WorldWideScience

Sample records for arcuate y4 receptors

  1. Modulation of the arcuate nucleus-medial preoptic nucleus lordosis regulating circuit: a role for GABAB receptors

    OpenAIRE

    Sinchak, Kevin; Dewing, Phoebe; Ponce, Laura; Gomez, Liliana; Christensen, Amy; Berger, Max; Micevych, Paul

    2013-01-01

    Estradiol rapidly activates a microcircuit in the arcuate nucleus of the hypothalamus (ARH) that is needed for maximal female sexual receptivity. Membrane estrogen receptor-α complexes with and signals through the metabotropic glutamate receptor-1a stimulating NPY release within the ARH activating proopiomelanocortin (POMC) neurons. These POMC neurons project to the medial preoptic nucleus (MPN) and release β-endorphin. Estradiol treatment induces activation/internalization of MPN μ-opioid re...

  2. Discovery of Small-Molecule Modulators of the Human Y4 Receptor

    Science.gov (United States)

    Weaver, David; Beck-Sickinger, Annette G.; Meiler, Jens

    2016-01-01

    The human neuropeptide Y4 receptor (Y4R) and its native ligand, pancreatic polypeptide, are critically involved in the regulation of human metabolism by signaling satiety and regulating food intake, as well as increasing energy expenditure. Thus, this receptor represents a putative target for treatment of obesity. With respect to new approaches to treat complex metabolic disorders, especially in multi-receptor systems, small molecule allosteric modulators have been in the focus of research in the last years. However, no positive allosteric modulators or agonists of the Y4R have been described so far. In this study, small molecule compounds derived from the Niclosamide scaffold were identified by high-throughput screening to increase Y4R activity. Compounds were characterized for their potency and their effects at the human Y4R and as well as their selectivity towards Y1R, Y2R and Y5R. These compounds provide a structure-activity relationship profile around this common scaffold and lay the groundwork for hit-to-lead optimization and characterization of positive allosteric modulators of the Y4R. PMID:27294784

  3. Serotonin Transporter and Receptor Expression in Osteocytic MLO-Y4 Cells

    OpenAIRE

    BLIZIOTES, M.; ESHLEMAN, A.; BURT-PICHAT, B.; Zhang, X.-W.; Hashimoto, J; WIREN, K.; C. Chenu

    2006-01-01

    Neurotransmitter regulation of bone metabolism has been a subject of increasing interest and investigation. We reported previously that osteoblastic cells express a functional serotonin (5-HT) signal transduction system, with mechanisms for responding to and regulating uptake of 5-HT. The clonal murine osteocytic cell line, MLO-Y4, demonstrates expression of the serotonin transporter (5-HTT), and the 5-HT1A, and 5-HT2A receptors by real-time RT-PCR and immunoblot analysis. Immunohistochemistr...

  4. Acetylcholine affects osteocytic MLO-Y4 cells via acetylcholine receptors.

    Science.gov (United States)

    Ma, Yuanyuan; Li, Xianxian; Fu, Jing; Li, Yue; Gao, Li; Yang, Ling; Zhang, Ping; Shen, Jiefei; Wang, Hang

    2014-03-25

    The identification of the neuronal control of bone remodeling has become one of the many significant recent advances in bone biology. Cholinergic activity has recently been shown to favor bone mass accrual by complex cellular regulatory networks. Here, we identified the gene expression of the muscarinic and nicotinic acetylcholine receptors (m- and nAChRs) in mice tibia tissue and in osteocytic MLO-Y4 cells. Acetylcholine, which is a classical neurotransmitter and an osteo-neuromediator, not only influences the mRNA expression of the AChR subunits but also significantly induces the proliferation and viability of osteocytes. Moreover, acetylcholine treatment caused the reciprocal regulation of RANKL and OPG mRNA expression, which resulted in a significant increase in the mRNA ratio of RANKL:OPG in osteocytes via acetylcholine receptors. The expression of neuropeptide Y and reelin, which are two neurogenic markers, was also modulated by acetylcholine via m- and nAChRs in MLO-Y4 cells. These results indicated that osteocytic acetylcholine receptors might be a new valuable mediator for cell functions and even for bone remodeling. PMID:24508663

  5. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons

    Directory of Open Access Journals (Sweden)

    W. Romero-Fernandez

    2014-07-01

    Full Text Available Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tubero-infundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region.  Dopamine D1 and D2 receptors may therefore directly

  6. Selective increase of dark phase water intake in neuropeptide-Y Y2 and Y4 receptor knockout mice

    OpenAIRE

    Wultsch, Thomas; Painsipp, Evelin; Donner, Sabine; Sperk1, Günther; Herzog, Herbert; Peskar, Bernhard A; Holzer, Peter

    2005-01-01

    Neuropeptide-Y (NPY) is involved in the regulation of ingestive behaviour and energy homeostasis. Since deletion of the NPY Y2 and Y4 receptor gene increases and decreases food intake, respectively, we examined whether water intake during the light and dark phase is altered in Y2 and Y4 receptor knockout mice. The water consumption of mice staying in their home cages was measured by weighing the water bottles at the beginning and end of the light phase during 4 consecutive days. Control, Y2 a...

  7. Effect of ghrelin receptor agonist and antagonist on the activity of arcuate nucleus tyrosine hydroxylase containing neurons in C57BL/6 male mice exposed to normal or high fat diet

    Czech Academy of Sciences Publication Activity Database

    Pirník, Z.; Majerčíková, Z.; Holubová, Martina; Pirník, R.; Železná, Blanka; Maletínská, Lenka; Kiss, A.

    2014-01-01

    Roč. 65, č. 4 (2014), s. 477-486. ISSN 0867-5910 Institutional support: RVO:61388963 Keywords : growth hormone secretagogue receptor * ghrelin receptor agonist * ghrelin receptor antagonist * high fat diet * tyrosine hydroxylase * arcuate nucleus * food intake Subject RIV: CE - Biochemistry Impact factor: 2.386, year: 2014

  8. Des-Acyl Ghrelin Directly Targets the Arcuate Nucleus in a Ghrelin-Receptor Independent Manner and Impairs the Orexigenic Effect of Ghrelin.

    Science.gov (United States)

    Fernandez, G; Cabral, A; Cornejo, M P; De Francesco, P N; Garcia-Romero, G; Reynaldo, M; Perello, M

    2016-02-01

    Ghrelin is a stomach-derived octanoylated peptide hormone that plays a variety of well-established biological roles acting via its specific receptor known as growth hormone secretagogue receptor (GHSR). In plasma, a des-octanoylated form of ghrelin, named des-acyl ghrelin (DAG), also exists. DAG is suggested to be a signalling molecule that has specific targets, including the brain, and regulates some physiological functions. However, no specific receptor for DAG has been reported until now, and, consequently, the potential role of DAG as a hormone has remained a matter of debate. In the present study, we show that DAG specifically binds to and acts on a subset of arcuate nucleus (ARC) cells in a GHSR-independent manner. ARC cells labelled by a DAG fluorescent tracer include the neuropeptide Y (NPY) and non-NPY neurones. Given the well-established role of the ARC in appetite regulation, we tested the effect of centrally administered DAG on food intake. We found that DAG failed to affect dark phase feeding, as well as food intake, after a starvation period; however, it impaired the orexigenic actions of peripherally administered ghrelin. Thus, we conclude that DAG directly targets ARC neurones and antagonises the orexigenic effects of peripherally administered ghrelin. PMID:26661382

  9. ATP induces guinea pig gallbladder smooth muscle excitability via the P2Y4 receptor and COX-1 activity.

    Science.gov (United States)

    Bartoo, Aaron C; Nelson, Mark T; Mawe, Gary M

    2008-06-01

    The purpose of this study was to elucidate the mechanisms by which ATP increases guinea pig gallbladder smooth muscle (GBSM) excitability. We evaluated changes in membrane potential and action potential (AP) frequency in GBSM by use of intracellular recording. Application of ATP (100 microM) caused membrane depolarization and a significant increase in AP frequency that were not sensitive to block by tetrodotoxin (0.5 microM). The nonselective P2 antagonist, suramin (100 microM), blocked the excitatory response, resulting in decreased AP frequency in the presence of ATP. The excitatory response to ATP was not altered by pyridoxal-phosphate-6-azophenyl-2,4-disulfonic acid (30 microM), a nonselective P2X antagonist. UTP also caused membrane depolarization and increased AP frequency, with a similar dose-response relationship as ATP. RT-PCR demonstrated that the P2Y(4), but not P2Y(2), receptor subtype is expressed in guinea pig gallbladder muscularis. ATP induced excitation was blocked by indomethacin (10 microM) and the cyclooxygenase (COX)-1 inhibitor SC-560 (300 nM), but not the COX-2 inhibitor nimesulide (500 nM). These data suggest that ATP stimulates P2Y(4) receptors within the gallbladder muscularis and, in turn, stimulate prostanoid production via COX-1 leading to increased excitability of GBSM. PMID:18436624

  10. The ghrelin receptor agonist HM01 mimics the neuronal effects of ghrelin in the arcuate nucleus and attenuates anorexia-cachexia syndrome in tumor-bearing rats.

    Science.gov (United States)

    Borner, Tito; Loi, Laura; Pietra, Claudio; Giuliano, Claudio; Lutz, Thomas A; Riediger, Thomas

    2016-07-01

    The gastric hormone ghrelin positively affects energy balance by increasing food intake and reducing energy expenditure. Ghrelin mimetics are a possible treatment against cancer anorexia-cachexia syndrome (CACS). This study aimed to characterize the action of the nonpeptidergic ghrelin receptor agonist HM01 on neuronal function, energy homeostasis and muscle mass in healthy rats and to evaluate its possible usefulness for the treatment of CACS in a rat tumor model. Using extracellular single-unit recordings, we tested whether HM01 mimics the effects of ghrelin on neuronal activity in the arcuate nucleus (Arc). Furthermore, we assessed the effect of chronic HM01 treatment on food intake (FI), body weight (BW), lean and fat volumes, and muscle mass in healthy rats. Using a hepatoma model, we investigated the possible beneficial effects of HM01 on tumor-induced anorexia, BW loss, muscle wasting, and metabolic rate. HM01 (10(-7)-10(-6) M) mimicked the effect of ghrelin (10(-8) M) by increasing the firing rate in 76% of Arc neurons. HM01 delivered chronically for 12 days via osmotic minipumps (50 μg/h) increased FI in healthy rats by 24%, paralleled by increased BW, higher fat and lean volumes, and higher muscle mass. Tumor-bearing rats treated with HM01 had 30% higher FI than tumor-bearing controls and were protected against BW loss. HM01 treatment resulted in higher muscle mass and fat mass. Moreover, tumor-bearing rats reduced their metabolic rate following HM01 treatment. Our studies substantiate the possible therapeutic usefulness of ghrelin receptor agonists like HM01 for the treatment of CACS and possibly other forms of disease-related anorexia and cachexia. PMID:27147616

  11. 17β estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like MLO-Y4 cells.

    KAUST Repository

    Ren, Jian

    2013-04-01

    Connexin 43 (Cx43) plays an essential role in osteocyte mechanotransduction. Although estrogen involves in the adaptive responses of bone cells to mechanical loadings, its effects on osteocytic Cx43-based gap junction intercellular communication (GJIC) remain obscure. We found that 17β estradiol (E2) up-regulated Cx43, and enhanced GJIC in osteocyte-like MLO-Y4 cells in fluorescence recovery after photobleaching (FRAP) assay. Combination of E2 pre-treatment and oscillating fluid flow (OFF) further enhanced Cx43 expression and mitogen-activated protein kinase (MAPK) phosphorylation, comparing to E2 or OFF treatment alone. Both blocking of classical estrogen receptors (ERα/β) by fulvestrant and ERα knockdown by small interfering RNA inhibited E2-mediated Cx43 increase, while a GPR30-specific agonist G-1 failed to promote Cx43 expression. Our results suggest that the presence of E2 enhanced Cx43-based GJIC mainly via ERα/β pathway, and sensitized osteocytes to mechanical loading. © 2012 Elsevier Inc. All rights reserved.

  12. 17β estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like MLO-Y4 cells.

    Science.gov (United States)

    Ren, Jian; Wang, Xu-Hui; Wang, Guang-Chao; Wu, Jun-Hua

    2013-04-01

    Connexin 43 (Cx43) plays an essential role in osteocyte mechanotransduction. Although estrogen involves in the adaptive responses of bone cells to mechanical loadings, its effects on osteocytic Cx43-based gap junction intercellular communication (GJIC) remain obscure. We found that 17β estradiol (E2) up-regulated Cx43, and enhanced GJIC in osteocyte-like MLO-Y4 cells in fluorescence recovery after photobleaching (FRAP) assay. Combination of E2 pre-treatment and oscillating fluid flow (OFF) further enhanced Cx43 expression and mitogen-activated protein kinase (MAPK) phosphorylation, comparing to E2 or OFF treatment alone. Both blocking of classical estrogen receptors (ERα/β) by fulvestrant and ERα knockdown by small interfering RNA inhibited E2-mediated Cx43 increase, while a GPR30-specific agonist G-1 failed to promote Cx43 expression. Our results suggest that the presence of E2 enhanced Cx43-based GJIC mainly via ERα/β pathway, and sensitized osteocytes to mechanical loading. PMID:23247057

  13. Arcuate foramen and its clinical significance

    International Nuclear Information System (INIS)

    The present study determines the degree of ossification of the posterior atlanto-occipital membrane in dry bone, plane lateral cervical spine radiographs and computer tomography (CT). The average length, width and the area of the arcuate foramen were measured on dry bone and on cervical CT. Further, age, gender and complaints of the patients of shoulder and arm pain, neck pain, headache, vertigo, and lacrimation in relation to the presence of bony complete or incomplete arcuate foramen were evaluated. From February 2004 to January 2005 60 dry atlases were obtained from the Anatomy Department, University of Marmara, Istanbul, Turkey and 416 lateral cervical spine radiographs were obtained from the Radiology department for neurological and orthopedic evaluations. Each complete arcuate foramen was calculated with the aid of Clemex Vision PE demo version computer program. Among the 60 dry atlases examined 7 (11.7%) had complete and 2 (3.3 %) had incomplete bony bridge formation. Of the 416 plane lateral cervical spine radiographs examined, 30 (7.2%) had complete and 26 (6.25%) had incomplete bony bridge formation. Of the 30 complete arcuate foramen 24 (80%) were females and 6 (20%) were males. The frequency of having a complete arcuate foramen in females was 8.45%, and in males it was 4.55%. Further, of the 26 incomplete arcuate foramen 20 (76.9%) were females and 6 (23.1%) were males. The frequency of having an incomplete arcuate foramen in females was 7%, and in males was 4.55%. The statistical evaluations showed that patients with complete arcuate foramen had significant complaints of shoulder-arm pain (p=0.0072), neck pain (p=0.0072) and vertigo (p=0.0598) compared to patients with incomplete arcuate foramen. The patients with complete arcuate foramen had a headache ratio of 12:30 and this ratio was 2:26 in patients with incomplete arcuate foramen and the difference between complete and incomplete arcuate foramen was statistically significant (p=0.0062). Further

  14. Functional Heterogeneity of Arcuate Nucleus Pro-Opiomelanocortin Neurons: Implications for Diverging Melanocortin Pathways

    OpenAIRE

    Sohn, Jong-Woo; Williams, Kevin W.

    2012-01-01

    Arcuate nucleus (ARC) pro-opiomelanocortin (POMC) neurons are essential regulators of food intake, energy expenditure, and glucose homeostasis. POMC neurons integrate several key metabolic signals that include neurotransmitters and hormones. The change in activity of POMC neurons is relayed to melanocortin receptors in distinct regions of the central nervous system. This review will summarize the role of leptin and serotonin receptors in regulating the activity of POMC neurons and provide a m...

  15. Sacral arcuate lines: Anatomy and pathologic conditions

    International Nuclear Information System (INIS)

    The sacrum is one of the most commonly radiographed bones of the human body as part of abdominal and pelvic radiologic examinations. This paper describes the radiologic anatomy of the sacral arcuate lines and presents a systematic approach to identifying pathologic conditions, for example, primary and metastatic malignancies, traumatic and osteoporotic fractures, vascular erosions from aneurysms, changes from neural tumors, and changes following radiation therapy

  16. Role of the hypothalamic arcuate nucleus in cardiovascular regulation.

    Science.gov (United States)

    Sapru, Hreday N

    2013-04-01

    Recently the hypothalamic arcuate nucleus (Arc) has been implicated in cardiovascular regulation. Both pressor and depressor responses can be elicited by the chemical stimulation of the Arc. The direction of cardiovascular responses (increase or decrease) elicited from the Arc depends on the baseline blood pressure. The pressor responses are mediated via increase in sympathetic nerve activity and involve activation of the spinal ionotropic glutamate receptors. Arc-stimulation elicits tachycardic responses which are mediated via inhibition of vagal input and excitation of sympathetic input to the heart. The pathways within the brain mediating the pressor and tachycardic responses elicited from the Arc have not been delineated. The depressor responses to the Arc-stimulation are mediated via the hypothalamic paraventricular nucleus (PVN). Gamma aminobutyric acid type A receptors, neuropeptide Y1 receptors, and opiate receptors in the PVN mediate the depressor responses elicited from the Arc. Some circulating hormones (e.g., leptin and insulin) may reach the Arc via the leaky blood-brain barrier and elicit their cardiovascular effects. Although the Arc is involved in mediating the cardiovascular responses to intravenously injected angiotensin II and angiotensin-(1-12), these effects may not be due to leakage of these peptides across the blood-brain barrier in the Arc; instead, circulating angiotensins may act on neurons in the SFO and mediate cardiovascular actions via the projections of SFO neurons to the Arc. Cardiovascular responses elicited by acupuncture have been reported to be mediated by direct and indirect projections of the Arc to the RVLM. PMID:23260431

  17. The Arcuate Sign: A Marker of Potential Knee Dislocation? A Report of Two Cases

    OpenAIRE

    Crimmins, Jason T.; Wissman, Robert D.

    2015-01-01

    The arcuate sign is a well described finding of fibular head avulsion at the insertion site of the arcuate complex. It has been associated with posterolateral corner knee injury and resulting instability. The authors report two patients presenting with the arcuate sign following knee dislocation, which has not been previously described. As unrecognized spontaneously reduced knee dislocation often results in significant morbidity, the authors propose that the arcuate sign should raise clinical...

  18. The Role of the Arcuate Fasciculus in Conduction Aphasia

    Science.gov (United States)

    Bernal, Byron; Ardila, Alfredo

    2009-01-01

    In aphasia literature, it has been considered that a speech repetition defect represents the main constituent of conduction aphasia. Conduction aphasia has frequently been interpreted as a language impairment due to lesions of the arcuate fasciculus (AF) that disconnect receptive language areas from expressive ones. Modern neuroradiological…

  19. A Direct Neurokinin B Projection from the Arcuate Nucleus Regulates Magnocellular Vasopressin Cells of the Supraoptic Nucleus.

    Science.gov (United States)

    Pineda, R; Sabatier, N; Ludwig, M; Millar, R P; Leng, G

    2016-04-01

    Central administration of neurokinin B (NKB) agonists stimulates immediate early gene expression in the hypothalamus and increases the secretion of vasopressin from the posterior pituitary through a mechanism that depends on the activation of neurokinin receptor 3 receptors (NK3R). The present study reports that, in the rat, immunoreactivity for NK3R is expressed in magnocellular vasopressin and oxytocin neurones in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus, and that NKB immunoreactivity is expressed in fibres in close juxtaposition with vasopressin neurones at both of these sites. Retrograde tracing in the rat shows that some NKB-expressing neurones in the arcuate nucleus project to the SON and, in mice, using an anterograde tracing approach, it is found that kisspeptin-expressing neurones of the arcuate nucleus, which are known to co-express NKB, project to the SON and PVN. Finally, i.c.v. injection of the NK3R agonist senktide is shown to potently increase the electrical activity of vasopressin neurones in the SON in vivo with no significant effect detected on oxytocin neurones. The results suggest that NKB-containing neurones in the arcuate nucleus regulate the secretion of vasopressin from magnocellular neurones in rodents, and the possible significance of this is discussed. PMID:26610724

  20. Hypothalamic Paraventricular and Arcuate Nuclei Contribute to Elevated Sympathetic Nerve Activity in Pregnant Rats: Roles of Neuropeptide Y and α-Melanocyte-Stimulating Hormone.

    Science.gov (United States)

    Shi, Zhigang; Cassaglia, Priscila A; Gotthardt, Laura C; Brooks, Virginia L

    2015-12-01

    Pregnancy increases sympathetic nerve activity (SNA), but the mechanisms are unknown. Here, we investigated the contributions of the hypothalamic paraventricular and arcuate nuclei in α-chloralose-anesthetized pregnant and nonpregnant rats. Baseline arterial pressure (AP) was lower, and heart rate (HR), lumbar sympathetic activity, and splanchnic SNA were higher in pregnant rats compared with nonpregnant rats. Inhibition of the paraventricular nucleus via bilateral muscimol nanoinjections decreased AP and HR more in pregnant rats than in nonpregnant rats and decreased lumbar SNA only in pregnant rats. Similarly, after arcuate muscimol nanoninjections, the decreases in AP, HR, and lumbar, renal, and splanchnic sympathetic nerve activities were greater in pregnant rats than in nonpregnant rats. Major arcuate neuronal groups that project to the paraventricular nucleus express inhibitory neuropeptide Y (NPY) and excitatory α-melanocyte-stimulating hormone. Inhibition of paraventricular melanocortin 3/4 receptors with SHU9119 also decreased AP, HR, and lumbar SNA in pregnant rats but not in nonpregnant rats. Conversely, paraventricular nucleus NPY expression was reduced in pregnant animals, and although blockade of paraventricular NPY Y1 receptors increased AP, HR, and lumbar sympathetic activity in nonpregnant rats, it had no effects in pregnant rats. Yet, the sympathoinhibitory, depressor, and bradycardic effects of paraventricular NPY nanoinjections were similar between groups. In conclusion, the paraventricular and arcuate nuclei contribute to increased basal SNA during pregnancy, likely due in part to decreased tonic NPY inhibition and increased tonic α-melanocyte-stimulating hormone excitation of presympathetic neurons in the paraventricular nucleus. PMID:26483343

  1. Research progress of arcuate fasciculus with diffusion tensor tractography

    OpenAIRE

    Geng, Jie-feng; Chen, Xiao-Lei; XU Bai-nan

    2015-01-01

    Arcuate fasciculus (AF) is a crucial part of human language network. Diffusion tensor tractography (DTT) is the most common method for reconstruction of white matter fibers in vivo. DTT is widely applied in both basic researches on the anatomical structure and functions of AF and clinical studies on AF navigation. However, the validity of AF with DTT needs further investigation in the future. DOI: 10.3969/j.issn.1672-6731.2015.04.015

  2. Research progress of arcuate fasciculus with diffusion tensor tractography

    Directory of Open Access Journals (Sweden)

    Jie-feng GENG

    2015-04-01

    Full Text Available Arcuate fasciculus (AF is a crucial part of human language network. Diffusion tensor tractography (DTT is the most common method for reconstruction of white matter fibers in vivo. DTT is widely applied in both basic researches on the anatomical structure and functions of AF and clinical studies on AF navigation. However, the validity of AF with DTT needs further investigation in the future. DOI: 10.3969/j.issn.1672-6731.2015.04.015

  3. Magel2 is required for leptin-mediated depolarization of POMC neurons in the hypothalamic arcuate nucleus in mice.

    Directory of Open Access Journals (Sweden)

    Rebecca E Mercer

    Full Text Available Prader-Willi Syndrome is the most common syndromic form of human obesity and is caused by the loss of function of several genes, including MAGEL2. Mice lacking Magel2 display increased weight gain with excess adiposity and other defects suggestive of hypothalamic deficiency. We demonstrate Magel2-null mice are insensitive to the anorexic effect of peripherally administered leptin. Although their excessive adiposity and hyperleptinemia likely contribute to this physiological leptin resistance, we hypothesized that Magel2 may also have an essential role in intracellular leptin responses in hypothalamic neurons. We therefore measured neuronal activation by immunohistochemistry on brain sections from leptin-injected mice and found a reduced number of arcuate nucleus neurons activated after leptin injection in the Magel2-null animals, suggesting that most but not all leptin receptor-expressing neurons retain leptin sensitivity despite hyperleptinemia. Electrophysiological measurements of arcuate nucleus neurons expressing the leptin receptor demonstrated that although neurons exhibiting hyperpolarizing responses to leptin are present in normal numbers, there were no neurons exhibiting depolarizing responses to leptin in the mutant mice. Additional studies demonstrate that arcuate nucleus pro-opiomelanocortin (POMC expressing neurons are unresponsive to leptin. Interestingly, Magel2-null mice are hypersensitive to the anorexigenic effects of the melanocortin receptor agonist MT-II. In Prader-Willi Syndrome, loss of MAGEL2 may likewise abolish leptin responses in POMC hypothalamic neurons. This neural defect, together with increased fat mass, blunted circadian rhythm, and growth hormone response pathway defects that are also linked to loss of MAGEL2, could contribute to the hyperphagia and obesity that are hallmarks of this disorder.

  4. Median arcuate ligament syndrome: a nonvascular, vascular diagnosis.

    Science.gov (United States)

    Skeik, Nedaa; Cooper, Leslie T; Duncan, Audra A; Jabr, Fadi I

    2011-07-01

    Median arcuate ligament syndrome (MALS) is often diagnosed when idiopathic, episodic abdominal pain is associated with dynamic compression of the proximal celiac artery by fibers of the median arcuate ligament. The character of the abdominal pain is often postprandial and associated with gradual weight loss from poor food intake, suggestive of chronic mesenteric ischemia. However, the pathognomonic imaging feature of dynamic, ostial celiac artery compression with expiration does not consistently predict clinical improvement from revascularization. Proposed but unproven pathophysiological mechanisms include neurogenic pain from compression of the splanchnic nerve plexus and intermittent ischemia from compression of the celiac artery. Alterations in blood flow and ganglion compression are both associated with delayed gastric emptying, another physiological correlate of the clinical syndrome. Published reports describe a variable response to revascularization and nerve plexus resection suggest a need for translational research to better characterize this poorly understood clinical entity. We illustrate the current gaps in our knowledge of MALS with the case of a 51-year-old woman with a 4-year history of chronic abdominal pain who responded to a combination of ganglion resection and celiac artery reconstruction. PMID:21536596

  5. High plasma triglyceride levels strongly correlate with low kisspeptin in the arcuate nucleus of male rats

    DEFF Research Database (Denmark)

    Overgaard, A; Axel, A M; Lie, M E;

    2015-01-01

    OBJECTIVE: It is well known that reproductive capacity is lower in obese individuals, but what mediators and signals are involved is unclear. Kisspeptin is a potent stimulator of GnRH release, and it has been suggested that kisspeptin neurons located in the arcuate nucleus transmit metabolic sign...... hypertriglyceridemia per se that is a detrimental factor for kisspeptin expression in the arcuate nucleus....

  6. Arcuate AgRP neurons and the regulation of energy balance

    Directory of Open Access Journals (Sweden)

    Céline eCansell

    2012-12-01

    Full Text Available The arcuate nucleus of the hypothalamus contains at least two crucial populations of neurons that continuously monitor signals reflecting energy status and promote the appropriate behavioral and metabolic responses to changes in energy demand. Neurons making pro-opiomelanocortin (POMC decrease food intake and increase energy expenditure through activation of G protein-coupled receptors melanocortin receptors (MCR via the release of a-melanocyte stimulating hormone. A prevailing idea until recently was that the neighboring neurons expressing the orexigenic neuropeptides, agouti-related protein (AgRP and neuropeptide Y (NPY (AgRP neurons increased feeding by opposing the anorexigenic actions of the POMC neurons. AgRP neurons activation but not POMC neurons inhibition was recently demonstrated to be necessary and sufficient to promote feeding. AgRP expressing axons were identified in mesolimbic, midbrain and pontine structure where they regulate feeding but also feeding-independent functions such as reward or peripheral nutrient partitioning. Post-synaptic Gamma aminobutyric acid (GABA, lasting in a timeline similar to neuromodulation, was identified as the core mechanism by which hunger-activated neurons regulate feeding and non-food related processes in a melanocortin independent manner.

  7. Effect of intermittent hypoxia on arcuate nucleus in the leptin-deficient rat.

    Science.gov (United States)

    Ciriello, John; Moreau, Jason M; McCoy, Aaron; Jones, Douglas L

    2016-07-28

    Intermittent hypoxia (IH) is a major pathophysiological consequence of obstructive sleep apnea. Recently, it has been shown that IH results in changes in body energy balance, leptin secretion and concomitant alterations in arcuate nucleus (ARC). In this study, the role of leptin on these changes was investigated in leptin-deficient rats exposed to IH or normoxic control conditions. Body weights, consumatory and locomotor behaviours, and protein signaling in ARC were assessed immediately after IH exposure. Compared to normoxia, IH altered body weight, food intake, locomotor pattern, and the plasma concentration of leptin and angiotensin II in the wild-type rat. However, these changes were not observed in the leptin-deficient rat. Within ARC of wild-type animals, IH increased phosphorylated signal transducer and activator of transcription 3 and pro-opiomelanocortin protein expression, but not in the leptin-deficient rat. The long-form leptin receptor protein expression was not altered following IH in either rat strain. These data suggest that leptin is involved in mediating the alterations to body energy balance and ARC activity following IH. PMID:27222924

  8. The arcuate artery in renal transplants: An insensitive indicator of rejection

    International Nuclear Information System (INIS)

    The authors performed 65 duplex US examinations in 28 patients within 2 years of transplantation. During this time 15 episodes of rejection were diagnosed by US and confirmed clinically. Of the remaining 50 examinations, 14 showed negligible or absent diastolic flow (suggesting rejection) in the arcuate arteries with normal diastolic flow in the main renal, segmental, and interlobar branches. No other criteria for rejection were present in these patients. It is concluded that the arcuate artery is an insensitive indicator of transplant rejection

  9. Curvature range measurements of the arcuate fasciculus using diffusion tensor tractography

    Institute of Scientific and Technical Information of China (English)

    Dong Hoon Lee; Cheol Pyo Hong; Yong Hyun Kwon; Yoon Tae Hwang; Joong Hwi Kim; Ji Won Park

    2013-01-01

    Because Broca's area and Wernicke's area in the brain are connected by the arcuate fasciculus, understanding the anatomical location and morphometry of the arcuate fasciculus can help in the treatment of patients with aphasia. We measured the horizontal and vertical curvature ranges of the arcuate fasciculus in both hemispheres in 12 healthy subjects using diffusion tensor tractography. In the right hemisphere, the direct curvature range and indirect curvature range values of the arcuate fasciculus horizontal part were 121.13 ± 5.89 and 25.99 ± 3.01 degrees, respectively, and in the left hemisphere, the values were 121.83 ± 5.33 and 27.40 ± 2.96 degrees, respectively. In the right hemisphere, the direct curvature range and indirect curvature range values of the arcuate fasciculus vertical part were 43.97 ± 7.98 and 30.15 ± 3.82 degrees, respectively, and in the left hemisphere, the values were 39.39 ± 4.42 and 24.08 ± 4.34 degrees, respectively. We believe that the measured curvature ranges are important data for localization and quantitative assessment of specific neuronal pathways in patients presenting with arcuate fasciculus abnormalities.

  10. Arcuate eminence: Is it due to semicircular canal?

    Directory of Open Access Journals (Sweden)

    Manvikar Purushottam Rao

    2012-01-01

    Full Text Available Background: Arcuate eminence (AE is an arc-like elevation seen on the anterior surface of petrous part of temporal bone in the middle cranial fossa (MCF. It has been believed and conventionally taught that AE is a protrusion caused because of the superior semicircular canal (SSC present in the petrous bone. AE is an useful anatomical landmark in the MCF during surgical approaches to acoustic neuroma through suprapetrosal approach. However, the relevance of relation to AE and SSC has been questioned in recent times. Presence of AE of various shapes and dimensions supports this view. Aim: To study and to establish the relation between shape of AE and inferior surface of cerebral hemispheres. Classify various types and subtypes in case of variation in shape based on its appearance. AE could be a negative impression of either gyrus or a sulcus. Material and Methods: The study was conducted in two parts. In the first part, the shape of AE and the impression on cerebral surface were correlated while removing brain from cranial cavity in 8 cadavers (16 wet temporal bones. In second part of the study, 100 dry temporal bones were examined. Relevant photographs were taken. A total of 116 temporal bones were studied. AE was classified as linear, globular, generalized swelling, and flat based on the appearance. Results and Conclusion: 10 AE of 16 wet temporal bones were linear type and did correspond with a sulcus, whilein 1 cadaver no relation was seen. In dry bones, maximum linear variety was seen. There was no relation to shape of AE and cerebral surface in two cadavers. Diversity in shapes, (linear type 47% and correlation with sulci on cerebral surface contests the earlier understanding that AE is due to SSC. Thickness of bone over SSC was not measured in this study. Having seen so many shapes of AE in this study, authors are of the opinion that there is a need to revisit this bony landmark in MCF and rethink if it can be used as a guide in middle

  11. Prolactin regulates kisspeptin neurons in the arcuate nucleus to suppress LH secretion in female rats.

    Science.gov (United States)

    Araujo-Lopes, Roberta; Crampton, Jessica R; Aquino, Nayara S S; Miranda, Roberta M; Kokay, Ilona C; Reis, Adelina M; Franci, Celso R; Grattan, David R; Szawka, Raphael E

    2014-03-01

    Prolactin (PRL) is known to suppress LH secretion. Kisspeptin neurons regulate LH secretion and express PRL receptors. We investigated whether PRL acts on kisspeptin neurons to suppress LH secretion in lactating (Lac) and virgin rats. Lac rats displayed high PRL secretion and reduced plasma LH and kisspeptin immunoreactivity in the arcuate nucleus (ARC). Bromocriptine-induced PRL blockade significantly increased ARC kisspeptin and plasma LH levels in Lac rats but did not restore them to the levels of non-Lac rats. Bromocriptine effects were prevented by the coadministration of ovine PRL (oPRL). Virgin ovariectomized (OVX) rats treated with either systemic or intracerebroventricular oPRL displayed reduction of kisspeptin expression in the ARC and plasma LH levels, and these effects were comparable with those of estradiol treatment in OVX rats. Conversely, estradiol-treated OVX rats displayed increased kisspeptin immunoreactivity in the anteroventral periventricular nucleus, whereas oPRL had no effect in this brain area. The expression of phosphorylated signal transducer and activator of transcription 5 was used to determine whether kisspeptin neurons in the ARC were responsive to PRL. Accordingly, intracerebroventricular oPRL induced expression of phosphorylated signal transducer and activator of transcription 5 in the great majority of ARC kisspeptin neurons in virgin and Lac rats. We provide here evidence that PRL acts on ARC neurons to inhibit kisspeptin expression in female rats. During lactation, PRL contributes to the inhibition of ARC kisspeptin. In OVX rats, high PRL levels suppress kisspeptin expression and reduce LH release. These findings suggest a pathway through which hyperprolactinemia may inhibit LH secretion and thereby cause infertility. PMID:24456164

  12. Clinical and radiologic review of uncommon cause of profound iron deficiency anemia: Median arcuate ligament syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, Yasemin; Asil, Kiyasrttin; Aksoy, Yakup Ersel; Ayhan, Lacin Tatli [Dept. of Radiology, Sakarya University Medical Faculty, Sakarya (Turkmenistan)

    2014-08-15

    Median arcuate ligament syndrome is an anatomic and clinical entity characterized by dynamic compression of the proximal celiac artery by the median arcuate ligament, which leads to postprandial epigastric pain, vomiting, and weight loss. These symptoms are usually nonspecific and are easily misdiagnosed as functional dyspepsia, peptic ulcer disease, or gastropathy. In this report, we presented a 72-year-old male patient with celiac artery compression syndrome causing recurrent abdominal pain associated with gastric ulcer and iron deficiency anemia. This association is relatively uncommon and therefore not well determined. In addition, we reported the CT angiography findings and three-dimensional reconstructions of this rare case.

  13. Dopamine/Tyrosine Hydroxylase Neurons of the Hypothalamic Arcuate Nucleus Release GABA, Communicate with Dopaminergic and Other Arcuate Neurons, and Respond to Dynorphin, Met-Enkephalin, and Oxytocin

    OpenAIRE

    Zhang, Xiaobing; van den Pol, Anthony N.

    2015-01-01

    We employ transgenic mice with selective expression of tdTomato or cre recombinase together with optogenetics to investigate whether hypothalamic arcuate (ARC) dopamine/tyrosine hydroxylase (TH) neurons interact with other ARC neurons, how they respond to hypothalamic neuropeptides, and to test whether these cells constitute a single homogeneous population. Immunostaining with dopamine and TH antisera was used to corroborate targeted transgene expression. Using whole-cell recording on a large...

  14. Functional expression of P2 purinoceptors in a primary neuroglial cell culture of the rat arcuate nucleus.

    Science.gov (United States)

    Pollatzek, Eric; Hitzel, Norma; Ott, Daniela; Raisl, Katrin; Reuter, Bärbel; Gerstberger, Rüdiger

    2016-07-01

    The arcuate nucleus (ARC) plays an important role in the hypothalamic control of energy homeostasis. Expression of various purinoceptor subtypes in the rat ARC and physiological studies suggest a modulatory function of P2 receptors within the neuroglial ARC circuitry. A differentiated mixed neuronal and glial microculture was therefore established from postnatal rat ARC, revealing neuronal expression of ARC-specific transmitters involved in food intake regulation (neuropeptide Y (NPY), proopiomelanocortin (POMC), tyrosine hydroxylase (TH)). Some NPYergic neurons cosynthesized TH, while POMC and TH expression proved to be mutually exclusive. Stimulation with the general purinoceptor agonists 2-methylthioadenosine-5'triphosphate (2-MeSATP) and ATP but not the P2X1/P2X3 receptor subtype agonist α,β-methyleneadenosine-5'triphosphate (α,β-meATP) induced intracellular calcium signals in ARC neurons and astrocytes. Some 5-10% each of 2-MeSATP responsive neurons expressed POMC, NYP or TH. Supporting the calcium imaging data, radioligand binding studies to hypothalamic membranes showed high affinity for 2-MeSATP, ATP but not α,β-meATP to displace [α-(35)S]deoxyadenosine-5'thiotriphosphate ([(35)S]dATPαS) from P2 receptors. Repetitive superfusion with equimolar 2-MeSATP allowed categorization of ARC cells into groups with a high or low (LDD) degree of purinoceptor desensitization, the latter allowing further receptor characterization. Calcium imaging experiments performed at 37°C vs. room temperature showed further reduction of desensitization. Agonist-mediated intracellular calcium signals were suppressed in all LDD neurons but only 25% of astrocytes in the absence of extracellular calcium, suggestive of metabotropic P2Y receptor expression in the majority of ARC astrocytes. The highly P2Y1-selective receptor agonists MRS2365 and 2-methylthioadenosine-5'diphosphate (2-MeSADP) activated 75-85% of all 2-MeSATP-responsive ARC astrocytes. Taking into consideration the

  15. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding

    Science.gov (United States)

    Suyama, Shigetomo; Maekawa, Fumihiko; Maejima, Yuko; Kubota, Naoto; Kadowaki, Takashi; Yada, Toshihiko

    2016-01-01

    Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. PMID:27503800

  16. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

    Science.gov (United States)

    Suyama, Shigetomo; Maekawa, Fumihiko; Maejima, Yuko; Kubota, Naoto; Kadowaki, Takashi; Yada, Toshihiko

    2016-01-01

    Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. PMID:27503800

  17. Investigating Late Amazonian Volcanotectonic Activity on Olympus Mons, Mars using Flank Vents and Arcuate Graben

    Science.gov (United States)

    Peters, S.; Christensen, P. R.

    2015-12-01

    Volcanism, a fundamental process in shaping the Martian surface, is crucial to understanding its evolution. Olympus Mons, the largest volcano on Mars, is one of several large shield volcanoes. Previous studies were technologically limited to large features associated with these constructs. With the advent of high resolution datasets, we are now able to investigate smaller features, such as flank vents and arcuate graben. Flank vents, common on polygenetic volcanoes, indicate that magma has propagated away from the main conduit and/or magma chamber. Vent morphology allows for the characterization of magma properties and eruption rates. Graben indicate extensional deformation. The distribution of graben provides information on stresses that acted on the volcano. In lieu of geophysical, spectral and in-situ data, morphology, morphometry and spatial relationships are powerful tools. We utilized high resolution image data (CTX, HiRISE and THEMIS IR) and topographic data (HRSC DTM, MOLA) to identify and characterize flank vents and graben. We observed 60 flank vents and 84 arcuate graben on Olympus Mons. Flank vents display varying morphologies and morphometries, suggesting different eruption styles and variable magma volatility. Vents occur primarily on the lower flank. This suggests magma has propagated substantial distances from the magma chamber. Observed clustering of vents may also indicate shallow magma sources. Similarly, graben are observed on the lower flank crosscutting young lava flows that have mantled portions of the escarpment. This indicates either gravitational spreading of Olympus Mons or flexure of the lithosphere in response to the load of the edifice. Collectively, the distribution of flank vents and arcuate graben suggests a similar development to that proposed for Ascraeus Mons. Based on superposition relationships and dates from previous studies, the flank vents and graben formed in the Late Amazonian (≤500 Ma).

  18. Neuromedin U in the paraventricular and arcuate hypothalamic nuclei increases non-exercise activity thermogenesis.

    Science.gov (United States)

    Novak, C M; Zhang, M; Levine, J A

    2006-08-01

    Brain neuromedin U (NMU) has been associated with the regulation of both energy intake and expenditure. We hypothesized that NMU induces changes in spontaneous physical activity and nonexercise activity thermogenesis (NEAT) through its actions on hypothalamic nuclei. We applied increasing doses of NMU directly to the paraventricular (PVN) and arcuate hypothalamic nuclei using chronic unilateral guide cannulae. In both nuclei, NMU significantly and dose-dependently increased physical activity and NEAT. Moreover, NMU increased physical activity and NEAT during the first hour of the dark phase, indicating that the reduction of sleep is unlikely to account for the increased physical activity seen with NMU treatment. As a positive control, we demonstrated that paraventricular NMU also significantly decreased food intake, as well as body weight. These data demonstrate that NMU is positively associated with NEAT through its actions in the PVN and arcuate nucleus. In co-ordination with its suppressive effects on feeding, the NEAT-activating effects of NMU make it a potential candidate in the combat of obesity. PMID:16867180

  19. Arcuate sign of posterolateral knee injuries: anatomic, radiographic, and MR imaging data related to patterns of injury

    International Nuclear Information System (INIS)

    The ''arcuate sign'' is considered a pathognomonic sign for injuries of the posterolateral (PL) corner of the knee. The purpose of our study was to identify different patterns of injury to the fibular head that may associate with injuries to specific ligaments and tendons of the PL corner of the knee. The anatomic relations between the insertions of fibular collateral ligament (FCL), biceps femoris tendon (BFT), popliteofibular ligament (PFL), and arcuate ligament in normal cadaveric knees were also investigated. Magnetic resonance imaging was performed in two cadaveric knees which subsequently were dissected. Radiopaque markers were placed upon the fibular insertions of the FCL, BFT, PFL, and arcuate ligament in the dissected knees, and knee radiographs were then obtained. Twelve patients with radiographic or MR imaging evidence of isolated injury to the PL corner of the knee were retrospectively reviewed, with regard to avulsion fractures and marrow edema in the fibular head and the integrity of the ligaments of the PL corner of the knee. The PFL and arcuate ligament were seen to attach directly to the posterior and medial aspect of the styloid process of the fibular head. The FCL and BFT attached as a conjoined structure on the lateral aspect of the fibular head lateral, anterior and inferior to the attachment site of the PFL and arcuate ligament. Injury to the arcuate ligament or PFL was diagnosed in 8 patients who presented with a small avulsion fracture of the styloid process of the fibula (n=2), bone marrow edema in the medial aspect of the fibular head (n=3), or both (n=3). In 4 patients with injury to the conjoined tendon or FCL, a larger avulsion fragment and more diffuse proximal fibular edema were seen. Radiographic and MR imaging findings in injuries of the posterolateral corner of the knee may suggest injury to specific structures inserting in the fibular head. (orig.)

  20. A Combined fMRI and DTI Examination of Functional Language Lateralization and Arcuate Fasciculus Structure: Effects of Degree versus Direction of Hand Preference

    Science.gov (United States)

    Propper, Ruthe E.; O'Donnell, Lauren J.; Whalen, Stephen; Tie, Yanmei; Norton, Isaiah H.; Suarez, Ralph O.; Zollei, Lilla; Radmanesh, Alireza; Golby, Alexandra J.

    2010-01-01

    The present study examined the relationship between hand preference degree and direction, functional language lateralization in Broca's and Wernicke's areas, and structural measures of the arcuate fasciculus. Results revealed an effect of degree of hand preference on arcuate fasciculus structure, such that consistently-handed individuals,…

  1. Inhibition of ABCA1 Protein Expression and Cholesterol Efflux by TNF α in MLO-Y4 Osteocytes.

    Science.gov (United States)

    Wehmeier, Kent R; Kurban, William; Chandrasekharan, Chandrikha; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2016-06-01

    Hip fracture and myocardial infarction cause significant morbidity and mortality. In vivo studies raising serum cholesterol levels as well as pro-inflammatory cytokines such as TNF α manifest bone loss and atherosclerotic vascular disease, suggesting that abnormalities of cholesterol transport may contribute to osteoporosis. We used the mouse osteocyte cell line (MLO-Y4) to investigate the effects of TNF α on the expression of cholesterol acceptor proteins such as apolipoprotein A-I (apo A-I) and apolipoprotein E (apo E), as well as on the cholesterol transporters ATP-binding cassette-1 (ABCA1), scavenger receptor class B type 1 (SRB1), and cluster of differentiation 36 (CD36). MLO-Y4 cells do not express apo A-I or apo E; however, they do express all three cholesterol transporters (ABCA1, SRB1, and CD36). Treatment of MLO-Y4 cells with TNF α had no effect on SRB1, CD36, and osteocalcin levels; however, TNF α reduced ABCA1 protein levels in a dose-dependent manner and cholesterol efflux to apo A-I. Interestingly, TNF α treatment increased ABCA1 promoter activity and ABCA1 mRNA levels, and increased liver X receptor α protein expression, but had no effect on retinoid X receptor α and retinoic acid receptor α levels. Pharmacological inhibition of p38 mitogen-activated protein (MAP) kinase, but not c-jun-N-terminal kinase 1 or mitogen-activated protein kinase (MEK), restored ABCA1 protein levels in TNF α-treated cells. These results suggest that pro-inflammatory cytokines regulate cholesterol metabolism in osteocytes in part by suppressing ABCA1 levels post-translationally in a p38 MAP kinase-dependent manner. PMID:26759003

  2. High plasma triglyceride levels strongly correlate with low kisspeptin in the arcuate nucleus of male rats

    DEFF Research Database (Denmark)

    Overgaard, A; Axel, A M; Lie, M E;

    2015-01-01

    signals to the GnRH neurons. METHODS: In this study, we measured body weight and plasma concentrations of leptin, insulin, testosterone, and triglycerides after high fat diet exposure and correlated these parameters with the number of kisspeptin-immunoreactive neurons in the arcuate nucleus of male rats....... In this model, a high fat diet (45% or 60% energy from fat, respectively) or a control diet (10% energy from fat) was provided after weaning for three months. RESULTS: We find a significant increase in body weight and plasma leptin concentration, but no change in the number of kisspeptin......-immunoreactive cells with increased fat in the diet. Kisspeptin-immunoreactive cells are not correlated with body weight, testosterone, leptin or insulin. However, we find that the number of kisspeptin-immunoreactive cells is strongly and negatively correlated with the level of plasma triglycerides (R2=0.49, p=0...

  3. A review of the arcuate structures in the Iberian Variscides; constraints and genetic models

    Science.gov (United States)

    Dias, R.; Ribeiro, A.; Romão, J.; Coke, C.; Moreira, N.

    2016-06-01

    The main Ibero-Armorican Arc (IAA) is essentially defined by a predominant NW-SE trend in the Iberian branch and an E-W trend in the Brittany one. However, in northern Spain it presents a 180° rotation, sometimes known as the Cantabrian Arc (CA). The relation between both arcs is controversial, being considered either as a single arc due to one tectonic event, or as the result of a polyphasic process. According to the last assumption, there is a later arcuate structure (CA), overlapping a previous major one (IAA). Whatever the models, they must be able to explain the presence of a Variscan sinistral transpression in Iberia and a dextral one in Armorica, and a deformation spanning from the Devonian to the Upper Carboniferous. Another arcuate structure, in continuity with the CA, the Central-Iberian Arc (CIA) was recently proposed mainly based upon on magnetic anomalies, geometry of major folds and Ordovician paleocurrents. The critical review of the structural, stratigraphic and geophysical data supports both the IAA and the CA, but as independent structures. However, the presence of a CIA is highly questionable and could not be supported. The complex strain pattern of the IAA and the CA could be explained by a Devonian - Carboniferous polyphasic indentation of a Gondwana promontory. In this model the CA is essentially a thin-skinned arc, while the IAA has a more complex and longer evolution that has led to a thick-skinned first order structure. Nevertheless, both arcs are essentially the result of a lithospheric bending process during the Iberian Variscides.

  4. Corticosterone regulates the expression of neuropeptide Y and reelin in MLO-Y4 cells.

    Science.gov (United States)

    Ma, Yuanyuan; Wu, Xiangnan; Li, Xianxian; Fu, Jing; Shen, Jiefei; Li, Xiaoyu; Wang, Hang

    2012-06-01

    Osteocytes that have a dendritic appearance are widely believed to form a complex cellular network system and play crucial roles in mechanotransduction as a principal bone mechanosensor, which is the basis of their neuronallike biology, as previously reported. Neuropeptide Y (NPY) and reelin mRNA, which are brain-specific neurogenic markers, have been identified in osteocytes. However, changes in the production of NPY and reelin in response to specific biochemical stimulation are unknown. In this study, we investigated the in vitro effect of corticosterone, one of the endogenous glucocorticoids, on the expression of NPY and reelin in the MLO-Y4 osteocyte cell line. Cells were treated with corticosterone at different concentrations (10(-9) M-10(-5) M) for 1, 3, 6, 12 and 24 h. As revealed, corticosterone reduced the MLO-Y4 cell viability and proliferation in a dose- and time-dependent manner based on an MTT assay and a Vi-CELL analyzer. The cells were then incubated with corticosterone (10(-6) μM), and the NPY and reelin expression levels were detected at 1, 3, 6, 12 and 24 h using real-time PCR and Western blot analysis. These results demonstrated that at the gene and the protein levels, corticosterone significantly upregulated the NPY and reelin expression in a time-dependent manner. The application of a glucocorticoid receptor antagonist, RU486, reversed the reduced cell viability and the increased expression of NPY and reelin that were caused by corticosterone. To the best of our knowledge, this is the first report to verify that corticosterone regulates the NPY and reelin expression in osteocytes. PMID:22610366

  5. [Y]4-type symmetry effects in nuclei pro's and contra's

    International Nuclear Information System (INIS)

    The possible existence of the C4-symmetry in superdeformed nuclei is discussed using the results of the microscopic nuclear-structure calculations. We employ two standard approaches based on the nuclear average field theory with the deformed Woods-Saxon hamiltonian and the Hartree-Fock approach with Skyrme interactions. We discuss in particular the 149Gd and 153Dy superdeformed nuclei for which some experimental results have been interpreted as an evidence for the nuclear C4-symmetry. The microscopic, quantum mechanical arguments are presented to indicate that: a. The Y44-deformation components are accompanied (at least in the nuclei studied) by the Y42-deformation components and thus the hypothesis of the C4-symmetry around the elongation axis is not supported by the present calculations; b. The Δ = 4 staggering compatible with the existing experimental evidence can be obtained in the presence of other Y4μ deformations; c. The staggering effect is strongly enhanced in the nuclear decay simulations if the electromagnetic transition probabilities are taken into account thus implying that the staggering effect may involve switching from one regular energy sequence (band) to another and not merely following an yrast-sequence decay. (authors). 17 refs., 5 figs

  6. The neuroendocrine genesis of polycystic ovary syndrome: A role for arcuate nucleus GABA neurons.

    Science.gov (United States)

    Moore, Aleisha M; Campbell, Rebecca E

    2016-06-01

    Polycystic ovary syndrome (PCOS) is a prevalent and distressing endocrine disorder lacking a clearly identified aetiology. Despite its name, PCOS may result from impaired neuronal circuits in the brain that regulate steroid hormone feedback to the hypothalamo-pituitary-gonadal axis. Ovarian function in all mammals is controlled by the gonadotropin-releasing hormone (GnRH) neurons, a small group of neurons that reside in the pre-optic area of the hypothalamus. GnRH neurons drive the secretion of the gonadotropins from the pituitary gland that subsequently control ovarian function, including the production of gonadal steroid hormones. These hormones, in turn, provide important feedback signals to GnRH neurons via a hormone sensitive neuronal network in the brain. In many women with PCOS this feedback pathway is impaired, resulting in the downstream consequences of the syndrome. This review will explore what is currently known from clinical and animal studies about the identity, relative contribution and significance of the individual neuronal components within the GnRH neuronal network that contribute to the pathophysiology of PCOS. We review evidence for the specific neuronal pathways hypothesised to mediate progesterone negative feedback to GnRH neurons, and discuss the potential mechanisms by which androgens may evoke disruptions in these circuits at different developmental time points. Finally, this review discusses data providing compelling support for disordered progesterone-sensitive GABAergic input to GnRH neurons, originating specifically within the arcuate nucleus in prenatal androgen induced forms of PCOS. PMID:26455490

  7. Developmental process of the arcuate fasciculus from infancy to adolescence: a diffusion tensor imaging study

    Directory of Open Access Journals (Sweden)

    Hyeong Jun Tak

    2016-01-01

    Full Text Available We investigated the radiologic developmental process of the arcuate fasciculus (AF using subcomponent diffusion tensor imaging (DTI analysis in typically developing volunteers. DTI data were acquired from 96 consecutive typically developing children, aged 0-14 years. AF subcomponents, including the posterior, anterior, and direct AF tracts were analyzed. Success rates of analysis (AR and fractional anisotropy (FA values of each subcomponent tract were measured and compared. AR of all subcomponent tracts, except the posterior, showed a significant increase with aging (P < 0.05. Subcomponent tracts had a specific developmental sequence: First, the posterior AF tract, second, the anterior AF tract, and last, the direct AF tract in identical hemispheres. FA values of all subcomponent tracts, except right direct AF tract, showed correlation with subject′s age (P < 0.05. Increased AR and FA values were observed in female subjects in young age (0-2 years group compared with males (P < 0.05. The direct AF tract showed leftward hemispheric asymmetry and this tendency showed greater consolidation in older age (3-14 years groups (P < 0.05. These findings demonstrated the radiologic developmental patterns of the AF from infancy to adolescence using subcomponent DTI analysis. The AF showed a specific developmental sequence, sex difference in younger age, and hemispheric asymmetry in older age.

  8. Arcuate fasciculus abnormalities and their relationship with psychotic symptoms in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Muhammad Farid Abdul-Rahman

    Full Text Available Disruption of fronto-temporal connections involving the arcuate fasciculus (AF may underlie language processing anomalies and psychotic features such as auditory hallucinations in schizophrenia. No study to date has specifically investigated abnormalities of white matter integrity at particular loci along the AF as well as its regional lateralization in schizophrenia. We examined white matter changes (fractional anisotropy (FA, axial diffusivity (AD, asymmetry indices along the whole extent of the AF and their relationship with psychotic symptoms in 32 males with schizophrenia and 44 healthy males. Large deformation diffeomorphic metric mapping and Fiber Assignment Continuous Tracking were employed to characterize FA and AD along the geometric curve of the AF. Our results showed that patients with schizophrenia had lower FA in the frontal aspects of the left AF compared with healthy controls. Greater left FA and AD lateralization in the temporal segment of AF were associated with more severe positive psychotic symptoms such as delusions and hallucinations in patients with schizophrenia. Disruption of white matter integrity of the left frontal AF and accentuation of normal left greater than right asymmetry of FA/AD in the temporal AF further support the notion of aberrant fronto-temporal connectivity in schizophrenia. AF pathology can affect corollary discharge of neural signals from frontal speech/motor initiation areas to suppress activity of auditory cortex that may influence psychotic phenomena such as auditory hallucinations and facilitate elaboration of delusional content.

  9. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  10. Seasonal shoreline behaviours along the arcuate Niger Delta coast: Complex interaction between fluvial and marine processes

    Science.gov (United States)

    Dada, Olusegun A.; Li, Guangxue; Qiao, Lulu; Ding, Dong; Ma, Yanyan; Xu, Jishang

    2016-07-01

    Deltaic coasts are dynamic geomorphic systems where continuous changes occur on diverse spatial and temporal scales, and these changes constitute an important aspect of their evolution. Based on three-year satellite-derived shoreline data coupled with re-analyzed wave data and hydro-meteorological data, a comprehensive analysis of the dominant processes governing the seasonal shoreline changes along the oil-rich arcuate section of the Niger Delta, in the Nigerian Shelf of the North Atlantic Ocean has been undertaken. Shoreline analysis results show that the delta coast is characterized by predominant summer erosion and maximum winter accretion. Between 2010 and 2012, erosion dominated over accretion and a total of 9.1 km2 deltaic land was lost to coastline erosion at an annual average erosion rate of 4.55±1.21 km2/yr. A greater understanding of the dominant factors responsible for the change is presented. Shoreline change interactions with cross-shore sediment exchange processes are prominent at seasonal timescale (Summer R2=-0.85 and Winter R2=0.7), and interannual timescale (R2=-0.93) with longshore sediment transport processes. Correlation analysis reveals a gradual degeneration of relationship between the suspended sediment flux and coastal hydrodynamics beginning from 2010 to 2012 (cross-shore transport, R=0.68, 0.36 and 0.2 for 2010, 2011 and 2012, respectively; longshore transport R=0.63, 0.44 and 0.2 for 2010, 2011 and 2012, respectively). The study concludes that the effect of fluvial sediment reduction to the delta coast due to capital dredging of the Lower Niger River channels between 2009 and 2012, and periodic fluctuations in the nearshore hydrodynamics processes caused the observed annual shoreline erosion that eventually forced the deltaic coastline toward a state of landward migration during the study period.

