effective monitoring over large territorial settings. The aim is to encourage officers, land managers and practitioners toward more effective monitoring and management practices.

  11. Projector-Based Augmented Reality for Quality Inspection of Scanned Objects

    Science.gov (United States)

    Kern, J.; Weinmann, M.; Wursthorn, S.

    2017-09-01

    After scanning or reconstructing the geometry of objects, we need to inspect the result of our work. Are there any parts missing? Is every detail covered in the desired quality? We typically do this by looking at the resulting point clouds or meshes of our objects on-screen. What, if we could see the information directly visualized on the object itself? Augmented reality is the generic term for bringing virtual information into our real environment. In our paper, we show how we can project any 3D information like thematic visualizations or specific monitoring information with reference to our object onto the object's surface itself, thus augmenting it with additional information. For small objects that could for instance be scanned in a laboratory, we propose a low-cost method involving a projector-camera system to solve this task. The user only needs a calibration board with coded fiducial markers to calibrate the system and to estimate the projector's pose later on for projecting textures with information onto the object's surface. Changes within the projected 3D information or of the projector's pose will be applied in real-time. Our results clearly reveal that such a simple setup will deliver a good quality of the augmented information.

  12. Two Innovative Steps for Training on Maintenance: 'VIRMAN' Spanish Project based on Virtual Reality 'STARMATE' European Project based on Augmented Reality

    International Nuclear Information System (INIS)

    Gonzalez Anez, Francisco

    2002-01-01

    This paper presents two development projects (STARMATE and VIRMAN) focused on supporting training on maintenance. Both projects aim at specifying, designing, developing, and demonstrating prototypes allowing computer guided maintenance of complex mechanical elements using Augmented and Virtual Reality techniques. VIRMAN is a Spanish development project. The objective is to create a computer tool for maintenance training course elaborations and training delivery based on 3D virtual reality models of complex components. The training delivery includes 3D record displays on maintenance procedures with all complementary information for intervention understanding. Users are requested to perform the maintenance intervention trying to follow up the procedure. Users can be evaluated about the level of knowledge achieved. Instructors can check the evaluation records left during the training sessions. VIRMAN is simple software supported by a regular computer and can be used in an Internet framework. STARMATE is a forward step in the area of virtual reality. STARMATE is a European Commission project in the frame of 'Information Societies Technologies'. A consortium of five companies and one research institute shares their expertise in this new technology. STARMATE provides two main functionalities (1) user assistance for achieving assembly/de-assembly and following maintenance procedures, and (2) workforce training. The project relies on Augmented Reality techniques, which is a growing area in Virtual Reality research. The idea of Augmented Reality is to combine a real scene, viewed by the user, with a virtual scene, generated by a computer, augmenting the reality with additional information. The user interface is see-through goggles, headphones, microphone and an optical tracking system. All these devices are integrated in a helmet connected with two regular computers. The user has his hands free for performing the maintenance intervention and he can navigate in the virtual

  13. Augmented Reality Tower Technology Assessment

    Science.gov (United States)

    Reisman, Ronald J.; Brown, David M.

    2009-01-01

    Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.

  14. Therapeutic options for lip augmentation.

    Science.gov (United States)

    Segall, Lorne; Ellis, David A F

    2007-11-01

    Aesthetic ideals vary with emerging fashion trends and within different cultures. However, over the past few decades, fuller lips have been considered a desirable trait. Many younger patients are presenting for lip augmentation to achieve the sought-after look commonly seen in many fashion magazines. In addition, as individuals age, they lose lip volume, with a thinning of the red lip, some effacement of the vermillion border, and elongation and flattening of the white portion of the lip. Rejuvenation of the lips plays a key role in restoring a more youthful appearance. As a result, lip augmentation appeals to a wide spectrum of patients who present with various different aesthetic goals and expectations. Numerous therapeutic options exist for aesthetic lip augmentation, ranging from temporary and permanent injectable fillers to implants and other surgical techniques.

  15. Affordances in Mobile Augmented Reality Applications

    Directory of Open Access Journals (Sweden)

    Tor Gjøsæter

    2014-10-01

    Full Text Available This paper explores the affordances of augmented reality content in a mobile augmented reality application. A user study was conducted by performing a multi-camera video recording of seven think aloud sessions. The think aloud sessions consisted of individual users performing tasks, exploring and experiencing a mobile augmented reality (MAR application we developed for the iOS platform named ARad. We discuss the instrumental affordances we observed when users interacted with augmented reality content, as well as more complex affordances rising from conventions from media content, AR and the traditional WIMP paradigm. We find that remediation of traditional newspaper content through the MAR medium can provide engaging, pleasing and exciting user experiences. However, the some of the content still suffers from being shoveled onto the MAR platform without adapting it properly. Finally, we discuss what content was most successfully mediated to the user and how the content impacts the user experience.

  16. The future of radiology augmented with Artificial Intelligence: A strategy for success.

    Science.gov (United States)

    Liew, Charlene

    2018-05-01

    The rapid development of Artificial Intelligence/deep learning technology and its implementation into routine clinical imaging will cause a major transformation to the practice of radiology. Strategic positioning will ensure the successful transition of radiologists into their new roles as augmented clinicians. This paper describes an overall vision on how to achieve a smooth transition through the practice of augmented radiology where radiologists-in-the-loop ensure the safe implementation of Artificial Intelligence systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Augmented reality in surgery.

    Science.gov (United States)

    Shuhaiber, Jeffrey H

    2004-02-01

    To evaluate the history and current knowledge of computer-augmented reality in the field of surgery and its potential goals in education, surgeon training, and patient treatment. National Library of Medicine's database and additional library searches. Only articles suited to surgical sciences with a well-defined aim of study, methodology, and precise description of outcome were included. Augmented reality is an effective tool in executing surgical procedures requiring low-performance surgical dexterity; it remains a science determined mainly by stereotactic registration and ergonomics. Strong evidence was found that it is an effective teaching tool for training residents. Weaker evidence was found to suggest a significant influence on surgical outcome, both morbidity and mortality. No evidence of cost-effectiveness was found. Augmented reality is a new approach in executing detailed surgical operations. Although its application is in a preliminary stage, further research is needed to evaluate its long-term clinical impact on patients, surgeons, and hospital administrators. Its widespread use and the universal transfer of such technology remains limited until there is a better understanding of registration and ergonomics.

  18. Enhancing tourism with augmented and virtual reality

    OpenAIRE

    Jenny, Sandra

    2017-01-01

    Augmented and virtual reality are on the advance. In the last twelve months, several interesting devices have entered the market. Since tourism is one of the fastest growing economic sectors in the world and has become one of the major players in international commerce, the aim of this thesis was to examine how tourism could be enhanced with augmented and virtual reality. The differences and functional principles of augmented and virtual reality were investigated, general uses were described ...

  19. Is ridge preservation/augmentation at periodontally compromised extraction sockets safe? A retrospective study.

    Science.gov (United States)

    Kim, Jung-Ju; Ben Amara, Heithem; Schwarz, Frank; Kim, Hae-Young; Lee, Jung-Won; Wikesjö, Ulf M E; Koo, Ki-Tae

    2017-10-01

    This study aimed to evaluate the safety of ridge preservation/augmentation procedures when performed at compromised extraction sockets. Patients subject to ridge preservation/augmentation at periodontally compromised sockets at Seoul National University Dental Hospital (SNUDH) were evaluated in a chart review. Tooth extractions due to acute infection were not included in our study as chronically formed lesions are the only lesions that can be detected from radiographic images. If inflammatory symptoms persisted following ridge preservation/augmentation and antimicrobial and anti-inflammatory therapy, the patient was categorized as a re-infection case and implanted biomaterial removed. Of 10,060 patients subject to tooth extractions at SNUDH, 2011 through 2015, 297 cases meeting inclusion criteria were reviewed. The severity and type of lesions were not specific because extracting data was only done by radiographic images and chart records. The review identified eight patients exhibiting inflammatory symptoms that required additional antimicrobial and anti-inflammatory therapy. Within this group, re-infection occurred in two patients requiring biomaterials removal. The final safety rate for the ridge preservation/augmentation was 99.3%. None of the demographic factors, systemic conditions or choice of biomaterial affected the safety of ridge preservation/augmentation. Alveolar ridge preservation/augmentation at periodontally compromised sockets appears safe following thorough removal of infectious source. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations.

    Science.gov (United States)

    Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl

    2014-09-01

    Augmented reality technology has been used for intraoperative image guidance through the overlay of virtual images, from preoperative imaging studies, onto the real-world surgical field. Although setups based on augmented reality have been used for various neurosurgical pathologies, very few cases have been reported for the surgery of arteriovenous malformations (AVM). We present our experience with AVM surgery using a system designed for image injection of virtual images into the operating microscope's eyepiece, and discuss why augmented reality may be less appealing in this form of surgery. N = 5 patients underwent AVM resection assisted by augmented reality. Virtual three-dimensional models of patients' heads, skulls, AVM nidi, and feeder and drainage vessels were selectively segmented and injected into the microscope's eyepiece for intraoperative image guidance, and their usefulness was assessed in each case. Although the setup helped in performing tailored craniotomies, in guiding dissection and in localizing drainage veins, it did not provide the surgeon with useful information concerning feeder arteries, due to the complexity of AVM angioarchitecture. The difficulty in intraoperatively conveying useful information on feeder vessels may make augmented reality a less engaging tool in this form of surgery, and might explain its underrepresentation in the literature. Integrating an AVM's hemodynamic characteristics into the augmented rendering could make it more suited to AVM surgery.

  1. Augmented Reality: Daily Prayers for Preschooler Student

    Directory of Open Access Journals (Sweden)

    Hendra Pradibta

    2018-01-01

    Full Text Available Education is one of the aspects that many synthesized with technology. Yet, this is contrary to the fact that where most of the learning materials are still based on text. This research aims to develop an alternative learning media by implementing Augmented Reality Technology for Preschooler students. Augmented Reality (AR is an application that can combine the virtual object as text, pictures and animation into the real world. Development of Augmented Reality application uses Web Aurasma Based Studio, with learning materials of daily prayer for preschool student. The development of the characters and the animations were using Adobe Illustrator and Adobe After Effects. The results of the study showed that technology Augmented Reality can be used as an alternative learning media especially in the learning process in Preschool Al Furqon. This is because the content Augmented Reality in the form of animation can gives more understanding and attention for preschool student to follow the learning process

  2. Nested immersion: Describing and classifying augmented virtual reality

    OpenAIRE

    MARSH, William Eric; MERIENNE, Frédéric

    2015-01-01

    We present a system, intended for automotive design review use cases, that incorporates a tracked tablet in a CAVE, where both the tablet and the CAVE provide different views and interaction possibilities within the same virtual scene. At its core, this idea is not novel. However, the literature reveals few examples of this paradigm in which virtual information is presented on a second physical device to augment an immersive virtual environment. Similarly, it is unclear where the system shoul...