  11. Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians

    Directory of Open Access Journals (Sweden)

    GottfriedSchlaug

    2011-07-01

    Full Text Available Structure and function of the human brain are affected by training in both linguistic and musical domains. Individuals with intensive vocal musical training provide a useful model for investigating neural adaptations of learning in the vocal-motor domain and can be compared with learning in a more general musical domain. Here we confirm general differences in macrostructure (tract volume and microstructure (fractional anisotropy (FA of the arcuate fasciculus (AF, a prominent white-matter tract connecting temporal and frontal brain regions, between singers, instrumentalists, and non-musicians. Both groups of musicians differed from non-musicians in having larger tract volume and higher FA values of the right and left AF. The AF was then subdivided in a dorsal (superior branch connecting the superior temporal gyrus and the inferior frontal gyrus (STG<–>IFG, and ventral (inferior branch connecting the middle temporal gyrus and the inferior frontal gyrus (MTG<–>IFG. Relative to instrumental musicians, singers had a larger tract volume but lower FA values in the left dorsal AF (STG<–>IFG, and a similar trend in the left ventral AF (MTG<–>IFG. This between-group comparison controls for the general effects of musical training, although FA was still higher in singers compared to non-musicians. Both musician groups had higher tract volumes in the right dorsal and ventral tracts compared to non-musicians, but did not show a significant difference between each other. Furthermore, in the singers’ group, FA in the left dorsal branch of the AF was inversely correlated with the number of years of participants’ vocal training. Our findings suggest that long-term vocal-motor training might lead to an increase in volume and microstructural complexity of specific white matter tracts connecting regions that are fundamental to sound perception, production, and its feedforward and feedback control which can be differentiated from a more general musician

  12. Hindbrain Leptin Stimulation Induces Anorexia and Hyperthermia Mediated by Hindbrain Melanocortin Receptors

    OpenAIRE

    Skibicka, Karolina P; Grill, Harvey J.

    2008-01-01

    Of the central nervous system receptors that could mediate the energy balance effects of leptin, those of the hypothalamic arcuate nucleus receive the greatest attention. Melanocortin receptors (MC-Rs) contribute to the feeding and energetic effects of hypothalamically delivered leptin. Energy balance effects of leptin are also mediated by extrahypothalamic neurons including the hindbrain nucleus tractus solitarius. Hindbrain leptin receptors play a role in leptin's anorectic effects, but the...

  13. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte;

    2010-01-01

    showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....... positively correlated with visceral fat mass. Risperidone treatment increased CB(1) receptor binding in the arcuate nucleus (40%), hippocampus (25-30%) and amygdala (35%) without concurrent alterations in the CB(1) receptor mRNA. Risperidone treatment increased adiponectin mRNA. CONCLUSION: The present study...

  14. Arcuate ligament of the wrist: normal MR appearance and its relationship to palmar midcarpal instability: a cadaveric study

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Weiling [Veterans Administration Medical Center, Department of Radiology, San Diego, CA (United States); Sharp-Grossmont Hospital, Department of Radiology, La Mesa, CA (United States); Peduto, Anthony J. [Veterans Administration Medical Center, Department of Radiology, San Diego, CA (United States); Westmead Hospital and Western Clinical School of Sydney University, Department of Radiology, Sydney (Australia); Aguiar, Rodrigo O.C. [Veterans Administration Medical Center, Department of Radiology, San Diego, CA (United States); Universidade Federal do Rio de Janeiro, Rio de Janerio (Brazil); Trudell, Debra J.; Resnick, Donald L. [Veterans Administration Medical Center, Department of Radiology, San Diego, CA (United States)

    2007-07-15

    To describe the magnetic resonance (MR) imaging and gross anatomic appearance of the scaphocapitate (SC) ligament and triquetrohamocapitate (THC) ligament, which are the radial and ulnar limbs of the composite arcuate ligament, a critical volar midcarpal stabilizing ligament. T1 spin-echo and 3D gradient-echo MR imaging in the standard, coronal oblique, and axial oblique planes were performed both before and following midcarpal arthrography in seven cadaveric wrists. The seven specimens were then sectioned in selected planes to optimally visualize the SC and THC ligaments. These specimens were analyzed and correlated with their corresponding MR images. The SC and THC ligaments can be visualized in MR images as structures of low signal intensity that form an inverted ''V'' joining the proximal and distal carpal rows. The entire ligamentous complex is best visualized with coronal and axial oblique MR imaging but can also be seen in standard imaging planes. SC and THC ligaments together form the arcuate ligament of the wrist. Their function is crucial to the normal functioning of the wrist. Palmar midcarpal instability (PMCI) is a resulting condition when abnormalities of these ligaments occur. Dedicated MR imaging in the coronal and axial imaging planes can be performed in patients suspected of having PCMI. (orig.)

  15. 株化骨細胞MLO-Y4-A2におけるPTH受容体遺伝子のメカニカルストレスによる発現

    OpenAIRE

    岡山, 三紀; 荒川, 俊哉; 谷村, 明彦; 溝口, 到; 田隈, 泰信; オカヤマ, ミキ; アラカワ, トシヤ; タニムラ, アキヒコ; ミゾグチ, イタル; タクマ, タイシン; Miki, OKAYAMA; Toshiya, ARAKAWA; Akihiko, TANIMURA; Itaru, MIZOGUCHI; Taishin, TAKUMA

    2004-01-01

    Osteocytes are generally accepted to function as sensors for mechanical stress, which are deeply involved in bone homeostasis. However, the signal transduction mechanism of mechanical stresses in osteocytes is still mostly unclear. Here the effect of fluid shear stress on gene expressions of MLO-Y4-A2 cells, a murine osteocyte-like cell line, was investigated. When shear stress was loaded on the MLO-Y4-A2 cells, PTH receptor mRNA increased to 5 to 8 times over the control level. The PTH recep...

  16. Optogenetic Stimulation of Arcuate Nucleus Kiss1 Neurons Reveals a Steroid-Dependent Glutamatergic Input to POMC and AgRP Neurons in Male Mice.

    Science.gov (United States)

    Nestor, Casey C; Qiu, Jian; Padilla, Stephanie L; Zhang, Chunguang; Bosch, Martha A; Fan, Wei; Aicher, Sue A; Palmiter, Richard D; Rønnekleiv, Oline K; Kelly, Martin J

    2016-06-01

    Kisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. Proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons, located in the arcuate nucleus (ARC) of the hypothalamus, integrate numerous excitatory and inhibitory inputs to ultimately regulate energy homeostasis. Given that POMC and AgRP neurons are contacted by Kiss1 neurons in the ARC (Kiss1(ARC)) and they express androgen receptors, Kiss1(ARC) neurons may mediate the orexigenic action of testosterone via POMC and/or AgRP neurons. Quantitative PCR analysis of pooled Kiss1(ARC) neurons revealed that mRNA levels for Kiss1 and vesicular glutamate transporter 2 were higher in castrated male mice compared with gonad-intact males. Single-cell RT-PCR analysis of yellow fluorescent protein (YFP) ARC neurons harvested from males injected with AAV1-EF1α-DIO-ChR2:YFP revealed that 100% and 88% expressed mRNAs for Kiss1 and vesicular glutamate transporter 2, respectively. Whole-cell, voltage-clamp recordings from nonfluorescent postsynaptic ARC neurons showed that low frequency photo-stimulation (0.5 Hz) of Kiss1-ChR2:YFP neurons elicited a fast glutamatergic inward current in POMC and AgRP neurons. Paired-pulse, photo-stimulation revealed paired-pulse depression, which is indicative of greater glutamate release, in the castrated male mice compared with gonad-intact male mice. Group I and group II metabotropic glutamate receptor agonists depolarized and hyperpolarized POMC and AgRP neurons, respectively, which was mimicked by high frequency photo-stimulation (20 Hz) of Kiss1(ARC) neurons. Therefore, POMC and AgRP neurons receive direct steroid- and frequency-dependent glutamatergic synaptic input from Kiss1(ARC) neurons in male mice, which may be a critical pathway for Kiss1 neurons to help coordinate energy homeostasis and reproduction. PMID:27093227

  17. Study on transfection method to MLO-Y4 cells%小鼠骨样细胞MLO-Y4转染方法的研究

    Institute of Scientific and Technical Information of China (English)

    安龙; 续惠云; 瓮媛媛; 商澎

    2010-01-01

    为了建立质粒转染小鼠骨样细胞MLO-Y4的方法,分别采用阳离子脂质体法和电转染法将增强型绿色荧光蛋白(EGFP)质粒pEGFP-C1转染小鼠骨样细胞MLO-Y4,正常培养48h后检测并统计转染率和死亡率.结果显示,脂质体法转染,当质粒与脂质体比例为1∶4时,转染效率可达到(36.8 ±3.7)%,细胞死亡率为(18.4 ±1.9)%;电转染法转染,脉冲电压240 V,脉冲时间300μs,脉冲次数3次时,转染率最高,可达到(23.8 ±2.3)%,细胞死亡率为(14.1 ±1.1)%.而后MTT实验显示脂质体转染法相对于电转柒法对MLO-Y4细胞的增殖有一定的抑制作用,但对后续实验研究影响不大.脂质体转染法转染小鼠骨样细胞MLO-Y4优于电转染法.

  18. Assessment of arcuate fasciculus with diffusion-tensor tractography may predict the prognosis of aphasia in patients with left middle cerebral artery infarcts

    Energy Technology Data Exchange (ETDEWEB)

    Hosomi, Akiko; Nagakane, Yoshinari; Kuriyama, Nagato; Mizuno, Toshiki; Nakagawa, Masanori [Kyoto Prefectural University of Medicine, Department of Neurology, Graduate School of Medical Science, Kyoto (Japan); Yamada, Kei; Nishimura, Tsunehiko [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kyoto (Japan)

    2009-09-15

    It is often clinically difficult to assess the severity of aphasia in the earliest stage of cerebral infarction. A method enabling objective assessment of verbal function is needed for this purpose. We examined whether diffusion tensor (DT) tractography is of clinical value in assessing aphasia. Thirteen right-handed patients with left middle cerebral artery infarcts who were scanned within 2 days after stroke onset were enrolled in this study. Magnetic resonance data of ten control subjects were also examined by DT tractography. Based on the severity of aphasia at discharge, patients were divided into two groups: six patients in the aphasic group and seven in the nonaphasic group. Fractional anisotropy (FA) and number of arcuate fasciculus fibers were evaluated. Asymmetry index was calculated for both FA and number of fibers. FA values for the arcuate fasciculus fibers did not differ between hemispheres in either the patient groups or the controls. Number of arcuate fasciculus fibers exhibited a significant leftward asymmetry in the controls and the nonaphasic group but not in the aphasic group. Asymmetry index of number of fibers was significantly lower (rightward) in the aphasic group than in the nonaphasic (P = 0.015) and control (P = 0.005) groups. Loss of leftward asymmetry in number of AF fibers predicted aphasia at discharge with a sensitivity of 0.83 and specificity of 0.86. Asymmetry of arcuate fasciculus fibers by DT tractography may deserve to be assessed in acute infarction for predicting the fate of vascular aphasia. (orig.)

  19. Acute inflammation reduces kisspeptin immunoreactivity at the arcuate nucleus and decreases responsiveness to kisspeptin independently of its anorectic effects

    DEFF Research Database (Denmark)

    Castellano, J M; Bentsen, A H; Romero, M;

    2010-01-01

    the arcuate nucleus (ARC) that was not observed under conditions of metabolic stress induced by 48-h fasting. In addition, absolute responses to kisspeptin-10 (Kp-10), in terms of LH and testosterone secretion, were significantly attenuated in LPS-treated males that also displayed a decrease in food......Severe inflammatory challenges are frequently coupled to decreased food intake and disruption of reproductive function, the latter via deregulation of different signaling pathways that impinge onto GnRH neurons. Recently, the hypothalamic Kiss1 system, a major gatekeeper of GnRH function, was...... intake and body weight. Yet pair-fed males did not show similar alterations in LH and testosterone secretory responses to Kp-10, whose magnitude was preserved, if not augmented, during food restriction. In summary, our data document the impact of acute inflammation on kisspeptin content at the ARC as key...

  20. Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain.

    Science.gov (United States)

    Kamali, A; Sair, H I; Radmanesh, A; Hasan, K M

    2014-09-26

    The temporo-parietal (TP) white matter connections between the inferior parietal lobule and superior temporal gyrus as part of the superior longitudinal fasciculus/arcuate fasciculus (SLF/AF) or middle longitudinal fasciculus (MdLF) have been studied in prior diffusion tensor tractography (DTT) studies. However, few studies have been focusing on the higher TP connections of the superior parietal lobule with the temporal lobe. These higher TP connections have been shown to have a role in core processes such as attention, memory, emotions, and language. Our most recent study, for the first time, hinted to the possibility of a long white matter connection interconnecting the superior parietal lobule (SPL) with the posterior temporal lobe in human brain which we call the SLF/AF TP-SPL and for a shorter abbreviation, the TP-SPL. We decided to further investigate this white matter connection using fiber assignment by continuous tracking deterministic tractography and high spatial resolution diffusion tensor imaging on 3T. Five healthy right-handed men (age range 24-37 years) were studied. We delineated the SPL connections of the SLF/AF TP bilaterally in five normal adult human brains. Using a high resolution DTT technique, we demonstrate for the first time, the trajectory of a long fiber bundle connectivity between the SPL and posterior temporal lobe, called the SLF/AF TP-SPL (or the TP-SPL), bilaterally in five healthy adult human brains. We also demonstrate the trajectory of the vertically oriented posterior TP connections, interconnecting the inferior parietal lobule (IPL) with the posterior temporal lobe (TP-IPL) in relation to the TP-SPL, arcuate fasciculus and other major language pathways. In the current study, for the first time, we categorized the TP connections into the anterior and posterior connectivity groups and subcategorized each one into the SPL or IPL connections. PMID:25086308

  1. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, Ruma Madhu [Government Medical College Hospital, Department of Radiology, Trivandrum, Kerala (India); Menon, Amitha C.; Thomas, Sanjeev V. [Sree Chitra, Thirunal Institute for Medical Sciences and Technology, Department of Neurology, Thiruvananthapuram, Kerala (India); James, Jija S.; Kesavadas, Chandrasekharan [SCTIMST, Department of Imaging Science and Interventional Radiology, Trivandrum, Kerala (India)

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms - visual verb generation and word pair task - were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm{sup 3}) as compared to the right (1824.11 ± 582.81 mm{sup 3}) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities. (orig.)

  2. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children

    International Nuclear Information System (INIS)

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms - visual verb generation and word pair task - were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm3) as compared to the right (1824.11 ± 582.81 mm3) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities. (orig.)

  3. Activation of a P2Y4-like purinoceptor triggers an increase in cytosolic [Ca2+] in the red blood cells of the lizard Ameiva ameiva (Squamata, Teiidae

    Directory of Open Access Journals (Sweden)

    Sartorello R.

    2005-01-01

    Full Text Available An increasing number of pathophysiological roles for purinoceptors are emerging, some of which have therapeutic potential. Erythrocytes are an important source of purines, which can be released under physiological and physiopathological conditions, acting on purinergic receptors associated with the same cell or with neighboring cells. Few studies have been conducted on lizards, and have been limited to ATP agonist itself. We have previously shown that the red blood cells (RBCs of the lizard Ameiva ameiva store Ca2+ in the endoplasmic reticulum (ER and that the purinergic agonist ATP triggers a rapid and transient increase of [Ca2+]c by mobilization of the cation from internal stores. We also reported the ability of the second messenger IP3 to discharge the ER calcium pool of the ER. Here we characterize the purinoceptor present in the cytoplasmic membrane of the RBCs of the lizard Ameiva ameiva by the selective use of ATP analogues and pyrimidine nucleotides. The nucleotides UTP, UDP, GTP, and ATPgammaS triggered a dose-dependent response, while interestingly 2MeSATP, 2ClATP, alpha, ß-ATP, and ADP failed to do so in a 1- to 200-µm con- centration. The EC50 obtained for the compounds tested was 41.77 µM for UTP, 48.11 µM for GTP, 53.11 µM for UDP, and 30.78 µM for ATPgammaS. The present data indicate that the receptor within the RBCs of Ameiva ameiva is a P2Y4-like receptor due to its pharmacological similarity to the mammalian P2Y4 receptor.

  4. Orphanin FQ in the mediobasal hypothalamus facilitates sexual receptivity through the deactivation of medial preoptic nucleus mu-opioid receptors

    OpenAIRE

    Sanathara, Nayna M.; Moraes, Justine; Kanjiya, Shrey; Sinchak, Kevin

    2011-01-01

    Sexual receptivity, lordosis, can be induced by sequential estradiol and progesterone or extended exposure to high levels of estradiol in the female rat. In both cases estradiol initially inhibits lordosis through activation of β-endorphin (β-END) neurons of the arcuate nucleus of the hypothalamus (ARH) that activate μ-opioid receptors (MOP) in the medial preoptic nucleus (MPN). Subsequent progesterone or extended estradiol exposure deactivate MPN MOP to facilitate lordosis. Opioid receptor-l...

  5. Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes.

    Science.gov (United States)

    Juffer, Petra; Jaspers, Richard T; Lips, Paul; Bakker, Astrid D; Klein-Nulend, Jenneke

    2012-02-15

    Lack of physical activity results in muscle atrophy and bone loss, which can be counteracted by mechanical loading. Similar molecular signaling pathways are involved in the adaptation of muscle and bone mass to mechanical loading. Whether anabolic and metabolic factors regulating muscle mass, i.e., insulin-like growth factor-I isoforms (IGF-I Ea), mechano growth factor (MGF), myostatin, vascular endothelial growth factor (VEGF), or hepatocyte growth factor (HGF), are also produced by osteocytes in bone in response to mechanical loading is largely unknown. Therefore, we investigated whether mechanical loading by pulsating fluid flow (PFF) modulates the mRNA and/or protein levels of muscle anabolic and metabolic factors in MLO-Y4 osteocytes. Unloaded MLO-Y4 osteocytes expressed mRNA of VEGF, HGF, IGF-I Ea, and MGF, but not myostatin. PFF increased mRNA levels of IGF-I Ea (2.1-fold) and MGF (2.0-fold) at a peak shear stress rate of 44Pa/s, but not at 22Pa/s. PFF at 22 Pa/s increased VEGF mRNA levels (1.8- to 2.5-fold) and VEGF protein release (2.0- to 2.9-fold). Inhibition of nitric oxide production decreased (2.0-fold) PFF-induced VEGF protein release. PFF at 22 Pa/s decreased HGF mRNA levels (1.5-fold) but increased HGF protein release (2.3-fold). PFF-induced HGF protein release was nitric oxide dependent. Our data show that mechanically loaded MLO-Y4 osteocytes differentially express anabolic and metabolic factors involved in the adaptive response of muscle to mechanical loading (i.e., IGF-I Ea, MGF, VEGF, and HGF). Similarly to muscle fibers, mechanical loading enhanced expression levels of these growth factors in MLO-Y4 osteocytes. Although in MLO-Y4 osteocytes expression levels of IGF-I Ea and MGF of myostatin were very low or absent, it is known that the activity of osteoblasts and osteoclasts is strongly affected by them. The abundant expression levels of these factors in muscle cells, in combination with low expression in MLO-Y4 osteocytes, provide a

  6. Effects of insulin and leptin in the ventral tegmental area and arcuate hypothalamic nucleus on food intake and brain reward function in female rats

    OpenAIRE

    Bruijnzeel, Adrie W.; Corrie, Lu W.; Rogers, Jessica A.; Yamada, Hidetaka

    2011-01-01

    There is evidence for a role of insulin and leptin in food intake, but the effects of these adiposity signals on the brain reward system are not well understood. Furthermore, the effects of insulin and leptin on food intake in females are underinvestigated. These studies investigated the role of insulin and leptin in the ventral tegmental area (VTA) and the arcuate hypothalamic nucleus (Arc) on food intake and brain reward function in female rats. The intracranial self-stimulation procedure w...

  7. CAUDAL BRAINSTEM DELIVERY OF GHRELIN INDUCES FOS EXPRESSION IN THE NUCLEUS OF THE SOLITARY TRACT, BUT NOT IN THE ARCUATE OR PARAVENTRICULAR NUCLEI OF THE HYPOTHALAMUS

    OpenAIRE

    Faulconbridge, Lucy F.; Grill, Harvey J.; Kaplan, Joel M.; Daniels, Derek

    2008-01-01

    Ghrelin increases food intake when injected into either the forebrain or hindbrain ventricles. Brain areas activated by ghrelin after forebrain delivery have been examined using Fos immunohistochemistry and include the hypothalamic arcuate (Arc) and paraventricular (PVN) nuclei, and the nucleus of the solitary tract (NTS) in the medulla. It is not clear, however, if ghrelin applied directly to the hindbrain activates forebrain structures. Therefore, we examined Fos expression in the Arc, PVN,...

  8. Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, optic ganglia, and mushroom body.

    Science.gov (United States)

    Doeffinger, Carola; Hartenstein, Volker; Stollewerk, Angelika

    2010-07-01

    Similarly to vertebrates, arthropod brains are compartmentalized into centers with specific neurological functions such as cognition, behavior, and memory. The centers can be further subdivided into smaller functional units. This raises the question of how these compartments are formed during development and how they are integrated into brain centers. We show here for the first time how the precheliceral neuroectoderm of the spider Cupiennius salei is compartmentalized to form the distinct brain centers of the visual system: the optic ganglia, the mushroom bodies, and the arcuate body. The areas of the visual brain centers are defined by the formation of grooves and vesicles and express the proneural gene CsASH1, followed by expression of the neural differentiation marker Prospero. Furthermore, the transcription factor dachshund, which is strongly enriched in the mushroom bodies and the outer optic ganglion of Drosophila, is expressed in the optic anlagen and the mushroom bodies of the spider. The developing brain centers are further subdivided into single neural precursor groups, which become incorporated into the grooves and vesicles but remain distinguishable throughout development, suggesting that they encode spatial information for neural subtype identity. Several molecular and morphological aspects of the development of the optic ganglia and the mushroom bodies are similar in the spider and in insects. Furthermore, we show that the primary engrailed head spot contributes neurons to the optic ganglia of the median eyes, whereas the secondary head spot, which has been associated with the optic ganglia in insects and crustaceans, is absent. PMID:20503430

  9. Maternal Obesity in the Mouse Compromises the Blood-Brain Barrier in the Arcuate Nucleus of Offspring.

    Science.gov (United States)

    Kim, Dong Won; Glendining, Kelly A; Grattan, David R; Jasoni, Christine L

    2016-06-01

    The arcuate nucleus (ARC) regulates body weight in response to blood-borne signals of energy balance. Blood-brain barrier (BBB) permeability in the ARC is determined by capillary endothelial cells (ECs) and tanycytes. Tight junctions between ECs limit paracellular entry of blood-borne molecules into the brain, whereas EC transporters and fenestrations regulate transcellular entry. Tanycytes appear to form a barrier that prevents free diffusion of blood-borne molecules. Here we tested the hypothesis that gestation in an obese mother alters BBB permeability in the ARC of offspring. A maternal high-fat diet model was used to generate offspring from normal-weight (control) and obese dams (OffOb). Evans Blue diffusion into the ARC was higher in OffOb compared with controls, indicating that ARC BBB permeability was altered. Vessels investing the ARC in OffOb had more fenestrations than controls, although the total number of vessels was not changed. A reduced number of tanycytic processes in the ARC of OffOb was also observed. The putative transporters, Lrp1 and dysferlin, were up-regulated and tight junction components were differentially expressed in OffOb compared with controls. These data suggest that maternal obesity during pregnancy can compromise BBB formation in the fetus, leading to altered BBB function in the ARC after birth. PMID:27054554

  10. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons.

    Science.gov (United States)

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D; Kelly, Martin J; Rønnekleiv, Oline K

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1(ARH)) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1(ARH) neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1(ARH) neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1(ARH) neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1(ARH) neurons. We propose that Kiss1(ARH) neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. PMID:27549338

  11. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    Science.gov (United States)

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  12. Lessons learned from a case of multivessel median arcuate ligament syndrome in the setting of an Arc of Buhler

    Directory of Open Access Journals (Sweden)

    Kevin O'Brien, M.D

    2016-09-01

    Full Text Available The median arcuate ligament (MAL can rarely compress both the celiac axis and superior mesenteric artery. We present a case of a 70-year male who presented with isolated episodes of upper abdominal pain and diarrhea associated with sweats and nausea. Angiography images demonstrated complete occlusion of the celiac axis and compression of the superior mesenteric artery during the expiration phases. The celiac axis was reconstituted distal to its origin by a patent Arc of Buhler. Other reported cases of multivessel MALs have produced severe symptoms in young adults requiring surgical and/or endovascular intervention. In this case, our patient's Arc of Buhler was protective against more severe chronic mesenteric ischemia. We suggest that a patent Arc of Buhler is protective against symptoms in a single vessel MALs patient. A significant percentage of patients receiving surgical intervention for MALs do not have relief of symptoms. There should be a search for an Arc of Buhler before surgical management of patients suspected to have single vessel MALs.

  13. Lessons learned from a case of multivessel median arcuate ligament syndrome in the setting of an Arc of Buhler.

    Science.gov (United States)

    O'Brien, Kevin; Ferral, Hector

    2016-09-01

    The median arcuate ligament (MAL) can rarely compress both the celiac axis and superior mesenteric artery. We present a case of a 70-year male who presented with isolated episodes of upper abdominal pain and diarrhea associated with sweats and nausea. Angiography images demonstrated complete occlusion of the celiac axis and compression of the superior mesenteric artery during the expiration phases. The celiac axis was reconstituted distal to its origin by a patent Arc of Buhler. Other reported cases of multivessel MALs have produced severe symptoms in young adults requiring surgical and/or endovascular intervention. In this case, our patient's Arc of Buhler was protective against more severe chronic mesenteric ischemia. We suggest that a patent Arc of Buhler is protective against symptoms in a single vessel MALs patient. A significant percentage of patients receiving surgical intervention for MALs do not have relief of symptoms. There should be a search for an Arc of Buhler before surgical management of patients suspected to have single vessel MALs. PMID:27594946

  14. 17β-estradiol rapidly activates calcium release from intracellular stores via the GPR30 pathway and MAPK phosphorylation in osteocyte-like MLO-Y4 cells

    KAUST Repository

    Ren, Jian

    2012-03-06

    Estrogen regulates critical cellular functions, and its deficiency initiates bone turnover and the development of bone mass loss in menopausal females. Recent studies have demonstrated that 17β-estradiol (E 2) induces rapid non-genomic responses that activate downstream signaling molecules, thus providing a new perspective to understand the relationship between estrogen and bone metabolism. In this study, we investigated rapid estrogen responses, including calcium release and MAPK phosphorylation, in osteocyte-like MLO-Y4 cells. E 2 elevated [Ca 2+] i and increased Ca 2+ oscillation frequency in a dose-dependent manner. Immunolabeling confirmed the expression of three estrogen receptors (ERα, ERβ, and G protein-coupled receptor 30 [GPR30]) in MLO-Y4 cells and localized GPR30 predominantly to the plasma membrane. E 2 mobilized calcium from intracellular stores, and the use of selective agonist(s) for each ER showed that this was mediated mainly through the GPR30 pathway. MAPK phosphorylation increased in a biphasic manner, with peaks occurring after 7 and 60 min. GPR30 and classical ERs showed different temporal effects on MAPK phosphorylation and contributed to MAPK phosphorylation sequentially. ICI182,780 inhibited E 2 activation of MAPK at 7 min, while the GPR30 agonist G-1 and antagonist G-15 failed to affect MAPK phosphorylation levels. G-1-mediated MAPK phosphorylation at 60 min was prevented by prior depletion of calcium stores. Our data suggest that E 2 induces the non-genomic responses Ca 2+ release and MAPK phosphorylation to regulate osteocyte function and indicate that multiple receptors mediate rapid E 2 responses. © 2012 Springer Science+Business Media, LLC.

  15. 17β-estradiol rapidly activates calcium release from intracellular stores via the GPR30 pathway and MAPK phosphorylation in osteocyte-like MLO-Y4 cells.

    Science.gov (United States)

    Ren, Jian; Wu, Jun Hua

    2012-05-01

    Estrogen regulates critical cellular functions, and its deficiency initiates bone turnover and the development of bone mass loss in menopausal females. Recent studies have demonstrated that 17β-estradiol (E(2)) induces rapid non-genomic responses that activate downstream signaling molecules, thus providing a new perspective to understand the relationship between estrogen and bone metabolism. In this study, we investigated rapid estrogen responses, including calcium release and MAPK phosphorylation, in osteocyte-like MLO-Y4 cells. E(2) elevated [Ca(2+)]( i ) and increased Ca(2+) oscillation frequency in a dose-dependent manner. Immunolabeling confirmed the expression of three estrogen receptors (ERα, ERβ, and G protein-coupled receptor 30 [GPR30]) in MLO-Y4 cells and localized GPR30 predominantly to the plasma membrane. E(2) mobilized calcium from intracellular stores, and the use of selective agonist(s) for each ER showed that this was mediated mainly through the GPR30 pathway. MAPK phosphorylation increased in a biphasic manner, with peaks occurring after 7 and 60 min. GPR30 and classical ERs showed different temporal effects on MAPK phosphorylation and contributed to MAPK phosphorylation sequentially. ICI182,780 inhibited E(2) activation of MAPK at 7 min, while the GPR30 agonist G-1 and antagonist G-15 failed to affect MAPK phosphorylation levels. G-1-mediated MAPK phosphorylation at 60 min was prevented by prior depletion of calcium stores. Our data suggest that E(2) induces the non-genomic responses Ca(2+) release and MAPK phosphorylation to regulate osteocyte function and indicate that multiple receptors mediate rapid E(2) responses. PMID:22392527

  16. Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals

    International Nuclear Information System (INIS)

    Highlights: ► Spectroscopic properties of Tb3+:Y4Al2O9 crystals are studied. ► Concentration and temperature dependencies of fluorescence are investigated. ► The cross-relaxation transfer rates are experimentally determined. ► Strong influence of cross relaxation process on 5D3 emission quenching is observed. ► Decays are modelled using Inokuti–Hirayama approach. - Abstract: Spectroscopic properties of trivalent terbium (Tb3+) activated Y4Al2O9 (abbreviated YAM) crystals were studied. Concentration and temperature dependent emission spectra and fluorescence dynamics profiles have been investigated in YAM:Tb3+ in order to understand better processes responsible for quenching of the terbium 5D3 and 5D4 emissions. Decays were modelled using Inokuti–Hirayama approach to obtain information on the energy transfer mechanism. The cross-relaxation transfer rates were experimentally determined as a function of temperature and Tb3+ concentration. The investigation revealed strong influence of cross-relaxation process on 5D3 emission quenching. The two different processes responsible for the increase of fluorescence quenching with growing temperature were observed, both related to thermal activation energy. For temperatures above 700 K, the temperature dependence of the emission intensity ratio (5D3/5D4) becomes linear and the decay times are rapidly decreasing monotonously with increasing temperature, what is confirming the potential of Y4Al2O9:Tb3+ material in high temperature luminescence thermometry.

  17. Actividad antiinflamatoria de d-amirona y 4, 7-dimetoxiapigenina aislados de alnus acuminata

    OpenAIRE

    Salama, Ahmed; Avendaño, Inés Yamile

    2009-01-01

    El presente trabajo determinó el efecto antiinflamatorio de d-amirona (olean-13(18)-en-3-ona) y 4',7-dimetoxiapigenina (5-hidroxi-4¢,7-dimetoxiflavona), aislados de Alnus acuminata (Betulaceae), por el método del edema plantar en ratas hembra, en dosis de 30, 60 y 100 mg/kg y de 30, 60 y 80 mg/kg respectivamente. Ambas sustancias mostraron una actividad antiinflamatoria significativa. El efecto más alto de d-amirona se presentó a la primera hora en las tres dosis ensayadas comparable con el e...

  18. Genesis of Daba arcuate structural belt related to adjacent basement upheavals:Constraints from Fission-track and (U-Th)/He thermochronology

    Institute of Scientific and Technical Information of China (English)

    GUILLOT; Franois

    2010-01-01

    Fission-track, (U-Th)/He thermochronology, and cooling properties indicate that the southern Daba arcuate zone (SDBAZ) underwent a distinctive phase of rapid cooling in 153-100 Ma at a rate of 1.44-1.90°C/Ma. This rapid uplifting strongly contrasts with (1) the previous, rapid foreland subsidence during Early to Middle Jurassic in response to late-orogenic compression from the Qinling belt, (2) the succeeding long, slow cooling phase and relative thermal stability that occurred during the 100-45 Ma period. This rapid cooling event in the SDBAZ parallels those experienced by two adjacent upheavals of Huangling (HLUZ) and Hannan-Micang (HMUZ), with cooling rates of 2.22-3.17°C/Ma for the HLUZ in 160-126 Ma, 4.91°C/Ma for the southern HMUZ in 150-125 Ma, as well as 2.11°C/Ma for the northern HMUZ in 150-105 Ma. Comparing thermal histories among the SDBAZ, the HLUZ, the HMUZ, and the Wudang metamorphic zone (WDMZ), we infer that the Daba arcuate structural belt formed in 153-100 Ma. The combined dating data support a correlation with a low-angle arcuate south-thrusting of the Qinling orogen triggered by northward convergence of the Yangtze Craton, contemporaneously encountering rigid basement obstructions from the HLUZ and the HMUZ, respectively. Both the SDBAZ and neighboring domains additionally underwent a comparatively fast cooling and uplift since about 45 Ma.

  19. Changes in beta-endorphin neuron numbers and serum hormone levels in the arcuate nucleus of ovariectomized rats undergoing treadmill exercise

    Institute of Scientific and Technical Information of China (English)

    Weijie Zhang; Xiyi Liu

    2008-01-01

    BACKGROUND: The arcuate nucleus, when damaged in young rats, can lead to pathological changes in adults, such as osteoporosis. Ovariectomized rats suffer from osteoporosis at eight weeks following surgery and the number of β -endorphin immunoreactive neurons in the arcuate nucleus of the hypothalamus is significantly decreased. OBJECTIVE: To establish a rat model of osteoporosis using ovariectomy and to explore changes in the number of β -endorphin neurons and to correlate any such change with serum hormone levels in response to exercise or rest. DESIGN, TIME AND SETTING: The completely randomized block design, neural morphology study was performed at the Key Laboratory of Physiology, Guangdong Medical College, China between March 2004 and January 2005. MATERIALS: Sixteen healthy female rats were selected for ovariectomy. METHODS: Following model establishment, rats were assigned to either rest or exercise groups and each rat was housed individually. Rats in the exercise group underwent an exercise regimen using a treadmill. MAIN OUTCOME MEASURES: Eight weeks following exercise, radioirnmunoassay was performed to detect serum growth hormone, estrogen and osteocalcin levels. Immunohistochemistry was used to measure changes in the number of β -endorphin neurons in the arcuate nucleus of the hypothalamus. Changes in bone metabolism were assessed using bone histomorphometry. RESULTS: In the exercise group, the β -endorphin immunoreactive neurons were high in number, darkly stained, and the nucleus was not obvious. In the rest group, the β-endorphin immunoreactive neurons were low in number and lightly stained. The number of β-endorphin immunoreactive neurons in the exercise group was higher compared with the rest group (t = 2.83, P 0.05). Serum osteocalcin and growth hormone levels were significantly higher in the exercise group compared with the rest group (t = 2.78, 2.32, P < 0.05). Compared with the rest group, the percentage of trabecular bone area

  20. Overexpression, purification, crystallization and preliminary X-ray analysis of CheY4 from Vibrio cholerae O395

    International Nuclear Information System (INIS)

    The chemotaxis response regulator CheY4 from V. cholerae has been cloned, overexpressed, purified and crystallized in monoclinic and hexagonal space groups; the crystals diffracted to 1.67 and 1.9 Å resolution, respectively. Chemotaxis and motility greatly influence the infectivity of Vibrio cholerae, although the role of chemotaxis genes in V. cholerae pathogenesis is poorly understood. In contrast to the single copy of CheY found in Escherichia coli and Salmonella typhimurium, four CheYs (CheY1–CheY4) are present in V. cholerae. While insertional disruption of the cheY4 gene results in decreased motility, insertional duplication of this gene increases motility and causes enhanced expression of the two major virulence genes. Additionally, cheY3/cheY4 influences the activation of the transcription factor NF-κB, which triggers the generation of acute inflammatory responses. V. cholerae CheY4 was cloned, overexpressed and purified by Ni–NTA affinity chromatography followed by gel filtration. Crystals of CheY4 grown in space group C2 diffracted to 1.67 Å resolution, with unit-cell parameters a = 94.4, b = 31.9, c = 32.6 Å, β = 96.5°, whereas crystals grown in space group P3221 diffracted to 1.9 Å resolution, with unit-cell parameters a = b = 56.104, c = 72.283 Å, γ = 120°

  1. 17β-estradiol rapidly facilitates lordosis through G protein-coupled estrogen receptor 1 (GPER) via deactivation of medial preoptic nucleus μ-opioid receptors in estradiol primed female rats

    OpenAIRE

    Long, Nathan; Serey, Chhorvann; Sinchak, Kevin

    2014-01-01

    In female rats sexual receptivity (lordosis) can be induced with either a single large dose of estradiol benzoate (EB), or a priming dose of EB that does not induce sexual receptivity followed by 17β-estradiol (E2). Estradiol priming initially inhibits lordosis through a multi-synaptic circuit originating in the arcuate nucleus of the hypothalamus (ARH) that activates and internalizes μ-opioid receptors (MOR) in medial preoptic nucleus (MPN) neurons. Lordosis is facilitated when MPN MOR are d...

  2. HOMEOSTASTIC AND NON-HOMEOSTATIC FUNCTIONS OF MELANOCORTIN-3 RECEPTORS IN THE CONTROL OF ENERGY BALANCE AND METABOLISM

    OpenAIRE

    Begriche, Karima; Sutton, Gregory M.; Butler, Andrew A.

    2011-01-01

    The central nervous melanocortin system is a neural network linking nutrient-sensing systems with hypothalamic, limbic and hindbrain neurons regulating behavior and metabolic homeostasis. Primary melanocortin neurons releasing melanocortin receptor ligands residing in the hypothalamic arcuate nucleus are regulated by nutrient-sensing and metabolic signals. A smaller group of primary neurons releasing melanocortin agonists in the nucleus tractus solitarius in the brainstem are also regulated b...

  3. Leptin receptor immunoreactivity is present in ascending serotonergic and catecholaminergic neurons of the rat

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders; Helboe, Lone; Larsen, Philip J.

    2001-01-01

    Obesity, tyrosine hydroxylase, arcuate nucleus, paracentricular nucleus, raphe nuclei, leptin, serotonin, catecholamines......Obesity, tyrosine hydroxylase, arcuate nucleus, paracentricular nucleus, raphe nuclei, leptin, serotonin, catecholamines...

  4. Laser site-selective spectroscopy of Eu3+ ions doped Y4Al2O9

    Science.gov (United States)

    Kaczkan, M.; Turczyński, S.; Pawlak, D. A.; Wencka, M.; Malinowski, M.

    2016-08-01

    Eu3+ doped Y4Al2O9 (YAM) crystals were prepared by the micro-pulling down method. Optical-absorption and laser-selective-excitation techniques along with the luminescence decays have been used to reveal that Eu3+ ions in YAM occupy three distinct sites, which were characterized and discussed. The Stark energy levels of Eu3+ at three different sites in YAM were assigned from selectively excited emission spectra at 10 K. The intensity ratio of forced electric dipole (5D0 → 7F2) and magnetic dipole (5D0 → 7F1) transitions was discussed in order to obtain information about the degree of asymmetry of the luminescent centers. These results were confirmed by the luminescence lifetime measurements. The temperature dependent photo-luminescence spectra indicated that there is no energy transfer between different sites in the 10-300 K range.

  5. Study of hadronic transitions between Y states and observation of Y(4S)-> eta Y(1S) decay

    CERN Document Server

    Aubert, B; Karyotakis, Yu; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Graugès-Pous, E; López, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Cahn, R N; Jacobsen, R G; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabé, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schröder, T; Walker, D; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Teodorescu, L; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Wilson, M G; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Smith, J G; Ulmer, K A; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Mader, W F; Nogowski, R; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Playfer, S; Watson, J E; Andreotti, M; Bettonia, D; Bozzia, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppiab, E; Negrini, M; Petrella, A; Piemontesea, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzoa, A; Contri, R; Lo Vetere, M; Macria, M M; Monge, M R; Passaggioa, S; Patrignani, C; Robuttia, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Marks, J; Schenk, S; Uwer, U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Nash, J A; Panduro-Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Bquilleux, J; D'Orazio, A; Davier, M; Firminoda Costa, J; Grosdidier, e G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; George, K A; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Flächer, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Alwyn, K E; Bailey, D S; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Li, X; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Lazzaro, A; Lombardoa, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, Gallieno; Listaa, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Wang, W F; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelliab, G; Gagliardi, N; Margoni, M; Morandina, M; Posoccoa, M; Rotondoa, M; Simonettoab, F; Stroiliab, R; Vociab, C; Del Amo-Sánchez, P; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; Hamon, O; Leruste, P; Ocariz, J; Pérez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoniab, E; Angeliniab, C; Batignaniab, G; Bettariniab, S; Carpinelli, M; Cervelliab, A; Fortiab, F; Giorgi, M A; Lusianiac, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsha, J J; Biesiada, J; Lopes-Pegna, D; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Anullia, F; Baracchini, E; Cavotoa, G; del Reab, D; Di Marcoab, E; Facciniab, R; Ferrarottoa, F; Ferroniab, F; Gasperoab, M; Jacksona, P D; Li Gioia, L; Mazzonia, M A; Morgantia, S; Pireddaa, G; Polciab, F; Rengaab, F; Voenaa, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, o T; Franek, B; Olaiya, E O; Röthel, W; Wilson, F F; Emery, S; Escalier, M; Esteve, L; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, C; Zito, e M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Gabareen, A M; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Drummond, B W; Izen, J M; Lou, X C; Bianchiab, F; Gambaab, D; Pelliccioniab, M; Bombenab, M; Bosisioab, L; Cartaroab, C; Della Riccaab, G; Lanceriab, L; Vitaleab, L; Azzolini, V; Lopez-March, N; Martínez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Pierini, M; Prepost, R; Vuosalo, C O; Wu, S L

    2008-01-01

    We present a study of hadronic transitions between Y(mS) (m=4,3,2) and Y(nS) (n=2,1) resonances based on 347.5\\invfb of data taken with the BABAR detector at the PEP-II storage rings. We report the first observation of Y(4S)-> eta Y(1S) decay with a branching fraction BR((Y(4S)->eta Y(1S))=(1.96+-0.06_{stat} +-0.09_{syst}) x 10^{-4} and measure the ratio of partial widths Gamma(Y(4S)->etaY(1S))/Gamma(Y(4S)->pi+pi-Y(1S))=2.41+- 0.40_{stat}+- 0.12_{syst}. We set 90% CL upper limits on the ratios Gamma(Y(2S)->etaY(1S))/Gamma(Y(2S)->pi+pi-Y(1S))etaY(1S))/Gamma(Y(3S)->pi+pi-Y(1S))pi+pi-Y(2S))/Gamma(Y(4S)->pi+pi-Y(1S))=1.16+- 0.16_{stat}+- 0.14_{syst} and Gamma(Y(3S)->pi+pi-Y(2S))/Gamma(Y(3S)->pi+pi-Y(1S))=0.577+- 0.026_{stat}+- 0.060_{syst}.

  6. Purinergic receptors in the endocrine and exocrine pancreas

    DEFF Research Database (Denmark)

    Novak, I

    2008-01-01

    The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly......, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors...

  7. 抗盐钻井液在舞阳盐矿Y4井的应用%Application of salt resistant slurry on Well Y4 in Wuyang mine

    Institute of Scientific and Technical Information of China (English)

    刘鸿燕; 胡郁乐; 潘峰; 符碧犀

    2011-01-01

    为了解决盐膏层钻井难的问题,针对河南省舞阳地区的含盐地层和舞阳Y4井钻井液应用中暴露的问题,通过对盐水钻井液配方及添加剂作用机理的研究和盐水钻井液优配原则分析,设计出了一种高矿化度和强抑制性的饱和抗盐钻井液体系,添加剂仅为低黏Na-CMC、SMP-Ⅱ、水解聚丙烯腈钾盐和磺化沥青4种,成功完成了Y4井的钻探施工.%In order to overcome the difficulties in salt formation drilling, especially for Wuyang area, and to solve the problem exposed in slurry application of Well Y4 in Wuyang, a type of saturated salt resistant slurry system is developed, through the study of salt water drilling fluid formulation and the working principles of additives, and the analysis on the priority principles of the saline mud. The slurry makes Well Y4 drilling a success. It not only meets the needs of conventional salt formation drilling, but also is adaptive, environmental-friendly and economical.

  8. Impact of Gap Junctional Intercellular Communication on MLO-Y4 Sclerostin and Soluble Factor Expression.

    Science.gov (United States)

    York, S L; Sethu, P; Saunders, M M

    2016-04-01

    Bone remodeling is a continual process in which old bone is resorbed by osteoclasts and new bone is formed by osteoblasts, providing a mechanism for bones' ability to adapt to changes in its mechanical environment. While the role of osteoblasts and osteoclasts in bone remodeling is well understood, the cellular regulation of bone remodeling is unclear. One theory is that osteocytes, found within bone, play an important role in controlling the bone remodeling response. Osteocytes possess gap junctions, narrow channels that extend between nearby cells and allow communication between cells via the transfer of small molecules and ions. This work investigated the potential role of gap junctional intercellular communication in bone remodeling by exposing osteocyte-like MLO-Y4 cells to mechanical strains and quantifying the expression of soluble factors, including sclerostin, a protein closely associated with bone remodeling. The soluble factors and sclerostin expression were further examined after inhibiting gap junctional intercellular communication to study the impact of the communication. At supraphysiologic strains, the inhibition of gap junctional intercellular communication led to increases in sclerostin expression relative to cells in which communication was present, indicating that the communication may play a significant role in regulating bone remodeling. PMID:26154422

  9. The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms

    OpenAIRE

    Müller, Timo D.; Müller, Anne; Yi, Chun-Xia; M Habegger, Kirk; Meyer, Carola W.; Gaylinn, Bruce D.; Finan, Brian; Heppner, Kristy; Trivedi, Chitrang; Bielohuby, Maximilian; Abplanalp, William; Meyer, Franziska; Piechowski, Carolin L.; Pratzka, Juliane; Stemmer, Kerstin

    2013-01-01

    The G protein-coupled receptor 83 (Gpr83) is widely expressed in brain regions regulating energy metabolism. Here we report that hypothalamic expression of Gpr83 is regulated in response to nutrient availability and is decreased in obese mice compared with lean mice. In the arcuate nucleus, Gpr83 colocalizes with the ghrelin receptor (Ghsr1a) and the agouti-related protein. In vitro analyses show heterodimerization of Gpr83 with Ghsr1a diminishes activation of Ghsr1a by acyl-ghrelin. The orex...

  10. Immunohistochemical C-FOS expression and autoradiography to study galnin/neuropeptide y Y1 receptor-receptor interactions in the amygdala

    OpenAIRE

    Narváez, Manuel; Millón, Carmelo; Flores, Antonio; SAntin, Luis; Parrado, Conchi; Puigcerver, Araceli; Borroto-Escuela, Dasiel; Fuxe, Kjell; Diaz-Cabiale, Zaida; Narváez, José Ángel

    2013-01-01

    We have shown Galanin(GAL)/Neuropeptide Y Y1 receptor(Y1) interactions in the nucleus tractus solitarius and the arcuate nucleus. Since both peptides play an important role in mood disorders, the aim of this work was to study GAL/Y1 interactions in the amygdala(AMY), key nucleus for fear, mood, and motivation. We have combined the analysis of the expression of c-Fos immunoreactivity(c-Fos IR) with an autoradiographic study in the AMY. Groups of anaesthetized rats (n=4) received intracerebrove...

  11. Corrosion behavior of as-cast Mg_(68)Zn_(28)Y_4 alloy with I-phase

    Institute of Scientific and Technical Information of China (English)

    SHI Fei; YU Yuan-chun; GUO Xue-feng; ZHANG Zhong-ming; LI Ying-ying

    2009-01-01

    Mg_(68)Zn_(28)Y_4 alloys with stable icosahedral quasicrystals (Zn_(60)Mg_(30)Y_(10)) were prepared by cast method. By simulating the environment of ocean, the alloy was eroded in 3.5% (mass fraction) NaCl for 2, 4 and 30 h. The microstructures of the samples and eroded alloys were analyzed by OM and SEM. The compositions and the quasiperiodic structures were identified respectively by EDS and TEM. And the corrosion potential and corrosion current density before and after immersion were measured by potentiodynamic polarization measurements in 3.5% NaCl. The results show that I-phases grow in the mode of conglomeration, piling and transfixion. The Mg_7Zn_3 matrix and ((Mg) solid solution are eroded badly, while W-phase is eroded partially. At the same time, the I-phases exhibit excellent corrosion resistance property. The resistance to corrosion of Mg_(68)Zn_(28)Y_4 alloy is improved by increasing exposed I-phases. With adding element Y to Mg68Zn32 alloy, the corrosion current is decreased by one order of magnitude. And after the immersion of as-cast Mg_(68)Zn_(28)Y_4 alloy for 30 h, the corrosion current density is reduced by two orders of magnitude compared with that of uneroded Mg_(68)Zn_(32) alloy.

  12. Effects of Zuogui Wan on neurocyte apoptosis and down-regulation of TGF-β1 expression in nuclei of arcuate hypothalamus of monosodium glutamate -liver regeneration rats

    Institute of Scientific and Technical Information of China (English)

    Han-Min Li; Xiang Gao; Mu-Lan Yang; Jia-Jun Mei; Liu-Tong Zhang; Xing-Fan Qiu

    2004-01-01

    AIM: To inquire into the effects and mechanism of Zuogui Wan (Pills for Kidney Yin) on neurocyte apoptosis in nuclei of arcuate hypothalamus (ARN) of monosodium glutamate(MSG)-liver regeneration rats, and the mechanism of liver regeneration by using optic microscope, electron microscope and in situ end labeling technology to adjust nerve-endocrineimmunity network.METHODS: Neurocyte apoptosis in ARN of the experiment rats was observed by using optic microscope, electron microscope andin situ end labeling technology. Expression of TGF-β1 in ARN was observed by using immunohistochemistry method.RESULTS: The expression of TGF-β1 in rats of model group was increased with the increase of ARN neurocyte apoptosis index (AI) (t = 8.3097, 12.9884, P<0.01). As compared with the rats of model group, the expression of TGF-β1 in rats of Zuogui Wan treatment group was decreased with the significant decrease of ARN neurocyte apoptosis (t = 4.5624,11.1420, P<0.01).CONCLUSION: Brain neurocyte calcium ion overexertion and TGF-β1 protein participate in the adjustment and control of ARN neurocyte apoptosis in MSG-liver regeneration-rats. Zuogui Wan can prevent ARN neurocyte apoptosis of MSG-liver regeneration in rats by downregulating the expression of TGF-β1, and influence liver regeneration through adjusting nerve-endocrine-immune network.

  13. Leptin transiently antagonizes ghrelin and long-lastingly orexin in regulation of Ca2+ signaling in neuropeptide Y neurons of the arcuate nucleus

    Institute of Scientific and Technical Information of China (English)

    Daisuke Kohno; Shigetomo Suyama; Toshihiko Yada

    2008-01-01

    AIM: To explore the mechanism for interactions of leptin with ghrelin and orexin in the arcuate nucleus (ARC) activating neuropeptide Y (NPY) neurons during physiological regulation of feeding. METHODS: Single neurons from ARC of adult rats with matured feeding function were isolated. [Ca2+]I was measured to monitore their activities. The time course of leptin effects on ghrelin-induced versus orexin-induced [Ca2+]I increases in NPY neurons was studied. RESULTS: Administration of ghrelin or orexin-A at 10-10 mol/L increased cytosolic Ca2+ concentration ([Ca2+I) in NPY neurons isolated from the ARC of adult rats. Upon administration of leptin at 10-14-1012 mol/L, ghrelin-induced [Ca2+]I increases were initially (<10 min) inhibited but later restored, exhibiting a transient pattern of inhibition. In contrast, orexin-induced [Ca2+]I increases were inhibited by leptin in a long-lasting manner. Furthermore, a prior administration of leptin inhibited orexin action but not ghrelin action to increase [Ca2+]I. CONCLUSION: Leptin counteracted ghrelin effects transiently and orexin effects long-lastingly in NPY neurons. The transient property with which leptin counteracts ghrelin action in NPY neurons may allow the fasting-associated increase in ghrelin levels to activate NPY neurons in the presence of physiological leptin and to stimulate feeding.

  14. UDP acts as a growth factor for vascular smooth muscle cells by activation of P2Y(6) receptors

    DEFF Research Database (Denmark)

    Hou, Mingyan; Harden, T Kendall; Kuhn, Cynthia M; Baldetorp, Bo; Lazarowski, Eduardo; Pendergast, William; Möller, Sebastian; Edvinsson, Lars; Erlinge, David

    2002-01-01

    Mitogenic effects of the extracellular nucleotides ATP and UTP are mediated by P2Y(1), P2Y(2), and P2Y(4) receptors. However, it has not been possible to examine the highly expressed UDP-sensitive P2Y(6) receptor because of the lack of stable, selective agonists. In rat aorta smooth muscle cells ...

  15. Adjustment of acupuncture on arcuate nucleus of hypothalamus in obese rats%针剌对肥胖大鼠脑弓状核作用的调整

    Institute of Scientific and Technical Information of China (English)

    刘志诚; 孙凤岷; 袁锦虹; 姜军作; 衣运玲; 吕雅妮

    2005-01-01

    性作用可能是针灸减肥的作用机制之一.%BACKGROUND: The abnormality of the function of arcuate nucleus may be an important factor of obesity. It has been known that the mechanisms of acupuncture in treating obesity are related to nervous and neurohumoral regulation. What is the regulating effect of acupuncture on the function of arcuate nucleus?OBJECTIVE: To study the effects of acupuncture on the function of arcuate nucleus of obese rats, and further investigate central nervous functional mechanism of reducing weight by acupuncture.DESIGN: Randomized controlled study based on the experimental animals.SETTING: Acupuncture institute in second clinical medical college of a university of traditional Chinese medicine, and a population management college.MATERIALS: This experiment was carried out in the Acupuncture Institute of Second Clinical Medical College, Nanjing University of Traditional Chinese Medicine between April and October 2002. One-month old male SD rats just in ablactation were selected.METHODS: Rats fed with ordinary wholesome rat-feed were in the normal group. The successfully established experimental obese rats models were randomly divided as control group and acupuncture group with 12 rats in each group. Rats in the acupuncture group were given acupuncture treatment for 14 days, and rats in the normal and control groups were put into rat fixation-machine for 15 minutes every day, lasting for 14 days. Body mass, Lee' s index, body lipid, level of central and peripheral leptin and insulin(INS) as well as the frequency of spontaneous discharge of nerve cell in the arcuate nucleus(ARC) of hypothalamus in obese rats were observed with nervous electrophysiological and nervous biochemical technology before and after acupuncture.MAIN OUTCOME MEASURES: ① Effect of acupuncture on obesity index, fat contents of pericardium, kidney and epididymis of experimental obese rats. ② Effect of acupuncture on the frequency of spontaneous discharge of ARC

  16. Tsh receptor

    OpenAIRE

    Frauman, Albert

    2013-01-01

    The TSH receptor is a member of the G protein-coupled receptor(GPCR)family. It is one of the glycoprotein hormone receptors, which also includes the FSH and LH/CG receptors. The TSH receptor mediates the action of the pituitary-derived glycoprotein, TSH (thyroid stimulating hormone, thyrotropin or thyrotrophin). TSH binds to the TSH receptor which is located on thyroid follicular cells (but is also expressed in extrathyroidal sites). Glycosylation of the TSH receptor occurs, as does cleavage ...

  17. Sol-gel synthesis and luminescence of Y4Al2O9:RE3+(RE=Eu,Tb)

    International Nuclear Information System (INIS)

    Y4Al2O9 (YAM) was prepared by a sol-gel process, using yttrium and aluminum citrate complexes as precursors. The sol-gel process produced single-phase YAM at 900 C, as opposed to the conventional solid-slate reaction, which led to the formation of other phases, even if at 1600 C. The emission and excitation spectra of Eu3+ and Tb3+ in YAM showed the existence of two luminescence centers, agreeing with the crystal structure of YAM. The spectral properties of the samples are discussed. (orig.)

  18. A Newly Recognized, 460 km Long and Arcuate, Right-Lateral Strike-Slip Fault Traversing Puerto Rico and the Virgin Islands

    Science.gov (United States)

    Loureiro, P.; Mann, P.

    2014-12-01

    We use 830 km of seismic reflection lines and 94,000 km2 of high-resolution multibeam bathymetry to identify a 460-km-long and semi-arcuate strike-slip fault that can be traced to the southwest from the Mona rift west of Puerto, across the onland area of south-central Puerto Rico (Cerro Goden and Great Southern Puerto Rico fault zones), across the Whiting basin southeast of Puerto Rico, across the Virgin Islands basin and to the northeast along the Anegada Passage and Tortola ridge. On multibeam and seismic reflection data the fault is active based on a continuous seafloor scarp ranging in height from 10 to 40 m. Seismic profiles show that the fault is alternatively downthrown to the north and south typical of strike-slip faults. The sense of most recent strike-slip offset on the fault is right-lateral based on offsets at 4 localities that range from 1.5 to3.5 km. Shallow earthquake swarms are associated with the fault trace in the Virgin Islands area but large segments of the fault are aseismic and appear locked. We propose that this fault system forms the southern boundary of an actively CCW-rotating Puerto Rico microplate that is driven by oblique, left-lateral shear of the North America-Caribbean plate boundary. The northern edge of the microplate is inferred to follow left-lateral faults known in the Puerto Rico trench (Bunce and Bowin fault zones) that close the loop around the crudely circular microplate in the area of the Mona rift. We have modeled these boundaries of the rotating block using the Defnode method of finite elements constrained by GPS and earthquake slip vectors.