  3. Augmented fish health monitoring

    International Nuclear Information System (INIS)

    Michak, P.; Rogers, R.; Amos, K.

    1991-05-01

    The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Historically, all agencies involved with fish health in the Columbia Basin were conducting various levels of fish health monitoring, pathogen screening and collection. The goals of this project were; to identify, develop and implement a standardized level of fish health methodologies, develop a common data collection and reporting format in the area of artificial production, evaluate and monitor water quality, improve communications between agencies and provide annual evaluation of fish health information for production of healthier smolts. This completion report will contain a project evaluation, review of the goals of the project, evaluation of the specific fish health analyses, an overview of highlights of the project and concluding remarks. 8 refs., 1 fig., 4 tabs

  4. Feasibility of an Autism-Focused Augmented Reality Smartglasses System for Social Communication and Behavioral Coaching

    Directory of Open Access Journals (Sweden)

    Runpeng Liu

    2017-06-01

    Full Text Available BackgroundAutism spectrum disorder (ASD is a childhood-onset neurodevelopmental disorder with a rapidly rising prevalence, currently affecting 1 in 68 children, and over 3.5 million people in the United States. Current ASD interventions are primarily based on in-person behavioral therapies that are both costly and difficult to access. These interventions aim to address some of the fundamental deficits that clinically characterize ASD, including deficits in social communication, and the presence of stereotypies, and other autism-related behaviors. Current diagnostic and therapeutic approaches seldom rely on quantitative data measures of symptomatology, severity, or condition trajectory.MethodsGiven the current situation, we report on the Brain Power System (BPS, a digital behavioral aid with quantitative data gathering and reporting features. The BPS includes customized smartglasses, providing targeted personalized coaching experiences through a family of gamified augmented-reality applications utilizing artificial intelligence. These applications provide children and adults with coaching for emotion recognition, face directed gaze, eye contact, and behavioral self-regulation. This preliminary case report, part of a larger set of upcoming research reports, explores the feasibility of the BPS to provide coaching in two boys with clinically diagnosed ASD, aged 8 and 9 years.ResultsThe coaching intervention was found to be well tolerated and rated as being both engaging and fun. Both males could easily use the system, and no technical problems were noted. During the intervention, caregivers reported improved non-verbal communication, eye contact, and social engagement during the intervention. Both boys demonstrated decreased symptoms of ASD, as measured by the aberrant behavior checklist at 24-h post-intervention. Specifically, both cases demonstrated improvements in irritability, lethargy, stereotypy, hyperactivity/non-compliance, and

  5. Development of a Real-Time Detection System for Augmented Reality Driving

    Directory of Open Access Journals (Sweden)

    Kuei-Shu Hsu

    2015-01-01

    Full Text Available Augmented reality technology is applied so that driving tests may be performed in various environments using a virtual reality scenario with the ultimate goal of improving visual and interactive effects of simulated drivers. Environmental conditions simulating a real scenario are created using an augmented reality structure, which guarantees the test taker’s security since they are not subject to real-life elements and dangers. Furthermore, the accuracy of tests conducted through virtual reality is not influenced by either environmental or human factors. Driver posture is captured in real time using Kinect’s depth perception function and then applied to driving simulation effects that are emulated by Unity3D’s gaming technology. Subsequently, different driving models may be collected through different drivers. In this research, nearly true and realistic street environments are simulated to evaluate driver behavior. A variety of different visual effects are easily available to effectively reduce error rates, thereby significantly improving test security as well as the reliability and reality of this project. Different situation designs are simulated and evaluated to increase development efficiency and build more security verification test platforms using such technology in conjunction with driving tests, vehicle fittings, environmental factors, and so forth.

  6. Augmented Reality Cubes for Cognitive Gaming: Preliminary Usability and Game Experience Testing

    Directory of Open Access Journals (Sweden)

    Costas Boletsis

    2016-03-01

    Full Text Available Early detection is important in dementia care; however, cognitive impairment is still under-recognised and under-diagnosed. Cognitive screening and training are two important preventative treatments, which can lead to early detection of cognitive decline. In this work, the “Cognitive Augmented Reality Cubes” (CogARC system is presented, i.e. a serious game for cognitive training and screening, utilising an interaction technique based on Augmented Reality and the manipulation of tangible, physical objects (cubes. The game is a collection of cognitive mini-games of preventative nature and is, primarily, targeting elderly players (≥60 years old. A preliminary testing was conducted focusing on the game experience that CogARC offers (utilising the In-Game Experience Questionnaire, the usability of the system (using the System Usability Scale, and the specific user observations and remarks, as documented by open, semi-structured interviews.  Overall, CogARC demonstrated satisfying positive responses, however, the negative reactions indicated that there are specific problems with aspects of the interaction technique and a number of mini-games. The open interview shed more light on the specific issues of each mini-game and further interpretation of user interactions. The current study managed to provide interesting insights into the game design elements, integration of Augmented Reality, tangible interaction of the system, and on how elderly players perceive and use those interaction components. 

  7. Potential costs of breast augmentation mammaplasty.

    Science.gov (United States)

    Schmitt, William P; Eichhorn, Mitchell G; Ford, Ronald D

    2016-01-01

    Augmentation mammaplasty is one of the most common surgical procedures performed by plastic surgeons. The aim of this study was to estimate the cost of the initial procedure and its subsequent complications, as well as project the cost of Food and Drug Administration (FDA)-recommended surveillance imaging. The potential costs to the individual patient and society were calculated. Local plastic surgeons provided billing data for the initial primary silicone augmentation and reoperative procedures. Complication rates used for the cost analysis were obtained from the Allergen Core study on silicone implants. Imaging surveillance costs were considered in the estimations. The average baseline initial cost of silicone augmentation mammaplasty was calculated at $6335. The average total cost of primary breast augmentation over the first decade for an individual patient, including complications requiring reoperation and other ancillary costs, was calculated at $8226. Each decade thereafter cost an additional $1891. Costs may exceed $15,000 over an averaged lifetime, and the recommended implant surveillance could cost an additional $33,750. The potential cost of a breast augmentation, which includes the costs of complications and imaging, is significantly higher than the initial cost of the procedure. Level III, economic and decision analysis study. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Augmented Reality and Mobile Art

    Science.gov (United States)

    Gwilt, Ian

    The combined notions of augmented-reality (AR) and mobile art are based on the amalgamation of a number of enabling technologies including computer imaging, emergent display and tracking systems and the increased computing-power in hand-held devices such as Tablet PCs, smart phones, or personal digital assistants (PDAs) which have been utilized in the making of works of art. There is much published research on the technical aspects of AR and the ongoing work being undertaken in the development of faster more efficient AR systems [1] [2]. In this text I intend to concentrate on how AR and its associated typologies can be applied in the context of new media art practices, with particular reference to its application on hand-held or mobile devices.

  9. Augmented Reality: Daily Prayers for Preschooler Student

    OpenAIRE

    Hendra Pradibta

    2018-01-01

    Education is one of the aspects that many synthesized with technology. Yet, this is contrary to the fact that where most of the learning materials are still based on text. This research aims to develop an alternative learning media by implementing Augmented Reality Technology for Preschooler students. Augmented Reality (AR) is an application that can combine the virtual object as text, pictures and animation into the real world. Development of Augmented Reality application uses Web Aurasma Ba...

  10. Blunt dissection in augmentation mammaplasty-an instrumental aid.

    Science.gov (United States)

    Webster, R C; Pedroza, L V; Smith, R C; Smith, K F

    1981-11-01

    The iconoclast is an instrument that facilitates blunt dissection in areas where this basic technique is difficult because of anatomical or postsurgical adherence. Medical and inferior undermining in augmentation mammaplasty in primary and revisional cases is described. The instrument capitalizes on the gripping rather than the spreading strength of the surgeon's hand, allows easy penetration of tissues to be spread apart, and diminished severance of blood vessels. We have used the iconoclast for almost two years in selected cases and have had no problems or complications attributable to it.

  11. Performance of a solar augmented heat pump

    Science.gov (United States)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  12. Chin augmentation - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100009.htm Chin augmentation - series—Normal anatomy To use the sharing features ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  13. Breast augmentation - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100205.htm Breast augmentation - series—Normal anatomy To use the sharing features ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  14. Bone Augmentation in Rabbit Tibia Using Microfixed Cobalt-Chromium Membranes with Whole Blood and Platelet-Rich Plasma

    Directory of Open Access Journals (Sweden)

    Oscar A. Decco

    2015-07-01

    Full Text Available Background: Bone augmentation is a subject of intensive investigation in regenerative bone medicine and constitutes a clinical situation in which autogenous bone grafts or synthetic materials are used to aid new bone formation. Method: Based on a non-critical defect, Co-Cr barrier membranes were placed on six adult Fauve de Bourgogne rabbits, divided into two groups: whole blood and PRP. Three densitometric controls were performed during the experiment. The animals were euthanized at 30, 45, 60, and 110 days. The presence of newly formed bone was observed. Samples for histological studies were taken from the augmentation center. Results: External and internal bone tissue augmentation was observed in almost all cases. Significant differences between PRP- and whole blood–stimulated bone augmentation were not observed. At 60 days, bones with PRP presented higher angiogenesis, which may indicate more proliferation and cellular activity. Conclusion: PRP activates the bone regeneration process under optimized conditions by stimulation of osteoblast proliferation after six weeks, when a significant difference in cellular activity was observed. Membranes could stimulate bone augmentation at the site of placement and in the surrounding areas.