  19. Actinobacillus actinomycetemcomitans Y4 capsular-polysaccharide-like polysaccharide promotes osteoclast-like cell formation by interleukin-1 alpha production in mouse marrow cultures.

    OpenAIRE

    Nishihara, T.; Ueda, N; Amano, K; Ishihara, Y; Hayakawa, H.; Kuroyanagi, T; Ohsaki, Y; Nagata, K.; Noguchi, T

    1995-01-01

    The mechanism of osteoclast-like cell formation induced by periodontopathic bacterium Actinobacillus actinomycetemcomitans Y4 (serotype b) capsular-polysaccharide-like polysaccharide (capsular-like polysaccharide) was examined in a mouse bone marrow culture system. When mouse bone marrow cells were cultured with A. actinomycetemcomitans Y4 capsular-like polysaccharide for 9 days, many multinucleated cells were formed. The multinucleated cells showed several characteristics of osteoclasts, inc...

  20. Emission analysis of RE3+ (RE=Eu, Sm, Dy):MgY4Si3O13 phosphors

    International Nuclear Information System (INIS)

    A series of Eu3+, Sm3+, and Dy3+ ion doped magnesium yttrium silicate [MgY4Si3O13] phosphors was synthesized using the solid-state reaction method with a grain size of approximately 500 nm in hexagonal symmetry. The photoluminescence (PL) spectra of the Eu3+, Sm3+, and Dy3+:MgY4Si3O13 phosphors exhibit bright red, orange-red and yellow emissions at 615 nm (5D0→7F2), 603 nm (4G52→6H7/2), and 574 nm (4F9/2→6H13/2), respectively. The thermoluminescence (TL) of the phosphors displays the maximum intensity consistently at 10 mol% of the ion concentrations, with a single glow peak around 165 °C (Eu3+-activated phosphor), 230 °C (Sm3+-activated phosphor), and 230 °C (Dy3+-activated phosphor), respectively. The trap parameters such as the order of kinetics (b), activation energy (E), frequency factor (S), and Balarin parameter (γ) associated with the most intensive glow peak of these phosphors were finally determined by analyzing their line-shapes on the basis of Chen's method

  1. Preparation and Electrorheological Property of Y4O(OH)9(NO3)-NH4NO3 Materials

    Institute of Scientific and Technical Information of China (English)

    Ma Shuzhen; Huo Li; Jia Yunling; Shang Yanli; Li Shuxin; Xu Mingyuan; Li Junran; Zhang Shaohua

    2006-01-01

    The new electrorheological (ER) material, a particle material composed of Y4O(OH)9(NO3) and NH4NO3, was obtained.They display better ER performance.The shear stress of the suspension of Y4O(OH)9(NO3)(NH4NO3)2.8 material in dimethyl silicone oil reaches 1469 Pa at an electric field strength (E) of 4.2 kV·mm-1 and the shear rate (γ) of 150 s-1.The relative shear stress, τE/τ0 (τE and τ0 are the shear stresses at E=4.2 and 0 kV·mm-1, respectively), is up to 29, which is 19 times that of pure Y2O3 material.The dielectric and conductive property of the materials play important roles in the modification of the ER effect of the particle materials.The researches on these new ER materials are very useful for obtaining a better understanding on the mechanism of the ER effect and finding an ideal ER material.

  2. Scintillation properties of μPD-grown Y4Al2O9:Pr (YAM:Pr) crystals

    International Nuclear Information System (INIS)

    Highlights: • YAM:Pr crystals do scintillate and as such deserve further interest. • Fast d–f luminescence of Pr3+ ions appears in X-ray excited spectra. • Two components (24 and 790 ns) constitute scintillation time profiles. - Abstract: Y4Al2O9:Pr (YAM:Pr) crystals have been grown by the micro-pulling-down method and their scintillation properties have been investigated. YAM:0.1%Pr displays a light yield of about 2000 ph/MeV and its scintillation time profile contains a prompt component with a decay time of 23.5 ns and a contribution of 20%. Radioluminescence spectra show both fast d–f and slow f–f praseodymium emissions. Low temperature glow curves are complex, consisting of discrete peaks and broad bands related to quasi-continuous trap distributions. Overall scintillation performance of YAM:Pr deteriorates with increasing praseodymium concentration

  3. An in vivo profile of beta-endorphin release in the arcuate nucleus and nucleus accumbens following exposure to stress or alcohol.

    Science.gov (United States)

    Marinelli, P W; Quirion, R; Gianoulakis, C

    2004-01-01

    The aim of the present study was to determine the effects of distinct categories of stressors on beta-endorphin (beta-EP) release in the arcuate nucleus (ArcN) and nucleus accumbens (NAcb) using in vivo microdialysis. Adult male rats were implanted with a cannula aimed at either the NAcb or the ArcN. On the day of testing, a 2 mm microdialysis probe was inserted into the cannula, and artificial cerebrospinal fluid was infused at 2.0 microl/min. After three baseline collections, animals either had a clothespin applied to the base of their tail for 20 min (a physical/tactile stressor), were exposed to fox urine odour for 20 min (a psychological stressor/species-specific threat), or were administered 2.4 g ethanol/kg body weight, 16.5% w/v, i.p. (a chemical/pharmacological stressor) with control animals receiving an equivalent volume of saline. Both tail-pinch and fox odour significantly increased beta-EP release from the ArcN (P<0.05), whilst only tail-pinch enhanced beta-EP release from the NAcb (P<0.01). On the other hand, alcohol stimulated beta-EP release in the NAcb as compared with saline-treated controls (P<0.01), but not in the ArcN. Although the increase in extracellular beta-EP produced by the other stressors was relatively rapid, there was a 90-min delay before alcohol administration caused beta-EP levels to exceed that of saline-injected controls. In conclusion, the fact that physical and fear-inducing psychological stressors stimulate beta-EP release in the ArcN and only physical stressors stimulate beta-EP release in the NAcb, indicates that stressors with different properties are processed differently in the brain. Also, an injection of alcohol caused a delayed increase of beta-EP in the NAcb but not the ArcN, indicating that alcohol may recruit a mechanism that is, at least partially, distinct from stress-related pathways. PMID:15283974

  4. EVALUACIÓN DE LOS DISPOSITIVOS A NIVEL DE LA CAPA 2, 3 y 4 DEL MODELO OSI.

    Directory of Open Access Journals (Sweden)

    Yralys Sulbaran

    2005-01-01

    Full Text Available En el siguiente articulo trata sobre tecnologías de interconexión de redes debido a que en los últimos años se ha notado el progresivo avance que han tenido las tecnologías y la convergencia de las mismas, desapareciendo rápidamente las diferencias para transferir, almacenar y procesar la información ocasionando de esta manera la interoperabilidad de las redes utilizando dispositivos tales como los routers y Switching, donde cada uno de ellos tienen sus propias características en relación al diseño, configuración y funcionamiento, de allí la necesidad de evaluar si los dispositivos de interconexión (Routers y Switches a nivel de la capa 2, 3 y 4 del modelo OSI, siendo este el titulo y objetivo general planteado en la investigación, el propósito de la investigación fue identificar y evaluar los routers y switch capa 2, 3 y 4 examinando el funcionamiento de los equipos y verificar el uso por parte de los operadores. Con respecto al tipo de investigación según su propósito es descriptiva y es un diseño de campo y un diseño no experimental se clasifica transeccional o transversal, el tipo de muestra es no probabilística, se utilizó el cuestionario y la observación directa como instrumento de recolección de datos siendo valido y confiable con un valor 0.72. Por último se dan las conclusiones que según los resultados obtenidos los operadores o administradores de red, tienen la suficiente capacidad para el manejo y control de las posibles fallas que puedan presentarse y disponen de los mecanismos y tecnologías necesarias para el buen funcionamiento de la red, en relación con lo switch capa 4, a un no están muy familiarizados con el mismo, se puede decir que desconocen un poco sobre esta tecnología al contrario de los otros dispositivos router, switch capa 2 y 3.Las recomendaciones van dirigidas a específicamente a los operadores y administradores de red.

  5. Expression of GnRH in the hypothalamic arcuate nucleus in rats with diet-induced obesity and its influence on spermatogenesis%营养性肥胖大鼠弓状核促性腺激素释放激素的表达变化以及对精子发生的影响

    Institute of Scientific and Technical Information of China (English)

    刘冉冉; 赵方欣; 张洪芹

    2013-01-01

    Objective:To investigate the expressions of neuropeptide Y (NPY), obesity receptor (ob-R) and gonadotropin-re-leasing hormone (GnRH) in the hypothalamic arcuate nucleus in rats with diet-induced obesity and its influence on spermatogenesis. Methods:Weanling SD male rats were fed with high-energy feed. After 14 weeks, obesity models were selected according to Lee's Index. The rats in the control group were established by feeding them with normal feed. We observed the expressions of NPY. ob-R and GnRH in the hypothalamic arcuate nucleus and the expression of androgen binding protein (ABP) in the testis and the changes of spermatogenic cells cycle with obesity. We also detected the level of leptin,follicule-stimula-ting hormone (FSH), luteinizing hormone (LH) in serum and the concentration of testosterone in venous blood of testicle. Results:The level of leptin was higher in the obesity group than in the control group. The levels of testosterone, FSH and LH were lower than that in the control group. The expression of NPY increased, and the expressions of ob-R and GnRH decreased, as compared with the control group. The expression of ABP in testicles in obesity models was attenuated. The spermatogenic cells in S phase in obesity model decreased, while the cells in G2/M phase significantly increased. Conclusion:The low level of GnRH induced by neuroendocrine metabolic disorder lead to dysfunction of hypothalamic-pituitarytesticular axis, resulting in impediment of spermatogenesis, which might result in infertility.%目的:探讨营养性肥胖大鼠弓状核神经肽Y(NPY)、瘦素受体(ob-R)及与生殖相关的促性腺激素释放激素(GnRH)表达变化以及对精子发生的影响.方法:免疫组织化学观察NPY、ob R及GnRH在肥胖模型组下丘脑弓状核的表达情况以及睾丸支持细胞雄激素结合蛋白(ABP)表达变化;流式细胞分析检测睾丸生精细胞周期的改变.并测定血清中瘦素、睾酮、卵泡

  6. Influence of 17β-estradiol and progesterone on GABAergic gene expression in the arcuate nucleus, amygdala and hippocampus of the rhesus macaque

    OpenAIRE

    Noriega, Nigel C.; Eghlidi, Dominique H.; Garyfallou, Vasilios T.; Kohama, Steven G.; Kryger, Sharon G.; Urbanski, Henryk F.

    2009-01-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, and the responsiveness of neurons to GABA can be modulated by sex steroids. To better understand how ovarian steroids influence GABAergic system in the primate brain, we evaluated the expression of genes encoding GABA receptor subunits, glutamic acid decarboxylase (GAD) and a GABA transporter in the brains of female rhesus macaques. Ovariectomized adults were subjected to a hormone replacement paradigm invol...

  7. Microstructure, corrosion resistance and cytocompatibility of Mg-5Y-4Rare Earth-0.5Zr (WE54) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Smola, Bohumil, E-mail: bohumil.smola@mff.cuni.cz [Charles University Prague, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Praha 2 (Czech Republic); Joska, Ludek [Institute of Chemical Technology Prague, Faculty of Chemical Technology, Technicka 5, 166 28 Praha 6 (Czech Republic); Brezina, Vitezslav [University of South Bohemia, Institute of Physical Biology, Zamek 136, 373 33 Nove Hrady (Czech Republic); Stulikova, Ivana [Charles University Prague, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Praha 2 (Czech Republic); Hnilica, Frantisek [Czech Technical University in Prague, Faculty of Mechanical Engineering, Karlovo namesti 13, 121 35 Praha 2 (Czech Republic)

    2012-05-01

    Conventionally cast Mg-5Y-4Rare Earth-0.5Zr alloy (WE54) was solution treated (525 Degree-Sign C/8 h - T4) and one part subsequently aged (200 Degree-Sign C/16 h - T6). Powder from the cast WE54 alloy prepared by gas atomizing was consolidated by extrusion at 250 Degree-Sign C or 400 Degree-Sign C. Dense triangular arrangement of prismatic plates of transient D0{sub 19} and C-base centered orthorhombic phases precipitated in the {alpha}-Mg matrix during the T6 treatment. Both alloys prepared by powder metallurgy exhibit similar microstructure consisting of {approx} 4-6 {mu}m {alpha}-Mg matrix fibers surrounded by particles of the equilibrium Mg{sub 5}(Y, Nd) phase and of oxides. Open circuit potential and polarization resistance in the isotonic saline (9 g/l NaCl/H{sub 2}O) were monitored for 24 h. The corrosion rate of the T4 and T6 treated alloys was about 80 times lower than that of commercial Mg. Both alloys prepared by powder metallurgy exhibited approximately 8 times higher corrosion resistance than commercial Mg. The human MG-63 osteoblast-like cells spreading and division in the extracts (0.28 g in 28 ml of EMEM) of all 4 alloys were monitored by cinemicrography for 24 h. The MG-63 cells proliferate without cytotoxicity in all extracts. - Highlights: Black-Right-Pointing-Pointer T6 treated WE54 alloy exhibit dense triangular arrangement of {beta} Double-Prime and {beta} Prime phase prismatic plates. Black-Right-Pointing-Pointer Microstructure of PM prepared WE54 alloy consists of {alpha}-Mg phase cells surrounded by {beta} phase particles. Black-Right-Pointing-Pointer PM produced WE54 corroded 10 times faster in physiological solution thanT4 and T6 treated WE54. Black-Right-Pointing-Pointer MG63 cell spreading in EMEM extracts of PM prepared WE54 is comparable to that in control EMEM. Black-Right-Pointing-Pointer Cell mitosis is enhanced in PM WE54 extracts compared to the control and extracts of T4 and T6 WE54.

  8. The Comparison of Biological Characteristics between Osteocyte-like Cell MLO-Y4 and Osteoblast-like Cell MC3T3-E1%骨样细胞MLO-Y4与成骨样细胞MC3T3-E1生物学特性的比较

    Institute of Scientific and Technical Information of China (English)

    瓮媛媛; 续惠云; 安龙; 商澎

    2010-01-01

    分别采用倒置显微镜观察法、细胞计数法、RT-PCR法、磷酸对硝基苯酚法(PNPP法)和ELISA法来比较小鼠骨样细胞MLO-Y4与小鼠成骨样细胞MC3T3-E1的细胞形态、增殖、相关基因的表达和分泌功能的差异.结果显示MC3T3-E1细胞呈长梭形,具有少量短的突触;而MLO-Y4细胞呈星状或树枝状且具有很多长的突触.MC3T3-E1细胞的增殖能力强于MLO-Y4细胞,两者的倍增时间分别是18 h和20 h.MC3T3-E1细胞中原癌基因c-fos和骨桥蛋白基因OPN mRNA的表达明显高于MLO-Y4细胞,而骨钙素基因OC mRNA的表达则是MC3T3-E1细胞远低于MLO-Y4细胞,白细胞分化抗原44基因CD44 mRNA在两种细胞中的表达差异不明显.ALP的分泌在MC3T3-E1细胞中高于MLO-Y4细胞,NO的分泌在两种细胞中没有显著性差异,M-CSF在MLO-Y4细胞中的分泌较高.由此可见骨样细胞MLO-Y4与成骨样细胞MC3T3-E1在形态、ALP和M-CSF分泌及c-fos、OPN和OC mRNA表达方面差异明显.

  9. Regulation of gene expression and subcellular protein distribution in MLO-Y4 osteocytic cells by lysophosphatidic acid: Relevance to dendrite outgrowth

    OpenAIRE

    Waters, Katrina M.; Jon M Jacobs; Gritsenko, Marina A.; Karin, Norman J.

    2011-01-01

    Osteoblastic and osteocytic cells are highly responsive to the lipid growth factor lysophosphatidic acid (LPA) but the mechanisms by which LPA alters bone cell functions are largely unknown. A major effect of LPA on osteocytic cells is the stimulation of dendrite membrane outgrowth, a process that we predicted to require changes in gene expression and protein distribution. We employed DNA microarrays for global transcriptional profiling of MLO-Y4 osteocytic cells grown for 6 and 24 hours in t...

  10. PYY(3-36) Induces Fos in the Arcuate Nucleus and in both Catecholaminergic and Non-catecholaminergic Neurons in the Nucleus Tractus Solitarius of Rats

    OpenAIRE

    Blevins, J.E.; Chelikani, P. K.; Haver, A. C.; Reidelberger, R. D.

    2007-01-01

    Peptide YY (3-36) [PYY(3-36)] inhibits feeding in rodents, nonhuman primates and humans, yet the neural circuits underlying this action remain to be determined. Here we assessed whether PYY(3-36) inhibits feeding by activating neurons in forebrain and hindbrain sites containing Y2 receptors and linked to control of food intake, or in hindbrain sites immediately downstream of vagal afferent neurons. Rats received an anorexigenic dose of PYY(3-36), and the number of neurons expressing Fos, an i...

  11. 骨碎补总黄酮对 MLO-Y4细胞增殖、分化、矿化和凋亡影响的探究%Effect of drynaria total flavonoids on the proliferation, differentiation, mineralization, and apoptosis of MLO-Y4 cells

    Institute of Scientific and Technical Information of China (English)

    李洋; 康倩; 荣婵; 舒晓春

    2015-01-01

    Objective To investigate the effect of drynaria total flavonoids on the proliferation, differentiation, mineralization, and apoptosis of MLO-Y4 cells.Methods MLO-Y4 cells were cultured with different concentrations (1, 10, 100 mg/l) of drynaria total flavonoids in vitro, and MC3T3-E1 cells were cultured as a control.The proliferation and differentiation of MLO-Y4 cells were examined using CCK-8 method and the alkaline phosphatase ( ALP) kit, respectively.The mineralization was detected using Alizarin red staining.DAPI staining and flow cytometry were used to reflect the cell apoptosis induced by etoposide.Results The most effective concentration of the drynaria total flavonoids on the proliferation and differentiation of MLO-Y4 cells were 1 mg/l and 10 mg/l, respectively.The concentration of 100mg/l did not stimulate cell proliferation and ALP activity.There was no effect on the formation of calcium nodules with all concentrations.Concentrations of 1 and 10 mg/l inhibited the apoptosis to a certain extent.In contrary, concentration of 100 mg/l played a role in invoking cell apoptosis.Conclusion Certain concentrations of drynaria total flavonoids can promote the proliferation and differentiation of MLO-Y4 cells, and can inhibit the cell apoptosis.%目的:研究骨碎补总黄酮对MLO-Y4类骨细胞系增殖、分化、矿化以及凋亡的影响。方法体外培养MLO-Y4细胞,并以MC3T3-E1细胞作对照细胞,分别用不同质量浓度(1,10,100 mg/l)的骨碎补总黄酮干预,采用CCK-8法以及ALP试剂盒检测MLO-Y4细胞的增殖和分化情况;用茜素红染色法观察矿化结节的形成;DAPI染色和流式细胞术定性和定量反映依托泊苷诱导的细胞凋亡情况。结果1,10 mg/l浓度组的骨碎补总黄酮能促进MLO-Y4细胞的增殖,并且能够一定程度上促进细胞ALP的合成分泌,100 mg/l组不具有促进细胞增殖,ALP合成分泌的作用。三个浓度组均无影响MLO-Y4

  12. 流体剪切力对MLO-Y4骨细胞骨性标志物表达的影响%Effect of Fluid Shear Stress on the expression of bone markers in MLO-Y4 Osteocyte-Like Cells

    Institute of Scientific and Technical Information of China (English)

    崔亮; 杨雁琪; 李小彤; 张丁; 傅民魁

    2007-01-01

    目的 通过研究MLO-Y4骨细胞受流体剪切力作用前后骨性标志物在mRNA水平的表达变化,探讨机械力影响骨组织代谢中骨细胞的作用.方法 以小鼠成骨细胞(MOB)为参照,逆转录聚合酶链式反应(RT-PCR)检测MLO-Y4细胞在体外培养条件下,以及受流体剪切力作用0.5 h,1 h,2 h,4 h,6 h,12 h,24 h后骨性标志物在mRNA水平的表达特征和变化.结果 以MOB为参照,在mRNA水平,体外培养条件下MLO-Y4细胞骨钙素(OCN)、碱性磷酸酶(ALP)和骨桥蛋白(OPN)高表达;破骨细胞分化因子(RANKL)、骨保护因子(OPG)低表达,但RANKL/OPG比值明显高于MOB.受流体剪切力作用后,MLO-Y4细胞ALP、OCN表达降低;RANKL和OPN表达增加;OPG随加力时间也有一定变化.结论 MLO-Y4细胞具有分化终末骨细胞的特点;流体剪切力作用后,RANKL/OPG比值以及ALP、OCN和OPN等骨性标志物的表达发生变化,为其参与机械力信号到生物信号的传导过程提供了间接证据.

  13. Lipoxin Receptors

    Directory of Open Access Journals (Sweden)

    Mario Romano

    2007-01-01

    Full Text Available Lipoxins (LXs represent a class of arachidonic acid (AA metabolites that carry potent immunoregulatory and anti-inflammatory properties, LXA4 and LXB4 being the main components of this series. LXs are generated by cooperation between 5-lipoxygenase (LO and 12- or 15-LO during cell-cell interactions or by single cell types. LX epimers at carbon 15, the 15-epi-LXs, are formed by aspirin-acetylated cyclooxygenase-2 (COX-2 in cooperation with 5-LO. 15-epi-LXA4 is also termed aspirin-triggered LX (ATL. In vivo studies with stable LX and ATL analogs have established that these eicosanoids possess potent anti-inflammatory activities. A LXA4 receptor has been cloned. It belongs to the family of chemotactic receptors and clusters with formyl peptide receptors on chromosome 19. Therefore, it was initially denominated formyl peptide receptor like 1 (FPRL1. This receptor binds with high affinity and stereoselectivity LXA4 and ATL. It also recognizes a variety of peptides, synthetic, endogenously generated, or disease associated, but with lower affinity compared to LXA4. For this reason, this receptor has been renamed ALX. This review summarizes the current knowledge on ALX expression, signaling, and potential pathophysiological role. The involvement of additional recognition sites in LX bioactions is also discussed.

  14. Distribution of Y-receptors in murine lingual epithelia.

    Directory of Open Access Journals (Sweden)

    Maria D Hurtado

    Full Text Available Peptide hormones and their cognate receptors belonging to neuropeptide Y (NPY family mediate diverse biological functions in a number of tissues. Recently, we discovered the presence of the gut satiation peptide YY (PYY in saliva of mice and humans and defined its role in the regulation of food intake and body weight maintenance. Here we report the systematic analysis of expression patterns of all NPY receptors (Rs, Y1R, Y2R, Y4R, and Y5R in lingual epithelia in mice. Using four independent assays, immunohistochemistry, in situ hybridization, immunocytochemistry and RT PCR, we show that the morphologically different layers of the keratinized stratified epithelium of the dorsal layer of the tongue express Y receptors in a very distinctive yet overlapping pattern. In particular, the monolayer of basal progenitor cells expresses both Y1 and Y2 receptors. Y1Rs are present in the parabasal prickle cell layer and the granular layer, while differentiated keratinocytes display abundant Y5Rs. Y4Rs are expressed substantially in the neuronal fibers innervating the lamina propria and mechanoreceptors. Basal epithelial cells positive for Y2Rs respond robustly to PYY(3-36 by increasing intracellular Ca(2+ suggesting their possible functional interaction with salivary PYY. In taste buds of the circumvallate papillae, some taste receptor cells (TRCs express YRs localized primarily at the apical domain, indicative of their potential role in taste perception. Some of the YR-positive TRCs are co-localized with neuronal cell adhesion molecule (NCAM, suggesting that these TRCs may have synaptic contacts with nerve terminals. In summary, we show that all YRs are abundantly expressed in multiple lingual cell types, including epithelial progenitors, keratinocytes, neuronal dendrites and TRCs. These results suggest that these receptors may be involved in the mediation of a wide variety of functions, including proliferation, differentiation, motility, taste perception

  15. Regulation of gene expression and subcellular protein distribution in MLO-Y4 osteocytic cells by lysophosphatidic acid: Relevance to dendrite outgrowth.

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Jacobs, Jon M.; Gritsenko, Marina A.; Karin, Norman J.

    2011-02-26

    Osteoblastic and osteocytic cells are highly responsive to the lipid growth factor lysophosphatidic acid (LPA) but the mechanisms by which LPA alters bone cell functions are largely unknown. A major effect of LPA on osteocytic cells is the stimulation of dendrite membrane outgrowth, a process that we predicted to require changes in gene expression and protein distribution. We employed DNA microarrays for global transcriptional profiling of MLO-Y4 osteocytic cells grown for 6 and 24h in the presence or absence of LPA. We identified 932 transcripts that displayed statistically significant changes in abundance of at least 1.25-fold in response to LPA treatment. Gene ontology (GO) analysis revealed that the regulated gene products were linked to diverse cellular processes, including DNA repair, response to unfolded protein, ossification, protein-RNA complex assembly, and amine biosynthesis. Gene products associated with the regulation of actin microfilament dynamics displayed the most robust expression changes, and LPA-induced dendritogenesis in vitro was blocked by the stress fiber inhibitor cytochalasin D. Mass spectrometry-based proteomic analysis of MLO-Y4 cells revealed significant LPA-induced changes in the abundance of 284 proteins at 6h and 844 proteins at 24h. GO analysis of the proteomic data linked the effects of LPA to cell processes that control of protein distribution and membrane outgrowth, including protein localization, protein complex assembly, Golgi vesicle transport, cytoskeleton-dependent transport, and membrane invagination/endocytosis. Dendrites were isolated from LPA-treated MLO-Y4 cells and subjected to proteomic analysis to quantitatively assess the subcellular distribution of proteins. Sets of 129 and 36 proteins were enriched in the dendrite fraction as compared to whole cells after 6h and 24h of LPA exposure, respectively. Protein markers indicated that membranous organelles were largely excluded from the dendrites. Highly represented among

  16. Effect of ageing treatment on the microstructures and mechanical properties of the extruded Mg-7Y-4Gd-1.5Zn-0.4Zr alloy

    International Nuclear Information System (INIS)

    Microstructures and mechanical properties of Mg-7Y-4Gd-1.5Zn-0.4Zr alloy in the as-cast, as-extruded and peak-aged conditions have been investigated by using optical microscope, scanning electron microscope, X-ray diffraction and transmission electron microscope. The results show that optimal mechanical properties of this alloy are obtained when it was aged at 220 deg. C. The values of the ultimate tensile strength and yield tensile strength are 418 and 320 MPa, respectively. The age hardening response decreases with increasing ageing temperature because the β' phase gets coarse as ageing temperature increases.

  17. INFLUENCIA DE LA QUÍMICA SUPERFICIAL EN LA ENTALPÍA DE INMERSIÓN DE CARBONES ACTIVADOS EN SOLUCIONES ACUOSAS DE FENOL Y 4-NITRO FENOL

    OpenAIRE

    Luisa Fernanda Navarrete; Liliana Giraldo; Juan Carlos Moreno

    2008-01-01

    Se estudian las interacciones de cinco muestras de carbón activado obtenidas a partir de diferentes materiales lignocelulósicos, con diferente grado de activación alrededor de 20%, con soluciones acuosas de fenol y 4-nitro fenol mediante la determinación de las entalpías de inmersión. Se establece que los carbones activados obtenidos son de carácter básico y presentan valores para el punto de carga cero (PZC), que varían entre 7,4...

  18. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells

    International Nuclear Information System (INIS)

    In diabetes mellitus (DM), high glucose (HG) and advanced glycation end products (AGEs) are involved in bone quality deterioration. Osteocytes produce sclerostin and receptor activator of nuclear factor-kB ligand (RANKL) and regulate osteoblast and osteoclast function. However, whether HG or AGEs directly affect osteocytes and regulate sclerostin and RANKL production is unknown. Here, we examined the effects of HG, AGE2, and AGE3 on the expression of sclerostin and RANKL and on apoptosis in osteocyte-like MLO-Y4-A2 cells. Treatment of the cells with 22 mM glucose, 100 μg/mL either AGE2 or AGE3 significantly increased the expression of sclerostin protein and mRNA; however, both AGEs, but not glucose, significantly decreased the expression of RANKL protein and mRNA. Moreover, treatment of the cells with HG, AGE2, or AGE3 for 72 h induced significant apoptosis. These detrimental effects of HG, AGE2, and AGE3 on sclerostin and RANKL expressions and on apoptosis were antagonized by pretreatment of the cells with 10−8 M human parathyroid hormone (PTH)-(1–34). Thus, HG and AGEs likely suppress bone formation by increasing sclerostin expression in osteocytes, whereas AGEs suppress bone resorption by decreasing RANKL expression. Together, these processes may cause low bone turnover in DM. In addition, HG and AGEs may cause cortical bone deterioration by inducing osteocyte apoptosis. PTH may effectively treat these pathological processes and improve osteocyte function. - Highlights: • AGEs are involved in bone quality deterioration in diabetes mellitus (DM). • AGEs increased sclerostin as well as apoptosis, and decreased RANKL in osteocytes. • The effects of AGEs on osteocyte function were antagonized by human PTH-(1–34). • AGEs may cause low bone turnover and cortical porosity in DM. • PTH may be effective in bone quality deterioration by improving osteocyte function

  19. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Ken-ichiro, E-mail: ken1nai@med.shimane-u.ac.jp; Yamaguchi, Toru, E-mail: yamaguch@med.shimane-u.ac.jp; Kanazawa, Ippei, E-mail: ippei.k@med.shimane-u.ac.jp; Sugimoto, Toshitsugu, E-mail: sugimoto@med.shimane-u.ac.jp

    2015-05-29

    In diabetes mellitus (DM), high glucose (HG) and advanced glycation end products (AGEs) are involved in bone quality deterioration. Osteocytes produce sclerostin and receptor activator of nuclear factor-kB ligand (RANKL) and regulate osteoblast and osteoclast function. However, whether HG or AGEs directly affect osteocytes and regulate sclerostin and RANKL production is unknown. Here, we examined the effects of HG, AGE2, and AGE3 on the expression of sclerostin and RANKL and on apoptosis in osteocyte-like MLO-Y4-A2 cells. Treatment of the cells with 22 mM glucose, 100 μg/mL either AGE2 or AGE3 significantly increased the expression of sclerostin protein and mRNA; however, both AGEs, but not glucose, significantly decreased the expression of RANKL protein and mRNA. Moreover, treatment of the cells with HG, AGE2, or AGE3 for 72 h induced significant apoptosis. These detrimental effects of HG, AGE2, and AGE3 on sclerostin and RANKL expressions and on apoptosis were antagonized by pretreatment of the cells with 10{sup −8} M human parathyroid hormone (PTH)-(1–34). Thus, HG and AGEs likely suppress bone formation by increasing sclerostin expression in osteocytes, whereas AGEs suppress bone resorption by decreasing RANKL expression. Together, these processes may cause low bone turnover in DM. In addition, HG and AGEs may cause cortical bone deterioration by inducing osteocyte apoptosis. PTH may effectively treat these pathological processes and improve osteocyte function. - Highlights: • AGEs are involved in bone quality deterioration in diabetes mellitus (DM). • AGEs increased sclerostin as well as apoptosis, and decreased RANKL in osteocytes. • The effects of AGEs on osteocyte function were antagonized by human PTH-(1–34). • AGEs may cause low bone turnover and cortical porosity in DM. • PTH may be effective in bone quality deterioration by improving osteocyte function.

  20. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells.

    Science.gov (United States)

    Tanaka, Ken-ichiro; Yamaguchi, Toru; Kanazawa, Ippei; Sugimoto, Toshitsugu

    2015-05-29

    In diabetes mellitus (DM), high glucose (HG) and advanced glycation end products (AGEs) are involved in bone quality deterioration. Osteocytes produce sclerostin and receptor activator of nuclear factor-кB ligand (RANKL) and regulate osteoblast and osteoclast function. However, whether HG or AGEs directly affect osteocytes and regulate sclerostin and RANKL production is unknown. Here, we examined the effects of HG, AGE2, and AGE3 on the expression of sclerostin and RANKL and on apoptosis in osteocyte-like MLO-Y4-A2 cells. Treatment of the cells with 22 mM glucose, 100 μg/mL either AGE2 or AGE3 significantly increased the expression of sclerostin protein and mRNA; however, both AGEs, but not glucose, significantly decreased the expression of RANKL protein and mRNA. Moreover, treatment of the cells with HG, AGE2, or AGE3 for 72 h induced significant apoptosis. These detrimental effects of HG, AGE2, and AGE3 on sclerostin and RANKL expressions and on apoptosis were antagonized by pretreatment of the cells with 10(-8) M human parathyroid hormone (PTH)-(1-34). Thus, HG and AGEs likely suppress bone formation by increasing sclerostin expression in osteocytes, whereas AGEs suppress bone resorption by decreasing RANKL expression. Together, these processes may cause low bone turnover in DM. In addition, HG and AGEs may cause cortical bone deterioration by inducing osteocyte apoptosis. PTH may effectively treat these pathological processes and improve osteocyte function. PMID:25721666

  1. SNOWMASS WHITE PAPER - SLHC Endcap 1.4<y<4 Hadron Optical Calorimetry Upgrades in CMS with Applications to NLC/T-LEP, Intensity Frontier, and Beyond

    CERN Document Server

    Bilki, Burak; Winn, David R; Yetkin, Taylan

    2013-01-01

    Radiation damage in the plastic scintillator and/or readout WLS fibers in the HE endcap calorimeter 1.4<y<4 in the CMS experiment at LHC and SLHC will require remediation after 2018. We describe one alternative using the existing brass absorber in the Endcap calorimeter, to replace the plastic scintillator tiles with BaF2 tiles, or quartz tiles coated with thin(1-5 micron) films of radiation-hard pTerphenyl(pTP) or the fast phosphor ZnO:Ga. These tiles would be read-out by easily replaceable arrays of straight, parallel WLS fibers coupled to clear plastic-cladded quartz fibers of proven radiation resistance. We describe a second alternative with a new absorber matrix extending to 1.4<y<4 in a novel Analog Particle Flow Cerenkov Compensated Calorimeter, using a dual readout of quartz tiles and scintillating (plastic, BaF2, or pTP/ ZnO:Ga thin film coated quartz, or liquid scintillator) tiles, also using easily replaceable arrays of parallel WLS fibers coupled to clear quartz transmitting fibers for...

  2. 周期性压应力作用下MLO-Y4细胞基因差异表达的初步研究

    Institute of Scientific and Technical Information of China (English)

    何陨; 朱智敏; 陈文川; 王航; 方园; 李磊

    2012-01-01

    目的:本研究对骨细胞实施应力刺激,进行基因表达谱检测,从基因转录组水平阐明MLO-Y4细胞的力学敏感基因,考察加载应力的力值、频率、作用时间对力学敏感基因表达的影响以及三者之间的相互作用。方法:本实验运用小鼠全基因组寡核苷酸芯片、qRT-PCR等方法,筛选出CCS(周期性压应力)作用下MLO-Y4细胞的差异表达基因,并进行验证,考察IL-6的mRNA表达变化与应力力值、频率、作用时间的关系。结果:1.芯片和qRT-PCR检测出的基因表达率具有良好的相关性,其皮尔森线性相关值R=0.903。2.最具统计学意义的GO Terms是“趋化因子活性”;出现频率最高及最具统计学意义的KEGG通路是“MAPK”和“细胞因子.细胞因子受体相互作用”。3.在CCS作用下MLO—Y4细胞IL-6mRNA的表达受压应力力值、频率和作用时间的影响:当三个变量中的两个一定时,IL-6mRNA的表达随着第三个变量的增加而增加。结论:1.CCS作用下MLO-Y4细胞差异表达基因(以IL-6为代表)以表达上调为主,且与破骨细胞和骨吸收密切相关。2.在CCS作用下.MLO-Y4细胞IL-6mRNA表达受压应力力值、频率和作用时间的共同影响。

  3. Glutamate receptors

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Geballe, Matthew T; Snyder, James P;

    2006-01-01

    Fast excitatory synaptic transmission in the CNS relies almost entirely on the neurotransmitter glutamate and its family of ion channel receptors. An appreciation of the coupling between agonist binding and channel opening has advanced rapidly during the past five years, largely as a result of ne...

  4. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette;

    2003-01-01

    In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced...

  5. Leptin receptor-positive and leptin receptor-negative proopiomelanocortin neurons innervate an identical set of brain structures.

    Science.gov (United States)

    Lima, Leandro B; Metzger, Martin; Furigo, Isadora C; Donato, J

    2016-09-01

    Neurons that express the prohormone proopiomelanocortin (POMC) in the arcuate hypothalamic nucleus (Arc) are engaged in the regulation of energy balance and glucose homeostasis. Additionally, POMC neurons are considered key first-order cells regulated by leptin. Interestingly, in the Arc, POMC cells that express the leptin receptor (POMC/LepR+ cells) are found side by side with POMC cells not directly responsive to leptin (POMC/LepR- cells). However, it remains unknown whether these distinct populations innervate different target regions. Therefore, the objective of the present study was to compare the projections of POMC/LepR+ and POMC/LepR- neurons. Using genetically modified LepR-reporter mice to identify leptin receptor-expressing cells and immunohistochemistry to stain POMC-derived peptides (α-MSH or β-endorphin) we confirmed that approximately 80% of Arc β-endorphin-positive neurons co-expressed leptin receptors. POMC/LepR+ and POMC/LepR- axons were intermingled in all of their target regions. As revealed by confocal microscopy, we found an elevated degree of co-localization between α-MSH+ axons and the reporter protein (tdTomato) in all brain regions analyzed, with co-localization coefficients ranging from 0.889 to 0.701. Thus, these two populations of POMC neurons seem to project to the same set of brain structures, although one of the two subtypes of POMC axons was sometimes found to be more abundant than the other in distinct subregions of the same nucleus. Therefore, POMC/LepR+ and POMC/LepR- cells may target separate neuronal populations and consequently activate distinct neuronal circuits within some target nuclei. These findings contribute to unravel the neuronal circuits involved in the regulation of energy balance and glucose homeostasis. PMID:27321158

  6. Targeting central melanocortin receptors: a promising novel approach for treating alcohol abuse disorders

    Directory of Open Access Journals (Sweden)

    Jeffrey eOlney

    2014-06-01

    Full Text Available The melanocortin (MC peptides are produced centrally by propiomelanocortin (POMC neurons within the arcuate nucleus of the hypothalamus and act through five seven-transmembrane G-protein coupled melanocortin receptor (MCR subtypes. The MC3R and MC4R subtypes, the most abundant central MCRs, are widely expressed in brain regions known to modulate neurobiological responses to ethanol, including regions of the hypothalamus and extended amygdala. Agouti-related protein (AgRP, also produced in the arcuate nucleus, is secreted in terminals expressing MCRs and functions as an endogenous MCR antagonist. This review highlights recent genetic and pharmacological findings that have implicated roles for the MC and AgRP systems in modulating ethanol consumption. Ethanol consumption is associated with significant alterations in the expression levels of various MC peptides/protein, which suggests that ethanol-induced perturbations of MC/AgRP signaling may modulate excessive ethanol intake. Consistently, MCR agonists decrease, and AgRP increases, ethanol consumption in mice. MCR agonists fail to blunt ethanol intake in mutant mice lacking the MC4R, suggesting that the protective effects of MCR agonists are modulated by the MC4R. Interestingly, recent evidence reveals that MCR agonists are more effective at blunting binge-like ethanol intake in mutant mice lacking the MC3R, suggesting that the MC3R has opposing effects on the MC4R. Finally, mutant mice lacking AgRP exhibit blunted voluntary and binge-like ethanol drinking, consistent with pharmacological studies. Collectively, these preclinical observations provide compelling evidence that compounds that target the MC system may provide therapeutic value for treating alcohol abuse disorders and that the utilization of currently available MC-targeting compounds- such as those being used to treat eating disorders- may be used as effective treatments to this end.

  7. Nd(III) and Yb(III) ions incorporated in Y4Al2O9 obtained by sol-gel method: synthesis, structure, crystals and luminescence

    International Nuclear Information System (INIS)

    The nanocrystalline powders of Y4Al2O9 (YAM) pure and doped by Nd, Yb and codoped by Nd and Yb were obtained via modified sol-gel method. These powders were characterized by X-ray diffraction method, scanning electron microscopy and high resolution scanning electron microscopy, luminescence spectroscopy and differential thermal analysis (DTA). We obtained single phase powders of crystalline structure with average size 70 nm exhibiting interesting luminescent properties. Efficient non-radiative energy transfer between Nd and Yb was found. DTA confirmed the phase transition at about 1400 C. From these nanocrystalline powders, the crystals YAM:Yb, YAM:Yb,Nd were grown by micro-pulling down technique. They were cracking during cooling owing to the phase transition. Luminescent properties of YAM:Nd,Yb crystals were identical with properties of corresponding nanopowders within experimental incertitude. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Simvastatin rescues homocysteine-induced apoptosis of osteocytic MLO-Y4 cells by decreasing the expressions of NADPH oxidase 1 and 2.

    Science.gov (United States)

    Takeno, Ayumu; Kanazawa, Ippei; Tanaka, Ken-Ichiro; Notsu, Masakazu; Yokomoto-Umakoshi, Maki; Sugimoto, Toshitsugu

    2016-04-25

    Clinical studies have shown that hyperhomocysteinemia is associated with bone fragility. Homocysteine (Hcy) induces apoptosis of osteoblastic cell lineage by increasing oxidative stress, which may contribute to Hcy-induced bone fragility. Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, ameliorate oxidative stress by regulating oxidant and anti-oxidant enzymes. However, the effects of statins on Hcy-induced apoptosis of osteocytes are unknown. This study was thus aimed to investigate whether or not statins prevent Hcy-induced apoptosis of osteocytic MLO-Y4 cells and regulate NADPH oxidase (Nox) expression. TUNEL staining showed that 5 mM Hcy induced apoptosis of MLO-Y4 cells, and that co-incubation of 10(-9) or 10(-8) M simvastatin significantly suppressed the apoptotic effect. Moreover, we confirmed the beneficial effect of simvastatin against Hcy's apoptotic effect by using a DNA fragment ELISA assay. However, TUNEL staining showed no significant effects of pravastatin, a hydrophilic statin, on the Hcy-induced apoptosis. Real-time PCR showed that Hcy increased the mRNA expressions of Nox1 and Nox2, whereas simvastatin inhibited the stimulation of Nox1 and Nox2 expressions by Hcy. In contrast, neither Hcy nor simvastatin had any effect on Nox4 expression. These findings indicate that simvastatin prevents the detrimental effects of Hcy on the apoptosis of osteocytes by regulating the expressions of Nox1 and Nox2, suggesting that statins may be beneficial for preventing Hcy-induced osteocyte apoptosis and the resulting bone fragility. PMID:26842590

  9. Effects of estrogen on neuron structure and expression of estrogen receptor in hypotha-lamus%雌激素对下丘脑神经元结构及雌激素受体表达水平的影响

    Institute of Scientific and Technical Information of China (English)

    常青; 应大君; 史常旭

    2001-01-01

    Objective To explore the changes of ER-IR and the ultra structure in the medial preoptic area, arcuate nuclei of early-aged mice treated with estrogen. Methods Immunohistochemistry assay and electron microscopy were used in this study. Results ER-IR in the medical preoptic area and arcuate nuclei were greatly reduced after estrogen was given. The cell nuclei of neurons in these areas migrated towards the side, the nuclear membrane became folded, synapse became richer, and the number of synapse vesicle increased. Conclusion Estrogen can affect the neuron structure and function through the change of estrogen receptor expression in the medial preoptic area and arcuate nuclei of the hypothalamus cardiovascular center.%目的 观察应用雌激素后老年前期雌性大鼠视前内侧区、弓状核雌激素受体的变化及神经元超微结构的改变。方法 采用免疫组织化学及电镜观察。结果 应用雌激素后视前内侧区、弓状核雌激素受体免疫反应(ER-IR)的表达明显下降,神经元核仁边移、核膜皱折,突触丰富、突触内分泌小泡增多。结论 雌激素可调节下丘脑心血管中枢视前内侧区、弓状核雌激素受体的变化影响神经元的结构及功能。

  10. 二维回转培养对MLO-Y4骨样细胞PKD2表达定位及胞内钙信号的影响%The Effects of 2D-Clinorotation on Expression and Location of PKD2 Protein and the Intracellular Ca2+Concentration of MLO-Y4

    Institute of Scientific and Technical Information of China (English)

    关莹; 续惠云; 瓮媛媛; 商澎

    2014-01-01

    目的:PKD2(polycystin2,多囊肾病蛋白2)能够在细胞膜上形成无选择性的阳离子通道,在肾上皮细胞中PKD2与初级纤毛共定位,通过改变胞内的钙信号过程参与细胞对力学刺激的响应.本实验通过二维回转培养来模拟失重效应,旨在探讨二维回转培养对MLO-Y4骨样细胞PKD2表达定位,及胞内钙信号的影响.初步了解PKD2在小鼠骨样细胞MLO-Y4响应力学刺激过程中起的作用.方法:采用二维回转培养骨样细胞MLO-Y4,用RT-PCR和western blotting检测PKD2的表达,用荧光共聚焦显微镜检测细胞中PKD2与初级纤毛的定位及细胞内钙离子含量.结果:与对照组相比,在二维回转培养后,骨样细胞MLO-Y4的PKD2表达在mRNA和蛋白水平都有明显的下降,PKD2、PKD1 (polycystin1,多囊肾病蛋白1)和乙酰化的α-tubulin共定位,同时二维回转培养降低了细胞内钙离子含量.结论:在二维回转培养下,PKD2可能通过调节自身表达来改变细胞膜上PKD通道的数目和开放情况来影响细胞内钙离子含量,参与骨细胞对细胞外应力的感受过程,其详细机制还有待进一步实验研究.这将对探讨骨细胞响应力学刺激的具体机制提供重要的理论依据.

  11. Purinergic receptors have different effects in rat exocrine pancreas. Calcium signals monitored by fura-2 using confocal microscopy

    DEFF Research Database (Denmark)

    Novak, Ivana; Nitschke, Roland; Amstrup, Jan

    microscope. Rat acini and ducts were loaded with various Ca2+ sensing fluorophores (Fluo-4, Fura-Red, Calcium Green-1, Indo-1 and Fura-2). Only Fura-2 loaded evenly into acinar clusters and ducts and UV laser excitation at 351 and 364 nm gave signals showing opposite sensitivity to Ca2+ concentration changes...... pancreas suspensions revealed transcripts for P2Y(2), P2Y(4) and P2X(1), P2X(4) receptors. The low number of functional P2 receptors in acini might be related to the fact that they release ATP. Thereby acini would avoid autocrine stimulation and initiation of autodigestive processes, such as occurs in...

  12. ATP and UTP responses of cultured rat aortic smooth muscle cells revisited: dominance of P2Y2 receptors

    OpenAIRE

    Kumari, Rajendra; Goh, Gareth; Ng, Leong L; Boarder, Michael R.

    2003-01-01

    It has previously been shown that ATP and UTP stimulate P2Y receptors in vascular smooth muscle cells (VSMCs), but the nature of these receptors, in particular the contribution of P2Y2 and P2Y4 subtypes, has not been firmly established. Here we undertake a further pharmacological analysis of [3H]inositol polyphosphate responses to nucleotides in cultured rat VSMCs.ATP generated a response that was partial compared to UTP, as reported earlier.In the presence of a creatine phosphokinase (CPK) s...

  13. INFLUENCIA DE LA QUÍMICA SUPERFICIAL EN LA ENTALPÍA DE INMERSIÓN DE CARBONES ACTIVADOS EN SOLUCIONES ACUOSAS DE FENOL Y 4-NITRO FENOL

    Directory of Open Access Journals (Sweden)

    Luisa Fernanda Navarrete

    2008-04-01

    Full Text Available Se estudian las interacciones de cinco muestras de carbón activado obtenidas a partir de diferentes materiales lignocelulósicos, con diferente grado de activación alrededor de 20%, con soluciones acuosas de fenol y 4-nitro fenol mediante la determinación de las entalpías de inmersión. Se establece que los carbones activados obtenidos son de carácter básico y presentan valores para el punto de carga cero (PZC, que varían entre 7,4 y 9,7, y contenidos de basicidad total mayores en todos los casos que los valores obtenidos para la acidez total. Se determina la entalpía de inmersión de los carbones activados en soluciones de NaOH y HCl con valores mayores para la entalpía de inmersión en HCl que se encuentran entre 32,6 y 68,3 Jg-1. Las entalpías de inmersión en solución de fenol se hallan entre 7,6 y 13,9 Jg-1, y para el caso del 4-nitro fenol se encuentran entre 12,7 y 20,5 Jg-1; con valores mayores para todas las muestras para la inmersión en el segundo compuesto.

  14. Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties

    International Nuclear Information System (INIS)

    In this study, single line scans at different laser powers were carried out using selective laser meting (SLM) equipment on a pre-fabricated porous Al86Ni6Y4.5Co2La1.5 metallic glass (MG) preform. The densification, microstructural evolution, phase transformation and mechanical properties of the scan tracks were systematically investigated. It was found that the morphology of the scan track was influenced by the energy distribution of the laser beam and the heat transfer competition between convection and conduction in the melt pool. Due to the Gaussian distribution of laser energy and heat transfer process, different regions of the scan track experienced different thermal histories, resulting in a gradient microstructure and mechanical properties. Higher laser powers caused higher thermal stresses, which led to the formation of cracks; while low power reduced the strength of the laser track, also inducing cracking. The thermal fluctuation at high laser power produced an inhomogeneous chemical distribution which gave rise to severe crystallization of the MG, despite the high cooling rate. The crystallization occurred both within the heat affected zone (HAZ) and at the edge of melt pool. However, by choosing an appropriate laser power crack-free scan tracks could be produced with no crystallization. This work provides the necessary fundamental understanding that will lead to the fabrication of large-size, crack-free MG with high density, controllable microstructure and mechanical properties using SLM

  15. Effect of simulated microgravity on nitric oxide synthase activity of osteocyte-like cell line MLO-Y4 in response to fluid shear stress

    Science.gov (United States)

    Sun, Lian-Wen; Yang, Xiao; Fan, Yu-Bo

    It is well known that microgravity could induce bone loss. However, the mechanism remains poorly understood. Osteocytes are extremely sensitive to fluid shear stress, even more than osteobleasts. The effect of simulated microgravity on osteocytes in response to fluid shear was investigated in this study in order to see if the mechanosensibility of osteocytes changed under simulated microgravity. The osteocyte-like cell line, MLO-Y4, was cultured and divided into four groups, including control (CON), control and shear (CONS), rotary (RT), rotary and shear (RTS). In RT and RTS, the cells were cultured in the rotary cell culture system to simulate microgravity condition. After 5 days, the cells in RTS and CONS were subjected to flow shear for 15 min. Then nitric oxide synthase (NOS) activity in the cells was measured using assay kit. The results showed that NOS activity in respond to fluid shear decreased significantly in RTS compared with CONS. In addition, there was significant difference in NOS activity between CONS and CON while no significant difference between RTS and RT. These indicates that the mechanosensibility of osteocytes decreased under simulated microgravity and this maybe the partly causes of the poor effect of exercise to counter microgravity-induced-bone loss. However, further research need to be done to support this finding.

  16. Effect of simulated microgravity and centrifugation on nitric oxide synthase activity of osteocyte-like cell line MLO-Y4

    Science.gov (United States)

    Sun, Lian-Wen; Yang, Xiao; Fan, Yu-Bo

    Bone is a highly mechanosensitive tissue, which can adapt functionally to varying levels of mechanical loads throughout a lifetime. Osteocytes are thought to be the most mechanically sensitive bone cell population. In order to understand the mechanism of microgravity-induced bone loss, it's very important to research the behavior of osteocytes under microgravity. In this study, rotary cell culture system was used to simulate microgravity. Nitric oxide synthase (NOS) activity in osteocyte-like cell MLO-Y4 was investigated under simulated microgravity. And the effect of centrifugation on NOS activity in sedentary and rotary culture cell was also investi-gated. The cultured cells were divided into four groups, including sedentary control (CON), sedentary control and centrifugation (CONC), rotary culture (RT), rotary and centrifugation (RTC). In CONC and RTC, NOS activity was determined after centrifugation (1100g 5min). The results showed NOS activity decreased significantly in RT compared with CON. However, this difference disappeared after centrifugation. On the other hand, NOS activity increased significant in RTC compared with RT while there was no difference between CON and CONC. These results indicate the normal centrifugation could counter the effect of simulated micro-gravity on NOS activity. However, it has no effect on the cells cultured under 1G. In general, osteocytes under simulated microgravity are more sensitive to centrifugation than that under 1G.

  17. Escala de medida sobre el grado de satisfacción habitacional del núcleo familiar estratos socio - económicos 3 y 4

    Directory of Open Access Journals (Sweden)

    ANDREA VÉLEZ PEREIRA

    2006-01-01

    Full Text Available La investigación de mercados no está restringida a ningún tipo específico de problema. El propósito de ésta es proporcionar información valiosa, actualizada, confiable y válida, que permita tomar las mejores decisiones al enfrentar un problema o situación especifica. En este estudio se utilizan técnicas propias de la investigación de mercados con el objetivo de identificar un proceso metodológico que permita conocer las preferencias de los clientes demandantes de vivienda y de esta forma, proporcionar una herramienta que resulte útil para el sector de la construcción ya que le brinda información valiosa para la toma de decisiones acertadas a la hora de ofrecer proyectos que logren satisfacer las necesidades de los clientes. En él se especifican y definen todos aquellos conceptos claves que hace posible el entendimiento del manual por parte del lector. Además, se ilustran algunas aplicaciones de la escala de medida del grado de satisfacción habitacional, construida por las autoras del trabajo, para los núcleos familiares en estratos socio – económicos 3 y 4 en el Valle de Aburrá, con el fin de familiarizar al usuario con la forma correcta de aplicar la escala de medida.

  18. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward.

    Science.gov (United States)

    Pandit, Rahul; Omrani, Azar; Luijendijk, Mieneke C M; de Vrind, Véronne A J; Van Rozen, Andrea J; Ophuis, Ralph J A Oude; Garner, Keith; Kallo, Imre; Ghanem, Alexander; Liposits, Zsolt; Conzelmann, Karl-Klaus; Vanderschuren, Louk J M J; la Fleur, Susanne E; Adan, Roger A H

    2016-08-01

    The central melanocortin (MC) system mediates its effects on food intake via MC3 (MC3R) and MC4 receptors (MC4R). Although the role of MC4R in meal size determination, satiation, food preference, and motivation is well established, the involvement of MC3R in the modulation of food intake has been less explored. Here, we investigated the role of MC3R on the incentive motivation for food, which is a crucial component of feeding behavior. Dopaminergic neurons within the ventral tegmental area (VTA) have a crucial role in the motivation for food. We here report that MC3Rs are expressed on VTA dopaminergic neurons and that pro-opiomelanocortinergic (POMC) neurons in the arcuate nucleus of the hypothalamus (Arc) innervate these VTA dopaminergic neurons. Our findings show that intracerebroventricular or intra-VTA infusion of the selective MC3R agonist γMSH increases responding for sucrose under a progressive ratio schedule of reinforcement, but not free sucrose consumption in rats. Furthermore, ex vivo electrophysiological recordings show increased VTA dopaminergic neuronal activity upon γMSH application. Consistent with a dopamine-mediated effect of γMSH, the increased motivation for sucrose after intra-VTA infusion of γMSH was blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. Taken together, we demonstrate an Arc POMC projection onto VTA dopaminergic neurons that modulates motivation for palatable food via activation of MC3R signaling. PMID:26852738

  19. A two-dimensional yttrium phthalate coordination polymer, [Y4(H2O)2(C8H4O4)6]∞, exhibiting different coordination geometries

    Indian Academy of Sciences (India)

    A Thirumurugan; Srinivasan Natarajan

    2003-10-01

    A hydrothermal reaction of a mixture of Y(NO3)3, 1,2-benzenedicarboxylic acid (1,2-BDC) and NaOH gives rise to a new yttrium phthalate coordination polymer, [Y4(H2O)2(C8H4O4)6]∞, I. The Y ions in I are present in four different coordination environments with respect to the oxygen atoms (CN6 = octahedral, CN7 = pentagonal bipyramid, CN8 = dodecahedron and CN9 =capped square antiprism). The oxygen atoms of the 1,2-BDC are fully deprotonated, and show variations in their connectivity with Y atoms. The Y atoms themselves are connected through their vertices forming infinite Y-O-Y one-dimensional chains. The Y-O-Y chains are cross-linked by the 1,2-BDC anions forming a corrugated layer structure. The layers are supported by favourable $\\ldots$ interactions between the benzene rings of the 1,2-BDC anions. The variations in the coordination environment of the Y atoms and the presence of Y-O-Y interactions along with the favourable $\\ldots$ interactions between the benzene rings from different layers are noteworthy structural features. Crystal data: triclinic, space group = -1 (no. 2), = 12.6669 (2), = 13.8538 (2), = 16.0289 Å, = 75.20 (1), = 69.012 (1), = 65.529 (1)°, = 2371.28 (7) Å3, calc = 1.922 g cm-1, (MoK) = 4.943 mm-1. A total of 9745 reflections collected and merged to give 6566 unique reflections (int = 0.0292) of which 5252 with > 2() were considered to be observed. Final 2 = 0.0339, 2 = 0.0724 and =1.036 were obtained for 704 parameters.

  20. 胃和弓状核中obestatin在摄食行为调节中的作用%The roles of obestatin in stomach and hypothalamic arcuate nucleus of mice on the regulation of feeding behaviour

    Institute of Scientific and Technical Information of China (English)

    康冬梅; 赵翠平; 姚慧; 黄大可; 叶山东

    2012-01-01

    Objective To study the effects of change of feeding behaviour (including fasting and refeeding ) on the expression of obestatin in stomach and hypothalamic arcuate nucleus ( ARC ) of mice, to investigate the roles of obestatin on the regulation of food intake . Methods Fifty Kunming white male mice were divided into 5 groups in this study.Group A: fasted for 0 h, Group B: fasted for 24 h, Group C : fasted for 48 h, Group D: fasted for 72 h, Group E: refed for 4 h after 72 h fasted. The changes of the body weight in each group on different times of fast -ing and refeeding were obeserved.The expression of obestatin in the stomach and ARC were studied by the tech -nique of immunohistochemistry. Results Compared with Group A, the body weight was significantly reduced in Group B, C and D, and increased in Group E ( P < 0. 05 ). The expression of obestatin in the stomach and ARC in Group B showed no significant difference with Group E . Expressions of obestatin in the ARC and stomach correlated positively with the died body weights , and there were significant negative correlations with the variation of body weight Conclusion Obestatin expressions are change in the stomach and ARC after fasting and refeeding , which shows that obestatin may participate in the regulation of feeding behavior .%目的 观察摄食行为改变对小鼠胃和下丘脑弓状核中obestatin表达的影响,探讨obestatin在摄食行为调节中的作用.方法 50只雄性昆明种小鼠随机分为A、B、C、D、E 5组,分别为饥饿0、24、48、72 h及饥饿72 h后再进食4 h.分别于饥饿不同时段和饥饿后再进食时观察各组小鼠体重的变化;采用免疫组化法检测各组小鼠胃组织和弓状核中obestatin表达水平的变化.结果 与A组相比,B、C、D组小鼠体重均明显降低(P<0.01),E组小鼠体重增加(P<0.05).与A组比较,余4组胃和弓状核obestatin表达均明显降低(P<0.05),B、C、D、E组差异无统计学意义.线性

  1. Separate domains of the insulin receptor contain sites of autophosphorylation and tyrosine kinase activity

    International Nuclear Information System (INIS)

    The authors have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the β-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 220C with low concentrations of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the β-subunit was carried out before and after digestion, and the [32P]phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the β-subunit (αPep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the [32P]phosphate originally found in the β-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. To determined the structural requirements for kinase activity, the insulin receptor was subjected to tryptic digestion for 30 s-30 min, such that the receptor was composed exclusively of 85- and 70-kDa fragments of the β-subunit. The 85-kDa fragment exhibited autophosphorylation at pY1, pY1a, and pY4. Both the 85- and 70-kDa fragments phosphorylated tyrosine residues in a synthetic decapeptide that has the sequence of the C-terminal domain of the β-subunit of human insulin rare in the receptor

  2. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors

    Science.gov (United States)

    Mamedova, Liaman; Capra, Valérie; Accomazzo, Maria Rosa; Gao, Zhan-Guo; Ferrario, Silvia; Fumagalli, Marta; Abbracchio, Maria P.; Rovati, G. Enrico; Jacobson, Kenneth A.

    2016-01-01

    Montelukast and pranlukast are orally active leukotriene receptor antagonists selective for the CysLT1 receptor. Conversely, the hP2Y1,2,4,6,11,12,13,14 receptors represent a large family of GPCRs responding to either adenine or uracil nucleotides, or to sugar-nucleotides. Montelukast and pranlukast were found to inhibit nucleotide-induced calcium mobilization in a human monocyte-macrophage like cell line, DMSO-differentiated U937 (dU937). Montelukast and pranlukast inhibited the effects of UTP with IC50 values of 7.7 and 4.3 μM, respectively, and inhibited the effects of UDP with IC50 values of 4.5 and 1.6 μM, respectively, in an insurmountable manner. Furthermore, ligand binding studies using [3H]LTD4 excluded the possibility of orthosteric nucleotide binding to the CysLT1 receptor. dU937 cells were shown to express P2Y2, P2Y4, P2Y6, P2Y11, P2Y13 and P2Y14 receptors. Therefore, these antagonists were studied functionally in a heterologous expression system for the human P2Y receptors. In 1321N1 astrocytoma cells stably expressing human P2Y1,2,4,6 receptors, CysLT1 antagonists inhibited both the P2Y agonist-induced activation of phospholipase C and intracellular Ca2+ mobilization. IC50 values at P2Y1 and P2Y6 receptors were astrocytoma cells expressing an endogenous M3 muscarinic receptor, 10 μM montelukast had no effect on the carbachol-induced rise in intracellular Ca2+. These data demonstrated that CysLT1 receptor antagonists interact functionally with signaling pathways of P2Y receptors, and this should foster the study of possible implications for the clinical use of these compounds in asthma or in other inflammatory conditions. PMID:16280122

  3. The androgen receptor and estrogen receptor

    OpenAIRE

    Oosterkamp, H.M.; Bernards, R.A.

    2002-01-01

    The androgen receptor (AR) and the estrogen receptors (ER) are members of the nuclear receptor (NR) family. These NRs are distinguished from the other transcription factors by their ability to control gene expression upon ligand binding (steroids, retinoids, thyroid hormone, vitamin D, fatty acids, and other small hydrophobic molecules). Their combined effects are vast, influencing virtually every fundamental biological process, from development and homeostasis, to proliferation and different...

  4. Functional Studies of the Neuropeptide Y System : Receptor-Ligand Interaction and Regulation of Food Intake

    OpenAIRE

    Åkerberg, Helena

    2009-01-01

    The members of the mammalian neuropeptide Y family, i.e. the peptides neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP), are all involved in regulation of food intake. In human and most other mammals they act via receptors Y1, Y2, Y4 and Y5. NPY is released in the hypothalamus and is one of the strongest appetite-stimulating neurotransmitters whereas PP and PYY are secreted from gut endocrine cells after meals and function as appetite-reducing hormones. This thesis descri...

  5. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    Directory of Open Access Journals (Sweden)

    Arpad eDobolyi

    2012-10-01

    Full Text Available The G-protein coupled parathyroid hormone 2 receptor (PTH2R is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand,tuberoinfundibular peptide of 39 residues (TIP39, is synthesized in only 2 brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control

  6. Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death

    Directory of Open Access Journals (Sweden)

    Thundyil John

    2010-08-01

    Full Text Available Abstract Background- Adiponectin is a hormone produced in and released from adipose cells, which has been shown to have anti-diabetic and anti-inflammatory actions in peripheral cells. Two cell surface adiponectin receptors (ADRs mediate the majority of the known biological actions of adiponectin. Thus far, ADR expression in the brain has been demonstrated in the arcuate and the paraventricular nucleus of hypothalamus, where its activation affects food intake. Recent findings suggest that levels of circulating adiponectin increase after an ischemic stroke, but the role of adiponectin receptor activation in stroke pathogenesis and its functional outcome is unclear. Methods- Ischemic stroke was induced in C57BL/6 mice by middle cerebral artery occlusion (MCAO for 1 h, followed by reperfusion. Primary cortical neuronal cultures were established from individual embryonic neocortex. For glucose deprivation (GD, cultured neurons were incubated in glucose-free Locke's medium for 6, 12 or 24 h. For combined oxygen and glucose deprivation (OGD, neurons were incubated in glucose-free Locke's medium in an oxygen-free chamber with 95% N2/5% CO2 atmosphere for either 3, 6, 9, 12 or 24 h. Primary neurons and brain tissues were analysed for Adiponectin and ADRs using reverse transcriptase polymerase chain reaction (RT-PCR, immunoblot and immunochemistry methods. Results- Cortical neurons express ADR1 and ADR2, and that the levels of ADR1 are increased in neurons in response to in vitro or in vivo ischemic conditions. Neurons treated with either globular or trimeric adiponectin exhibited increased vulnerability to oxygen and glucose deprivation which was associated with increased activation of a pro-apoptotic signaling cascade involving p38 mitogen-activated protein kinase (p38MAPK and AMP-activated protein kinase (AMPK. Conclusions- This study reveals a novel pathogenic role for adiponectin and adiponectin receptor activation in ischemic stroke. We show that

  7. Serotonin acts as a novel regulator of interleukin-6 secretion in osteocytes through the activation of the 5-HT(2B) receptor and the ERK1/2 signalling pathway.

    Science.gov (United States)

    Li, Xianxian; Ma, Yuanyuan; Wu, Xiangnan; Hao, Zhichao; Yin, Jian; Shen, Jiefei; Li, Xiaoyu; Zhang, Ping; Wang, Hang

    2013-11-29

    Interleukin-6 (IL-6) is a potent stimulator of osteoclastic bone resorption. Osteocyte secretion of IL-6 plays an important role in bone metabolism. Serotonin (5-HT) has recently been reported to regulate bone metabolism. The aim of this study was to evaluate the effect of serotonin on osteocyte expression of IL-6. The requirement for the 5-HT receptor(s) and the role of the extracellular signal-regulated kinase 1/2 (ERK1/2) in serotonin-induced IL-6 synthesis were examined. In this study, real-time PCR and ELISA were used to analyse IL-6 gene and protein expression in serotonin-stimulated MLO-Y4 cells. ERK1/2 pathway activation was determined by Western blot. We found that serotonin significantly activated the ERK1/2 pathway and induced IL-6 mRNA expression and protein synthesis in cultured MLO-Y4 cells. However, these effects were abolished by pre-treatment of MLO-Y4 cells with a 5-HT2B receptor antagonist, RS127445 or the ERK1/2 inhibitor, PD98059. Our results indicate that serotonin stimulates osteocyte secretion of IL-6 and that this effect is associated with activation of 5-HT2B receptor and the ERK1/2 pathway. These findings provide support for a role of serotonin in bone metabolism by indicating serotonin regulates bone remodelling by mediating an inflammatory cytokine. PMID:24211588

  8. Activation of β–catenin Signaling in MLO-Y4 Osteocytic Cells versus 2T3 Osteoblastic Cells by Fluid Flow Shear Stress and PGE2: Implications for the Study of Mechanosensation in Bone

    OpenAIRE

    Kamel, Mohamed A; Picconi, Jason L; Lara-Castillo, Nuria; Johnson, Mark L.

    2010-01-01

    The osteocyte is hypothesized to be the mechanosensory cell in bone. However, osteoblastic cell models have been most commonly used to investigate mechanisms of mechanosensation in bone. Therefore, we sought to determine if differences might exist between osteocytic and osteoblastic cell models relative to the activation of β-catenin signaling in MLO-Y4 osteocytic, 2T3 osteoblastic and primary neonatal calvarial cells (NCCs) in response to pulsatile fluid flow shear stress (PFFSS). β–catenin ...

  9. ( Cu50Zr42Al8)96Y4块状非晶的变温晶化行为%Effects of Temperature on Crystallization Behavior of Bulk( Cu50Zr42Al8 ) 96Y4Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    屠鹏; 寇生中

    2011-01-01

    研究(Cu50Zr42Al8)96 Y4大块非晶合金在连续升温过程中的晶化行为.结果表明,随升温速度的加快,玻璃转变温度Tg、晶化起始温度Tx、晶化峰值温度Tp都向高温区移动,过冷温度区△Tx扩大到了72.5K.运用Kissinger法分别计算出玻璃转变激活能Eg为512.34kJ/mol、晶化起始激活能Ex为372.44 kJ/mol、晶化峰的激活能Ep1和Ep1为404.52kJ/mol、404.75kJ/mol.运用FWO法计算出了晶化阶段激活能Ex,发现当晶化量小于50%时,随晶化量的增大,阶段激活能变化不大;当晶化量大于50%时,随晶化量的增大,阶段激活能呈逐渐减小的趋势.%Crystallization behavior of bulk ( Cu50 Zr42 Al8 ) 96 Y4 amorphous alloy during continuous temperature increment was described. With increasing of the temperature , The results indicate that the glass transformation temperature ( Tg ) , crystallization initial temperature ( Tz) and crystallization peak temperature ( Tp ) tend to high temperature zone , and under-cooled temperature zone △TX is enlarged to 72.5 K. The glass transformation activation energy Eg, crystallization initial activation energy Ex and crystallization peak activation energy Ep are calculated by theKissinger formula which is 512. 34 kj/mol, 372.44 kJ/mol, 404. 52 kJ/mol and 404. 75 kJ/mol respectively. In addition, crystallization phase activation energy Ex is calculated by the FWO equation. The research found that there is no notable change in the crystallization phase activation energy is increased with the increasing of crystallization degree when crystallization degree is lower than 50% ; on the contrary, when crystallization degree is higher than 50% , the crystallization phase activation energy is decreased with the increasing of crystallization degree.

  10. Oscillatory fluid flow elicits changes in morphology, cytoskeleton and integrin-associated molecules in MLO-Y4 cells, but not in MC3T3-E1 cells.

    Science.gov (United States)

    Xu, Huiyun; Zhang, Jian; Wu, Jiawei; Guan, Ying; Weng, Yuanyuan; Shang, Peng

    2012-01-01

    Interstitial fluid flow stress is one of the most important mechanical stimulations of bone cells under physiological conditions. Osteocytes and osteoblasts act as primary mechanosensors within bones, and in vitro are able to respond to fluid shear stress, both morphologically and functionally. However, there is little information about the response of integrin-associated molecules using both osteoblasts and osteocytes. In this study, we investigated the changes in response to 2 hours of oscillatory fluid flow stress in the MLO-Y4 osteocyte-like cell line and the MC3T3-E1 osteoblast-like cell line. MLO-Y4 cells exhibited a significant increase in the expression of integrin-associated molecules, including OPN, CD44, vinculin and integrin αvβ3. However, there was no or limited increase observed in MC3T3-E1 osteoblast-like cells. Cell area and fiber stress formation were also markedly promoted by fluid flow only in MLO-Y4 cells. But the numbers of processes per cell remain unaffected in both cell lines. PMID:23096360

  11. Concomitant activation of the PI3K/Akt and ERK1/2 signalling is involved in cyclic compressive force-induced IL-6 secretion in MLO-Y4 cells.

    Science.gov (United States)

    Yin, Jian; Hao, Zhichao; Ma, Yuanyuan; Liao, Shuang; Li, Xianxian; Fu, Jing; Wu, Yeke; Shen, Jiefei; Zhang, Ping; Li, Xiaoyu; Wang, Hang

    2014-05-01

    IL-6 has a dual role in bone remodelling. The ERK1/2 pathway partially upregulated IL-6 secretion in osteocyte-like MLO-Y4 cells exposed to CCF. We have now investigated the possible role of phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway in the CCF-induced IL-6 expression. MLO-Y4 cells were treated with CCF 2,000 µstrain, 2 Hz, or 10, 30 min, 1, 3 and 6 h. IL-6 expression, Akt and ERK1/2 and PI3K/Akt phosphorylation were determined by RT-PCR, ELISA and Western blotting. Inhibition of PI3K/Akt with LY294002 or ERK1/2 with PD98059 significantly attenuated IL-6 upregulation, and IL-6 expression was abolished by inhibiting both pathways. Inhibition of one pathway downregulated the other's phosphorylation level. In conclusion, concomitant activation of PI3K/Akt and ERK1/2 pathways mediated IL-6 expression in MLO-Y4 cells under CCF. PMID:24375569

  12. Rat liver insulin receptor

    International Nuclear Information System (INIS)

    Using insulin affinity chromatography, the authors have isolated highly purified insulin receptor from rat liver. When evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions, the rat liver receptor contained the M/sub r/ 125,000 α-subunit, the M/sub r/ 90,000 β-subunit, and varying proportions of the M/sub r/ 45,000 β'-subunit. The specific insulin binding of the purified receptor was 25-30 μg of 125I-insulin/mg of protein, and the receptor underwent insulin-dependent autophosphorylation. Rat liver and human placental receptors differ from each other in several functional aspects: (1) the adsorption-desorption behavior from four insulin affinity columns indicated that the rat liver receptor binds less firmly to immobilized ligands; (2) the 125I-insulin binding affinity of the rat liver receptor is lower than that of the placental receptor; (3) partial reduction of the rat liver receptor with dithiothreitol increases its insulin binding affinity whereas the binding affinity of the placental receptor is unchanged; (4) at optimal insulin concentration, rat liver receptor autophosphorylation is stimulated 25-50-fold whereas the placental receptor is stimulated only 4-6-fold. Conversion of the β-subunit to β' by proteolysis is a major problem that occurs during exposure of the receptor to the pH 5.0 buffer used to elute the insulin affinity column. Proteolytic destruction and the accompanying loss of insulin-dependent autophosphorylation can be substantially reduced by proteolysis inhibitors. In summary, rat liver and human placental receptors differ functionally in both α- and β-subunits. Insulin binding to the α-subunit of the purified rat liver receptor communicates a signal that activates the β-subunit; however, major proteolytic destruction of the β-subunit does not affect insulin binding to the α-subunit

  13. Action of Natural Products on P2 Receptors: A Reinvented Era for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Luiz Alves

    2012-11-01

    Full Text Available Natural products contribute significantly to available drug therapies and have been a rich source for scientific investigation. In general, due to their low cost and traditional use in some cultures, they are an object of growing interest as alternatives to synthetic drugs. With several diseases such as cancer, and inflammatory and neuropathic diseases having been linked to the participation of purinergic (P2 receptors, there has been a flurry of investigations on ligands within natural products. Thirty-four different sources of these compounds have been found so far, that have shown either agonistic or antagonistic effects on P2 receptors. Of those, nine different plant sources demonstrated effects on P2X2, P2X3, P2X7, and possibly P2Y12 receptor subtypes. Microorganisms, which represent the largest group, with 26 different sources, showed effects on both receptor subtypes, ranging from P2X1 to P2X4 and P2X7, and P2Y1, P2Y2, P2Y4, and P2Y6. In addition, there were seventeen animal sources that affected P2X7 and P2Y1 and P2Y12 receptors. Natural products have provided some fascinating new mechanisms and sources to better understand the P2 receptor antagonism. Moreover, current investigations should clarify further pharmacological mechanisms in order to consider these products as potential new medicines.

  14. The Acute-Phase Protein Orosomucoid Regulates Food Intake and Energy Homeostasis via Leptin Receptor Signaling Pathway.

    Science.gov (United States)

    Sun, Yang; Yang, Yili; Qin, Zhen; Cai, Jinya; Guo, Xiuming; Tang, Yun; Wan, Jingjing; Su, Ding-Feng; Liu, Xia

    2016-06-01

    The acute-phase protein orosomucoid (ORM) exhibits a variety of activities in vitro and in vivo, notably modulation of immunity and transportation of drugs. We found in this study that mice lacking ORM1 displayed aberrant energy homeostasis characterized by increased body weight and fat mass. Further investigation found that ORM, predominantly ORM1, is significantly elevated in sera, liver, and adipose tissues from the mice with high-fat diet (HFD)-induced obesity and db/db mice that develop obesity spontaneously due to mutation in the leptin receptor (LepR). Intravenous or intraperitoneal administration of exogenous ORM decreased food intake in C57BL/6, HFD, and leptin-deficient ob/ob mice, which was absent in db/db mice and was significantly reduced in mice with arcuate nucleus (ARC) LepR knockdown, whereas enforced expression of ORM1 in ARC significantly decreased food intake, body weight, and serum insulin level. Furthermore, we found that ORM is able to bind directly to LepR and activate the receptor-mediated JAK2-STAT3 signaling in hypothalamus tissue and GT1-7 cells, which was derived from hypothalamic tumor. These data indicated that ORM could function through LepR to regulate food intake and energy homeostasis in response to nutrition status. Modulating the expression of ORM is a novel strategy for the management of obesity and related metabolic disorders. PMID:27207522

  15. P2X receptors.

    Science.gov (United States)

    North, R Alan

    2016-08-01

    Extracellular adenosine 5'-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2X receptors have a widespread tissue distribution. On some smooth muscle cells, P2X receptors mediate the fast excitatory junction potential that leads to depolarization and contraction. In the central nervous system, activation of P2X receptors allows calcium to enter neurons and this can evoke slower neuromodulatory responses such as the trafficking of receptors for the neurotransmitter glutamate. In primary afferent nerves, P2X receptors are critical for the initiation of action potentials when they respond to ATP released from sensory cells such as taste buds, chemoreceptors or urothelium. In immune cells, activation of P2X receptors triggers the release of pro-inflammatory cytokines such as interleukin 1β. The development of selective blockers of different P2X receptors has led to clinical trials of their effectiveness in the management of cough, pain, inflammation and certain neurodegenerative diseases.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377721

  16. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  17. GABA receptor imaging

    International Nuclear Information System (INIS)

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABAA-receptor that allows chloride to pass through a ligand gated ion channel and GABAB-receptor that uses G-proteins for signaling. The GABAA-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABAA-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with 11C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, 18F-fluoroflumazenil (FFMZ) has been developed to overcome 11C's short half-life. 18F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '11C-FMZ PET instead of 18F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABAA receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas

  18. [Nuclear receptors PPARalpha].

    Science.gov (United States)

    Soska, V

    2006-06-01

    Mechanism of the fibrates action is mediated by nuclear PPARalpha receptors (Peroxisome Proliferator-Activated Receptor). These receptors regulate a number of genes that are involved both in lipids and lipoproteins metabolism and other mediators (e.g. inflammatory mediatores). Due to PPARalpha activation by fibrates, triglycerides and small dense LDL concentration is decreased, HDL cholesterol is increased and both inflammation and prothrombotic status are reduced. These effects are very important in patients with metabolic syndrom. PMID:16871768

  19. Novel cannabinoid receptors

    OpenAIRE

    Brown, A J

    2007-01-01

    Cannabinoids have numerous physiological effects. In the years since the molecular identification of the G protein-coupled receptors CB1 and CB2, the ion channel TRPV1, and their corresponding endogenous ligand systems, many cannabinoid-evoked actions have been shown conclusively to be mediated by one of these specific receptor targets. However, there remain several examples where these classical cannabinoid receptors do not explain observed pharmacology. Studies using mice genetically delete...

  20. Comparison between MLO-Y4 osteocyte and osteoblast to support osteoclast formation in vitro%骨细胞与成骨细胞诱导破骨细胞分化的对比研究

    Institute of Scientific and Technical Information of China (English)

    崔亮; 李小彤; 杨雁琪; 傅民魁; 张丁

    2010-01-01

    目的 比较骨细胞和成骨细胞对破骨细胞分化形成的支持作用,初步探讨骨细胞在骨改建过程中的作用.方法 以小鼠骨髓基质细胞单独培养为空白对照组,以小鼠颅顶骨来源的成骨细胞与小鼠骨髓基质细胞共培养为成骨细胞组,以MLO-Y4骨细胞与小鼠骨髓基质细胞共培养为骨细胞组.使用骨吸收促进因子维生素D3处理3组细胞,抗酒石酸磷酸酶(tartrat resistant acid phosphatase,TRAP)染色后比较维生素D3处理前后3组破骨细胞数量的差异.结果 维生素D3处理前空白对照组破骨细胞计数为(6.0±1.O)个/孔板;成骨细胞组破骨细胞计数为(12.7±5.5)个/孔板,两组差异有统计学意义(P<0.05);骨细胞组破骨细胞计数为(1963.3±93.1)个/孔板,与其他两组间差异均有统计学意义(P<0.001).维生素D3对3组破骨细胞的分化形成均有促进作用.结论 在没有骨吸收促进因子存在的情况下,成骨细胞无法单独诱导破骨细胞分化,而MLO-Y4骨细胞可单独促进破骨细胞分化.骨吸收促进因子维生素D3可加强成骨细胞和骨细胞诱导破骨细胞分化的能力.%Objective To compare between MLO-Y4 osteocyte and osteoblast to support osteoclast formation in co-culture system.Methods MLO-Y4 cells and murine osteoblast cells were co-cultured with bone marrow cells with or without vitamin D3 presence.Bone marrow cells were as control group.Tartrat resistant acid phosphatase(TRAP) + giant cells with three or more nuclei were counted and compared under a microscope at day 9.Results In the absence of vitamin D3,(1963.3±93.1)/plate osteoclasts were observed when MLO-Y4 cells co-cultured with bone marrow cells in 24-well plate.While only (12.7±5.5)/plate osteoclasts were found in the osteeblast group,and (6.0±1.O)/plate in control group.The statistical difference occurs for any two groups(P <0.05).Vitamin D3 could significantly increase osteoclast formation in the three groups

  1. Purinergic receptors and calcium signalling in human pancreatic duct cell lines

    DEFF Research Database (Denmark)

    Hansen, Mette R; Krabbe, Simon; Novak, Ivana

    2008-01-01

    expression of P2X4 and P2X7 receptors. Expression of P2Y2, P2X4 and P2X7 receptors was confirmed by immunocytochemistry. This fingerprint of P2 receptors in human pancreatic duct models forms the basis for studying effect of nucleotides on ion and fluid secretion, as well as on Ca(2+) and tissue homeostasis...... pancreatic duct cell lines PANC-1 and CFPAC-1. Expression of P2 receptors was examined using RT-PCR and immunocytochemistry. Both cell lines, and also Capan-1 cells, express RNA transcripts for the following receptors: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11-14 and P2X1, P2X2, P2X4, P2X5, P2X6 and P2X7. Using Fura-2...... and single-cell imaging we tested effects of various nucleotide analogues on intracellular Ca(2+) signals in PANC-1 and CFPAC-1 cells. The cell lines responded to all nucleotides with the following efficiency: UTP >or= ATP = ATPgammaS > BzATP. ATP, UTP and ATPgammaS elicited oscillatory responses. Bz...

  2. Descripción de la generalización de estudiantes de 3º y 4º de ESO en la resolución de problemas que involucran sucesiones lineales y cuadráticas

    OpenAIRE

    Cañadas, María C.; Castro, Encarnación; Castro, Enrique

    2008-01-01

    Describimos la generalización que logran estudiantes de 3º y 4º de Educación Secundaria Obligatoria (ESO) en la resolución de problemas que involucran sucesiones lineales y cuadráticas. La descripción se centra en aspectos relativos al razonamiento inductivo y a las estrategias inductivas. Estas estrategias permiten describir el proceso seguido en términos de los elementos y los sistemas de representación correspondientes al contenido matemático.

  3. Análisis de la educación nutricional en Secundaria y estudio exploratorio sobre ideas previas en 1º y 4º ESO en un centro concertado de Vitoria

    OpenAIRE

    Larrea-Santa-Olalla, Merche

    2014-01-01

    Esta investigación tiene com objetivo realizar una aproximación a los condicionantes del aprendizaje de hábitos de consumo saludables en alumnos de 1º y 4º de ESO. Inicialmente se ha realizado una revisión de los contenidos curriculares sobre nutrición y salud y posteriormente se han recopilado las ideas previas que desde el punto de vista del modelo constructivista obstaculizan el aprendizaje. A continuación, en una muestra incidental de alumnos de los niveles mencionados se ha r...

  4. Applied Pressure on Altering the Nano-Crystallization Behavior of Al86Ni6Y4.5Co2La1.5 Metallic Glass Powder during Spark Plasma Sintering and Its Effect on Powder Consolidation

    OpenAIRE

    Li, X. P.; Yan, M.; Ji, G; Qian, M

    2013-01-01

    Metallic glass powder of the composition Al86Ni6Y4.5Co2La1.5 was consolidated into 10 mm diameter samples by spark plasma sintering (SPS) at different temperatures under an applied pressure of 200 MPa or 600 MPa. The heating rate and isothermal holding time were fixed at 40°C/min and 2 min, respectively. Fully dense bulk metallic glasses (BMGs) free of particle-particle interface oxides and nano-crystallization were fabricated under 600 MPa. In contrast, residual oxides were detected at parti...

  5. Study on blepharoplasty stripping arcuate margin of orbicularis oculi muscle used in patients with tear trough and palpbromalar groove%应用剥离弓状缘眼轮匝肌整复伴有泪槽和睑颊沟的眼袋疗效观察

    Institute of Scientific and Technical Information of China (English)

    蒋学金

    2014-01-01

    Objective To explore divest arcuate edge orbicularis muscle surgery reconstructive treatment of the symptoms of clinical efficacy and recovery.Methods 80 patients with tear trough and palphromalar groove pouch,according to the operation method,were divided into group A and group B.The patients received stripped arcuate margin of orbicularis oculi muscle operation and true orbital fat too much fat operation,operation treatment,respectively.The satisfaction and revisit the rebound rate of the two groups after surgery were compared.Results Of 40 patients in A group,37 cases (92.5%)were satisfied with the treatment,general satisfaction in 3 cases (7.5%),0 case (0.0%) was not satisfactory.In B group,28 cases (62.5%)were satisfied with the treatment,general satisfaction in 9 cases (22.5%),3 cases (15.0%)were not satisfactory.The clinical efficacy between the two groups was significantly different(Z =18.481,P < 0.01).During follow-up,in A group,one case (2.5%)relapsed.In B group,7 cases (17.5%) relapsed after 2 years.The postoperative recurrence rate between the two groups had significant difference (Z =7.314,P < 0.05).Conclusion For patients with tear trough and palpbromalar groove pouch,treatment by stripping arcuate margin of orbicularis oculi muscle operation method can effectively correct the tear trough and palabromalar groove deformity postoperative reduction performance,has high degree of satisfaction,the recurrence rate is low,the clinical effect is significant,it is worthy of further clinical application and research.%目的 探讨剥离弓状缘眼轮匝肌手术整复伴有泪槽和睑颊沟的眼袋临床效果.方法 对80例伴有泪槽和睑颊沟的眼袋患者,按照手术方法不同分为A组与B组各40例,分别进行剥离弓状缘眼轮匝肌手术与真性眶内脂肪过多去脂手术,进行整复治疗,对比分析两组患者的手术后整复满意度以及回访复发率.结果 治疗后,A组满意37例(92.5

  6. Applied Pressure on Altering the Nano-Crystallization Behavior of Al86Ni6Y4.5Co2La1.5 Metallic Glass Powder during Spark Plasma Sintering and Its Effect on Powder Consolidation

    International Nuclear Information System (INIS)

    Metallic glass powder of the composition Al86Ni6Y4.5Co2La1.5 was consolidated into 10 mm diameter samples by spark plasma sintering (SPS) at different temperatures under an applied pressure of 200 MPa or 600 MPa. The heating rate and isothermal holding time were fixed at 40°C/min and 2 min, respectively. Fully dense bulk metallic glasses (BMGs) free of particle-particle interface oxides and nano-crystallization were fabricated under 600 MPa. In contrast, residual oxides were detected at particle-particle interfaces (enriched in both Al and O) when fabricated under a pressure of 200 MPa, indicating the incomplete removal of the oxide surface layers during SPS at a low pressure. Transmission electron microscopy (TEM) revealed noticeable nano-crystallization of face-centered cubic (fcc) Al close to such interfaces. Applying a high pressure played a key role in facilitating the removal of the oxide surface layers and therefore full densification of the Al86Ni6Y4.5Co2La1.5 metallic glass powder without nano-crystallization. It is proposed that applied high pressure, as an external force, assisted in the breakdown of surface oxide layers that enveloped the powder particles in the early stage of sintering. This, together with the electrical discharge during SPS, may have bene fitted the viscous flow of metallic glasses during sintering.

  7. Re-determination and re-evaluation of the f and α parameters in channels Y4 and S84 of the BR1 reactor, for use in k0-NAA at DSM Research

    Science.gov (United States)

    De Wispelaere, A.; De Corte, F.; Bossus, D. A. W.; Swagten, J. J. M. G.; Vermaercke, P.

    2006-08-01

    Since the introduction of k0-based NAA as an analytical tool in 1989, all irradiations by DSM Research are done in channels Y4 and S84 of the BR1 reactor in Mol (Belgium). The last determination of f and α-values for these channels was performed in 1993. Although the configuration of the reactor did not change over all these years and therefore no change in f and α was to be expected, DSM Research decided to re-determine both parameters in both channels. Having much experience in this field, the INW k0-group was asked by DSM Research to perform this re-determination, in co-operation with the SCK, Mol. As the flux in channel Y4 is not constant during the start up and the scramming of the reactor, a numerical integration method was applied. This is a new approach in comparison with all previous reported data from DSM Research, where this change in flux was not taken into account. For the work presented here, use was made of the most recent nuclear data available in the literature.

  8. ESTUDIO COMPARATIVO ENTRE LAS MEDICIONES DE RUIDO AMBIENTAL URBANO A 1,5 m Y 4 m DE ALTURA SOBRE EL NIVEL DEL PISO EN LA CIUDAD DE MEDELLÍN, ANTIOQUIA - COLOMBIA

    Directory of Open Access Journals (Sweden)

    ANA JARAMILLO

    2009-01-01

    Full Text Available Con la entrada en vigencia de la Resolución 0627 de 2006, reglamentándose la altura de 4m sobre el nivel del piso como estrategia de medición para evaluar los niveles de ruido ambiental, se ha creado una gran controversia entre las entidades ambientales gubernamentales, los académicos y profesionales del sector, sobre las implicaciones económicas, logísticas y operativas para el desarrollo del trabajo de campo. Con el propósito de determinar si mediciones simultáneas de ruido urbano efectuadas a 1,5 m y 4 m representan o no la misma realidad sonora, se realizó un análisis estadístico a un conjunto de datos obtenidos en el marco de la construcción del mapa de ruido del municipio. Después de un análisis de los datos agrupados por punto, por jornada (diurna y nocturna y por tipo de día (hábil y no hábil, se infiere que no es posible afirmar la semejanza entre muestras de ruido tomadas a 1,5 m y 4 m de altura, no sólo por las diferencias numéricas, sino que representan realidades sonoras diferentes.

  9. Androgen receptor mutations

    OpenAIRE

    Brinkmann, Albert; Jenster, Guido; Ris-Stalpers, Carolyn; Korput, J. A G M; Brüggenwirth, Hennie; Boehmer, A.L.; Trapman, Jan

    1995-01-01

    textabstractMale sexual differentiation and development proceed under direct control of androgens. Androgen action is mediated by the intracellular androgen receptor, which belongs to the superfamily of ligand-dependent transcription factors. At least three pathological situations are associated with abnormal androgen receptor structure and function: androgen insensitivity syndrome (AIS), spinal and bulbar muscular atrophy (SBMA) and prostate cancer. In the X-linked androgen insensitivity syn...

  10. Serotonin Receptors in Hippocampus

    OpenAIRE

    Laura Cristina Berumen; Angelina Rodríguez; Ricardo Miledi; Guadalupe García-Alcocer

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a fu...

  11. Imidazoline receptors ligands

    Directory of Open Access Journals (Sweden)

    Agbaba Danica

    2012-01-01

    Full Text Available Extensive biochemical and pharmacological studies have determined three different subtypes of imidazoline receptors: I1-imidazoline receptors (I1-IR involved in central inhibition of sympathicus that produce hypotensive effect; I2-imidazoline receptors (I2-IR modulate monoamine oxidase B activity (MAO-B; I3-imidazoline receptors (I3-IR regulate insulin secretion from pancreatic β-cells. Therefore, the I1/I2/I3 imidazoline receptors are selected as new, interesting targets for drug design and discovery. Novel selective I1/I2/I3 agonists and antagonists have been recently developed. In the present review, we provide a brief update to the field of imidazoline research, highlighting some of the chemical diversity and progress made in the 2D-QSAR, 3D-QSAR and quantitative pharmacophore development studies of I1-IR and I2-IR imidazoline receptor ligands. Theoretical studies of I3-IR ligands are not yet performed because of insufficient number of synthesized I3-IR ligands.

  12. Selective glucocorticoid receptor modulation maintains bone mineral density in mice.

    Science.gov (United States)

    Thiele, Sylvia; Ziegler, Nicole; Tsourdi, Elena; De Bosscher, Karolien; Tuckermann, Jan P; Hofbauer, Lorenz C; Rauner, Martina

    2012-11-01

    Glucocorticoids (GCs) are potent anti-inflammatory drugs, but their use is limited by their adverse effects on the skeleton. Compound A (CpdA) is a novel GC receptor modulator with the potential for an improved risk/benefit profile. We tested the effects of CpdA on bone in a mouse model of GC-induced bone loss. Bone loss was induced in FVB/N mice by implanting slow-release pellets containing either vehicle, prednisolone (PRED) (3.5 mg), or CpdA (3.5 mg). After 4 weeks, mice were killed to examine the effects on the skeleton using quantitative computed tomography, bone histomorphometry, serum markers of bone turnover, and gene expression analysis. To assess the underlying mechanisms, in vitro studies were performed with human bone marrow stromal cells (BMSCs) and murine osteocyte-like cells (MLO-Y4 cells). PRED reduced the total and trabecular bone density in the femur by 9% and 24% and in the spine by 11% and 20%, respectively, whereas CpdA did not influence these parameters. Histomorphometry confirmed these results and further showed that the mineral apposition rate was decreased by PRED whereas the number of osteoclasts was increased. Decreased bone formation was paralleled by a decline in serum procollagen type 1 N-terminal peptide (P1NP), reduced skeletal expression of osteoblast markers, and increased serum levels of the osteoblast inhibitor dickkopf-1 (DKK-1). In addition, serum CTX-1 and the skeletal receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) ratio were increased by PRED. None of these effects were observed with CpdA. Consistent with the in vivo data, CpdA did not increase the RANKL/OPG ratio in MLO-Y4 cells or the expression of DKK-1 in bone tissue, BMSCs, and osteocytes. Finally, CpdA also failed to transactivate DKK-1 expression in bone tissue, BMSCs, and osteocytes. This study underlines the bone-sparing potential of CpdA and suggests that by preventing increases in the RANKL/OPG ratio or DKK-1 in osteoblast lineage cells, GC

  13. Detección del Polimorfismo en el Gen del Receptor de Melatonina (MT1 en la Oveja Criolla Araucana Detection of MT1 Melatonin Receptor Gene Polymorphism (MT1 in the Araucana Creole Sheep

    Directory of Open Access Journals (Sweden)

    J Quiñones

    2012-06-01

    Full Text Available La melatonina es una hormona que regula los ciclos circadianos y muchos de los aspectos reproductivos de los mamíferos y es secretada por la glándula pineal en las horas de ausencia de luz. Esta hormona posee receptores de alta afinidad acoplados a proteínas de tipo G, denominados MT1. Un polimorfismo de la secuencia que codifica para estos receptores estaría involucrado en el control de la reproducción estacional de los ovinos. El propósito de este estudio busca determinar la presencia del polimorfismo del receptor MT1 en la oveja criolla Araucana, un ovino local en el que se ha registrado un corto anestro reproductivo. Para poder realizar este trabajo se utilizó la técnica denominada reacción en cadena de la polimerasa para polimorfismo en el tamaño de los fragmentos de restricción PCR-RFLP, para lo cual, se obtuvieron muestras de ADN genómico de 50 ovejas Araucanas, las cuales fueron digeridas con la endonucleasa de restricción Mnl1. Se logró identificar la presencia del polimorfismo del receptor MT1 en la oveja Araucana. Los genotipos se hallaron en una frecuencia de 68% para el genotipo +/+, 28% para el genotipo +/- y4% para el genotipo -/-. Este alto porcentaje de animales con genotipo +/+ podría explicar el corto anestro reproductivo que presenta esta raza.Melatonin is a hormone that regulates circadian rhythms and many of the reproductive aspects of mammals and is secreted by the pineal gland during the hours of absence of light. This hormone has high affinity receptors coupled to G-like proteins, termed MT1. A polymorphism of the sequence coding for these receptors was involved in the control of seasonal reproduction in sheep. The purpose of this study was to determine the presence of MT1 receptor polymorphism in Araucana creole sheep, a local breed with a short reproductive anestrus. To carry out this work, we used a technique called polymerase chain reaction-restriction fragment lengh polymorphism PCR-RFLP, for which

  14. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  15. Olfactory receptor signaling.

    Science.gov (United States)

    Antunes, Gabriela; Simoes de Souza, Fabio Marques

    2016-01-01

    The guanine nucleotide protein (G protein)-coupled receptors (GPCRs) superfamily represents the largest class of membrane protein in the human genome. More than a half of all GPCRs are dedicated to interact with odorants and are termed odorant-receptors (ORs). Linda Buck and Richard Axel, the Nobel Prize laureates in physiology or medicine in 2004, first cloned and characterized the gene family that encode ORs, establishing the foundations to the understanding of the molecular basis for odor recognition. In the last decades, a lot of progress has been done to unravel the functioning of the sense of smell. This chapter gives a general overview of the topic of olfactory receptor signaling and reviews recent advances in this field. PMID:26928542

  16. Selective orexin receptor antagonists.

    Science.gov (United States)

    Lebold, Terry P; Bonaventure, Pascal; Shireman, Brock T

    2013-09-01

    The orexin, or hypocretin, neuropeptides (orexin-A and orexin-B) are produced on neurons in the hypothalamus which project to key areas of the brain that control sleep-wake states, modulation of food intake, panic, anxiety, emotion, reward and addictive behaviors. These neuropeptides exert their effects on a pair of G-protein coupled receptors termed the orexin-1 (OX1) and orexin-2 (OX2) receptors. Emerging biology suggests the involvement of these receptors in psychiatric disorders as they are thought to play a key role in the regulation of multiple systems. This review is intended to highlight key selective OX1 or OX2 small-molecule antagonists. PMID:23891187

  17. Estrogen receptor scintigraphy.

    Science.gov (United States)

    Scheidhauer, K; Scharl, A; Schicha, H

    1998-03-01

    Radio-labeled estrogen receptor ligands are tracers that can be used for functional receptor diagnosis. Their specificity towards receptors, together with the fact that only 50-70% of mammary carcinomas are receptor positive, renders them unsuitable for detection of primary tumors or metastases, and this means that estrogen receptor scintigraphy can be used neither for tumor screening nor for staging. However, both 18F-labeled and 123I-labeled estradiol derivatives are suitable for in vivo imaging of estrogen receptors. Their high specificity, established in animal experiments and in vitro studies has been reproduced in in vivo applications in humans. Tracers with positron radiation emitters are, however, hardly suitable for broad application owing to the short half-life of 18F, which would mean that users would need to be situated close to a cyclotron and a correspondingly equipped radiochemical laboratory. The number of available PET scanners, on the other hand, has increased over the last few years, especially in Germany, so that this, at least, does not present a limiting factor. All the same, 123I-labeled estradiol derivatives will find more widespread application, since the number of gamma-cameras incorporating modern multi-head systems is several times greater. The results of studies with 123I-E2-scintigraphy published to date are very promising, even given the initial technical problems mentioned above. As a method of examination, it could be optimised by using improved tracers with a higher tumor contrast and less disturbance from overlapping in diagnostically relevant locations, for instance, by selecting tracers with higher activities whose excretion is more renal than hepatobiliary. The use of modern multi-head camera systems can also be expected to improve the photon yield. PMID:9646642

  18. Biomimetic Receptors and Sensors

    Directory of Open Access Journals (Sweden)

    Franz L. Dickert

    2014-11-01

    Full Text Available In biomimetics, living systems are imitated to develop receptors for ions, molecules and bioparticles. The most pertinent idea is self-organization in analogy to evolution in nature, which created the key-lock principle. Today, modern science has been developing host-guest chemistry, a strategy of supramolecular chemistry for designing interactions of analytes with synthetic receptors. This can be realized, e.g., by self-assembled monolayers (SAMs or molecular imprinting. The strategies are used for solid phase extraction (SPE, but preferably in developing recognition layers of chemical sensors.

  19. Chemokine Receptors and Transplantation

    Institute of Scientific and Technical Information of China (English)

    Jinquan Tan; Gang Zhou

    2005-01-01

    A complex process including both the innate and acquired immune responses results in allograft rejection. Some chemokine receptors and their ligands play essential roles not only for leukocyte migration into the graft but also in facilitating dendritic and T cell trafficking between lymph nodes and the transplant in the early and late stage of the allogeneic response. This review focuses on the impact of these chemoattractant proteins on transplant outcome and novel diagnostic and therapeutic approaches for antirejection therapy based on targeting of chemokine receptors and/or their ligands. Cellular & Molecular Immunology.

  20. Beyond the Receptor

    Institute of Scientific and Technical Information of China (English)

    Russell Jones

    2008-01-01

    @@ Had this Special Issue on plant hormones been published 5 years ago,it is likely that details about biosynthetic pathways would have taken center stage.As articles in this issue show,however,the field of plant hormone research has progressed rapidly and is now moving beyond the search for receptors.Progress in research on the mechanism of action of plant hormones has been rapid;receptors for the main classes of hormones have been identified;and the search is on for players downstream in signal-transduction chains.

  1. Somatostatin receptor imaging

    International Nuclear Information System (INIS)

    The intention of the meeting was to present: 1.Results from large-scale diagnositc imaging studies, carried out in various somatostatin receptorpositive tumors by Germany nuclear medicine specialists; 2. Potential clinical indications for somatostatin receptor scintigraphy in gastroenterology, endocrinology, and other clinical disciplines. These presentations were balanced by the reports of distinguished clinicians on their experience with somatostatin analogs in therapeutic settings and by the comments of a number of investigators on the basic mechanisms of somatostatin-receptor/ligand-system(s) and on peptide radiopharmacology. Separate entries are proposed for 8 of the 11 individual papers presented at the conference. (orig./MG). 48 figs., 22 tabs

  2. Taste receptors for umami: the case for multiple receptors1234

    OpenAIRE

    Chaudhari, Nirupa; Pereira, Elizabeth; Roper, Stephen D.

    2009-01-01

    Umami taste is elicited by many small molecules, including amino acids (glutamate and aspartate) and nucleotides (monophosphates of inosinate or guanylate, inosine 5′-monophosphate and guanosine-5′-monophosphate). Mammalian taste buds respond to these diverse compounds via membrane receptors that bind the umami tastants. Over the past 15 y, several receptors have been proposed to underlie umami detection in taste buds. These receptors include 2 glutamate-selective G protein–coupled receptors,...

  3. Identification of histaminergic neurons through histamine 3 receptor-mediated autoinhibition.

    Science.gov (United States)

    De Luca, Roberto; Suvorava, Tatsiana; Yang, Danqing; Baumgärtel, Wilhelm; Kojda, Georg; Haas, Helmut L; Sergeeva, Olga A

    2016-07-01

    Using a reporter mouse model with expression of the tomato fluorescent protein under the dopamine transporter promoter (Tmt-DAT) we discovered a new group of neurons in the histaminergic tuberomamillary nucleus (TMN), which, in contrast to tuberoinfundibular dopaminergic neurons of the dorsomedial arcuate nucleus, do not express tyrosine hydroxylase but can synthesize and store dopamine. Tmt-DAT neurons located within TMN share electrophysiological properties with histaminergic neurons: spontaneous firing at a membrane potential around -50 mV and presence of hyperpolarization-activated cyclic nucleotide-gated ion channels. Histamine (30 μM) depolarizes and excites Tmt-DAT neurons through H1R activation but inhibits histaminergic neurons through H3R activation thus allowing a pharmacological identification of the different neurons. Single-cell RT-PCR revealed that all histaminergic neurons expressing histidine decarboxylase (HDC) also express H3R. This includes neurons retrogradely traced from the striatum whose inhibition by a selective H3R agonist was indistinguishable from the whole population. Prolonged depolarization reduces the autoinhibition. The potency of histamine at H3R depends on membrane potential and on extracellular and intracellular calcium. Autoinhibition can be impaired by preincubation with capsaicin, a ligand of the calcium-permeable TRPV1 channel or by blockade of Ca(2+)-ATPase with thapsigargin. The pharmacology of autoinhibition is revisited and physiological conditions for its functionality are determined. Usage of reporter mouse models for the safe identification of aminergic neurons under pathophysiological conditions is recommended. This article is part of the Special Issue entitled 'Histamine Receptors'. PMID:26297536

  4. The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression.

    Science.gov (United States)

    Aubert, Grégory; Mansuy, Virginie; Voirol, Marie-Jeanne; Pellerin, Luc; Pralong, François P

    2011-03-01

    Metformin demonstrates anorectic effects in vivo and inhibits neuropeptide Y expression in cultured hypothalamic neurons. Here we investigated the mechanisms implicated in the modulation of feeding by metformin in animals rendered obese by long-term high-fat diet (diet-induced obesity [DIO]) and in animals resistant to obesity (diet resistant [DR]). Male Long-Evans rats were kept on normal chow feeding (controls) or on high-fat diet (DIO, DR) for 6 months. Afterward, rats were treated 14 days with metformin (75 mg/kg) or isotonic sodium chloride solution and killed. Energy efficiency, metabolic parameters, and gene expression were analyzed at the end of the high-fat diet period and after 14 days of metformin treatment. At the end of the high-fat diet period, despite higher leptin levels, DIO rats had higher levels of hypothalamic neuropeptide Y expression than DR or control rats, suggesting a central leptin resistance. In DIO but also in DR rats, metformin treatment induced significant reductions of food intake accompanied by decreases in body weight. Interestingly, the weight loss achieved by metformin was correlated with pretreatment plasma leptin levels. This effect was paralleled by a stimulation of the expression of the leptin receptor gene (ObRb) in the arcuate nucleus. These data identify the hypothalamic ObRb as a gene modulated after metformin treatment and suggest that the anorectic effects of the drug are potentially mediated via an increase in the central sensitivity to leptin. Thus, they provide a rationale for novel therapeutic approaches associating leptin and metformin in the treatment of obesity. PMID:20303124

  5. AT1 receptors as mechanosensors.

    Science.gov (United States)

    Mederos y Schnitzler, Michael; Storch, Ursula; Gudermann, Thomas

    2011-04-01

    G-protein-coupled receptors are appreciated as central components of neurohormonal signaling. Recently, it turned out that they may also play a role in mechanotransduction. The angiotensin II AT(1) receptor was the first G-protein-coupled receptor claimed to be a mechanosensor. In the meantime, several other G(q/11)-coupled receptors were found to be sensitive to mechanical stimuli. Furthermore, there is first evidence to support the concept that G(i/o)-coupled receptors are susceptible to mechanical stimulation as well. Mechanical receptor activation appears to be agonist-independent and is initiated by a conformational change of the receptor protein discernible from agonist-bound conformations. Mechanically induced receptor activation plays a physiological role for myogenic vasoconstriction and is involved in the pathogenesis of cardiac hypertrophy. PMID:21147033

  6. Metformin and insulin receptors

    International Nuclear Information System (INIS)

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  7. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea; Bräuner-Osborne, Hans; Stensbøl, Tine B; Nielsen, Birgitte; Karla, Rolf; Santi, Flavio; Krogsgaard-Larsen, Povl; Madsen, Ulf

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  8. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    polyamines are known to modulate the function of these receptors in vivo. In this study, recent developments in the medicinal chemistry of polyamine-based ligands are given, particularly focusing on the use of solid-phase synthesis (SPS) as a tool for the facile generation of libraries of polyamine toxin...

  9. Ginkgolides and glycine receptors

    DEFF Research Database (Denmark)

    Jaracz, Stanislav; Nakanishi, Koji; Jensen, Anders A.;

    2004-01-01

    Ginkgolides from the Ginkgo biloba tree are diterpenes with a cage structure consisting of six five-membered rings and a unique tBu group. They exert a variety of biological properties. In addition to being antagonists of the platelet activating factor receptor (PAFR), it has recently been shown...

  10. Meeting report: nuclear receptors

    DEFF Research Database (Denmark)

    Tuckermann, Jan; Bourguet, William; Mandrup, Susanne

    2010-01-01

    The biannual European Molecular Biology Organization (EMBO) conference on nuclear receptors was organized by Beatrice Desvergne and Laszlo Nagy and took place in Cavtat near Dubrovnik on the Adriatic coast of Croatia September 25-29, 2009. The meeting brought together researchers from all over th...

  11. G Protein-coupled receptors

    OpenAIRE

    Ross, Elliott M.

    2014-01-01

    G protein-coupled receptors and heterotrimeric G proteins can diffuse laterally in the plasma membrane such that one receptor can catalyze the activation (GDP/GTP exchange) of multiple G proteins. In some cases, these processes are fast enough to support molecular signal amplification, where a single receptor maintains the activation of multiple G proteins at steady-state. Amplification in cells is probably highly regulated. It depends upon the identities of the G receptor and G protein - som...

  12. Vasopressin and Vasopressin Receptor Antagonists

    OpenAIRE

    Oh, Yun Kyu

    2008-01-01

    Vasopressin, a neurohypophyseal peptide hormone, is the endogenous agonist at V1a, V1b, and V2 receptors. The most important physiological function of vasopressin is the maintenance of water homeostasis through interaction with V2 receptors in the kidney. Vasopressin binds to V2 receptor and increases the number of aquaporin-2 at the apical plasma membrane of collecting duct principal cells. That induces high water permeability across the membrane. Several non-peptide vasopressin receptor ant...

  13. Nuclear Receptors and Inflammatory Diseases

    OpenAIRE

    Wang, Kun; Wan, Yu-Jui Yvonne

    2008-01-01

    It is well known that the steroid hormone glucocorticoid and its nuclear receptor regulate the inflammatory process, a crucial component in the pathophysiological process related to human diseases that include atherosclerosis, obesity and type II diabetes, inflammatory bowel disease, Alzheimer’s disease, multiple sclerosis, and liver tumors. Growing evidence demonstrates that orphan and adopted orphan nuclear receptors, such as peroxisome proliferator-activated receptors, liver × receptors, t...

  14. Effects of DPDPE (a specific delta-opioid receptor agonist) and naloxone on hypothalamic monoamine concentrations during the pre-ovulatory LH surge in the rat.

    Science.gov (United States)

    Yilmaz, B; Gilmore, D P; Wilson, C A

    1998-11-01

    We have investigated the inter-relationship between the opioid and aminergic systems in the control of secretion of the pro-oestrous LH surge and the involvement of delta-opioid receptor subtypes in this process. Conscious female rats bearing a cannula in the femoral artery were injected i.p. with a selective delta-opioid receptor agonist (DPDPE) either alone or with the opioid antagonist (naloxone) at 1300 h on the day of pro-oestrus. Blood samples were collected hourly between 1500 h and 1900 h, and plasma LH levels were measured by RIA. At the end of this period (1900 h), the animals were autopsied and the concentrations of the amines (noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5HT)) and their metabolites (dihydroxyphenolglycol (DHPG) and 5-hydroxyindoleacetic acid (5HIAA), metabolites of NA and 5HT respectively) were determined by HPLC with electrochemical detection in the medial preoptic area, suprachiasmatic nucleus, median eminence and arcuate nucleus. DPDPE abolished the LH surge and concomitantly decreased hypothalamic NA and DHPG concentrations in all the areas examined. The levels of DA, 5HT and 5HIAA were also reduced in all hypothalamic regions studied, except DA and 5HIAA in the suprachiasmatic nucleus. Naloxone reversed these inhibitory effects of the delta-agonist. We conclude that activation of delta-opioid receptors may exert an inhibitory effect on LH release. The effect is probably an indirect one mediated by the monoaminergic systems, as they are suppressed by DPDPE in nearly all the hypothalamic regions studied. PMID:9849821

  15. Synthesis and luminescence characteristics of Li2Y4-xEux(WO4)7-y(MoO4)y red-emitting phosphor for white LED

    Institute of Scientific and Technical Information of China (English)

    茹晶晶; 郭飞云; 陈建中

    2013-01-01

    Li2Y4-xEux(WO4)7-y(MoO4)y red-emitting phosphors were synthesized by solid state reaction and characterized by powder X-ray diffraction (XRD) and photoluminescence (PL) spectrum. The excitation spectra showed that the phosphors could be efficiently excited by near-UV light of 395 nm. When the relative molar ratio of Mo/W was 7:0, and the optimum doped concentration of Eu3+was 2.8 mol, the phosphor showed strong red emission lines at 615 nm corresponding to the forced electric dipole 5D0→7F2 transition of Eu3+. Compared with Na2Y2Eu2(MoO4)7 and K2Y2Eu2(MoO4)7, the fluorescence intensity of Li2Y1.2Eu2.8(MoO4)7 phosphor was the strongest. The CIE chromaticity coordinates of Li2Y1.2Eu2.8(MoO4)7 phosphor was calculated to be (0.66, 0.34).