  15. Enhancing User Experiences of Mobile-Based Augmented Reality via Spatial Augmented Reality: Designs and Architectures of Projector-Camera Devices

    Directory of Open Access Journals (Sweden)

    Thitirat Siriborvornratanakul

    2018-01-01

    Full Text Available As smartphones, tablet computers, and other mobile devices have continued to dominate our digital world ecosystem, there are many industries using mobile or wearable devices to perform Augmented Reality (AR functions in their workplaces in order to increase productivity and decrease unnecessary workloads. Mobile-based AR can basically be divided into three main types: phone-based AR, wearable AR, and projector-based AR. Among these, projector-based AR or Spatial Augmented Reality (SAR is the most immature and least recognized type of AR for end users. This is because there are a small number of commercial products providing projector-based AR functionalities in a mobile manner. Also, prices of mobile projectors are still relatively high. Moreover, there are still many technical problems regarding projector-based AR that have been left unsolved. Nevertheless, it is projector-based AR that has potential to solve a fundamental problem shared by most mobile-based AR systems. Also the always-visible nature of projector-based AR is one good answer for solving current user experience issues of phone-based AR and wearable AR systems. Hence, in this paper, we analyze what are the user experience issues and technical issues regarding common mobile-based AR systems, recently widespread phone-based AR systems, and rising wearable AR systems. Then for each issue, we propose and explain a new solution of how using projector-based AR can solve the problems and/or help enhance its user experiences. Our proposed framework includes hardware designs and architectures as well as a software computing paradigm towards mobile projector-based AR systems. The proposed design is evaluated by three experts using qualitative and semiquantitative research approaches.

  16. Enhancing Education through Mobile Augmented Reality

    Science.gov (United States)

    Joan, D. R. Robert

    2015-01-01

    In this article, the author has discussed about the Mobile Augmented Reality and enhancing education through it. The aim of the present study was to give some general information about mobile augmented reality which helps to boost education. Purpose of the current study reveals the mobile networks which are used in the institution campus as well…

  17. Augmented Reality as a Countermeasure for Sleep Deprivation.

    Science.gov (United States)

    Baumeister, James; Dorrlan, Jillian; Banks, Siobhan; Chatburn, Alex; Smith, Ross T; Carskadon, Mary A; Lushington, Kurt; Thomas, Bruce H

    2016-04-01

    Sleep deprivation is known to have serious deleterious effects on executive functioning and job performance. Augmented reality has an ability to place pertinent information at the fore, guiding visual focus and reducing instructional complexity. This paper presents a study to explore how spatial augmented reality instructions impact procedural task performance on sleep deprived users. The user study was conducted to examine performance on a procedural task at six time points over the course of a night of total sleep deprivation. Tasks were provided either by spatial augmented reality-based projections or on an adjacent monitor. The results indicate that participant errors significantly increased with the monitor condition when sleep deprived. The augmented reality condition exhibited a positive influence with participant errors and completion time having no significant increase when sleep deprived. The results of our study show that spatial augmented reality is an effective sleep deprivation countermeasure under laboratory conditions.

  18. The Cogs Are Coming: The Cognitive Augmentation Revolution

    Science.gov (United States)

    Fulbright, Ron

    2016-01-01

    We are at the beginning of a new era in human history--the cognitive augmentation era. Until now, humans have had to do all of the thinking. The future will make it possible for humans to partner with cognitive systems doing some of the thinking themselves and in many ways thinking that is superior to humans. Together, humans and "cogs"…

  19. Results of Attempts to Prevent Departure and/or Pilot-Induced Oscillations (PIO) Due to Actuator Rate Limiting in Highly-Augmented Fighter Flight Control Systems (HAVE FILTER)

    National Research Council Canada - National Science Library

    Chapa, Michael

    1999-01-01

    The objective of this effort was to evaluate the effects of software rate limiting the pilot command with and without a software pre-filter on a highly-augmented fighter aircraft flight control system...

  20. Augmented reality: dé nieuwe dimensie in de sport?

    NARCIS (Netherlands)

    Slender, Hans

    2010-01-01

    Volgens trendwatcher Justien Marseille de trend van 2010: augmented reality. Augmented reality is een techniek om met de computer gemaakte beelden toe te voegen aan de realiteit. Het Nederlandse Layar (layar.com) presenteerde zich vorig jaar vol trots als een unieke augmented reality browser, met

  1. Intra-operative ultrasound-based augmented reality guidance for laparoscopic surgery.

    Science.gov (United States)

    Singla, Rohit; Edgcumbe, Philip; Pratt, Philip; Nguan, Christopher; Rohling, Robert

    2017-10-01

    In laparoscopic surgery, the surgeon must operate with a limited field of view and reduced depth perception. This makes spatial understanding of critical structures difficult, such as an endophytic tumour in a partial nephrectomy. Such tumours yield a high complication rate of 47%, and excising them increases the risk of cutting into the kidney's collecting system. To overcome these challenges, an augmented reality guidance system is proposed. Using intra-operative ultrasound, a single navigation aid, and surgical instrument tracking, four augmentations of guidance information are provided during tumour excision. Qualitative and quantitative system benefits are measured in simulated robot-assisted partial nephrectomies. Robot-to-camera calibration achieved a total registration error of 1.0 ± 0.4 mm while the total system error is 2.5 ± 0.5 mm. The system significantly reduced healthy tissue excised from an average (±standard deviation) of 30.6 ± 5.5 to 17.5 ± 2.4 cm 3 ( p < 0.05) and reduced the depth from the tumor underside to cut from an average (±standard deviation) of 10.2 ± 4.1 to 3.3 ± 2.3 mm ( p < 0.05). Further evaluation is required in vivo, but the system has promising potential to reduce the amount of healthy parenchymal tissue excised.

  2. Aplikasi Augmented Reality Game Edukasi Untuk Pengenalan Organ Tubuh Manusia

    Directory of Open Access Journals (Sweden)

    Endah Sudarmilah

    2016-06-01

    Full Text Available Organ manusia merupakan alat yang sangat vital dalam tubuh manusia. Pada prakteknya, pengenalan organ manusia pada siswa sekolah dasar membutuhkan alat peraga tiga dimensi yang hanya dimiliki oleh sekolah. Sedangkan anak usia sekolah dasar cenderung lebih tertarik dengan hal-hal yang baru. Oleh karena itu dibutuhkan inovasi untuk menjembatani kedua permasalahan tersebut dengan aplikasi augmented reality game edukasi  untuk menarik minat dan membantu belajar siswa pada organ tubuh manusia yang dilakukan pada penelitian ini. Metode yang digunakan adalah prototyping yang merupakan bagian dari metode SDLC (System Development Life Cycle. Aplikasi augmented reality game edukasi untuk pengenalan organ tubuh manusia adalah hasil dari penelitiannya yang akan dijelaskan pada paper ini.

  3. Augmented reality services

    Directory of Open Access Journals (Sweden)

    Tomáš Koubek

    2013-01-01

    Full Text Available We assume that one of the key reasons is in the difference between a standalone application and a web service. Both architectures have some advantages and disadvantages. The Standalone application (e.g. Nokia/OVI Maps provides the required functionality. From the user point of view, main asset of this “offline” approach is network connectivity independence. However, this kind of applications must be upgraded manually. Moreover, it is hard to get any data about the application usage because it requires additional actions from the user – data are usually acquired through conventional ways, such as email or web forms.The online service such as Google Maps (including its mobile application can offer the same functionality as the offline application. Nevertheless, a permanent connection to provider servers is necessary. This can be taken as a drawback. On the other hand, usage data collection is easier and can be done without the user intervention. The data collection provides a valuable analysis basis of the user habits and needs. This analysis is necessary for design of a complex “user” based solutions such as Google Now.Augmented reality applications are usually based on the first mentioned approach. In this article, we describe our model of augmented reality as a service and compare its features with standalone solutions. Further, other important key aspects for large emergence of augmented reality services in a mainstream market are discussed.

  4. An augmented reality home-training system based on the mirror training and imagery approach.

    Science.gov (United States)

    Trojan, Jörg; Diers, Martin; Fuchs, Xaver; Bach, Felix; Bekrater-Bodmann, Robin; Foell, Jens; Kamping, Sandra; Rance, Mariela; Maaß, Heiko; Flor, Herta

    2014-09-01

    Mirror training and movement imagery have been demonstrated to be effective in treating several clinical conditions, such as phantom limb pain, stroke-induced hemiparesis, and complex regional pain syndrome. This article presents an augmented reality home-training system based on the mirror and imagery treatment approaches for hand training. A head-mounted display equipped with cameras captures one hand held in front of the body, mirrors this hand, and displays it in real time in a set of four different training tasks: (1) flexing fingers in a predefined sequence, (2) moving the hand into a posture fitting into a silhouette template, (3) driving a "Snake" video game with the index finger, and (4) grasping and moving a virtual ball. The system records task performance and transfers these data to a central server via the Internet, allowing monitoring of training progress. We evaluated the system by having 7 healthy participants train with it over the course of ten sessions of 15-min duration. No technical problems emerged during this time. Performance indicators showed that the system achieves a good balance between relatively easy and more challenging tasks and that participants improved significantly over the training sessions. This suggests that the system is well suited to maintain motivation in patients, especially when it is used for a prolonged period of time.

  5. Lifelong Augmentation of Multimodal Streaming Autobiographical Memories

    OpenAIRE

    Petit, Maxime; Fischer, Tobias; Demiris, Yiannis

    2016-01-01

    Robot systems that interact with humans over extended periods of time will benefit from storing and recalling large amounts of accumulated sensorimotor and interaction data. We provide a principled framework for the cumulative organisation of streaming autobiographical data so that data can be continuously processed and augmented as the processing and reasoning abilities of the agent develop and further interactions with humans take place. As an example, we show how a kinematic structure lear...

  6. Augmented reality: don't we all wish we lived in one?

    International Nuclear Information System (INIS)

    Hayes, Birchard P.; Michel, Kelly D.; Few, Douglas A.; Gertman, David; Le Blanc, Katya

    2010-01-01

    From stereophonic, positional sound to high-definition imagery that is crisp and clean, high fidelity computer graphics enhance our view, insight, and intuition regarding our environments and conditions. Contemporary 3-D modeling tools offer an open architecture framework that enables integration with other technologically innovative arenas. One innovation of great interest is Augmented Reality, the merging of virtual, digital environments with physical, real-world environments creating a mixed reality where relevant data and information augments the real or actual experience in real-time by spatial or semantic context. Pairing 3-D virtual immersive models with a dynamic platform such as semi-autonomous robotics or personnel odometry systems to create a mixed reality offers a new and innovative design information verification inspection capability, evaluation accuracy, and information gathering capability for nuclear facilities. Our paper discusses the integration of two innovative technologies, 3-D visualizations with inertial positioning systems, and the resulting augmented reality offered to the human inspector. The discussion in the paper includes an exploration of human and non-human (surrogate) inspections of a nuclear facility, integrated safeguards knowledge within a synchronized virtual model operated, or worn, by a human inspector, and the anticipated benefits to safeguards evaluations of facility operations.

  7. Mobile Marketing: Usage of Augmented Reality in Tourism

    Directory of Open Access Journals (Sweden)

    İbrahim İLHAN

    2016-12-01

    Full Text Available The developing number of applications by smart devices provides an expanding diversity of travel-related services. In the most recent decade, marketers and advertisers have developed more innovative practices to attract consumers. One of these new marketing tools is augmented reality (AR application with the smart technologies, which is considered as an advertising and new marketing communication instrument that increases awareness and helps get information. The use of augmented reality has unfolded across several sectors in recent years. One in every of the areas of wherever this technology will notice a possible use is that the tourism industry. AR is taken into account extremely vital for promoting in several industries; but, within the tourism industry there exist comparatively few researches and articles despite the very fact that tourism may fine benefit from the applications for these practices. Therefore this study aimed to seeks; 1 To identify the potentials of the AR applications within the tourism industry. 2 To identify the AR applications in several tourism businesses at the tourism industry from the attitude of promoting, for instance hotels, restaurants, museums and transportation

  8. Packing of Fruit Fly Parasitoids for Augmentative Releases

    Directory of Open Access Journals (Sweden)

    Pablo Montoya

    2012-09-01

    Full Text Available The successful application of Augmentative Biological Control (ABC to control pest fruit flies (Diptera: Tephritidae confronts two fundamental requirements: (1 the establishment of efficient mass rearing procedures for the species to be released, and (2 the development of methodologies for the packing and release of parasitoids that permit a uniform distribution and their optimal field performance under an area-wide approach. Parasitoid distributions have been performed by ground and by air with moderate results; both options face challenges that remain to be addressed. Different devices and strategies have been used for these purposes, including paper bags and the chilled adult technique, both of which are commonly used when releasing sterile flies. However, insect parasitoids have morphological and behavioral characteristics that render the application of such methodologies suboptimal. In this paper, we discuss an alternate strategy for the augmentative release of parasitoids and describe packing conditions that favor the rearing and emergence of adult parasitoids for increased field performance. We conclude that the use of ABC, including the packaging of parasitoids, requires ongoing development to ensure that this technology remains a viable and effective control technique for pest fruit flies.

  9. Age grouping to optimize augmentation success.

    Science.gov (United States)

    Gordon, Robert W

    2010-05-01

    This article has described the different age groups that present for noninvasive injectable lip and perioral augmentation, as well as the breakdown of 3 subgroups that present within the 4 general age groups. With the fundamental understanding of these presenting groups and subgroups, the practicing augmenter will be able to better treatment plan and educate the patient on realistic and optimal aesthetic outcomes.

  10. Research Networking Systems: The State of Adoption at Institutions Aiming to Augment Translational Research Infrastructure.

    Science.gov (United States)

    Obeid, Jihad S; Johnson, Layne M; Stallings, Sarah; Eichmann, David

    Fostering collaborations across multiple disciplines within and across institutional boundaries is becoming increasingly important with the growing emphasis on translational research. As a result, Research Networking Systems that facilitate discovery of potential collaborators have received significant attention by institutions aiming to augment their research infrastructure. We have conducted a survey to assess the state of adoption of these new tools at the Clinical and Translational Science Award (CTSA) funded institutions. Survey results demonstrate that most CTSA funded institutions have either already adopted or were planning to adopt one of several available research networking systems. Moreover a good number of these institutions have exposed or plan to expose the data on research expertise using linked open data, an established approach to semantic web services. Preliminary exploration of these publically-available data shows promising utility in assessing cross-institutional collaborations. Further adoption of these technologies and analysis of the data are needed, however, before their impact on cross-institutional collaboration in research can be appreciated and measured.

  11. Visual Enhancement for Sports Entertainment by Vision-Based Augmented Reality

    OpenAIRE

    Uematsu, Yuko; Saito, Hideo

    2008-01-01

    This paper presents visually enhanced sports entertainment applications: AR Baseball Presentation System and Interactive AR Bowling System. We utilize vision-based augmented reality for getting immersive feeling. First application is an observation system of a virtual baseball game on the tabletop. 3D virtual players are playing a game on a real baseball field model, so that users can observe the game from favorite view points through a handheld monitor with a web camera....

  12. Easy-to-use augmented reality neuronavigation using a wireless tablet PC.

    Science.gov (United States)

    Deng, Weiwei; Li, Fang; Wang, Manning; Song, Zhijian

    2014-01-01

    Augmented reality (AR) technology solves the problem of view switching in traditional image-guided neurosurgery systems by integrating computer-generated objects into the actual scene. However, the state-of-the-art AR solution using head-mounted displays has not been widely accepted in clinical applications because it causes some inconvenience for the surgeon during surgery. In this paper, we present a Tablet-AR system that transmits navigation information to a movable tablet PC via a wireless local area network and overlays this information on the tablet screen, which simultaneously displays the actual scene captured by its back-facing camera. With this system, the surgeon can directly observe the intracranial anatomical structure of the patient with the overlaid virtual projection images to guide the surgery. The alignment errors in the skull specimen study and clinical experiment were 4.6 pixels (approx. 1.6 mm) and 6 pixels (approx. 2.1 mm), respectively. The system was also used for navigation in 2 actual clinical cases of neurosurgery, which demonstrated its feasibility in a clinical application. The easy-to-use Tablet-AR system presented in this study is accurate and feasible in clinical applications and has the potential to become a routine device in AR neuronavigation.

  13. L1 Adaptive Control Augmentation System with Application to the X-29 Lateral/Directional Dynamics: A Multi-Input Multi-Output Approach

    Science.gov (United States)

    Griffin, Brian Joseph; Burken, John J.; Xargay, Enric

    2010-01-01

    This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.

  14. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.

    Science.gov (United States)

    Shen, Xin; Javidi, Bahram

    2018-03-01

    We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.

  15. Three-dimensional imaging, an important factor of decision in breast augmentation.

    Science.gov (United States)

    de Runz, A; Boccara, D; Bertheuil, N; Claudot, F; Brix, M; Simon, E

    2018-04-01

    Since the beginning of the 21st century, three-dimensional imaging systems have been used more often in plastic surgery, especially during preoperative planning for breast surgery and to simulate the postoperative appearance of the implant in the patient's body. The main objective of this study is to assess the patients' attitudes regarding 3D simulation for breast augmentation. A study was conducted, which included women who were operated on for primary breast augmentation. During the consultation, a three-dimensional simulation with Crisalix was done and different sized implants were fitted in the bra. Thirty-eight women were included. The median age was 29.4, and the median prosthesis volume was 310mL. The median rank given regarding the final result was 9 (IQR: 8-9). Ninety percent of patients agreed (66% absolutely agreed, and 24% partially agreed) that the final product after breast augmentations was similar to the Crisalix simulation. Ninety-three percent of the patients believed that the three-dimensional simulation helped them choose their prosthesis (61% a lot and 32% a little). After envisaging a breast enlargement, patients estimated that the Crisalix system was absolutely necessary (21%), very useful (32%), useful (45%), or unnecessary (3%). Regarding prosthesis choice, an equal number of women preferred the 3D simulation (19 patients) as preferred using different sizes of implants in the bra (19 patients). The present study demonstrated that 3D simulation is actually useful for patients in order to envisage a breast augmentation. But it should be used as a complement to the classic method of trying different sized breast implants in the bra. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Augmentation of catecholamine release elicited by an Eugenia punicifolia extract in chromaffin cells

    Directory of Open Access Journals (Sweden)

    Ricardo de Pascual

    2011-10-01

    Full Text Available Plant extracts of Eugenia punicifolia (Kunth DC., Myrtaceae, are used in Amazon region of Brazil to treat diarrhea and stomach disturbances, and as hypoglycemic medicine. We have recently shown that an aqueous extract of E. punicifolia augmented cholinergic neurotransmission in a rat phrenic nerve-diaphragm preparation. In this study, we investigated the effects of an E. punicifolia dichloromethane extract (EPEX in a neuronal model of cholinergic neurotransmission, the bovine adrenal chromaffin cell. EPEX augmented the release of catecholamine triggered by acetylcholine (ACh pulses but did not enhance ACh-evoked inward currents, which were inhibited by 30%. Since EPEX did not cause a blockade of acetylcholinesterase or butyrylcholinesterase, it seems that EPEX is not directly activating the cholinergic system. EPEX also augmented K+-elicited secretion without enhancing the whole-cell inward calcium current. This novel and potent effect of EPEX in enhancing exocytosis might help to identify the active component responsible for augmenting exocytosis. When elucidated, the molecular structure of this active principle could serve as a template to synthesise novel compounds to regulate the exocytotic release of neurotransmitters.

  17. Bone augmentation for cancellous bone- development of a new animal model

    Science.gov (United States)

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals

  18. Development and experimental evaluation of an automatic marker registration system for tracking of augmented reality

    International Nuclear Information System (INIS)

    Yan, Wei-da; Yang Shou-feng; Ishii, Hirotake; Shimoda, Hiroshi; Izumi, Masanori

    2010-01-01

    In order to apply augmented reality in plant maintenance activities it is necessary to use real-time high accuracy tracking technology. One of the most efficient tracking methods is using paper-based markers and computing the relative position and orientation between a vision sensor (camera) and the markers through image processing and geometry calculations. In this method, the 3D-position of each marker is needed before tracking, but it is inefficient to measure all the markers manually. In this study, an automatic marker registration system was developed so as to measure the 3D-position of each marker automatically. The system is composed of a camera, a laser rangefinder and a motion base, which is used to control the pose of the laser rangefinder. A computer, connected to them, is used for controlling the system and for data transport. The results of the experimental evaluations show that the measurement takes about 21 seconds per marker and that the Root Mean Square Error (RMSE) of the position measurements is 3.5 mm. The feasibility evaluation of the system was conducted in Fugen nuclear plant. The results show that the system can largely reduce the preparatory workload of an AR application in a Nuclear Power Plant (NPP). (author)

  19. Guidelines for user interactions in mobile augmented reality

    OpenAIRE

    Ortman, Erik; Swedlund, Kenneth

    2012-01-01

    Over the last couple of years the field of Augmented Reality has transformed from something mainly seen in academic researchinto several examples of big commercially successful products, and the widespread use of highly capable mobile devices has greatly helped accelerate this trend. The powerful sensors in modern handsets enable designers to bring Augmented Reality implementations to the hands ofthe users.This thesis examines how Augmented Reality can be implemented onmobile platforms, mainl...