  16. Measurement of the B0 --> pi- l+ nu and B+ --> pi0 l+ nu Branching Fractions and Determination of |V_ub| in Y(4S) Events Tagged by a Fully Reconstructed B Meson

    CERN Document Server

    Aubert, B; Abrams, G S; Adye, T; Ahmed, M; Ahmed, S; Alam, M S; Albert, J; Aleksan, Roy; Allen, M T; Allison, J; Allmendinger, T; Altenburg, D; Andreassen, R; Andreotti, M; Angelini, C; Anulli, F; Arnaud, N; Aston, D; Azzolini, V; Baak, M; Back, J J; Baldini-Ferroli, R; Band, H R; Banerjee, Sw; Barate, R; Bard, D J; Barlow, N R; Barlow, R J; Barrett, M; Bartoldus, R; Batignani, G; Battaglia, M; Bauer, J M; Beck, T W; Behera, P K; Bellini, F; Benayoun, M; Benelli, G; Berger, N; Bernard, D; Berryhill, J W; Best, D; Bettarini, S; Bettoni, D; Bevan, A J; Bhimji, W; Bhuyan, B; Bianchi, F; Biasini, M; Biesiada, J; Blanc, F; Blaylock, G; Blinov, A E; Blinov, V E; Bloom, P; Bomben, M; Bóna, M; Bondioli, M; Bonneaud, G R; Bosisio, L; Boutigny, D; Bowerman, D A; Boyarski, A M; Boyd, J T; Bozzi, C; Brandenburg, G; Brandt, T; Brau, J E; Breon, A B; Briand, H; Brose, J; Brown, C L; Brown, C M; Brown, D; Brown, D N; Bruinsma, M; Brunet, S; Bucci, F; Buchanan, C; Buchmüller, O L; Bugg, W; Bukin, A D; Bulten, H; Burchat, P R; Burke, J P; Button-Shafer, J; Buzzo, A; Côté, D; Cahn, R N; Calabrese, R; Calcaterra, A; Calderini, G; Campagnari, C; Capra, R; Carpinelli, M; Cartaro, C; Cavallo, N; Cavoto, G; Cenci, R; Chaisanguanthum, K S; Chao, M; Charles, E; Charles, M J; Chauveau, J; Chavez, C A; Chen, A; Chen, C; Chen, E; Chen, J C; Chen, S; Chen, X; Cheng, B; Cheng, C H; Chevalier, N; Cibinetto, G; Clark, P J; Claus, R; Cochran, J; Coleman, J P; Contri, R; Convery, M R; Cormack, C M; Cossutti, F; Cottingham, W N; Couderc, F; Covarelli, R; Cowan, G; Cowan, R; Crawley, H B; Cremaldi, L; Cristinziani, M; Çuhadar-Dönszelmann, T; Cunha, A; Curry, S; D'Orazio, A; Dahmes, B; Dallapiccola, C; Danielson, N; Dasu, S; Datta, M; Dauncey, P D; David, P; Davier, M; Davis, C L; Day, C T; De Groot, N; De Nardo, Gallieno; Del Buono, L; Della Ricca, G; Di Lodovico, F; Di Marco, E; Dickopp, M; Dingfelder, J C; Dittongo, S; Dong, D; Dorfan, J; Druzhinin, V P; Dubitzky, R S; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Dvoretskii, A; Eckhart, E A; Eckmann, R; Edgar, C L; Edwards, A J; Egede, U; Eichenbaum, A M; Eigen, G; Eisner, A M; Elmer, P; Emery, S; Ernst, J A; Eschenburg, V; Eschrich, I; Eyges, V; Fabozzi, F; Faccini, R; Fan, S; Feltresi, E; Ferrarotto, F; Ferroni, F; Field, R C; Finocchiaro, G; Flacco, C J; Flack, R L; Flächer, H U; Flood, K T; Ford, K E; Ford, W T; Forster, I J; Forti, F; Fortin, D; Foulkes, S D; Franek, B; Frey, R; Fritsch, M; Fry, J R; Fulsom, B G; Gabathuler, E; Gaidot, A; Gaillard, J R; Galeazzi, F; Gallo, F; Gamba, D; Gamet, R; Gan, K K; Ganzhur, S F; Gary, J W; Gaspero, M; Gatto, C; George, K A; Gill, M S; Giorgi, M A; Giraud, P F; Giroux, X; Gladney, L; Glanzman, T; Godang, R; Goetzen, K; Golubev, V B; Gopal, G P; Gowdy, S J; Gradl, W; Graham, M; Grancagnolo, S; Graugès-Pous, E; Graziani, G; Green, M G; Grenier, P; Gritsan, A V; Grosdidier, G; Groysman, Y; Guo, Q H; Hadavand, H K; Hadig, T; Haire, M; Halyo, V; Hamano, K; Hamel de Monchenault, G; Hamon, O; Harrison, P F; Harrison, T J; Hart, A J; Hartfiel, B L; Harton, J L; Hast, C; Hauke, A; Hawkes, C M; Hearty, C; Held, T; Hertzbach, S S; Heusch, C A; Hill, E J; Hirschauer, J F; Hitlin, D G; Höcker, A; Hodgkinson, M C; Hollar, J J; Hong, T M; Honscheid, K; Hopkins, D A; Hrynóva, T; Hufnagel, D; Hulsbergen, W D; Hutchcroft, D E; Igonkina, O; Innes, W R; Izen, J M; Jackson, P D; Jackson, P S; Jacobsen, R G; Jawahery, A; Jayatilleke, S M; Jessop, C P; John, M J J; Johnson, J R; Judd, D; Kadel, R W; Kadyk, J; Kagan, H; Karyotakis, Yu; Kass, R; Kelly, M P; Kelsey, M H; Kerth, L T; Khan, A; Kim, H; Kim, P; Kirkby, D; Kitayama, I; Klose, V; Knecht, N S; Koch, H; Kocian, M L; Koeneke, K; Kofler, R; Kolomensky, Yu G; Koptchev, V B; Kovalskyi, D; Kowalewski, R V; Kozanecki, Witold; Kravchenko, E A; Kreisel, A; Krishnamurthy, M; Kroeger, R; Kroseberg, J; Kukartsev, G; Kutter, P E; Kyberd, P; Lacker, H M; Lae, C K; Lafferty, G D; Lanceri, L; Lange, D J; Langenegger, U; Lankford, A J; Latham, T E; Lau, Y P; Lazzaro, A; Le Diberder, F R; Lees, J P; Legendre, M; Leith, D W G S; Lepeltier, V; Leruste, P; Levesque, J A; Lewandowski, B; Li, H; Li, L; Li, X; Libby, J; Lista, L; Liu, R; LoSecco, J M; Lo Vetere, M; Lockman, W S; Lombardo, V; London, G W; Long, O; Lou, X C; Lü, C; Lu, M; Luitz, S; Lund, P; Luppi, E; Lusiani, A; Lüth, V; Lutz, A M; Lynch, G; Lynch, H L; MacFarlane, D B; Macri, M; Mader, W F; Majewski, S A; Malcles, J; Mallik, U; Mancinelli, G; Mandelkern, M A; Marchiori, G; Margoni, M; Marks, J; Marsiske, H; Martínez-Vidal, F; Mattison, T S; Mayer, B; Mazur, M A; Mazzoni, M A; McKenna, J A; McMahon, T R; Meadows, B T; Mellado, B; Menges, W; Messner, R; Meyer, W T; Mihályi, A; Mir, L M; Mohanty, G B; Mohapatra, A K; Mommsen, R K; Monge, M R; Monorchio, D; Moore, T B; Morandin, M; Morgan, S E; Morganti, M; Morganti, S; Morii, M; Morton, G W; Muheim, F; Müller, D R; Naisbit, M T; Narsky, I; Nash, J A; Nauenberg, U; Neal, H; Negrini, M; Neri, N; Nesom, G; Nicholson, H; Nikolich, M B; Nogowski, R; O'Grady, C P; Ocariz, J; Oddone, P J; Ofte, I; Olaiya, E O; Olivas, A; Olsen, J; Onuchin, A P; Orimoto, T J; Otto, S; Oyanguren, A; Ozcan, V E; Paar, H P; Pacetti, S; Palano, A; Palombo, F; Pan, Y; Panetta, J; Panvini, R S; Paoloni, E; Paolucci, P; Pappagallo, M; Parry, R J; Passaggio, S; Patel, P M; Patrignani, C; Patteri, P; Payne, D J; Pelizaeus, M; Perazzo, A; Perl, M; Peruzzi, I M; Peters, K; Petersen, B A; Petersen, T C; Petzold, A; Piatenko, T; Piccolo, D; Piccolo, M; Piemontese, L; Pierini, M; Pioppi, M; Piredda, G; Plaszczynski, S; Playfer, S; Poireau, V; Polci, F; Pompili, A; Porter, F C; Posocco, M; Potter, C T; Prell, S; Prepost, R; Pripstein, M; Pulliam, T; Purohit, M V; Qi, N D; Rahatlou, S; Rahimi, A M; Rama, M; Rankin, P; Ratcliff, B N; Raven, G; Reidy, J; Ricciardi, S; Richman, J D; Ritchie, J L; Rizzo, G; Roat, C; Roberts, D A; Robertson, S H; Robutti, E; Rodier, S; Roe, N A; Röthel, W; Ronan, M T; Roney, J M; Rong, G; Roodman, A; Roos, L; Rosenberg, E I; Rotondo, M; Roudeau, P; Rubin, A E; Ruddick, W O; Ryd, A; Sacco, R; Saeed, M A; Safai-Tehrani, F; Saleem, M; Salnikov, A A; Salvatore, F; Samuel, A; Sanders, D A; Santroni, A; Saremi, S; Satpathy, A; Schalk, T; Schenk, S; Schindler, R H; Schofield, K C; Schott, G; Schrenk, S; Schröder, H; Schröder, T; Schubert, J; Schubert, K R; Schumm, B A; Schune, M H; Schwiening, J; Schwierz, R; Schwitters, R F; Sciacca, C; Sciolla, G; Seiden, A; Sekula, S J; Serednyakov, S I; Sharma, V; Shen, B C; Simani, M C; Simi, G; Simonetto, F; Sinev, N B; Skovpen, Yu I; Smith, A J S; Smith, J G; Snoek, H L; Snyder, A; Sobie, R J; Soffer, A; Sokoloff, M D; Solodov, E P; Spaan, B; Spanier, S M; Spitznagel, M; Spradlin, P; Stängle, H; Steinke, M; Stelzer, J; Stocchi, A; Stoker, D P; Stroili, R; Strom, D; Strube, J; Stugu, B; Su, D; Sullivan, M K; Summers, D J; Sundermann, J E; Suzuki, K; Swain, S; Tan, P; Taras, P; Taylor, F; Taylor, G P; Telnov, A V; Teodorescu, L; Ter-Antonian, R; Therin, G; Thiebaux, C; Thompson, J M; Tisserand, V; Toki, W H; Torrence, E; Tosi, S; Touramanis, C; Ulmer, K A; Uwer, U; Vasileiadis, G; Vasseur, G; Vavra, J; Vazquez, W P; Verderi, M; Verkerke, W; Viaud, B; Vitale, L; Voci, C; Voena, C; Wagner, G; Wagner, S R; Wagoner, D E; Waldi, R; Walsh, J; Wang, K; Wang, P; Wappler, F R; Watson, A T; Weaver, M; Weidemann, A W; Weinstein, A J R; Wenzel, W A; Wilden, L; Williams, D C; Williams, J C; Willocq, S; Wilson, F F; Wilson, J R; Wilson, M G; Wilson, R J; Wisniewski, W J; Wittgen, M; Won, E; Wong, Q K; Wormser, G; Wright, D H; Wright, D M; Wu, J; Wu, S L; Xie, Y; Yamamoto, R K; Yarritu, A K; Ye, S; Yéche, C; Yi, J; Yi, K; Young, C C; Yu, Z; Yumiceva, F X; Yushkov, A N; Zain, S B; Zallo, A; Zeng, Q; Zghiche, A; Zhang, J; Zhang, L; Zhao, H W; Zhu, Y S; Zito, M; De Sangro, R; Del Re, D; La Vaissière, C de; Van Bakel, N; Von Wimmersperg-Töller, J H

    2005-01-01

    We report preliminary measurements of the charmless exclusive semileptonic branching fractions of the B0 --> pi- l+ nu and B+ --> pi0 l+ nu decays, based on 211 fb-1 of data collected at the Y(4S) resonance by the BABAR detector. In events in which the decay of one B meson to a hadronic final state is fully reconstructed, the semileptonic decay of the second B meson is identified by the detection of a charged lepton and a pion. We measure the partial branching fractions for B0 --> pi- l+ nu and B+ --> pi0 l+ nu in three regions of the invariant mass squared of the lepton pair, and we obtain the total branching fractions BF(B0 --> pi- l+ nu) = (1.14 +/- 0.27(stat) +/- 0.17(syst)) x 10^-4 and BF(B+ --> pi0 l+ nu) = (0.86 +/- 0.22(stat) +/- 0.11(syst)) x 10^-4. Using isospin symmetry, we measure the combined total branching fraction BF(B0 --> pi- l+ nu) = (1.28 +/- 0.23(stat) +/- 0.16(syst)) x 10^-4. Theoretical predictions of the form-factor are used to determine the magnitude of the Cabibbo-Kobayashi-Maskawa m...

  17. Prostaglandin Receptor Signaling in Disease

    Directory of Open Access Journals (Sweden)

    Toshiyuki Matsuoka

    2007-01-01

    Full Text Available Prostanoids, consisting of the prostaglandins (PGs and the thromboxanes (TXs, are a group of lipid mediators formed in response to various stimuli. They include PGD2, PGE2, PGF2α, PGI2, and TXA2. They are released outside of the cells immediately after synthesis, and exert their actions by binding to a G-protein coupled rhodopsin-type receptor on the surface of target cells. There are eight types of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP, four subtypes of the PGE receptor (EP1, EP2, EP3, and EP4, the PGF receptor (FP, PGI receptor (IP, and TXA receptor (TP. Recently, mice deficient in each of these prostanoid receptors were generated and subjected to various experimental models of disease. These studies have revealed the roles of PG receptor signaling in various pathological conditions, and suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of the pathological conditions. Here we review these recent findings of roles of prostanoid receptor signaling and their therapeutic implications.

  18. Purinergic receptor-induced Ca2+ signaling in the neuroepithelium of the vomeronasal organ of larval Xenopus laevis.

    Science.gov (United States)

    Dittrich, Katarina; Sansone, Alfredo; Hassenklöver, Thomas; Manzini, Ivan

    2014-01-01

    Purinergic signaling has considerable impact on the functioning of the nervous system, including the special senses. Purinergic receptors are expressed in various cell types in the retina, cochlea, taste buds, and the olfactory epithelium. The activation of these receptors by nucleotides, particularly adenosine-5'-triphosphate (ATP) and its breakdown products, has been shown to tune sensory information coding to control the homeostasis and to regulate the cell turnover in these organs. While the purinergic system of the retina, cochlea, and taste buds has been investigated in numerous studies, the available information about purinergic signaling in the olfactory system is rather limited. Using functional calcium imaging, we identified and characterized the purinergic receptors expressed in the vomeronasal organ of larval Xenopus laevis. ATP-evoked activity in supporting and basal cells was not dependent on extracellular Ca(2+). Depletion of intracellular Ca(2+) stores disrupted the responses in both cell types. In addition to ATP, supporting cells responded also to uridine-5'-triphosphate (UTP) and adenosine-5'-O-(3-thiotriphosphate) (ATPγS). The response profile of basal cells was considerably broader. In addition to ATP, they were activated by ADP, 2-MeSATP, 2-MeSADP, ATPγS, UTP, and UDP. Together, our findings suggest that supporting cells express P2Y(2)/P2Y(4)-like purinergic receptors and that basal cells express multiple P2Y receptors. In contrast, vomeronasal receptor neurons were not sensitive to nucleotides, suggesting that they do not express purinergic receptors. Our data provide the basis for further investigations of the physiological role of purinergic signaling in the vomeronasal organ and the olfactory system in general. PMID:24271060

  19. Ligand-Receptor Interactions

    CERN Document Server

    Bongrand, Pierre

    2008-01-01

    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the ...

  20. Angiotensin type 2 receptors

    DEFF Research Database (Denmark)

    Sumners, Colin; de Kloet, Annette D; Krause, Eric G;

    2015-01-01

    In most situations, the angiotensin AT2-receptor (AT2R) mediates physiological actions opposing those mediated by the AT1-receptor (AT1R), including a vasorelaxant effect. Nevertheless, experimental evidence vastly supports that systemic application of AT2R-agonists is blood pressure neutral....... However, stimulation of AT2R locally within the brain or the kidney apparently elicits a systemic blood pressure lowering effect. A systemic effect of AT2R stimulation on blood pressure can also be achieved, when the prevailing effect of continuous background AT1R-stimulation is attenuated by low-dose AT1......R blockade. Despite a lack of effect on blood pressure, AT2R stimulation still protects from hypertensive end-organ damage. Current data and evidence therefore suggest that AT2R agonists will not be suitable as future anti-hypertensive drugs, but that they may well be useful for end-organ protection...

  1. Glutamate Receptors in Plants

    OpenAIRE

    Davenport, Romola

    2002-01-01

    Ionotropic glutamate receptors function in animals as glutamate‐gated non‐selective cation channels. Numerous glutamate receptor‐like (GLR) genes have been identified in plant genomes, and plant GLRs are predicted, on the basis of sequence homology, to retain ligand‐binding and ion channel activity. Non‐selective cation channels are ubiquitous in plant membranes and may function in nutrient uptake, signalling and intra‐plant transport. However, there is little evidence for amino acid gating o...

  2. Sensory receptors in monotremes.

    OpenAIRE

    Proske, U; Gregory, J E; Iggo, A.

    1998-01-01

    This is a summary of the current knowledge of sensory receptors in skin of the bill of the platypus, Ornithorhynchus anatinus, and the snout of the echidna, Tachyglossus aculeatus. Brief mention is also made of the third living member of the monotremes, the long-nosed echidna, Zaglossus bruijnii. The monotremes are the only group of mammals known to have evolved electroreception. The structures in the skin responsible for the electric sense have been identified as sensory mucous glands with a...

  3. Somatostatin receptor skintigrafi

    DEFF Research Database (Denmark)

    Rasmussen, Karin; Nielsen, Jørn Theil; Rehling, Michael

    2005-01-01

    Somatostatin receptor scintigraphy (SRS) is a very valuable imaging technique for visualisation of a diversity of neuroendocrine tumours. The sensitivity for localisation of carcinoid tumours is high, but somewhat lower for other neuroendocrine tumours. The methodology, multiple clinical aspects...... and limitations of the examination are described. The value of the method in patients with non-neuroendocrine tumours has yet to be established. The development of new radio-labelled somatostatin analogues for diagnosis and treatment is briefly discussed....

  4. Somato-dendritic localization and signaling by leptin receptors in hypothalamic POMC and AgRP neurons.

    Directory of Open Access Journals (Sweden)

    Sangdeuk Ha

    Full Text Available Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC and agouti-related peptide (AgRP/Neuropeptide Y (NPY/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb. Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM, confocal-laser scanning microscopy (CLSM, and electron microscopy (EM to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb (+/+ mice and in Leprb (db/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin's central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms.

  5. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin

    2013-05-01

    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  6. Teaching old receptors new tricks: biasing seven-transmembrane receptors

    OpenAIRE

    Rajagopal, Sudarshan; Rajagopal, Keshava; Lefkowitz, Robert J.

    2010-01-01

    Seven-transmembrane receptors (7TMRs; also known as G protein-coupled receptors) are the largest class of receptors in the human genome and are common targets for therapeutics. Originally identified as mediators of 7TMR desensitization, β-arrestins (arrestin 2 and arrestin 3) are now recognized as true adaptor proteins that transduce signals to multiple effector pathways. Signalling that is mediated by β-arrestins has distinct biochemical and functional consequences from those mediated by G p...

  7. Earthquake source characteristics along the arcuate Himalayan belt: Geodynamic implications

    Indian Academy of Sciences (India)

    Prosanta Kumar Khan; Md Afroz Ansari; S Mohanty

    2014-07-01

    The occurrences of moderate to large magnitude earthquakes and associated subsurface geological processes were critically examined in the backdrop of Indian plate obliquity, stress obliquity, topography, and the late Tertiary regional tectonics for understanding the evolving dynamics and kinematics in the central part of the Himalayas. The higher topographic areas are likely associated with the zones of depressions, and the lower topographic areas are found around the ridges located in the frontal part of the orogen. A positive correlation between plate and stress obliquities is established for this diffuse plate boundary. We propose that the zone of sharp bending of the descending Indian lithosphere is the nodal area of major stress accumulation which is released occasionally in form of earthquakes. The lateral geometry of the Himalayas shows clusters of seismicity at an angle of ∼20° from the centre part of the arc. Such spatial distribution is interpreted in terms of compression across the arc and extension parallel to the arc. This biaxial deformation results in the development of dilational shear fractures, observed along the orogenic belt, at an angle of ∼20° from the principal compressive stress axis.

  8. Word learning is mediated by the left arcuate fasciculus.

    Science.gov (United States)

    López-Barroso, Diana; Catani, Marco; Ripollés, Pablo; Dell'Acqua, Flavio; Rodríguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2013-08-01

    Human language requires constant learning of new words, leading to the acquisition of an average vocabulary of more than 30,000 words in adult life. The ability to learn new words is highly variable and may rely on the integration between auditory and motor information. Here, we combined diffusion imaging tractography and functional MRI to study whether the strength of anatomical and functional connectivity between auditory and motor language networks is associated with word learning ability. Our results showed that performance in word learning correlates with microstructural properties and strength of functional connectivity of the direct connections between Broca's and Wernicke's territories in the left hemisphere. This study suggests that our ability to learn new words relies on an efficient and fast communication between temporal and frontal areas. The absence of these connections in other animals may explain the unique ability of learning words in humans. PMID:23884655

  9. Celiac Injury Due to Arcuate Ligament: An Endovascular Approach

    International Nuclear Information System (INIS)

    Celiac trunk injures are rare events, with high mortality rates and difficult management. Endovascular treatment may be considered to avoid bleeding. We report a case of severe bleeding in a 37-year-old man resulting from celiac trunk stretching after a motorcycle crash. Because direct celiac trunk catheterization was not possible, a retrograde catheterization of the common hepatic artery was performed via the superior mesenteric artery. Two vascular plugs (type IV) were released, and the exclusion of the celiac trunk origin was completed with the deployment of an aortic cuff. The patient’s clinical condition immediately improved, and after 6 months’ follow-up, imaging confirmed the complete exclusion of the celiac trunk.

  10. Celiac Injury Due to Arcuate Ligament: An Endovascular Approach

    Energy Technology Data Exchange (ETDEWEB)

    Zini, Chiara, E-mail: zini.chiara@gmail.com; Corona, Mario, E-mail: mario.corona@uniroma.it; Boatta, Emanuele, E-mail: emanuele.boatta@yahoo.it; Wlderk, Andrea, E-mail: a.wlderk@virgilio.it; Salvatori, Filippo Maria, E-mail: filippomaria.salvatori@uniroma1.it; Fanelli, Fabrizio, E-mail: fabrizio.fanelli@uniroma1.it [' Sapienza,' -University of Rome, Vascular and Interventional Radiology Unit, Radiology, Oncology and Pathology Department (Italy)

    2013-06-15

    Celiac trunk injures are rare events, with high mortality rates and difficult management. Endovascular treatment may be considered to avoid bleeding. We report a case of severe bleeding in a 37-year-old man resulting from celiac trunk stretching after a motorcycle crash. Because direct celiac trunk catheterization was not possible, a retrograde catheterization of the common hepatic artery was performed via the superior mesenteric artery. Two vascular plugs (type IV) were released, and the exclusion of the celiac trunk origin was completed with the deployment of an aortic cuff. The patient's clinical condition immediately improved, and after 6 months' follow-up, imaging confirmed the complete exclusion of the celiac trunk.

  11. Endothelin receptor-mediated vasodilatation

    DEFF Research Database (Denmark)

    Nilsson, David; Wackenfors, Angelica; Gustafsson, Lotta;

    2008-01-01

    Culture of intact arteries is a frequently employed experimental model for investigating the mechanisms governing the regulation of vascular endothelin receptors. Endothelin type A (ET(A)) and type B (ET(B)) receptors on vascular smooth muscle cells are up-regulated in organ culture and the...... enhanced vasoconstriction mimics the changes that occur in cardiovascular disease. The effect of organ culture on endothelial dilatory endothelin ET(B) receptors is not known. We hypothesize that organ culture decreases the endothelin receptor-mediated dilatation and that this is one possible mechanism by...... denudation. The increase in sarafotoxin 6c contraction after removal of the endothelium was more pronounced before than after organ culture, suggesting down-regulated endothelial endothelin ET(B) receptors. Also, the immunofluorescence staining intensities for endothelial endothelin ET(B) receptors were...

  12. Tubular crystals of acetylcholine receptor

    OpenAIRE

    1984-01-01

    Well-ordered tubular crystals of acetylcholine receptor were obtained from suspensions of Torpedo marmorata receptor-rich vesicles. They are composed of pairs of oppositely oriented molecules arranged on the surface lattice with the symmetry of the plane group p2 (average unit cell dimensions: a = 90 A, b = 162 A, gamma = 117 degrees). The receptor in this lattice has an asymmetric distribution of mass around its perimeter, yet a regular pentagonal shape; thus its five transmembrane subunits ...

  13. Receptors of mammalian trace amines

    OpenAIRE

    Lewin, Anita H.

    2006-01-01

    The discovery of a family of G-protein coupled receptors, some of which bind and are activated by biogenic trace amines, has prompted speculation as to the physiological role of these receptors. Observations associated with the distribution of these trace amine associated receptors (TAARs) suggest that they may be involved in depression, attention-deficit hyperactivity disorder, eating disorders, migraine headaches, and Parkinson's disease. Preliminary in vitro data, obtained using cloned rec...

  14. Immunobiology of the TAM receptors

    OpenAIRE

    Lemke, Greg; Rothlin, Carla V.

    2008-01-01

    Recent studies have revealed that the TAM receptor protein tyrosine kinases — TYRO3, AXL and MER — have pivotal roles in innate immunity. They inhibit inflammation in dendritic cells and macrophages, promote the phagocytosis of apoptotic cells and membranous organelles, and stimulate the maturation of natural killer cells. Each of these phenomena may depend on a cooperative interaction between TAM receptor and cytokine receptor signalling systems. Although its importance was previously unreco...

  15. Serotonin receptors as cardiovascular targets

    OpenAIRE

    Villalón, Carlos; De Vries, Peter; Saxena, Pramod Ranjan

    1997-01-01

    textabstractSerotonin exerts complex effects in the cardiovascular system, including hypotension or hypertension, vasodilatation or vasoconstriction, and/or bradycardia or tachycardia; the eventual response depends primarily on the nature of the 5-HT receptors involved. In the light of current 5-HT receptor classification, the authors reanalyse the cardiovascular responses mediated by 5-HT receptors and discuss the established and potential therapeutic applications of 5-HT ligands in the trea...

  16. Flavonoid modulation of GABAA receptors

    OpenAIRE

    Jane R. Hanrahan; Chebib, Mary; Johnston, Graham A. R.

    2011-01-01

    There has been a resurgence of interest in synthetic and plant-derived flavonoids as modulators of γ-amino butyric acid-A (GABAA) receptor function influencing inhibition mediated by the major inhibitory neurotransmitter GABA in the brain. Areas of interest include (i) flavonoids that show subtype selectivity in recombinant receptor studies in vitro consistent with their behavioural effects in vivo, (ii) flumazenil-insensitive modulation of GABAA receptor function by flavonoids, (iii) the abi...

  17. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R; Schwartz, T W

    2001-01-01

    A number of herpes- and poxviruses encode 7TM G-protein coupled receptors most of which clearly are derived from their host chemokine system as well as induce high expression of certain 7TM receptors in the infected cells. The receptors appear to be exploited by the virus for either immune evasion...... expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets....

  18. ¿Una teología del martirio en 1QHª y 4Q491c?: Aportes para la comprensión de la cristología del Hijo del hombre joánico ¿A Theology of martyrdom in 1QHª y 4Q491c?: Contributions to the understanding of the Chistology of the Johannine Son of man

    Directory of Open Access Journals (Sweden)

    César Carbullanca Núñez

    2011-09-01

    Full Text Available El artículo pretende poner en duda las explicaciones acerca de la existencia de una cristología de la exaltación o una dependencia de los dichos sinópticos sobre el Hijo del hombre y además pretende dar antecedentes sobre la vinculación entre exaltación y muerte en el texto de los 1QHa y 4Q491c presente en la literatura de Qumrán, lo que arroja luz acerca de la existencia de una teología del martirio que se desarrolló en tiempos pre-cristianos que integraba tanto los aspectos de persecución y sufrimiento en el servicio a Dios como el de una posterior exaltación. El artículo analiza los textos 1QHa y 4Q491c mostrando que la secuencia sufrimiento-exaltación a los cielos, el uso del término «exaltación» y «glorificación», ya se encuentran antes de su uso cristiano. Estas pruebas demuestran lo arbitrario de algunas teorías que pretenden dividir los relatos de la pasión joánico sosteniendo que habría existido una «cristología de la exaltación» independiente del relato de la muerte del Hijo del hombre y postula, por consiguiente, la necesidad de una visión más integral de la cristología joánica.The This article attempts to cast doubt on explanations for the existence of a Christology of exaltation or reliance on such a Synoptics on the Son of man and therefore seeks to give a prior history of the links between exaltation and death in the text of the 1QHa and 4Q491c present in the Qumrán lüerature, which sheds light on the existence of a theology of martyrdom that took place in pre-Christian times that integrates aspects of persecution and suffering in the service of God as the subsequent exaltation. The article analyzes texts 1QHa and 4Q491c sequence showing suffering exaltation to heaven, the term «exaltation» and «glorification» are already Christian before use These tests demónstrate the arbitrariness of some theories that try to divide the accounts of thejohannine passion arguing that there had been a

  19. Kinins and peptide receptors.

    Science.gov (United States)

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  20. Role of iso-receptors in receptor-receptor interactions with a focus on dopamine iso-receptor complexes.

    Science.gov (United States)

    Agnati, Luigi F; Guidolin, Diego; Cervetto, Chiara; Borroto-Escuela, Dasiel O; Fuxe, Kjell

    2016-01-01

    Intercellular and intracellular communication processes consist of signals and recognition/decoding apparatuses of these signals. In humans, the G protein-coupled receptor (GPCR) family represents the largest family of cell surface receptors. More than 30 years ago, it has been proposed that GPCR could form dimers or higher-order oligomers (receptor mosaics [RMs] at the plasma membrane level and receptor-receptor interactions [RRIs] have been proposed as a new integrative mechanism for chemical signals impinging on cell plasma membranes). The basic phenomena involved in RRIs are allostery and cooperativity of membrane receptors, and the present paper provides basic information concerning their relevance for the integrative functions of RMs. In this context, the possible role of iso-receptor RM is discussed (with a special focus on dopamine receptor subtypes and on some of the RMs they form with other dopamine iso-receptors), and it is proposed that two types of cooperativity, namely, homotropic and heterotropic cooperativity, could allow distinguishing two types of functionally different RMs. From a general point of view, the presence of iso-receptors and their topological organization within RMs allow the use of a reduced number of signals for the intercellular communication processes, since the target cells can recognize and decode the same signal in different ways. This theoretical aspect is further analyzed here by means of an analogy with artificial information systems. Thus, it is suggested that the 'multiplexer' and 'demultiplexer' concepts could, at least in part, model the role of RMs formed by iso-receptors in the information handling by the cell. PMID:26418645

  1. Receptor studies in biological psychiatry

    International Nuclear Information System (INIS)

    Recent advances in the pharmacological treatment of endogenous psychosis have led to the development of biological studies in psychiatry. Studies on neurotransmitter receptors were reviewed in order to apply positron-emission tomograph (PET) for biological psychiatry. The dopamine (DA) hypothesis for schizophrenia was advanced on the basis of the observed effects of neuroleptics and methamphetamine, and DA(D2) receptor supersensitivity measured by PET and receptor binding in the schizophrenic brain. The clinical potencies of neuroleptics for schizophrenia were correlated with their abilities to inhibit the D2 receptor, and not other receptors. The σ receptor was expected to be a site of antipsychotic action. However, the potency of drugs action on it was not correlated with clinical efficacy. Haloperidol binds with high affinity to the σ receptor, which may mediate acute dystonia, an extrapyramidal side effect of neuroleptics. Behavioral and neurochemical changes induced by methamphetamine treatment were studied as an animal model of schizophrenia, and both a decrease of D2 receptor density and an increase of DA release were detected. The monoamine hypothesis for manic-depressive psychosis was advanced on the basis of the effect of reserpine, monoamine oxidase inhibitor and antidepressants. 3H-clonidine binding sites were increased in platelet membranes of depressive patients, 3H-imipramine binding sites were decreased. The GABAA receptor is the target site for the action of anxiolytics and antiepileptics such as benzodiazepines and barbiturates. Recent developments in molecular biology techniques have revealed the structure of receptor proteins, which are classified into two receptor families, the G-protein coupled type (D2) and the ion-channel type (GABAA). (J.P.N.)

  2. κ-Opioid Receptor Is Colocalized in GnRH and KNDy Cells in the Female Ovine and Rat Brain.

    Science.gov (United States)

    Weems, Peyton W; Witty, Christine F; Amstalden, Marcel; Coolen, Lique M; Goodman, Robert L; Lehman, Michael N

    2016-06-01

    Kisspeptin-neurokinin B-dynorphin (KNDy) cells of the hypothalamus are a key component in the neuroendocrine regulation of GnRH secretion. Evidence in sheep and other species suggests that dynorphin released by KNDy cells inhibits pulsatile GnRH secretion by acting upon κ-opioid receptors (KOR). However, the precise anatomical location and neurochemical phenotype of KOR-expressing cells in sheep remain unknown. To this end, we determined the distribution of KOR mRNA and protein in the brains of luteal phase ewes, using an ovine specific KOR mRNA probe for in situ hybridization and an antibody whose specificity we confirmed by Western blot analyses and blocking peptide controls. KOR cells were observed in a number of regions, including the preoptic area (POA); anterior hypothalamic area; supraoptic and paraventricular nuclei; ventromedial, dorsomedial, and lateral hypothalamus; and arcuate nucleus. Next, we determined whether KOR is colocalized in KNDy and/or GnRH cells. Dual-label immunofluorescence and confocal analysis of the KNDy population showed a high degree of colocalization, with greater than 90% of these neurons containing KOR. Surprisingly, GnRH cells also showed high levels of colocalization in sheep, ranging from 74.4% to 95.4% for GnRH cells in the POA and medial basal hypothalamus, respectively. Similarly, 97.4% of GnRH neurons in the POA of ovariectomized, steroid-primed female rats also contained immunoreactive KOR protein. These findings suggest that the inhibitory effects of dynorphin on pulsatile GnRH secretion may occur either indirectly by actions upon KOR within the KNDy population and/or directly via the activation of KOR on GnRH cells. PMID:27064940

  3. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    Directory of Open Access Journals (Sweden)

    Malgorzata S. Martin-Gronert

    2016-04-01

    Full Text Available Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC peptides within the arcuate nucleus of the hypothalamus (ARC. We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.

  4. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats.

    Science.gov (United States)

    Martin-Gronert, Malgorzata S; Stocker, Claire J; Wargent, Edward T; Cripps, Roselle L; Garfield, Alastair S; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S H; Cawthorne, Michael A; Arch, Jonathan R S; Heisler, Lora K; Ozanne, Susan E

    2016-04-01

    Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  5. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  6. STRUCTURAL BIOLOGY: A moving story of receptors

    OpenAIRE

    Schwartz, Thue W; Hubbell, Wayne L.

    2008-01-01

    Animals sense light and chemical signals through proteins called G-protein-coupled receptors. The crystal structure of one such receptor in complex with a G-protein fragment shows how these receptors are activated.

  7. Genetics Home Reference: leptin receptor deficiency

    Science.gov (United States)

    ... Understand Genetics Home Health Conditions leptin receptor deficiency leptin receptor deficiency Enable Javascript to view the expand/ ... boxes. Print All Open All Close All Description Leptin receptor deficiency is a condition that causes severe ...

  8. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  9. *601007 LEPTIN RECEPTOR; LEPR [OMIM

    Lifescience Database Archive (English)

    Full Text Available FIELD NO 601007 FIELD TI 601007 LEPTIN RECEPTOR; LEPR ;;OBR FIELD TX DESCRIPTION Leptin (LEP; 16 ... ession of the OBR gene in hypothalamic tissue from lean ... and obese humans. The tissue was obtained shortly ... ference in the amount of leptin-receptor mRNA in 7 lean ... and 8 obese subjects as determined by RT-PCR. A se ...

  10. Dopamine Receptors and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Shin Hisahara

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive extrapyramidal motor disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS. In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.

  11. MET Receptor Tyrosine Kinase

    Science.gov (United States)

    Faoro, Leonardo; Cervantes, Gustavo M.; El-Hashani, Essam; Salgia, Ravi

    2010-01-01

    MET receptor tyrosine kinase (RTK) and its ligand hepatocyte growth factor (HGF) have become important therapeutic target in oncology, especially lung cancer. MET RTK is involved in cancer cell growth/survival, motility/migration, invasion/metastasis, and in angiogenesis. MET can be overexpressed in lung cancer, sometimes mutated, and sometimes amplified. Not only can MET be overexpressed, there are subsets of lung cancer tumors that have HGF overexpression. The mutations of MET can occur in the semaphorin and/or juxtamembrane domain in a majority of times. Amplification of MET can occur de novo in primary/metastatic tumors, as well arise in the context of therapeutic inhibition. There are a number of clinical inhibitors that have been developed against MET/HGF. Small molecule inhibitors such as XL184 and PF02341066 have come to clinical fruition, as well as antibodies against MET (such as MetMAb). These inhibitors will be discussed. PMID:19861919

  12. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1

    DEFF Research Database (Denmark)

    Morland, Cecilie; Lauritzen, Knut Huso; Puchades, Maja;

    2015-01-01

    We have proposed that lactate is a “volume transmitter” in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes the ...

  13. Discoidin domain receptors in disease.

    Science.gov (United States)

    Borza, Corina M; Pozzi, Ambra

    2014-02-01

    Discoidin domain receptors, DDR1 and DDR2, lie at the intersection of two large receptor families, namely the extracellular matrix and tyrosine kinase receptors. As such, DDRs are uniquely positioned to function as sensors for extracellular matrix and to regulate a wide range of cell functions from migration and proliferation to cytokine secretion and extracellular matrix homeostasis/remodeling. While activation of DDRs by extracellular matrix collagens is required for normal development and tissue homeostasis, aberrant activation of these receptors following injury or in disease is detrimental. The availability of mice lacking DDRs has enabled us to identify key roles played by these receptors in disease initiation and progression. DDR1 promotes inflammation in atherosclerosis, lung fibrosis and kidney injury, while DDR2 contributes to osteoarthritis. Furthermore, both DDRs have been implicated in cancer progression. Yet the mechanisms whereby DDRs contribute to disease progression are poorly understood. In this review we highlight the mechanisms whereby DDRs regulate two important processes, namely inflammation and tissue fibrosis. In addition, we discuss the challenges of targeting DDRs in disease. Selective targeting of these receptors requires understanding of how they interact with and are activated by extracellular matrix, and whether their cellular function is dependent on or independent of receptor kinase activity. PMID:24361528

  14. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [123I]TISCH for D1 dopamine receptors; [123I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [123I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  15. Purinergic receptors in psychiatric disorders.

    Science.gov (United States)

    Krügel, Ute

    2016-05-01

    Psychiatric disorders describe different mental or behavioral patterns, causing suffering or poor coping of ordinary life with manifold presentations. Multifactorial processes can contribute to their development and progression. Purinergic neurotransmission and neuromodulation in the brain have attracted increasing therapeutic interest in the field of psychiatry. Purine nucleotides and nucleosides are well recognized as signaling molecules mediating cell to cell communication. The actions of ATP are mediated by ionotropic P2X and metabotropic P2Y receptor subfamilies, whilst the actions of adenosine are mediated by P1 (A1 or A2) adenosine receptors. Purinergic mechanisms and specific receptor subtypes have been shown to be linked to the regulation of many aspects of behavior and mood and to dysregulation in pathological processes of brain function. In this review the recent knowledge on the role of purinergic receptors in the two most frequent psychiatric diseases, major depression and schizophrenia, as well as on related animal models is summarized. At present the most promising data for therapeutic strategies derive from investigations of the adenosine system emphasizing a unique function of A2A receptors at neurons and astrocytes in these disorders. Among the P2 receptor family, in particular P2X7 and P2Y1 receptors were related to disturbances in major depression and schizophrenia, respectively. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. PMID:26518371

  16. Immunisation with Torpedo acetylcholine receptor.

    Science.gov (United States)

    Elfman, L

    1984-01-01

    Acetylcholine mediates the transfer of information between neurons in the electric organ of, for example, Torpedo as well as in vertebrate skeletal muscle. The nicotinic acetylcholine receptor complex translates the binding of acetylcholine into ion permeability changes. This leads to an action potential in the muscle fibre. The nicotinic acetylcholine receptor protein has been purified from Torpedo by use of affinity chromatography. The receptor is an intrinsic membrane glycoprotein composed of five polypeptide chains. When various animals are immunised with the receptor they demonstrate clinical signs of severe muscle weakness coincident with high antibody titres in their sera. The symptoms resemble those found in the autoimmune neuromuscular disease myasthenia gravis in humans. This animal model has constituted a unique model for studying autoimmune diseases. This paper reviews some of the work using Torpedo acetylcholine receptor in order to increase the understanding of the motor nervous system function and myasthenia gravis. It is now known that the nicotinic acetylcholine receptor protein is the antigen involved in myasthenia gravis. The mechanism of immune damage involves a direct block of the receptor function. This depends on the presence of antibodies which crosslink the postsynaptic receptors leading to their degradation. The questions to be answered in the future are; (a) what initiates or triggers the autoimmune response, (b) how do the antibodies cause the symptoms--is there a steric hindrance of the interaction of acetylcholine and the receptor, (c) why is there not a strict relationship between antibody titre and severity of symptoms, and (d) why are some muscles affected and other spared? With help of the experimental model, answers to these questions may result in improved strategies for the treatment of the autoimmune disease myasthenia gravis. PMID:6097937

  17. Hemoglobin and heme scavenger receptors

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis and......-binding haptoglobin and the receptor CD163, and b) the heme-binding hemopexin and the receptor low density lipoprotein receptor-related protein/CD91. Apart from the disclosure of the molecular basis for these important heme scavenging systems by identifying the functional link between the carrier proteins and the...

  18. Chronic inflammatory pain upregulates expression of P2Y2 receptor in small-diameter sensory neurons.

    Science.gov (United States)

    Zhu, Huiqin; Yu, Yi; Zheng, Lingyan; Wang, Lu; Li, Chenli; Yu, Jiangyuan; Wei, Jing; Wang, Chuang; Zhang, Junfang; Xu, Shujun; Wei, Xiaofei; Cui, Wei; Wang, Qinwen; Chen, Xiaowei

    2015-12-01

    Roles of ionotropic purinergic (P2X) receptors in chronic pain have been intensively investigated. However, the contribution of metabotropic purinergic (P2Y) receptors to pathological pain is controversial. In the present study, using single cell RT-PCR (reverse transcription-polymerase chain reaction) and single cell nested-PCR techniques, we examined the expression of P2X(2), P2X(3), P2Y(1) and P2Y(2) mRNA transcripts in retrogradely labeled cutaneous sensory neurons from mouse lumber dorsal root ganglia (DRGs) following peripheral inflammation. The percentage of cutaneous sensory neurons expressing P2Y(2) mRNA transcripts increased after complete Freund's adjuvant (CFA) treatment. Particularly, the P2Y(2) mRNA transcripts were more frequently detected in small-diameter cutaneous neurons from CFA-treated mice than those from control mice. Coexpression of P2Y(2) and P2X (P2X(2) or P2X(3)) mRNAs was more frequently observed in cutaneous sensory neurons from CFA-treated mice relative to controls. Pain behavioral tests showed that the blockade of P2Y receptors by suramin attenuated mechanical allodynia evoked either by CFA or uridine triphosphate (UTP), an endogenous P2Y(2) and P2Y(4) agonist. These results suggest that chronic inflammatory pain enhances expression of P2Y(2) receptor in peripheral sensory neurons that innervate the injured tissue and the activation of P2Y receptors contributes to mechanical allodynia following inflammation. PMID:26062804

  19. Presence of diadenosine polyphosphates in microdialysis samples from rat cerebellum in vivo: effect of mild hyperammonemia on their receptors.

    Science.gov (United States)

    Gualix, Javier; Gómez-Villafuertes, Rosa; Pintor, Jesús; Llansola, Marta; Felipo, Vicente; Miras-Portugal, M Teresa

    2014-01-01

    Diadenosine triphosphate (Ap(3)A), diadenosine tetraphosphate (Ap(4)A), and diadenosine pentaphosphate (Ap(5)A) have been identified in microdialysis samples from the cerebellum of conscious freely moving rats, under basal conditions, by means of a high-performance liquid chromatography method. The occurrence of Ap(3)A in the cerebellar microdyalisates is noteworthy, as the presence of this compound in the interstitial medium in neural tissues has not been previously described. The concentrations measured for the diadenosine polyphosphates in the cerebellar dialysate were (in nanomolar) 10.5 ± 2.9, 5.4 ± 1.2, and 5.8 ± 1.3 for Ap(3)A, Ap(4)A, and Ap(5)A, respectively. These concentrations are in the range that allows the activation of the presynaptic dinucleotide receptor in nerve terminals. However, a possible interaction of these dinucleotides with other purinergic receptors cannot be ruled out, as rat cerebellum expresses a variety of P2X or P2Y receptors susceptible to be activated by diadenosine polyphosphates, such as the P2X1-4, P2Y(1), P2Y(2), P2Y(4), and P2Y(12) receptors, as demonstrated by quantitative real-time PCR. Also, the ecto-nucleotide pyrophosphatases/phosphodiesterases NPP1 and NPP3, able to hydrolyze the diadenosine polyphosphates and terminate their extracellular actions, are expressed in the rat cerebellum. All these evidences contribute to reinforce the role of diadenosine polyphosphates as signaling molecules in the central nervous system. Finally, we have analyzed the possible differences in the concentration of diadenosine polyphosphates in the cerebellar extracellular medium and changes in the expression levels of their receptors and hydrolyzing enzymes in an animal model of moderate hyperammonemia. PMID:23943472

  20. Quantitative receptor radioautography in the study of receptor-receptor interactions in the nucleus tractus solitarii

    Directory of Open Access Journals (Sweden)

    Fior-Chadi D.R.

    1998-01-01

    Full Text Available The nucleus tractus solitarii (NTS in the dorsomedial medulla comprises a wide range of neuropeptides and biogenic amines. Several of them are related to mechanisms of central blood pressure control. Angiotensin II (Ang II, neuropeptide Y (NPY and noradrenaline (NA are found in the NTS cells, as well as their receptors. Based on this observation we have evaluated the modulatory effect of these peptide receptors on a2-adrenoceptors in the NTS. Using quantitative receptor radioautography, we observed that NPY and Ang II receptors decreased the affinity of a2-adrenoceptors for their agonists in the NTS of the rat. Cardiovascular experiments agreed with the in vitro data. Coinjection of a threshold dose of Ang II or of the NPY agonists together with an ED50 dose of adrenergic agonists such as NA, adrenaline and clonidine counteracted the depressor effect produced by the a2-agonist in the NTS. The results provide evidence for the existence of an antagonistic interaction between Ang II at1 receptors and NPY receptor subtypes with the a2-adrenoceptors in the NTS. This receptor interaction may reduce the transduction over the a2-adrenoceptors which can be important in central cardiovascular regulation and in the development of hypertension

  1. Profiling Epidermal Growth Factor Receptor and Heregulin Receptor 3 Heteromerization Using Receptor Tyrosine Kinase Heteromer Investigation Technology

    OpenAIRE

    Mohammed Akli Ayoub; Heng B See; Seeber, Ruth M.; Armstrong, Stephen P.; Pfleger, Kevin D.G.

    2013-01-01

    Heteromerization can play an important role in regulating the activation and/or signal transduction of most forms of receptors, including receptor tyrosine kinases (RTKs). The study of receptor heteromerization has evolved extensively with the emergence of resonance energy transfer based approaches such as bioluminescence resonance energy transfer (BRET). Here, we report an adaptation of our Receptor-Heteromer Investigation Technology (Receptor-HIT) that has recently been published as the G p...

  2. Are olfactory receptors really olfactive?

    DEFF Research Database (Denmark)

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    consequence of the environmental conditions olfactory receptor genes have explored during evolution. The association of odorant patterns with specific environmental or contextual situations makes their relationship semiotically triadic, due to the emergence of an interpretant capable of perceiving odorants as...

  3. A threading receptor for polysaccharides.

    Science.gov (United States)

    Mooibroek, Tiddo J; Casas-Solvas, Juan M; Harniman, Robert L; Renney, Charles M; Carter, Tom S; Crump, Matthew P; Davis, Anthony P

    2016-01-01

    Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic receptor designed to form threaded complexes (polypseudorotaxanes) with these natural polymers. The receptor binds fragments of the polysaccharides in aqueous solution with high affinities (K(a) up to 19,000 M(-1)), and is shown--by nuclear Overhauser effect spectroscopy--to adopt the threading geometry. Evidence from induced circular dichroism and atomic force microscopy implies that the receptor also forms polypseudorotaxanes with cellulose and its polycationic analogue chitosan. The results hold promise for polysaccharide solubilization under mild conditions, as well as for new approaches to the design of biologically active molecules. PMID:26673266

  4. A threading receptor for polysaccharides

    Science.gov (United States)

    Mooibroek, Tiddo J.; Casas-Solvas, Juan M.; Harniman, Robert L.; Renney, Charles M.; Carter, Tom S.; Crump, Matthew P.; Davis, Anthony P.

    2016-01-01

    Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic receptor designed to form threaded complexes (polypseudorotaxanes) with these natural polymers. The receptor binds fragments of the polysaccharides in aqueous solution with high affinities (Ka up to 19,000 M-1), and is shown—by nuclear Overhauser effect spectroscopy—to adopt the threading geometry. Evidence from induced circular dichroism and atomic force microscopy implies that the receptor also forms polypseudorotaxanes with cellulose and its polycationic analogue chitosan. The results hold promise for polysaccharide solubilization under mild conditions, as well as for new approaches to the design of biologically active molecules.

  5. Nuclear Receptor Signaling Atlas (NURSA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  6. Receptor antibodies as novel therapeutics for diabetes

    DEFF Research Database (Denmark)

    Ussar, Siegfried; Vienberg, Sara Gry; Kahn, C Ronald

    2011-01-01

    Antibodies to receptors can block or mimic hormone action. Taking advantage of receptor isoforms, co-receptors, and other receptor modulating proteins, antibodies and other designer ligands can enhance tissue specificity and provide new approaches to the therapy of diabetes and other diseases....

  7. Receptor-targeted metalloradiopharmaceuticals. Final technical report

    International Nuclear Information System (INIS)

    Copper (II) and platinum (II) coordination complexes were prepared and characterized. These complexes were designed to afford structural homology with steroidal and non-steroidal estrogens for possible use as receptor-targeted radiopharmaceuticals. While weak affinity for the estrogen receptor was detectable, none would appear to have sufficient receptor-affinity for estrogen-receptor-targeted imaging or therapy

  8. Glycine receptors and brain development

    OpenAIRE

    Avila, Ariel; Nguyen, Laurent; Rigo, Jean-Michel

    2013-01-01

    Glycine receptors (GlyRs) are ligand-gated chloride ion channels that mediate fast inhibitory neurotransmission in the spinal cord and the brainstem. There, they are mainly involved in motor control and pain perception in the adult. However, these receptors are also expressed in upper regions of the central nervous system, where they participate in different processes including synaptic neurotransmission. Moreover, GlyRs are present since early stages of brain development and might influence ...

  9. Dopamine D4 Receptors in Psychostimulant Addiction

    OpenAIRE

    Di Ciano, Patricia; Grandy, David; Le Foll, Bernard

    2014-01-01

    Since the cloning of the D4 receptor in the 1990s, interest has been building in the role of this receptor in drug addiction, given the importance of dopamine in addiction. Like the D3 receptor, the D4 receptor has limited distribution within the brain suggesting it may have a unique role in drug abuse. However, compared to the D3 receptor, few studies have evaluated the importance of the D4 receptor. This may be due, in part, to the relative lack of compounds selective for the D4 receptor; t...

  10. Nuclear Receptors, RXR, and the Big Bang.

    Science.gov (United States)

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. PMID:24679540

  11. Thermostabilisation of the neurotensin receptor NTS1

    OpenAIRE

    Shibata, Yoko; White, Jim F.; Serrano-Vega, Maria J.; Magnani, Francesca; Aloia, Amanda L.; Grisshammer, Reinhard; Tate, Christopher G.

    2009-01-01

    Structural studies on G protein-coupled receptors (GPCRs) have been hampered for many years by their instability in detergent solution and by the number of potential conformations that receptors can adopt. Recently, the structures of the β1 and β2 adrenergic receptors and the adenosine A2a receptor were determined with antagonist bound, a receptor conformation that is thought to be more stable than the agonist-bound state. In contrast to these receptors, the neurotensin receptor NTS1 is much ...

  12. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  13. Structure, function, and regulation of adrenergic receptors.

    OpenAIRE

    Strosberg, A.D.

    1993-01-01

    Adrenergic receptors for adrenaline and noradrenaline belong to the large multigenic family of receptors coupled to GTP-binding proteins. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors m...

  14. Toll-like receptors in neonatal sepsis.

    LENUS (Irish Health Repository)

    O'Hare, Fiona M

    2013-06-01

    Toll-like receptors are vital transmembrane receptors that initiate the innate immune response to many micro-organisms. The discovery of these receptors has improved our understanding of host-pathogen interactions, and these receptors play an important role in the pathogenesis of multiple neonatal conditions such as sepsis and brain injury. Toll-like receptors, especially TLRs 2 and 4, are associated with necrotizing enterocolitis, periventricular leukomalacia and sepsis.

  15. Pharmacology of benzodiazepine receptors: an update.

    OpenAIRE

    Sieghart, W.

    1994-01-01

    Benzodiazepine receptors are allosteric modulatory sites on GABAA receptors. GABAA receptors are probably composed of five protein subunits, at least some of which belong to different subunit classes. So far six alpha-, four beta-, three gamma-, and delta- and two rho = p subunits of GABAA receptors have been identified. A large number of different subunit combinations, each of which will result in a GABAA receptor with distinct electrophysiological and pharmacological properties, are therefo...

  16. Studies on insulin receptor, 2

    International Nuclear Information System (INIS)

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using 125I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and 125I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and 125I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in 125I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia. (author)

  17. Identification and mechanism of ABA receptor antagonism

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric (NU Sinapore); (Van Andel); (UCR)

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  18. Purinergic Receptors in Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    Ana Guzman-Aranguez

    2014-01-01

    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  19. How calcium makes endocytic receptors attractive

    DEFF Research Database (Denmark)

    Andersen, Christian B F; Moestrup, Søren K

    2014-01-01

    receptor. Endosomal acidification and calcium efflux lead to the essential ligand-receptor affinity switch and separation. Recent data, including crystal structures of receptor-ligand complexes, now reveal how calcium, in different types of domain scaffolds, functions in a common way as a removable...... 'lynchpin' that stabilizes favorable positioning of ligand-attractive receptor residues. In addition to explaining how calcium depletion can cause ligand-receptor dissociation, the new data add further insight into how acidification contributes to dissociation through structural changes that affect the...... receptor calcium sites....

  20. Host receptors for bacteriophage adsorption.

    Science.gov (United States)

    Bertozzi Silva, Juliano; Storms, Zachary; Sauvageau, Dominic

    2016-02-01

    The adsorption of bacteriophages (phages) onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process. Understanding the mechanisms involved and the factors affecting it is, thus, crucial for the investigation of host-phage interactions. This review provides a survey of the phage host receptors involved in recognition and adsorption and their interactions during attachment. Comprehension of the whole infection process, starting with the adsorption step, can enable and accelerate our understanding of phage ecology and the development of phage-based technologies. To assist in this effort, we have established an open-access resource--the Phage Receptor Database (PhReD)--to serve as a repository for information on known and newly identified phage receptors. PMID:26755501

  1. Monoallelic expression of olfactory receptors.

    Science.gov (United States)

    Monahan, Kevin; Lomvardas, Stavros

    2015-01-01

    The sense of smell collects vital information about the environment by detecting a multitude of chemical odorants. Breadth and sensitivity are provided by a huge number of chemosensory receptor proteins, including more than 1,400 olfactory receptors (ORs). Organizing the sensory information generated by these receptors so that it can be processed and evaluated by the central nervous system is a major challenge. This challenge is overcome by monogenic and monoallelic expression of OR genes. The single OR expressed by each olfactory sensory neuron determines the neuron's odor sensitivity and the axonal connections it will make to downstream neurons in the olfactory bulb. The expression of a single OR per neuron is accomplished by coupling a slow chromatin-mediated activation process to a fast negative-feedback signal that prevents activation of additional ORs. Singular OR activation is likely orchestrated by a network of interchromosomal enhancer interactions and large-scale changes in nuclear architecture. PMID:26359778

  2. Introducción de una metodología basada en la utilización de agrupamientos flexibles multiniveles para la resolución de problemas matemáticos en 3º y 4º de la ESO

    OpenAIRE

    Revilla-Manrique, Aintzane

    2016-01-01

    Mediante esta investigación, se ha diseñado una propuesta basada en agrupamientos flexibles multiniveles como medida de atención a la diversidad en el ámbito de las matemáticas, más concretamente para la resolución de problemas. El estudio se ha basado en los cursos de 3º y 4º de la ESO por ser los últimos pertenecientes a la educación obligatoria y por ello, una etapa clave para la elección de los estudios superiores. Como base del trabajo, se presenta un marco teórico que eng...

  3. Receptor Proteins in Selective Autophagy

    Directory of Open Access Journals (Sweden)

    Christian Behrends

    2012-01-01

    Full Text Available Autophagy has long been thought to be an essential but unselective bulk degradation pathway. However, increasing evidence suggests selective autophagosomal turnover of a broad range of substrates. Bifunctional autophagy receptors play a key role in selective autophagy by tethering cargo to the site of autophagosomal engulfment. While the identity of molecular components involved in selective autophagy has been revealed at least to some extent, we are only beginning to understand how selectivity is achieved in this process. Here, we summarize the mechanistic and structural basis of receptor-mediated selective autophagy.

  4. Nuclear receptors and nonalcoholic fatty liver disease.

    Science.gov (United States)

    Cave, Matthew C; Clair, Heather B; Hardesty, Josiah E; Falkner, K Cameron; Feng, Wenke; Clark, Barbara J; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A; McClain, Craig J; Prough, Russell A

    2016-09-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  5. AgRP Neuron-Specific Deletion of Glucocorticoid Receptor Leads to Increased Energy Expenditure and Decreased Body Weight in Female Mice on a High-Fat Diet.

    Science.gov (United States)

    Shibata, Miyuki; Banno, Ryoichi; Sugiyama, Mariko; Tominaga, Takashi; Onoue, Takeshi; Tsunekawa, Taku; Azuma, Yoshinori; Hagiwara, Daisuke; Lu, Wenjun; Ito, Yoshihiro; Goto, Motomitsu; Suga, Hidetaka; Sugimura, Yoshihisa; Oiso, Yutaka; Arima, Hiroshi

    2016-04-01

    Agouti-related protein (AgRP) expressed in the arcuate nucleus is a potent orexigenic neuropeptide, which increases food intake and reduces energy expenditure resulting in increases in body weight (BW). Glucocorticoids, key hormones that regulate energy balance, have been shown in rodents to regulate the expression of AgRP. In this study, we generated AgRP-specific glucocorticoid receptor (GR)-deficient (knockout [KO]) mice. Female and male KO mice on a high-fat diet (HFD) showed decreases in BW at the age of 6 weeks compared with wild-type mice, and the differences remained significant until 16 weeks old. The degree of resistance to diet-induced obesity was more robust in female than in male mice. On a chow diet, the female KO mice showed slightly but significantly attenuated weight gain compared with wild-type mice after 11 weeks, whereas there were no significant differences in BW in males between genotypes. Visceral fat pad mass was significantly decreased in female KO mice on HFD, whereas there were no significant differences in lean body mass between genotypes. Although food intake was similar between genotypes, oxygen consumption was significantly increased in female KO mice on HFD. In addition, the uncoupling protein-1 expression in the brown adipose tissues was increased in KO mice. These data demonstrate that the absence of GR signaling in AgRP neurons resulted in increases in energy expenditure accompanied by decreases in adiposity in mice fed HFD, indicating that GR signaling in AgRP neurons suppresses energy expenditure under HFD conditions. PMID:26889940

  6. Transcriptional Corepressor SMILE Recruits SIRT1 to Inhibit Nuclear Receptor Estrogen Receptor-related Receptor γ Transactivation*

    OpenAIRE

    Xie, Yuan-Bin; Park, Jeong-Hoh; Kim, Don-Kyu; Hwang, Jung Hwan; Oh, Sangmi; Park, Seung Bum; Shong, Minho; Lee, In-Kyu; Choi, Hueng-Sik

    2009-01-01

    SMILE (small heterodimer partner interacting leucine zipper protein) has been identified as a corepressor of the glucocorticoid receptor, constitutive androstane receptor, and hepatocyte nuclear factor 4α. Here we show that SMILE also represses estrogen receptor-related receptor γ (ERRγ) transactivation. Knockdown of SMILE gene expression increases ERRγ activity. SMILE directly interacts with ERRγ in vitro and in vivo. Domain mapping analysis showed that SMILE binds to the AF2 domain of ERRγ....

  7. Mechanism for the activation of glutamate receptors

    Science.gov (United States)

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  8. Uncompetitive antagonism of AMPA receptors

    DEFF Research Database (Denmark)

    Andersen, Trine F; Tikhonov, Denis B; Bølcho, Ulrik;

    2006-01-01

    Philanthotoxins are uncompetitive antagonists of Ca2+-permeable AMPA receptors presumed to bind to the pore-forming region, but a detailed molecular mechanism for this interaction is missing. Here a small library of novel philanthotoxins was designed and synthesized using a solid-phase strategy. ...

  9. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B;

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation...

  10. Polypharmacology of dopamine receptor ligands.

    Science.gov (United States)

    Butini, S; Nikolic, K; Kassel, S; Brückmann, H; Filipic, S; Agbaba, D; Gemma, S; Brogi, S; Brindisi, M; Campiani, G; Stark, H

    2016-07-01

    Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular. PMID:27234980

  11. Serotonin receptors as cardiovascular targets

    NARCIS (Netherlands)

    C.M. Villalón (Carlos); P.A.M. de Vries (Peter); P.R. Saxena (Pramod Ranjan)

    1997-01-01

    textabstractSerotonin exerts complex effects in the cardiovascular system, including hypotension or hypertension, vasodilatation or vasoconstriction, and/or bradycardia or tachycardia; the eventual response depends primarily on the nature of the 5-HT receptors involved. In the light of current 5-HT

  12. Cannabinoid receptor localization in brain

    Energy Technology Data Exchange (ETDEWEB)

    Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. (National Institute of Mental Health, Bethesda, MD (USA))

    1990-03-01

    (3H)CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of (3H)CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

  13. Radioligand Binding at Muscarinic Receptors

    Czech Academy of Sciences Publication Activity Database

    El-Fakahany, E. E.; Jakubík, Jan

    New York: Springer, 2016 - (Mysliveček, J.; Jakubík, J.), s. 37-68. (Neuromethods. 107). ISBN 978-1-4939-2857-6 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : muscarinic acetylcholine receptors * radioligand binding Subject RIV: ED - Physiology

  14. Allosteric Modulation of Muscarinic Receptors

    Czech Academy of Sciences Publication Activity Database

    Jakubík, Jan; El-Fakahany, E. E.

    New York: Springer, 2016 - (Mysliveček, J.; Jakubík, J.), s. 95-130. (Neuromethods. 107). ISBN 978-1-4939-2857-6 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : muscarinic receptors * allosteric modulation * radioligand binding functional response Subject RIV: ED - Physiology

  15. Benzodiazepine receptor antagonists for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Gluud, L L; Gluud, C

    2004-01-01

    Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy....

  16. Evolution of the nuclear receptor gene superfamily.

    OpenAIRE

    Laudet, V; Hänni, C; Coll, J.; F. Catzeflis; Stéhelin, D

    1992-01-01

    Nuclear receptor genes represent a large family of genes encoding receptors for various hydrophobic ligands such as steroids, vitamin D, retinoic acid and thyroid hormones. This family also contains genes encoding putative receptors for unknown ligands. Nuclear receptor gene products are composed of several domains important for transcriptional activation, DNA binding (C domain), hormone binding and dimerization (E domain). It is not known whether these genes have evolved through gene duplica...

  17. Thrombopoietin Receptor Agonists in Primary ITP

    OpenAIRE

    Siegal, Deborah; Crowther, Mark; Cuker, Adam

    2013-01-01

    Thrombopoietin (TPO) regulates thrombopoiesis through activation of TPO receptors on the megakaryocyte cell surface, resulting in increased platelet production. The TPO receptor agonists are novel treatments for patients with chronic ITP aimed at increasing platelet production through interactions with the TPO receptor on megakaryocytes. Two TPO receptor agonists, romiplostim and eltrombopag, have received regulatory approval. In patients with chronic ITP who remain at risk of bleeding follow...

  18. Beta adrenergic receptors in pigmented ciliary processes.

    OpenAIRE

    Trope, G. E.; Clark, B.

    1982-01-01

    Beta adrenergic receptors from membrane fragments of pigmented sheep eyes were studied and characterised by ligand binding techniques after the removal of melanin. In a representative experiment the beta max (total number of beta receptors) was 394.9 fmol/mg protein. The receptor affinity (Ka) was 440 pM. The potency series of drugs to displace 125I-HYP from the receptors was timolol = (-) propranolol greater than (+) propranolol greater than salbutamol greater than practolol. beta 1 Recepto...

  19. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Roberts, Rhonda; Chen, Tsing-Bau;

    2016-01-01

    -like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1), respectively. To define CGRP receptor binding sites, in vitro autoradiography was performed with [(3)H]MK-3207 (a CGRP receptor antagonist). CLR and RAMP1 mRNA and protein expression were detected in the pineal gland, medial mammillary...

  20. Estrogen receptors in human vaginal tissue

    NARCIS (Netherlands)

    Wiegerinck, M.A.H.M.; Poortman, J.; Agema, A.R.; Thijssen, J.H.H.

    1980-01-01

    The presence of specific estrogen receptors could be demonstrated in vaginal tissue, obtained during operation from 38 women, age 27–75 yr. In 23 premenopausal women the receptor concentration in the vaginal tissue varied between 12 and 91 fmol/mg protein, no significant difference in the receptor

  1. Internalization and desensitization of adenosine receptors.

    NARCIS (Netherlands)

    Klaasse, E.C.; IJzerman, A.P.; Grip, W.J. de; Beukers, M.W.

    2008-01-01

    Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A(1), A(2A), A(2B) and A(3) receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein clas

  2. Agonism and antagonism at the insulin receptor

    DEFF Research Database (Denmark)

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B; Kiselyov, Vladislav V; De Meyts, Pierre Marcel Joseph

    2012-01-01

    insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been...

  3. Characterization of the thyrotropin receptor

    International Nuclear Information System (INIS)

    Scatchard analysis of the binding of [125I]TSH to thyroid plasma membranes results in a curvilinear, concave-upward plot. This phenomenon could be indicative of several conditions, including radioligand heterogeneity, negative cooperativity, or multiple binding sites. To investigate the first of these possibilities, [125I]TSH was purified by chromatography on Sepharose 6B. The receptor active [125I]TSH continued to yield a curvilinear Scatchard plot in equilibrium binding analyses, indicating that this phenomenon was not the result of radioligand impurities of heterogeneity. To determine the contribution of the receptor to this complex behavior, the TSH receptor was solubilized and subjected to concanavalin A chromatography. Two populations of binding sites were recovered. The pass-through fraction contained 70% of the total sites and exhibited a linear Scatchard plot with a K/sub D/ of 67 nM, while 0.2 M methylmannoside eluted 10% of the sites which exhibited a single K/sub D/ of 0.3 nM. To characterize its structure, the TSH receptor was labeled with [125I]TSH and cross-linked with disuccinimidyl suberate. Analysis by electrophoresis and autoradiography demonstrated the labeling of two hormone-receptor complexes with M/sub r/ of 80,000 and 68,000. These two bands were demonstrated to be TSH-specific and were present in plasma membranes from thyroid, but not from muscle or liver. Furthermore, antibodies isolated from the sera of Graves' disease patients, which inhibit the bindings of [125I]TSH, blocked the labeling of the two complexes. When the separated high and low affinity TSH binding components were similarly analyzed, both components exhibited the 80,000 and 68,000 bands. Furthermore, the autoantibodies from Graves' disease sera inhibited the binding of [125I]TSH to both the high and low affinity species

  4. A Rapid and Efficient Immunoenzymatic Assay to Detect Receptor Protein Interactions: G Protein-Coupled Receptors

    OpenAIRE

    Elisa Zappelli; Simona Daniele; Abbracchio, Maria P.; Claudia Martini; Maria Letizia Trincavelli

    2014-01-01

    G protein-coupled receptors (GPCRs) represent one of the largest families of cell surface receptors, and are the target of at least one-third of the current therapeutic drugs on the market. Along their life cycle, GPCRs are accompanied by a range of specialized GPCR-interacting proteins (GIPs), which take part in receptor proper folding, targeting to the appropriate subcellular compartments and in receptor signaling tasks, and also in receptor regulation processes, such as desensitization and...

  5. Dimerization of the thyrotropin-releasing hormone receptor potentiates hormone-dependent receptor phosphorylation

    OpenAIRE

    Song, Gyun Jee; Jones, Brian W.; Hinkle, Patricia M.

    2007-01-01

    The G protein-coupled thyrotropin (TSH)-releasing hormone (TRH) receptor forms homodimers. Regulated receptor dimerization increases TRH-induced receptor endocytosis. These studies test whether dimerization increases receptor phosphorylation, which could potentiate internalization. Phosphorylation at residues 355–365, which is critical for internalization, was measured with a highly selective phospho-site-specific antibody. Two strategies were used to drive receptor dimerization. Dimerization...

  6. σ1 Receptor Modulation of G-Protein-Coupled Receptor Signaling: Potentiation of Opioid Transduction Independent from Receptor Binding

    Science.gov (United States)

    Kim, Felix J.; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng

    2010-01-01

    σ Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned μ opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding, by σ1 receptors. σ Ligands do not compete opioid receptor binding. Administered alone, neither σ agonists nor antagonists significantly stimulated [35S]GTPγS binding. Yet σ receptor selective antagonists, but not agonists, shifted the EC50 of opioid-induced stimulation of [35S]GTPγS binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [35S]GTPγS binding. σ1 Receptors physically associate with μ opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, σ receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of σ1 in BE(2)-C cells also potentiated μ opioid-induced stimulation of [35S]GTPγS binding. These modulatory actions are not limited to μ and δ opioid receptors. In mouse brain membrane preparations, σ1-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [35S]GTPγS binding, suggesting a broader role for σ receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  7. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding.

    Science.gov (United States)

    Kim, Felix J; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng; Pasternak, Gavril W

    2010-04-01

    sigma Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned mu opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTP gamma S) binding, by sigma(1) receptors. sigma Ligands do not compete opioid receptor binding. Administered alone, neither sigma agonists nor antagonists significantly stimulated [(35)S]GTP gamma S binding. Yet sigma receptor selective antagonists, but not agonists, shifted the EC(50) of opioid-induced stimulation of [(35)S]GTP gamma S binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [(35)S]GTP gamma S binding. sigma(1) Receptors physically associate with mu opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, sigma receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of sigma(1) in BE(2)-C cells also potentiated mu opioid-induced stimulation of [(35)S]GTP gamma S binding. These modulatory actions are not limited to mu and delta opioid receptors. In mouse brain membrane preparations, sigma(1)-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [(35)S]GTP gamma S binding, suggesting a broader role for sigma receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  8. Glucocorticoid receptor transformation and DNA binding

    International Nuclear Information System (INIS)

    The overall goal is to probe the mechanism whereby glucocorticoid receptors are transformed from a non-DNA-binding form to their active DNA-binding form. The author has examined the effect of an endogenous inhibitor purified from rat liver cytosol on receptor binding to DNA. The inhibitor binds to transformed receptors in whole cytosol and prevent their binding to DNA. He also examined the role of sulfhydryl groups in determining the DNA binding activity of the transformed receptor and in determining the transformation process. Treatment of rat liver cytosol containing temperature-transformed, [3H]dexamethasone-bound receptors at 00C with the sulfhydryl modifying reagent methyl methanethiosulfonate inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol. In addition, he has examined the relationship between receptor phosphorylation and DNA binding. Untransformed receptor complexes purified from cytosol prepared from mouse L cells grown in medium containing [32P]orthophosphate contain two components, a 100 k-Da and a 90-kDa subunit, both of which are phosphoproteins. On transformation, the receptor dissociates from the 90-kDa protein. Transformation of the complex under cell free conditions does not result in a dephosphorylation of the 100-kDa steroid-binding protein. Transformed receptor that has been bound to DNA and purified by monoclonal antibody is still in a phosphorylated form. These results suggest that dephosphorylation is not required for receptor binding to DNA

  9. The heat response of hydrocortisone receptors

    International Nuclear Information System (INIS)

    The sensitivity of hydrocortisone (HC) receptors to heat damage has been measured in Chinese hamster ovary (CHO) cells. The impetus for the study came from three observations: A. Hormone receptors (e.g. insulin) are very heat sensitizer and may be a primary target for heat damage (BBA 756, 1 (1983)). B. HC induces a receptor-mediated heat resistance in CHO cells (J. Cell. Physiol. 128, 127 (1986)). C. The HC receptor is a soluble protein complex, which, in its unactivated state, contains HSP 89 (EMBO J. 4, 3131 (1985); JBC 260 12398 (1985)). Upon binding of the ligand, HSP 89 dissociates and the activated receptor enters the nucleus and binds DNA. The current study reveals that the HC receptor is also very heat sensitive, losing 50% of its activity after 5 min at 450C, 10 min at 440C or 20 min at 430C. Receptor activity recovers quickly after heat, returning to levels close to normal within 2-4 hours after a treatment of 10 min at 450C which initially reduces receptor activity to less than 20% of control. Pretreatment with HC, using conditions that induce heat resistance, depresses receptor activity to 10-20% of control, but residual receptors display a heat sensitivity similar to that of control cells. So far, the authors have been unable to demonstrate any heat protection of HC receptors in thermotolerant cells

  10. Hormone activation of baculovirus expressed progesterone receptors.

    Science.gov (United States)

    Elliston, J F; Beekman, J M; Tsai, S Y; O'Malley, B W; Tsai, M J

    1992-03-15

    Human and chicken progesterone receptors (A form) were overproduced in a baculovirus expression system. These recombinant progesterone receptors were full-length bound progesterone specifically and were recognized by monoclonal antibodies, AB52 and PR22, specific for human and chicken progesterone receptor, respectively. In gel retardation studies, binding of recombinant human and chicken progesterone receptors to their progesterone response element (PRE) was specific and was enhanced in the presence of progesterone. Binding of human progesterone receptor to the PRE was also enhanced in the presence of the antiprogestin, RU486, but very little effect was observed in the presence of estradiol, dexamethasone, testosterone, and vitamin D. In our cell-free transcription system, human progesterone receptor induced transcription in a receptor-dependent and hormone-activable manner. Receptor-stimulated transcription required the presence of the PRE in the test template and could be specifically inhibited by excess PRE oligonucleotides. Furthermore, chicken progesterone receptor also induced in vitro transcription in a hormone-activable manner. These results demonstrate that steroid receptors overexpressed in a baculovirus expression system are functional and exhibit steroid-responsive binding and transcription. These observations support our present understanding of the mechanism of steroid receptor-regulated gene expression and provide a technological format for studies of the role of hormone and antihormone in altering gene expression. PMID:1544902

  11. Structural determinants of sigma receptor affinity

    International Nuclear Information System (INIS)

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-[3H]3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent

  12. Structural determinants of sigma receptor affinity

    Energy Technology Data Exchange (ETDEWEB)

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  13. CGRP receptor antagonism and migraine therapy

    DEFF Research Database (Denmark)

    Edvinsson, Lars; Warfvinge, Karin

    2013-01-01

    Migraine is the most prevalent of the neurological disorders and can affect the patient throughout the lifetime. Calcitonin gene-related peptide (CGRP) is a neuropeptide that is expressed in the central and peripheral nervous systems. It is now 2 decades since it was proposed to be involved in...... migraine pathophysiology. The cranial sensory system contains C-fibers storing CGRP and trigeminal nerve activation and acute migraine attacks result in release of CGRP. The CGRP receptor consists of a complex of calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1) and....... CGRP receptor antagonists have been developed as novel antimigraine drugs and found to be effective in the treatment of acute migraine attacks. Other ways to stop CGRP activity has been introduced recently through antibodies against CGRP and the CGRP receptor. While the CGRP receptors are expressed...

  14. A new family of insect tyramine receptors

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Klærke, Dan Arne; Grimmelikhuijzen, Cornelis J P

    2005-01-01

    The Drosophila Genome Project database contains a gene, CG7431, annotated to be an "unclassifiable biogenic amine receptor." We have cloned this gene and expressed it in Chinese hamster ovary cells. After testing various ligands for G protein-coupled receptors, we found that the receptor was...... specifically activated by tyramine (EC(50), 5x10(-7)M) and that it showed no cross-reactivity with beta-phenylethylamine, octopamine, dopa, dopamine, adrenaline, noradrenaline, tryptamine, serotonin, histamine, and a library of 20 Drosophila neuropeptides (all tested in concentrations up to 10(-5) or 10(-4)M......-like receptor genes in the genomic databases from the malaria mosquito Anopheles gambiae and the honeybee Apis mellifera. These four tyramine or tyramine-like receptors constitute a new receptor family that is phylogenetically distinct from the previously identified insect octopamine/tyramine receptors. The...

  15. Receptor arrays optimized for natural odor statistics

    CERN Document Server

    Zwicker, David; Brenner, Michael P

    2016-01-01

    Natural odors typically consist of many molecules at different concentrations. It is unclear how the numerous odorant molecules and their possible mixtures are discriminated by relatively few olfactory receptors. Using an information-theoretic model, we show that a receptor array is optimal for this task if it achieves two possibly conflicting goals: (i) each receptor should respond to half of all odors and (ii) the response of different receptors should be uncorrelated when averaged over odors presented with natural statistics. We use these design principles to predict statistics of the affinities between receptors and odorant molecules for a broad class of odor statistics. We also show that optimal receptor arrays can be tuned to either resolve concentrations well or distinguish mixtures reliably. Finally, we use our results to predict properties of experimentally measured receptor arrays. Our work can thus be used to better understand natural olfaction and it also suggests ways to improve artificial sensor...

  16. Ligands for Ionotropic Glutamate Receptors

    Science.gov (United States)

    Swanson, Geoffrey T.; Sakai, Ryuichi

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory syn-aptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors.

  17. Plant hormone receptors: new perceptions

    OpenAIRE

    Spartz, Angela K.; William M Gray

    2008-01-01

    Plant growth and development require the integration of a variety of environmental and endogenous signals that, together with the intrinsic genetic program, determine plant form. Central to this process are several growth regulators known as plant hormones or phytohormones. Despite decades of study, only recently have receptors for several of these hormones been identified, revealing novel mechanisms for perceiving chemical signals and providing plant biologists with a much clearer picture of...

  18. Dopamine Receptors and Parkinson's Disease

    OpenAIRE

    Shin Hisahara; Shun Shimohama

    2011-01-01

    Parkinson's disease (PD) is a progressive extrapyramidal motor disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic) neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa) significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first ...

  19. The vanilloid receptor and hypertension

    Institute of Scientific and Technical Information of China (English)

    Donna H WANG

    2005-01-01

    Mammalian transient receptor potential (TRP) channels consist of six related protein sub-families that are involved in a variety of pathophysiological function, and disease development. The TRPV1 channel, a member of the TRPV sub-family, is identified by expression cloning using the "hot" pepper-derived vanilloid compound capsaicin as a ligand. Therefore, TRPV1 is also referred as the vanilloid receptor (VR1) or the capsaicin receptor. VR1 is mainly expressed in a subpopulation of primary afferent neurons that project to cardiovascular and renal tissues.These capsaicin-sensitive primary afferent neurons are not only involved in the perception of somatic and visceral pain, but also have a "sensory-effector" function.Regarding the latter, these neurons release stored neuropeptides through a calcium-dependent mechanism via the binding of capsaicin to VR1. The most studied sensory neuropeptides are calcitonin gene-related peptide (CGRP) and substance P (SP), which are potent vasodilators and natriuretic/diuretic factors. Recent evidence using the model of neonatal degeneration of capsaicin-sensitive sensory nerves revealed novel mechanisms that underlie increased salt sensitivity and several experimental models of hypertension. These mechanisms include insufficient suppression of plasma renin activity and plasma aldosterone levels subsequent to salt loading, enhancement of sympathoexcitatory response in the face of a salt challenge, activation of the endothelin- 1 receptor, and impaired natriuretic response to salt loading in capsaicin-pretreated rats. These data indicate that sensory nerves counterbalance the prohypertensive effects of several neurohormonal systems to maintain normal blood pressure when challenged with salt loading. The therapeutic utilities of vanilloid compounds, endogenous agonists,and sensory neuropeptides are also discussed.

  20. Endothelin receptors and their antagonists.

    Science.gov (United States)

    Maguire, Janet J; Davenport, Anthony P

    2015-03-01

    All three members of the endothelin (ET) family of peptides, ET-1, ET-2, and ET-3, are expressed in the human kidney, with ET-1 being the predominant isoform. ET-1 and ET-2 bind to two G-protein-coupled receptors, ETA and ETB, whereas at physiological concentrations ET-3 has little affinity for the ET(A) receptor. The human kidney is unusual among the peripheral organs in expressing a high density of ET(B). The renal vascular endothelium only expresses the ET(B) subtype and ET-1 acts in an autocrine or paracrine manner to release vasodilators. Endothelial ETB in kidney, as well as liver and lungs, also has a critical role in scavenging ET-1 from the plasma. The third major function is ET-1 activation of ET(B) in in the nephron to reduce salt and water re-absorption. In contrast, ET(A) predominate on smooth muscle, causing vasoconstriction and mediating many of the pathophysiological actions of ET-1. The role of the two receptors has been delineated using highly selective ET(A) (BQ123, TAK-044) and ET(B) (BQ788) peptide antagonists. Nonpeptide antagonists, bosentan, macitentan, and ambrisentan, that are either mixed ET(A)/ET(B) antagonists or display ET(A) selectivity, have been approved for clinical use but to date are limited to pulmonary hypertension. Ambrisentan is in clinical trials in patients with type 2 diabetic nephropathy. This review summarizes ET-receptor antagonism in the human kidney, and considers the relative merits of selective versus nonselective antagonism in renal disease. PMID:25966344

  1. Autophagy selectivity through receptor clustering

    Science.gov (United States)

    Rutenberg, Andrew; Brown, Aidan

    Substrate selectivity in autophagy requires an all-or-none cellular response. We focus on peroxisomes, for which autophagy receptor proteins NBR1 and p62 are well characterized. Using computational models, we explore the hypothesis that physical clustering of autophagy receptor proteins on the peroxisome surface provides an appropriate all-or-none response. We find that larger peroxisomes nucleate NBR1 clusters first, and lose them due to competitive coarsening last, resulting in significant size-selectivity. We then consider a secondary hypothesis that p62 inhibits NBR1 cluster formation. We find that p62 inhibition enhances size-selectivity enough that, even if there is no change of the pexophagy rate, the volume of remaining peroxisomes can significantly decrease. We find that enhanced ubiquitin levels suppress size-selectivity, and that this effect is more pronounced for individual peroxisomes. Sufficient ubiquitin allows receptor clusters to form on even the smallest peroxisomes. We conclude that NBR1 cluster formation provides a viable physical mechanism for all-or-none substrate selectivity in pexophagy. We predict that cluster formation is associated with significant size-selectivity. Now at Simon Fraser University.

  2. Insulin receptor in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  3. Insulin receptor in Drosophila melanogaster

    International Nuclear Information System (INIS)

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound 125I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to 125I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to 125I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development

  4. Lymphocyte receptors for pertussis toxin

    International Nuclear Information System (INIS)

    We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, and Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes

  5. Dimerization of the thyrotropin-releasing hormone receptor potentiates hormone-dependent receptor phosphorylation.

    Science.gov (United States)

    Song, Gyun Jee; Jones, Brian W; Hinkle, Patricia M

    2007-11-13

    The G protein-coupled thyrotropin (TSH)-releasing hormone (TRH) receptor forms homodimers. Regulated receptor dimerization increases TRH-induced receptor endocytosis. These studies test whether dimerization increases receptor phosphorylation, which could potentiate internalization. Phosphorylation at residues 355-365, which is critical for internalization, was measured with a highly selective phospho-site-specific antibody. Two strategies were used to drive receptor dimerization. Dimerization of a TRH receptor-FK506-binding protein (FKBP) fusion protein was stimulated by a dimeric FKBP ligand. The chemical dimerizer caused a large increase in TRH-dependent phosphorylation within 1 min, whereas a monomeric FKBP ligand had no effect. The dimerizer did not alter phoshorylation of receptors lacking the FKBP domain. Dimerization of receptors containing an N-terminal HA epitope also was induced with anti-HA antibody. Anti-HA IgG strongly increased TRH-induced phosphorylation, whereas monomeric Fab fragments had no effect. Anti-HA antibody did not alter phosphorylation in receptors lacking an HA tag. Furthermore, two phosphorylation-defective TRH receptors functionally complemented one another and permitted phosphorylation. Receptors with a D71A mutation in the second transmembrane domain do not signal, whereas receptors with four Ala mutations in the 355-365 region signal normally but lack phosphorylation sites. When D71A- and 4Ala-TRH receptors were expressed alone, neither underwent TRH-dependent phosphorylation. When they were expressed together, D71A receptor was phosphorylated by G protein-coupled receptor kinases in response to TRH. These results suggest that the TRH receptor is phosphorylated preferentially when it is in dimers or when preexisting receptor dimers are driven into microaggregates. Increased receptor phosphorylation may amplify desensitization. PMID:17989235

  6. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  7. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  8. Protein Connectivity in Chemotaxis Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Stephan Eismann

    2015-12-01

    Full Text Available The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures.

  9. Alternative splicing of human and mouse NPFF2 receptor genes: Implications to receptor expression.

    Science.gov (United States)

    Ankö, Minna-Liisa; Ostergård, Maria; Lintunen, Minnamaija; Panula, Pertti

    2006-12-22

    Alternative splicing has an important role in the tissue-specific regulation of gene expression. Here we report that similar to the human NPFF2 receptor, the mouse NPFF2 receptor is alternatively spliced. In human the presence of three alternatively spliced receptor variants were verified, whereas two NPFF2 receptor variants were identified in mouse. The alternative splicing affected the 5' untranslated region of the mouse receptor and the variants in mouse were differently distributed. The mouse NPFF system may also have species-specific features since the NPFF2 receptor mRNA expression differs from that reported for rat. PMID:17157836

  10. Identification and Characterization of Novel Renal Sensory Receptors

    OpenAIRE

    Rajkumar, Premraj; Aisenberg, William H.; Acres, Omar W; Protzko, Ryan J.; Pluznick, Jennifer L.

    2014-01-01

    Recent studies have highlighted the important roles that “sensory” receptors (olfactory receptors, taste receptors, and orphan “GPR” receptors) play in a variety of tissues, including the kidney. Although several studies have identified important roles that individual sensory receptors play in the kidney, there has not been a systematic analysis of the renal repertoire of sensory receptors. In this study, we identify novel renal sensory receptors belonging to the GPR (n = 76), olfactory recep...

  11. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    OpenAIRE

    Vanacker, J M; K. Pettersson; Gustafsson, J.A.; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classica...

  12. Distinct α subunit variations of the hypothalamic GABAA receptor triplets (αβγ are linked to hibernating state in hamsters

    Directory of Open Access Journals (Sweden)

    Alò Raffaella

    2010-09-01

    Full Text Available Abstract Background The structural arrangement of the γ-aminobutyric acid type A receptor (GABAAR is known to be crucial for the maintenance of cerebral-dependent homeostatic mechanisms during the promotion of highly adaptive neurophysiological events of the permissive hibernating rodent, i.e the Syrian golden hamster. In this study, in vitro quantitative autoradiography and in situ hybridization were assessed in major hypothalamic nuclei. Reverse Transcription Reaction-Polymerase chain reaction (RT-PCR tests were performed for specific GABAAR receptor subunit gene primers synthases of non-hibernating (NHIB and hibernating (HIB hamsters. Attempts were made to identify the type of αβγ subunit combinations operating during the switching ON/OFF of neuronal activities in some hypothalamic nuclei of hibernators. Results Both autoradiography and molecular analysis supplied distinct expression patterns of all α subunits considered as shown by a strong (p 1 ratio (over total α subunits considered in the present study in the medial preoptic area (MPOA and arcuate nucleus (Arc of NHIBs with respect to HIBs. At the same time α2 subunit levels proved to be typical of periventricular nucleus (Pe and Arc of HIB, while strong α4 expression levels were detected during awakening state in the key circadian hypothalamic station, i.e. the suprachiasmatic nucleus (Sch; 60%. Regarding the other two subunits (β and γ, elevated β3 and γ3 mRNAs levels mostly characterized MPOA of HIBs, while prevalently elevated expression concentrations of the same subunits were also typical of Sch, even though this time during the awakening state. In the case of Arc, notably elevated levels were obtained for β3 and γ2 during hibernating conditions. Conclusion We conclude that different αβγ subunits are operating as major elements either at the onset of torpor or during induction of the arousal state in the Syrian golden hamster. The identification of a brain regional

  13. Characterization of antisera to prolactin receptors

    International Nuclear Information System (INIS)

    Studies were conducted to improve the techniques of obtaining purified prolactin receptors and to immunize several species of animals with the partially purified receptor in order to increase the yield of antisera and to characterize the specific of these antisera in different target organs. Prolactin receptors were partially purified from crude microsomal fractions of lactating mammary glands, using affinity chromatography. For the assay of solubilized extracts of mammary gland samples at various stages of purification, 125I-labelled human growth hormone or ovine prolactin were used as labelled hormones. Antisera produced from partially purified prolactin receptors are able to inhibit binding of labelled hormone to its receptors in sera from sheep, goats, and guinea pigs. The antisera also inhibit the binding of prolactin to a number of tissues containing receptors in rabbits and rats

  14. Allosteric Modulation of Muscarinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Esam E. El-Fakahany

    2010-08-01

    Full Text Available An allosteric modulator is a ligand that binds to an allosteric site on the receptor and changes receptor conformation to produce increase (positive cooperativity or decrease (negative cooperativity in the binding or action of an orthosteric agonist (e.g., acetylcholine. Since the identification of gallamine as the first allosteric modulator of muscarinic receptors in 1976, this unique mode of receptor modulation has been intensively studied by many groups. This review summarizes over 30 years of research on the molecular mechanisms of allosteric interactions of drugs with the receptor and for new allosteric modulators of muscarinic receptors with potential therapeutic use. Identification of positive modulators of acetylcholine binding and function that enhance neurotransmission and the discovery of highly selective allosteric modulators are mile-stones on the way to novel therapeutic agents for the treatment of schizophrenia, Alzheimer’s disease and other disorders involving impaired cognitive function.

  15. Receptor binding studies of the living heart

    International Nuclear Information System (INIS)

    Receptors form a class of intrinsic membrane proteins (or glycoproteins) defined by the high affinity and specificity with which they bind ligands. Many receptors are associated directly or indirectly with membrane ion channels that open or close after a conformational change of the receptor induced by the binding of the neurotransmitter. Changes in number and/or affinity of cardiac neurotransmitter receptors have been associated with myocardial ischemia and infarction, congestive heart failure, and cardiomyopathy as well as diabetes or thyroid-induced heart muscle disease. These alterations of cardiac receptors have been demonstrated in vitro on membrane homogenates from samples collected mainly during surgery or postmortem. The disadvantage of these in vitro binding techniques is that receptors lose their natural environment and their relationships with the other components of the tissue

  16. Yeast Ste2 receptors as tools for study of mammalian protein kinases and adaptors involved in receptor trafficking

    OpenAIRE

    2006-01-01

    Background Mammalian receptors that couple to effectors via heterotrimeric G proteins (e.g., beta 2-adrenergic receptors) and receptors with intrinsic tyrosine kinase activity (e.g., insulin and IGF-I receptors) constitute the proximal points of two dominant cell signaling pathways. Receptors coupled to G proteins can be substrates for tyrosine kinases, integrating signals from both pathways. Yeast cells, in contrast, display G protein-coupled receptors (e.g., alpha-factor pheromone receptor ...

  17. Molecular mechanisms of alternative estrogen receptor signaling

    OpenAIRE

    Björnström, Linda

    2003-01-01

    Estrogen is a key regulator of growth, differentiation and function in a broad range of target tissues, including the male and female reproductive tracts, mammary gland, bone, brain and the cardiovascular system. The biological effects of estrogen are mediated through estrogen receptor a (ERalpha) and estrogen receptor beta (ERbeta), which belong to a large superfamily of nuclear receptors that act as ligand-activated transcription factors. The classical mechanism of ER acti...

  18. LPA receptor signaling: pharmacology, physiology, and pathophysiology

    OpenAIRE

    Yung, Yun C.; Stoddard, Nicole C.; Chun, Jerold

    2014-01-01

    Lysophosphatidic acid (LPA) is a small ubiquitous lipid found in vertebrate and nonvertebrate organisms that mediates diverse biological actions and demonstrates medicinal relevance. LPA’s functional roles are driven by extracellular signaling through at least six 7-transmembrane G protein-coupled receptors. These receptors are named LPA1–6 and signal through numerous effector pathways activated by heterotrimeric G proteins, including Gi/o, G12/13, Gq, and Gs. LPA receptor-mediated effects ha...

  19. The melanocortin receptors and their accessory proteins

    OpenAIRE

    Ramachandrappa, Shwetha; Gorrigan, Rebecca J.; Clark, Adrian J.L.; Chan, Li F.

    2013-01-01

    The five melanocortin receptors (MCRs) named MC1R–MC5R have diverse physiological roles encompassing pigmentation, steroidogenesis, energy homeostasis and feeding behavior as well as exocrine function. Since their identification almost 20 years ago much has been learnt about these receptors. As well as interacting with their endogenous ligands the melanocortin peptides, there is now a growing list of important peptides that can modulate the way these receptors signal, acting as agonists, anta...

  20. The melanocortin receptors and their accessory proteins

    OpenAIRE

    LiChan

    2013-01-01

    The five melanocortin receptors named MC1R-MC5R have diverse physiological roles encompassing pigmentation, steroidogenesis, energy homeostasis and feeding behaviour as well as exocrine function. Since their identification almost 20 years ago much has been learnt about these receptors. As well as interacting with their endogenous ligands the melanocortin peptides, there is now a growing list of important peptides that can modulate the way these receptors signal, acting as agonists, antagonis...

  1. NUREBASE: database of nuclear hormone receptors

    OpenAIRE

    Duarte, Jorge; Perrière, Guy; Laudet, Vincent; Robinson-Rechavi, Marc

    2002-01-01

    Nuclear hormone receptors are an abundant class of ligand activated transcriptional regulators, found in varying numbers in all animals. Based on our experience of managing the official nomenclature of nuclear receptors, we have developed NUREBASE, a database containing protein and DNA sequences, reviewed protein alignments and phylogenies, taxonomy and annotations for all nuclear receptors. The reviewed NUREBASE is completed by NUREBASE_DAILY, automatically updated every 24 h. Both databases...

  2. NMDA Receptor Activation by Spontaneous Glutamatergic Neurotransmission

    OpenAIRE

    Espinosa, Felipe; Kavalali, Ege T.

    2009-01-01

    Under physiological conditions N-methyl-d-aspartate (NMDA) receptor activation requires coincidence of presynaptic glutamate release and postsynaptic depolarization due to the voltage-dependent block of these receptors by extracellular Mg2+. Therefore spontaneous neurotransmission in the absence of action potential firing is not expected to lead to significant NMDA receptor activation. Here we tested this assumption in layer IV neurons in neocortex at their resting membrane potential (approxi...

  3. TRPA1 receptors in cough.

    Science.gov (United States)

    Grace, Megan S; Belvisi, Maria G

    2011-06-01

    In the early 1990's ion channels of the Transient Receptor Potential (TRP) class were implicated in the afferent sensory loop of the cough reflex and in the heightened cough sensitivity seen in disease. Agonists of the TRPV1 capsaicin receptor such as vanilloids and protons were demonstrated to be amongst the most potent chemical stimuli which cause cough. However, more recently, the TRPA1 receptor (not activated by capsaicin) has become of interest in the cough field because it is known to be activated by ligands such as acrolein which is present in air pollution and the acrid smoke from organic material. TRPA1 is a Ca(2+)-permeant non-selective cation channel with 14 ankyrin repeats in its amino terminus which belongs to the larger TRP family. TRPA1 has been characterised as a thermoreceptor which is activated by cold temperature, environmental irritants and reactive electrophilic molecules which can be generated by oxidant stress and inflammation. TRPA1 is primarily expressed in small diameter, nociceptive neurons where its activation probably contributes to the perception of noxious stimuli and the phenomena known as inflammatory hyperalgesia and neurogenic inflammation. The respiratory tract is innervated by primary sensory afferent nerves which are activated by mechanical and chemical stimuli. Activation of these vagal sensory afferents leads to central reflexes including dyspnoea, changes in breathing pattern and cough. Recently, it has been demonstrated that stimulating TRPA1 channels activates vagal bronchopulmonary C-fibres in the guinea pig and rodent lung, and recent data have shown that TRPA1 ligands cause cough in both animal models and normal volunteers. In summary, due to their activation by a wide range of irritant and chemical substances, either by exogenous agents, endogenously produced mediators during inflammation or by oxidant stress, we suggest TRPA1 channels should be considered as one of the most promising targets currently identified for

  4. Nitrosamines as nicotinic receptor ligands.

    Science.gov (United States)

    Schuller, Hildegard M

    2007-05-30

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the alpha7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the alpha7nAChR and caused influx of Ca(2+), activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the alpha7nAChR was enhanced when cells were maintained in an environment of 10-15% CO(2) similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the alpha7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention. PMID:17459420

  5. CGRP receptor antagonism and migraine

    DEFF Research Database (Denmark)

    Edvinsson, Lars; Ho, Tony W

    2010-01-01

    inflammation, and central release induces hyperalgesia. CGRP is released from trigeminal nerves in migraine. Trigeminal nerve activation results in antidromic release of CGRP to cause non-endothelium-mediated vasodilatation. At the central synapses in the trigeminal nucleus caudalis, CGRP acts postjunctionally...... on second-order neurons to transmit pain signals centrally via the brainstem and midbrain to the thalamus and highercortical pain regions. Recently developed CGRP receptor antagonists are effective at aborting acute migraine attacks. They may act both centrally and peripherally to attenuate signaling...

  6. [Selective estrogen receptor modulators (SERMs)].

    Science.gov (United States)

    Chaki, Osamu

    2015-10-01

    Selective estrogen receptor modulators (SERMs) have the potential to provide the skeletal benefits of estrogen without the increased risk of uterine and breast cancer. Raloxifene, second generation SERM has been approved for the prevention and treatment of post-menopausal osteoporosis. Bazedoxifene, third generation SERM acts as a tissue selective estrogen antagonist or agonist. These SERMs inhibited bone turnover and prevented bone loss caused estrogen deficiency. Furthermore, these SERMs did not affect the uterine endometrial thickness and reduced serum cholesterol. These data suggest that SERMs are potential drug for the prevention of osteoporosis in postmenopausal women. PMID:26529929

  7. Impact of receptor clustering on ligand binding

    Directory of Open Access Journals (Sweden)

    Caré Bertrand R

    2011-03-01

    Full Text Available Abstract Background Cellular response to changes in the concentration of different chemical species in the extracellular medium is induced by ligand binding to dedicated transmembrane receptors. Receptor density, distribution, and clustering may be key spatial features that influence effective and proper physical and biochemical cellular responses to many regulatory signals. Classical equations describing this kind of binding kinetics assume the distributions of interacting species to be homogeneous, neglecting by doing so the impact of clustering. As there is experimental evidence that receptors tend to group in clusters inside membrane domains, we investigated the effects of receptor clustering on cellular receptor ligand binding. Results We implemented a model of receptor binding using a Monte-Carlo algorithm to simulate ligand diffusion and binding. In some simple cases, analytic solutions for binding equilibrium of ligand on clusters of receptors are provided, and supported by simulation results. Our simulations show that the so-called "apparent" affinity of the ligand for the receptor decreases with clustering although the microscopic affinity remains constant. Conclusions Changing membrane receptors clustering could be a simple mechanism that allows cells to change and adapt its affinity/sensitivity toward a given stimulus.

  8. Internalization and desensitization of adenosine receptors

    OpenAIRE

    Klaasse, Elisabeth C.; IJzerman, Adriaan P.; de Grip, Willem J.; Beukers, Margot W.

    2007-01-01

    Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A1, A2A, A2B and A3 receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are re...

  9. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways.

    Science.gov (United States)

    Yamanaka, Naoki; Yamamoto, Sachie; Zitnan, Dusan; Watanabe, Ken; Kawada, Tsuyoshi; Satake, Honoo; Kaneko, Yu; Hiruma, Kiyoshi; Tanaka, Yoshiaki; Shinoda, Tetsuro; Kataoka, Hiroshi

    2008-01-01

    Neuropeptides are an important class of molecules involved in diverse aspects of metazoan development and homeostasis. Insects are ideal model systems to investigate neuropeptide functions, and the major focus of insect neuropeptide research in the last decade has been on the identification of their receptors. Despite these vigorous efforts, receptors for some key neuropeptides in insect development such as prothoracicotropic hormone, eclosion hormone and allatotropin (AT), remain undefined. In this paper, we report the comprehensive cloning of neuropeptide G protein-coupled receptors from the silkworm, Bombyx mori, and systematic analyses of their expression. Based on the expression patterns of orphan receptors, we identified the long-sought receptor for AT, which is thought to stimulate juvenile hormone biosynthesis in the corpora allata (CA). Surprisingly, however, the AT receptor was not highly expressed in the CA, but instead was predominantly transcribed in the corpora cardiaca (CC), an organ adjacent to the CA. Indeed, by using a reverse-physiological approach, we purified and characterized novel allatoregulatory peptides produced in AT receptor-expressing CC cells, which may indirectly mediate AT activity on the CA. All of the above findings confirm the effectiveness of a systematic analysis of the receptor transcriptome, not only in characterizing orphan receptors, but also in identifying novel players and hidden mechanisms in important biological processes. This work illustrates how using a combinatorial approach employing bioinformatic, molecular, biochemical and physiological methods can help solve recalcitrant problems in neuropeptide research. PMID:18725956

  10. Subtype selective kainic acid receptor agonists

    DEFF Research Database (Denmark)

    Bunch, Lennart; Krogsgaard-Larsen, Povl

    2009-01-01

    (S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system, activating the plethora of glutamate receptors (GluRs). In broad lines, the GluRs are divided into two major classes: the ionotropic Glu receptors (iGluRs) and the metabotropic Glu receptors ....... In total, over 100 compounds are described by means of chemical structure and available pharmacological data. With this perspective review, it is our intention to ignite and stimulate inspiration for future design and synthesis of novel subtype selective KA receptor agonists....

  11. Binding of Glutamate to the Umami Receptor

    OpenAIRE

    Lopez Cacales, J.; Oliviera Costa, S.; de Groot, B.; Walters, D

    2010-01-01

    Abstract The umami taste receptor is a heterodimer composed of two members of the T1R taste receptor family: T1R1 and T1R3. It detects glutamate in humans, and is a more general amino acid detector in other species. We have constructed homology models of the ligand binding domains of the human umami receptor (based on crystallographic structures of the metabotropic glutamate receptor of the central nervous system). We have carried out molecular dynamics simulations of the ligand bi...

  12. NMDA receptor activation by spontaneous glutamatergic neurotransmission.

    Science.gov (United States)

    Espinosa, Felipe; Kavalali, Ege T

    2009-05-01

    Under physiological conditions N-methyl-D-aspartate (NMDA) receptor activation requires coincidence of presynaptic glutamate release and postsynaptic depolarization due to the voltage-dependent block of these receptors by extracellular Mg(2+). Therefore spontaneous neurotransmission in the absence of action potential firing is not expected to lead to significant NMDA receptor activation. Here we tested this assumption in layer IV neurons in neocortex at their resting membrane potential (approximately -67 mV). In long-duration stable recordings, we averaged a large number of miniature excitatory postsynaptic currents (mEPSCs, >100) before or after application of dl-2 amino 5-phosphonovaleric acid, a specific blocker of NMDA receptors. The difference between the two mEPSC waveforms showed that the NMDA current component comprises approximately 20% of the charge transfer during an average mEPSC detected at rest. Importantly, the contribution of the NMDA component was markedly enhanced at membrane potentials expected for the depolarized up states (approximately -50 mV) that cortical neurons show during slow oscillations in vivo. In addition, partial block of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor component of the mEPSCs did not cause a significant reduction in the NMDA component, indicating that potential AMPA receptor-driven local depolarizations did not drive NMDA receptor activity at rest. Collectively these results indicate that NMDA receptors significantly contribute to signaling at rest in the absence of dendritic depolarizations or concomitant AMPA receptor activity. PMID:19261712

  13. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten

    2010-08-22

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  14. Somatostatin receptors in differentiated ovarian tumors

    International Nuclear Information System (INIS)

    The presence of somatostatin receptors was investigated in 57 primary human ovarian tumors using in vitro receptor autoradiography with three different somatostatin radioligands, 125I-[Tyr11]-somatostatin-14, 125I-[Leu8, D-Trp22, Tyr25]-somatostatin-28, or 125I-[Tyr3]-SMS 201-995. Three cases, all belonging to epithelial tumors, were receptor positive; specifically 1 of 42 adenocarcinomas, 1 of 3 borderline malignancies, and 1 of 2 cystadenomas. Four other epithelial tumors (3 fibroadenomas, 1 Brenner tumor), 4 sex cord-stromal tumors (2 fibrothecomas, 2 granulosa cell tumors), and 2 germ cell tumors (1 dysgerminoma, 1 teratoma) were receptor negative. In the positive cases, the somatostatin receptors were localized on epithelial cells exclusively, were of high affinity (KD = 4.6 nmol/l [nanomolar]), and specific for somatostatin analogs. These receptors bound somatostatin-14 and somatostatin-28 radioligands with a higher affinity than the octapeptide [Tyr3]-SMS 201-995. Healthy ovarian tissue had no somatostatin receptors. A subpopulation of relatively well-differentiated ovarian tumors, therefore, was identified pathobiochemically on the basis of its somatostatin receptor content. This small group of somatostatin receptor-positive tumors may be a target for in vivo diagnostic imaging with somatostatin ligands

  15. Effects of thermal fluctuation and the receptor-receptor interaction in bacterial chemotactic signalling and adaptation

    OpenAIRE

    Shi, Yu

    2001-01-01

    Bacterial chemotaxis is controlled by the conformational changes of the receptors, in response to the change of the ambient chemical concentration. In a statistical mechanical approach, the signalling due to the conformational changes is a thermodynamic average quantity, dependent on the temperature and the total energy of the system, including both ligand-receptor interaction and receptor-receptor interaction. This physical theory suggests to biology a new understanding of cooperation in lig...

  16. Endothelin B receptors exert antipruritic effects via peripheral κ-opioid receptors

    OpenAIRE

    Ji, Wenjin; Liang, Jiexian; Zhang, Zhiwei

    2012-01-01

    Endothelin B receptor agonists exert antipruritic effects on itching induced via endothelin-1 (ET-1) and compound 48/80. Peripheral µ- and κ-opioid receptors (MORs and KORs, respectively) are reported to be involved in the anti-nociceptive properties triggered by ETB agonists. Therefore, we investigated the role of peripheral opioid receptors in the scratching response induced by ET-1. ETA and ETB antagonists and non-selective and selective opioid receptor antagonists were co-injected with ET...

  17. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors

    OpenAIRE

    Resat Haluk; Wiley H Steven; Shankaran Harish

    2007-01-01

    Abstract Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation) or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in th...

  18. Profiling Carbohydrate-Receptor Interaction with Recombinant Innate Immunity Receptor-Fc Fusion Proteins*

    OpenAIRE

    Hsu, Tsui-Ling; Cheng, Shih-Chin; Yang, Wen-Bin; Chin, See-Wen; Bo-hua CHEN; Huang, Ming-Ting; Hsieh, Shie-Liang; Wong, Chi-Huey

    2009-01-01

    The recognition of bacteria, viruses, fungi, and other microbes is controlled by host immune cells, which are equipped with many innate immunity receptors, such as Toll-like receptors, C-type lectin receptors, and immunoglobulin-like receptors. Our studies indicate that the immune modulating properties of many herbal drugs, for instance, the medicinal fungus Reishi (Ganoderma lucidum) and Cordyceps sinensis, could be attributed to their polysaccharide components. These polysaccharides specifi...

  19. CNTF variants with increased biological potency and receptor selectivity define a functional site of receptor interaction.

    OpenAIRE

    Saggio, I; Gloaguen, I; Poiana, G; Laufer, R

    1995-01-01

    Human CNTF is a neurocytokine that elicits potent neurotrophic effects by activating a receptor complex composed of the ligand-specific alpha-receptor subunit (CNTFR alpha) and two signal transducing proteins, which together constitute a receptor for leukemia inhibitory factor (LIFR). At high concentrations, CNTF can also activate the LIFR and possibly other cross-reactive cytokine receptors in the absence of CNTFR alpha. To gain a better understanding of its structure-function relationships ...

  20. Segregation of steroid receptor coactivator-1 from steroid receptors in mammary epithelium

    OpenAIRE

    Shim, Woo-Shin; DiRenzo, James; DeCaprio, James A.; Santen, Richard J; Brown, Myles; Jeng, Meei-Huey

    1999-01-01

    Steroid receptor coactivator-1 (SRC-1) family members interact with steroid receptors, including estrogen receptor α (ERα) and progesterone receptor (PR), to enhance ligand-dependent transcription. However, the expression of ERα and SRC-1 was found to be segregated in distinct subsets of cells within the epithelium of the estrogen-responsive rat mammary gland. This finding was in contrast to the finding for the stroma, where significant numbers of cells coexpressed ERα and SRC-1. Treatment of...

  1. Hypothyroidism Affects D2 Receptor-mediated Breathing without altering D2 Receptor Expression

    OpenAIRE

    Schlenker, Evelyn H; Rio, Rodrigo Del; Schultz, Harold D.

    2014-01-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age- matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a periphera...

  2. Receptor oligomerization in family B1 of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Roed, Sarah Norklit; Ørgaard, Anne; Jørgensen, Rasmus;

    2012-01-01

    , GPCR oligomerization has been extensively studied using methods like bioluminescence resonance energy transfer (BRET) and today, receptor-receptor interactions within the GPCR superfamily is a well-established phenomenon. Evidence of the impact of GPCR oligomerization on, e.g., ligand binding, receptor...

  3. A novel fluorescent receptor assay : Based upon receptors embedded in labeled liposomes

    NARCIS (Netherlands)

    Viel, Gerhard Theodoor

    1999-01-01

    Receptor proteins play an essential role in life. All organisms, from bacteria to plants, animals and human beings use receptors for their response to (external) signals. By definition, a receptor is a (macro) molecule which is able to recognize a distinct chemical entity (e.g. a hormone or neurotra

  4. A novel fluorescent receptor assay : based upon receptors embedded in labeled liposomes

    NARCIS (Netherlands)

    Viel, Gerhard Theodoor

    1999-01-01

    Receptor proteins play an essential role in life. All organisms, from bacteria to plants, animals and human beings use receptors for their response to (external) signals. By definition, a receptor is a (macro) molecule which is able to recognize a distinct chemical entity (e.g. a hormone or neurotra

  5. Autophagy and the (prorenin receptor

    Directory of Open Access Journals (Sweden)

    KatrinaJeanBinger

    2013-10-01

    Full Text Available The (prorenin receptor (PRR is a newly reported member of the renin-angiotensin system (RAS; a hormonal cascade responsible for regulating blood pressure. Originally, the identification of PRR was heralded as the next drug target of the RAS, of which such therapies would have increased benefits against target-organ damage and hypertension. However, in the years since its discovery several conditional knockout mouse models of PRR have demonstrated an essential role for this receptor unrelated to the renin-angiotensin system and blood pressure. Deletion of PRR in podocytes or cardiomyocytes resulted in the rapid onset of organ failure, eventuating in animal mortality after only a matter of weeks. In both cases, deletion of PRR resulted in the intracellular accumulation of autophagosomes and misfolded proteins, indicating a disturbance in autophagy. In light of the fact that the majority of PRR is located intracellularly, this molecular function appears to be more relevant than its ability to bind to high, non-physiological concentrations of (prorenin. This review will focus on the role of PRR in autophagy and its importance in maintaining cellular homeostasis. Understanding the link between PRR, autophagy and how its loss results in cell death will be essential for deciphering its role in physiology and pathology.

  6. Nicotinic receptors in addiction pathways.

    Science.gov (United States)

    Leslie, Frances M; Mojica, Celina Y; Reynaga, Daisy D

    2013-04-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that consist of pentameric combinations of α and β subunits. These receptors are widely distributed throughout the brain and are highly expressed in addiction circuitry. The role of nAChRs in regulating neuronal activity and motivated behavior is complex and varies both in and among brain regions. The rich diversity of central nAChRs has hampered the characterization of their structure and function with use of classic pharmacological techniques. However, recent molecular approaches using null mutant mice with specific regional lentiviral re-expression, in combination with neuroanatomical and electrophysiological techniques, have allowed the elucidation of the influence of different nAChR types on neuronal circuit activity and behavior. This review will address the influence of nAChRs on limbic dopamine circuitry and the medial habenula-interpeduncular nucleus complex, which are critical mediators of reinforced behavior. Characterization of the mechanisms underlying regulation of addiction pathways by endogenous cholinergic transmission and by nicotine may lead to the identification of new therapeutic targets for treating tobacco dependence and other addictions. PMID:23247824

  7. Androgen receptor drives cellular senescence.

    Directory of Open Access Journals (Sweden)

    Yelena Mirochnik

    Full Text Available The accepted androgen receptor (AR role is to promote proliferation and survival of prostate epithelium and thus prostate cancer progression. While growth-inhibitory, tumor-suppressive AR effects have also been documented, the underlying mechanisms are poorly understood. Here, we for the first time link AR anti-cancer action with cell senescence in vitro and in vivo. First, AR-driven senescence was p53-independent. Instead, AR induced p21, which subsequently reduced ΔN isoform of p63. Second, AR activation increased reactive oxygen species (ROS and thereby suppressed Rb phosphorylation. Both pathways were critical for senescence as was proven by p21 and Rb knock-down and by quenching ROS with N-Acetyl cysteine and p63 silencing also mimicked AR-induced senescence. The two pathways engaged in a cross-talk, likely via PML tumor suppressor, whose localization to senescence-associated chromatin foci was increased by AR activation. All these pathways contributed to growth arrest, which resolved in senescence due to concomitant lack of p53 and high mTOR activity. This is the first demonstration of senescence response caused by a nuclear hormone receptor.

  8. Postischemic regulation of central histamine receptors.

    Science.gov (United States)

    Lozada, A; Munyao, N; Sallmen, T; Lintunen, M; Leurs, R; Lindsberg, P J; Panula, P

    2005-01-01

    This study characterizes changes occurring in the central histaminergic system associated with ischemia-reperfusion pathology in the rat. Specifically, after a postocclusion time period of 48 h, we have analyzed histamine H(1) receptor mRNA expression, histamine H(2) receptor protein amount and binding densities, and histamine H(3) receptor mRNA expression and binding densities in brain regions that have been suggested to be selectively vulnerable to transient global ischemia, i.e. hippocampus, thalamus, caudate-putamen, and cerebral cortex. We found an increase in H(1) receptor mRNA expression in the caudate-putamen: given that ischemia reduces glucose uptake and H(1) receptor activation has been shown to decrease this effect, an increase of expression levels may result in mitigating tissue damage due to energy failure observed in ischemia. A decrease in H(2) receptor binding densities in the caudate-putamen was also observed; the ischemia-induced decrease in H(2) receptor protein was also detectable by Western blot analysis. This phenomenon may underlie the previously reported ischemia induced striatal dopamine release. H(3) receptor mRNA expression was increased in the caudate putamen of the postischemic brain but was decreased in the globus pallidus and the thalamus; in association with this, H(3) receptor binding densities were increased in the cortex, caudate-putamen, globus pallidus, and hippocampus. The upregulation of H(3) receptor ligand binding may be involved in the previously reported continuous neuronal histamine release. Our data suggest that central histamine receptor expression and ligand binding are altered in brain ischemia in distinct areas, and may participate in neuroprotection and/or ischemia-associated neuronal damage. PMID:16181737

  9. Receptor crosstalk: haloperidol treatment enhances A2A adenosine receptor functioning in a transfected cell model

    OpenAIRE

    Trincavelli, Maria Letizia; Cuboni, Serena; Catena Dell’Osso, Mario; Maggio, Roberto; Klotz, Karl-Norbert; Novi, Francesca; Panighini, Anna; Daniele, Simona; Martini, Claudia

    2010-01-01

    A2A adenosine receptors are considered an excellent target for drug development in several neurological and psychiatric disorders. It is noteworthy that the responses evoked by A2A adenosine receptors are regulated by D2 dopamine receptor ligands. These two receptors are co-expressed at the level of the basal ganglia and interact to form functional heterodimers. In this context, possible changes in A2A adenosine receptor functional responses caused by the chronic blockade/activation of D2 dop...

  10. Leptin_receptor - Wikipedia, the free encyclopedia [Gene Wiki

    Lifescience Database Archive (English)

    Full Text Available Leptin receptor - Wikipedia, the free encyclopediaLeptin receptorFrom Wikipedia, the free encycl ... nce variation at the human leptin receptor gene in lean ... and obese Pima Indians". Hum. Mol. Genet. 6 (5): 6 ...