  20. Evaluation of a mobile augmented reality application for image guidance of neurosurgical interventions.

    Science.gov (United States)

    Kramers, Matthew; Armstrong, Ryan; Bakhshmand, Saeed M; Fenster, Aaron; de Ribaupierre, Sandrine; Eagleson, Roy

    2014-01-01

    Image guidance can provide surgeons with valuable contextual information during a medical intervention. Often, image guidance systems require considerable infrastructure, setup-time, and operator experience to be utilized. Certain procedures performed at bedside are susceptible to navigational errors that can lead to complications. We present an application for mobile devices that can provide image guidance using augmented reality to assist in performing neurosurgical tasks. A methodology is outlined that evaluates this mode of visualization from the standpoint of perceptual localization, depth estimation, and pointing performance, in scenarios derived from a neurosurgical targeting task. By measuring user variability and speed we can report objective metrics of performance for our augmented reality guidance system.

  1. An experimental test of alternative population augmentation scenarios.

    Science.gov (United States)

    Kronenberger, John A; Gerberich, Jill C; Fitzpatrick, Sarah W; Broder, E Dale; Angeloni, Lisa M; Funk, W Chris

    2018-01-19

    Human land use is fragmenting habitats worldwide and inhibiting dispersal among previously connected populations of organisms, often leading to inbreeding depression and reduced evolutionary potential in the face of rapid environmental change. To combat this augmentation of isolated populations with immigrants is sometimes used to facilitate demographic and genetic rescue. Augmentation with immigrants that are genetically and adaptively similar to the target population effectively increases population fitness, but if immigrants are very genetically or adaptively divergent, augmentation can lead to outbreeding depression. Despite well-cited guidelines for the best practice selection of immigrant sources, often only highly divergent populations remain, and experimental tests of these riskier augmentation scenarios are essentially nonexistent. We conducted a mesocosm experiment with Trinidadian guppies (Poecilia reticulata) to test the multigenerational demographic and genetic effects of augmenting 2 target populations with 3 types of divergent immigrants. We found no evidence of demographic rescue, but we did observe genetic rescue in one population. Divergent immigrant treatments tended to maintain greater genetic diversity, abundance, and hybrid fitness than controls that received immigrants from the source used to seed the mesocosms. In the second population, divergent immigrants had a slightly negative effect in one treatment, and the benefits of augmentation were less apparent overall, likely because this population started with higher genetic diversity and a lower reproductive rate that limited genetic admixture. Our results add to a growing consensus that gene flow can increase population fitness even when immigrants are more highly divergent and may help reduce uncertainty about the use of augmentation in conservation. © 2018 Society for Conservation Biology.

  2. Information system technologies' role in augmenting dermatologists' knowledge of prescription medication costs.

    Science.gov (United States)

    DeMarco, Sebastian S; Paul, Ravi; Kilpatrick, Russell J

    2015-12-01

    Despite the recent rising costs of once affordable dermatologic prescription medications, a survey measuring dermatologists' attitudes, beliefs, and knowledge of the cost of drugs they commonly prescribe has not been conducted. Awareness of drug costs is hindered by a lack of access to data about the prices of medicines. No surveys of physicians have addressed this issue by proposing new information system technologies that augment prescription medication price transparency and measuring how receptive physicians are to using these novel solutions in their daily clinical practice. Our research aims to investigate these topics with a survey of physicians in dermatology. Members of the North Carolina Dermatology Association were contacted through their electronic mailing list and asked to take an online survey. The survey asked several questions about dermatologists' attitudes and beliefs about drug costs. To measure their knowledge of prescription medications, the National Average Drug Acquisition Cost was used as an authoritative price that was compared to the survey takers' price estimates of drugs commonly used in dermatology. Physicians' willingness to use four distinct information system technologies that increase drug price transparency was also assessed. Dermatologists believe drug costs are an important factor in patient care and believe access to price information would allow them to provide a higher quality of care. Dermatologists' knowledge of the costs of medicines they commonly prescribe is poor, but they want to utilize information system technologies that increase access to drug pricing information. There is an unmet demand for information system technologies which increase price transparency of medications in dermatology. Physicians and IT professionals have the opportunity to create novel information systems that can be utilized to help guide cost conscious clinical decision making. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Augmented reality for industrial robot programmers: Workload analysis for task-based, augmented reality-supported robot control

    OpenAIRE

    Stadler, S.; Kain, K.; Giuliani, M.; Mirnig, N.; Stollnberger, G.; Tscheligi, M. ed

    2016-01-01

    Augmented reality (AR) can serve as a tool to provide helpful information in a direct way to industrial robot programmers throughout the teaching process. It seems obvious that AR support eases the programming process and increases the programmer's productivity and programming accuracy. However, additional information can also potentially increase the programmer's perceived workload. To explore the impact of augmented reality on robot teaching, as a first step we have chosen a Sphero robot co...

  4. Cadaveric feasibility study of da Vinci Si-assisted cochlear implant with augmented visual navigation for otologic surgery.

    Science.gov (United States)

    Liu, Wen P; Azizian, Mahdi; Sorger, Jonathan; Taylor, Russell H; Reilly, Brian K; Cleary, Kevin; Preciado, Diego

    2014-03-01

    To our knowledge, this is the first reported cadaveric feasibility study of a master-slave-assisted cochlear implant procedure in the otolaryngology-head and neck surgery field using the da Vinci Si system (da Vinci Surgical System; Intuitive Surgical, Inc). We describe the surgical workflow adaptations using a minimally invasive system and image guidance integrating intraoperative cone beam computed tomography through augmented reality. To test the feasibility of da Vinci Si-assisted cochlear implant surgery with augmented reality, with visualization of critical structures and facilitation with precise cochleostomy for electrode insertion. Cadaveric case study of bilateral cochlear implant approaches conducted at Intuitive Surgical Inc, Sunnyvale, California. Bilateral cadaveric mastoidectomies, posterior tympanostomies, and cochleostomies were performed using the da Vinci Si system on a single adult human donor cadaveric specimen. Radiographic confirmation of successful cochleostomies, placement of a phantom cochlear implant wire, and visual confirmation of critical anatomic structures (facial nerve, cochlea, and round window) in augmented stereoendoscopy. With a surgical mean time of 160 minutes per side, complete bilateral cochlear implant procedures were successfully performed with no violation of critical structures, notably the facial nerve, chorda tympani, sigmoid sinus, dura, or ossicles. Augmented reality image overlay of the facial nerve, round window position, and basal turn of the cochlea was precise. Postoperative cone beam computed tomography scans confirmed successful placement of the phantom implant electrode array into the basal turn of the cochlea. To our knowledge, this is the first study in the otolaryngology-head and neck surgery literature examining the use of master-slave-assisted cochleostomy with augmented reality for cochlear implants using the da Vinci Si system. The described system for cochleostomy has the potential to improve the

  5. Who’s That Girl? Handheld Augmented Reality for Printed Photo Books

    OpenAIRE

    Henze , Niels; Boll , Susanne

    2011-01-01

    Part 1: Long and Short Papers; International audience; Augmented reality on mobile phones has recently made major progress. Lightweight, markerless object recognition and tracking makes handheld Augmented Reality feasible for new application domains. As this field is technology driven the interface design has mostly been neglected. In this paper we investigate visualization techniques for augmenting printed documents using handheld Augmented Reality. We selected the augmentation of printed ph...

  6. Augmented versus virtual reality laparoscopic simulation: what is the difference? A comparison of the ProMIS augmented reality laparoscopic simulator versus LapSim virtual reality laparoscopic simulator

    NARCIS (Netherlands)

    Botden, Sanne M. B. I.; Buzink, Sonja N.; Schijven, Marlies P.; Jakimowicz, Jack J.

    2007-01-01

    BACKGROUND: Virtual reality (VR) is an emerging new modality for laparoscopic skills training; however, most simulators lack realistic haptic feedback. Augmented reality (AR) is a new laparoscopic simulation system offering a combination of physical objects and VR simulation. Laparoscopic

  7. Designing and Developing an Augmented Reality Application: A Sample Of Chemistry Education

    Directory of Open Access Journals (Sweden)

    Zeynep Taçgın

    2016-09-01

    Full Text Available Augmented Reality has been accepted as an effective educational method and this review depends on philosophical background of cognitive science. This means, several channels –aural, visual, and interactivity, etc. - have been used to offer information in order to support individual learning styles. In this study, Natural User Interface- and Human Computer Interaction-based Augmented Reality application has been developed for the chemistry education. The purpose of this study is to design and develop a student-centered Augmented Reality environment to teach periodic table, and atomic structure of the elements and molecules. Head Mounted Display has been used to develop Augmented Reality system, and user control has been executed with hand motions (grab, drag, drop, select and rotate. The hand motion control has been used to improve spatial abilities of students in order to maximize the transferred knowledge. Use of the most common natural controlling tools (fingers and hands to interact with virtual objects instead of AR markers or other tools provides a more interactive, holistic, social and effective learning environment that authentically reflects the world around them. In this way, learners have an active role, and are not just passive receptors. Correspondingly, the developed NUI-based system has been constructed as design-based research and developed by using instructional design methods and principles to get reach of more effective and productive learning material. Features of this developed material consist of some fundamental components to create more intuitive and conductive tools in order to support Real World collaboration.

  8. Webizing mobile augmented reality content

    Science.gov (United States)

    Ahn, Sangchul; Ko, Heedong; Yoo, Byounghyun

    2014-01-01

    This paper presents a content structure for building mobile augmented reality (AR) applications in HTML5 to achieve a clean separation of the mobile AR content and the application logic for scaling as on the Web. We propose that the content structure contains the physical world as well as virtual assets for mobile AR applications as document object model (DOM) elements and that their behaviour and user interactions are controlled through DOM events by representing objects and places with a uniform resource identifier. Our content structure enables mobile AR applications to be seamlessly developed as normal HTML documents under the current Web eco-system.

  9. Determination of student opinions in augmented reality

    Directory of Open Access Journals (Sweden)

    Huseyin Bicen

    2016-11-01

    Full Text Available The rapid development of the new technology has changed classroom teaching methods and tools in a positive way. This study investigated the classroom learning with augmented reality and the impact of student opinions. 97 volunteer undergraduate students took part in this study. Results included data in the form of frequencies, percentages and descriptive statistics. The results show that, with gamification methods, augmented reality content affected students’ opinions in a positive way. When QR codes are used in the classroom, students feel independent from classroom materials and can access various resources. Moreover, students think that, when augmented reality in the classroom is used, education is more enjoyable.

  10. Normative Data for Interpreting the BREAST-Q: Augmentation

    Science.gov (United States)

    Mundy, Lily R.; Homa, Karen; Klassen, Anne F.; Pusic, Andrea L.; Kerrigan, Carolyn L.

    2016-01-01

    Background The BREAST-Q is a rigorously developed, well-validated, patient-reported outcome (PRO) instrument with a module designed for evaluating breast augmentation outcomes. However, there are no published normative BREAST-Q scores, limiting interpretation. Methods Normative data were generated for the BREAST-Q Augmentation Module via the Army of Women (AOW), an online community of women (with and without breast cancer) engaged in breast-cancer related research. Members were recruited via email, with women 18 years or older without a history of breast cancer or breast surgery invited to participate. Descriptive statistics and a linear multivariate regression were performed. A separate analysis compared normative scores to findings from previously published BREAST-Q augmentation studies. Results The preoperative BREAST-Q Augmentation Module was completed by 1,211 women. Mean age was 54 ±24 years, mean body mass index (BMI) was 27 ±6, and 39% (n=467) had a bra cup size ≥D. Mean scores were Satisfaction with Breasts (54 ±19), Psychosocial Well-being (66 ±20), Sexual Well-being (49 ±20), and Physical Well-being (86 ±15). Women with a BMI of 30 or greater and bra cup size D or greater had lower scores. In comparison to AOW scores, published BREAST-Q augmentation scores were lower before and higher after surgery for all scales except Physical Well-being. Conclusions The AOW normative data represent breast-related satisfaction and well-being in woman not actively seeking breast augmentation. This data may be used as normative comparison values for those seeking and undergoing surgery as we did, demonstrating the value of breast augmentation in this patient population. PMID:28350657

  11. [Association between oxytocin augmentation intervals and the risk of postpartum haemorrhage].

    Science.gov (United States)

    Loscul, C; Chantry, A-A; Caubit, L; Deneux-Tharaux, C; Goffinet, F; Le Ray, C

    2016-09-01

    To study the association between the duration of oxytocin augmentation intervals and the risk of postpartum haemorrhage (PPH) among primiparous women in spontaneous labour. Retrospective cohort including primiparous women in spontaneous labour who received oxytocin during labour (n=454). Oxytocin augmentation intervals were dichotomized in intervalsoxytocin augmentation intervals. The association between oxytocin augmentation intervals and PPH was analyzed using univariate and multivariate analysis. Oxytocin augmentation intervals were shorter than 20minutes for 43.8% of the study population. The rate of PPH was higher (9.1% vs 3.5%; P=0.014), and the use of sulprostone was more frequent (6.5% vs 3.5%; P=0.013) if oxytocin augmentation intervals were shorter than 20minutes in comparison with intervals≥20minutes. The association between oxytocin augmentation intervals and PPH remains significant after adjustment on other PPH risk factors (adjusted OR=3.48, 95% CI [1.45-8.34]). The rate of adverse neonatal issue, defined by arterial pH at birth≤7.10 and/or 5minutes score d'Apgar≤7, was higher if oxytocin augmentation intervals wereoxytocin with augmentation intervals shorter than 20minutes. Copyright © 2016. Published by Elsevier Masson SAS.

  12. The Primary Stability of a Bioabsorbable Poly-L-Lactic Acid Suture Anchor for Rotator Cuff Repair Is Not Improved with Polymethylmethacrylate or Bioabsorbable Bone Cement Augmentation.

    Science.gov (United States)

    Güleçyüz, Mehmet F; Kraus-Petersen, Michael; Schröder, Christian; Ficklscherer, Andreas; Wagenhäuser, Markus U; Braun, Christian; Müller, Peter E; Pietschmann, Matthias F

    2018-02-01

    The incidence of osteoporosis and rotator cuff tears increases with age. Cement augmentation of bones is an established method in orthopedic and trauma surgery. This study analyses if polymethylmethacrylate or bioabsorbable cement can improve the primary stability of a bioabsorbable suture anchor in vitro in comparison to a non-augmented suture anchor in osteoporotic human humeri. The trabecular bone mineral density was measured to ensure osteopenic human specimens. Then the poly-l-lactic acid Bio-Corkscrew® FT was implanted in the greater tuberosity footprint with polymethylmethacrylate Refobacin® cement augmentation ( n  = 8), with Cerament™ Bone Void Filler augmentation ( n  = 8) and without augmentation ( n  = 8). Using a cyclic testing protocol, the failure loads, system displacement, and failure modes were recorded. The Cerament™ augmented Bio-Corkscrew® FT yielded the highest failure loads (206.7 N), followed by polymethylmethacrylate Refobacin® augmentation (206.1 N) and without augmentation (160.0 N). The system displacement was lowest for Cerament™ augmentation (0.72 mm), followed by polymethylmethacrylate (0.82 mm) and without augmentation (1.50 mm). Statistical analysis showed no significant differences regarding the maximum failure loads ( p  = 0.1644) or system displacement ( p  = 0.4199). The main mode of failure for all three groups was suture slippage. The primary stability of the Bio-Corkscrew® FT is not influenced by bone cement augmentation with polymethylmethacrylate Refobacin® or with bioabsorbable Cerament™ in comparison to the non-cemented anchors. The cement augmentation of rotator cuff suture anchors in osteoporotic bones remains questionable since biomechanical tests show no significant advantage.

  13. Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings

    Science.gov (United States)

    Fu, Zhidong; Qin, Suyang; Liu, Hong

    2014-01-01

    The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokes which have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.

  14. The Design of Immersive English Learning Environment Using Augmented Reality

    Science.gov (United States)

    Li, Kuo-Chen; Chen, Cheng-Ting; Cheng, Shein-Yung; Tsai, Chung-Wei

    2016-01-01

    The study uses augmented reality (AR) technology to integrate virtual objects into the real learning environment for language learning. The English AR classroom is constructed using the system prototyping method and evaluated by semi-structured in-depth interviews. According to the flow theory by Csikszenmihalyi in 1975 along with the immersive…

  15. Facial skeletal augmentation using hydroxyapatite cement.

    Science.gov (United States)

    Shindo, M L; Costantino, P D; Friedman, C D; Chow, L C

    1993-02-01

    This study investigates the use of a new calcium phosphate cement, which sets to solid, microporous hydroxyapatite, for facial bone augmentation. In six dogs, the supraorbital ridges were augmented bilaterally with this hydroxyapatite cement. On one side, the hydroxyapatite cement was placed directly onto the bone within a subperiosteal pocket. On the opposite side, the cement was contained within a collagen membrane tubule and then inserted into a subperiosteal pocket. The use of collagen tubules facilitated easy, precise placement of the cement. All implants maintained their original augmented height throughout the duration of the study. They were well tolerated without extrusion or migration, and there was no significant sustained inflammatory response. Histologic studies, performed at 3, 6, and 9 months revealed that when the cement was placed directly onto bone, progressive replacement of the implant by bone (osseointegration of the hydroxyapatite with the underlying bone) without a loss of volume was observed. In contrast, when the cement-collagen tubule combination was inserted, primarily a fibrous union was noted. Despite such fibrous union, the hydroxyapatite-collagen implant solidly bonded to the underlying bone, and no implant resorption was observed. Hydroxyapatite cement can be used successfully for the experimental augmentation of the craniofacial skeleton and may be applicable for such uses in humans.

  16. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability

    Energy Technology Data Exchange (ETDEWEB)

    Lessard, R.D.; Blecher, W.A.; Merrick, D.

    1981-09-01

    The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

  17. Novel Augmentation Strategies in Major Depression

    DEFF Research Database (Denmark)

    Martiny, Klaus

    2017-01-01

    open psychiatric wards. Only a few patients were re-cruited through advertisements (in the PEMF and Chronos studies). Inclusion criteria Inclusion criteria were major depression according to the DSM-IV, including a depressive episode as part of a bipolar disorder. For the PEMF study, treatment...... The results from the Pindolol study showed that pindolol did not augment the effect of venlafaxine for the whole sample. However, for those patients classified as slow metabolizers, based on their O-desmethylvenlafaxine/venlafaxine ratio (ODV/V), pindolol did augment the antidepressant effect. For patients...... classified as fast metabolizers, pindolol worsened the outcome. This interaction between ODV/V ratio and treatment group was statistically significant (p = 0.01). Results from the PEMF study The results from the PEMF Study showed that treatment with active versus sham PEMF augmented the effect of the ongoing...

  18. Vortex lift augmentation by suction on a 60 deg swept Gothic wing

    Science.gov (United States)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1982-01-01

    An experimental investigation was conducted in the Langley high-speed 7- by 10-foot wind tunnel to determine the aerodynamic performance of suction applied near the wing tips above the trailing edge of a 60 deg swept Gothic wing. Moveable suction inlets were symmetrically mounted in the proximity of the trailing edge, and the amount of suction was varied to maximize wing lift. Tests were conducted at Mach 0.15, 0.30, and 0.45, and the angle of attack was varied from -4 to 50 deg. The suction augmentation increases the lift coefficient over the entire range of angle of attack. The lift improvement exceeds the unaugmented wing lift by over 20%. Moreover, the augmented lift exceeds the lift predicted by vortex lattice theory to 30 deg angle of attack. Suction augmentation is postulated to strengthen the vortex system by increasing its velocity and making it more concentrated. This causes the vortex breakdown to be delayed to a higher angle of attack

  19. DARPA Improving Warfighter Information Intake Under Stress -- Augmented Cognition. Volume 1. Phase 2: Concept Validation Experiment

    National Research Council Canada - National Science Library

    Morrison, J. G; Kobus, D. A; Brown, C. M

    2006-01-01

    ...) systems that demonstrate how the limitations of human cognition can be addressed by augmenting cognition with advanced cognitive state sensors that provide input to complex computational systems...