  11. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  12. Counting NMDA Receptors at the Cell Surface

    Czech Academy of Sciences Publication Activity Database

    Horák, Martin; Suh, Y. H.

    Totowa: Humana Press Inc., 2016, s. 31-44. (Neuromethods. 106). ISBN 978-1-4939-2811-8 R&D Projects: GA ČR(CZ) GA14-02219S Institutional support: RVO:67985823 Keywords : NMDA receptor * ionotropic glutamate receptor * mammalian cell lines * intracellular trafficking * quantitative assay * biotinylation assay * biochemistry Subject RIV: FH - Neurology

  13. ALT telomeres get together with nuclear receptors.

    Science.gov (United States)

    Aeby, Eric; Lingner, Joachim

    2015-02-26

    Nuclear receptors bind chromosome ends in "alternative lengthening of telomeres" (ALT) cancer cells that maintain their ends by homologous recombination instead of telomerase. Marzec et al. now demonstrate that, in ALT cells, nuclear receptors not only trigger distal chromatin associations to mediate telomere-telomere recombination events, but also drive chromosome-internal targeted telomere insertions (TTI). PMID:25723159

  14. In vivo studies of opiate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Duelfer, T.; Burns, H.D.; Ravert, H.T.; Langstroem, B.; Balasubramanian, V.; Wagner, H.N. Jr.

    1984-01-01

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantly to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented.

  15. In vivo studies of opiate receptors

    International Nuclear Information System (INIS)

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantly to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented

  16. Molecular identification of the first SIFamide receptor

    DEFF Research Database (Denmark)

    Jørgensen, Lars M; Hauser, Frank; Cazzamali, Giuseppe;

    2006-01-01

    . Database searches revealed SIFamide receptor orthologues in the genomes from the malaria mosquito Anopheles gambiae, the silkworm Bombyx mori, the red flour beetle Tribolium castaneum, and the honey bee Apis mellifera. An alignment of the five insect SIFamide or SIFamide-like receptors showed, again, an...

  17. Nanobiosensors based on individual olfactory receptors

    CERN Document Server

    Pajot-Augy, E

    2008-01-01

    In the SPOT-NOSED European project, nanoscale sensing elements bearing olfactory receptors and grafted onto functionalized gold substrates are used as odorant detectors to develop a new concept of nanobioelectronic nose, through sensitive impedancemetric measurement of single receptor conformational change upon ligand binding, with a better specificity and lower detection threshold than traditional physical sensors.

  18. Efficient Amide Based Halogenide Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    Hong Xing WU; Feng Hua LI; Hai LIN; Shou Rong ZHU; Hua Kuan LIN

    2005-01-01

    In this paper, we present the synthesis and anion recognition properties of the amide based phenanthroline derivatives 1, 2 and 3. In all cases 1:1 receptor: anion complexes were observed. The receptors were found to be selective for fluoride and chloride respectively over other putative anionic guest species.

  19. Tyrosine phosphorylation of the asialoglycoprotein receptor

    International Nuclear Information System (INIS)

    The asialoglycoprotein (ASGP) receptor undergoes constitutive endocytosis through the coated pit/coated vesicle pathway in hepatocytes. Studies on HepG2 cells have shown that the receptor is phosphorylated at serine under control conditions and following protein kinase C stimulation. This study examined whether the ASGP receptor could also serve as a substrate for a tyrosine kinase in HepG2 cells. 32P labeling was performed in membrane preparations, in permeabilized cells at 4 degrees C, and in intact cells at 37 degrees C. The phosphorylated ASGP receptor was isolated by immunoprecipitation, hydrolyzed in 6 N HCl at 110 degrees C, and analyzed by two-dimensional high voltage electrophoresis. The receptor isolated from a membrane preparation incubated in vitro with [gamma-32P]ATP incorporated radiolabel predominantly (greater than 90%) into phosphotyrosine. ASGP receptor phosphorylation at both tyrosine and serine was detected in intact cells incubated with phosphatase inhibitors for 60 min at 37 degrees C. The presence of both phenylarsine oxide (20 microM) and sodium orthovanadate (200 microM) was required for tyrosine phosphorylation. Use of these inhibitors together resulted in a 16.4-fold increase in phosphorylation of the immunoprecipitated ASGP receptor, whereas phosphorylation of total HepG2 membrane proteins was not significantly augmented by this procedure. Selective proteolytic digestion of ASGP receptors in isolated vesicles demonstrated that the phosphorylation site identified in these studies is located at tyrosine 5 in the cytoplasmic tail

  20. Receptor study of psychiatric disorders using PET

    International Nuclear Information System (INIS)

    Recent receptor studies of psychiatric disorders using PET have been focused on the change in the number of D2 dopamine receptors in the striatum of drug-naive schizophrenic patients. One study confirmed an increase in D2 receptors, while another study denied it. Although there were some differences in the approaches of the two groups, the reason for the discrepancy is not clear yet. Looking to psychiatric disorders other than schizophrenia, our recent study revealed a possible role of dopamine D1 receptors in bipolar mood disorders. However, some problems must be resolved for further receptor studies with PET. For example, our recent study shows that desipamine decreases the in vivo binding of dopramine D1 and D2 receptors whereas these is no effect on dopamine D1 and D2 receptors in vitro. Additionally significant methodological problems lie in the method of evaluation of the non-specific binding and the effect of endogenous neurotransmitters. Moreover, difficulties in the diagnosis of psychiatric disorders and ethical problems in psychiatric research are critical factors in receptor studies with PET in psychiatric disorders. (author)

  1. Regulation of gonadotropin receptor gene expression

    NARCIS (Netherlands)

    A.P.N. Themmen (Axel); R. Kraaij (Robert); J.A. Grootegoed (Anton)

    1994-01-01

    textabstractThe receptors for the gonadotropins differ from the other G protein-coupled receptors by having a large extracellular hormone-binding domain, encoded by nine or ten exons. Alternative splicing of the large pre-mRNA of approximately 100 kb can result in mRNA species that encode truncated

  2. [Interactions between dopamine receptor and NMDA/type A γ-aminobutyric acid receptors].

    Science.gov (United States)

    Chen, Hui-Ying; Wei, Ting-Jia; Weng, Jing-Jin; Qin, Jiang-Yuan; Huang, Xi; Su, Ji-Ping

    2016-04-25

    Type A γ-aminobutyric acid receptors (GABAAR) and N-methyl-D-aspartate receptors (NMDAR) are the major inhibitory and excitatory receptors in the central nervous system, respectively. Co-expression of the receptors in the synapse may lead to functional influence between receptors, namely receptor interaction. The interactions between GABAAR and NMDAR can be either positive or negative. However, the mechanisms of interaction between the two receptors remain poorly understood, and potential mechanisms include (1) through a second messenger; (2) by receptors trafficking; (3) by direct interaction; (4) by a third receptor-mediation. Dopamine is the most abundant catecholamine neurotransmitter in the brain, and its receptors, dopamine receptors (DR) can activate multiple signaling pathways. Earlier studies on the interaction between DR and GABAAR/NMDAR have shown some underlying mechanisms, suggesting that DR could mediate the interaction between GABAAR and NMDAR. This paper summarized some recent progresses in the studies of the interaction between DR and NMDAR/GABAAR, providing a further understanding on the interaction between NMDAR and GABAAR mediated by DR. PMID:27108906

  3. Human Neuroepithelial Cells Express NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Cappell B

    2003-11-01

    Full Text Available Abstract L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1 cerebral endothelial barrier and 2 cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR expression via immunohistochemistry and murine neuroepithelial cell line (V1 were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.

  4. Androgen insensitivity syndrome: gonadal androgen receptor activity

    International Nuclear Information System (INIS)

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  5. Structure of Leptin Receptor Related with Obesity

    DEFF Research Database (Denmark)

    Toleikis, Zigmantas

    The hormone leptin is central to obesity, but the molecular processes underlying the activation of the leptin receptor are unknown. To further the understanding of the system, an atomic resolution structure of this cytokine type I receptor in the unbound inactive form and in the activated bound...... receptor, while the D5 domain is the central leptin-binding domain, implicated in the first steps of activation. Both domains are characterized by a fibronectin type III fold and both contain a conserved WSXWS motif (X represents an unconserved amino acid residue), a distinct feature of the cytokine...... receptors. This motif is thought to play a major role in correct folding and activation of the receptor. The complex between leptin and the D5CA domain was analyzed using nuclear magnetic resonance spectroscopy and the amino acid residues implicated in the binding were determined. To investigate which parts...

  6. Molecular pharmacology of human NMDA receptors

    DEFF Research Database (Denmark)

    Hedegaard, Maiken; Hansen, Kasper Bø; Andersen, Karen Toftegaard;

    2012-01-01

    current knowledge of the relationship between NMDA receptor structure and function. We summarize studies on the biophysical properties of human NMDA receptors and compare these properties to those of rat orthologs. Finally, we provide a comprehensive pharmacological characterization that allows side......-by-side comparison of agonists, un-competitive antagonists, GluN2B-selective non-competitive antagonists, and GluN2C/D-selective modulators at recombinant human and rat NMDA receptors. The evaluation of biophysical properties and pharmacological probes acting at different sites on the receptor suggest that the...... binding sites and conformational changes leading to channel gating in response to agonist binding are highly conserved between human and rat NMDA receptors. In summary, the results of this study suggest that no major detectable differences exist in the pharmacological and functional properties of human...

  7. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond;

    2016-01-01

    G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond...... pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets for...... the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential....

  8. Role of retinoic receptors in lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    Renyi-Vamos Ferenc

    2008-07-01

    Full Text Available Abstract Several in vitro and in vivo studies have examined the positive and negative effects of retinoids (vitamin A analogs in premalignant and malignant lesions. Retinoids have been used as chemopreventive and anticancer agents because of their pleiotropic regulator function in cell differentiation, growth, proliferation and apoptosis through interaction with two types of nuclear receptors: retinoic acid receptors and retinoid X receptors. Recent investigations have gradually elucidated the function of retinoids and their signaling pathways and may explain the failure of earlier chemopreventive studies. In this review we have compiled basic and recent knowledge regarding the role of retinoid receptors in lung carcinogenesis. Sensitive and appropriate biological tools are necessary for screening the risk population and monitoring the efficacy of chemoprevention. Investigation of retinoid receptors is important and may contribute to the establishment of new strategies in chemoprevention for high-risk patients and in the treatment of lung cancer.

  9. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa; Marcussen, Anders Bue; Thomsen, Morten Skøtt; Chourbaji, Sabine; Brandwein, Christiane; Ridder, Stephanie; Halldin, Christer; Gass, Peter; Knudsen, Gitte M; Aznar, Susana

    2009-01-01

    Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker of...... depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish an...... effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased...

  10. Enhanced sensitivity of muscarinic cholinergic receptor associated with dopaminergic receptor subsensitivity after chronic antidepressant treatment

    International Nuclear Information System (INIS)

    The chronic effects of antidepressant treatment on striatal dopaminergic (DA) and muscarinic cholinergic (mACh) receptors of the rat brain have been examined comparatively in this study using 3H-spiroperidol (3H-SPD) and 3H-quinuclidinyl benzilate (3H-QNB) as the respective radioactive ligands. Imipramine and desipramine were used as prototype antidepressants. Although a single administration of imipramine or desipramine did not affect each receptor sensitivity, chronic treatment with each drug caused a supersensitivity of mACh receptor subsequent to DA receptor subsensitivity. Furthermore, it has been suggested that anti-mACh properties of imipramine or desipramine may not necessarily be related to the manifestation of mACh receptor supersensitivity and that sustained DA receptor subsensitivity may play some role in the alterations of mACh receptor sensitivity

  11. Protein-Protein Interactions at the Adrenergic Receptors

    OpenAIRE

    Cotecchia, Susanna; Stanasila, Laura; Diviani, Dario

    2012-01-01

    The adrenergic receptors are among the best characterized G protein-coupled receptors (GPCRs) and knowledge on this receptor family has provided several important paradigms about GPCR function and regulation. One of the most recent paradigms initially supported by studies on adrenergic receptors is that both βarrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effect...

  12. Human Receptor Activation by Aroclor 1260, a Polychlorinated Biphenyl Mixture

    OpenAIRE

    Wahlang, Banrida; Falkner, K. Cameron; Clair, Heather B.; Al-Eryani, Laila; Prough, Russell A.; States, J. Christopher; Coslo, Denise M.; Omiecinski, Curtis J.; Cave, Matthew C.

    2014-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), ...

  13. Molecular Recognition in the Sphingosine 1-Phosphate Receptor Family

    OpenAIRE

    Truc-Chi, T.; Fells, James I.; Osborne, Daniel A.; North, E. Jeffrey; Naor, Mor M.; Parrill, Abby L.

    2007-01-01

    Computational modeling and its application in ligand screening and ligand receptor interaction studies play important roles in structure-based drug design. A series of sphingosine 1-phosphate (S1P) receptor ligands with varying potencies and receptor selectivities were docked into homology models of the S1P1-5 receptors. These studies provided molecular insights into pharmacological trends both across the receptor family as well as at single receptors. This study identifies ligand recognition...

  14. Renal dopamine receptors in health and hypertension.

    Science.gov (United States)

    Jose, P A; Eisner, G M; Felder, R A

    1998-11-01

    During the past decade, it has become evident that dopamine plays an important role in the regulation of renal function and blood pressure. Dopamine exerts its actions via a class of cell-surface receptors coupled to G-proteins that belong to the rhodopsin family. Dopamine receptors have been classified into two families based on pharmacologic and molecular cloning studies. In mammals, two D1-like receptors that have been cloned, the D1 and D5 receptors (known as D1A and D1B, respectively, in rodents), are linked to stimulation of adenylyl cyclase. Three D2-like receptors that have been cloned (D2, D3, and D4) are linked to inhibition of adenylyl cyclase and Ca2+ channels and stimulation of K+ channels. All the mammalian dopamine receptors, initially cloned from the brain, have been found to be expressed outside the central nervous system, in such sites as the adrenal gland, blood vessels, carotid body, intestines, heart, parathyroid gland, and the kidney and urinary tract. Dopamine receptor subtypes are differentially expressed along the nephron, where they regulate renal hemodynamics and electrolyte and water transport, as well as renin secretion. The ability of renal proximal tubules to produce dopamine and the presence of receptors in these tubules suggest that dopamine can act in an autocrine or paracrine fashion; this action becomes most evident during extracellular fluid volume expansion. This renal autocrine/paracrine function is lost in essential hypertension and in some animal models of genetic hypertension; disruption of the D1 or D3 receptor produces hypertension in mice. In humans with essential hypertension, renal dopamine production in response to sodium loading is often impaired and may contribute to the hypertension. The molecular basis for the dopaminergic dysfunction in hypertension is not known, but may involve an abnormal post-translational modification of the dopamine receptor. PMID:9839770

  15. Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers.

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    Full Text Available Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain.

  16. Anorexia nervosa and estrogen receptors.

    Science.gov (United States)

    Ramoz, Nicolas; Versini, Audrey; Gorwood, Philip

    2013-01-01

    Anorexia nervosa (AN) is a chronic psychiatric disorder with a high prevalence of 0.6% and the highest mortality rates among psychiatric diseases, around 10%, mostly due to undernutrition and suicide. AN is characterized by physiological features with a body mass index less than 17.5 kg/m(2), low bone mineral density and amenorrhea, psychological symptoms with a distortion of image body, and behavioral abnormalities. Estrogen molecules and estrogen biological pathway are clearly involved in food intake and body weight in animals and humans. Further, hypoestrogenism has been demonstrated in AN patients and convergent evidence involves the estrogen pathway in the development of AN. AN presents a high heritability and polymorphisms in genes coding the estrogen receptors alpha and beta have been found significantly associated with the disorder. This chapter shows the implication of estrogens in AN and suggests investigation to develop future pharmacological treatments for anorexia. PMID:23601424

  17. Emerging GLP-1 receptor agonists

    DEFF Research Database (Denmark)

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina

    2011-01-01

    Introduction: Recently, glucagon-like peptide-1 receptor (GLP-1R) agonists have become available for the treatment of type 2 diabetes. These agents exploit the physiological effects of GLP-1, which is able to address several of the pathophysiological features of type 2 diabetes. GLP-1R agonists...... presently available are administered once or twice daily, but several once-weekly GLP-1R agonists are in late clinical development. Areas covered: The present review aims to give an overview of the clinical data on the currently available GLP-1R agonists used for treatment of type 2 diabetes, exenatide and...... liraglutide, as well as the emerging GLP-1R agonists including the long-acting compounds. Expert opinion: An emerging therapeutic trend toward initial or early combination therapy with metformin- and incretin-based therapy is anticipated for patients with type 2 diabetes. GLP-1-based therapy has so far proven...

  18. Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models

    Science.gov (United States)

    Kurics, Tamás; Menshykau, Denis; Iber, Dagmar

    2014-08-01

    Turing mechanisms can yield a large variety of patterns from noisy, homogenous initial conditions and have been proposed as patterning mechanism for many developmental processes. However, the molecular components that give rise to Turing patterns have remained elusive, and the small size of the parameter space that permits Turing patterns to emerge makes it difficult to explain how Turing patterns could evolve. We have recently shown that Turing patterns can be obtained with a single ligand if the ligand-receptor interaction is taken into account. Here we show that the general properties of ligand-receptor systems result in very large Turing spaces. Thus, the restriction of receptors to single cells, negative feedbacks, regulatory interactions among different ligand-receptor systems, and the clustering of receptors on the cell surface all greatly enlarge the Turing space. We further show that the feedbacks that occur in the FGF10-SHH network that controls lung branching morphogenesis are sufficient to result in large Turing spaces. We conclude that the cellular restriction of receptors provides a mechanism to sufficiently increase the size of the Turing space to make the evolution of Turing patterns likely. Additional feedbacks may then have further enlarged the Turing space. Given their robustness and flexibility, we propose that receptor-ligand-based Turing mechanisms present a general mechanism for patterning in biology.

  19. Selective effects of ligands on vitamin D3 receptor- and retinoid X receptor-mediated gene activation in vivo.

    OpenAIRE

    Lemon, B D; Freedman, L P

    1996-01-01

    Steroid/nuclear hormone receptors are ligand-regulated transcription f factors that play key roles in cell regulation, differentiation, and oncogenesis. Many nuclear receptors, including the human 1,25-dihydroxyvitamin D3 receptor (VDR), bind cooperatively to DNA either as homodimers or as heterodimers with the 9-cis retinoic acid (RA) receptor (retinoid X-receptor [RXR]). We have previously reported that the ligands for VDR and RXR can differentially modulate the affinity of the receptors' i...

  20. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M; Carpenter, G; Beguinot, L

    1992-01-01

    similar to a kinase-negative receptor. Mutation of tyrosine residue Y992 alone in the context of full length EGF receptor, however, did not affect receptor internalization or kinase activity toward phospholipase C-gamma 1. These data indicate that tyrosine 992 is critical for substrate phosphorylation and...... internalization only in the context of the truncated receptor, and that minor autophosphorylation sites, such as Y992, may act as compensatory regulatory sties in the absence of the major EGF receptor autophosphorylation sites....

  1. GABAA receptors: post-synaptic co-localization and cross-talk with other receptors

    Directory of Open Access Journals (Sweden)

    Amulya Nidhi Shrivastava

    2011-06-01

    Full Text Available γ-aminobutyric acid type A receptors (GABAARs are the major inhibitory neurotransmitter receptors in the central nervous system (CNS, and importantly contribute to the functional regulation of the nervous system. Several studies in the last few decades have convincingly shown that GABA can be co-localized with other neurotransmitters in the same synapse, and can be co-released with these neurotransmitters either from the same vesicles or from different vesicle pools. The co-released transmitters may act on post-synaptically co-localized receptors resulting in a simultaneous activation of both receptors. Most of the studies investigating such co-activation observed a reduced efficacy of GABA for activating GABAARs and thus, a reduced inhibition of the postsynaptic neuron. Similarly, in several cases activation of GABAARs has been reported to suppress the response of the associated receptors. Such a receptor cross-talk is either mediated via a direct coupling between the two receptors or via the activation of intracellular signaling pathways and is used for fine tuning of inhibition in the nervous system. Recently, it was demonstrated that a direct interaction of different receptors might already occur in intracellular compartments and might also be used to specifically target the receptors to the cell membrane. In this article, we provide an overview on such cross-talks between GABAARs and several other neurotransmitter receptors and briefly discuss their possible physiological and clinical importance.

  2. Action mechanisms of Liver X Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Gabbi, Chiara; Warner, Margaret [Center for Nuclear Receptors and Cell Signaling, University of Houston, 3056 Cullen Blv, 77204 Houston, Texas (United States); Gustafsson, Jan-Åke, E-mail: jgustafs@central.uh.edu [Center for Nuclear Receptors and Cell Signaling, University of Houston, 3056 Cullen Blv, 77204 Houston, Texas (United States); Department of Biosciences and Nutrition, Karolinska Institutet, Novum S-141 86 (Sweden)

    2014-04-11

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; central nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors.

  3. Action mechanisms of Liver X Receptors

    International Nuclear Information System (INIS)

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; central nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors

  4. Effects of carbon dioxide on laryngeal receptors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.W.; Sant' Ambrogio, F.B.; Orani, G.P.; Sant' Ambrogio, G.; Mathew, O.P. (Univ. of Texas, Galveston (United States))

    1990-02-26

    Carbon dioxide (CO{sub 2}) either stimulates or inhibits laryngeal receptors in the cat. The aim of this study was to correlate the CO{sub 2} response of laryngeal receptors with their response to other known stimuli (i.e. pressure, movement, cold, water and smoke). Single unit action potentials were recorded from fibers in the superior laryngeal nerve of 5 anesthetized, spontaneously breathing dogs together with CO{sub 2} concentration, esophageal and subglottic pressure. Constant streams of warm, humidified air or 10% CO{sub 2} in O{sub 2} were passed through the functionally isolated upper airway for 60 s. Eight of 13 randomly firing or silent receptors were stimulated by CO{sub 2} (from 0.4{plus minus}0.1 to 1.8{plus minus}0.4 imp.s). These non-respiratory-modulated receptors were more strongly stimulated by solutions lacking Cl{sup {minus}} and/or cigarette smoke. Six of 21 respiratory modulated receptors (responding to pressure and/or laryngeal motion) were either inhibited or stimulated by CO{sub 2}. Our results show that no laryngeal receptor responds only to CO{sub 2}. Silent or randomly active receptors were stimulated most often by CO{sub 2} consistent with the reflex effect of CO{sub 2} in the larynx.

  5. Cannabinoid receptor type-1: breaking the dogmas

    Science.gov (United States)

    Busquets Garcia, Arnau; Soria-Gomez, Edgar; Bellocchio, Luigi; Marsicano, Giovanni

    2016-01-01

    The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB 1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB 1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB 1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB 1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.

  6. Muscarinic Receptor Signaling in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Raufman

    2011-03-01

    Full Text Available According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  7. Muscarinic Receptor Signaling in Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rosenvinge, Erik C. von, E-mail: evonrose@medicine.umaryland.edu; Raufman, Jean-Pierre [University of Maryland School of Medicine, Division of Gastroenterology & Hepatology, 22 S. Greene Street, N3W62, Baltimore, MD 21201 (United States); Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD 21201 (United States)

    2011-03-02

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  8. Muscarinic Receptor Signaling in Colon Cancer

    International Nuclear Information System (INIS)

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer

  9. Receptor mapping in psychiatric patients with SPECT

    International Nuclear Information System (INIS)

    This paper summarizes some data of our studies with the single-photon-emission-computerized tomography (SPECT), focussing on the dopamine-D2- and the benzodiazepine receptor mapping. Benzodiazepine receptors: Central benzodiazepine receptors (BZr) can be visualized with iomazenil which is an analogue of the benzodiazepine antagonist flumazenil, labeled with 123-iodine. Since the involvement of the BZr system is discussed in the pathogenesis of anxiety and depression, patients with these disorders were investigated. A third study investigated the BZr-occupancy during benzodiazepine treatment (lorazepam). Results: (a) Patients with panic disorders had lower iomazenil uptake values compared to epileptic patients. (b) Depressed patients showed a positive correlation between severity of illness and frontal uptake. (c) BZr occupancy during lorazepam treatment was measurable, but not associated with lorazepam plasma levels. Dopamine-D2-receptors: With 123-I-iodobenzamide (IBZM), and iodine-labeled dopamine receptor ligand, the D2 receptor density can be measured by a semiquantitative approach (striatum/frontal cortex=ST/FC). Therefore, we investigated the D2-receptor occupancy during treatment with typical and atypical neuroleptics in relationship to dosages (normalized with different formulas of chlorpromazine equivalents), side effects, and prolactin plasma levels. Results: Dependent on the selected formula for chlorpromazine equivalents, the ST/FC ratio was correlated with dosages. Side effects and prolactin plasma levels showed a negative association with lower ST/FC ratios. (orig.)

  10. Tachykinin receptors in the equine pelvic flexure

    International Nuclear Information System (INIS)

    Tachykinins, of which substance P (SP) is the prototype, are neuropeptides which are widely distributed in the nervous systems. In the equine gut, SP is present in enteric nerves and is a powerful constrictor of enteric muscle; in other species, SP is also known to have potent vasodilatory and pro-inflammatory effects. The specific effects of SP are determined by the subtype of receptor present in the target tissue. There are 3 known subtypes of tachykinin receptors, distinguished by their relative affinities for SP and other tachykinins. The distribution of SP binding sites in the equine pelvic flexure was determined using 125I-Bolton Hunter SP (I-BHSP) autoradiography. Most I-BHSP binding sites were determined to be saturable and specific, therefore presumably representing tachykinin receptors. The greatest degree of I-BHSP binding occurred over very small vessels, and over the muscularis mucosae; I-BHSP binding was also intense over the circular muscle of the muscularis externa and mucosa, and present, although less intense, over the longitudinal muscle of the muscularis externa. Competition of I-BHSP with specific receptor agonists for binding sites in the equine pelvic flexure were used to determine the subtypes of tachykinin receptors present. The neurokinin-1 receptor subtype predominated in the equine pelvic flexure, followed by the neurokinin-3 receptor subtype

  11. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    Science.gov (United States)

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  12. Role of adenosine receptors in caffeine tolerance

    International Nuclear Information System (INIS)

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity

  13. Soluble cytokine receptors in biological therapy.

    Science.gov (United States)

    Fernandez-Botran, Rafael; Crespo, Fabian A; Sun, Xichun

    2002-08-01

    Due to their fundamental involvement in the pathogenesis of many diseases, cytokines constitute key targets for biotherapeutic approaches. The discovery that soluble forms of cytokine receptors are involved in the endogenous regulation of cytokine activity has prompted substantial interest in their potential application as immunotherapeutic agents. As such, soluble cytokine receptors have many advantages, including specificity, low immunogenicity and high affinity. Potential disadvantages, such as low avidity and short in vivo half-lifes, have been addressed by the use of genetically-designed receptors, hybrid proteins or chemical modifications. The ability of many soluble cytokine receptors to inhibit the binding and biological activity of their ligands makes them very specific cytokine antagonists. Several pharmaceutical companies have generated a number of therapeutic agents based on soluble cytokine receptors and many of them are undergoing clinical trials. The most advanced in terms of clinical development is etanercept (Enbrel, Immunex), a fusion protein between soluble TNF receptor Type II and the Fc region of human IgG1. This TNF-alpha; antagonist was the first soluble cytokine receptor to receive approval for use in humans. In general, most agents based on soluble cytokine receptors have been safe, well-tolerated and have shown only minor side effects in the majority of patients. Soluble cytokine receptors constitute a new generation of therapeutic agents with tremendous potential for applications in a wide variety of human diseases. Two current areas of research are the identification of their most promising applications and characterisation of their long-term effects. PMID:12171504

  14. 6-Methoxyflavanones as Bitter Taste Receptor Blockers

    OpenAIRE

    Roland, W.S.U.; Gouka, R J; Gruppen, H.; Driesse, M.; Buren, van, Ruud; Smit, G; Vincken, J.P.

    2014-01-01

    Many (dietary) bitter compounds, e.g. flavonoids, activate bitter receptor hTAS2R39 in cell-based assays. Several flavonoids, amongst which some flavanones, are known not to activate this receptor. As certain flavanones are known to mask bitter taste sensorially, flavanones might act as bitter receptor antagonists. Fourteen flavanones were investigated for their potential to reduce activation of hTAS2R39 by epicatechin gallate (ECG), one of the main bitter compounds occurring in green tea. Th...

  15. Receptores de radio monochip para FM

    OpenAIRE

    Miguel López, José María

    2005-01-01

    Este libro aborda de forma estructurada tanto los aspectos de diseño como los de realización de receptores de radio para la banda de FM. Tras unos primeros capítulos dedicados al estudio de las propiedades de la modulación de frecuencia y de los circuitos básicos que configuran un receptor de radio, se desarrolla un minucioso análisis de los circuitos integrados TDA7000/10/21. Paso a paso se muestra cómo diseñar con estos circuitos receptores de FM que, al requerir muy pocos ajustes, puede...

  16. Receptors useful for gas phase chemical sensing

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, Justyn W; Lee, Seung-Wuk; Majumdar, Arunava; Raorane, Digvijay A

    2015-02-17

    The invention provides for a receptor, capable of binding to a target molecule, linked to a hygroscopic polymer or hydrogel; and the use of this receptor in a device for detecting the target molecule in a gaseous and/or liquid phase. The invention also provides for a method for detecting the presence of a target molecule in the gas phase using the device. In particular, the receptor can be a peptide capable of binding a 2,4,6-trinitrotoluene (TNT) or 2,4,-dinitrotoluene (DNT).

  17. Interaction of ethanol with opiate receptors

    International Nuclear Information System (INIS)

    The authors study the action of ethanol on membrane-bound opiate receptors. Ethanol at 370C was shown to produce dose-dependent inhibition of binding of 3H-naloxone with opiate receptors. ID50 under these conditions was 462 mM. Temperature-dependent inhibition of ligand-receptor binding suggests that ethanol does not compete for the stereospecific binding site of 3H-naloxone. Analysis of the inhibitory action of ethanol on 3H-naloxone binding in animals at different stages of experimental alcoholism revealed no differences between the control and experimental animals after 3.5 and 10 months of voluntary alcoholization

  18. Somatostatin receptors in differentiated ovarian tumors.

    OpenAIRE

    Reubi, J. C.; Horisberger, U.; Klijn, J. G.; Foekens, J. A.

    1991-01-01

    The presence of somatostatin receptors was investigated in 57 primary human ovarian tumors using in vitro receptor autoradiography with three different somatostatin radioligands, 125I-[Tyr11]-somatostatin-14, 125I-[Leu8, D-Trp22, Tyr25]-somatostatin-28, or 125I-[Tyr3]-SMS 201-995. Three cases, all belonging to epithelial tumors, were receptor positive; specifically 1 of 42 adenocarcinomas, 1 of 3 borderline malignancies, and 1 of 2 cystadenomas. Four other epithelial tumors (3 fibroadenomas, ...

  19. Advances in Variations of Estrogen Receptor, Progesterone Receptor and Human Epidermal Growth Factor Receptor-2 Status in Metastatic Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Zhang Lili

    2013-01-01

    Chemotherapy, endocrine therapy and molecular targeted therapy are vital means in the treatment of metastatic breast cancer (MBC), whose reasonable and standard applications are of great importance to prolong patients’ survival and improve the quality of life. The expressions of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2) present signiifcant differences between primary and metastatic breast cancer. However, these differences may affect the selection of MBC patients for therapeutic strategies and judgment on the prognosis. Hence, the relevant researches on variations of hormone receptors and HER-2 in primary and metastatic breast cancer, discordant causes of ER, PR and HER-2 expression in primary and metastatic lesions and clinical value of biopsy to the metastases are reviewed in the study.

  20. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J. (UWA); (St. Vincent); (Queensland)

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  1. Identification of the salmon somatolactin receptor, a new member of the cytokine receptor family.

    Science.gov (United States)

    Fukada, Haruhisa; Ozaki, Yuichi; Pierce, Andrew L; Adachi, Shinji; Yamauchi, Kohei; Hara, Akihiko; Swanson, Penny; Dickhoff, Walton W

    2005-05-01

    Somatolactin (SL) is a pituitary hormone of the GH/prolactin (PRL) family that so far has been found only in fish. Compared with GH and PRL, the primary structure of SL is highly conserved among divergent fish species, suggesting it has an important function and a discriminating receptor that constrains structural change. However, SL functions are poorly understood, and receptors for SL have not yet been identified. During cloning of GH receptor cDNA from salmon, we found a variant with relatively high (38-58%) sequence identity to vertebrate GH receptors and low (28-33%) identity to PRL receptors; however, the recombinant protein encoding the extracellular domain showed only weak binding of GH. Ligand binding of the recombinant extracellular domain for this receptor confirmed that the cDNA encoded a specific receptor for SL. The SL receptor (SLR) has common features of a GH receptor including FGEFS motif, six cysteine residues in the extracellular domain, a single transmembrane region, and Box 1 and 2 regions in the intracellular domain. These structural characteristics place the SLR in the cytokine receptor type I homodimeric group, which includes receptors for GH, PRL, erythropoietin, thrombopoietin, granulocyte-colony stimulating factor, and leptin. Transcripts for SLR were found in 11 tissues with highest levels in liver and fat, supporting the notion that a major function of SL is regulation of lipid metabolism. Cloning SLR cDNA opens the way for discovery of new SL functions and target tissues in fish, and perhaps novel members of this receptor family in other vertebrates. PMID:15718271

  2. Thyroid hormone receptor β mutants: Dominant negative regulators of peroxisome proliferator-activated receptor γ action

    OpenAIRE

    Araki, Osamu; Ying, Hao; Furuya, Fumihiko; Zhu, Xuguang; Cheng, Sheue-yann

    2005-01-01

    Thyroid hormone (T3) and peroxisome proliferators have overlapping metabolic effects in the maintenance of lipid homeostasis. Their actions are mediated by their respective receptors: thyroid hormone receptors (TR) and peroxisome proliferator-activated receptors (PPAR). We recently found that a dominantly negative TRβ mutant (PV) that causes a genetic disease, resistance to thyroid hormone, acts to repress the ligand (troglitazone)-mediated transcriptional activity of PPARγ in cultured thyroi...

  3. Trans-activation by thyroid hormone receptors: functional parallels with steroid hormone receptors.

    OpenAIRE

    Thompson, C C; Evans, R M

    1989-01-01

    The effects of thyroid hormones are mediated through nuclear receptor proteins that modulate the transcription of specific genes in target cells. We previously isolated cDNAs encoding two different mammalian thyroid hormone receptors, one from human placenta (hTR beta) and the other from rat brain (rTR alpha), and showed that their in vitro translation products bind thyroid hormones with the characteritistic affinities of the native thyroid hormone receptor. We now demonstrate that both of th...

  4. Receptor downregulation and desensitization enhance the information processing ability of signaling receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Wiley, H. S.; Resat, Haluk

    2007-11-09

    The activation of cell surface receptors in addition to initiating signaling events also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (receptor downregulation) or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of “adaptation” wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from “over-responding” to the ligand. Here we use the epidermal growth factor receptor (EGFR) and G-protein coupled receptors (GPCR) as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. We show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped oscillators. This analogy enables us to describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. We hypothesize that, in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization play a critical role in temporal information processing.

  5. The insulin receptor C-terminus is involved in regulation of the receptor kinase activity.

    Science.gov (United States)

    Kaliman, P; Baron, V; Alengrin, F; Takata, Y; Webster, N J; Olefsky, J M; Van Obberghen, E

    1993-09-21

    During the insulin receptor activation process, ligand binding and autophosphorylation induce two distinct conformational changes in the C-terminal domain of the receptor beta-subunit. To analyze the role of this domain and the involvement of the C-terminal autophosphorylation sites (Tyr1316 and Tyr1322) in receptor activation, we used (i) antipeptide antibodies against three different C-terminal sequences (1270-1281, 1294-1317, and 1309-1326) and (ii) an insulin receptor mutant (Y/F2) where Tyr1316 and Tyr1322 have been replaced by Phe. We show that the autophosphorylation-induced C-terminal conformational change is preserved in the Y/F2 receptor, indicating that this change is not induced by phosphorylation of the C-terminal sites but most likely by phosphorylation of the major sites in the kinase domain (Tyr1146, Tyr1150, and Tyr1151). Binding of antipeptide antibodies to the C-terminal domain modulated (activated or inhibited) both mutant and wild-type receptor-mediated phosphorylation of poly(Glu/Tyr). In contrast to the wild-type receptor, Y/F2 exhibited the same C-terminal configuration before and after insulin binding, evidencing that mutation of Tyr1316 and Tyr1322 introduced conformational changes in the C-terminus. Finally, the mutant receptor was 2-fold more active than the wild-type receptor for poly(Glu/Tyr) phosphorylation. In conclusion, the whole C-terminal region of the insulin receptor beta-subunit is likely to exert a regulatory influence on the receptor kinase activity. Perturbations of the C-terminal region, such as binding of antipeptides or mutation of Tyr1316 and Tyr1322, provoke alterations at the receptor kinase level, leading to activation or inhibition of the enzymic activity. PMID:7690586

  6. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ

    OpenAIRE

    Liberles, Stephen D.; Horowitz, Lisa F.; Kuang, Donghui; Contos, James J.; Wilson, Kathleen L.; Siltberg-Liberles, Jessica; Liberles, David A; Buck, Linda B.

    2009-01-01

    The identification of receptors that detect environmental stimuli lays a foundation for exploring the mechanisms and neural circuits underlying sensation. The mouse vomeronasal organ (VNO), which detects pheromones and other semiochemicals, has 2 known families of chemoreceptors, V1Rs and V2Rs. Here, we report a third family of mouse VNO receptors comprising 5 of 7 members of the formyl peptide receptor (FPR) family. Unlike other FPRs, which function in the immune system, these FPRs are selec...

  7. Modulation of Opioid Receptor Ligand Affinity and Efficacy Using Active and Inactive State Receptor Models

    OpenAIRE

    Anand, Jessica P.; Purington, Lauren C.; Pogozheva, Irina D.; Traynor, John R.; Mosberg, Henry I.

    2012-01-01

    Mu opioid receptor (MOR) agonists are widely used for the treatment of pain; however chronic use results in the development of tolerance and dependence. It has been demonstrated that co-administration of a MOR agonist with a delta opioid receptor (DOR) antagonist maintains the analgesia associated with MOR agonists, but with reduced negative side effects. Using our newly refined opioid receptor models for structure-based ligand design, we have synthesized several pentapeptides with tailored a...

  8. Patrones, Generalización y Estrategias Inductivas de Estudiantes de 3º y 4º de Educación Secundaria Obligatoria en el Problema de las Baldosas (Patterns, Generalization and Inductive Strategies of Secondary Students Working on the Tiles Problem

    Directory of Open Access Journals (Sweden)

    María C. Cañadas

    2008-01-01

    Full Text Available En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de 3º y 4º de Educación Secundaria Obligatoria en la resolución del problema de las baldosas. Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados. In this paper we explore the patterns and the generalization developed by 359 students in years 9 and 10 in the resolution of the tiles problem. We pay special attention to the kinds of patterns identified, to the written ways in which students express generalization and, using inductive strategies, we present some characteristics of the generalization relating to the elements and the representations used.

  9. Teleost Chemokines and Their Receptors

    Directory of Open Access Journals (Sweden)

    Steve Bird

    2015-11-01

    Full Text Available Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specially zebrafish (Danio rerio, rainbow trout (Oncorhynchus mykiss and catfish (Ictalurus punctatus, outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.

  10. Group I Metabotropic Glutamate Receptors

    DEFF Research Database (Denmark)

    Erichsen, Julie Ladeby; Blaabjerg, Morten; Bogetofte Thomasen, Helle;

    2015-01-01

    Human neural stem cells (NSCs) from the developing embryo or the subventricular zone of the adult brain can potentially elicit brain repair after injury or disease, either via endogenous cell proliferation or by cell transplantation. Profound knowledge of the diverse signals affecting these cells...... differentiated an immortalized, forebrain-derived stem cell line in the presence or absence of glutamate and with addition of either the group I mGluR agonist DHPG or the selective antagonists; MPEP (mGluR5) and LY367385 (mGluR1). Characterization of differentiated cells revealed that both mGluR1 and mGluR5 were...... is, however, needed to realise their therapeutic potential. Glutamate and group I metabotropic glutamate receptors (mGluRs) affect proliferation and survival of rodent NSCs both during embryonic and postnatal development. To investigate the role of group I mGluRs (mGluR1 and mGluR5) on human NSCs, we...

  11. Application of autoradiography in receptor localization

    International Nuclear Information System (INIS)

    The studies demonstrated that 3H-DHA bound to frozen section of guineapig lung with the characteristics expected of interactions with beta-receptors. Specific binding accounted for, as mean value, 85 per cent of total binding when the lung sections were incubated with 2nM 3H-DHA at 25 deg C for 20 minutes. The Binding was saturable with a maximum binding capacity (Bmax) of 32.37 ± 6.0 fmol/mg wet weight of the tissue. Binding was of high affinity with a Kd of 1.8 ± 0.51 nM. Autoradiography revealed that the distribution of beta-receptors in the lung sections was widespread. The highest density of beta-receptors was found in alveolar wall, labelling also occured in airway epithelium, bronchial smooth muscle and submucosal glands. Beta-receptors were sparse in vascular smooth muscle and connective tissue

  12. Epidermal growth factor (EGF) receptor gene transcription

    International Nuclear Information System (INIS)

    The authors have studied in vitro transcription of the human epidermal growth factor (EGF) receptor proto-oncogene using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce the EGF receptor. With the in vitro system we found that Sp1 and other trans-acting factors bound to the EGF receptor promoter regions and are required for maximal expression. Fractionation showed that a DEAE-Sepharose fraction (BA) contained a novel factor, which specifically stimulated EGF receptor transcription 5- to 10-fold. The molecular mass of the native form of the factor is about 270-kDa based on its migration on Sephacryl S-300. This factor may activate transcription of the proto-oncogene through a weak or indirect interaction with the DNA template

  13. Histamine-2 Receptor Antagonists and Semen Quality.

    Science.gov (United States)

    Banihani, Saleem A

    2016-01-01

    Histamine-2 receptor antagonists are a class of drugs used to treat the acid-related gastrointestinal diseases such as ulcer and gastro-oesophageal reflux disease. Although such drugs, especially ranitidine and famotidine, are still widely used, their effects on semen quality, and hence on male infertility, is still unclear. This MiniReview systematically addresses and summarizes the effect of histamine-2 receptor antagonists (cimetidine, ranitidine, nizatidine and famotidine) on semen quality, particularly, on sperm function. Cimetidine appears to have adverse effects on semen quality. While the effects of ranitidine and nizatidine on semen quality are still controversial, famotidine does not appear to change semen quality. Therefore, additional studies will be required to clarify whether histamine-2 receptor-independent effects of these drugs play a role in semen quality as well as further clinical studies including direct comparison of the histamine-2 receptor antagonists. PMID:26176290

  14. Structure biology of selective autophagy receptors

    Science.gov (United States)

    Kim, Byeong-Won; Kwon, Do Hoon; Song, Hyun Kyu

    2016-01-01

    Autophagy is a process tightly regulated by various autophagy-related proteins. It is generally classified into non-selective and selective autophagy. Whereas non-selective autophagy is triggered when the cell is under starvation, selective autophagy is involved in eliminating dysfunctional organelles, misfolded and/or ubiquitylated proteins, and intracellular pathogens. These components are recognized by autophagy receptors and delivered to phagophores. Several selective autophagy receptors have been identified and characterized. They usually have some common domains, such as motif, a specific cargo interacting (ubiquitin-dependent or ubiquitin-independent) domain. Recently, structural data of these autophagy receptors has been described, which provides an insight of their function in the selective autophagic process. In this review, we summarize the most up-to-date findings about the structure-function of autophagy receptors that regulates selective autophagy. [BMB Reports 2016; 49(2): 73-80] PMID:26698872

  15. Adenosine and its receptors as therapeutic targets: An overview

    OpenAIRE

    Sachdeva, Sakshi; Gupta, Monika

    2012-01-01

    The main goal of the authors is to present an overview of adenosine and its receptors, which are G-protein coupled receptors. The four known adenosine receptor subtypes are discussed along with the therapeutic potential indicating that these receptors can serve as targets for various dreadful diseases.

  16. G-protein-coupled receptors: past, present and future

    OpenAIRE

    Hill, Stephen J

    2006-01-01

    The G-protein-coupled receptor (GPCR) family represents the largest and most versatile group of cell surface receptors. Drugs active at these receptors have therapeutic actions across a wide range of human diseases ranging from allergic rhinitis to pain, hypertension and schizophrenia. This review provides a brief historical overview of the properties and signalling characteristics of this important family of receptors.

  17. The MC4 receptor and control of appetite

    NARCIS (Netherlands)

    Adan, R A H; Tiesjema, B; Hillebrand, J J G; la Fleur, S E; Kas, M J H; de Krom, M

    2006-01-01

    Mutations in the human melanocortin (MC)4 receptor have been associated with obesity, which underscores the relevance of this receptor as a drug target to treat obesity. Infusion of MC4R agonists decreases food intake, whereas inhibition of MC receptor activity by infusion of an MC receptor antagoni

  18. Posttranslational Modification Biology of Glutamate Receptors and Drug Addiction

    OpenAIRE

    Fibuch, Eugene E.; Wang, John Q.

    2011-01-01

    Posttranslational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues on their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiqui...

  19. Regulation of Glutamate Receptors by Their Auxiliary Subunits

    OpenAIRE

    Tomita, Susumu

    2010-01-01

    Glutamate receptors are major excitatory receptors in the brain. Recent findings have established auxiliary subunits of glutamate receptors as critical modulators of synaptic transmission, synaptic plasticity and neurological disorder. The elucidation of the molecular rules governing glutamate receptors and subunits will improve our understanding of synapses and of neural-circuit regulation in the brain.

  20. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    The human chemokine system comprises 19 seven-transmembrane helix (7TM) receptors and 45 endogenous chemokines that often interact with each other in a promiscuous manner. Due to the chemokine system's primary function in leukocyte migration, it has a central role in immune homeostasis and...... interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly...

  1. The G protein-coupled receptor, class C, group 6, subtype A (GPRC6A) receptor

    DEFF Research Database (Denmark)

    Clemmensen, C; Smajilovic, S; Wellendorph, P;

    2014-01-01

    GPRC6A (G protein-coupled receptor, class C, group 6, subtype A) is a class C G protein-coupled receptor, that has been cloned from human, mouse and rat. Several groups have shown that the receptor is activated by a range of basic and small aliphatic L-α-amino acids of which L-arginine, L......, there is increasing evidence that the receptor is involved in regulation of inflammation, metabolism and endocrine functions. GPRC6A could thus be an interesting target for new drugs in these therapeutic areas....

  2. Nuclear Receptor Genes - Regulation and Evolution

    OpenAIRE

    Sharma, Yogita

    2016-01-01

    Nuclear receptors are transcription factors that typically bind ligands in order to regulate the expression level of their target genes. Members of this family work with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. Nuclear receptors are promising drug targets and have therefore attracted immense attention in recent decades in the field of pharmacology. Irregular expression of nuclear recept...

  3. G Protein–Coupled Receptor Rhodopsin

    OpenAIRE

    Palczewski, Krzysztof

    2006-01-01

    The rhodopsin crystal structure provides a structural basis for understanding the function of this and other G protein–coupled receptors (GPCRs). The major structural motifs observed for rhodopsin are expected to carry over to other GPCRs, and the mechanism of transformation of the receptor from inactive to active forms is thus likely conserved. Moreover, the high expression level of rhodopsin in the retina, its specific localization in the internal disks of the photoreceptor structures [term...

  4. Morphine Induces Desensitization of Insulin Receptor Signaling

    OpenAIRE

    Li, Yu; Eitan, Shoshana; Wu, Jiong; Evans, Christopher J.; Kieffer, Brigitte; Sun, Xiaojian; Polakiewicz, Roberto D.

    2003-01-01

    Morphine analgesia is mediated principally by the μ-opioid receptor (MOR). Since morphine and other opiates have been shown to influence glucose homeostasis, we investigated the hypothesis of direct cross talk between the MOR and the insulin receptor (IR) signaling cascades. We show that prolonged morphine exposure of cell lines expressing endogenous or transfected MOR, IR, and the insulin substrate 1 (IRS-1) protein specifically desensitizes IR signaling to Akt and ERK cascades. Morphine cau...

  5. High-affinity neuropeptide Y receptor antagonists.

    OpenAIRE

    Daniels, A J; Matthews, J. E.; Slepetis, R J; Jansen, M; Viveros, O. H.; Tadepalli, A.; Harrington, W; Heyer, D; Landavazo, A; Leban, J J

    1995-01-01

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe he...

  6. Molecular Physiology of Enteric Opioid Receptors

    OpenAIRE

    Galligan, James J.; Akbarali, Hamid I.

    2014-01-01

    Opioid drugs have powerful antidiarrheal effects and many patients taking these drugs for chronic pain relief experience chronic constipation that can progress to opioid-induced bowel dysfunction. Three classes of opioid receptors are expressed by enteric neurons: μ-, δ-, and κ-opioid receptors (MOR, DOR, and KOR). MOR and DOR couple to inhibition of adenylate cylase and nerve terminal Ca2+ channels and activation of K+ channels. These effects reduce neuronal activity and neurotransmitter rel...

  7. Angiotensin Receptors, Autoimmunity, and Preeclampsia1

    OpenAIRE

    Xia, Yang; Zhou, Cissy Chenyi; RAMIN, Susan M.; Kellems, Rodney E.

    2007-01-01

    Preeclampsia is a pregnancy-induced hypertensive disorder that causes substantial maternal and fetal morbidity and mortality. Despite being a leading cause of maternal death and a major contributor to maternal and perinatal morbidity, the mechanisms responsible for the pathogenesis of preeclampsia are poorly understood. Recent studies indicate that women with preeclampsia have autoantibodies that activate the angiotensin receptor, AT1, and that autoantibody-mediated receptor activation contri...

  8. Estrogen receptors in mouse testis and sperm

    Czech Academy of Sciences Publication Activity Database

    Dostálová, Pavla; Děd, Lukáš; Pěknicová, Jana

    Montréal: Society for the Study of Reproduction, 2013 - (Suarez, S.). s. 340-340 [SSR 46th Annual Meeteing. Reproduction Health: Nano to Global. 22.07.2013-26.07.2013, Montréal] R&D Projects: GA ČR(CZ) GAP503/12/1834 Institutional research plan: CEZ:AV0Z50520701 Keywords : Estrogen receptor α * Estrogen receptor β * Reproduction * Spermatogenesis Subject RIV: EB - Genetics ; Molecular Biology

  9. GABAA receptor partial agonists and antagonists

    DEFF Research Database (Denmark)

    Krall, Jacob; Balle, Thomas; Krogsgaard-Larsen, Niels;

    2015-01-01

    A high degree of structural heterogeneity of the GABAA receptors (GABAARs) has been revealed and is reflected in multiple receptor subtypes. The subunit composition of GABAAR subtypes is believed to determine their localization relative to the synapses and adapt their functional properties to the...... antagonists have been essential in defining the tonic current but both remaining issues concerning the GABAARs involved and the therapeutic possibilities of modulating tonic inhibition underline the need for GABAAR antagonists with improved selectivity....

  10. Estrogen receptor β in male mice

    Czech Academy of Sciences Publication Activity Database

    Dostálová, Pavla; Děd, Lukáš; Dorosh, Andriy; Elzeinová, Fatima; Pěknicová, Jana

    Elsinore: International Society of Andrology, 2014. s. 48-48. [18th European Testis Workshop. 13.05.2014-17.05.2014, Elsinore] R&D Projects: GA MŠk(CZ) CZ1.05/1.1.00/02.0109; GA ČR GA14-05547S Institutional support: RVO:86652036 Keywords : estrogen receptor alpha * estrogen receptor beta * spermatozoa Subject RIV: EB - Genetics ; Molecular Biology

  11. Melanocortin receptors and their accessory proteins

    OpenAIRE

    Cooray, Sadani N.; Clark, Adrian J.L.

    2010-01-01

    Abstract The melanocortin receptor family consists of 5 members which belong to the GPCR superfamily. Their specific ligands, the melanocortins are peptide hormones which are formed by the proteolytic cleavage of the proopiomelanocortin (POMC) protein. It is now recognised that certain GPCRs require accessory proteins for their function. Like these GPCRs the melanocortin receptor family is also known to be associated with accessory proteins that regulate their function. ...

  12. Tachykinins and tachykinin receptors in human uterus

    OpenAIRE

    Patak, Eva; Luz Candenas, M; Pennefather, Jocelyn N.; Ziccone, Sebastian; Lilley, Alison; Martín, Julio D; Flores, Carlos; Mantecón, Antonio G; Story, Margot E; Pinto, Francisco M

    2003-01-01

    Studies were undertaken to determine the nature of the receptors mediating contractile effects of tachykinins in the uteri of nonpregnant women, and to analyse the expression of preprotachykinins (PPT), tachykinin receptors and the cell-surface peptidase, neprilysin (NEP), in the myometrium from pregnant and nonpregnant women.The neurokinin B (NKB) precursor PPT-B was expressed in higher levels in the myometrium from nonpregnant than from pregnant women. Faint expression of PPT-A mRNA was det...

  13. Neuropeptide Receptor Transcriptome Reveals Unidentified Neuroendocrine Pathways

    OpenAIRE

    Yamanaka, Naoki; Yamamoto, Sachie; Žitňan, Dušan; Watanabe, Ken; Kawada, Tsuyoshi; Satake, Honoo; Kaneko, Yu; Hiruma, Kiyoshi; Tanaka, Yoshiaki; Shinoda, Tetsuro; Kataoka, Hiroshi

    2008-01-01

    Neuropeptides are an important class of molecules involved in diverse aspects of metazoan development and homeostasis. Insects are ideal model systems to investigate neuropeptide functions, and the major focus of insect neuropeptide research in the last decade has been on the identification of their receptors. Despite these vigorous efforts, receptors for some key neuropeptides in insect development such as prothoracicotropic hormone, eclosion hormone and allatotropin (AT), remain undefined. ...

  14. Androgen receptor profiling predicts prostate cancer outcome

    OpenAIRE

    Stelloo, Suzan; Nevedomskaya, Ekaterina; van der Poel, Henk G.; de Jong, Jeroen; van Leenders, Geert JLH; Jenster, Guido; Wessels, Lodewyk FA; Bergman, Andries M; Zwart, Wilbert

    2015-01-01

    Prostate cancer is the second most prevalent malignancy in men. Biomarkers for outcome prediction are urgently needed, so that high-risk patients could be monitored more closely postoperatively. To identify prognostic markers and to determine causal players in prostate cancer progression, we assessed changes in chromatin state during tumor development and progression. Based on this, we assessed genomewide androgen receptor/chromatin binding and identified a distinct androgen receptor/chromati...

  15. NMDA receptor function, memory, and brain aging

    OpenAIRE

    Newcomer, John W.; Farber, Nuri B.; Olney, John W.

    2000-01-01

    An increasing level of N-methyl-D-aspartate (NMDA) receptor hypofunction within the brain is associated with memory and learning impairments, with psychosis, and ultimately with excitotoxic brain injury. As the brain ages, the NMDA receptor system becomes progressively hypofunctional, contributing to decreases in memory and learning performance. In those individuals destined to develop Alzheimer's disease, other abnormalities (eg, amyloidopathy and oxidative stress) interact to increase the N...

  16. Biased Signaling of Protease-activated Receptors

    OpenAIRE

    PeishenZhao; NigelWilliamBunnett

    2014-01-01

    In addition to their role in protein degradation and digestion, proteases can also function as hormone-like signaling molecules that regulate vital patho-physiological processes, including inflammation, hemostasis, pain and repair mechanisms. Certain proteases can signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. PARs are expressed by almost all cell types, control important physiological and disease-relevant processes, and are an e...

  17. GABAB Receptors, Schizophrenia and Sleep Dysfunction

    Science.gov (United States)

    Kantrowitz, Joshua; Citrome, Leslie; Javitt, Daniel

    2016-01-01

    Evidence for an intrinsic relationship between sleep, cognition and the symptomatic manifestations of schizophrenia is accumulating. This review presents evidence for the possible utility of GABAB receptor agonists for the treatment of subjective and objective sleep abnormalities related to schizophrenia. At the phenotypic level, sleep disturbance occurs in 16–30% of patients with schizophrenia and is related to reduced quality of life and poor coping skills. On the neurophysiological level, studies suggest that sleep deficits reflect a core component of schizophrenia. Specifically, slow-wave sleep deficits, which are inversely correlated with cognition scores, are seen. Moreover, sleep plays an increasingly well documented role in memory consolidation in schizophrenia. Correlations of slow-wave sleep deficits with impaired reaction time and declarative memory have also been reported. Thus, both behavioural insomnia and sleep architecture are critical therapeutic targets in patients with schizophrenia. However, long-term treatment with antipsychotics often results in residual sleep dysfunction and does not improve slow-wave sleep, and adjunctive GABAA receptor modulators, such as benzodiazepines and zolpidem, can impair sleep architecture and cognition in schizophrenia. GABAB receptor agonists have therapeutic potential in schizophrenia. These agents have minimal effect on rapid eye movement sleep while increasing slow-wave sleep. Preclinical associations with increased expression of genes related to slow-wave sleep production and circadian rhythm function have also been reported. GABAB receptor deficits result in a sustained hyperdopaminergic state and can be reversed by a GABAB receptor agonist. Genetic, postmortem and electrophysiological studies also associate GABAB receptors with schizophrenia. While studies thus far have not shown significant effects, prior focus on the use of GABAB receptor agonists has been on the positive symptoms of schizophrenia, with

  18. P2X receptors in neuroglia

    OpenAIRE

    Verkhratsky, Alexei; Pankratov, Yuri; Lalo, Ulyana; Nedergaard, Maiken

    2012-01-01

    Different types of ionotropic P2X purinoceptors are expressed in all major types of neuroglia, where they mediate a variety of physiological and pathological signaling. Cortical astrocytes express specific P2X1/5 heteromeric receptors that are activated by ongoing synaptic transmission and can trigger fast local signaling through elevation in cytoplasmic Ca2+ and Na+ concentrations. Oligodendrocytes express several types of P2X receptors that may control their development and mediate axonal–g...