  20. Augmented reality in neurosurgery: a systematic review.

    Science.gov (United States)

    Meola, Antonio; Cutolo, Fabrizio; Carbone, Marina; Cagnazzo, Federico; Ferrari, Mauro; Ferrari, Vincenzo

    2017-10-01

    Neuronavigation has become an essential neurosurgical tool in pursuing minimal invasiveness and maximal safety, even though it has several technical limitations. Augmented reality (AR) neuronavigation is a significant advance, providing a real-time updated 3D virtual model of anatomical details, overlaid on the real surgical field. Currently, only a few AR systems have been tested in a clinical setting. The aim is to review such devices. We performed a PubMed search of reports restricted to human studies of in vivo applications of AR in any neurosurgical procedure using the search terms "Augmented reality" and "Neurosurgery." Eligibility assessment was performed independently by two reviewers in an unblinded standardized manner. The systems were qualitatively evaluated on the basis of the following: neurosurgical subspecialty of application, pathology of treated lesions and lesion locations, real data source, virtual data source, tracking modality, registration technique, visualization processing, display type, and perception location. Eighteen studies were included during the period 1996 to September 30, 2015. The AR systems were grouped by the real data source: microscope (8), hand- or head-held cameras (4), direct patient view (2), endoscope (1), and X-ray fluoroscopy (1) head-mounted display (1). A total of 195 lesions were treated: 75 (38.46 %) were neoplastic, 77 (39.48 %) neurovascular, and 1 (0.51 %) hydrocephalus, and 42 (21.53 %) were undetermined. Current literature confirms that AR is a reliable and versatile tool when performing minimally invasive approaches in a wide range of neurosurgical diseases, although prospective randomized studies are not yet available and technical improvements are needed.

  1. Implementation and Analysis of the Chromakey Augmented Virtual Environment (ChrAVE) Version 3.0 and Virtual Environment Helicopter (VEHELO) Version 2.0 in Simulated Helicopter Training

    National Research Council Canada - National Science Library

    Hahn, M. E

    2005-01-01

    The Chromakey Augmented Virtual Environment (ChrAVE) 3.0 System is a training system created to augment initial, refresher, and proficiency training in helicopter aviation using accurate simulation...

  2. Development and evaluation of a dismantling planning support system based on augmented reality technology

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Oshita, Satoshi; Yan Weida; Shimoda, Hiroshi; Izumi, Masanori

    2011-01-01

    For this study, a Dismantling Planning Support System (DPSS) based on Augmented Reality technology was developed. Its effectiveness and applicability to a real working field were evaluated using a subjective experiment. The DPSS operators can simulate how to locate scaffolding and temporary enclosures (greenhouses) in a real dismantling field in order to decide their layout and to predict the amounts of necessary parts. An interview and questionnaire survey were conducted with Fugen Decommissioning Engineering Center (DEC) staff and a human interface expert, who used DPSS along with a scenario in which scaffolding and greenhouses were located in a turbine cooling water room of Fugen DEC. The experimental results show that the operation for locating the virtual scaffolding and greenhouses using marker boards is intuitive and comprehensive. However, additional research needs to be undertaken in order to improve the DPSS, particularly with respect to its graphical user interface. (author)

  3. The Effect of Alendronate on Various Graft Materials Used in Maxillary Sinus Augmentation: A Rabbit Study.

    Science.gov (United States)

    Ayranci, Ferhat; Gungormus, Metin; Omezli, Mehmet Melih; Gundogdu, Betul

    2015-12-01

    Increasing sinus pneumatization and the accompanying alveolar bone resorption complicate dental implant placement. This problem can be overcome today by raising the maxillary sinus floor with graft materials. Bisphosphonates are commonly used to accelerate the recovery of the graft materials and to prevent resorption. The purpose of this study is to investigate whether systemic administration of a bisphosphonate (alendronate) would improve new bone formation and reduce fibrous tissue formation over a 6-week follow-up in rabbits treated with two different grafting materials for maxillary sinus floor augmentation. This experimental animal study was conducted at the Experimental Medical Application and Research Center at Erzurum/ Turkey. Twelve New Zealand rabbits, each weighing between 2.7 and 3.3 kg, were used. Twenty-four maxillary sinus floor elevation operations were performed, two on each animal (n = 24). Each elevation was repaired with either deproteinized bovine bone (xenograft) or autogenous bone graft obtained from the iliac crest. Both groups were divided into 2 subgroups: saline-treated and alendronate-treated. All groups underwent the same surgical procedures and evaluation, and were sacrificed at the 6th postoperative week. Sinuses augmented with deproteinized bovine bone (xenograft) and autogenous bone graft were examined histopathologically and histomorphometrically. At 6 weeks, the bone area was significantly larger in the Xenograft-Alendronate group (33.0% ± 5.0%) than in the Xenograft-Saline group (20.8% ± 4.9%) and the bone area was significantly larger in the Autogenous-Alendronate group (43.3% ± 3.8%) than in the Autogenous-Saline group (37.5% ± 6.6%) (P = 0.001). The histomorphometric and histopathological results consistently showed that alendronate stimulated bone formation and reduced fibrous tissue formation in maxillary sinus augmentation grafts, especially in the deproteinized bovine bone group (xenograft). Alendronate may be

  4. Does Augmented Reality Affect High School Students' Learning Outcomes in Chemistry?

    Science.gov (United States)

    Renner, Jonathan Christopher

    Some teens may prefer using a self-directed, constructivist, and technologic approach to learning rather than traditional classroom instruction. If it can be demonstrated, educators may adjust their teaching methodology. The guiding research question for this study focused on how augmented reality affects high school students' learning outcomes in chemistry, as measured by a pretest and posttest methodology when ensuring that the individual outcomes were not the result of group collaboration. This study employed a quantitative, quasi-experimental study design that used a comparison and experimental group. Inferential statistical analysis was employed. The study was conducted at a high school in southwest Colorado. Eighty-nine respondents returned completed and signed consent forms, and 78 participants completed the study. Results demonstrated that augmented reality instruction caused posttest scores to significantly increase, as compared to pretest scores, but it was not as effective as traditional classroom instruction. Scores did improve under both types of instruction; therefore, more research is needed in this area. The present study was the first quantitative experiment controlling for individual learning to validate augmented reality using mobile handheld digital devices that affected individual students' learning outcomes without group collaboration. This topic was important to the field of education as it may help educators understand how students learn and it may also change the way students are taught.

  5. Augmented reality: don't we all wish we lived in one?

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Birchard P [Los Alamos National Laboratory; Michel, Kelly D [Los Alamos National Laboratory; Few, Douglas A [INL; Gertman, David [INL; Le Blanc, Katya [INL

    2010-01-01

    From stereophonic, positional sound to high-definition imagery that is crisp and clean, high fidelity computer graphics enhance our view, insight, and intuition regarding our environments and conditions. Contemporary 3-D modeling tools offer an open architecture framework that enables integration with other technologically innovative arenas. One innovation of great interest is Augmented Reality, the merging of virtual, digital environments with physical, real-world environments creating a mixed reality where relevant data and information augments the real or actual experience in real-time by spatial or semantic context. Pairing 3-D virtual immersive models with a dynamic platform such as semi-autonomous robotics or personnel odometry systems to create a mixed reality offers a new and innovative design information verification inspection capability, evaluation accuracy, and information gathering capability for nuclear facilities. Our paper discusses the integration of two innovative technologies, 3-D visualizations with inertial positioning systems, and the resulting augmented reality offered to the human inspector. The discussion in the paper includes an exploration of human and non-human (surrogate) inspections of a nuclear facility, integrated safeguards knowledge within a synchronized virtual model operated, or worn, by a human inspector, and the anticipated benefits to safeguards evaluations of facility operations.

  6. Applying Augmented Reality in practical classes for engineering students

    Science.gov (United States)

    Bazarov, S. E.; Kholodilin, I. Yu; Nesterov, A. S.; Sokhina, A. V.

    2017-10-01

    In this article the Augmented Reality application for teaching engineering students of electrical and technological specialties is introduced. In order to increase the motivation for learning and the independence of students, new practical guidelines on Augmented Reality were developed in the application to practical classes. During the application development, the authors used software such as Unity 3D and Vuforia. The Augmented Reality content consists of 3D-models, images and animations, which are superimposed on real objects, helping students to study specific tasks. A user who has a smartphone, a tablet PC, or Augmented Reality glasses can visualize on-screen virtual objects added to a real environment. Having analyzed the current situation in higher education: the learner’s interest in studying, their satisfaction with the educational process, and the impact of the Augmented Reality application on students, a questionnaire was developed and offered to students; the study involved 24 learners.

  7. Multi-objective congestion management by modified augmented ε-constraint method

    International Nuclear Information System (INIS)

    Esmaili, Masoud; Shayanfar, Heidar Ali; Amjady, Nima

    2011-01-01

    Congestion management is a vital part of power system operations in recent deregulated electricity markets. However, after relieving congestion, power systems may be operated with a reduced voltage or transient stability margin because of hitting security limits or increasing the contribution of risky participants. Therefore, power system stability margins should be considered within the congestion management framework. The multi-objective congestion management provides not only more security but also more flexibility than single-objective methods. In this paper, a multi-objective congestion management framework is presented while simultaneously optimizing the competing objective functions of congestion management cost, voltage security, and dynamic security. The proposed multi-objective framework, called modified augmented ε-constraint method, is based on the augmented ε-constraint technique hybridized by the weighting method. The proposed framework generates candidate solutions for the multi-objective problem including only efficient Pareto surface enhancing the competitiveness and economic effectiveness of the power market. Besides, the relative importance of the objective functions is explicitly modeled in the proposed framework. Results of testing the proposed multi-objective congestion management method on the New-England test system are presented and compared with those of the previous single objective and multi-objective techniques in detail. These comparisons confirm the efficiency of the developed method. (author)

  8. Sensor-augmented pump therapy at 36 months

    DEFF Research Database (Denmark)

    Schmidt, Signe; Nørgaard, Kirsten

    2012-01-01

    This follow-up study investigates the metabolic and psychosocial effects of sensor-augmented pump (SAP) therapy in adults with type 1 diabetes 36 months after therapy start.......This follow-up study investigates the metabolic and psychosocial effects of sensor-augmented pump (SAP) therapy in adults with type 1 diabetes 36 months after therapy start....

  9. Augmented reality-assisted bypass surgery: embracing minimal invasiveness.

    Science.gov (United States)

    Cabrilo, Ivan; Schaller, Karl; Bijlenga, Philippe

    2015-04-01

    The overlay of virtual images on the surgical field, defined as augmented reality, has been used for image guidance during various neurosurgical procedures. Although this technology could conceivably address certain inherent problems of extracranial-to-intracranial bypass procedures, this potential has not been explored to date. We evaluate the usefulness of an augmented reality-based setup, which could help in harvesting donor vessels through their precise localization in real-time, in performing tailored craniotomies, and in identifying preoperatively selected recipient vessels for the purpose of anastomosis. Our method was applied to 3 patients with Moya-Moya disease who underwent superficial temporal artery-to-middle cerebral artery anastomoses and 1 patient who underwent an occipital artery-to-posteroinferior cerebellar artery bypass because of a dissecting aneurysm of the vertebral artery. Patients' heads, skulls, and extracranial and intracranial vessels were segmented preoperatively from 3-dimensional image data sets (3-dimensional digital subtraction angiography, angio-magnetic resonance imaging, angio-computed tomography), and injected intraoperatively into the operating microscope's eyepiece for image guidance. In each case, the described setup helped in precisely localizing donor and recipient vessels and in tailoring craniotomies to the injected images. The presented system based on augmented reality can optimize the workflow of extracranial-to-intracranial bypass procedures by providing essential anatomical information, entirely integrated to the surgical field, and help to perform minimally invasive procedures. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Usability in virtual and augmented environments : A qualitative and quantitative study

    NARCIS (Netherlands)

    Dias, P.; Pimentel, A.; Ferreira, C.; Van Huussen, F.; Baggerman, J.W.; Van der Horst, P.; Madeira, J.; Bidarra, R.; Sousa Santos, B.

    2007-01-01

    Virtual and Augmented Reality are developing rapidly: there is a multitude of environments and experiments in several laboratories using from simple HMD (Head-Mounted Display) visualization to more complex and expensive 6-wall projection CAVEs, and other systems. Still, there is not yet a clear

  11. Changing Perception of Physical Properties using Multimodal Augmented Reality: Position Paper

    NARCIS (Netherlands)

    Lugtenberg, Geert; Sandor, Christian; Hürst, W.O.; Plopski, Alexander; Taketomi, Takafumi; Kato, Hirokazu; Rosa, N.E.

    2016-01-01

    By means of augmented reality (AR) systems it has become increasingly easy to manipulate our perception of real objects. In this position paper we review existing work that changes physical property perception, and propose methods for changing perceived object density during haptic interaction. Our

  12. Area monitoring intelligent system - SIMA

    International Nuclear Information System (INIS)

    Bhoem, P.; Hisas, F.; Gelardi, G.

    1990-01-01

    The area monitoring intelligent system (SIMA) is an equipment to be used in radioprotection. SIMA has the function of monitoring the radiation levels of determined areas of the installations where radioactive materials are handled. (Author) [es

  13. Can oxytocin augmentation modify the risk of epidural analgesia by maternal age in cesarean sections?

    Science.gov (United States)

    Rossen, Janne; Klungsøyr, Kari; Albrechtsen, Susanne; Løkkegård, Ellen; Rasmussen, Steen; Bergholt, Thomas; Skjeldestad, Finn E

    2018-03-07

    Maternal age is an established risk factor for cesarean section; epidural analgesia and oxytocin augmentation may modify this association. We investigated the effects and interactions of oxytocin augmentation, epidural analgesia and maternal age on the risk of cesarean section. In all, 416 386 nulliparous women with spontaneous onset of labor, ≥37 weeks of gestation and singleton infants with a cephalic presentation during 2000-2011 from Norway and Denmark were included [Ten-group classification system (Robson) group 1]. In this case-control study the main exposure was maternal age; epidural analgesia, oxytocin augmentation, birthweight and time period were explanatory variables. Chi-square test and logistic regression were used to estimate associations and interactions. The cesarean section rate increased consistently with advancing maternal age, both overall and in strata of epidural analgesia and oxytocin augmentation. We observed strong interactions between maternal age, oxytocin augmentation and epidural analgesia for the risk of cesarean section. Women with epidural analgesia generally had a reduced adjusted odds ratio when oxytocin was used compared with when it was not used. In Norway, this applied to all maternal age groups but in Denmark only for women ≥30 years. Among women without epidural, oxytocin augmentation was associated with an increased odds ratio for cesarean section in Denmark, whereas no difference was observed in Norway. Oxytocin augmentation in nulliparous women with epidural analgesia is associated with a reduced risk of cesarean section in labor with spontaneous onset. © 2018 Nordic Federation of Societies of Obstetrics and Gynecology.

  14. Augmented reality in bone tumour resection

    Science.gov (United States)

    Park, Y. K.; Gupta, S.; Yoon, C.; Han, I.; Kim, H-S.; Choi, H.; Hong, J.

    2017-01-01

    Objectives We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. Results The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137–143. PMID:28258117

  15. Funnel-and-gate remediation systems augmented with passive filter wells.

    Science.gov (United States)

    Hudak, Paul F

    2010-09-01

    The objective of this study was to evaluate the ability of funnel-and-gate structures augmented with passive wells containing filter cartridges to capture contaminated groundwater in hypothetical, homogeneous and heterogeneous, unconfined aquifers. Perpendicular to groundwater flow, linear structures were 15 m wide, 1 m thick, and keyed into the base of the aquifer. Gates occupied 4 m of the total width of each simulated structure; one gate was 5 m from a contaminant plume's leading tip, while others occupied cross-gradient margins of the plume. Results suggest a modest reduction in remediation timeframes, up to 425 d per well added in these simulations; however, incremental benefits are highly variable and case specific.

  16. Exploration Augmentation Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Exploration Augmentation Module (EAM) project goal is to design and deliver a flight module that is to be deployed to Earth-Lunar Distant Retrograde Orbit (DRO)....

  17. Intravenous alpha-1 antitrypsin augmentation therapy: systematic review

    DEFF Research Database (Denmark)

    Gøtzsche, Peter C; Johansen, Helle Krogh

    2010-01-01

    We reviewed the benefits and harms of augmentation therapy with alpha-1 antitrypsin in patients with alpha-1 antitrypsin deficiency and lung disease. We searched for randomised trials comparing augmentation therapy with placebo or no treatment in PubMed and ClinicalTrials (7 January 2010). Two...... (difference 1.14 g/l; 95% confidence interval 0.14 to 2.14; p = 0.03) over the total course of the trials. Augmentation therapy with alpha-1 antitrypsin cannot be recommended in view of the lack of evidence of clinical benefit and the cost of treatment....

  18. Development of a Lunar-Phase Observation System Based on Augmented Reality and Mobile Learning Technologies

    Directory of Open Access Journals (Sweden)

    Wernhuar Tarng

    2016-01-01

    Full Text Available Observing the lunar phase requires long-term involvement, and it is often obstructed by bad weather or tall buildings. In this study, a lunar-phase observation system is developed using the augmented reality (AR technology and the sensor functions of GPS, electronic compass, and 3-axis accelerometer on mobile devices to help students observe and record lunar phases easily. By holding the mobile device towards the moon in the sky, the screen will show the virtual moon at the position of the real moon. The system allows the user to record the lunar phase, including its azimuth/elevation angles and the observation date and time. In addition, the system can shorten the learning process by setting different dates and times for observation, so it can solve the problem of being unable to observe and record lunar phases due to a bad weather or the moon appearing late in the night. Therefore, it is an effective tool for astronomy education in elementary and high schools. A teaching experiment has been conducted to analyze the learning effectiveness of the system and the results show that it is effective in learning the lunar concepts. The questionnaire results reveal that students considered the system easy to operate and it is useful in locating the moon and recording the lunar data.

  19. Human-Robot Collaboration: A Literature Review and Augmented Reality Approach in Design

    Directory of Open Access Journals (Sweden)

    Scott A. Green

    2008-03-01

    Full Text Available NASA's vision for space exploration stresses the cultivation of human-robotic systems. Similar systems are also envisaged for a variety of hazardous earthbound applications such as urban search and rescue. Recent research has pointed out that to reduce human workload, costs, fatigue driven error and risk, intelligent robotic systems will need to be a significant part of mission design. However, little attention has been paid to joint human-robot teams. Making human-robot collaboration natural and efficient is crucial. In particular, grounding, situational awareness, a common frame of reference and spatial referencing are vital in effective communication and collaboration. Augmented Reality (AR, the overlaying of computer graphics onto the real worldview, can provide the necessary means for a human-robotic system to fulfill these requirements for effective collaboration. This article reviews the field of human-robot interaction and augmented reality, investigates the potential avenues for creating natural human-robot collaboration through spatial dialogue utilizing AR and proposes a holistic architectural design for human-robot collaboration.

  20. Human-Robot Collaboration: A Literature Review and Augmented Reality Approach in Design

    Directory of Open Access Journals (Sweden)

    Scott A. Green

    2008-11-01

    Full Text Available NASA?s vision for space exploration stresses the cultivation of human-robotic systems. Similar systems are also envisaged for a variety of hazardous earthbound applications such as urban search and rescue. Recent research has pointed out that to reduce human workload, costs, fatigue driven error and risk, intelligent robotic systems will need to be a significant part of mission design. However, little attention has been paid to joint human-robot teams. Making human-robot collaboration natural and efficient is crucial. In particular, grounding, situational awareness, a common frame of reference and spatial referencing are vital in effective communication and collaboration. Augmented Reality (AR, the overlaying of computer graphics onto the real worldview, can provide the necessary means for a human-robotic system to fulfill these requirements for effective collaboration. This article reviews the field of human-robot interaction and augmented reality, investigates the potential avenues for creating natural human-robot collaboration through spatial dialogue utilizing AR and proposes a holistic architectural design for human-robot collaboration.