  19. Steroid hormone receptors in prostatic hyperplasia and prostatic carcinoma.

    Science.gov (United States)

    Khalid, B A; Nurshireen, A; Rashidah, M; Zainal, B Y; Roslan, B A; Mahamooth, Z

    1990-06-01

    One hundred and six prostatic tissue samples obtained from transurethral resection were analysed for androgen and estrogen receptors. In 62 of these, progesterone and glucocorticoid receptors were also assayed. Steroid receptors were assayed using single saturation dose 3H-labelled ligand assays. Ninety percent of the 97 prostatic hyperplasia tissues and six of the nine prostatic carcinoma tissues were positive for androgen receptors. Estrogen receptors were only present in 19% and 33% respectively. Progesterone receptors were present in 70% of the tissues, but glucocorticoid receptors were present in only 16% of prostatic hyperplasia and none in prostatic carcinoma. PMID:1725553

  20. Profiling epidermal growth factor receptor and heregulin receptor 3 heteromerization using receptor tyrosine kinase heteromer investigation technology.

    Directory of Open Access Journals (Sweden)

    Mohammed Akli Ayoub

    Full Text Available Heteromerization can play an important role in regulating the activation and/or signal transduction of most forms of receptors, including receptor tyrosine kinases (RTKs. The study of receptor heteromerization has evolved extensively with the emergence of resonance energy transfer based approaches such as bioluminescence resonance energy transfer (BRET. Here, we report an adaptation of our Receptor-Heteromer Investigation Technology (Receptor-HIT that has recently been published as the G protein-coupled receptor (GPCR Heteromer Identification Technology (GPCR-HIT. We now demonstrate the utility of this approach for investigating RTK heteromerization by examining the functional interaction between the epidermal growth factor (EGF receptor (EGFR; also known as erbB1/HER1 and heregulin (HRG receptor 3 (HER3; also known as erbB3 in live HEK293FT cells using recruitment of growth factor receptor-bound protein 2 (Grb2 to the activated receptors. We found that EGFR and HER3 heteromerize specifically as demonstrated by HRG inducing a BRET signal between EGFR/Rluc8 and Grb2/Venus only when HER3 was co-expressed. Similarly, EGF stimulation promoted a specific BRET signal between HER3/Rluc8 and Grb2/Venus only when EGFR was co-expressed. Both EGF and HRG effects on Grb2 interaction are dose-dependent, and specifically blocked by EGFR inhibitor AG-1478. Furthermore, truncation of HER3 to remove the putative Grb2 binding sites appears to abolish EGF-induced Grb2 recruitment to the EGFR-HER3 heteromer. Our results support the concept that EGFR interacts with Grb2 in both constitutive and EGF-dependent manners and this interaction is independent of HER3 co-expression. In contrast, HER3-Grb2 interaction requires the heteromerization between EGFR and HER3. These findings clearly indicate the importance of EGFR-HER3 heteromerization in HER3-mediated Grb2-dependent signaling pathways and supports the central role of HER3 in the diversity and regulation of HER

  1. Direct imaging of lateral movements of AMPA receptors inside synapses

    CERN Document Server

    Tardin, Catherine; Bats, Cécile; Lounis, Brahim; Choquet, Daniel

    2003-01-01

    Trafficking of AMPA receptors in and out of synapses is crucial for synaptic plasticity. Previous studies have focused on the role of endo/exocytosis processes or that of lateral diffusion of extra-synaptic receptors. We have now directly imaged AMPAR movements inside and outside synapses of live neurons using single-molecule fluorescence microscopy. Inside individual synapses, we found immobile and mobile receptors, which display restricted diffusion. Extra-synaptic receptors display free diffusion. Receptors could also exchange between these membrane compartments through lateral diffusion. Glutamate application increased both receptor mobility inside synapses and the fraction of mobile receptors present in a juxtasynaptic region. Block of inhibitory transmission to favor excitatory synaptic activity induced a transient increase in the fraction of mobile receptors and a decrease in the proportion of juxtasynaptic receptors. Altogether, our data show that rapid exchange of receptors between a synaptic and ext...

  2. Interactions of methoxyacetic acid with androgen receptor

    International Nuclear Information System (INIS)

    Endocrine disruptive compounds (EDC) alter hormone-stimulated, nuclear receptor-dependent physiological and developmental processes by a variety of mechanisms. One recently identified mode of endocrine disruption is through hormone sensitization, where the EDC modulates intracellular signaling pathways that control nuclear receptor function, thereby regulating receptor transcriptional activity indirectly. Methoxyacetic acid (MAA), the primary, active metabolite of the industrial solvent ethylene glycol monomethyl ether and a testicular toxicant, belongs to this EDC class. Modulation of nuclear receptor activity by MAA could contribute to the testicular toxicity associated with MAA exposure. In the present study, we evaluated the impact of MAA on the transcriptional activity of several nuclear receptors including the androgen receptor (AR), which plays a pivotal role in the development and maturation of spermatocytes. AR transcriptional activity is shown to be increased by MAA through a tyrosine kinase signaling pathway that involves PI3-kinase. In a combinatorial setting with AR antagonists, MAA potentiated the AR response without significantly altering the EC50 for androgen responsiveness, partially alleviating the antagonistic effect of the anti-androgens. Finally, MAA treatment of TM3 mouse testicular Leydig cells markedly increased the expression of Cyp17a1 and Shbg while suppressing Igfbp3 expression by ∼ 90%. Deregulation of these genes may alter androgen synthesis and action in a manner that contributes to MAA-induced testicular toxicity.

  3. The new biology of histamine receptors.

    Science.gov (United States)

    Huang, Jing-Feng; Thurmond, Robin L

    2008-03-01

    The physiologic functions of histamine have been recognized for more than 100 years, yet new roles are still being uncovered. Most importantly, a newly discovered receptor of the amine has helped refine our understanding of histamine. This new receptor, the histamine H4 receptor (H4R), has a higher affinity for histamine compared with the histamine H1 receptor and appears to be more selectively expressed, found mainly on hematopoietic cells. H4R is involved in chemotaxis and inflammatory mediator release by eosinophils, mast cells, monocytes, dendritic cells, and T cells. Studies in animal models using selective antagonists or H4R-deficient mice have shown a role for the receptor in inflammation in vivo. In particular, H4R antagonists have shown promise in experimental models of asthma and pruritus, two conditions where currently marketed antihistamines targeting the histamine H1 receptor are not optimally effective in humans. Thus, a new class of H4R-specific antihistamines may be distinctively effective in treating allergic diseases associated with chronic pruritus and asthma. PMID:18377770

  4. Molecular physiology of enteric opioid receptors.

    Science.gov (United States)

    Galligan, James J; Akbarali, Hamid I

    2014-09-10

    Opioid drugs have powerful antidiarrheal effects and many patients taking these drugs for chronic pain relief experience chronic constipation that can progress to opioid-induced bowel dysfunction. Three classes of opioid receptors are expressed by enteric neurons: μ-, δ-, and κ-opioid receptors (MOR, DOR, and KOR). MOR and DOR couple to inhibition of adenylate cylase and nerve terminal Ca(2+) channels and activation of K(+) channels. These effects reduce neuronal activity and neurotransmitter release. KOR couples to inhibition of Ca(2+) channels and inhibition of neurotransmitter release. In the human gastrointestinal tract, MOR, DOR, and KOR link to inhibition of acetylcholine release from enteric interneurons and purine/nitric oxide release from inhibitory motorneurons. These actions inhibit propulsive motility. MOR and DOR also link to inhibition of submucosal secretomotor neurons, reducing active Cl(-) secretion and passive water movement into the colonic lumen. These effects account for the constipation caused by opioid receptor agonists. Tolerance develops to the analgesic effects of opioid receptor agonists but not to the constipating actions. This may be due to differential β-arrestin-2-dependent opioid receptor desensitization and internalization in enteric nerves in the colon compared with the small intestine and in neuronal pain pathways. Further studies of differential opioid receptor desensitization and tolerance in subsets of enteric neurons may identify new drugs or other treatment strategies of opioid-induced bowel dysfunction. PMID:25207608

  5. Rapid steroid hormone actions via membrane receptors.

    Science.gov (United States)

    Schwartz, Nofrat; Verma, Anjali; Bivens, Caroline B; Schwartz, Zvi; Boyan, Barbara D

    2016-09-01

    Steroid hormones regulate a wide variety of physiological and developmental functions. Traditional steroid hormone signaling acts through nuclear and cytosolic receptors, altering gene transcription and subsequently regulating cellular activity. This is particularly important in hormonally-responsive cancers, where therapies that target classical steroid hormone receptors have become clinical staples in the treatment and management of disease. Much progress has been made in the last decade in detecting novel receptors and elucidating their mechanisms, particularly their rapid signaling effects and subsequent impact on tumorigenesis. Many of these receptors are membrane-bound and lack DNA-binding sites, functionally separating them from their classical cytosolic receptor counterparts. Membrane-bound receptors have been implicated in a number of pathways that disrupt the cell cycle and impact tumorigenesis. Among these are pathways that involve phospholipase D, phospholipase C, and phosphoinositide-3 kinase. The crosstalk between these pathways has been shown to affect apoptosis and proliferation in cardiac cells, osteoblasts, and chondrocytes as well as cancer cells. This review focuses on rapid signaling by 17β-estradiol and 1α,25-dihydroxy vitamin D3 to examine the integrated actions of classical and rapid steroid signaling pathways both in contrast to each other and in concert with other rapid signaling pathways. This new approach lends insight into rapid signaling by steroid hormones and its potential for use in targeted drug therapies that maximize the benefits of traditional steroid hormone-directed therapies while mitigating their less desirable effects. PMID:27288742

  6. Beta adrenergic receptors in human cavernous tissue

    International Nuclear Information System (INIS)

    Beta adrenergic receptor binding was performed with 125I iodocyanopindolol on human cavernous tissue membrane fractions from normal tissue and transsexual procedures obtained postoperatively, as well as from postmortem sources. Isotherm binding studies on normal fresh tissues indicated that the receptor density was 9.1 fmoles/mg. with a KD of 23 pM. Tissue stored at room temperature for 4 to 6 hours, then at 4C in saline solution for 19 to 20 hours before freezing showed no significant changes in receptor density or affinity, and provided evidence for the stability of postmortem tissue obtained within the same time period. Beta receptor density of 2 cavernous preparations from transsexual procedures was not significantly different from normal control tissues, and showed that high concentrations of estrogen received by these patients had no effect on beta adrenergic receptor density. Displacement of 125iodocyanopindolol by 5 beta adrenergic agents demonstrated that 1-propranolol had the greatest affinity followed by ICI 118,551, zinterol, metoprolol and practolol. When the results of these displacement studies were subjected to Scatfit, non- linear regression line analysis, a single binding site was described. Based on the relative potency of the selective beta adrenergic agents it appears that these receptors were of the beta 2 subtype

  7. Beta adrenergic receptors in human cavernous tissue

    Energy Technology Data Exchange (ETDEWEB)

    Dhabuwala, C.B.; Ramakrishna, C.V.; Anderson, G.F.

    1985-04-01

    Beta adrenergic receptor binding was performed with /sup 125/I iodocyanopindolol on human cavernous tissue membrane fractions from normal tissue and transsexual procedures obtained postoperatively, as well as from postmortem sources. Isotherm binding studies on normal fresh tissues indicated that the receptor density was 9.1 fmoles/mg. with a KD of 23 pM. Tissue stored at room temperature for 4 to 6 hours, then at 4C in saline solution for 19 to 20 hours before freezing showed no significant changes in receptor density or affinity, and provided evidence for the stability of postmortem tissue obtained within the same time period. Beta receptor density of 2 cavernous preparations from transsexual procedures was not significantly different from normal control tissues, and showed that high concentrations of estrogen received by these patients had no effect on beta adrenergic receptor density. Displacement of /sup 125/iodocyanopindolol by 5 beta adrenergic agents demonstrated that 1-propranolol had the greatest affinity followed by ICI 118,551, zinterol, metoprolol and practolol. When the results of these displacement studies were subjected to Scatfit, non- linear regression line analysis, a single binding site was described. Based on the relative potency of the selective beta adrenergic agents it appears that these receptors were of the beta 2 subtype.

  8. NMDA receptors in hyperammonemia and hepatic encephalopathy.

    Science.gov (United States)

    Llansola, Marta; Rodrigo, Regina; Monfort, Pilar; Montoliu, Carmina; Kosenko, Elena; Cauli, Omar; Piedrafita, Blanca; El Mlili, Nisrin; Felipo, Vicente

    2007-12-01

    The NMDA type of glutamate receptors modulates learning and memory. Excessive activation of NMDA receptors leads to neuronal degeneration and death. Hyperammonemia and liver failure alter the function of NMDA receptors and of some associated signal transduction pathways. The alterations are different in acute and chronic hyperammonemia and liver failure. Acute intoxication with large doses of ammonia (and probably acute liver failure) leads to excessive NMDA receptors activation, which is responsible for ammonia-induced death. In contrast, chronic hyperammonemia induces adaptive responses resulting in impairment of signal transduction associated to NMDA receptors. The function of the glutamate-nitric oxide-cGMP pathway is impaired in brain in vivo in animal models of chronic liver failure or hyperammonemia and in homogenates from brains of patients died in hepatic encephalopathy. The impairment of this pathway leads to reduced cGMP and contributes to impaired cognitive function in hepatic encephalopathy. Learning ability is reduced in animal models of chronic liver failure and hyperammonemia and is restored by pharmacological manipulation of brain cGMP by administering phosphodiesterase inhibitors (zaprinast or sildenafil) or cGMP itself. NMDA receptors are therefore involved both in death induced by acute ammonia toxicity (and likely by acute liver failure) and in cognitive impairment in hepatic encephalopathy. PMID:17701332

  9. Endothelin receptor antagonists in pulmonary arterial hypertension.

    Science.gov (United States)

    Dupuis, J; Hoeper, M M

    2008-02-01

    The endothelin (ET) system, especially ET-1 and the ET(A) and ET(B) receptors, has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH). Together with prostanoids and phosphodiesterase 5 inhibitors, ET receptor antagonists have become mainstays in the current treatment of PAH. Three substances are currently available for the treatment of PAH. One of these substances, bosentan, blocks both ET(A) and ET(B) receptors, whereas the two other compounds, sitaxsentan and ambrisentan, are more selective blockers of the ET(A) receptor. There is ongoing debate as to whether selective or nonselective ET receptor blockade is advantageous in the setting of PAH, although there is no clear evidence that receptor selectivity is relevant with regard to the clinical effects of these drugs. For the time being, other features, such as safety profiles and the potential for pharmacokinetic interactions with other drugs used in the treatment of PAH, may be more important than selectivity or nonselectivity when selecting treatments for individual patients. PMID:18238950

  10. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem

    International Nuclear Information System (INIS)

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared α7 and β2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased α7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased β2 in the cNTS and increased β2 in the facial. When considering only the SIDS cohort: 1—cigarette smoke exposure was associated with increased α7 in the vestibular nucleus and increased β2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2—there was a gender interaction for α7 in the gracile and cuneate, and β2 in the cNTS and rostral arcuate nucleus, and 3—there was no effect of sleep position on α7, but prone sleep was associated with decreased β2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of α7 and β2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure (β2), gender (α7 and β2) and sleep position (β2) evident. -- Highlights: ► The ‘normal’ response to smoke exposure is decreased α7 and β2 in certain nuclei. ► SIDS infants have decreased α7 in cNTS, Grac and Cun. ► SIDS infants have decreased β2 in cNTS and increased β2 in facial. ► The NTS is more sensitive to both α7 and β2 regulation in SIDS. ► Smoke exposure

  11. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits {alpha}7 and {beta}2 in the sudden infant death syndrome (SIDS) brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Machaalani, Rita, E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Say, Meichien [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); Waters, Karen A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia)

    2011-12-15

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared {alpha}7 and {beta}2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased {alpha}7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased {beta}2 in the cNTS and increased {beta}2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased {alpha}7 in the vestibular nucleus and increased {beta}2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for {alpha}7 in the gracile and cuneate, and {beta}2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on {alpha}7, but prone sleep was associated with decreased {beta}2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of {alpha}7 and {beta}2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure ({beta}2), gender ({alpha}7 and {beta}2) and sleep position ({beta}2) evident. -- Highlights: Black-Right-Pointing-Pointer The 'normal' response to smoke exposure is decreased {alpha}7 and {beta}2 in certain nuclei. Black-Right-Pointing-Pointer SIDS infants have decreased {alpha}7 in cNTS, Grac and Cun. Black

  12. Age-related effects of estrogen on the expression of estrogen receptor (ER) α and β mRNA in the ovariectomized (OVX) monkey hypothalamus

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present study, we reported distribution of ERα and ER β mRNAs in the hypothalamus of young and old ovariectomized (OVX) rhesus macaques. The ERα were detected in all six major vestiblular nuclei which included arcuate nucleus (ARC) , paraventricularis nucleus (PVN) , periventricular nucleus (PeriV) , supraoptic nucleus (SON) ,medial prioptic nucleus (MPN) and lateral hypothalamus area (LHA). However, the ERβ mRNA can also detected in those nuclei excerpt SON, but the signals of ERβ mRNA were weaker than those of ERα mRNA. We observed that the degree of expression of ERs mRNA were different in most nucleus of old and young monkeys. The ERα mRNAs were highly expressed in ARC and SON in young monkeys compared with old monkeys. Moderate amount of ERα mRNAs hybridization signals and weak signals were observed in LHA, and MPN both in young and old monkeys. In contrast, only lower level of ERα hybridization signal were observed in PVN and PeriV in young monkeys, and the signals of ERα were very low in those nucleus of old monkeys. In general, the expression of ERβ mRNA were weaker than that of ERα mRNA in above nucleus excerpt LHA. The relatively higher density of ERβ hybridization signals have been observed in the LHA in young monkey compared with old monkeys. Low amount of ERβ mRNA hybridization signals were observed in the ARC, PVN and MPN, and no age differences were seen in PVN and MPN of those monkeys. In PeriV, we observed some signals in young monkey and a few signals in old monkeys. It was different from the rodent in which we did not found ERβ hybridization signal in SON. This study showed that both of the two estrogen receptors not only had the same pattern of expression but also had many different patterns of expression. The different expression of ERα and ERβ mRNAs in the young and old monkey brain may imply diverse functions in different regions of the monkey brain.

  13. Rats with a truncated ghrelin receptor (GHSR) do not respond to ghrelin, and show reduced intake of palatable, high-calorie food.

    Science.gov (United States)

    MacKay, Harry; Charbonneau, Valerie R; St-Onge, Veronique; Murray, Emma; Watts, Alexander; Wellman, Martin K; Abizaid, Alfonso

    2016-09-01

    Ghrelin, a peptide hormone produced by the stomach, is the endogenous ligand for the Growth Hormone Secretagogue Receptor (GHSR). Ghrelin acts on the GHSR to increase food intake, appetitive behaviors, and adiposity. Recently, a rat model with a null mutation to the GHSR gene (FHH-GHSR(m1/Mcwi)) was generated and used in behavioral studies, but the basic metabolic phenotype of this strain as well as that of the background strain (Fawn Hooded Hypertensive, FHH) has not been characterized in detail. Here we compared male FHH-GHSR(m1/Mcwi) rats with their wild-type littermates (FHH-WT) in a number of metabolic parameters. In the 24h of recovery following an acute overnight fast, FHH-GHSR(m1/Mcwi) rats consumed less food than FHH-WT animals, and relative to their body weights, adult FHH-GHSR(m1/Mcwi) rats consumed fewer calories when placed on a high-fat diet. Despite this, FHH-GHSR(m1/Mcwi) rats did not show a difference in diet-induced obesity or weight gain. Fasted FHH-GHSR(m1/Mcwi) rats exhibited increased Agouti-Related Peptide (AgRP) and Neuropeptide Y (NPY) expression in the Arcuate Nucleus (ARC), indicative of altered central regulation of feeding and energy balance. FHH-GHSR(m1/Mcwi) rats exhibited lower levels of home cage locomotor behavior over the entire light/dark cycle, and reduced levels of food anticipatory activity when placed on a restricted feeding schedule. Finally, FHH-GHSR(m1/Mcwi) rats consumed less of a palatable dessert (cookie dough) given after the completion of the scheduled meal. Altogether, our data show that rats lacking a functional GHSR tend to eat less than their wild-type counterparts in the face of acute fasts, chronic high-fat diet exposure, and exposure to a palatable dessert, despite not showing differences in body weight and glucose homeostasis that are characteristic of GHSR null mice. These data indicate that many, but not all responses to GHSR ablation are conserved between rats and mice. The FHH-GHSR(m1/Mcwi) rat thus

  14. DMPD: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15379975 Signal transduction by the lipopolysaccharide receptor, Toll-like receptor...-4. Palsson-McDermott EM, O'Neill LA. Immunology. 2004 Oct;113(2):153-62. (.png) (.svg) (.html) (.csml) Show Signal... transduction by the lipopolysaccharide receptor, Toll-like receptor-4. PubmedID 15379975 Title Signal

  15. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    OpenAIRE

    Fomina Alla F; Dadsetan Sepehr; Chen Huaiyang; Gong Qizhi

    2008-01-01

    Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic...

  16. BRET biosensor analysis of receptor tyrosine kinase functionality

    Directory of Open Access Journals (Sweden)

    StuartMaudsley

    2013-04-01

    Full Text Available Bioluminescence resonance energy transfer (BRET is an improved version of earlier resonance energy transfer technologies used for the analysis of biomolecular protein interaction. BRET analysis can be applied to many transmembrane receptor classes, however the majority of the early published literature on BRET has focused on G protein-coupled receptor (GPCR research. In contrast, there is limited scientific literature using BRET to investigate receptor tyrosine kinase (RTK activity. This limited investigation is surprising as RTKs often employ dimerization as a key factor in their activation, as well as being important therapeutic targets in medicine, especially in the cases of cancer, diabetes, neurodegenerative and respiratory conditions. In this review, we consider an array of studies pertinent to RTKs and other non-GPCR receptor protein-protein signaling interactions; more specifically we discuss receptor-protein interactions involved in the transmission of signaling communication. We have provided an overview of functional BRET studies associated with the receptor tyrosine kinase (RTK super family involving: neurotrophic receptors (e.g. tropomyosin-related kinase (Trk and p75 neurotrophin receptor (p75NTR; insulinotropic receptors (e.g. insulin receptor (IR and insulin-like growth factor receptor (IGFR and growth factor receptors (e.g. ErbB receptors including the EGFR, the fibroblast growth factor receptor (FGFR, the vascular endothelial growth factor receptor (VEGFR and the c-kit and platelet-derived growth factor receptor (PDGFR. In addition, we review BRET-mediated studies of other tyrosine kinase-associated receptors including cytokine receptors, i.e. leptin receptor (OB-R and the growth hormone receptor (GHR. It is clear even from the relatively sparse experimental RTK BRET evidence that there is tremendous potential for this technological application for the functional investigation of RTK biology.

  17. Structure, function and regulation of the melanocortin receptors

    OpenAIRE

    Yang, Yingkui

    2011-01-01

    Melanocortin receptors belong to the seven-transmembrane (TM) domain proteins that are coupled to G-proteins and signaled through intracellular cyclic adenosine monophosphate. Many structural features conserved in other G-protein coupled receptors (GPCRs) are found in the melanocortin receptors. There are five melanocortin receptor subtypes and each of the melanocortin receptor subtypes has a different pattern of tissue expression and has its own profile regarding the relative potency of diff...

  18. Physiological roles of the melanocortin MC3 receptor

    OpenAIRE

    Renquist, Benjamin J.; Lippert, Rachel; Sebag, Julien A.; Ellacott, Kate L.J; Cone, Roger D.

    2011-01-01

    The melanocortin MC3 receptor remains the most enigmatic of the melanocortin receptors with regard to its physiological functions. The receptor is expressed both in the CNS and in multiple tissues in the periphery. It appears to be an inhibitory autoreceptor on proopiomelanocortin neurons, yet global deletion of the receptor causes an obesity syndrome. Knockout of the receptor increases adipose mass without a readily measurable increase in food intake or decrease in energy expenditure. And fi...

  19. Receptor autoradiography in the hippocampus of man and rat

    International Nuclear Information System (INIS)

    This chapter deals with the following questions: regional distribution of binding sites for 5-HT, glutamate, and acetylcholine in Ammon's horn and the dentate gyrus of rat and human brain; comparison of receptor distribution and neuronal pathways with identified transmitters; correlation of region-specific densities between different receptors and receptor subtypes (colocalization of different receptors on the level of hippocampal layers) and comparison of receptor distribution in human and rat hippocampus

  20. Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding

    Science.gov (United States)

    Spiga, Francesca; Knight, David M; Droste, Susanne K; Conway-Campbell, Becky; Kershaw, Yvonne; MacSweeney, Cliona P; Thomson, Fiona J; Craighead, Mark; Peeters, Bernard WMM; Lightman, Stafford L

    2016-01-01

    The effects of RU486 and S-P, a more selective glucocorticoid receptor antagonist from Schering-Plough, were investigated on glucocorticoid receptor nuclear translocation and DNA binding. In the in vitro study, AtT20 cells were treated with vehicle or with RU486, S-P or corticosterone (3–300 nM) or co-treated with vehicle or glucocorticoid receptor antagonists (3–300 nM) and 30 nM corticosterone. Both glucocorticoid receptor antagonists induced glucocorticoid receptor nuclear translocation but only RU486 induced DNA binding. RU486 potentiated the effect of corticosterone on glucocorticoid receptor nuclear translocation and DNA binding, S-P inhibited corticosterone-induced glucocorticoid receptor nuclear translocation, but not glucocorticoid receptor-DNA binding. In the in vivo study, adrenalectomized rats were treated with vehicle, RU486 (20 mg/kg) and S-P (50 mg/kg) alone or in combination with corticosterone (3 mg/kg). RU486 induced glucocorticoid receptor nuclear translocation in the pituitary, hippocampus and prefrontal cortex and glucocorticoid receptor-DNA binding in the hippocampus, whereas no effect of S-P on glucocorticoid receptor nuclear translocation or DNA binding was observed in any of the areas analysed. These findings reveal differential effects of RU486 and S-P on areas involved in regulation of hypothalamic–pituitary–adrenal axis activity in vivo and they are important in light of the potential use of this class of compounds in the treatment of disorders associated with hyperactivity of the hypothalamic–pituitary–adrenal axis. PMID:20093322

  1. Identification and characterization of novel renal sensory receptors.

    Directory of Open Access Journals (Sweden)

    Premraj Rajkumar

    Full Text Available Recent studies have highlighted the important roles that "sensory" receptors (olfactory receptors, taste receptors, and orphan "GPR" receptors play in a variety of tissues, including the kidney. Although several studies have identified important roles that individual sensory receptors play in the kidney, there has not been a systematic analysis of the renal repertoire of sensory receptors. In this study, we identify novel renal sensory receptors belonging to the GPR (n = 76, olfactory receptor (n = 6, and taste receptor (n = 11 gene families. A variety of reverse transcriptase (RT-PCR screening strategies were used to identify novel renal sensory receptors, which were subsequently confirmed using gene-specific primers. The tissue-specific distribution of these receptors was determined, and the novel renal ORs were cloned from whole mouse kidney. Renal ORs that trafficked properly in vitro were screened for potential ligands using a dual-luciferase ligand screen, and novel ligands were identified for Olfr691. These studies demonstrate that multiple sensory receptors are expressed in the kidney beyond those previously identified. These results greatly expand the known repertoire of renal sensory receptors. Importantly, the mRNA of many of the receptors identified in this study are expressed highly in the kidney (comparable to well-known and extensively studied renal GPCRs, and in future studies it will be important to elucidate the roles that these novel renal receptors play in renal physiology.

  2. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  3. Cannabinoid-receptor expression in human leukocytes.

    Science.gov (United States)

    Bouaboula, M; Rinaldi, M; Carayon, P; Carillon, C; Delpech, B; Shire, D; Le Fur, G; Casellas, P

    1993-05-15

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS), probably through the cannabinoid receptor, which has recently been cloned in rat and human. While numerous reports have also described effects of cannabinoids on the immune system, the observation of both mRNA and cannabinoid receptor has hitherto been exclusively confined to the brain, a reported detection in the testis being the sole example of its presence at the periphery. Here we report the expression of the cannabinoid receptor on human immune tissues using a highly sensitive polymerase-chain-reaction-based method for mRNA quantification. We show that, although present in a much lower abundance than in brain, cannabinoid receptor transcripts are found in human spleen, tonsils and peripheral blood leukocytes. The distribution pattern displays important variations of the mRNA level for the cannabinoid receptor among the main human blood cell subpopulations. The rank order of mRNA levels in these cells is B cells > natural killer cells > or = polymorphonuclear neutrophils > or = T8 cells > monocytes > T4 cells. Cannabinoid-receptor mRNA, which is also found in monocytic, as well as T and B leukemia cell lines but not in Jurkat cells, presents a great diversity of expression on these cells as well, B-cell lines expressing a much higher level than T-cell lines. The cannabinoid receptor PCR products from leukocytes and brain are identical both in size and sequence suggesting a strong similarity between central and peripheral cannabinoid receptors. The expression of this receptor was demonstrated on membranes of the myelomonocytic U937 cells using the synthetic cannabinoid [3H]CP-55940 as ligand. The Kd determined from Scatchard analysis was 0.1 nM and the Bmax for membranes was 525 fmol/mg protein. The demonstration of cannabinoid-receptor expression at both mRNA and protein levels on human leukocytes provides a molecular basis for cannabinoid action on these cells. PMID

  4. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L; Yuan, Hongjie; Vance, Katie M; Orr, Anna G; Kvist, Trine; Ogden, Kevin K; Le, Phuong; Vellano, Kimberly M; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T J; Snyder, James P; Bräuner-Osborne, Hans; Traynelis, Stephen F

    2010-01-01

    NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine...

  5. Retinoid X Receptor Regulates Nur77/Thyroid Hormone Receptor 3-Dependent Apoptosis by Modulating Its Nuclear Export and Mitochondrial Targeting

    OpenAIRE

    Cao, Xihua; Liu, Wen; Lin, Feng; Li, Hui; Kolluri, Siva Kumar; Lin, Bingzhen; Han, Young-Hoon; Dawson, Marcia I.; Zhang, Xiao-kun

    2004-01-01

    Retinoid X receptor (RXR) plays a central role in the regulation of intracellular receptor signaling pathways by acting as a ubiquitous heterodimerization partner of many nuclear receptors, including the orphan receptor Nur77 (also known as thyroid hormone receptor 3 or NGFI-B), which translocates from the nucleus to mitochondria, where it interacts with Bcl-2 to induce apoptosis. Here, we report that RXRα is required for nuclear export and mitochondrial targeting of Nur77 through their uniqu...

  6. Thyrotropin-luteinizing hormone/chorionic gonadotropin receptor extracellular domain chimeras as probes for thyrotropin receptor function.

    OpenAIRE

    Nagayama, Y; Wadsworth, H L; Chazenbalk, G D; Russo, D.; Seto, P; Rapoport, B

    1991-01-01

    To define the sites in the extracellular domain of the human thyrotropin (TSH) receptor that are involved in TSH binding and signal transduction we constructed chimeric thyrotropin-luteinizing hormone/chorionic gonadotropin (TSH-LH/CG) receptors. The extracellular domain of the human TSH receptor was divided into five regions that were replaced, either singly or in various combinations, with homologous regions of the rat LH/CG receptor. The chimeric receptors were stably expressed in Chinese ...

  7. Immunohistochemical detection of gastrin and motilin peptides, their receptors, VIP receptors and caspase activity from the abomasal wall of cattle

    OpenAIRE

    Özcan, Aycan

    2012-01-01

    Objective The aim of this study was to examine the possible effects of gastrin, motilin peptides, their receptors and vasoactive intestinal polypeptide (VIP) receptors on the occurrence of abomasal displacement (AD). A decreased amount of stimulating factors (motilin, motilin receptors) accompanied by an increased amount of inhibiting factors (gastrin, gastrin receptors, VIP receptors) in the abomasal wall could be a cause of the hypo- or atony of the abomasum prior to the abomasal displac...

  8. Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity.

    OpenAIRE

    Forsayeth, J R; Caro, J F; Sinha, M K; Maddux, B A; Goldfine, I D

    1987-01-01

    Three mouse monoclonal antibodies were produced that reacted with the alpha subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate ...

  9. Bidirectional effects of fentanyl on dendritic spines and AMPA receptors depend upon the internalization of mu opioid receptors

    OpenAIRE

    Lin, Hang; Higgins, Paul; Loh, Horace H.; Law, Ping-Yee; Liao, Dezhi

    2009-01-01

    Fentanyl is a frequently used and abused opioid analgesic and can cause internalization of mu opioid receptors (MORs). Receptor internalization modulates the signaling pathways of opioid receptors. Because changes in dendritic spines and synaptic AMPA receptors play important roles in addiction and memory loss, we investigated how fentanyl affects dendritic spines and synaptic AMPA receptors in cultured hippocampal neurons. Fentanyl at low concentrations (0.01 and 0.1 µM) caused collapse of d...

  10. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    Science.gov (United States)

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  11. Vitamin D receptor and estrogen receptor gene polymorphisms in postmenopausal Danish women

    DEFF Research Database (Denmark)

    Bagger, Y Z; Hassager, C; Heegaard, Anne-Marie;

    2000-01-01

    To investigate the polymorphisms of the vitamin D receptor (VDR) and estrogen receptor (ER) genes in relation to biochemical markers of bone turnover (serum osteocalcin and urinary collagen type I degradation products (CrossLaps), and to study ER genotypes in relation to serum lipoproteins, blood...

  12. Soman- or kainic acid-induced convulsions decrease muscarinic receptors but not benzodiazepine receptors

    International Nuclear Information System (INIS)

    [3H]Quinuclidinyl benzilate (QNB) binding to muscarinic receptors decreased in the rat forebrain after convulsions induced by a single dose of either soman, a potent inhibitor of acetylcholinesterase, or kainic acid, an excitotoxin. A Rosenthal plot revealed that the receptors decreased in number rather than affinity. When the soman-induced convulsions were blocked, the decrease in muscarinic receptors at 3 days was less extensive than when convulsions occurred and at 10 days they approached control levels in most of the brain areas. The most prominent decrements in QNB binding were in the piriform cortex where the decline in QNB binding is probably related to the extensive convulsion-associated neuropathology. The decrements in QNB binding after convulsions suggest that the convulsive state leads to a down-regulation of muscarinic receptors in some brain areas. In contrast to the decrease in QNB binding after convulsions, [3H]flunitrazepam binding to benzodiazepine receptors did not change even in the piriform cortex where the loss in muscarinic receptors was most prominent. Thus, it appears that those neuronal processes that bear muscarinic receptors are more vulnerable to convulsion-induced change than those with benzodiazepine receptors

  13. Pharmacophore Pattern Identification of Tachykinin Receptor Selective Peptide Agonists: Implications in Receptor Selectivity

    Directory of Open Access Journals (Sweden)

    Anjali Dike

    2007-01-01

    Full Text Available The mammalian tachykinin (TK peptides and their three Neurokinin (NK1, NK2 and NK3 receptors represent an effector system with wide-ranging actions on neuronal, airway smooth muscle, mucosal, endothelial, immune, inflammatory and remodeling cell function. Recent clinical and preclinical data suggests the pathophysiological role of TKs in various diseases including asthma, emesis and depression. The TK-NK receptor interactions and overlapping functions mediated by each NK receptor indicate added therapeutic benefit of using multiple NK receptor blockade. In the absence of structural data on neurokinin receptors, the membrane-induced structure of tachykinins play an important role as a first step towards understanding structure-activity relationship. A comparison of the conformational features of different NK1, NK2 and NK3 receptor agonists highlights several features which might be responsible for determining selectivity for the particular receptor subtype. An attempt has been made to correlate the observed conformational differences to the binding ability and biological activity of various NK1, NK2 and NK3 receptor agonists. The membrane bound conformations of tachykinins have been used as a starting point, leading to useful pharmacophore patterns that can be used for identifying lead structures with novel scaffolds.

  14. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation

    DEFF Research Database (Denmark)

    Dagil, Robert; Knudsen, Maiken J.; Olsen, Johan Gotthardt;

    2012-01-01

    The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane prox...

  15. Identification of novel viral receptors with cell line expressing viral receptor-binding protein.

    Science.gov (United States)

    Mei, Mei; Ye, Jianqiang; Qin, Aijian; Wang, Lin; Hu, Xuming; Qian, Kun; Shao, Hongxia

    2015-01-01

    The viral cell receptors and infection can be blocked by the expression of the viral receptor-binding protein. Thus, the viral cell receptor is an attractive target for anti-viral strategies, and the identification of viral cell receptor is critical for better understanding and controlling viral disease. As a model system for viral entry and anti-retroviral approaches, avian sarcoma/leukosis virus (ASLV, including the A-J ten subgroups) has been studied intensively and many milestone discoveries have been achieved based on work with ASLV. Here, we used a DF1 cell line expressed viral receptor-binding protein to efficiently identify chicken Annexin A2 (chANXA2) as a novel receptor for retrovirus ALV-J (avian leukosis virus subgroup J). Our data demonstrate that antibodies or siRNA to chANXA2 significantly inhibited ALV-J infection and replication, and over-expression of chANXA2 permitted the entry of ALV-J into its non-permissible cells. Our findings have not only identified chANXA2 as a novel biomarker for anti-ALV-J, but also demonstrated that cell lines with the expression of viral receptor-binding protein could be as efficient tools for isolating functional receptors to identify novel anti-viral targets. PMID:25604889

  16. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric (Michigan-Med); (Van Andel)

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  17. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  18. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 40C, and internalization of insulin-receptor complexes was initiated by warming the cells to 370C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  19. On the G-Protein-Coupled Receptor Heteromers and Their Allosteric Receptor-Receptor Interactions in the Central Nervous System: Focus on Their Role in Pain Modulation

    OpenAIRE

    Kjell Fuxe; Tarakanov, Alexander O.; Luigi F. Agnati; Alicia Rivera; Kathleen Van Craenenbroeck; Wilber Romero-Fernandez; Dasiel O. Borroto-Escuela

    2013-01-01

    The modulatory role of allosteric receptor-receptor interactions in the pain pathways of the Central Nervous System and the peripheral nociceptors has become of increasing interest. As integrators of nociceptive and antinociceptive wiring and volume transmission signals, with a major role for the opioid receptor heteromers, they likely have an important role in the pain circuits and may be involved in acupuncture. The delta opioid receptor (DOR) exerts an antagonistic allosteric influence on ...

  20. DMPD: Toll-like receptor 3: a link between toll-like receptor, interferon and viruses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15031527 Toll-like receptor 3: a link between toll-like receptor, interferon and viruses... (.csml) Show Toll-like receptor 3: a link between toll-like receptor, interferon and viruses. PubmedID 1503...1527 Title Toll-like receptor 3: a link between toll-like receptor, interferon and viruses

  1. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    DEFF Research Database (Denmark)

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara;

    2012-01-01

    The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs...

  2. G-protein coupling of cannabinoid receptors

    International Nuclear Information System (INIS)

    Full text: Since the cloning of the cannabinoid CB1 and CB2 receptors in the early 1990's extensive research has focused on understanding their signal transduction pathways. While it has been known for sometime that both receptors can couple to intracellular signalling via pertussis toxin sensitive G-proteins (Gi/Go), the specificity and kinetics of these interactions have only recently been elucidated. We have developed an in situ reconstitution approach to investigating receptor-G-protein interactions. This approach involves chaotropic extraction of receptor containing membranes in order to inactivate or remove endogenous G-proteins. Recombinant or isolated brain G-proteins can then be added back to the receptors, and their activation monitored through the binding of [35S]-GTPγS. This technique has been utilised for an extensive study of cannabinoid receptor mediated activation of G-proteins. In these studies we have established that CB1 couples with high affinity to both Gi and Go type G-proteins. In contrast, CB2 couples strongly to Gi, but has a very low affinity for Go. This finding correlated well with the previous findings that while CB1 and CB2 both couple to the inhibition of adenylate cyclase, CB1 but not CB2 could also inhibit calcium channels. We then examined the ability of a range of cannabinoid agonists to activate the Gi and Go via CB1. Conventional receptor theory suggests that a receptor is either active or inactive with regard to a G-protein and that the active receptor activates all relevant G-proteins equally. However, in this study we found that agonists could produce different degrees of activation, depending on which G-protein was present. Further studies have compared the ability of the two endocannabinoids to drive the activation of Gi or Go. These studies show that agonists can induce multiple forms of activated receptor that differ in their ability to catalyse the activation of Gi or Go. The ability of an agonist to drive a receptor

  3. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  4. Brain CB2 Receptors: Implications for Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Michelle Roche

    2010-08-01

    Full Text Available Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB2 receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons. Expression of the CB2 receptor in the brain is significantly lower than that of the CB1 receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB2 receptor under normal conditions. Under inflammatory conditions, CB2 receptor expression in the brain is enhanced and CB2 receptor agonists exhibit potent anti-inflammatory effects. These findings have prompted research into the CB2 receptor as a possible target for the treatment of neuroinflammatory and neurodegenerative disorders. Neuroinflammatory alterations are also associated with neuropsychiatric disorders and polymorphisms in the CB2 gene have been reported in depression, eating disorders and schizophrenia. This review will examine the evidence to date for a role of brain CB2 receptors in neuropsychiatric disorders.

  5. Binding characteristics of swine erythrocyte insulin receptors

    International Nuclear Information System (INIS)

    Crossbred gilts had 8.8 +/- 1.1% maximum binding of [125I]insulin to insulin receptors on erythrocytes. The number of insulin-binding sites per cell was 137 +/- 19, with a binding affinity ranging from 7.4 X 10(7)M-1 to 11.2 X 10(7)M-1 and mean of 8.8 X 10(7)M-1. Pregnant sows had a significant increase in maximum binding due to an increase in number of receptor sites per cell. Lactating sows fed a high-fiber diet and a low-fiber diet did not develop a significant difference in maximum binding of insulin. Sows fed the low-fiber diet had a significantly higher number of binding sites and a significantly lower binding affinity than did sows fed a high-fiber diet. Receptor-binding affinity was lower in the low-fiber diet group than in cycling gilts, whereas data from sows fed the high-fiber diet did not differ from data for cycling gilts. Data from this study indicated that insulin receptors of swine erythrocytes have binding characteristics similar to those in other species. Pregnancy and diet will alter insulin receptor binding in swine

  6. Estrogen receptor beta treats Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Zhu Tian; Jia Fan; Yang Zhao; Sheng Bi; Lihui Si; Qun Liu

    2013-01-01

    In vitro studies have shown that estrogen receptor β can attenuate the cytotoxic effect of amyloid β protein on PC12 cells through the Akt pathway without estrogen stimulation. In this study, we aimed to observe the effect of estrogen receptor β in Alzheimer's disease rat models established by intraventricular injection of amyloid β protein. Estrogen receptor β lentiviral particles delivered via intraventricular injection increased Akt content in the hippocampus, decreased interleukin-1β mRNA, tumor necrosis factor α mRNA and amyloid β protein levels in the hippocampus, and improved the learning and memory capacities in Alzheimer's disease rats. Estrogen receptor β short hairpin RNA lentiviral particles delivered via intraventricular injection had none of the above impacts on Alzheimer's disease rats. These experimental findings indicate that estrogen receptor β, independent from estrogen, can reduce inflammatory reactions and amyloid β deposition in the hippocampus of Alzheimer's disease rats, and improve learning and memory capacities. This effect may be mediated through activation of the Akt pathway.

  7. Roles of transferrin receptors in erythropoiesis.

    Science.gov (United States)

    Kawabata, Hiroshi; Sakamoto, Soichiro; Masuda, Taro; Uchiyama, Tatsuki; Ohmori, Katsuyuki; Koeffler, H Phillip; Takaori-Kondo, Akifumi

    2016-07-01

    Erythropoiesis requires large amounts of iron for hemoglobin synthesis, which is mainly provided by macrophages and the intestines in a transferrin (Tf)-bound form. Bone marrow erythroblasts incorporate Tf through endocytosis, which is mediated by transferrin receptor 1 (TFR1). Recently, human TFR1, aside from its role as a Tf receptor, was also found to be a receptor for the H-subunit of ferritin (FTH). In humans, hematopoietic erythroid precursor cells express high levels of TFR1 and specifically take up the FTH homopolymer (H-ferritin). H-ferritin inhibits the formation of burst forming unit-erythroid colonies in vitro. TFR2, which is also a Tf receptor, is predominantly expressed in hepatocytes and erythroid precursor cells. In the liver, TFR2 forms a complex with HFE, a hereditary hemochromatosis-associated protein, and acts as an iron sensor. In mice, hepatocyte-specific knockout of the TFR2 gene has been shown to cause systemic iron-overload with decreased expression of hepcidin, the central regulator of iron homeostasis. In erythroid cells, TFR2 forms a complex with the erythropoietin receptor and facilitates its trafficking to the cell membrane. Moreover, hematopoietic cell-specific knockout of the TFR2 gene causes microcytic erythrocytosis in mice. This review focuses on the molecular evolution and functions of these TFRs and their ligands. PMID:27498743

  8. Medicinal chemistry of competitive kainate receptor antagonists.

    Science.gov (United States)

    Larsen, Ann M; Bunch, Lennart

    2011-02-16

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1-5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure-activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field. PMID:22778857

  9. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis

    Energy Technology Data Exchange (ETDEWEB)

    Ptacek, L.J.; Leppert, M.F. [Univ. of Utah, Salt Lake City, UT (United States); Tawil, R. [Univ. of Rochester, MN (United States)] [and others

    1994-09-01

    Hypokalemic periodic paralysis (hypoKPP) is an autosomal dominant skeletal muscle disorder manifested by episodic weakness associated with low serum potassium. Genetic linkage analysis has localized the hypoKPP gene to chromosome 1q31-q32 near a dihydropyridine receptor (DHP) gene. This receptor functions as a voltage-gated calcium channel and is also critical for excitation-contraction coupling in a voltage-sensitive and calcium-independent manner. We have characterized patient-specific DHP receptor mutations in 11 probands of 33 independent hypoKPP kindreds that occur at one of two adjacent nucleotides within the same codon and predict substitution of a highly conserved arginine in the S4 segment of domain 4 with either histidine or glycine. In one kindred, the mutation arose de novo. Taken together, these data establish the DHP receptor as the hypoKPP gene. We are unaware of any other human diseases presently known to result from DHP receptor mutations.

  10. Molecular evolution of the neuropeptide S receptor.

    Directory of Open Access Journals (Sweden)

    Thejkiran Pitti

    Full Text Available The neuropeptide S receptor (NPSR is a recently deorphanized member of the G protein-coupled receptor (GPCR superfamily and is activated by the neuropeptide S (NPS. NPSR and NPS are widely expressed in central nervous system and are known to have crucial roles in asthma pathogenesis, locomotor activity, wakefulness, anxiety and food intake. The NPS-NPSR system was previously thought to have first evolved in the tetrapods. Here we examine the origin and the molecular evolution of the NPSR using in-silico comparative analyses and document the molecular basis of divergence of the NPSR from its closest vertebrate paralogs. In this study, NPSR-like sequences have been identified in a hemichordate and a cephalochordate, suggesting an earlier emergence of a NPSR-like sequence in the metazoan lineage. Phylogenetic analyses revealed that the NPSR is most closely related to the invertebrate cardioacceleratory peptide receptor (CCAPR and the group of vasopressin-like receptors. Gene structure features were congruent with the phylogenetic clustering and supported the orthology of NPSR to the invertebrate NPSR-like and CCAPR. A site-specific analysis between the vertebrate NPSR and the well studied paralogous vasopressin-like receptor subtypes revealed several putative amino acid sites that may account for the observed functional divergence between them. The data can facilitate experimental studies aiming at deciphering the common features as well as those related to ligand binding and signal transduction processes specific to the NPSR.

  11. Cholesterol modulates bitter taste receptor function.

    Science.gov (United States)

    Pydi, Sai Prasad; Jafurulla, Md; Wai, Lisa; Bhullar, Rajinder P; Chelikani, Prashen; Chattopadhyay, Amitabha

    2016-09-01

    Bitter taste perception in humans is believed to act as a defense mechanism against ingestion of potential toxic substances. Bitter taste is perceived by 25 distinct bitter taste receptors (T2Rs) which belong to the family of G protein-coupled receptors (GPCRs). In the overall context of the role of membrane lipids in GPCR function, we show here that T2R4, a representative member of the bitter taste receptor family, displays cholesterol sensitivity in its signaling function. In order to gain further insight into cholesterol sensitivity of T2R4, we mutated two residues Tyr114(3.59) and Lys117(3.62) present in the cholesterol recognition amino acid consensus (CRAC) motif in T2R4 with alanines. We carried out functional characterization of the mutants by calcium mobilization, followed by cholesterol depletion and replenishment. CRAC motifs in GPCRs have previously been implicated in preferential cholesterol association. Our analysis shows that the CRAC motif represents an intrinsic feature of bitter taste receptors and is conserved in 22 out of 25 human T2Rs. We further demonstrate that Lys117, an important CRAC residue, is crucial in the reported cholesterol sensitivity of T2R4. Interestingly, cholesterol sensitivity of T2R4 was observed at quinine concentrations in the lower mM range. To the best of our knowledge, our results represent the first report addressing the molecular basis of cholesterol sensitivity in the function of taste receptors. PMID:27288892

  12. CLAVATA 1-type receptors in plant development.

    Science.gov (United States)

    Hazak, Ora; Hardtke, Christian S

    2016-08-01

    A fundamental aspect of plant development is the coordination of growth through endogenous signals and its integration with environmental inputs. Similar to animals, plants frequently use cell surface-localized receptors to monitor such stimuli, for instance through plasma membrane-integral receptor-like kinases (RLKs). Compared to other organisms, plants possess a large number of RLKs (more than 600 in Arabidopsis thaliana), which implies that ligand-receptor-mediated molecular mechanisms regulate a wide range of processes during plant development. Here, we focus on A. thaliana RLKs of the CLAVATA 1 (CLV1) type, which orchestrate key steps during plant development, including the regulation of meristem maintenance, anther development, vascular tissue formation, and root system architecture. These receptors are regulated by small signalling peptides that belong to the family of CLE (CLV3 / EMBRYO SURROUNDING REGION) ligands. We discuss different aspects of plant development that are regulated by these receptors in light of their molecular mechanism of action. As so often, the intensive research on this group of plant RLKs has raised many intriguing questions, which remain to be answered. PMID:27340234

  13. Corazonin receptor signaling in ecdysis initiation.

    Science.gov (United States)

    Kim, Young-Joon; Spalovská-Valachová, Ivana; Cho, Kook-Ho; Zitnanova, Inka; Park, Yoonseong; Adams, Michael E; Zitnan, Dusan

    2004-04-27

    Corazonin is a highly conserved neuropeptide hormone of wide-spread occurrence in insects yet is associated with no universally recognized function. After discovery of the corazonin receptor in Drosophila, we identified its ortholog in the moth, Manduca sexta, as a prelude to physiological studies. The corazonin receptor cDNA in M. sexta encodes a protein of 436 amino acids with seven putative transmembrane domains and shares common ancestry with its Drosophila counterpart. The receptor exhibits high sensitivity and selectivity for corazonin when expressed in Xenopus oocytes (EC(50) approximately 200 pM) or Chinese hamster ovary cells (EC(50) approximately 75 pM). Northern blot analysis locates the receptor in peripheral endocrine Inka cells, the source of preecdysis- and ecdysis-triggering hormones. Injection of corazonin into pharate larvae elicits release of these peptides from Inka cells, which induce precocious preecdysis and ecdysis behaviors. In vitro exposure of isolated Inka cells to corazonin (25-100 pM) induces preecdysis- and ecdysis-triggering hormone secretion. Using corazonin receptor as a biosensor, we show that corazonin concentrations in the hemolymph 20 min before natural preecdysis onset range from 20 to 80 pM and then decline over the next 30-40 min. These findings support the role of corazonin signaling in initiation of the ecdysis behavioral sequence. We propose a model for peptide-mediated interactions between Inka cells and the CNS underlying this process in insect development. PMID:15096620

  14. Erythropoietin receptor signaling is membrane raft dependent.

    Directory of Open Access Journals (Sweden)

    Kathy L McGraw

    Full Text Available Upon erythropoietin (Epo engagement, Epo-receptor (R homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE vs. 25.6±3.2 aggregates/cell; p≤0.001, accompanied by a >3-fold increase in cluster size (p≤0.001. Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units.

  15. Cellular receptors for human enterovirus species A

    Directory of Open Access Journals (Sweden)

    Yorihiro eNishimura

    2012-03-01

    Full Text Available Human enterovirus species A (HEV-A is one of the four species of HEV in the genus Enterovirus in the family Picornaviridae. Among HEV-A, coxsackievirus A16 (CVA16 and enterovirus 71 (EV71 are the major causative agents of hand, foot, and mouth disease (HFMD. Some other types of HEV-A are commonly associated with herpangina. Although HFMD and herpangina due to HEV-A are common febrile diseases among infants and children, EV71 can cause various neurological diseases, such as aseptic meningitis and fatal encephalitis.Recently, two human transmembrane proteins, P-selectin glycoprotein ligand-1 (PSGL-1 and scavenger receptor class B, member 2 (SCARB2, were identified as functional receptors for EV71 and CVA16. In in vitro infection experiments using the prototype HEV-A strains, PSGL-1 and SCARB2 could be responsible for the specific receptors for EV71 and CVA16. However, the involvement of both receptors in the in vitro and in vivo infections of clinical isolates of HEV-A has not been clarified yet. To elucidate a diverse array of the clinical outcome of HEV-A-associated diseases, the identification and characterization of HEV-A receptors may provide useful information in understanding the HEV-A pathogenesis at a molecular level.

  16. Responses to microbial challenges by SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Boaz Job Van Driel

    2016-01-01

    Full Text Available The SLAMF Family (SLAMF of cell surface glycoproteins is comprised of nine glycoproteins and whilst SLAMF1, 3, 5, 6, 7, 8, 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development and, T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SAP and EAT-2 regulate innate and adaptive immune responses to microbes.

  17. Chemokine receptor expression by mast cells.

    Science.gov (United States)

    Juremalm, Mikael; Nilsson, Gunnar

    2005-01-01

    There is a growing interest in the role of chemokines and their receptors in the determination of mast cell tissue localization and how chemokines regulate mast cell function. At least nine chemokine receptors (CXCR1, CXCR2, CXCR3, CXCR4, CX3CR1, CCR1, CCR3, CCR4 and CCR5) have been described to be expressed by human mast cells of different origins. Seven chemokines (CXCL1, CXCL5, CXCL8, CXCL14, CX3CL1, CCL5 and CCL11) have been shown to act on some of these receptors and to induce mast cell migration. Mast cells have a unique expression pattern of CCR3, CXCR1 and CXCR2. These receptors are mainly expressed intracellularly on cytoplasmic membranes. Upon an allergic activation, CCR3 expression is increased on the cell surface and the cell becomes vulnerable for CCL11 treatment. Chemokines do not induce mast cell degranulation but CXCL14 causes secretion of de novo synthesized CXCL8. Because of the expression of CCR3, CCR5 and CXCR4 on mast cell progenitors, these cells are susceptible to HIV infection and mast cells might therefore be a persistent HIV reservoir in AIDS. In this review, we summarize the knowledge about chemokine receptor expression and function on mast cells. PMID:16107768

  18. Palbociclib in Combination With Tamoxifen as First Line Therapy for Metastatic Hormone Receptor Positive Breast Cancer

    Science.gov (United States)

    2016-07-05

    Hormone Receptor Positive Malignant Neoplasm of Breast; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Estrogen Receptor Positive Breast Cancer; Progesterone Receptor Positive Tumor; Metastatic Breast Cancer

  19. A search for presynaptic inhibitory histamine receptors in guinea-pig tissues: Further H3 receptors but no evidence for H4 receptors.

    Science.gov (United States)

    Petri, Doris; Schlicker, Eberhard

    2016-07-01

    The histamine H4 receptor is coupled to Gi/o proteins and expressed on inflammatory cells and lymphoid tissues; it was suggested that this receptor also occurs in the brain or on peripheral neurones. Since many Gi/o protein-coupled receptors, including the H3 receptor, serve as presynaptic inhibitory receptors, we studied whether the sympathetic neurones supplying four peripheral tissues and the cholinergic neurones in the hippocampus from the guinea-pig are equipped with release-modulating H4 and H3 receptors. For this purpose, we preincubated tissue pieces from the aorta, atrium, renal cortex and vas deferens with (3)H-noradrenaline and hippocampal slices with (3)H-choline and determined the electrically evoked tritium overflow. The stimulation-evoked overflow in the five superfused tissues was inhibited by the muscarinic receptor agonist oxotremorine, which served as a positive control, but not affected by the H4 receptor agonist 4-methylhistamine. The H3 receptor agonist R-α-methylhistamine inhibited noradrenaline release in the peripheral tissues without affecting acetylcholine release in the hippocampal slices. Thioperamide shifted the concentration-response curve of histamine in the aorta and the renal cortex to the right, yielding apparent pA2 values of 8.0 and 8.1, respectively, which are close to its affinity at other H3 receptors but higher by one log unit than its pKi at the H4 receptor of the guinea-pig. In conclusion, histamine H4 receptors could not be identified in five experimental models of the guinea-pig that are suited for the detection of presynaptic inhibitory receptors whereas H3 receptors could be shown in the peripheral tissues but not in the hippocampus. This article is part of the Special Issue entitled 'Histamine Receptors'. PMID:26211976

  20. Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Forsayeth, J.R.; Caro, J.F.; Sinha, M.K.; Maddux, B.A.; Goldfine, I.D.

    1987-05-01

    Three mouse monoclonal antibodies were produced that reacted with the ..cap alpha.. subunit of the human insulin receptor. All three both immunoprecipitated /sup 125/I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited /sup 125/I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity.