Sample records for archean banded iron

  1. Geochemistry of some banded iron-formations of the archean supracrustals, Jharkhand–Orissa region, India

    Indian Academy of Sciences (India)

    H N Bhattacharya; Indranil Chakraborty; Kaushik K Ghosh


    Banded iron-formations (BIF) form an important part of the Archean supracrustal belts of the Jharkhand–Orissa region, India. Major, trace and REE chemistry of the banded iron-formation of the Gandhamardan, Deo Nala, Gorumahisani and Noamundi sections of the Jharkhand–Orissa region are utilized to explore the source of metals and to address the thermal regime of the basin floor and the redox conditions of the archean sea. Hydrothermal fluids of variable temperatures might have contributed the major part of the Fe and other trace elements to the studied banded iron-formations. Diagenetic fluids from the sea floor sediments and river water might have played a subdued role in supplying the Fe and other elements for the banded iron-formations.

  2. SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations (United States)

    Heck, Philipp R.; Huberty, Jason M.; Kita, Noriko T.; Ushikubo, Takayuki; Kozdon, Reinhard; Valley, John W.


    Banded iron formations (BIFs) are chemical marine sediments dominantly composed of alternating iron-rich (oxide, carbonate, sulfide) and silicon-rich (chert, jasper) layers. Isotope ratios of iron, carbon, and sulfur in BIF iron-bearing minerals are biosignatures that reflect microbial cycling for these elements in BIFs. While much attention has focused on iron, banded iron formations are equally banded silica formations. Thus, silicon isotope ratios for quartz can provide insight on the sources and cycling of silicon in BIFs. BIFs are banded by definition, and microlaminae, or sub-mm banding, are characteristic of many BIFs. In situ microanalysis including secondary ion mass spectrometry is well-suited for analyzing such small features. In this study we used a CAMECA IMS-1280 ion microprobe to obtain highly accurate (±0.3‰) and spatially resolved (˜10 μm spot size) analyses of silicon and oxygen isotope ratios for quartz from several well known BIFs: Isua, southwest Greenland (˜3.8 Ga); Hamersley Group, Western Australia (˜2.5 Ga); Transvaal Group, South Africa (˜2.5 Ga); and Biwabik Iron Formation, Minnesota, USA (˜1.9 Ga). Values of δ 18O range from +7.9‰ to +27.5‰ and include the highest reported δ 18O values for BIF quartz. Values of δ 30Si have a range of ˜5‰ from -3.7‰ to +1.2‰ and extend to the lowest δ 30Si values for Precambrian cherts. Isua BIF samples are homogeneous in δ 18O to ±0.3‰ at mm- to cm-scale, but are heterogeneous in δ 30Si up to 3‰, similar to the range in δ 30Si found in BIFs that have not experienced high temperature metamorphism (up to 300 °C). Values of δ 30Si for quartz are homogeneous to ±0.3‰ in individual sub-mm laminae, but vary by up to 3‰ between multiple laminae over mm-to-cm of vertical banding. The scale of exchange for Si in quartz in BIFs is thus limited to the size of microlaminae, or less than ˜1 mm. We interpret differences in δ 30Si between microlaminae as preserved from primary

  3. Archean deep-water depositional system: interbedded and banded iron formation and clastic turbidites in the Barberton Greenstone Belt, South Africa (United States)

    Zentner, Danielle; Lowe, Donald


    The 3.23 billion year old sediments in the Barberton greenstone belt, South Africa include some of the world's oldest known deep-water deposits. Unique to this locality are turbidites interbedded with banded iron formation (BIF) and banded ferruginous chert (BFC). This unusual association may provide clues for reconstructing Archean deep-water depositional settings. For our study we examined freshly drilled core in addition to measuring ~500 m of outcrop exposures along road cuts. The stacking pattern follows an overall BIF to BFC to amalgamated turbidite succession, although isolated turbidites do occur throughout the sequence. The turbidites are predominately massive, and capped with thin, normally graded tops that include mud rip-ups, chert plates, and ripples. The lack of internal stratification and the amalgamated character suggests emplacement by surging high-density turbidity currents. Large scours and channels are absent and bedding is tabular: the flows were collapsing with little turbulence reaching the bed. In contrast, field evidence indicates the BIF and BFC most likely precipitated directly out of the water column. Preliminary interpretations indicate the deposits may be related to a pro-deltaic setting. (1) Deltaic systems can generate long-lived, high volume turbidity currents. (2) The contacts between the BIF, BFC, and turbidite successions are gradual and inter-fingered, possibly representing lateral facies relationships similar to modern pro-delta environments. (3) Putative fan delta facies, including amalgamated sandstone and conglomerate, exist stratigraphically updip of the basinal sediments.

  4. Iron isotopes in an Archean ocean analogue (United States)

    Busigny, Vincent; Planavsky, Noah J.; Jézéquel, Didier; Crowe, Sean; Louvat, Pascale; Moureau, Julien; Viollier, Eric; Lyons, Timothy W.


    Iron isotopes have been extensively used to trace the history of microbial metabolisms and the redox evolution of the oceans. Archean sedimentary rocks display greater variability in iron isotope ratios and more markedly negative values than those deposited in the Proterozoic and Phanerozoic. This increased variability has been linked to changes in either water column iron cycling or the extent of benthic microbial iron reduction through time. We tested these contrasting scenarios through a detailed study of anoxic and ferruginous Lac Pavin (France), which can serve as a modern analogue of the Archean ocean. A depth-profile in the water column of Lac Pavin shows a remarkable increase in dissolved Fe concentration (0.1-1200 μM) and δ56Fe values (-2.14‰ to +0.31‰) across the oxic-anoxic boundary to the lake bottom. The largest Fe isotope variability is found at the redox boundary and is related to partial oxidation of dissolved ferrous iron, leaving the residual Fe enriched in light isotopes. The analysis of four sediment cores collected along a lateral profile (one in the oxic layer, one at the redox boundary, one in the anoxic zone, and one at the bottom of the lake) indicates that bulk sediments, porewaters, and reactive Fe mostly have δ56Fe values near 0.0 ± 0.2‰, similar to detrital iron. In contrast, pyrite δ56Fe values in sub-chemocline cores (60, 65, and 92 m) are highly variable and show significant deviations from the detrital iron isotope composition (δ56Fepyrite between -1.51‰ and +0.09‰; average -0.93‰). Importantly, the pyrite δ56Fe values mirror the δ56Fe of dissolved iron at the redox boundary—where near quantitative sulfate and sulfide drawdown occurs—suggesting limited iron isotope fractionation during iron sulfide formation. This finding has important implications for the Archean environment. Specifically, this work suggests that in a ferruginous system, most of the Fe isotope variability observed in sedimentary pyrites can

  5. Iron isotope composition of some Archean and Proterozoic iron formations (United States)

    Planavsky, Noah; Rouxel, Olivier J.; Bekker, Andrey; Hofmann, Axel; Little, Crispin T. S.; Lyons, Timothy W.


    Fe isotopes can provide new insight into redox-dependent biogeochemical processes. Precambrian iron formations (IF) are deserving targets for Fe isotope studies because they are composed predominantly of authigenic Fe phases and record a period of unprecedented iron deposition in Earth's history. We present Fe isotope data for bulk samples from 24 Archean and Proterozoic IF and eight Phanerozoic Fe oxide-rich deposits. These data reveal that many Archean and early Paleoproterozoic iron formations were a sink for isotopically heavy Fe, in contrast to later Proterozoic and Phanerozoic Fe oxide-rich rocks. The positive δ56Fe values in IF are best explained by delivery of particulate ferric oxides formed in the water column to the sediment-water interface. Because IF are a net sink for isotopically heavy Fe, there must be a corresponding pool of isotopically light Fe in the sedimentary record. Earlier work suggested that Archean pyritic black shales were an important part of this light sink before 2.35 billion years ago (Ga). It is therefore likely that the persistently and anomalously low δ56Fe values in shales are linked with the deposition of isotopically heavy Fe in IF in the deeper parts of basins. IF deposition produced a residual isotopically light dissolved Fe pool that was captured by pyritic Fe in shales. Local dissimilatory Fe reduction in porewater and associated diagenetic reactions resulting in pyrite and carbonate precipitation may have further enhanced Fe isotope heterogeneity in marine sediments, and an 'iron shuttle' may have transported isotopically light Fe from shelf sediments to the basin. Nevertheless, water-column processing of hydrothermally delivered Fe likely had the strongest influence on the bulk iron isotope composition of Archean and Paleoproterozoic iron formations and other marine sediments.

  6. Micro- and nanobands in late Archean and Palaeoproterozoic banded-iron formations as possible mineral records of annual and diurnal depositions (United States)

    Li, Yi-Liang


    The microbands in Precambrian banded-iron formations (BIFs) have been conjectured to record annual or even diurnal depositions. However, these bands have rarely been observed in high resolution at their true (micro) scale. Here, I suggest that nanobands of fine-grained hematite represent possible diurnal depositions and that microbands of chert/jasper represent possible annual depositions in three sets of BIFs: 2460-Myr BIFs from the Kuruman Iron Formation, Transvaal Supergroup of South Africa; 2480-Myr BIFs from the Dales Gorge Member of the Brockman Iron Formation, Western Australia; and 2728-Myr BIFs from the Hunter Mine Group, Abitibi Greenstone Belt, Canada. Observations made using scanning electron microscopy indicate that hematite and chert were syngenetic, and that there was a hiatus between their precipitation and the genesis of the remainder of the minerals containing structural Fe(II). Spindle-like grains of hematite, monocrystals of magnetite, and ferro-dolomite formed microbands of ∼30-70 μm in thickness, which appear cyclically in the matrix of the chert. Neither the band-bound magnetite and dolomite nor the linear formations of the hematite spindles represent annual depositions due to their diagenetic features. The thinnest microbands (∼3-∼12 μm) were observed in the chert and jasper, and indicate depositional rates of 6.6-22.2 m/Myr in the BIFs. These rates are consistent with the integrated deposition rates calculated by geochronologic methods for the BIFs, if annual deposition is assumed. The ∼26-nm nanobands observed only in hematite grains reflect an annual deposition of ∼18.6 μm, or ∼18.6 m/Myr, which is also consistent with the depositional rate calculated by geochronologic methods. It is tentatively suggested that these ∼26-nm nanobands were formed from the diurnal precipitation of Fe(III) resulting from the circadian metabolism of Fe(II)-oxidizing or oxygen-evolving photosynthetic microorganisms, which slowed down the rise

  7. Development of Sintered Iron Driving Bands

    Directory of Open Access Journals (Sweden)

    R. P. Khanna


    Full Text Available The present investigation reports some detailed studies carried out on the development testing and proving of sintered Iron Driving Bands. Sintering studies on two different types of iron powders together with a few Fe-Cu compositions have been made and based on the results there of, parameters for development iron driving bands have been standardised. The results obtained clearly demonstrate that substitution of copper by sintered iron is highly practicable alternative.

  8. Nd isotopic variations in Precambrian banded iron formations (United States)

    Jacobsen, Stein B.; Pimentel-Klose, Mario R.


    The isotopic composition of Nd is reported for eight banded iron formations (BIFs) ranging in age from 0.65 to 3.4 Ga. The data suggest a trend of increasingly positive epsilon(Nd) values with age which is interpreted to reflect isotopic variations in Precambrian seawater. The Urucum (0.65 Ga) and the Gunflint (1.9 Ga) BIFs yield negative epsilon(Nd) values between -6 and 0. The remaining BIFs, with ages of 1.84 to 3.4 Ga, have predominantly positive values between -1 and +4. The Nd isotopic signature of BIFs changes from a principally continental source to a dominantly depleted mantle source from the present into the Archean.

  9. Silicon isotope fractionation during microbial reduction of Fe(III)-Si gels under Archean seawater conditions and implications for iron formation genesis (United States)

    Reddy, Thiruchelvi R.; Zheng, Xin-Yuan; Roden, Eric E.; Beard, Brian L.; Johnson, Clark M.


    Microbial dissimilatory iron reduction (DIR) is a deeply rooted metabolism in the Bacteria and Archaea. In the Archean and Proterozoic, the most likely electron acceptor for DIR in marine environments was Fe(III)-Si gels. It has been recently suggested that the Fe and Si cycles were coupled through sorption of aqueous Si to iron oxides/hydroxides, and through release of Si during DIR. Evidence for the close association of the Fe and Si cycles comes from banded iron formations (BIFs), which consist of alternating bands of Fe-bearing minerals and quartz (chert). Although there has been extensive study of the stable Fe isotope fractionations produced by DIR of Fe(III)-Si gels, as well as studies of stable Fe isotope fractionations in analogous abiologic systems, no studies to date have investigated stable Si isotope fractionations produced by DIR. In this study, the stable Si isotope fractionations produced by microbial reduction of Fe(III)-Si gels were investigated in simulated artificial Archean seawater (AAS), using the marine iron-reducing bacterium Desulfuromonas acetoxidans. Microbial reduction produced very large 30Si/28Si isotope fractionations between the solid and aqueous phase at ˜23 °C, where Δ30Sisolid-aqueous isotope fractionations of -3.35 ± 0.16‰ and -3.46 ± 0.09‰ were produced in two replicate experiments at 32% Fe(III) reduction (solid-phase Fe(II)/FeTotal = 0.32). This isotopic fractionation was substantially greater than that observed in two abiologic controls that had solid-phase Fe(II)/FeTotal = 0.02-0.03, which produced Δ30Sisolid-aqueous isotope fractionations of -2.83 ± 0.24‰ and -2.65 ± 0.28‰. In a companion study, the equilibrium Δ30Sisolid-aqueous isotope fractionation was determined to be -2.3‰ for solid-phase Fe(II)/FeTotal = 0. Collectively, these results highlight the importance of Fe(II) in Fe-Si gels in producing large changes in Si isotope fractionations. These results suggest that DIR should produce highly

  10. Coupled Iron and Sulfur Isotope Constraints on the Archean and Paleoproterozoic Ocean Redox State (United States)

    Rouxel, O. J.; Bekker, A.


    The rise of atmospheric oxygen level by ca. 2.3 Ga have led to dramatic shifts in the iron and sulfur oceanic cycles. Past studies of non-mass dependent and mass dependent sulfur isotope record in sedimentary sulfides over geological time have placed important constraints on biogeochemical cycle of sulfur and evolution of Precambrian ocean chemistry. Recently, we applied a similar time-record approach to explore potential changes in Fe isotope composition of pyrite in black shales. Although the underlying mechanisms for Fe isotope fractionation in organic-rich sediments are debated, we identified direct link between the rise of atmospheric oxygen and changes in the Fe ocean cycle suggesting that Fe isotopes are useful proxies to the past ocean redox state. Since biogeochemical cycles of Fe and S are closely coupled in marine systems, Fe-limitation and S-limitation for pyrite formation in black shales should leave imprint on the isotopic record of both elements. Coupled Fe and S isotope systematics of Devonian pyrite display a range of 50‰ in δ34S values whereas δ56Fe values vary between - 1.0 and +0.1‰ consistent with Fe isotope variations in modern marine sediments. Similarly, pyrite in the 1.88 Ga Gunflint Formation has δ34S values ranging from - 32‰ to +10‰ and displays a range of δ56Fe values between 0 to - 0.4‰. In contrast, Archean black shales (e.g. Manjeri Fm., Belingwe Belt and Jeerinah Fm., Hamersley Basin) display a smaller range of δ34S values between together with ubiquitous non-mass dependent S-isotope fractionation but a larger range of δ56Fe values from - 3.5 to +0.2‰. A transitional period between ca. 2.3 and ca. 1.8 Ga is marked by a larger spread of δ34S values from - 34 to +28‰, disappearance of MIF and a larger range of δ56Fe values from - 1.7 to +1.1‰. These results confirm that after the rise of atmospheric oxygen by ca. 2.3 Ga, Paleoproterozoic ocean became stratified and gradually affected by an increase of seawater

  11. Iron isotopes in ancient and modern komatiites: Evidence in support of an oxidised mantle from Archean to present (United States)

    Hibbert, K. E. J.; Williams, H. M.; Kerr, A. C.; Puchtel, I. S.


    The mantle of the modern Earth is relatively oxidised compared to the initially reducing conditions inferred for core formation. The timing of the oxidation of the mantle is not conclusively resolved but has important implications for the timing of the development of the hydrosphere and atmosphere. In order to examine the timing of this oxidation event, we present iron isotope data from three exceptionally well preserved komatiite localities, Belingwe (2.7 Ga), Vetreny (2.4 Ga) and Gorgona (0.089 Ga). Measurements of Fe isotope compositions of whole-rock samples are complemented by the analysis of olivine, spinel and pyroxene separates. Bulk-rock and olivine Fe isotope compositions (δ57Fe) define clear linear correlations with indicators of magmatic differentiation (Mg#, Cr#). The mean Fe isotope compositions of the 2.7-2.4 Ga and 0.089 Ga samples are statistically distinct and this difference can be explained by greater extent of partial melting represented by the older samples and higher mantle ambient temperatures in the Archean and early Proterozoic relative to the present day. Significantly, samples of all ages define continuous positive linear correlations between bulk rock δ57Fe and V/Sc and δ57Fe and V, and between V/Sc and V with TiO2, providing evidence for the incompatible behaviour of V (relative to Sc) and of isotopically heavy Fe. Partial melting models calculated using partition coefficients for V at oxygen fugacities (fO2s) of 0 and + 1 relative to the fayalite-magnetite-quartz buffer (FMQ) best match the data arrays, which are defined by all samples, from late Archean to Tertiary. These data, therefore, provide evidence for komatiite generation under moderately oxidising conditions since the late Archean, and argue against a change in mantle fO2 concomitant with atmospheric oxygenation at ~ 2.4 Ga.

  12. Biologically recycled continental iron is a major component in banded iron formations. (United States)

    Li, Weiqiang; Beard, Brian L; Johnson, Clark M


    Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ(56)Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ(56)Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 10(0)-10(3) y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 10(5)-10(6) y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean.

  13. Band Iron Formations and Satellite Magnetic Anomalies (United States)

    Nazarova, K. A.; Wasilewski, P.


    Band Iron Formations (BIF) are mainly Precambrian (2.5-1.8 Ga) sedimentary deposits and are composed of alternating layers of iron rich material and silica (chert). Precambrian BIF mark growth in the level of free oxygen in the atmosphere and the ocean which happened about 2.2 Ga. Distribution of main BIF includes Hamersley Range, Australia; Transvaal-Griquatown, South Africa; Minas Gerais, Brazil; Labrador Trough, Canada, and Kursk-Krivoi Rog (Russia). Together these five very large BIF deposits constitute about 90 percent of Earth's total estimated BIF (5.76*10 14 ). On each continent these ancient rocks usually metamorphosed and crystallized include what are variously described as hematite-quartzites, banded iron formations, banded jaspers or calico-rocks. West African, Hudson Bay and Western Australian Satellite Magnetic Anomalies coincide with distribution BIF deposits. The Kursk Satellite Magnetic Anomaly (KMA) (about 22 nT at the altitude=400km, centered at 51o N, 37o E) also was identified by ground and aeromagnetic observations and is recognized as one of the largest magnetic anomaly on the Earth. Magnetic modeling shows that immense Precambrian iron ore deposits (iron bands) of Voronezh uplift are the main source of KMA. Magnetic properties of 10000 BIF samples outcropped in the KMA area have been measured and analyzed (Krutikhovskaya et al., 1964) Rockmag BIF dataset is presented at: Mean NRM value is about 42 A/M, Qn about 1.4. Demagnetization tests suggest that hard and stable NRM component is caused by hematite occurring in BIF in different forms and grain sizes. Hematite deposits discovered on Mars in western equatorial area with layered topography of Aram Chaos and Sinus Meridiani could be of hydrothermal origin and may be formed similar to hematite precipitated in BIF on Earth.

  14. Contrasting behavior of oxygen and iron isotopes in banded iron formation revealed by in situ analysis (United States)

    Beard, B.; Li, W.; Kita, N.; Valley, J. W.; Johnson, C.


    Banded iron formations (BIFs) record a period of dramatic secular change in Earth's geologic history, when abundant aqueous Fe(II) was removed from Archean and Proterozoic oceans by oxidation. BIFs are characterized by co-existing of quartz and iron minerals, including oxides and carbonates, and alternating iron-rich and iron-poor layers range from m to isotope ratios in minerals in BIFs provide valuable information about the origin of BIFs, as well as diagenetic and metamorphic effects that were superimposed on primary layering. We analyzed O and Fe isotope compositions of magnetite and hematite in BIFs from the 2.5 Ga Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia. Oxygen isotope ratios were measured by Secondary Ion Mass Spectrometry (SIMS), and Fe isotope ratios were measured by femtosecond Laser ablation Multi-Collector ICP-MS (fs-LA-MC-ICP-MS), with spatial resolutions of 15 mm (O) and 30-50 mm (Fe), and external precisions (2s) of +0.7 ‰ for δ18O and +0.2 ‰ for δ56Fe, respectively. Analysis of δ18O in iron oxides by SIMS employed special tuning with a 3kV primary beam to minimize orientation effects (Huberty et al. 2010 ). For hematite, δ18O values range from -7.1 ‰ to -0.6 ‰, with the majority of data clustering around -4.5 ‰, and δ56Fe values range from -0.50 ‰ to +1.53‰. Magnetite has a δ18O range of -5.6 ‰ to +5.6 ‰ and a δ56Fe range of -0.76 ‰ to +1.33 ‰. Notably, magnetite shows significant O isotope heterogeneity at a mineral grain scale, and the highest δ18O values were commonly measured from Si-rich (1-3 wt% SiO2) magnetite overgrowths or magnetite grains that have a recrystallization texture. In contrast, lowest δ18O values were measured from magnetite that contains less than 1 wt% SiO2. Individual magnetite grains can have up to 6 ‰ variation in δ18O values between low-Si core and Si-rich overgrowth. Iron isotope compositions are homogeneous to ±0.1 ‰ in δ56Fe values

  15. Chemostratigraphy of Neoproterozoic Banded Iron Formation (BIF)

    DEFF Research Database (Denmark)

    Gaucher, Claudio; Sial, Alcides N.; Frei, Robert


    Brazil), Chuos, and Numees Formations (Namibia) and Holowilena Ironstone (Australia). However, many occurrences are not related to glacial processes and can be assigned to the Algoma and Lake Superior types. Neoproterozoic Algoma-type BIF includes the Wadi Karim and Um Anab (Egypt), the correlative......Neoproterozoic banded iron formations (BIFs) are not restricted to the middle Cryogenian, c. 715 Ma glaciation, occurring in Tonian, Cryogenian, and Ediacaran successions. Many Neoproterozoic BIFs were deposited in glacially influenced settings, such as the Rapitan Group (Canada), Jacadigo Group (W...... Sawawin BIF (Saudi Arabia), and the Jucurutu Formation of the Seridó Belt (NE Brazil). Lake Superior type BIFs are represented by the Tonian Shilu Group (South China) and the late Ediacaran Arroyo del Soldado Group (Yerbal and Cerro Espuelitas formations, Uruguay). Useful chemostratigraphic tools...

  16. Spectral characteristics of banded iron formations in Singhbhum craton, eastern India:Implications for hematite deposits on Mars

    Institute of Scientific and Technical Information of China (English)

    Mahima Singh; Jayant Singhal; K. Arun Prasad; V.J. Rajesh; Dwijesh Ray; Priyadarshi Sahoo


    Banded iron formations (BIFs) are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environment, hematite deposits are mainly found associated with banded iron formations. The BIFs in Lake Superior (Canada) and Carajas (Brazil) have been studied by planetary scientists to trace the evo-lution of hematite deposits on Mars. Hematite deposits are extensively identified in Meridiani region on Mars. Many hypotheses have been proposed to decipher the mechanism for the formation of these deposits. On the basis of geomorphological and mineralogical studies, aqueous environment of deposi-tion is found to be the most supportive mechanism for its secondary iron rich deposits. In the present study, we examined the spectral characteristics of banded iron formations of Joda and Daitari located in Singhbhum craton in eastern India to check its potentiality as an analog to the aqueous/marine envi-ronment on Mars. The prominent banding feature of banded iron formations is in the range of few millimeters to few centimeters in thickness. Fe rich bands are darker (gray) in color compared to the light reddish jaspilitic chert bands. Thin quartz veins (<4 mm) are occasionally observed in the hand-specimens of banded iron formations. Spectral investigations have been conducted in VIS/NIR region of electromagnetic spectrum in the laboratory conditions. Optimum absorption bands identified include 0.65, 0.86, 1.4 and 1.9 mm, in which 0.56 and 0.86 mm absorption bands are due to ferric iron and 1.4 and 1.9 mm bands are due to OH/H2O. To validate the mineralogical results obtained from VIS/NIR spectral radiometry, laser Raman and Fourier transform infrared spectroscopic techniques were utilized and the results were found to be similar. Goethite-hematite association in banded iron formation in Singhbhum craton suggests dehydration activity, which has altered the primary

  17. Do Secular Trends in the Nickel Content of Banded Iron Formation Record a Methanogen Famine? (United States)

    Lalonde, S. V.; Pecoits, E.; Papineau, D.; Nisbet, E. G.; Barley, M. E.; Arndt, N. T.; Zahnle, K.; Kamber, B. S.; Konhauser, K. O.


    As ancient chemical sediments whose composition was dictated by contemporaneous seawater, Banded Iron Formations (BIF) may prove to be one of the most useful indicators of changing oceanic trace element concentrations over geological timescales. We report here new trace element analyses of over 20 BIF spanning roughly 3 billion years of ocean history. Our data indicate a progressive decline in nickel abundance in BIF with age; we suggest that after the most intense period of mantle plume magmatism and continental crustal growth in Earth's history ca. 2.7 billion years ago, a cooler upper mantle led to decreased eruption of Ni-rich ultramafic rocks (i.e., komatiites), and consequently a reduced flux of dissolved Ni to the oceans. These results, combined with experimentally-determined Ni partition coefficients between simulated Precambrian seawater and diverse iron oxides, indicate that dissolved Ni concentrations may have been as high as 400 nM throughout much of the Archean, but dropped significantly to ~120 nM by 2.5 Ga, and then slowly approached modern day values (~9 nM) by ~500 Ma. The observed decline in the availability of Ni, a key metal cofactor in the enzymes of methanogens, would have progressively stifled methanogenic activity in the oceans and severely disrupted the supply of biogenic methane sometime between 2.7 and 2.5 Ga. Did a nickel famine at the end of the Archean cause catastrophic collapse of atmospheric methane and thereby facilitate the rise of atmospheric oxygen at 2.4 billion years ago, the so-called 'Great Oxidation Event' (GOE)?

  18. Stable iron isotope fractionation between aqueous Fe(II) and model Archean ocean Fe-Si coprecipitates and implications for iron isotope variations in the ancient rock record (United States)

    Wu, Lingling; Percak-Dennett, Elizabeth M.; Beard, Brian L.; Roden, Eric E.; Johnson, Clark M.


    Iron isotope fractionation between aqueous Fe(II) (Fe(II)aq) and two amorphous Fe(III) oxide-Si coprecipitates was investigated in an aqueous medium that simulated Archean marine conditions, including saturated amorphous silica, low sulfate, and zero dissolved oxygen. The equilibrium isotope fractionation (in 56Fe/54Fe) between Fe(II)aq and Fe(III)-Si coprecipitates at circum-neutral pH, as inferred by the three-isotope method, was -3.51 ± 0.20 (2σ)‰ and -3.99 ± 0.17 (2σ)‰ for coprecipitates that had Fe:Si molar ratios of 1:2 and 1:3, respectively. These results, when combined with earlier work, indicate that the equilibrium isotope fractionation factor between Fe(II)aq and Fe(III)-Si coprecipitates changes as a function of Fe:Si ratio of the solid. Isotopic fractionation was least negative when Fe:Si = 1:1 and most negative when Fe:Si = 1:3. This change corresponds with changes in the local structure of iron, as revealed by prior spectroscopic studies. The kinetics of isotopic exchange was controlled by movement of Fe(II) and Si, where sorption of Fe(II) from aqueous to solid phase facilitated atom exchange, but sorption of Si hindered isotopic exchange through blockage of reactive surface sites. Although Fe(II)-Fe(III) isotopic exchange rates were a function of solid and solution compositions in the current study, in all cases they were much higher than that determined in previous studies of aqueous Fe(III) and ferrihydrite interaction, highlighting the importance of electron exchange in promoting Fe atom exchange. When compared to analogous microbial reduction experiments of overlapping Fe(II) to Fe(III) ratios, isotopic exchange rates were faster in the biological experiments, likely due to promotion of atom exchange by the solid-phase Fe(II) produced in the biological experiments. These results provide constraints for interpreting the relatively large range of Fe isotope compositions in Precambrian marine sedimentary rocks, and highlight important

  19. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere. (United States)

    Li, Yi-Liang; Sun, Si; Chan, Lung S


    The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ∼2.0-2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean-Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms.

  20. Hafnium and iron isotopes in early Archean komatiites record a plume-driven convection cycle in the Hadean Earth (United States)

    Nebel, Oliver; Campbell, Ian H.; Sossi, Paolo A.; Van Kranendonk, Martin J.


    Archean (>2.5 billion years) komatiites are considered expressions of mantle plumes that originate from and thereby sample the lowermost mantle overlying the Earth's core. Some komatiites have reported Hf isotope signatures that require a mantle source with a time-integrated Lu/Hf that is appreciably higher than average modern depleted mantle. The systematic study of the time and locus of parent-daughter fractionation of the mantle sources of these komatiites potentially constrains differentiation processes in the early Earth, and subsequent distribution and storage of early mantle reservoirs. We present radiogenic Hf and stable Fe isotopes for a series of komatiites from the Pilbara craton in Western Australia (aged 3.5 to 2.9 Ga). After careful evaluation of the effects of alteration, we find that pristine samples are characterised by a light Fe isotope mantle source and initial 176Hf/177Hf well above the age-corrected depleted mantle. Taken together these observations require a component of an old, melt-depleted reservoir in their mantle source. The Hf isotope signature of this component appears to be complementary to the first terrestrial crust, as preserved in Hadean (i.e., >4 Ga) detrital zircon cores, suggesting a causal relationship and a Hadean age for this depletion event. We propose that this Early Refractory Reservoir (ERR) is the residue formed by deep melting in hot Hadean mantle plumes, which then accumulated at the base of the first crust. Parts of this primordial lithosphere were destabilised and sank to the core-mantle boundary in cold drips and subsequently returned in hot mantle plumes, whose thermal capacity allows melting of such refractory mantle with its archetype isotope signature. The cycling of this material via cold drips and hot plumes suggests a plume-dominated convection prior to ∼3.9 Ga, which is then replaced by Archean-style plate tectonics.

  1. Reconciling atmospheric temperatures in the early Archean

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    the oxygen isotope record of chemical sediments and ancient ocean crust, chemical equilibria amongst primary phases in banded iron formations (BIFs), sedimentary features indicative of temperate or glacial environments, and paleosol indicators of atmospheric CO2. Further, we explore the extent to which......Average surface temperatures of Earth in the Archean remain unresolved despite decades of diverse approaches to the problem. As in the present, early Earth climates were complex systems dependent on many variables. With few constraints on such variables, climate models must be relatively simplistic...... hydrogen isotopes contribute to the geologic record as a signal for glaciations, continental growth and atmospheric methane levels. Oceanic serpentinites and subduction-related volcanic and hydrothermal environments obtain their hydrogen isotope signature from seawater, and thus may be used to calculate...

  2. Reconciling atmospheric temperatures in the early Archean (United States)

    Pope, E. C.; Rosing, M.; Bird, D. K.; Albarede, F.


    Average surface temperatures of Earth in the Archean remain unresolved despite decades of diverse approaches to the problem. As in the present, early Earth climates were complex systems dependent on many variables. With few constraints on such variables, climate models must be relatively simplistic, and consider only one or two factors that drive Archean climate (e.g. a fainter young sun, a low albedo, the extent and effect of cloud cover, or the presence and abundance of a wide array of greenhouse and icehouse gasses). Compounded on the limitations of modeling is the sparse and often ambiguous Archean rock record. The goal of this study is to compile and reconcile Archean geologic and geochemical features that are in some way controlled by surface temperature and/or atmospheric composition, so that at the very least paleoclimate models can be checked by physical limits. Data used to this end include the oxygen isotope record of chemical sediments and ancient ocean crust, chemical equilibria amongst primary phases in banded iron formations (BIFs), sedimentary features indicative of temperate or glacial environments, and paleosol indicators of atmospheric CO2. Further, we explore the extent to which hydrogen isotopes contribute to the geologic record as a signal for glaciations, continental growth and atmospheric methane levels. Oceanic serpentinites and subduction-related volcanic and hydrothermal environments obtain their hydrogen isotope signature from seawater, and thus may be used to calculate secular variation in δDSEAWATER which may fluctuate significantly due to hydrogen escape, continental growth and large-scale glaciation events. Further, ancient records of low-δD meteoric fluids signal both cooler temperatures and the emergence of large continents (increasing the effects of continental weathering on climate). Selective alteration of δD in Isua rocks to values of -130 to -100‰ post-dates ca. 3.55Ga Ameralik dikes, but may be associated with a poorly

  3. Controversial Pb-Pb and Sm-Nd isotope results in the early Archean Isua (West Greenland) oxide iron formation

    DEFF Research Database (Denmark)

    Frei, Robert; Rosing, Minik; Stecher, Ole


    as crystal overgrowths in the magnetite-rich bands. The timing of the hydrothermal event during which apatite was deposited within the BIF remains uncertain, but a TCHUR model age of 1.85 Ga from the apatite-dominated HCl leachate may point to a close genetic relationship with local Proterozoic metamorphism...

  4. Partition coefficients for iron between plagioclase and basalt as a function of oxygen fugacity - Implications for Archean and lunar anorthosites (United States)

    Phinney, W. C.


    As a prelude to determinations of the content of total iron as FeO(T) in melts in equilibrium with calcic anorthosites, the partition coefficients (Ds) for FeO(T) between calcic plagioclase and basaltic melt were determined, as a function of oxygen fugacity (f(O2)), for a basaltic composition that occurs as matrices for plagioclase megacrysts. Results showed that, at the liquidus conditions, the value of D for FeO(T) between calcic plagioclase and tholeiitic basalt changed little (from 0.030 to 0.044) between the very low f(O2) of the iron-wustite buffer and that of the quartz-fayalite-magnetite (QFM) buffer. At fugacities above QFM, the value for D increased rapidly to 0.14 at the magnetite-hematite buffer and to 0.33 in air. The increase in D results from the fact that, at f(O2) below QFM, nearly all of the Fe is in the Fe(2+) state; above QFM, the Fe(3+)/Fe(2+) ratio in the melt increases rapidly, causing more Fe to enter the plagioclase which accepts Fe(3+) more readily than Fe(2+).

  5. Raman Spectroscopic Characterisation of Australian Banded Iron Formation and Iron Ore (United States)

    Wells, M. A.; Ramanaidou, E. R.


    In Australia and world-wide over the past 5-10 years, declining reserves of premium, high-grade (>64% Fe), low-P bearing iron ore, have seen iron ore producers increase their utilisation of lower Fe-grade, higher P/Al/Si ore. In Australia, the channel iron deposits (CID), bedded iron deposits (BID) and, more recently, BIF-derived magnetite iron deposits (MID) have seen increased usage driven mainly by the increased demand from Chinese steel mills (Ramanaidou and Wells, 2011). Efficient exploitation and processing of these lower-grade iron ores requires a detailed understanding of their iron oxide and gangue mineralogy and geochemistry. The common Fe-bearing minerals (e.g., hematite, magnetite, goethite and kenomagnetite) in these deposits, as well as gangue minerals such as quartz and carbonates, are all strongly Raman active (e.g., de Faria et al., 1997). Their distinct Raman spectra enable them to be easily detected and mapped in situ in either unprepared material or samples prepared as polished blocks. In this paper, using representative examples of Australian CID ore, martite-goethite bedded iron deposit (BID) ore and banded iron formation (BIF) examined as polished blocks, we present a range of Raman spectra of the key iron ore minerals, and discuss how Raman spectroscopy can be applied to characterising iron ore mineralogy. Raman imaging micrographs, obtained using a StreamLine Plus Raman imaging system, clearly identified the main Fe-oxide and gangue components in the CID, BID and BIF samples when compared to optical micrographs. Raman analysis enabled the unequivocal identification of diamond in the CID ore as a contaminant from the polishing paste used to prepare the sample, and confirmed the presence of hematite in the BID ore in the form of martite, which can be morphologically similar to magnetite and, thus, difficult to otherwise distinguish. Image analysis of Raman mineral maps could be used to quantify mineral abundance based on the number of 'pixels

  6. Identification of an Archean marine oxygen oasis

    Energy Technology Data Exchange (ETDEWEB)

    Riding, Dr Robert E [University of Tennessee (UT); Fralick, Dr Philip [Lakehead University, Canada; Liang, Liyuan [ORNL


    The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insoluble Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.

  7. Identification of biologically recycled continental materials in banded iron formations (United States)

    Li, W.; Beard, B. L.; Johnson, C.


    The controversy on the origin of banded iron formations (BIFs) has lasted for many decades. Studies prior to the 1970s suggested that Fe in BIFs was supplied from continental riverine inputs[1], but discovery of midocean ridge hydrothermal systems in the 1970s and identification of positive Eu anomaly in BIF samples led to an alternative model where hydrothermal vents provided Fe in BIFs[2]. Although the latter model has became widely accepted, it should be noted that interpretations of Fe sources for BIFs using the abundance and isotopic composition of rare earth elements (REEs) are based on an assumption that transport and deposition of REEs and Fe were coupled. We address the question of Fe sources and pathways for BIFs by combining stable Fe isotopes with radiogenic Nd isotopes as well as REE measurements to test proposals that Fe in BIFs was hydrothermally sourced. The samples investigated are from a type section of the Dales Gorge member of the 2.5 Ga Brockman Iron Formation, the world's most extensive Superior-type BIF that represents the climax of BIF deposition in the geologic record. Large variations were observed in both Fe and Nd isotope compositions of the BIF samples, and there is a positive correlation between the bulk rock ɛNd and δ56Fe values. In addition, there is a negative corelation between ɛNd and Sm/Nd ratios. In order to explain the observed correlations in those isotopic and elemental data, a two-component model, where mixing between a high ɛNd, low Sm/Nd hydrothermal endmember and a low ɛNd, low δ56Fe, but high Sm/Nd continental endmember occurred prior to deposition of the BIF, is required. The low-δ56Fe, high-Sm/Nd endmember is best explained by microbial dissimilatory iron reduction (DIR) in the coastal sediments, which fractionated Fe isotopes and REEs and released these components back to water column that were ultimately precipitated in BIFs. The range and distribution of ɛNdvalues in the BIF samples suggest that the amount

  8. Mineralogy and geochemistry of banded iron formation and iron ores from eastern India with implications on their genesis

    Indian Academy of Sciences (India)

    Subrata Roy; A S Venkatesh


    The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling–Langalata iron ore deposits, Singhbhum–North Orissa Craton, belonging to Iron Ore Group (IOG) eastern India have been studied in detail along with the geochemical evaluation of different iron ores. The geochemical and mineralogical characterization suggests that the massive, hard laminated, soft laminated ore and blue dust had a genetic lineage from BIFs aided with certain input from hydrothermal activity. The PAAS normalized REE pattern of Jilling BIF striking positive Eu anomaly, resembling those of modern hydrothermal solutions from mid-oceanic ridge (MOR). Major part of the iron could have been added to the bottom sea water by hydrothermal solutions derived from hydrothermally active anoxic marine environments. The ubiquitous presence of intercalated tuffaceous shales indicates the volcanic signature in BIF. Mineralogical studies reveal that magnetite was the principal iron oxide mineral, whose depositional history is preserved in BHJ, where it remains in the form of martite and the platy hematite is mainly the product of martite. The different types of iron ores are intricately related with the BHJ. Removal of silica from BIF and successive precipitation of iron by hydrothermal fluids of possible meteoric origin resulted in the formation of martite-goethite ore. The hard laminated ore has been formed in the second phase of supergene processes, where the deep burial upgrades the hydrous iron oxides to hematite. The massive ore is syngenetic in origin with BHJ. Soft laminated ores and biscuity ores were formed where further precipitation of iron was partial or absent.

  9. Magnetic Lifshitz transition and its consequences in multi-band iron-based superconductors (United States)

    Ptok, Andrzej; Kapcia, Konrad J.; Cichy, Agnieszka; Oleś, Andrzej M.; Piekarz, Przemysław


    In this paper we address Lifshitz transition induced by applied external magnetic field in a case of iron-based superconductors, in which a difference between the Fermi level and the edges of the bands is relatively small. We introduce and investigate a two-band model with intra-band pairing in the relevant parameters regime to address a generic behaviour of a system with hole-like and electron-like bands in external magnetic field. Our results show that two Lifshitz transitions can develop in analysed systems and the first one occurs in the superconducting phase and takes place at approximately constant magnetic field. The chosen sets of the model parameters can describe characteristic band structure of iron-based superconductors and thus the obtained results can explain the experimental observations in FeSe and Co-doped BaFe2As2 compounds. PMID:28165043

  10. Functional renormalization group study of an 8-band model for the iron arsenides (United States)

    Honerkamp, Carsten; Lichtenstein, Julian; Maier, Stefan A.; Platt, Christian; Thomale, Ronny; Andersen, Ole Krogh; Boeri, Lilia


    We investigate the superconducting pairing instabilities of eight-band models for 1111 iron arsenides. Using a functional renormalization group treatment, we determine how the critical energy scale for superconductivity depends on the electronic band structure. Most importantly, if we vary the parameters from values corresponding to LaFeAsO to SmFeAsO, the pairing scale is strongly enhanced, in accordance with the experimental observation. We analyze the reasons for this trend and compare the results of the eight-band approach to those found using five-band models.

  11. Functional renormalization group study of an eight-band model for the iron arsenides (United States)

    Lichtenstein, J.; Maier, S. A.; Honerkamp, C.; Platt, C.; Thomale, R.; Andersen, O. K.; Boeri, L.


    We investigate the superconducting pairing instabilities of eight-band models for the iron arsenides. Using a functional renormalization group treatment, we determine how the critical energy scale for superconductivity depends on the electronic band structure. Most importantly, if we vary the parameters from values corresponding to LaFeAsO to SmFeAsO, the pairing scale is strongly enhanced, in accordance with the experimental observation. We analyze the reasons for this trend and compare the results of the eight-band approach to those found using five-band models.

  12. Melting in the FeOsbnd SiO2 system to deep lower-mantle pressures: Implications for subducted Banded Iron Formations (United States)

    Kato, Chie; Hirose, Kei; Nomura, Ryuichi; Ballmer, Maxim D.; Miyake, Akira; Ohishi, Yasuo


    Banded iron formations (BIFs), consisting of layers of iron oxide and silica, are far denser than normal mantle material and should have been subducted and sunk into the deep lower mantle. We performed melting experiments on Fe2SiO4 from 26 to 131 GPa in a laser-heated diamond-anvil cell (DAC). The textural and chemical characterization of a sample recovered from the DAC revealed that SiO2 is the liquidus phase for the whole pressure range examined in this study. The chemical compositions of partial melts are very rich in FeO, indicating that the eutectic melt compositions in the FeOsbnd SiO2 binary system are very close to the FeO end-member. The eutectic temperature is estimated to be 3540 ± 150 K at the core-mantle boundary (CMB), which is likely to be lower than the temperature at the top of the core at least in the Archean and Paleoproterozoic eons, suggesting that subducted BIFs underwent partial melting in a thermal boundary layer above the CMB. The FeO-rich melts formed by partial melting of the BIFs were exceedingly dense and therefore migrated downward. We infer that such partial melts have caused iron enrichment in the bottom part of the mantle, which may have contributed to the formation of ultralow velocity zones (ULVZs) observed today. On the other hand, solid residues left after the segregation of the FeO-rich partial melts have been almost pure SiO2, and therefore buoyant in the deep lower mantle to be entrained in mantle upwellings. They have likely been stretched and folded repeatedly by mantle flow, forming SiO2 streaks within the mantle "marble cake". Mantle packages enhanced by SiO2 streaks may be the origin of seismic scatterers in the mid-lower mantle.

  13. Examining Archean methanotrophy (United States)

    Slotznick, Sarah P.; Fischer, Woodward W.


    The carbon isotope ratios preserved in sedimentary rocks can be used to fingerprint ancient metabolisms. Organic carbon in Late Archean samples stands out from that of other intervals with unusually low δ13C values (∼-45 to -60‰). It was hypothesized that these light compositions record ecosystem-wide methane cycling and methanotrophy, either of the aerobic or anaerobic variety. To test this idea, we studied the petrography and carbon and oxygen isotope systematics of well-known and spectacular occurrences of shallow water stromatolites from the 2.72 Ga Tumbiana Formation of Western Australia. We examined the carbonate cements and kerogen produced within the stromatolites, because methanotrophy is expected to leave an isotopic fingerprint in these carbon reservoirs. Mathematical modeling of Archean carbonate chemistry further reveals that methanotrophy should still have a discernible signature preserved in the isotopic record, somewhat diminished from those observed in Phanerozoic sedimentary basins due to higher dissolved inorganic carbon concentrations. These stromatolites contain kerogen with δ13Corg values of ∼ - 50 ‰. By microsampling different regions and textures within the stromatolites, we determined that the isotopic compositions of the authigenic calcite cements show a low degree of variation and are nearly identical to values estimated for seawater at this time; the lack of low and variable δ13Ccarb values implies that methanotrophy does not explain the low δ13Corg seen in the coeval kerogen. These observations do not support a methanotrophy hypothesis, but instead hint that the Late Archean may constitute an interval wherein autotrophs employed markedly different biochemical processes of energy conservation and carbon fixation.

  14. Trace-Element Analyses of Carbonate Minerals in the Gunflint Banded Iron Formation (United States)

    Pun, Aurora; Papike, James J.; Shearer, C. K.


    We report on the petrography, mineralogy and trace-element abundances of individual carbonate grains in the Early Proterozoic Gunflint BIF (Banded Iron Formation). Trace-element data may be used as environmental recorders of the fluid evolution from which the various carbonate phases precipitated. Additional information is contained in the original extended abstract.

  15. Quasiparticle bands and structural phase transition of iron from Gutzwiller density-functional theory (United States)

    Schickling, Tobias; Bünemann, Jörg; Gebhard, Florian; Boeri, Lilia


    We use the Gutzwiller density-functional theory to calculate ground-state properties and band structures of iron in its body-centered-cubic (bcc) and hexagonal-close-packed (hcp) phases. For a Hubbard interaction U =9 eV and Hund's-rule coupling J =0.54 eV , we reproduce the lattice parameter, magnetic moment, and bulk modulus of bcc iron. For these parameters, bcc is the ground-state lattice structure at ambient pressure up to a pressure of pc=41 GPa where a transition to the nonmagnetic hcp structure is predicted, in qualitative agreement with experiment (pcexp=10 ,...,15 GPa ) . The calculated band structure for bcc iron is in good agreement with ARPES measurements. The agreement improves when we perturbatively include the spin-orbit coupling.

  16. The Case for a Hot Archean Climate and its Implications to the History of the Biosphere

    CERN Document Server

    Schwartzman, David W


    The case for a much warmer climate on the early Earth than now is presented. The oxygen isotope record in sedimentary chert and the compelling case for a near constant isotopic oxygen composition of seawater over geologic time support thermophilic surface temperatures prevailing in the Archean, with some support for hot conditions lasting until about 1.5 billion years ago, aside from lower temperatures including glacial episodes at 2.1-2.4 Ga and possibly an earlier one at 2.9 Ga. Other evidence includes the following: 1) Melting temperatures of proteins resurrected from sequences inferred from robust molecular phylogenies give paleotemperatures at emergence consistent with a very warm early climate. 2) High atmospheric pCO2 levels in the Archean are consistent with high climatic temperatures near the triple point of primary iron minerals in banded iron formations, the formation of Mn-bicarbonate clusters leading to oxygenic photosynthesis and generally higher weathering intensities on land. These higher weat...

  17. Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajas iron-ore district, Brazil

    DEFF Research Database (Denmark)

    Cabral, A. R.; Creaser, R. A.; Naegler, T.;


    pyrrhotite-rich patches from drillcore of the Serra Sul exploration project has up to 29 ppm Mo; iron-speciation analysis indicates essentially ferruginous and for some samples likely euxinic depositional conditions. Positive delta S-34-isotope ratios of TRIS are between +0.3 to +10.7 parts per thousand...

  18. An Archean Biosphere Initiative (United States)

    Anbar, A. D.; Boyd, E. S.; Buick, R.; Claire, M.; DesMarais, D.; Domagal-Goldman, D.; Eigenbrode, J.; Erwin, D.; Freeman, K.; Hazen, R.; Johnson, C.; Lyons, T.; Meadows, V.; Ohmoto, H.; Ono, S.; Peters, J. W.; Shapiro, B.; Summons, R.; Walter, M.


    The search for life on extrasolar planets will necessarily focus on the imprints of biolgy on the composition of planetary atmospheres. The most notable biological imprint on the modern terrestrial atmosphere is the presence of 21 % O2, However, during most of the past 4 billion years, life and the surface environments on Earth were profoundly different than they are today. It is therefore a major goal of the astrobiology community to ascertain how the O2 content of the atmosphere has varied with time. and to understand the causes of these variations. The NAI and NASA Exobiology program have played critical roles in developing our current understanding of the ancient Earth's atmosphere, supporting diverse observational, analytical, and computational research in geoscience, life science, and related fields. In the present incarnation of the NAI, ongoing work is investigating (i) variations in atmospheric O2 in the Archean to the Cambrian, (ii) characterization of the redox state of the oceans shortly before, during and after the Great Oxidation Event (GOE), and (iii) unraveling the complex connections between environmental oxygenation, global climate, and the evolution of life.

  19. Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton (United States)

    Johnson, Clark; Beard, Brian; Beukes, Nicolas; Klein, Cornelis; O'Leary, Julie


    Variations in the isotopic composition of Fe in Late Archean to Early Proterozoic Banded Iron Formations (BIFs) from the Transvaal Supergroup, South Africa, span nearly the entire range yet measured on Earth, from -2.5 to +1.0‰ in 56Fe/54Fe ratios relative to the bulk Earth. With a current state-of-the-art precision of +/-0.05‰ for the 56Fe/54Fe ratio, this range is 70 times analytical error, demonstrating that significant Fe isotope variations can be preserved in ancient rocks. Significant variation in Fe isotope compositions of rocks and minerals appears to be restricted to chemically precipitated sediments, and the range measured for BIFs stands in marked contrast to the isotopic homogeneity of igneous rocks, which have δ56Fe=0.00+/-0.05‰, as well as the majority of modern loess, aerosols, riverine loads, marine sediments, and Proterozoic shales. The Fe isotope compositions of hematite, magnetite, Fe carbonate, and pyrite measured in BIFs appears to reflect a combination of (1) mineral-specific equilibrium isotope fractionation, (2) variations in the isotope compositions of the fluids from which they were precipitated, and (3) the effects of metabolic processing of Fe by bacteria. For minerals that may have been in isotopic equilibrium during initial precipitation or early diagenesis, the relative order of δ56Fe values appears to decrease in the order magnetite > siderite > ankerite, similar to that estimated from spectroscopic data, although the measured isotopic differences are much smaller than those predicted at low temperature. In combination with on-going experimental determinations of equilibrium Fe isotope fractionation factors, the data for BIF minerals place additional constraints on the equilibrium Fe isotope fractionation factors for the system Fe(III)-Fe(II)-hematite-magnetite-Fe carbonate. δ56Fe values for pyrite are the lowest yet measured for natural minerals, and stand in marked contrast to the high δ56Fe values that are predicted from

  20. Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean sea water. (United States)

    Veizer, J; Hoefs, J; Lowe, D R; Thurston, P C


    Carbonate rocks with geological attributes of marine sediments are a minor component of the Archean greenstone belts. Despite their relative scarcity, these rocks are important because they record chemical and isotopic properties of coeval oceans. The greenstones containing such carbonates appear to cluster at approximately 2.8 +/- 0.2 and approximately 3.5 +/- 0.1 Ga ago. The samples for the younger group are from the Abitibi, Yellowknife, Wabigoon (Steep Rock Lake), Michipicoten and Uchi greenstone belts of Canada and the "Upper Greenstones" of Zimbabwe. The older group includes the Swaziland Supergroup of South Africa, Warrawoona Group of Australia and the Sargur marbles of India. Mineralogically, the carbonates of the younger greenstones are mostly limestones and of the older ones, ferroan dolomites (ankerites); the latter with some affinities to hydrothermal carbonates. In mineralized areas with iron ores, the carbonate minerals are siderite +/- ankerite, irrespective of the age of the greenstones. Iron-poor dolomites represent a later phase of carbonate generation, related to post-depositional tectonic faulting. The original mineralogy of limestone sequences appears to have been an Sr-rich aragonite. The Archean carbonates yield near-mantle Sr isotopic values, with (87Sr/86Sr)o of 0.7025 +/- 0.0015 and 0.7031 +/- 0.0008 for younger and older greenstones, respectively. The best preserved samples give delta 13C of +1.5 +/- 1.5% PDB, comparable to their Phanerozoic counterparts. In contrast, the best estimate for delta 18O is -7% PDB. Archean limestones, compared to Phanerozoic examples, are enriched in 16O as well as in Mn2+ and Fe2+, and these differences are not a consequence of post-depositional alteration phenomena. The mineralogical and chemical attributes of Archean carbonates (hence sea water) are consistent with the proposition that the composition of the coeval oceans may have been buffered by a pervasive interaction with the "mantle", that is, with

  1. Unveiling the broad band X-ray continuum and iron line complex in Mkr 841

    CERN Document Server

    Petrucci, P O; Matt, G; Longinotti, A L; Malzac, J; Mouchet, M; Boisson, C; Maraschi, L; Nandra, K; Ferrando, P


    Mkr 841 is a bright Seyfert 1 galaxy known to harbor a strong soft excess and a variable K$\\alpha$ iron line. It has been observed during 3 different periods by XMM for a total cumulated exposure time of $\\sim$108 ks. We present in this paper a broad band spectral analysis of the complete EPIC-pn data sets. We were able to test two different models for the soft excess, a relativistically blurred photoionized reflection (\\r model) and a relativistically smeared ionized absorption (\\a model). The continuum is modeled by a simple cut-off power law and we also add a neutral reflection. These observations reveal the extreme and puzzling spectral and temporal behaviors of the soft excess and iron line. The 0.5-3 keV soft X-ray flux decreases by a factor 3 between 2001 and 2005 and the line shape appears to be a mixture of broad and narrow components. We succeed in describing this complex broad-band 0.5-10 keV spectral variability using either \\r or \\a to fit the soft excess. Both models give statistically equivalen...

  2. The Photochemical Oxidation of Siderite That Drove Hydrogen Based Microbial Redox Reactions in The Archean Biosphere (United States)

    Kim, J. D.; Yee, N.; Falkowski, P. G.


    Hydrogen is the most abundant element in the universe and molecular hydrogen (H2) is a rich source of electron in a mildly reducing environment for microbial redox reactions, such as anoxygenic photosynthesis and methanogenesis. Subaerial volcanoes, ocean crust serpentinization and mid-ocean ridge volcanoes have been believed to be the major source of the hydrogen flux to the atmosphere. Although ferrous ion (Fe2+) photooxidation has been proposed as an alternative mechanism by which hydrogen gas was produced, ferruginous water in contact with a CO2-bearing atmosphere is supersaturated with respect to FeCO3 (siderite), thus the precipitation of siderite would have been thermodynamically favored in the Archean environment. Siderite is the critical mineral component of the oldest fossilized microbial mat. It has also been inferred as a component of chemical sedimentary protolith in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada and the presence of siderite in the protolith suggests the occurrence of siderite extends to Hadean time. Analyses of photooxidation of siderite suggest a significant flux of hydrogen in the early atmosphere. Our estimate of the hydrogen production rate under Archean solar flux is approximately 50 times greater than the estimated hydrogen production rate by the volcanic activity based on a previous report (Tian et al. Science 2005). Our analyses on siderite photooxidation also suggest a mechanism by which banded iron formation (BIF) was formed. The photooxidation transforms siderite to magnetite/maghemite (spinnel iron oxide), while oxygenic oxidation of siderite leads to goethite, and subsequently to hematite (Fe3+2O3) upon dehydration. We will discuss the photochemical reaction, which was once one of the most ubiquitous photochemical reactions before the rise of oxygen in the atmosphere. Photooxidation of siderite over time by UV light From left to right: UV oxidized siderite, pristine siderite, oxidized siderite by oxygen

  3. Using modern ferruginous habitats to interpret Precambrian banded iron formation deposition (United States)

    Koeksoy, Elif; Halama, Maximilian; Konhauser, Kurt O.; Kappler, Andreas


    Early Earth processes are typically identified through the study of mineralogical, elemental and isotopic features in the rock record, including Precambrian banded iron formations (BIF). However, post-depositional processes often obscure the primary geochemical signals, making the use of BIF as proxies for paleo-seawater and the paleo-biosphere potentially imprecise. Thus, alternative approaches are required to complement the information gained from the rock record in order to fully understand the distinctive biogeochemical processes on ancient Earth. Simulating these conditions in the laboratory is one approach, but this approach can never fully replicate the complexity of a natural environment. Therefore, finding modern environments with a unique set of geochemical and microbiological characteristics to use as analogues for BIF depositional environments can provide invaluable information. In this review, we provide an overview of the chemical, physical and biological parameters of modern, ferruginous lakes that have been used as analogue BIF environments.

  4. Anoxygenic growth of cyanobacteria on Fe(II) and their associated biosignatures: Implications for biotic contributions to Precambrian Banded Iron Formations (United States)

    Parenteau, M.; Jahnke, L. L.; Cady, S. L.; Pierson, B.


    Banded Iron Formations (BIFs) are widespread Precambrian sedimentary deposits that accumulated in deep ocean basins or shallow platformal areas with inputs of reduced iron (Fe(II)) and silica from deep ocean hydrothermal activity. There is debate as to whether abiotic or biotic mechanisms were responsible for the oxidation of aqueous Fe(II) and the subsequent accumulation of ferric iron (Fe(III)) mineral assemblages in BIFs. Biotic Fe(II) oxidation could have occurred indirectly as a result of the photosynthetic production of oxygen by cyanobacteria, or could have been directly mediated by anoxygenic phototrophs or chemolithotrophs. The anoxygenic use of Fe(II) as an electron donor for photosynthesis has also been hypothesized in cyanobacteria, representing another biotic mechanism by which Fe(II) could be oxidized in BIFs. This type of photoferrotrophic metabolism may also represent a key step in the evolution of oxygenic photosynthesis. Members of our group have speculated that an intermediate reductant such as Fe(II) could have acted as a transitional electron donor before water. The widespread abundance of Fe(II) in Archean and Neoproterozoic ferruginous oceans would have made it particularly suitable as an electron donor for photosynthesis. We have been searching for modern descendants of such an ancestral "missing link" cyanobacterium in the phototrophic mats at Chocolate Pots, a hot spring in Yellowstone National Park with a constant outflow of anoxic Fe(II)-rich thermal water. Our physiological ecology study of the Synechococcus-Chloroflexi mat using C-14 bicarbonate uptake and autoradiography experiments revealed that the cyanobacteria grow anoxygenically using Fe(II) as an electron donor for photosynthesis in situ. An initial set of similar experiments substituting C-13 bicarbonate as the tracer was used to characterize labeling of the community lipid biomarker signature and confirm the C-14 results. Under light conditions with and without Fe(II), the C

  5. Iron isotope and REE+Y composition of the Cauê banded iron formation and related iron ores of the Quadrilátero Ferrífero, Brazil (United States)

    Mendes, Mônica; Lobato, Lydia M.; Kunzmann, Marcus; Halverson, Galen P.; Rosière, Carlos A.


    The Minas Supergroup banded iron formations (BIFs) of the Brazilian Quadrilátero Ferrífero (QF) mineral province experienced multiple deformational events synchronous with hypogene mineralization, which resulted in the metamorphism of BIFs to itabirites and their upgrade to high-grade iron ore. Here, we present rare earth element and yttrium (REE+Y) compositions together with iron isotope ratios of itabirites and their host iron orebodies from 10 iron deposits to constrain environmental conditions during BIF deposition and the effects of hypogene iron enrichment. The REE+Y characteristics of itabirites (positive Eu anomaly and LREE depletion) indicate hydrothermal iron contribution to the Minas basin. Iron isotope data and Ce anomalies suggest BIFs were precipitated by a combination of anoxic biological-mediated ferrous iron oxidation and abiotic oxidation in an environment with free oxygen (such as an oxygen oasis), perhaps related to increase in oxygen concentrations before the Great Oxidation Event (GOE). The similarity of the REE+Y composition of the itabirites from the different QF deformational domains, as well as to other Superior-type BIFs, indicates that the metamorphism and synchronous hydrothermal mineralization did not significantly affect the geochemical signature of the original BIFs. However, iron isotope compositions of iron ore vary systematically between deformational domains of the QF, likely reflecting the specific mineralization features in each domain.

  6. Iron isotope and REE+Y composition of the Cauê banded iron formation and related iron ores of the Quadrilátero Ferrífero, Brazil (United States)

    Mendes, Mônica; Lobato, Lydia M.; Kunzmann, Marcus; Halverson, Galen P.; Rosière, Carlos A.


    The Minas Supergroup banded iron formations (BIFs) of the Brazilian Quadrilátero Ferrífero (QF) mineral province experienced multiple deformational events synchronous with hypogene mineralization, which resulted in the metamorphism of BIFs to itabirites and their upgrade to high-grade iron ore. Here, we present rare earth element and yttrium (REE+Y) compositions together with iron isotope ratios of itabirites and their host iron orebodies from 10 iron deposits to constrain environmental conditions during BIF deposition and the effects of hypogene iron enrichment. The REE+Y characteristics of itabirites (positive Eu anomaly and LREE depletion) indicate hydrothermal iron contribution to the Minas basin. Iron isotope data and Ce anomalies suggest BIFs were precipitated by a combination of anoxic biological-mediated ferrous iron oxidation and abiotic oxidation in an environment with free oxygen (such as an oxygen oasis), perhaps related to increase in oxygen concentrations before the Great Oxidation Event (GOE). The similarity of the REE+Y composition of the itabirites from the different QF deformational domains, as well as to other Superior-type BIFs, indicates that the metamorphism and synchronous hydrothermal mineralization did not significantly affect the geochemical signature of the original BIFs. However, iron isotope compositions of iron ore vary systematically between deformational domains of the QF, likely reflecting the specific mineralization features in each domain.

  7. Constraints on the Archean atmospheric oxygen and sulfur cycle from mass-independent sulfur records from Anshan-Benxi BIFs, Liaoning Province, China

    Institute of Scientific and Technical Information of China (English)


    The Archean atmospheric oxygen concentration and sulfur cycle was long debated. The banded iron formation (BIF) is a special type of the sedimentary formation, which has truly recorded the atmospheric and oceanic conditions at that time. In this study, the composition of multiple sulfur isotope (δ34S/δ33S/δ32S) for sulfides bedded in the Archean (~2.7 Ga) BIFs, in Anshan-Benxi area of Liaoning Province has been measured. The value of △33S varies from -0.89‰ to +1.21‰, which shows very obvious mass-independent fractionation (MIF) signatures. These non-zero △33S values indicate that the Archean sulfur cycles are different from what it is today, which have been deeply influenced by gas phase photochemical reactions. Algoma-type BIFs which are closely related to the volcanic activity have negative △33S value, however, Superior-type BIFs which are far away from the volcanic center have positive △33S value. The δ34S varies in a large range from -22.0‰ to +11.8‰, which indicates that the bacteria reduction activity has already existed at that time, and that the oceanic sulfate concentration has at least reached 1 mmol/L in local areas. Combined with the contemporaneous existence of the hematite, magnetite and the occurrence and preservation of the sulfur MIF, it can be inferred that the Archean atmospheric oxygen level must be at 10-2―10-3 of the present atmospheric level (PAL).

  8. Deformation-induced silica redistribution in banded iron formation, Hamersley Province, Australia (United States)

    Egglseder, Mathias S.; Cruden, Alexander R.; Tomkins, Andrew G.; Wilson, Christopher J. L.


    The formation of banded iron formations (BIF) remains controversial despite their potential to provide key information on Precambrian atmospheres and hydrospheres. It is widely agreed that BIF are chemical sedimentary rocks comprising alternating layers of iron oxides and chert formed from poorly known precursor phases. Many models address the chemical transformation of such precursor iron oxide phases into BIF during compaction and diagenesis. However, the formation of chert and the influence of physical forces in this process have received less attention. Microstructural analysis of BIF from the Hamersley Province (Western Australia) reveals that significant amounts of silica were redistributed by dissolution-precipitation creep during both diagenesis and regional-scale deformation. This physicochemical process led to silica remobilisation and volume loss by stress-induced dissolution of microcrystalline quartz in an aqueous fluid. The dissolved solid phase was transported by diffusion and fluid flow along grain boundaries or within available porosity and then reprecipitated in low-pressure zones, leading to local volume increase. These processes were further enhanced by rheological contrasts between different minerals, resulting in significant variations of chert band thickness. Microstructural observations combined with quantitative microfabric analysis reveal domains of crystallographic preferred orientations (CPO) in quartz grains within chert layers. The CPO fabrics record strain regimes (e.g., pure and simple shear, extension and shortening) that modified quartz aggregates by dissolution-precipitation creep, providing new insights into the metamorphic and deformation history of BIF. We document microstructures that indicate that non-coaxial deformation was active during diagenesis and subsequent deformation of the Hamersley Province BIF. Further, relatively undeformed chert layers may have been similarly affected by significant amounts of dissolution

  9. Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific - A modern analogue for banded iron/chert formations? (United States)

    Meister, Patrick; Chapligin, Bernhard; Picard, Aude; Meyer, Hanno; Fischer, Cornelius; Rettenwander, Daniel; Amthauer, Georg; Vogt, Christoph; Aiello, Ivano W.


    concentration is locally decreased below opal-A and opal-CT saturation allowing for precipitation of the thermodynamically more stable phase: quartz. This mechanism of chert formation at the iron oxidation front in suboxic zones may explain why early-diagenetic microcrystalline chert only occurs sporadically in modern marine sediments. It may also serve as a modern analogue for the deposition of much more abundant banded iron/chert formations at the time of the great oxidation event around 2.4 Ga BP, which was probably the largest iron oxidation front in Earth's history.

  10. Stable Ni Isotope Fractionation In Systems Relevant To Banded Iron-Formations (United States)

    Howe, H.; Spivak-Birndorf, L.; Newkirk, D.; Wasylenki, L. E.


    An important event in the evolution of life was the rise of atmospheric oxygen during the Proterozoic. Preceding the rise in O2 was a decline in atmospheric methane concentrations, likely due to decreased productivity of methanogenic Archaea. Based on Ni concentrations in banded iron formations (BIF), Konhauser et al. (2009) hypothesized that mantle cooling during the Archaean reduced the amount of Ni present in igneous rocks and in oceans, causing a Ni shortage for methanogens. Methanogens use Ni for cofactor F430, a catalyst during methanogenesis. To confirm Konhauser's hypothesis, a proxy for methanogen productivity in the rock record is necessary, in order to determine whether a decline in methanogen populations correlated with the observed decrease in maximum Ni contents in rocks from the Archaean. Ni isotope ratios recorded in BIF (oceanic sediments consisting of layered iron oxides and cherts) may provide evidence of a decline in methane production. Cameron et al. (2009) have shown that methanogens preferentially assimilate light Ni isotopes. Thus Ni isotopes in BIF have potential use as biomarkers for methanogenesis. Ferrihydrite was almost certainly the dominant Fe-oxide phase precipitating during BIF deposition. Ferrihydrite nanoparticles have large surface areas and are able to remove aqueous metals from solution through multiple sorption mechanisms. Thus we investigated experimentally the relationship between Ni isotopes in solution and Ni associated with ferrihydrite. We experimented with two different sorption mechanisms: adsorption of aqueous Ni onto surfaces of synthetic ferrihydrite and coprecipitation of aqueous Ni with ferrihydrite. Preliminary results indicate that light isotopes are preferentially associated with ferrihydrite in both adsorption and coprecipitation experiments, with an average fractionation of 0.3‰ in terms of δ60/58 Ni. Future experiments will investigate whether the observed isotope fractionations reflect kinetics or

  11. Empirical Records of Environmental Change across the Archean-Proterozoic Transition (United States)

    Kaufman, A. J.


    Time-series geochemical analyses of scientific drill cores intersecting the Archean-Proterozoic transition suggest a coupling of environmental and biological change that culminated in the pervasive oxygenation of Earth's atmosphere and oceans. Elemental and multiple isotope measurements of sedimentary archives, including carbonate, shale, and banded iron-formation from Western Australia, South Africa, Brazil, and southern Canada, indicate important changes in the carbon, sulfur, and nitrogen cycles that monitor the redox state of the oceans and the cyanobacterial buildup of atmospheric oxygen and ozone. In response, continental weathering would have increased, resulting in the enhanced delivery of sulfate and nutrients to seawater, further stimulating photoautotrophic fluxes of oxygen to surface environments. The positive feedback may additionally be responsible for the decline of atmospheric methane and surface refrigeration, represented by a series of discrete ice ages beginning around 2.4 billion years ago, due to the loss of greenhouse capacity during a time of lower solar luminosity. While speculative, the linkage of surface oxidation with enhanced nutrient supply and development of stratospheric sunscreen soon after the Archean-Proterozoic boundary suggests that the earliest perturbation in the carbon cycle may be associated with the rapid expansion of single-celled eukaryotes. Both sterol synthesis in eukaryotes and aerobic respiration require significant levels of oxygen in the ambient environment. Hence, Earth's earliest ice age(s) and onset of a modern and far more energetic carbon cycle may have been directly related to the global expansion of cyanobacteria that released oxygen to the environment, and of eukaryotes that respired it.

  12. The reliability of ∼2.9 Ga old Witwatersrand banded iron formations (South Africa) as archives for Mesoarchean seawater: Evidence from REE and Nd isotope systematics (United States)

    Viehmann, Sebastian; Bau, Michael; Smith, Albertus J. B.; Beukes, Nicolas J.; Dantas, Elton L.; Bühn, Bernhard


    Pure marine chemical sediments, such as (Banded) Iron Formations, (B)IFs, are archives of geochemical proxies for the composition of Precambrian seawater and may provide information about the ancient hydrosphere-atmosphere system. We here present rare earths and yttrium (REY) and high precision Sm-Nd isotope data of ∼2.90 Ga old Superior-type BIFs from the Witwatersrand Supergroup, South Africa, and compare those with data for near-contemporaneous BIFs from the correlative Pongola Supergroup (Superior-type BIF) and from the Pietersburg Greenstone Belt (Algoma-type IF), respectively. All Witwatersrand samples studied display the typical general REY distribution of Archean seawater, but their REY anomalies are less pronounced and their immobile element concentrations are higher than those of other pure (B)IFs. These observations indicate the presence of significant amounts of detrital aluminosilicates in the Witwatersrand BIFs and question the reliability of the Contorted Bed and Water Tower BIFs (Parktown Formation, West Rand Group) as archives of Mesoarchean seawater. Significant post-depositional alteration of the REY budget and the Sm-Nd isotope system is not observed. The Nd isotopic compositions of the purest BIF samples, i.e. the most reliable archives for Witwatersrand seawater, show initial εNd values between -3.95 and -2.25. This range is more negative than what is observed in ambient shales, indicating a decoupling of suspended and dissolved loads in the "near-shore" Witwatersrand Basin seawater. However, εNd range overlaps with that of the correlative Pongola BIF (Alexander et al., 2008). The deeper-water Algoma-type Pietersburg BIF shows more positive (i.e. more mantle-like) εNd2.9Ga values, supporting the hypothesis that a significant amount of its REY inventory was derived from black smoker-style, high-temperature hydrothermal fluids that had altered seafloor basalts. In marked contrast, the dissolved REY budgets (including the Nd isotopic

  13. Conversion of sandy tailing from banded iron formation exploitation into glass-ceramic materials

    Directory of Open Access Journals (Sweden)

    Valéria Alves Rodrigues de Melo


    Full Text Available Glass-ceramic materials made of 40.0 wt. (% of sandy tailing from banded iron formation exploitation and 60 wt. (% of slag from steelwork were analyzed. Vitrification was obtained by heating the batch samples up to 1400 °C for 1 hour and quenching the melt on a stainless steel plate. Devitrification was obtained by heat-treating the as-quenched glass samples in isothermal conditions at 750 and 1000 °C for 2 hours. FTIR spectroscopy analysis on the devitrified samples indicates a peak shift towards higher wave number with respect to the as-quenched glass because of the crystallization. XRD analysis revealed the presence of crystalline diopside CaMgSi2O6 as the major phase in the glass samples isothermally heat-treated at 1000 °C. Results also indicated that the devitrification at 1000 °C and an incipient devitrification at 750 °C resulted into harder glass-ceramic materials.

  14. Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation


    Frost, C. D.; Friedhelm von Blanckenburg; R. Schönberg; Frost, B. R.; M. S. Swapp; [Egmont, John, 1st earl of] 


    We present the iron isotope composition of primary, diagenetic and metamorphic minerals in five samples from the contact metamorphosed Biwabik Iron Formation. These samples attained peak metamorphic temperatures of

  15. The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations. (United States)

    Chan, C S; Emerson, D; Luther, G W


    Despite the historical and economic significance of banded iron formations (BIFs), we have yet to resolve the formation mechanisms. On modern Earth, neutrophilic microaerophilic Fe-oxidizing micro-organisms (FeOM) produce copious amounts of Fe oxyhydroxides, leading us to wonder whether similar organisms played a role in producing BIFs. To evaluate this, we review the current knowledge of modern microaerophilic FeOM in the context of BIF paleoenvironmental studies. In modern environments wherever Fe(II) and O2 co-exist, microaerophilic FeOM proliferate. These organisms grow in a variety of environments, including the marine water column redoxcline, which is where BIF precursor minerals likely formed. FeOM can grow across a range of O2 concentrations, measured as low as 2 μm to date, although lower concentrations have not been tested. While some extant FeOM can tolerate high O2 concentrations, many FeOM appear to prefer and thrive at low O2 concentrations (~3-25 μm). These are similar to the estimated dissolved O2 concentrations in the few hundred million years prior to the 'Great Oxidation Event' (GOE). We compare biotic and abiotic Fe oxidation kinetics in the presence of varying levels of O2 and show that microaerophilic FeOM contribute substantially to Fe oxidation, at rates fast enough to account for BIF deposition. Based on this synthesis, we propose that microaerophilic FeOM were capable of playing a significant role in depositing the largest, most well-known BIFs associated with the GOE, as well as afterward when global O2 levels increased.

  16. Iron (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  17. Iron (United States)

    ... of iron stored in the body become low, iron deficiency anemia sets in. Red blood cells become smaller and ... from the lungs throughout the body. Symptoms of iron deficiency anemia include tiredness and lack of energy, GI upset, ...

  18. Archean hydrothermal oceanic floor sedimentary environments: DXCL drilling project of the 3.2 Ga Dixon Island Formation, Pilbara, Australia (United States)

    Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Naraoka, H.; Sakamoto, R.; Suganuma, Y.


    Many place in Archean greenstone belts have been reported of the black chert to Iron rich sediments above volcanic sequence. The chemical sedimentary sequence has been recognized to form by as hydrothermal siliceous sequence. These sediments contain the hint to understand the Archean ocean and earth surface environments. Here, we will focus the Dixon Island and Cleaverville formations, which are one of the best preserved Archean hydrothermal sedimentary sequence in the world, to recognized detail stratigraphy and restored deep ocean environment. We did scientific drilling, which is called ‘DXCL drilling project’, at 2007 summer. This drilling project had been selected two coastal sites; CL site at lower part of the Cleaverville Formation, and another is DX site at the upper Dixon Island Formation. A systematic combinations of geological, sedimentological, geochemical, and geobiological approaches will be applied to the fresh samples. Here we will show the recent result of this sequence, which will be key evidence to understand the nature of the middle Archean (3.2 Ga) marine environment influenced by hydrothermal activity. The 3.2 Ga Dixon Island -Cleaverville formations composed of volcanic rock units and chemical-volcanosedimentary sequence which are identified by accreted immature island arc setting. The ~350m-thick Dixon Island Formation which is overlie by pillow basalt consists mainly of highly silicified volcanic-siliceous sequences that contain apparent microbial mats and bacterial fossil-like structure within black chert and also includes a komatiite-rhyolite sequences bearing hydrothermal veins. The >300m-thick Cleaverville Formation, which conformably overlay pillow basalt, contains a thick unit of reddish shale, bedded red-white chert and banded iron formation. It partly contains chert fragments-bearing pyroclastic beds. In detail lithology from the drill cores, the CL and DX contain different type of organic rocks. The CL 1 and CL2 core samples

  19. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. (United States)

    Keller, Markus A; Turchyn, Alexandra V; Ralser, Markus


    The reaction sequences of central metabolism, glycolysis and the pentose phosphate pathway provide essential precursors for nucleic acids, amino acids and lipids. However, their evolutionary origins are not yet understood. Here, we provide evidence that their structure could have been fundamentally shaped by the general chemical environments in earth's earliest oceans. We reconstructed potential scenarios for oceans of the prebiotic Archean based on the composition of early sediments. We report that the resultant reaction milieu catalyses the interconversion of metabolites that in modern organisms constitute glycolysis and the pentose phosphate pathway. The 29 observed reactions include the formation and/or interconversion of glucose, pyruvate, the nucleic acid precursor ribose-5-phosphate and the amino acid precursor erythrose-4-phosphate, antedating reactions sequences similar to that used by the metabolic pathways. Moreover, the Archean ocean mimetic increased the stability of the phosphorylated intermediates and accelerated the rate of intermediate reactions and pyruvate production. The catalytic capacity of the reconstructed ocean milieu was attributable to its metal content. The reactions were particularly sensitive to ferrous iron Fe(II), which is understood to have had high concentrations in the Archean oceans. These observations reveal that reaction sequences that constitute central carbon metabolism could have been constrained by the iron-rich oceanic environment of the early Archean. The origin of metabolism could thus date back to the prebiotic world.

  20. Near infrared iron absorption bands: Applications to geologic mapping and mineral exploration (United States)

    Rowan, L. C.


    A spectroscopic analysis of the difference in reflectance of iron-rich and iron-poor minerals was made. Attempts were made to use these minima contrast in geological mapping and metallic mineral exploration of large areas from near infrared and visible satellite images. Data cover pertinent laboratory spectroscopic investigations, applications of spectral differences to the discrimination of two important metamorphic rock types, and mineral exploration by aircraft in Beartooth Mountains, Montana.

  1. Cooper pairing in the insulating valence band in iron-based superconductors (United States)

    Hu, Lun-Hui; Chen, Wei-Qiang; Zhang, Fu-Chun


    Conventional Cooper pairing arises from attractive interaction of electrons in the metallic bands. A recent experiment on Co-doped LiFeAs shows superconductivity in the insulating valence band, which is evolved from a metallic hole band upon doping. Here we examine this phenomenon by studying superconductivity in a three-orbital Hamiltonian relevant to the doped LiFeAs. We show explicitly that Cooper pairing of the insulating hole band requires a finite pairing interaction strength. For strong coupling, the superconductivity in the hole band is robust against the sink of the hole band below the Fermi level. Our theory predicts a substantial upward shift of the chemical potential in the superconducting transition for Co-doped LiFeAs.

  2. Archean photoautotrophy: some alternatives and limits. (United States)

    Knoll, A H


    From the Archean geological record, one can infer that photoautotrophy evolved early in earth history; however the nature of this photosynthesis -- whether it was predominately or cyanobacterial -- is less clearly understood. General agreement tht the earth's atmosphere did not become oxygen rich before the Early Proterozoic era places constraints on theories concerning more ancient biotas. Accommodating this limitation in various ways, different workers have hypothesized (1) that blue-green algae frist evolved in the Early Proterozoic; (2) that oxygen producing proto-cyanobacteria existed in the Archean, but had no biochemical mechanism for coping with ambient O2; and (3) that true cyanobacteria flourished in the Archean, but did not oxygenate the atmosphere because of high rates of oxygen consumption caused, in part, by the emanation of reduced gases from widespread Archean volcanoes. Inversion of hypothesis three leads to another, as yet unexplored, alternative. It is possible that physiologically modern blue-green algae existed in Archean times, but had low productivity. Increased rates of primary production in the Early Proterozoic era resulted in the atmospheric transition documented in strata of this age. An answer to the question of why productivity should have changed from the Archean to the Proterozoic may lie in the differing tectonic frameworks of the two areas. The earliest evidence of widespread, stable, shallow marine platforms is found in Lower Proterozoic sedimentary sequnces. In such environments, productivity was, and is high. In contrast, Archean shallow water environments are often characterized by rapid rates of clastic and pyroclastic influx -- conditions that reduce rates of benthonic primary production. This hypothesis suggests that the temporal correlation of major shifts in tectonic mode and atmospheric composition may not be fortuitous. It also suggests that sedimentary environments may have constituted a significant limit to the

  3. Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis. (United States)

    Nolan, Michael


    In recent experiments Tada et al. have shown that TiO(2) surfaces modified with iron oxide display visible light photocatalytic activity. This paper presents first principles simulations of iron oxide clusters adsorbed at the rutile TiO(2) (110) surface to elucidate the origin of the visible light photocatalytic activity of iron oxide modified TiO(2). Small iron oxide clusters adsorb at rutile (110) surface and their presence shifts the valence band so that the band gap of the composite is narrowed towards the visible, thus confirming the origin of the visible light activity of this composite material. The presence of iron oxide at the TiO(2) surface leads to charge separation, which is the origin of enhanced photocatalytic efficiency, consistent with experimental photoluminesence and photocurrent data. Surface modification of a metal oxide is thus an interesting route in the development of visible light photocatalytic materials.

  4. The Phenomenology of Iron Pnictides Superconductors Explained in the Framework of -Wave Three-Band Eliashberg Theory

    Directory of Open Access Journals (Sweden)

    G. A. Ummarino


    Full Text Available The s-wave three-band Eliashberg theory can simultaneously reproduce the experimental critical temperatures and the gap values of the superconducting materials LaFeAsO0.9F0.1, Ba0.6K0.4Fe2As2 and SmFeAsO0.8F0.2 as exponent of the more important families of iron pnictides. In this model the dominant role is played by interband interactions and the order parameter undergoes a sign reversal between hole and electron bands (±-wave symmetry. The values of all the gaps (with the exact experimental critical temperature can be obtained by using high values of the electron-boson coupling constants and small typical boson energies (in agreement with experiments.

  5. Late Archean Surface Ocean Oxygenation (Invited) (United States)

    Kendall, B.; Reinhard, C.; Lyons, T. W.; Kaufman, A. J.; Anbar, A. D.


    Oxygenic photosynthesis must have evolved by 2.45-2.32 Ga, when atmospheric oxygen abundances first rose above 0.001% present atmospheric level (Great Oxidation Event; GOE). Biomarker evidence for a time lag between the evolution of cyanobacterial oxygenic photosynthesis and the GOE continues to be debated. Geochemical signatures from sedimentary rocks (redox-sensitive trace metal abundances, sedimentary Fe geochemistry, and S isotopes) represent an alternative tool for tracing the history of Earth surface oxygenation. Integrated high-resolution chemostratigraphic profiles through the 2.5 Ga Mt. McRae Shale (Pilbara Craton, Western Australia) suggest a ‘whiff’ of oxygen in the surface environment at least 50 M.y. prior to the GOE. However, the geochemical data from the Mt. McRae Shale does not uniquely constrain the presence or extent of Late Archean ocean oxygenation. Here, we present high-resolution chemostratigraphic profiles from 2.6-2.5 Ga black shales (upper Campbellrand Subgroup, Kaapvaal Craton, South Africa) that provide the earliest direct evidence for an oxygenated ocean water column. On the slope beneath the Campbellrand - Malmani carbonate platform (Nauga Formation), a mildly oxygenated water column (highly reactive iron to total iron ratios [FeHR/FeT] ≤ 0.4) was underlain by oxidizing sediments (low Re and Mo abundances) or mildly reducing sediments (high Re but low Mo abundances). After drowning of the carbonate platform (Klein Naute Formation), the local bottom waters became anoxic (FeHR/FeT > 0.4) and intermittently sulphidic (pyrite iron to highly reactive iron ratios [FePY/FeHR] > 0.8), conducive to enrichment of both Re and Mo in sediments, followed by anoxic and Fe2+-rich (ferruginous) conditions (high FeT, FePY/FeHR near 0). Widespread surface ocean oxygenation is suggested by Re enrichment in the broadly correlative Klein Naute Formation and Mt. McRae Shale, deposited ~1000 km apart in the Griqualand West and Hamersley basins

  6. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T


    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  7. Reappraisal of hydrocarbon biomarkers in Archean rocks (United States)

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.


    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories.

  8. A compare geochemistry study for Algoma-and Superior-type banded iron formations%Algoma型和Superior型硅铁建造地球化学对比研究

    Institute of Scientific and Technical Information of China (English)

    李延河; 侯可军; 万德芳; 张增杰


    前寒武纪条带状硅铁建造(BIFs)是世界上最重要的铁矿资源类型和地球早期特有的化学沉积建造类型,广泛分布于太古代-古元古代(3.2~ 1.8Ga),记录了地球早期岩石圈、水圈、大气圈和生物圈的状态及演化.前人根据BIFs的岩石组合和构造地质环境将其划分为Algoma型和Superior型.本文对比研究了Algoma型和Superior型BIFs的硅、氧、铁和多硫同位素特征.不同时代和不同类型BIFs的硅氧同位素组成非常相似,强烈亏损30Si,δ30SiNBS-28为较大的负值.二者的铁同位素和硫同位素非质量分馏效应明显不同.Algoma型BIF的△33S多为负值,而Superior型BIF的△33S多为正值;Algoma型BIF富集重铁同位素,δ56FeIRMM-144多为高正值,而Superior型BIF相对富集轻铁同位素,δ56FeIRMM.144多为负值或小正值.研究提出无论是Algoma型,还是Superior型BIFs都是由地球早期的海底火山热液喷气作用形成的,二者属于同一成矿系统,相对而言,Algoma型BIF与火山活动关系更密切,距离同期火山活动中心更近,多形成于深水盆地,环境更加还原.%The Precambrian banded iron formations ( BIFs) are the most important type for iron resources in the world and extraordinary chemical marine sediments formation only occurred in the early Earth, which were concentrated during Archean to Early Proterozoic eras (3.2 ~ 1.8Ga) and recorded lithosphere, hydrosphere, atmosphere and biosphere status and evolvement then and there. The BIFs were classified into Algoma- and Superior-type on the basis of mineralogical composition and proposed tectonic setting. But contrastive studies about their geochemical characteristic, depositional environment and origin are little. So the silicon, oxygen, iron and multiple sulfur isotopic compositions of Algoma- and Superior-type BIFs were compared. The silicon isotopic compositions of BIFs of different types and ages are similar and strongly depleted in Si, the S Si

  9. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited) (United States)

    Buick, R.


    of the Hamersley Group near Yilgalong Creek. This location had been previously drilled by a mining company in the 1980’s and the core provided the highest biomarker yields of any Archean rocks thus far sampled. As it has been suggested that these biomarkers are non-indigenous contaminants, one possibility is that they were introduced into the drill-core at some time between drilling and sampling, so this hole tests that hypothesis. If biomarker concentrations and ratios differ significantly between the two adjacent holes with differing exposures to post-drilling contaminants, then clearly contamination has affected one or other of the cores. The third hole sampled an off-shore equivalent, through banded irons and kerogenous shales of the ~2.65 Ga Marra Mamba and Jeerinah Formations of the Hamersley Group near Cowcumba Creek. Another opportunity for contamination may arise during post-depositional but pre-drilling hydrocarbon migration, when biomarkers can potentially be introduced into previously barren rocks by younger oils, so this hole tests that possibility. As it was drilled through the same stratigraphic interval and structural domain as the second hole but in a different environment, biomarker ratios should be similar if contaminated but different if indigenous.

  10. Engineering Diffusivity, Band gap and Operating Voltage in Lithium Iron Phosphate through transition metal doping


    Jena, Ajit; Nanda, B. R. K.


    Density functional calculations are carried out to understand and tailor the electrochemical profile diffusivity, band gap and open circuit voltage of transition metal doped olivine phosphate LiFe_{1-x}M_{x}PO_{4} (M = V, Cr, Mn, Co and Ni). Diffusion and hence the ionic conductivity is studied by calculating the activation barrier, V_{act}, experienced by the diffusing Li^{+} ion. We show that the effect of dopants on diffusion is both site dependent and short ranged and thereby it paves way...

  11. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron (United States)

    Kakehashi, Yoshiro; Chandra, Sumal


    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  12. Archean Paleo-climate: The first snowball?

    CERN Document Server

    Durand-Manterola, Hector Javier


    The model accepted is one where during the Archean Eon the Earths climate was clement despite the weaker Sun. The observational evidence that supports this concept is: the emergence of life, the existence of evaporitic sediments and the presence of terrigenous sediments, all of which require liquid water and clement conditions. A theoretical argument used to support this idea is the so called ice-albedo feedback, which states that if the Earth was frozen, it would still be frozen.The aim of this document is to present an alternative scenario in which a frozen world, "snowball" style, with liquid water at the bottom of the sea, also allows for the emergence of life and evaporitic and terrigenous sedimentation. Archean climatic evidence, available at present, is discussed and can be reinterpreted to support the idea that, in Archean times, the surface of the Earth was frozen. Also, a mathematical model is being developed to demonstrate that the ice-albedo feedback is not an inevitable consequence of a frozen Ar...

  13. Was there a late Archean biospheric explosion? (United States)

    Lindsay, John F


    There is a growing body of evidence which suggests that the evolution of the planet drives the evolution of the biosphere. There have been 2 significant stages in Earth history when atmospheric oxygen levels rose rapidly, and both appear to be associated with supercontinent cycles. The earlier biospheric event, which extends across the Archean-Proterozoic boundary (ca. 3.0-2.2 Ga), has received little attention and is the focus of this study. Recent work on the Pilbara Craton of Western Australia has shown that concretion formed by microbial activity during the diagenesis of these sediments are absent from early Archean sediments but abundant in late Archean and early Paleoproterozoic successions of the Hamersley Basin, appearing abruptly in sedimentary rocks younger than 2.7 Ga. This study suggests that their internal architecture may have been defined by the diffusion of humic acids and the formation of polymer gels during diagenesis. The data imply that the biosphere expanded suddenly shortly after 3.0 Ga and may have begun to raise the oxygen levels of the oceanic water column earlier than thought-possibly as much as 300 my earlier.

  14. Multi-band reflectance spectroscopy of carbonaceous lithium iron phosphate battery electrodes versus state of charge (United States)

    Norris, R.; Iyer, K.; Chabot, V.; Nieva, P.; Yu, A.; Khajepour, A.; Wang, J.


    This study aims to expand the body of knowledge about the optical properties of battery cathode materials. Although some studies have been conducted on the optical properties of Lithium Iron Phosphate (LiFePO4), to the authors' knowledge, this is the first study of its kind on electrodes extracted from commercially available LiFePO4 batteries. The use of Vis/NIR and FTIR spectroscopy provides for a methodology to study the optical properties of LiFePO4 and may allow for the characterization of other properties such as particle size and the proportions of LiFePO4 versus FePO4 material. Knowledge of these properties is important for the development of a mechanism to measure the state-of charge (SOC) in lithium ion batteries. These properties are also important in a host of other applications including battery modeling and materials characterization. Cylindrical LiFePO4 batteries (from A123 Systems Inc.) were acquired from the commercial market and charged to 10 different states between 30% and 80% of their nominal capacity using a constant-current, constant-voltage (CCCV) cycling method. Visual inspection of the extracted electrodes shows that the LiFePO4/C-cathodes display subtle changes in color (shades of grey) with respect to SOC. Vis/NIR measurements support the visual observation of uniform intensity variations versus SOC. FTIR measurements show an absorbance signature that varies with SOC and is distinct from results found in the literature for similar LiFePO4-based material systems, supporting the uniqueness of the absorbance fingerprint.

  15. Archaean asteroid impacts, banded iron formations and MIF-S anomalies: A discussion (United States)

    Glikson, Andrew


    on impact spherule size distribution ( Melosh, H.J., Vickery, A.M. [1991] Nature, 350, 494-497) suggest projectiles several tens of kilometers in diameter (Byerly and Lowe, 1994; Shukloyukov, A., Kyte, F.T., Lugmair, G.W., Lowe, D.R., Byerly, G.R. [2000]. In: Koeberl, C., Gilmour, I. (Eds.), Impacts and the Early Earth, Springer-Verlag, Berlin, pp. 99-116; Kyte, F.T., Shukloyukov, A., Lugmair, G.W., Lowe, D.R., Byerly, G.R. [2003] Geology, 31, 283-286). Due to incomplete preservation these impacts represent a minimum rate of the Archaean impact flux. High UV radiation associated with low ozone levels in the Archaean atmosphere may have been further enhanced by large impacts, accentuating MIF-S anomalies. The appearance of iron-rich sediments above late and mid-Archaean impact ejecta units (Glikson, A.Y. [2006] Earth Planet. Sci. Lett., 246, 149-160; Glikson, A.Y., Vickers, J. [2007] Earth Planet. Sci. Lett., 254, 214-226) may be related either to microbial oxidation of ferrous iron or, alternatively, photochemical oxidation of ferrous to ferric iron. Given post-2.45 Ga diluting of possible MIF-S anomalies by the oxygenating ocean sulfate reservoir (Pavlov, A.A., Kasting, J.F. [2002] Astrobiology, 2, 27-41), similar MIF-S anomalies may have been associated with Proterozoic and Phanerozoic impacts, although to date little evidence exists in this regard (Marouka, T., Koeberl, C., Newton, J., Gilmour, I., Bohor, B.F. [2002] Geological Society of America Special Paper 356, pp. 337-344; Koeberl, C., Thiemens, M. [2008] Multi-sulfur isotopes in cretaceous-tertiary boundary samples from the Western interior-search for photochemical effects 2008. Joint Meeting of the Geological Society of America, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, Gulf Coast Association of Geological Societies with the Gulf Coast Section of SEPM. (abstract)). Detailed sampling and isotopic analyses across the impact ejecta fallout units are

  16. Interpretation of high resolution aeromagnetic data for lineaments study and occurrence of Banded Iron Formation in Ogbomoso area, Southwestern Nigeria (United States)

    Oladunjoye, Michael Adeyinka; Olayinka, Abel Idowu; Alaba, Mustapha; Adabanija, Moruffdeen Adedapo


    The quest for solid mineral resource as an alternative for oil income in Nigeria presents opportunity to diversify the resource base of the country. To fill some information gap on the long abandoned Ajase and Gbede Banded Iron Formations (BIF) in Ogbomoso area, Southwestern Nigeria, high resolution aeromagnetic data of Ogbomoso - Sheet 222 was interpreted; to provide a better understanding of the mode of occurrence of the iron ore and associated structural features and geologic model. These were accomplished by subjecting reduced-to-pole (RTP) residual aeromagnetic intensity map to various data filtering and processing involving total horizontal derivative, vertical derivative, Upward Continuation (UC), Downward Continuation (DC), Euler Deconvolution at different Spectral Indices (SI), and Analytical signal using Geosoft Oasis Montaj 6.4.2 (HJ) data processing and analysis software. The resultants maps were overlain, compared and or plotted on RTP residual aeromagnetic intensity map and or geological map and interpreted in relation to the surface geological map. Positive magnetic anomalies observed on the RTP residual aeromagnetic intensity map ranged from 2.1 to 94.0 nT and associated with contrasting basement rocks, Ajase and Gbede BIF; while negative magnetic anomalies varied between -54.7 nT and -2.8 nT and are associated with intrusive bodies. Interpreted lineaments obtained from total horizontal derivative map were separated into two categories namely ductile and brittle based on their character vis-à-vis magnetic anomalies on RTP intensity map. Whilst the brittle lineaments were interpreted as fracture or faults; the ductile lineaments were interpreted as folds or representing the internal fabric of the rock units. In addition prominent magnetic faults mainly due to offset of similar magnetic domain/gradient were also interpreted. The iron ore mineralization is distributed within the eastern portion of the study area with Ajase BIF at relatively greater

  17. Thermal conductivity of the iron-based superconductor FeSe: Nodeless gap with strong two-band character (United States)

    Bourgeois-Hope, Patrick; Badoux, Sven; Doiron-Leyraud, Nicolas; Taillefer, Louis; Chi, Shun; Liang, Ruixing; Hardy, Walter; Bonn, Doug

    The thermal conductivity κ of the iron-based superconductor FeSe was measured at temperatures down to 50 mK in magnetic fields up to 17 T. In zero magnetic field, the residual linear term in the T = 0 limit, κ0 / T , is vanishingly small. Application of a magnetic field H causes no increase in κ0 / T initially. Those two facts show that there are no zero-energy quasiparticles that carry heat and therefore no nodes in the superconducting gap of FeSe. The full field dependence of κ0 / T has the classic shape of a two-band superconductor, such as MgB2. It rises initially with a characteristic field H* ~=Hc 2 / 25 , and then more slowly up to Hc 2 = 14 T. We interpret this in terms of a small gap ΔA ~=Δ0 / 5 on some part of the Fermi surface, with a large gap ΔB =Δ0 in the region that controls Hc 2.

  18. Thermal Conductivity of the Iron-Based Superconductor FeSe: Nodeless Gap with a Strong Two-Band Character. (United States)

    Bourgeois-Hope, P; Chi, S; Bonn, D A; Liang, R; Hardy, W N; Wolf, T; Meingast, C; Doiron-Leyraud, N; Taillefer, Louis


    The thermal conductivity κ of the iron-based superconductor FeSe was measured at temperatures down to 75 mK in magnetic fields up to 17 T. In a zero magnetic field, the electronic residual linear term in the T=0  K limit, κ_{0}/T, is vanishingly small. The application of a magnetic field B causes an exponential increase in κ_{0}/T initially. Those two observations show that there are no zero-energy quasiparticles that carry heat and therefore no nodes in the superconducting gap of FeSe. The full field dependence of κ_{0}/T has the classic two-step shape of a two-band superconductor: a first rise at very low field, with a characteristic field B^{⋆}≪B_{c2}, and then a second rise up to the upper critical field B_{c2}. This shows that the superconducting gap is very small (but finite) on one of the pockets in the Fermi surface of FeSe. We estimate that the minimum value of the gap, Δ_{min}, is an order of magnitude smaller than the maximum value, Δ_{max}.

  19. Source heterogeneity for the major components of ~3.7 Ga banded iron formations (Isua Greenstone Belt, Western Greenland)

    DEFF Research Database (Denmark)

    Frei, Robert; Polat, Ali


    We report trace element, samarium (Sm)-neodymium (Nd) and lead (Pb) isotopic data for individual micro-and mesobands of the Earth's oldest Banded Iron Formation (BIF) from the  3.7-3.8 Ga Isua Greenstone Belt (IGB, West Greenland) in an attempt to contribute to the characterization...... of the depositional environment and to the understanding of depositional mechanisms of these earliest chemical sediments. Rare earth element (REE)-yttrium (Y) patterns of the individual mesobands show features of modern seawater with diagnostic cerium (Ce/Ce ), presodymium (Pr/Pr ) and Y/holmium (Ho) anomalies. Very......-Nd isotopic relations on a layer-by-layer basis point to two REE sources controlling the back-arc basin depositional environment of the BIF, one being seafloor-vented hydrothermal fluids (eNd (3.7 Ga)   + 3.1), the other being ambient surface seawater which reached its composition by erosion of parts...

  20. The nature of Mesoarchaean seawater and continental weathering in 2.85 Ga banded iron formation, Slave craton, NW Canada (United States)

    Haugaard, Rasmus; Ootes, Luke; Creaser, Robert A.; Konhauser, Kurt O.


    Banded iron formations (BIF) have been extensively used as proxies to infer the chemical composition of ancient bulk seawater. However, their proximity to ancient crust suggests that they might also be used to reveal the composition of emergent continental landmass at the time of their deposition. Here we use the combination of geochemistry and Sm-Nd isotopes on a layer-by-layer basis to interpret the relative contributions of hydrothermal, hydrogenous and terrestrial input to one of the oldest documented Superior-type BIF in the world. The ∼2.85 Ga Central Slave Cover Group BIF is deposited within a rift basin related to a continental margin and is found associated with basement gneisses, as well as shoreline and shallow-shelf type facies, such as fuchsitic quartzite and pebble-to-cobble conglomerate, that confirm a near-shore depositional setting for the BIF. The BIF ranges from a pure chemical oxide (magnetite)-silicate (grunerite + actinolite) sediment with low Al2O3 (segment exhibiting negative εNd(t) values averaging -1.1 and another with positive εNd(t) values averaging +2.5. This suggests input of dissolved REY into the upper seawater from weathering of isotopically different crustal components in the source region. Collectively, we speculate that the low REY in the upper seawater and the overall low Ni content implies a highly weathered crustal surface that was unable to contribute a significant dissolved load to the shelf environment.

  1. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure. (United States)

    Zarkevich, N A; Johnson, D D


    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron-from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yet all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.

  2. Reconstructing Earth's Surface Oxidation Across The Archean- Proterozoic Transition (United States)

    Kaufman, A. J.; Guo, Q.; Strauss, H.; Schröder, S.; Gutzmer, J.; Wing, B. A.; Baker, M.; Bekker, A.; Jin, Q.; Kim, S.; Farquhar, J.


    The Archean-Proterozoic transition is characterized by the widespread deposition of organic-rich shale, sedimentary iron formation, glacial diamictite, and marine carbonates recording profound carbon isotope anomalies, but notably lacks bedded evaporites. All deposits reflect environmental changes in oceanic and atmospheric redox states, in part associated with Earth’s earliest ice ages. Time-series data for multiple sulfur isotopes from carbonate associated sulfate as well as sulfides in the glaciogenic Duitschland Formation of the Transvaal Supergroup, South Africa, capture the concomitant buildup of sulfate in the ocean and the loss of mass independent sulfur isotope fractionation. This is arguably associated with the atmospheric rise of oxygen (as well as the protective ozone layer) coincident with profound changes in ocean chemistry and biology. The loss of the MIF signal within the Duitschland succession is in phase with the earliest recorded positive carbon isotope anomaly, convincingly linking these environmental perturbations to the Great Oxidation Event (ca. 2.3 Ga). The emergence of cyanobacteria and oxygenic photosynthesis may be associated with a geochemical “whiff of oxygen” recorded in 2.5 Ga sediments. If true, the delay in the GOE can then be understood in terms of a finite sink for molecular oxygen - ferrous iron, which was abundant in deep Neoarchean seawater and sequestered in a worldwide episode of iron formation deposition ending shortly before accumulation of the Duitschland Formation. Insofar as early Paleoproterozoic glaciation is associated with oxygenation of a methane-rich atmosphere, we conclude that Earth’s earliest ice age(s) and the onset of a modern and far more energetic carbon cycle are directly related to the global expansion of cyanobacteria that released oxygen to the environment, and of eukaryotes that respired it.

  3. Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: relevance to the snowball Earth debate (United States)

    Young, Grant M.


    Among Palaeoproterozoic glacial deposits on four continents, the best preserved and documented are in the Huronian on the north shore of Lake Huron, Ontario, where three glaciogenic formations have been recognized. The youngest is the Gowganda Formation. The glacial deposits of the Gowganda Formation were deposited on a newly formed passive margin. To the west, on the south side of Lake Superior, the oldest Palaeoproterozoic succession (Chocolay Group) begins with glaciogenic diamictites that have been correlated with the Gowganda Formation. The >2.2 Ga passive margin succession (Chocolay Group=upper Huronian) is overlain, with profound unconformity, by a >1.88 Ga succession that includes the superior-type banded iron-formations (BIFs). The iron-formations are therefore not genetically associated with Palaeoproterozoic glaciation but were deposited ˜300 Ma later in a basin that formed as a result of closure of the "Huronian" ocean. In Western Australia, Palaeoproterozoic glaciogenic deposits of the Meteorite Bore Member appear to have formed part of a similar basin fill. The glaciogenic rocks are, however, separated from underlying BIF by a thick siliciclastic succession. In both North America and Western Australia, BIF-deposition took place in compressional (possibly foreland basin) settings but the iron-formations are of greatly different age, suggesting that the most significant control on their formation was not oxygenation of the Earth's atmosphere but rather, emplacement of Fe-rich waters (uplifted as a result of ocean floor destruction?) in a siliciclastic-starved environment where oxidation (biogenic?) could take place. Some of the Australian BIFs appear to predate the appearance of red beds in North American Palaeoproterozoic successions and are therefore unlikely to be related to oxygenation of the atmosphere. Neoproterozoic glaciogenic deposits are widespread on the world's continents. Some are associated with iron-formations. Two theories have emerged

  4. Biomarker evidence for Archean oxygen fluxes (Invited) (United States)

    Hallmann, C.; Waldbauer, J.; Sherman, L. S.; Summons, R. E.


    Knowledge of deep-time organismic diversity may be gained from the study of preserved sedimentary lipids with taxonomic specificity, i.e. biomarker hydrocarbons (e.g. Brocks and Summons, 2003; Waldbauer et al., 2009). As a consequence of long residence times and high thermal maturities however, biomarker concentrations are extremely low in most ancient (Precambrian) sediment samples, making them exceptionally prone to contamination during drilling, sampling and laboratory workup (e.g. Brocks et al., 2008). Outcrop samples most always carry a modern overprint and deep-time biogeochemistry thus relies on drilling operations to retrieve ‘clean’ sediment cores. One such effort was initiated by NASA’s Astrobiology Institute (NAI): the Archean biosphere drilling project (ABDP). We here report on the lipids retrieved from sediment samples in drill hole ABDP-9. Strong heterogeneities of extractable organic matter - both on a spatial scale and in free- vs. mineral-occluded bitumen - provide us with an opportunity to distinguish indigenous lipids from contaminants introduced during drilling. Stratigraphic trends in biomarker data for mineral-occluded bitumens are complementary to previously reported data (e.g. S- and N-isotopes, molybdenum enrichments) from ABDP-9 sediments (Anbar et al., 2007; Kaufman et al., 2007; Garvin et al., 2009) and suggest periodic fluxes of oxygen before the great oxidation event. Anbar et al. A whiff of oxygen before the great oxidation event. Science 317 (2007), 1903-1906. Brocks & Summons. Sedimentary hydrocarbons, biomarkers for early life. In: Schlesinger (Ed.) Treatise on Geochemistry, Vol. 8 (2003), 63-115. Brocks et al. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochimica et Cosmochimica Acta 72 (2008), 871-888. Garvin et al. Isotopic evidence for a aerobic nitrogen cycle in the latest Archean. Science 323 (2009), 1045-1048. Kaufman et al. Late Archean

  5. Sulphur tales from the early Archean world (United States)

    Montinaro, A.; Strauss, H.


    Sedimentary and magmatic rocks and their distinct sulphur isotopic signatures indicate the sources and processes of sulphur cycling, in particular through the analysis of all four stable sulphur isotopes (32S, 33S, 34S and 36S). Research over the past 15 years has substantially advanced our understanding of sulphur cycling on the early Earth, most notably through the discovery of mass-independently fractionated sulphur isotopic signatures. A strong atmospheric influence on the early Archean global sulphur cycle is apparent, much in contrast to the modern world. Diverse microbially driven sulphur cycling is clearly discernible, but its importance for Earth surface environments remains to be quantified.

  6. Sulfate was a trace constituent of Archean seawater

    DEFF Research Database (Denmark)

    Crowe, Sean Andrew; Paris, Guillaume; Katsev, Sergei;


    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water colum...

  7. Middle Archean continent formation by crustal delamination (United States)

    Zegers, Tanja E.; van Keken, Peter E.


    The processes that created the first large cratonic areas such as the Pilbara and the Kaapvaal remain poorly understood. Models based on the uniformitarian extrapolation of present-day arc volcanic processes to a hotter early Earth have not adequately explained the observations in these terranes. Here we propose an alternative mechanism for the formation of the earliest continental crust. The formation of continental crust may be achieved by delamination of the lower eclogitic part of an oceanic plateau like protocrust. Such delamination results in uplift, extension, and the production of tonalite, trondhjemite, and granodiorite (TTG) suites as recorded in Middle Archean cratons. The available geologic and geophysical observations in combination with model calculations permit this scenario as an alternative to subduction-based hypotheses.

  8. Crystallographic Fabrics, Grain Boundary Microstructure and Shape Preferred Orientation of Deformed Banded Iron Formations and their Significance for Deformation Interpretation (United States)

    Ávila, Carlos Fernando; Graça, Leonardo; Lagoeiro, Leonardo; Ferreira, Filippe


    The characterization of grain boundaries and shapes along with crystallographic preferred orientations (CPOs) are a key aspect of investigations of rock microstructures for their correlation with deformation mechanisms. Rapid developments have occurred in the studying rock microstructures due to recent improvements in analytical techniques such as Electron Backscatter Diffraction (EBSD). EBSD technique allows quick automated microtextural characteritzation. The deformed banded iron formations (BIFs) occurring in the Quadrilátero Ferrífero (QF) province in Brazil have been studied extensively with EBSD. All studies have focused mainly in CPOs. The general agreement is that dislocation creep was the dominant process of deformation, for the strong c-axis fabric of hematite crystals. This idea is substantiated by viscoplastic self-consistent models for deformation of hematite. However there are limitations to analyzing natural CPOs alone, or those generated by deformation models. The strong c-axis fabric could be taken as equally powerful an evidence for other known deformation mechanisms. Some grain boundary types in BIFs of the QF are irregular and comprise equant grains in granoblastic texture (Figure 1a). CPOs for this kind are strong and consistent with a predominance of dislocation creep. Others are very regular and long parallel to basal planes of hematites forming large elongated crystals (lepidoblastic texture, Figure 1b). Such crystals are called specularite, and their formation has been previously attributed to dislocation creep. This is erroneous because of the high strains which would be required. Their shape must be due to anisotropic grain growth. Other types lie between the above end-textures. Both types of grain shape microstructures have the same core deformation mechanism. Describing their genetic differences is crucial, since specularite owe its shape to anisotropic grain growth. It is not possible yet to confirm that dislocation creep was the

  9. Tunable band gap of iron-doped lanthanum-modified bismuth titanate synthesized by using the thermal decomposition of a secondary phase (United States)

    Han, Jun Young; Bark, Chung Wung


    The photoelectric properties of complex oxides have prompted interest in materials with a tunable band gap because of the absorption. The substitution of iron atoms in La-modified bismuth titanate (BLT) can lead to dramatic improvements in the band gap; however, the substitution of iron atoms while maintaining the original bismuth layer structure without forming a BiFeO3 secondary phase is quite challenging. Therefore, a series of Fe-doped BLT (Fe-BLT) samples were synthesized using a solid reaction at various calcination temperatures (300 ˜ 900°C) to remove the secondary phase. The structural and the optical properties were analyzed by using X-ray diffraction and ultraviolet-visible absorption spectroscopy. This paper reports a new route by using high-temperature calcination, to synthesize the Aurivillius phase with a reduced optical band gap due to the thermal decomposition of BiFeO3 during high-temperature calcination. This simple route to reduce the second phase can be adapted to other complex oxides for use in emerging oxide optoelectronic devices.

  10. The Archean-Paleoproterozoic evolution of the Quadrilátero Ferrífero (Brasil): Current models and open questions (United States)

    Farina, F.; Albert, C.; Martínez Dopico, C.; Aguilar Gil, C.; Moreira, H.; Hippertt, J. P.; Cutts, K.; Alkmim, F. F.; Lana, C.


    The Quadrilátero Ferrífero is a metallogenic district (Au, Fe, Mn) located at the southernmost end of the São Francisco craton in eastern Brazil. In this region, a supracrustal assemblage composed of Archean greenstone and overlying Neoarchean-Paleoproterozoic sedimentary rocks occur in elongated keels bordering domal bodies of Archean gneisses and granites. The tectonomagmatic evolution of the Quadrilàtero Ferrífero began in the Paleoarchean with the formation of continental crust between 3500 and 3200 Ma. Although this crust is today poorly preserved, its existence is attested to by the occurrence of detrital zircon crystals with Paleoarchean age in the supracrustal rocks. Most of the crystalline basement, which is composed of banded gneisses intruded by leucogranitic dikes and weakly foliated granites, formed during three major magmatic events: Rio das Velhas I (2920-2850 Ma), Rio das Velhas II (2800-2760 Ma) and Mamona (2760-2680 Ma). The Rio das Velhas II and Mamona events represent a subduction-collision cycle, probably marking the appearance of a modern-style plate tectonic regime in the Quadrilátero Ferrífero. Granitic rocks emplaced during the Rio das Velhas I and II events formed by mixing between a magma generated by partial melting of metamafic rocks with an end member derived by recycling gneissic rocks of older continental crust. After deformation and regional metamorphism at ca. 2770 Ma, a change in the composition of the granitic magmas occurred and large volumes of high-K granitoids were generated. The ca. 6000 m-thick Minas Supergroup tracks the opening and closure of a basin during the Neoarchean-Paleoproterozoic, between 2600 and 2000 Ma. The basal sequence involves continental to marine sediments deposited in a passive margin basin and contain as a marker bed the Lake Superior-type Cauê Banded Iron Formation. The overlying sediments of the Sabará Group mark the inversion of the basin during the Rhyacian Minas accretionary orogeny. This

  11. Brazil's premier gold province. Part II: geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero (United States)

    Lobato, Lydia; Ribeiro-Rodrigues, Luiz; Vieira, Frederico


    Orogenic, gold deposits are hosted by rocks of the Archean Rio das Velhas greenstone belt in the Quadrilátero Ferrífero region, Minas Gerais state, Brazil, one of the major gold provinces in the world. The gold deposits occur at the base of the mafic-ultramafic succession, with the most important orebodies controlled by E-W-striking, strike-slip faults. The main mineralization styles are (1) structurally controlled, sulfide replacement zones in banded iron formation (BIF); (2) disseminated sulfide minerals and gold in hydrothermally altered rocks along shear zones; and (3) auriferous quartz-carbonate-sulfide veins and veinlets in mafic, ultramafic, and felsic volcanic rocks, and also in clastic sedimentary rocks. The most common host rocks for ore are metamorphosed oxide- and carbonate-facies banded ironiron-rich metachert) formations (e.g., the Cuiabá, São Bento and Raposos deposits) and the lapa seca unit, which is a local term for intensely carbonatized rock (e.g., the giant Morro Velho mine with >450 t of contained gold). Metabasalts host most of the remaining gold deposits. Mineralogical characteristics and fluid inclusion studies suggest variations in the H2O/CO2 ratio of a low-salinity, near-neutral, reducing, sulfur-bearing, ore fluid. The presence of abundant CH4-rich inclusions is related to reduction of the original H2O-CO2 fluid via interaction with carbonaceous matter in the wallrocks. Oxygen fugacity was close to that of graphite saturation, with variations likely to have been influenced by reaction with the carbonaceous matter. Carbon-rich phyllites and schists, which commonly bound ore-bearing horizons, seem to have played both a physical and chemical role in localizing hydrothermal mineral deposition. Microtextural studies indicate that gold deposition was mainly related to desulfidation reactions, and was paragenetically coeval with precipitation of arsenic-rich iron sulfide minerals. Carbon isotope data are compatible with dissolution of

  12. Chemical fingerprint of iron oxides related to iron enrichment of banded iron formation from the Cauê Formation - Esperança Deposit, Quadrilátero Ferrífero, Brazil: a laser ablation ICP-MS study

    Directory of Open Access Journals (Sweden)

    Lucilia Aparecida Ramos de Oliveira

    Full Text Available Chemical signatures of iron oxides from dolomitic itabirite and high-grade iron ore from the Esperança deposit, located in the Quadrilátero Ferrífero, indicate that polycyclic processes involving changing of chemical and redox conditions are responsible for the iron enrichment on Cauê Formation from Minas Supergroup. Variations of Mn, Mg and Sr content in different generations of iron oxides from dolomitic itabirite, high-grade iron ore and syn-mineralization quartz-carbonate-hematite veins denote the close relationship between high-grade iron ore formation and carbonate alteration. This indicates that dolomitic itabirite is the main precursor of the iron ore in that deposit. Long-lasting percolation of hydrothermal fluids and shifts in the redox conditions have contributed to changes in the Y/Ho ratio, light/heavy rare earth elements ratio and Ce anomaly with successive iron oxide generations (martite-granular hematite, as well as lower abundance of trace elements including rare earth elements in the younger specularite generations.

  13. Archean Subduction or Not? The Archean Volcanic Record Re-assessed. (United States)

    Pearce, Julian; Peate, David; Smithies, Hugh


    Methods of identification of volcanic arc lavas may utilize: (1) the selective enrichment of the mantle wedge by 'subduction-mobile' elements; (2) the distinctive preconditioning of mantle along its flow path to the arc front; (3) the distinctive combination of fluid-flux and decompression melting; and (4) the effects of fluids on crystallization of the resulting magma. It should then be a simple matter uniquely to recognise volcanic arc lavas in the Geological Record and so document past subduction zones. Essentially, this is generally true in the oceans, but generally not on the continents. Even in recent, fresh lavas and with a full battery of element and isotope tools at our disposal, there can be debate over whether an arc-like geochemical signature results from active subduction, an older, inherited subduction component in the lithosphere, or crustal contamination. In the Archean, metamorphism, deformation, a different thermal regime and potential non-uniformitarian tectonic scenarios make the fingerprinting of arc lavas particularly problematic. Not least, the complicating factor of crustal contamination is likely to be much greater given the higher magma and crustal temperatures and higher magma fluxes prevailing. Here, we apply new, high-resolution immobile element fingerprinting methods, based primarily on Th-Nb fractionation, to Archean lavas. In the Pilbara, for example, where there is a volcanic record extending for over >500 m.y., we note that lavas with high Th/Nb (negative Nb anomalies) are common throughout the lava sequence. Many older formations also follow a basalt-andesite-dacite-rhyolite (BADR) sequence resembling present-day arcs. However, back-extrapolation of their compositions to their primitive magmas demonstrates that these were almost certainly crustally-contaminated plume-derived lavas. By contrast, this is not the case in the uppermst part of the sequence where even the most primitive magmas have significant Nb anomalies. The

  14. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia (United States)

    Baur, M. E.; Hayes, J. M.; Studley, S. A.; Walter, M. R.


    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron.

  15. Some examples of deep structure of the Archean from geophysics (United States)

    Smithson, S. B.; Johnson, R. A.; Pierson, W. R.


    The development of Archean crust remains as one of the significant problems in earth science, and a major unknown concerning Archean terrains is the nature of the deep crust. The character of crust beneath granulite terrains is especially fascinating because granulites are generally interpreted to represent a deep crustal section. Magnetic data from this area can be best modeled with a magnetized wedge of older Archean rocks (granulitic gneisses) underlying the younger Archean greenstone terrain. The dip of the boundary based on magnetic modeling is the same as the dip of the postulated thrust-fault reflection. Thus several lines of evidence indicate that the younger Archean greenstone belt terrain is thrust above the ancient Minnesota Valley gneiss terrain, presumably as the greenstone belt was accreted to the gneiss terrain, so that the dipping reflection represents a suture zone. Seismic data from underneath the granulite-facies Minnesota gneiss terrain shows abundant reflections between 3 and 6 s, or about 9 to 20 km. These are arcuate or dipping multicyclic events indicative of layering.

  16. Geochemistry of Archean Mafic Amphibolites from the Amsaga Area, West African Craton, Mauritania: Occurrence of Archean oceanic plateau (United States)

    El Atrassi, Fatima; Debaille, Vinciane; Mattielli, Nadine; Berger, Julien


    While Archean terrains are mainly composed of a TTG (Tonalite-trondhjemite-granodiorite) suite, more mafic lithologies such as amphibolites are also a typical component of those ancient terrains. Although mafic rocks represent only ~10% of the Archean cratons, they may provide key evidence of the role and nature of basaltic magmatism in the formation of the Archean crust as well as the evolution of the Archean mantle. This study focuses on the Archean crust from the West African craton in Mauritania (Amsaga area). The Amsaga Archean crust mainly consists of TTG and thrust-imbricated slices of mafic volcanic rocks, which have been affected by polymetamorphic events from the amphibolite to granulite facies. We report the results of a combined petrologic, Sm-Nd isotopic, major element and rare earth element (REE) study of the Archean amphibolites in the West African craton. This study was conducted in order to characterize these rocks, to constrain the time of their formation and to evaluate their tectonic setting and their possible mantle source. Our petrological observations show that these amphibolites have fine to medium granoblastic and nematoblastic textures. They are dominated by amphibolite-facies mineral assemblages (mainly amphibole and plagioclase), but garnet and clinopyroxene occur in a few samples. These amphibolites have tholeiitic basalt composition. On a primitive mantle-normalized diagram, they display fairly flat patterns without negative anomalies for either Eu or Nb-Ta. We have shown using Sm-Nd whole rock isotopic data that these amphibolites formed at 3.3 ±0.075 Ga. They have positive ɛNdi values (+5.2 ± 1.6). These samples show isotopically juvenile features, which rule out the possibility of significant contamination of the protolith magmas by ancient continental crust. Based on these geochemical data we propose that the tholeiitic basalts were formed in an oceanic plateau tectonic setting from a mantle plume source and that they have a

  17. Partition coefficients for calcic plagioclase - Implications for Archean anorthosites (United States)

    Phinney, W. C.; Morrison, D. A.


    In most Archean cratons, cumulates of equant plagioclase megacrysts form anorthositic complexes, including those at Bad Vermilion Lake (Ontario). In this paper, partition coefficients (Ds) of REEs between natural high-Ca plagioclase megacrysts and their basaltic matrices were determined, using a multiple aliquot techique, and megacrystic plagioclases occurring in anorthosites were analyzed for the same components which, in conjunction with their Ds, were applied to calculations of melts in equilibrium with anorthosites. The REE's Ds were found to agree well with experimentally determined values and to predict equilibrium melts for Archean anorthosites that agree well with coeval basaltic flows and dikes. The Ds also appear to be valid for both the tholeiitic and alkali basalts over a wide range of mg numbers and REE concentrations. It is suggested that the moderately Fe-rich tholeiites that are hosts to plagioclase megacrysts in greenstone belts form the parental melts for megacrysts which make up the Bad Vermilion Lake Archean anorthositic complex.

  18. Tailoring the spin waves band structure of 1D magnonic crystals consisting of L-shaped iron/permalloy nanowires (United States)

    Gubbiotti, G.; Silvani, R.; Tacchi, S.; Madami, M.; Carlotti, G.; Yang, Z.; Adeyeye, A. O.; Kostylev, M.


    We have investigated both experimentally and numerically the magnonic band structure of arrays of closely spaced Fe/permalloy nanowires (NWs) with an L-shape cross-section using the Brillouin light scattering technique and GPU-based micromagnetic simulations. NWs consist of a 340 nm wide and 10 nm thick permalloy layer covered by a 170 nm wide Fe overlayer. The thickness of the latter was varied in the range from 0 to 10 nm in order to analyze its influence on the magnonic band structure. We found that both the frequency and the spatial profile of the most intense and dispersive mode, can be efficiently tuned by the presence of the thin Fe NW overlayer. In particular, by increasing the Fe thickness, one observes a substantial frequency increase, while the spatial profile of the mode narrows and moves to the permalloy NW portion not covered by Fe. In addition, the presence of the Fe overlayer causes a significant increase of the number of detected modes and a change of their intensity in the Brillouin spectra as a function of the Bloch wave number. These results show that it is possible to engineer the band structure of magnonic crystals consisting of bi-layered, L-shaped, NWs by a careful control of the overlayer thickness.

  19. Geochemistry of Archean metasedimentary rocks of the Aravalli craton, NW India: Implications for provenance, paleoweathering and supercontinent reconstruction (United States)

    Ahmad, Iftikhar; Mondal, M. E. A.; Satyanarayanan, M.


    Basement complex of the Aravalli craton (NW India) known as the Banded Gneissic Complex (BGC) is classified into two domains viz. Archean BGC-I and Proterozoic BGC-II. We present first comprehensive geochemical study of the Archean metasedimentary rocks occurring within the BGC-I. These rocks occur associated with intrusive amphibolites in a linear belt within the basement gneisses. The association is only concentrated on the western margin of the BGC-I. The samples are highly mature (MSm) to very immature (MSi), along with highly variable geochemistry. Their major (SiO2/Al2O3, Na2O/K2O and Al2O3/TiO2) and trace (Th/Sc, Cr/Th, Th/Co, La/Sc, Zr/Sc) element ratios, and rare earth element (REE) patterns are consistent with derivation of detritus from the basement gneisses and its mafic enclaves, with major contribution from the former. Variable mixing between the two end members and closed system recycling (cannibalism) resulted in the compositional heterogeneity. Chemical index of alteration (CIA) of the samples indicate low to moderate weathering of the source terrain in a sub-tropical environment. In A-CN-K ternary diagram, some samples deceptively appear to have undergone post-depositional K-metasomatism. Nevertheless, their petrography and geochemistry (low K2O and Rb) preclude the post-depositional alteration. We propose non-preferential leaching of elements during cannibalism as the cause of the deceptive K-metasomatism as well as enigmatic low CIA values of some highly mature samples. The Archean metasedimentary rocks were deposited on stable basement gneisses, making the BGC-I a plausible participant in the Archean Ur supercontinent.

  20. Investigating variations in background response in measurements of downhole natural gamma in a banded iron formation in the Pilbara, Western Australia (United States)

    Murphy, Richard J.; Silversides, Katherine L.


    Measurements of downhole natural gamma radiation (NGR) provide important information about the location of shale or clay bands within stratigraphical sequences (e.g. in Banded Iron Formations; BIF). An ability to link NGR with other kinds of measurements that are acquired at greater spatial and stratigraphic resolution, such as those acquired by hyperspectral sensing, would open up possibilities for improving the resolution of boundary models. To do this, measurements made by NGR and hyperspectral sensing must be highly correlated and any inconsistencies between these data must be understood. Observations made from the literature and from NGR measurements made in a BIF formation of the Hamersley Group, Pilbara, Western Australia, suggest that NGR measurements in some sections of ore or BIF are elevated compared with other sections; laboratory assays of drill chips do not however suggest the presence of shale or clay. These apparent inconsistencies were investigated using hyperspectral measurements and chemical assays of rock cores in the laboratory and NGR measurements made in the field. We show that the patterns of elevated NGR were a consistent feature of the stratigraphy for this region. Comparison of NGR and Al2O3 made by laboratory assay and from hyperspectral sensing show that elevated NGR measurements were caused by Uranium which was not associated with the presence of shale. Neither Thorium nor Potassium contributed to the elevated gamma signal in the ore. Thorium was strongly correlated with Al2O3 and was found to provide the best indicator of the presence of shale in the stratigraphy.

  1. Hydrothermal Processes in the Archean - New Insights from Imaging Spectroscopy

    NARCIS (Netherlands)

    Ruitenbeek, F.J.A. van


    The aim of this research was to gain new insights in fossil hydrothermal systems using airborne imaging spectroscopy. Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral

  2. Archean komatiite volcanism controlled by the evolution of early continents. (United States)

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John


    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  3. Iron in Precambrian rocks: implications for the global oxygen budget of the ancient Earth. (United States)

    Kump, L R; Holland, H D


    Banded iron formations (BIF) are prominent in sediments older than 2 Ga. However, little is known about the absolute abundance of BIF in Archean and Early Proterozoic sediments, and the source of the Fe is still somewhat uncertain. Also unknown is the role that Fe may have played in the maintenance of low oxygen pressures in the Archean and Early Proterozoic atmosphere. An analysis of the chemical composition of Precambrian rocks provides some insight into the role of Fe in Precambrian geochemical cycles. The Fe content of igneous rocks is well correlated with their Ti content. Plots of Fe vs. Ti in Precambrian sandstones and graywackes fall very close to the igneous rock trend. Plots of Fe vs. Ti in Precambrian shales also follow this trend but show a definite scatter toward an excess of Fe. Phanerozoic shales and sandstones lie essentially on the igneous rock trend and show surprisingly little scatter. Mn/Ti relations show a stronger indication of Precambrian Mn loss, perhaps due to weathering under a less oxidizing early atmosphere. These data show that Fe was neither substantially added to nor significantly redistributed in Archean and early Proterozoic sediments. Enough hydrothermal Fe was added to these sediments to increase the average Fe content of shales by at most a factor of 2. This enrichment would probably not have greatly affected the near-surface redox cycle or atmospheric oxygen levels. Continued redistribution of Fe and mixing with weathered igneous rocks during the recycling of Precambrian sediments account for the excellent correlation of Fe with Ti in Phanerozoic shales and for the similarity between their Fe/Ti ratio and that of igneous rocks.

  4. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zarkevich, N. A., E-mail:, E-mail: [The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020 (United States); Johnson, D. D., E-mail:, E-mail: [The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020 (United States); Materials Science and Engineering, Iowa State University, Ames, Iowa 50011-2300 (United States)


    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron—from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yet all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.

  5. Origin of microbial biomineralization and magnetotaxis during the Archean (United States)

    Paterson, Greig A.; Wang, Yinzhao; Kopylova, Evguenia; Li, Ying; Knight, Rob; Bazylinski, Dennis A.; Zhu, Rixiang; Kirschvink, Joseph L.; Pan, Yongxin


    Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria. This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth’s dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time. PMID:28193877

  6. Origin of microbial biomineralization and magnetotaxis during the Archean. (United States)

    Lin, Wei; Paterson, Greig A; Zhu, Qiyun; Wang, Yinzhao; Kopylova, Evguenia; Li, Ying; Knight, Rob; Bazylinski, Dennis A; Zhu, Rixiang; Kirschvink, Joseph L; Pan, Yongxin


    Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth's dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time.

  7. 微生物参与前寒武纪条带状铁建造沉积的研究进展%Microbial mineralization in Precambrian banded iron formations

    Institute of Scientific and Technical Information of China (English)

    吴文芳; 李一良; 潘永信


    地球演化早期太古代和早元古代大规模的条带状铁建造(BIF)是目前世界上最重要的铁矿资源.已有的稳定同位素组成、分子化石以及岩石磁学性质等证据支持早期微生物广泛参与了BIF的形成.本文评述了微生物参与BIF形成过程中铁搬运和沉淀及其同位素分馏、生物标志物和岩石磁学证据.深入地研究BIF成矿中的微生物矿化贡献,有助于解释BIF形成机制,反演前寒武纪大气-海洋环境演化,以及理解地球早期生命的过程.%Late Achaean to Palaeoproterozoic deposition of banded iron formations ( BIF) is the most important iron ore resource on Earth. As evident by stable isotopes compositions, fossil molecule, rock magnetic properties , microorganisms such as cyanobacteria, iron-oxidizing and iron-reducing bacteria are suggested to have participated in the deposition of BIF. In this review, we briefly introduced the global distribution of BIF and the environments of early Precambrian Earth; then we went through the recent studies on bacterial mineralization related to the deposition of banded iron, including oxygenic/anoxygenie photosynthesis and dissimilatory iron reduction. Finally,we proposed some challenges and prospectives. We suggest three approaches to understand the microbial mediated deposition of BIF; Searching for organic and inorganic signatures of bacterial mineralization, investigating the microbial participation in modern iron deposition in aquatic environments comparable to the microbial process of BIF, and laboratory microbial mineralization simulation, aiming at promoting the research on BIF formation mechanism.

  8. Mantle decarbonation and Archean high-Mg magmas (United States)

    Edwards, Garth R.


    Magnesium-rich mane to ultramafic extrusions were most common in the Archean and pose interesting petrological problems. The high Mg content of komatiites (>18 wt%, for example, is usually interpreted as indicating an origin at higher temperatures than exist in mantle melting zones in the modern Earth. Current contrasting models for the origin of komatiites in the mantle require either high degrees of melting or lower degrees of melting at great depth. A potential complementary mechanism for Mg enrichment in magmas involves the melting of magnesite-bearing garnet Iherxolite. In this model, the ascending primary mafic or ultramafic magma is enriched in MgO by the loss of some off the CO2 to the adjacent mantle at pressures of ˜2.2 GPa, where the magma becomes saturated with CO2. To generate komatiite in this way from a picritelike parent, for example, requires that the primary magma lose some of its major and trace element components to the adjacent mantle concurrently with the CO2. Production of magnesian magmas by magnesite breakdown may not have required the heat or depth of those produced by other means; this mechanism may help to explain some apparently low Archean geothermal gradients, as well as the contemporaneity of Archean diamonds and komatites. The mantle magnesite could have formed by direct reaction of primordial CO2 or CO with hot, protomantle material during Earth's accretionary period.

  9. How widely is the Andean type of continental margin represented in the Archean (United States)

    Burke, Kevin


    Application of the principle of uniformitarianism to the Archean was discussed in a search for evidence of Archean-type continental margins in Archean rocks. The author cautioned that Archean rocks represent only 2 percent of the current exposure of the continents, half of which is in the North American Superior Province. Care must be taken in interpreting the global tectonic significance of relatively small exposures of Archean rocks, such as South India. Andean margins were characterized by their elongate shape, magmatic associations, and isotopic signatures. Although the compositional evidence alone will always be ambiguous, it was suggested that supporting structural evidence may aid in the identification of Archean Andean margins. Andean margin remains have been recognized in the Superior Province of Canada by these criteria, and the author suggested that the Closepet granite of South India may represent another example.

  10. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014

    Directory of Open Access Journals (Sweden)

    R. V. Kochanov


    Full Text Available In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014, the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm−1, the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer+ NO2 was used in place of the monomer. Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.

  11. Iron oxide copper-gold deposits in the Islamic Republic of Mauritania (phase V, deliverable 79): Chapter M in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II) (United States)

    Fernette, Gregory


    Mauritania hosts one significant copper-gold deposit, Guelb Moghrein and several occurrences, which have been categorized as iron oxide copper-gold (IOCG) deposits but which are atypical in some important respects. Nonetheless, Guelb Moghrein is an economically significant mineral deposit and an attractive exploration target. The deposit is of Archean age and is hosted by a distinctive metacarbonate rock which is part of a greenstone-banded iron formation (BIF) package within a thrust stack in the northern part of the Mauritanide Belt. The surrounding area hosts a number of similar copper-gold occurrences. Based on the characteristics of the Guelb Moghrein deposit and its geologic environment, five tracts which are considered permissive for IOCG type mineralization similar to Guelb Moghrein have been delineated.

  12. Thyroid hormone-dependent formation of a subcortical band heterotopia (SBH) in the neonatal brain is not exacerbated under conditions of low dietary iron (FeD). (United States)

    Spring, S R; Bastian, T W; Wang, Y; Kosian, P; Anderson, G W; Gilbert, M E


    Thyroid hormones (TH) are critical for brain development and insufficiencies can lead to structural abnormalities in specific brain regions. Administration of the goitrogen propylthiouracil (PTU) reduces TH production by inhibiting thyroperoxidase (TPO), an enzyme that oxidizes iodide for the synthesis of TH. TPO activity is iron (Fe)-dependent and dietary iron deficiency (FeD) also reduces circulating levels of TH. We have previously shown that modest degrees of TH insufficiency induced in pregnant rat dams alters the expression of TH-responsive genes in the cortex and hippocampus of the neonate, and results in the formation of a subcortical band heterotopia (SBH) in the corpus callosum (Royland et al., 2008, Bastian et al., 2014, Gilbert et al., 2014). The present experiment investigated if FeD alone was sufficient to induce a SBH or if FeD would augment SBH formation at lower doses of PTU. One set of pregnant rats was administered 0, 1, 3, or 10ppm of PTU via drinking water starting on gestational day (GD) 6. FeD was induced in a 2nd set of dams beginning on GD2. A third set of dams received the FeD diet from GD2 paired with either 1ppm or 3ppm PTU beginning on GD6. All treatments continued until the time of sacrifice. On PN18, one female pup from each litter was sacrificed and the brain examined for SBH. We observed lower maternal, PN2 and PN18 pup serum T4 in response to PTU. FeD reduced serum T4 in pups on PN16, but did not affect serum T4 in dams or PN2 pups. Neither did FeD in combination with PTU alter T4 levels in dams on PN18 or pups on PN2 compared to PTU treatment alone. By PN16, however more severe T4 reductions were observed in pups when FeD was combined with PTU. SBH increased with increasing dosage of PTU, but counter to our hypothesis, no SBH was detected in the offspring of FeD dams. As such, T4 levels in dams and newborn pups rather than older neonates appear to be a better predictor SBH associated with TH insufficiency. These data indirectly

  13. In situ carbon isotope analysis of Archean organic matter with SIMS (United States)

    Williford, K. H.; Ushikubo, T.; Lepot, K.; Hallmann, C.; Spicuzza, M. J.; Eigenbrode, J. L.; Summons, R. E.; Valley, J. W.


    rates as low as 10% relative to anthracite. Samples from the ABDP-9 (n=3; Mount McRae Shale, ~2.5 Ga), RHDH2a (n=2; Carrawine Dolomite and Jeerinah Fm, ~2.6 Ga), WRL1 (n=3; Wittenoom Fm, Marra Mamba Iron Formation, and Jeerinah Fm, ~2.6 Ga), and SV1 (n=1; Tumbiana Fm, ~2.7 Ga) drill cores, each previously analyzed for bulk organic carbon isotope composition, yielded 100 new, in situ data from Neoarchean sedimentary OM. In these samples, δ13C varies between -53.1 and -28.3% and offsets between in situ and bulk compositions range from -8.3 to 18.8%. In some cases, isotopic composition and mode of occurrence (e.g. morphology and mineral associations) are statistically correlated, enabling the identification of distinct reservoirs of OM. Our results support previous evidence for aerobiosis and depth gradients of oxidation in Neoarchean environments driven by photosynthesis and methane metabolism. The relevance of these findings to questions of bio- and syngenicity as well as the alteration history of this OM and similar, previously reported Archean OM will be discussed.

  14. Triple sulfur isotope composition of Late Archean seawater sulfate (United States)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.


    Multiple sulfur isotope ratios in Archean sedimentary rocks have provided powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. Most processes fractionate sulfur isotopes in proportion to their mass differences, but the Archean sulfur isotope record is marked by pronounced mass-independent fractionation (MIF, Δ33S≠0). The origin of these signatures has been traditionally interpreted as the result of photolysis of SO2 from short wavelength UV light, with positive Δ33S values recorded in pyrite and negative Δ33S values in sulfate-bearing phases [2]. This long-held hypothesis rests on observations of negative Δ33S from enigmatic barite occurrences from mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes [3], it is largely untested [3]. It is largely untested. Consequently, the biggest challenge to our current understanding of the early sulfur cycle is a poor understanding of the isotopic composition of seawater sulfate. Sulfate evaporite minerals are absent from Archean strata and the sulfur isotope record is written entirely by measurements of pyrite. Carbonate associated sulfate (CAS) provides an important archive for assaying the isotopic composition of ancient seawater sulfate It has been exploited in many studies of Phanerozoic and Proterozoic sulfate but have been only marginally used thus far for Archean samples because of the extremely low concentration of CAS in limestones and dolomites from this era. We have developed a novel MC-ICP-MS approach to solve this problem [4]. This new method lowers the detection limit by up to three orders of magnitude for δ34S and Δ33S measurements, enabling to work on a few nmols of sulfate which represent only tens of mg of sample powders micromilled from specific carbonate textures. Two stratigraphic sections from the 2

  15. Radiative forcings for 28 potential Archean greenhouse gases

    Directory of Open Access Journals (Sweden)

    B. Byrne


    Full Text Available Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP. CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data for background pressures of 0.5, 1, and 2 bar. For CO2 to resolve the FYSP alone, 0.21 bar is needed with 0.5 bar of atmospheric pressure, 0.13 bar with 1 bar of atmospheric pressures, or 0.07 bar with 2 bar of atmospheric pressure. For CH4, we find that near-infrared absorption is much stronger than previously thought, arising from updates to the HITRAN database. CH4 radiative forcing peaks at 10.3, 9, or 8.3 W m−2 for background pressures of 0.5, 1 or 2 bar, likely limiting the utility of CH4 for warming the Archean. For the other 26 HITRAN gases, radiative forcings of up to a few to 10 W m−2 are obtained from concentrations of 0.1–1 ppmv for many gases. We further calculate the reduction of radiative forcing due to gas overlap for the 20 strongest gases. We recommend the forcings provided here be used both as a first reference for which gases are likely good greenhouse gases, and as a standard set of calculations for validation of radiative forcing calculations for the Archean.

  16. Accretionary origin for the late Archean Ashuanipi Complex of Canada (United States)

    Percival, J. A.


    The Ashuanipi complex is one of the largest massif granulite terrains of the Canadian Shield. It makes up the eastern end of the 2000 km long, lower-grade, east-west belts of the Archean Superior Province, permitting lithological, age and tectonic correlation. Numerous lithological, geochemical and metamorphic similarities to south Indian granulites suggest common processes and invite comparison of tectonic evolution. The Ashuanipi granulite terrain of the Cannadian Superior Province was studied in detail, and an origin through self-melting of a 55 km thick accretionary wedge seems possible.

  17. Manganese carbonates as possible biogenic relics in Archean settings (United States)

    Rincón-Tomás, Blanca; Khonsari, Bahar; Mühlen, Dominik; Wickbold, Christian; Schäfer, Nadine; Hause-Reitner, Dorothea; Hoppert, Michael; Reitner, Joachim


    Carbonate minerals such as dolomite, kutnahorite or rhodochrosite are frequently, but not exclusively generated by microbial processes. In recent anoxic sediments, Mn(II)carbonate minerals (e.g. rhodochrosite, kutnahorite) derive mainly from the reduction of Mn(IV) compounds by anaerobic respiration. The formation of huge manganese-rich (carbonate) deposits requires effective manganese redox cycling in an oxygenated atmosphere. However, putative anaerobic pathways such as microbial nitrate-dependent manganese oxidation, anoxygenic photosynthesis and oxidation in ultraviolet light may facilitate manganese cycling even in an early Archean environment, without the availability of oxygen. In addition, manganese carbonates precipitate by microbially induced processes without change of the oxidation state, e.g. by pH shift. Hence, there are several ways how these minerals could have been formed biogenically and deposited in Precambrian sediments. We will summarize microbially induced manganese carbonate deposition in the presence and absence of atmospheric oxygen and we will make some considerations about the biogenic deposition of manganese carbonates in early Archean settings.

  18. The Cosmic Ray Intensity Near the Archean Earth

    CERN Document Server

    Cohen, O; Kota, J


    We employ three-dimensional state of the art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic ray transport to investigate the cosmic ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic ray spectrum is to changes in the sunspot placement and magnetic field strength, the large scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic ray flux than is the case today. The cosmic ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic ray flux at 1AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variat...

  19. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis

    DEFF Research Database (Denmark)

    Jones, C.; Nomosatryo, S.; Crowe, S.A.;


    and silica content of BIFs, we estimate that seawater in the Archean and early Proterozoic Eons likely contained 0.04–0.13 µM phosphorus, on average. These phosphorus limiting conditions could have favored primary production through photoferrotrophy at the expense of oxygenic photosynthesis until upwelling......As a nutrient required for growth, phosphorus regulates the activity of life in the oceans. Iron oxides sorb phosphorus from seawater, and through the Archean and early Proterozoic Eons, massive quantities of iron oxides precipitated from the oceans, producing a record of seawater chemistry...

  20. Observation of the anisotropic Dirac cone in the band dispersion of 112-structured iron-based superconductor Ca0.9La0.1FeAs2 (United States)

    Liu, Z. T.; Xing, X. Z.; Li, M. Y.; Zhou, W.; Sun, Y.; Fan, C. C.; Yang, H. F.; Liu, J. S.; Yao, Q.; Li, W.; Shi, Z. X.; Shen, D. W.; Wang, Z.


    CaFeAs2 is a parent compound of recently discovered 112-type iron-based superconductors. It is predicted to be a staggered intercalation compound that naturally integrates both quantum spin Hall insulating and superconducting layers and an ideal system for the realization of Majorana modes. We performed a systematical angle-resolved photoemission spectroscopy and first-principles calculation study of the slightly electron-doped CaFeAs2. We found that the zigzag As chain of 112-type iron-based superconductors play a considerable role in the low-energy electronic structure, resulting in the characteristic Dirac-cone like band dispersion as the prediction. Our experimental results further confirm that these Dirac cones only exist around the X but not Y points in the Brillouin zone, breaking the S4 symmetry at iron sites. Our findings present the compelling support to the theoretical prediction that the 112-type iron-based superconductors might host the topological nontrivial edge states. The slightly electron doped CaFeAs2 would provide us a unique opportunity to realize and explore Majorana fermion physics.

  1. Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars (United States)

    Nie, Nicole X.; Dauphas, Nicolas; Greenwood, Richard C.


    Banded iron formations (BIFs) contain appreciable amounts of ferric iron (Fe3+). The mechanism by which ferrous iron (Fe2+) was oxidized into Fe3+ in an atmosphere that was globally anoxic is highly debated. Of the three scenarios that have been proposed to explain BIF formation, photo-oxidation by UV photons is the only one that does not involve life (the other two are oxidation by O2 produced by photosynthesis, and anoxygenic photosynthesis whereby Fe2+ is directly used as electron donor in place of water). We experimentally investigated iron and oxygen isotope fractionation imparted by iron photo-oxidation at a pH of 7.3. The iron isotope fractionation between precipitated Fe3+-bearing lepidocrocite and dissolved Fe2+ follows a Rayleigh distillation with an instantaneous 56Fe/54Fe fractionation factor of + 1.2 ‰. Such enrichment in the heavy isotopes of iron is consistent with the values measured in BIFs. We also investigated the nature of the mass-fractionation law that governs iron isotope fractionation in the photo-oxidation experiments (i.e., the slope of the δ56Fe-δ57Fe relationship). The experimental run products follow a mass-dependent law corresponding to the high-T equilibrium limit. The fact that a ∼3.8 Gyr old BIF sample (IF-G) from Isua (Greenland) falls on the same fractionation line confirms that iron photo-oxidation in the surface layers of the oceans was a viable pathway to BIF formation in the Archean, when the atmosphere was largely transparent to UV photons. Our experiments allow us to estimate the quantum yield of the photo-oxidation process (∼0.07 iron atom oxidized per photon absorbed). This yield is used to model iron oxidation on early Mars. As the photo-oxidation proceeds, the aqueous medium becomes more acidic, which slows down the reaction by changing the speciation of iron to species that are less efficient at absorbing UV-photons. Iron photo-oxidation in centimeter to meter-deep water ponds would take months to years to

  2. Spatially Resolved, In Situ Carbon Isotope Analysis of Archean Organic Matter (United States)

    Williford, Kenneth H.; Ushikubo, Takayuki; Lepot, Kevin; Hallmann, Christian; Spicuzza, Michael J.; Eigenbrode, Jennifer L.; Summons, Roger E.; Valley, John W.


    Archean OM suggest that instrumental bias is consistent for 12C count rates as low as 10% relative to anthracite. Samples from the ABDP-9 (n=3; Mount McRae Shale, approximately 2.5 Ga), RHDH2a (n=2; Carrawine Dolomite and Jeerinah Fm, approximately 2.6 Ga), WRL1 (n=3; Wittenoom Fm, Marra Mamba Iron Formation, and Jeerinah Fm, approximately 2.6 Ga), and SV1 (n=1; Tumbiana Fm, approximately 2.7 Ga) drill cores, each previously analyzed for bulk organic carbon isotope composition, yielded 100 new, in situ data from Neoarchean sedimentary OM. In these samples, delta C-13 varies between -53.1 and -28.3 % and offsets between in situ and bulk compositions range from -8.3 to 18.8%. In some cases, isotopic composition and mode of occurrence (e.g. morphology and mineral associations) are statistically correlated, enabling the identification of distinct reservoirs of OM. Our results support previous evidence for gradients of oxidation with depth in Neoarchean environments driven by photosynthesis and methane metabolism. The relevance of these findings to questions of bio- and syngenicity as well as the alteration history of previously reported Archean OM will be discussed.

  3. Late Archean Euxinia as a Window into Early Biogeochemical Cycles (United States)

    Scott, C.; Bekker, A.; Reinhard, C.; Lyons, T. W.


    A number of transition metals present in seawater in trace amounts (10-10 to 10-7 moles/L) are nevertheless bioessential micronutrients, utilized in a wide range of cellular activities. Because their abundances in seawater are largely a reflection of redox-controlled sources and sinks, Precambrian biogeochemists increasingly focus on the interrelated nature of major redox transitions, the chemical composition of the oceans, and the evolution of life on Earth. Of particular interest are temporal trends in seawater inventories of elements utilized in the nitrogen cycle, both nitrogen fixation (Fe, V, Mo) and denitrification (Cu). Recent work on the link between trace metal abundance and the biologically mediated nitrogen cycle has focused on the Proterozoic Eon, when oxidative weathering was well established and sulfidic conditions were common in the deep ocean. However, we know little about trace metal availability during the Archean Eon, when oxygenic photosynthesis first appeared on Earth and began to alter the chemical composition of the oceans and atmosphere. The development of euxinic conditions, or anoxic and sulfidic bottom waters, provides important information regarding the cycling of major elements such as C, S and Fe. However, euxinic black shales can also provide a record of trace metal abundance. Mo is highly enriched in these shales and displays a conspicuous covariation with the concentration of total organic carbon (TOC). Furthermore, it has been demonstrated that the ratio Mo/TOC is proportional to the concentration of Mo in seawater. Cu and V are also enriched in euxinic black shales, and both correlate with TOC. By analogy with Mo, it is likely that the ratios Cu/TOC and V/TOC also contain information on the concentration of these transition metals in seawater. Here we present C-S-Fe systematics as well as trace metal concentrations from black shales of the Roy Hill Member of the late Archean Jeerinah Formation. Fe speciation indicates that the


    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O.; Drake, J. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kota, J. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092 (United States)


    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  5. Archean evolution of the Leo Rise and its Eburnean reworking (United States)

    Thiéblemont, Denis; Goujou, Jean Christian; Egal, Emmanuel; Cocherie, Alain; Delor, Claude; Lafon, Jean Michel; Fanning, C. Mark


    Recent geological mapping in southeastern Guinea, supported by zircon dating, has called into question traditional understanding concerning the evolution of the Leo Rise. Gneiss dated at about 3540 Ma appears to constitute the earliest evidence for continental accretion within the Leo Rise. The existence of a Leonian depositional cycle at about 3000 Ma is confirmed, marked by volcanic and sedimentary rocks that can be correlated with the Loko Group in Sierra Leone. The span of ages (3244-3050 Ma) suggests that the Leonian cycle comprises different episodes whose respective chronology is as yet uncertain. Clearly distinct from the Leonian cycle, the Liberian cycle (˜2900-2800 Ma) is represented in Guinea by granite and migmatite (˜2910-2800 Ma), reflecting remobilization of the ancient Archean basement and deformation of the Leonian rocks; no deposition is associated with this cycle. After the Liberian, the Nimba and Simandou successions, containing Liberian detrital zircons, are assigned to the Birimian (˜2200-2000 Ma). Finally, Eburnean tectonism caused intense deformation of the Archean craton, accompanied by high-grade metamorphism and the intrusion of granite and syenite with ages between 2080 and 2020 Ma. The evolution of the Kénéma-Man domain, attributed to the cumulated effect of the Leonian and Liberian cycles, is thus in part Eburnean. We can suppose, therefore, that the NNE-SSW-trending structures attributed to the Liberian in Sierra Leone are, in fact, Eburnean. The Kambui Supergroup, also affected by this tectonism, should thus be assigned to the Birimian rather than the Liberian, which would explain its similarities with the Nimba and Simandou successions.

  6. Linking the Fe-, Mo-, and Cr isotope records with the multiple S isotope record of Archean sedimentary rocks (United States)

    Ohmoto, H.; Watanabe, Y.


    Researchers have interpreted the isotopic data of redox sensitive elements (e.g., Fe, Mo and Cr) in Archean- and Proterozoic-aged sedimentary rocks within a framework of an atmospheric O2 evolution model that relied on an interpretation of the multiple sulfur isotopic record of sedimentary rocks. The current paradigm is that the anomalous isotopic fractionations of sulfur (AIF-S, or MIF-S) in sedimentary rocks were created by the UV photolysis of volcanic SO2 in an O2-poor (i.e., pO2 atmosphere, and that the rise of atmospheric pO2 to > 1 ppm occurred at ~2.45 Ga. However, this paradigm has recently encountered the following serious problems: (1) UV photolysis of SO2 by a broad-band UV lamp, which simulates the UV spectra of the sun light, produced the δ34S-Δ33S values for the S0 and SO4 that are significantly different from >90% of data on natural samples. (2) Many Archean-age sedimentary rocks do not exhibit AIF-S signatures. (3) Strong AIF-S signatures are typically found in organic C- and pyrite rich Archean-age black shales that were altered by submarine hydrothermal fluids during the early diagenetic stage of the rocks. (4) H2S, rather than SO2, was probably the dominant S-bearing volcanic gas on an anoxic Earth. Yet, UV photolysis of H2S does not generate AIF-S. (5) Some post-2.0 Ga natural samples were found to possess strong AIF-S signatures, such as sulfates in air pollutants that were produced by coal burning in an oxygen-rich atmosphere. Lasaga et al. (2008) demonstrated theoretically that chemisorption reactions between some solid surfaces and S-bearing aqueous (or gaseous) species, such as between organic matter and aqueous sulfate, may generate AIF-S. Watanabe et al. (2009; in prep.) demonstrated experimentally that reactions between simple amino acid crystals and sulfate under hydrothermal conditions produced AIF-S signatures that matched with more than 90% of data on natural samples. These studies, as well as the observed correlations between the

  7. Broad-band X-ray emission and the reality of the broad iron line from the neutron star-white dwarf X-ray binary 4U 1820-30 (United States)

    Mondal, Aditya S.; Dewangan, G. C.; Pahari, M.; Misra, R.; Kembhavi, A. K.; Raychaudhuri, B.


    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disc. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here, we investigate the reality of the broad iron line detected earlier from the neutron-star low-mass X-ray binary 4U 1820-30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broad-band spectral study of the atoll source using Suzaku and simultaneous NuSTAR and Swift observations. We have used different continuum models involving accretion disc emission, thermal blackbody and thermal Comptonization of either disc or blackbody photons. The Suzaku data show positive and negative residuals in the region of Fe K band. These features are well described by two absorption edges at 7.67 ± 0.14 keV and 6.93 ± 0.07 keV or partial covering photoionized absorption or by blurred reflection. Though, the simultaneous Swift and NuSTAR data do not clearly reveal the emission or absorption features, the data are consistent with the presence of either absorption or emission features. Thus, the absorption based models provide an alternative to the broad iron line or reflection model. The absorption features may arise in winds from the inner accretion disc. The broad-band spectra appear to disfavour continuum models in which the blackbody emission from the neutron-star surface provides the seed photons for thermal Comptonization. Our results suggest emission from a thin accretion disc (kTdisc ˜ 1 keV), Comptonization of disc photons in a boundary layer most likely covering a large fraction of the neutron-star surface and innermost parts of the accretion disc, and blackbody emission (kTbb ˜ 2 keV) from the polar regions.

  8. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. (United States)

    Tang, Ming; Chen, Kang; Rudnick, Roberta L


    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago.

  9. Drilling for the Archean Roots of Life and Tectonic Earth in the Barberton Mountains

    Directory of Open Access Journals (Sweden)

    Nicola McLoughlin


    Full Text Available In the Barberton Scientific Drilling Program (BSDP we successfully completed three drill holes in 2008 across strategically selected rock formations in the early Archean Barberton Greenstone Belt, South Africa. This collaborative project’s goal is to advance understanding of geodynamic and biogeochemical processes of the young Earth. The program aims to better define and characterize Earth’s earliest preserved ocean crust shear zones and microbial borings in Archean basaltic glass, and to identify biogeochemical fingerprints of ancient ecological niches recorded in rocks. The state-of-the-art analytical and imaging work will address the question of earliest plate tectonics in the Archean, the δ18O composition, the redox state and temperature of Archean seawater, and the origin of life question.

  10. Geostable molecules and the Late Archean 'Whiff of Oxygen' (United States)

    Summons, R. E.; Illing, C. J.; Oduro, H. D.; French, K. L.; Ono, S.; Hallmann, C.; Strauss, H.


    exhibits a 'MIF' signal that is significantly amplified compared to co-occurring pyrite sulfur. Limited isotopic exchange between the organic and inorganic sulfur pools suggests Archean origin of these organic sulfur compounds. We also report new results from the 2012 Agouron Pilbara drilling project. Anbar A.D. et al. A whiff of oxygen before the great oxidation event. Science 317, 1903-1906. (2007). Bosak T. et al., Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl. Acad. Sci. USA 106:10939-10943 (2009). Kopp, R.E. et al.,The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 102: 11131-11136 (2005). Waldbauer J.R. et al., Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Research 169, 28-47 (2008). Waldbauer J.R. et al., 2011. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proceedings of the National Academy of Sciences (USA) 108, 13409-13414

  11. Multiband Gutzwiller theory of the band magnetism of LaO iron arsenide; Multiband Gutzwiller-Theorie des Bandmagnetismus von LaO-Eisen-Arsenid

    Energy Technology Data Exchange (ETDEWEB)

    Schickling, Tobias


    In this work we apply the Gutzwiller theory for various models for LaOFeAs. It was discovered in 2008 that doped LaOFeAs is superconducting below a temperature of T{sub c} = 28 K. Soon after that discovery, more iron based materials were found which have an atomic structure that is similar to the one of LaOFeAs and which are also superconducting. These materials form the class of iron-based superconductors. Many properties of this material class are in astonishing agreement with the properties of the cuprates. Therefore, studying this new material may promote our understanding of high-T{sub c} superconductivity. Despite great efforts, however, Density Functional Theory calculations cannot reproduce the small magnetic moment in the ground state of undoped LaOFeAs. Such calculations overestimate the magnetic moment by a factor 2-3. Within our Gutzwiller approach, we take additional local Coulomb correlations into account. We show that it is necessary to work with the iron 3d-orbitals and the arsenic 4p-orbitals to obtain a realistic description of LaOFeAs. For a broad parameter regime of the electronic interactions, we find a magnetic moment that is in the region of the experimentally observed values. We claim that the magnetic phase in LaOFeAs can be described as a spin-density wave of Landau-Gutzwiller quasi-particles.

  12. Iron Chelation (United States)

    Skip to main content Menu Donate Treatments Therapies Iron Chelation Iron chelation therapy is the main treatment ... have iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you ...

  13. Radiative forcings for 28 potential Archean greenhouse gases

    CERN Document Server

    Byrne, Brendan


    Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP). CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data for background pressures of 0.5, 1, and 2 bar of atmospheric N2. For CO2 to resolve the FYSP alone at 2.8 Gyr BP (80% of present solar luminosity), 0.32 bar is needed with 0.5 bar of atmospheric N2, 0.20 bar with 1 bar of atmospheric N2, or 0.11 bar with 2 bar of atmospheric N2. For CH4, we find that near-infrared absorption is much stronger than previously thought, arising from updates to the HITRAN database. CH4 radiative forcing peaks at 10.3, 9, or 8.3 Wm-2 for background pressures of 0.5, 1 or 2 bar, likely limiting ...

  14. 太古宙TTG岩石是什么含义?%What is the Archean TTG?

    Institute of Scientific and Technical Information of China (English)

    张旗; 翟明国


    太古宙TTG岩石的成因是一个热门话题,它与太古宙麻粒岩地体并称为太古宙两大疑案.TTG岩石关系到地球早期陆壳是如何形成、生长和演化的.现在流行的观点是,太古宙TTG要么产于板块消减带,要么来自加厚的下地壳,这两种说法孰对孰错?笔者认为二者证据都不充分.上述认识是将太古宙TTG与现代埃达克岩简单对比得出来的,而这种对比忽略了地质时代和构造背景的差异,正确的对比应当是在太古宙不同类型花岗质岩石之间进行.太古宙地壳异常的热,什么时候开始出现板块构造至今没有得到明确的结论.太古宙TTG是太古宙地壳的主要成分,太古宙TTG地体反映的是太古宙地壳的平均厚度,加厚是相对于正常地壳厚度而言的.太古宙地质研究存在一个明显的误区,即不恰当地运用“将今论古”的原则,“将今论古”只适合显生宙或中-新元古代.研究TTG岩石意义十分重大,对我们理解前板块构造以及板块构造何时开始的是很关键的.%The Archean granulite massif and Archean TTG are two big mystery in Archean. Archean TTG has long been a hot topic. It is related to how the early continental crust formed grew and evolved. It has been widely acknowledged that Archean TTG formed either in a subduction zone or a product of melting thickened lower continental crust. However, these understandings were based on a simple comparison between Archean TTG and modern adakite. Instead, the correct comparison should be made between various types of Archean granites. And the Archean crust was abnormally hot and the presence of plate tectonics in Archean is still questioned. As the major component of the Archean crust, Archean TTG reflects the average thickness of the Archean crust. But, thickened crust is a concept compared to normal crust thickness. Consequently, there is a significant misunderstanding in the studies on Archean geology and improper usage

  15. Thyroid Hormone-Dependent Formation of a Subcortical Band Heterotopia (SBH) in the Neonatal Brain is not Exacerbated Under Conditions of Low Dietary Iron (United States)

    Thyroid hormones (TH) are critical for brain development. Modest TH insufficiency in pregnant rats induced by propylthiouracil (PTU) results in formation of a structural abnormality, a subcortical band heterotopia (SBH), in brains of offspring. PTU reduces TH by inhibiting the s...

  16. Methodology for determination of trace elements in mineral phases of iron banded formation by LA-ICP-MS; Metodologia de determinacao de elementos-traco em fases minerais de formacoes ferriferas bandadas por LA-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Denise V.M. de; Nalini Junior, Herminio A.; Sampaio, Geraldo M.S.; Abreu, Adriana T. de; Lana, Cristiano de C., E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Universidade Federal de Ouro Preto (DEGEO/UFOP), Ouro Preto, MG (Brazil). Departamento de Geologia


    The study of the chemical composition of mineral phases of iron formation (FF), especially of trace elements, is an important tool in the understanding of the genesis of these rocks and the contribution of the phases in the composition of whole rock. Low mass fraction of such elements in the mineral phases present in this rock type requires a suitable analytical procedure. The laser ablation technique coupled with ICP-MS (LA-ICP-MS) has been widely used for determination of trace elements in geological samples. Thus, the aim of this study is to develop calibration curves for determination of trace elements (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in mineral phases of banded iron formations by LA-ICP-MS. Several certified reference materials (CRM) were used for calibrate the equipment. The analytical conditions were checked by CRM NIST SRM 614. The results were satisfactory, since the curves showed good linearity coefficients, good accuracy and precision of results. (author)

  17. The Rise of Continents and the Transition Archean to Proterozoic (United States)

    Rey, P. F.; Flament, N.; Coltice, N.


    Terrestrial planets evolve in part via partial melting and gravitational differentiation, and in part via fluid/rock interactions at the surface. Mass and energy transfers across their various envelopes depend on the mode of convective motion, which may involve stagnant or mobile lid systems, for which plate tectonics is a possible mode; one promoting the coupling between exogenic and endogenic envelopes. In the other hand, fluid/rock interaction at the surface depends on the planet hypsometry and availability of weathering agents such as liquid water. It also depends on fluid/rock interaction at mid-oceanic ridge and therefore on the mode of convection. Hence, from 4.54 to 2.5 Ga the interplay between deep and surface processes under the forcing of secular cooling was such that the Earth differentiation was non-linear with sudden crises that punctuated periods of relative quietness. The Earth secular cooling impacted on deep and surface processes through the modulation of the Earth's hypsometry. This modulation occurred via cooling and strengthening of the lithosphere (Rey and Coltice, Geology, 2008), and via the deepening of oceanic basin, which lowered the mean sea level forcing the continents to emerge (Flament et al., EPSL, 2008). Stronger lithospheres are able to sustain higher orogenic belts and orogenic plateaux, the erosion of which lead to stronger fluxes towards the ocean. Secular strengthening and emergence conspired to enhance weathering and erosion of the continents and therefore to enhance the geochemical coupling between the endogenic and exogenic Earth's envelopes (Rey and Coltice, Geology, 2008). The shift to the aerobic world, at the Archean to Proterozic transition, took place at a time when exogenic envelopes recorded major shifts in composition (eg. Taylor and McLennan, Rev. of Geophys., 1995; Veizer and Compston, Geochem. Cosmochem Acta, 1976; Valley et al., Contrib. to Mineral. Petrol., 2005) that are consistent with the progressive exposure

  18. Mantle differentiation and chemical cycling in the Archean (Invited) (United States)

    Lee, C.


    Differentiation of Earth’s silicate mantle is largely controlled by solid-state convection. Today, upwelling mantle leads to decompression melting. Melts, being of low density, rise to form the continental and oceanic crusts. Because many trace elements, such as heat-producing U, Th and K, as well as the noble gases, preferentially partition into melts, melt extraction concentrates these elements into the crust or atmosphere. However, one by-product of whole-mantle convection is that melting during the Earth’s first billion years was likely deep and hot. Such high pressure melts may have been dense, allowing them to stall, crystallize and later founder back into the lower mantle. These sunken lithologies would have ‘primordial’ chemical signatures despite a non-primordial origin. As the Earth cools, the proportion of upwards melt segregation relative to downwards melt segregation increases, removing volatiles and other incompatible elements to the surface. Recycling of these elements back into the Earth’s interior occurs by subduction, but because of chemical weathering, hydrothermal alteration and photosynthetic reactions occurring in the Earth’s exosphere, these recycled materials may re-enter the mantle already chemically transformed. In particular, photosynthetic production of oxygen and, especially, the progressive oxygenation of the Earth’s atmosphere require removal of reduced carbon from the Earth’s surface. If such removal occurred by subduction, the mantle would have become progressively reduced. During the Archean and early Proterozoic, much of this material may have contributed to making cratonic mantle, and if so, cratonic mantle may have been assembled by reduced building blocks, perhaps explaining the origin of diamonds with organic carbon isotopic signatures. The origin of peridotitic diamonds in cratonic mantle could then be explained if the underlying convecting mantle was in fact more oxidizing such that carbonatitic liquids

  19. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India) (United States)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane


    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  20. Geological Sulfur Isotopes Indicate Elevated OCS in the Archean Atmosphere, Solving the Faint Young Sun Paradox

    DEFF Research Database (Denmark)

    Ueno, Yuichiro; Johnson, Matthew Stanley; Danielache, Sebastian Oscar


    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological re......-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation....

  1. Variations in the magnitude of non mass dependent sulfur fractionation in the Archean atmosphere (United States)

    Claire, M.; Kasting, J. F.


    Recent experimental data have enabled quantitatively meaningful computations of the non-mass dependent fractionation of sulfur’s isotopes (Δ33S) that exemplify the Archean rock record. The Δ33S signal originates as a result of fine structure in the absorption cross-section of SO2 isotopologues [1], which only undergo significant photolysis in reducing atmospheres [2]. The Δ33S signal produced by SO2 photolysis varies significantly between 190 and 220 nm, and thus is strongly dependent on any other atmospheric gases which absorb photons in this range [3], as well as the height at which photolysis occurs. A model that is capable of resolving the altitude-dependent radiative transfer through a realistic self-consistent reducing atmosphere is therefore essential when making direct comparisons between atmospheric Δ33S production and the rock record. In this work, we investigate how the magnitude of Δ33S might vary as function of atmospheric composition, which in turn allows the rock record to constrain the Archean atmosphere. Other recent work on this topic using simplied atmospheric models has implicated large concentrations of SO2 [5], OCS [3], and CO2 [6] as being responsible for the variations in Archean Δ33S. We present results from an altitude-dependent photochemical model of Archean photochemistry [4] of necessary complexity to resolve the complicated redox structure of the Archean atmosphere. We show that while increased concentrations of these gases all affect Δ33S in an unconstrained model, the atmospheric conditions required for OCS or SO2 shielding are unlikely to occur in an Archean atmosphere constrained by reasonable expectations of volcanic and biogenic fluxes. Within the context of plausible Archean atmospheres, we investigate how shielding due to changing amounts of CO2, biogenic sulfur gases, and fractal organic haze [7] affect the magnitude of Δ33S produced by the Archean atmosphere, and show why simplified atmospheric modeling may lead to

  2. Lead isotopic evolution of Archean continental crust, Northern Tanzania (United States)

    Bellucci, J. J.; McDonough, W. F.; Rudnick, R. L.; Walker, R. J.


    The continental crust is stratified in composition; the upper crust is generally enriched in highly incompatible trace elements relative to the lower crust [1]. The Western Granulite section of the Mozambique Belt of Northern Tanzania yields Archean Nd model ages and has zircons with U-Pb ages of ~2.6 Ga [2,3], but was strongly re-worked during the Pan-African Orogeny, ca. 560 Ma [2,3,4]. Here we use time-integrated Pb isotopic modeling for lower and middle crustal xenoliths, as well as upper crustal granulites to determine the timing of, and degree of intra-crustal differentiation. The Pb isotopic compositions of most feldspars in the lower crustal samples, measured via LA-MC-ICPMS, fall on the trend defined by the Tanzanian Craton [5] and therefore, were most likely extracted from the mantle at a similar time, ca. 2.7 Ga. However, some xenoliths fall off this trend and show enrichment in 207Pb/204Pb, which we interpret as reflecting derivation from more heterogeneous mantle than that sampled in the Tanzanian Craton. In contrast to lower crustal xenoliths from the Tanzanian Craton [5], we see no single feldspar Pb-Pb isochrons, which indicates complete re-homogenization of the Pb isotopic composition of the feldspars in the lower crust of the Mozambique Belt during the Pan-African Orogeny, and heating to > 600°C [5]. Using time integrated Pb modeling, the upper crust of the Western Granulites is enriched in U by ˜ 2.5 relative to that of the lower crust, which must have taken place around the time of mantle extraction (ca. 2.7 Ga). In addition, these calculations are consistent with a Th/U ratio of ˜ 4 for the bulk lower crust and ˜ 3 for the bulk upper crust. The common Pb isotopic composition of a single middle crustal xenolith implies a Th/U of 20, but is unlikely to be generally representative of the middle crust. [1] Rudnick, R. L. and Gao, S. (2003). In the Crust, vol. 3, Treatise on Geochemistry:1-64. [2] Mansur, A. (2008) Masters Thesis, University of

  3. Continental emergence in the Late Archean reconciles early and late continental growth models (United States)

    Flament, Nicolas; Coltice, Nicolas; Rey, Patrice


    The analysis of ancient sediments (Rare Earth Element composition of black shales, isotopic strontium composition of marine carbonates, isotopic oxygen composition of zircons) suggests that continental growth culminated around the Archean-Proterozoic transition. In stark contrast, the geochemical analysis of ancient basalts suggests that depletion of the mantle occurred in the Hadean and Eoarchean. This paradox may be solved if continents were extracted from the mantle early in Earth's history, but remained mostly below sea level throughout the Archean. We present a model to estimate the area of emerged land and associated isotopic strontium composition of the mantle and oceans as a function of the coupled evolution of mantle temperature, continental growth and distribution of surface elevations (hypsometry). For constant continental hypsometry and four distinct continental growth models, we show that sea level was between 500 and 2000 m higher in the Archean than at present, resulting in isotopic composition of the mantle and oceans, we show that a reduced area of emerged continental crust can explain why the geochemical fingerprint of continents extracted early in Earth's history was not recorded at the surface of the Earth until the late Archean.

  4. Constraining the location of the Archean--Proterozoic suture in the Great Basin based on magnetotelluric soundings (United States)

    Rodriguez, Brian D.; Sampson, Jay A.


    It is important to understand whether major mining districts in north-central Nevada are underlain by Archean crust, known to contain major orogenic gold deposits, or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between the Archean crust and Mojave province is also critical because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. In the Great Basin, the attitude of the suture zone is unknown because it is concealed below cover. A regional magnetotelluric sounding profile along the Utah-Nevada State line reveals a deeply penetrating, broad electrical conductor that may be the Archean-Proterozoic suture zone in the northwest corner of Utah. This major crustal conductor's strike direction is northwest, where it broadens to about 80 km wide below about 3-km depth. These results suggest that the southwestern limit of intact Archean crust in this part of the Great Basin is farther north than previously reported. These results also suggest that the major gold belts in north-central Nevada are located over the Paleoproterozoic Mojave province, and the Archean terrain lies northeast in the northwest corner of Utah. Rifted Archean crust segments south and west of the suture suggest that future mineral exploration northeast of current mineral trends may yield additional gold deposits.

  5. Tracking the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada and Utah (United States)

    Rodriguez, B.D.; Williams, J.M.


    It is important to know whether major mining districts in north-central Nevada are underlain by crust of the Archean Wyoming craton, known to contain major orogenic gold deposits or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between these provinces is also important because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The suture zone is exposed in northeastern Utah and south-western Wyoming and exhibits a southwest strike. In the Great Basin, the suture zone strike is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and Cenozoic basin fill. Two-dimensional resistivity modeling of three regional north-south magnetotelluric sounding profiles in western Utah, north-central Nevada, and northeastern Nevada, and one east-west profile in northeastern Nevada, reveals a deeply penetrating (>10 km depth), broad (tens of kilometers) conductor (1-20 ohm-meters) that may be the Archean-Proterozoic suture zone, which formed during Early Proterozoic rifting of the continent and subsequent Proterozoic accretion. This major crustal conductor changes strike direction from southwest in Utah to northwest in eastern Nevada, where it broadens to ???100 km width that correlates with early Paleozoic rifting of the continent. Our results suggest that the major gold belts may be over-isolated blocks of Archean crust, so Phanerozoic mineral deposits in this region may be produced, at least in part, from recycled Archean gold. Future mineral exploration to the east may yield large gold tonnages. ?? 2008 Geological Society of America.

  6. On the nature and origin of highly-refractory Archean lithosphere: Petrological and geophysical constraints from the Tanzanian craton (United States)

    Gibson, S. A.; McMahon, S. C.; Day, J. A.; Dawson, J. B.


    The nature and timescales of garnet formation are important to understanding how subcontinental lithospheric mantle (SCLM) has evolved since the Archean, and also to mantle dynamics, because the presence of garnet greatly influences the density of the lower lithosphere and hence the long-term stability of thick (150 to 220 km) subcratonic lithosphere. Nevertheless, the widespread occurrence of garnet in the SCLM remains one of the 'holy grails' of mantle petrology. Garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle evolved during the last 3 billion years. Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element patterns similar to hypothetical garnets proposed to have formed in the Earth's SCLM during the Archean, prior to metasomatism [Stachel et al., 2004]. These rare ultradepleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with highly-refractory olivine (Fo95.4) and orthopyroxene (Mg#=96.4). These phases are all more magnesian than generally encountered in global mantle harzburgites and diamond inclusions. The ultradepleted garnets form interconnecting networks around grains of orthopyroxene which give the rocks a banded appearance: we propose that the increase in pressure associated with cratonization may have caused isochemical exsolution of ultradepleted garnet from orthopyroxene. These unique garnets have not previously been identified in global suites of mantle xenoliths or diamond inclusions. We believe they are rare because their low concentrations of trace elements make them readily susceptible to geochemical overprinting. This highly-refractory low-density peridotite may be common in the 'shallow' SCLM but not normally brought to the

  7. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks (United States)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.


    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ˜70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ˜10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium


    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.


    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  9. Phase equilibria constraints on Archean crustal genesis from crystallization experiments on trondhjemite with water at 10-17 kbar


    van der Laan, Sieger R.; Johnston, A. Dana; Wyllie, Peter J.


    The formation of continental crust during the Archean and early Proterozoic occurred through a different mechanisms than the currently active processes of calc-alkaline volcanism in orogenic regions. In view that most crustal growth models imply that by the end of the Archean a continental mass equivalent to 75% or more of the current crust had evolved, it seems highly relevant to study early crustal genesis.

  10. A model for late Archean chemical weathering and world average river water (United States)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.


    Interpretations of the geologic record of late Archean near-surface environments depend very strongly on an understanding of weathering and resultant riverine transport to the oceans. The late Archean atmosphere is widely recognized to be anoxic (pO2,g =10-5 to 10-13 bars; pH2,g =10-3 to 10-5 bars). Detrital siderite (FeCO3), pyrite (FeS2), and uraninite (UO2) in late Archean sedimentary rocks also suggest anoxic conditions. However, whether the observed detrital minerals could have been thermodynamically stable during weathering and riverine transport under such an atmosphere remains untested. Similarly, interpretations of fluctuations recorded by trace metals and isotopes are hampered by a lack of knowledge of the chemical linkages between the atmosphere, weathering, riverine transport, and the mineralogical record. In this study, we used theoretical reaction path models to simulate the chemistry involved in rainwater and weathering processes under present-day and hypothetical Archean atmospheric boundary conditions. We included new estimates of the thermodynamic properties of Fe(II)-smectites as well as smectite and calcite solid solutions. Simulation of present-day weathering of basalt + calcite by world-average rainwater produced hematite, kaolinite, Na-Mg-saponite, and chalcedony after 10-4 moles of reactant minerals kg-1 H2O were destroyed. Combination of the resultant water chemistry with results for granitic weathering produced a water composition comparable to present-day world average river water (WARW). In contrast, under late Archean atmospheric conditions (pCO2,g =10-1.5 and pH2,g =10-5.0 bars), weathering of olivine basalt + calcite to the same degree of reaction produced kaolinite, chalcedony, and Na-Fe(II)-rich-saponite. Late Archean weathering of tonalite-trondhjemite-granodiorite (TTG) formed Fe(II)-rich beidellite and chalcedony. Combining the waters from olivine basalt and TTG weathering resulted in a model for late Archean WARW with the

  11. Albedo and heat transport in 3-D model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert


    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion years ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun paradox" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-D model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. In order to do so, we have appropriately modified an intermediate complexity climate model that couples a statistical-dynamical atmosphere model (involving parameterizations of the dynamics to an ocean general circulation model and a thermodynamic-dynamic sea-ice model. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today, which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterization of the ice-albedo feedback for 1-D model simulations of the early Archean and thus the faint young Sun problem.

  12. Evaluating the earliest traces of Archean sub-seafloor life by NanoSIMS (United States)

    Mcloughlin, N.; Grosch, E. G.; Kilburn, M.; Wacey, D.


    The Paleoarchean sub-seafloor has been proposed as an environment for the emergence of life with titanite microtextures in pillow lavas argued to be the earliest traces of microbial micro-tunneling (Furnes et al. 2004). Here we use a nano-scale ion microprobe (NanoSIMS) to evaluate possible geochemical traces of life in 3.45 Ga pillow lavas of the Barberton Greenstone Belt, South Africa. We investigated both surface and drill core samples from the original "Biomarker" outcrop in the Hooggenoeg Fm. Pillow lava metavolcanic glass contain clusters of segmented microcrystalline titanite filaments, ~4μm across and inclusions in the microtextures have strongly depleted δ34SVCDT values of -39.8 to +3.2‰ (n= 32). The magnitude, range and spatial heterogeneity of these δ34S values are consistent with an early microbial origin (McLoughlin et al. 2012). In contrast, sulfides cross-cutting the microtextures related to later veining have positive δ34S of +6.7 to +18.0‰ (n=20). These data can be compared to magmatic sulfides (δ34S = +3±3‰), Archean seawater (δ34S ca. +5‰) and Archean sedimentary sulfides (δ34S = +8 to -23‰). We propose that the Hooggenoeg sulfides probably formed during early fluid-rock-microbe interaction involving sulfate-reducing microbes (c.f. Rouxel et al. 2008). The pillow lavas were then metamorphosed, the glass transformed to a greenschist facies assemblage and titanite growth encapsulated the microbial sulfides. In summary, the extreme sulfur isotope fractionations reported here independently point towards the potential involvement of microbes in the alteration of Archean volcanic glass. In situ sulfur isotope analysis of basalt-hosted sulfides may provide an alternative approach to investigating the existence of an Archean sub-seafloor biosphere that does not require the mineralization of early microbial microborings with organic linings.

  13. Albedo and heat transport in 3-dimensional model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert


    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion yr ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun problem" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-dimensional model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterisation of the ice-albedo feedback for 1-dimensional model simulations of the early Archean and thus the faint young Sun problem.

  14. Phase separation in iron chalcogenide superconductor Rb0.8+xFe1.6+ySe2 as seen by Raman light scattering and band structure calculations (United States)

    Pashkevich, Yu.; Gnezdilov, V.; Lemmens, P.; Shevtsova, T.; Gusev, A.; Lamonova, K.; Wulferding, D.; Gnatchenko, S.; Pomjakushina, E.; Conder, K.


    We report Raman light scattering in the phase separated superconducting single crystal Rb0.77Fe1.61Se2 with Tc = 32 K over a wide temperature region 3-500 K. The observed phonon lines from the majority vacancy ordered Rb2Fe4Se5 (245) antiferromagnetic phase with TN = 525 K demonstrate modest anomalies in the frequency, intensity and halfwidth at the superconductive phase transition. We identify phonon lines from the minority compressed RbδFe2Se2 (122) conductive phase. The superconducting gap with d x 2 - y 2 symmetry has been detected in our spectra. In the range 0-600 cm-1 we observe a weak but highly polarized B1g-type background which becomes well-structured upon cooling. A possible magnetic or multiorbital origin of this background is discussed. We argue that the phase separation in M0.8+xFe1.6+ySe2 is of pure magnetic origin. It occurs below the Néel temperature when the magnetic moment of iron reaches a critical value. We state that there is a spacer between the majority 245 and minority 122 phases. Using ab initio spin-polarized band structure calculations we demonstrate that the compressed vacancy ordered Rb2Fe4Se5 phase can be conductive and therefore may serve as a protective interface spacer between the purely metallic RbδFe2Se2 phase and the insulating Rb2Fe4Se5 phase providing percolative Josephson-junction like superconductivity all throughout of Rb0.8+xFe1.6+ySe2. Our lattice dynamics calculations show significant differences in the phonon spectra of the conductive and insulating Rb2Fe4Se5 phases.

  15. Competing instabilities, orbital ordering, and splitting of band degeneracies from a parquet renormalization group analysis of a four-pocket model for iron-based superconductors: Application to FeSe (United States)

    Xing, Rui-Qi; Classen, Laura; Khodas, Maxim; Chubukov, Andrey V.


    We report the results of a parquet renormalization group (RG) study of competing instabilities in the full 2D four-pocket, three-orbital low-energy model for iron-based superconductors. We derive and analyze the RG flow of the couplings, which describes all symmetry-allowed interactions between low-energy fermions. Despite that the number of the couplings is large, we argue that there are only two stable fixed trajectories of the RG flow and one weakly unstable fixed trajectory with a single unstable direction. Each fixed trajectory has a finite basin of attraction in the space of initial system parameters. On the stable trajectories, either interactions involving only dx z and dy z or only dx y orbital components on electron pockets dominate, while on the weakly unstable trajectory interactions involving dx z (dy z) and dx y orbital states on electron pockets remain comparable. The behavior along the two stable fixed trajectories has been analyzed earlier [Chubukov, Khodas, and Fernandes, Phys. Rev. X 6, 041045 (2016), 10.1103/PhysRevX.6.041045]. Here we focus on the system behavior along the weakly unstable trajectory and apply the results to FeSe. We find, based on the analysis of susceptibilities along this trajectory, that the leading instability upon lowering the temperature is towards a three-component d -wave orbital nematic order. Two components are the differences between fermionic densities on dx z and dy z orbitals on hole pockets and on electron pockets, and the third one is the difference between the densities of dx y orbitals on the two electron pockets. We argue that this order is consistent with the splitting of band degeneracies, observed in recent photoemission data on FeSe by Fedorov et al. [Sci. Rep. 6, 36834 (2016), 10.1038/srep36834].

  16. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments (United States)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.


    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  17. Dome and Keel dynamics in the hot Archean lithosphere: a numerical approach (United States)

    Duclaux, G.; Thebaud, N.; Gessner, K.; Doublier, M.


    The long-term interactions between greenstone belts and adjacent granitoids domes is key for understanding hot lithosphere rheology, crustal evolution and major ore deposits formation in Archean terrains. Some few tectonic processes have been proposed to explain both local and regional granite/greenstone finite deformation patterns observed in Archean terrains such as the West Australian Pilbara or Yilgarn cratons, including crustal extension following gravitational collapse, metamorphic core complex formation, folding interferences, and gravity driven deformation associated with exhumation of granitoids relative to a supracrustal cover. We propose to assess gravity driven deformation processes from simplified 2-D and 3-D thermo-mechanical numerical experiments using Underworld. A series of visco-plastic experiments under controlled boundary conditions have allowed us to identify three distinct stages in the hot lithosphere tectonic evolution: (1) an internal heating phase, (2) an inversion phase where dense mafic materials fall toward the lower crust while mid-crustal granitoids raise toward the surface, and (3) a freezing phase where the system stops. The relative duration of these phases is dependent on models initial geometries and inherited structures, materials thermal properties and rheologies, and the rheological contrast between granitoids and greenstones. We compare our experimental results with field observations and geophysical data from the Yilgarn craton in order to validate the gravity driven tectonic model, and eventually constrain the range of thermal and mechanical parameters that best capture Archean crustal dynamics.

  18. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume (United States)

    Delavault, Hélène; Chauvel, Catherine; Thomassot, Emilie; Devey, Colin W.; Dazas, Baptiste


    The isotopic diversity of oceanic island basalts (OIB) is usually attributed to the influence, in their sources, of ancient material recycled into the mantle, although the nature, age, and quantities of this material remain controversial. The unradiogenic Pb isotope signature of the enriched mantle I (EM I) source of basalts from, for example, Pitcairn or Walvis Ridge has been variously attributed to recycled pelagic sediments, lower continental crust, or recycled subcontinental lithosphere. Our study helps resolve this debate by showing that Pitcairn lavas contain sulfides whose sulfur isotopic compositions are affected by mass-independent fractionation (S-MIF down to Δ33S = -0.8), something which is thought to have occurred on Earth only before 2.45 Ga, constraining the youngest possible age of the EM I source component. With this independent age constraint and a Monte Carlo refinement modeling of lead isotopes, we place the likely Pitcairn source age at 2.5 Ga to 2.6 Ga. The Pb, Sr, Nd, and Hf isotopic mixing arrays show that the Archean EM I material was poor in trace elements, resembling Archean sediment. After subduction, this Archean sediment apparently remained stored in the deep Earth for billions of years before returning to the surface as Pitcairńs characteristic EM I signature. The presence of negative S-MIF in the deep mantle may also help resolve the problem of an apparent deficit of negative Δ33S anomalies so far found in surface reservoirs.

  19. Comparison of Archean and Phanerozoic granulites: Southern India and North American Appalachians (United States)

    Mcsween, Harry Y., Jr.; Kittleson, Roger C.


    Archean granulites at the southern end of the Dharwar craton of India and Phanerozoic granulites in the southern Appalachians of North America share an important characteristic: both show continuous transitions from amphibolite facies rocks to higher grade. This property is highly unusual for granulite terranes, which commonly are bounded by major shears or thrusts. These two terranes thus offer an ideal opportunity to compare petrogenetic models for deep crustal rocks formed in different time periods, which conventional wisdom suggests may have had different thermal profiles. The salient features of the Archean amphibolite-to-granulite transition in southern India have been recently summarized. The observed metamorphic progression reflects increasing temperature and pressure. Conditions for the Phanerozoic amphibolite-to-granulite transition in the southern Appalachians were documented. The following sequence of prograde reactions was observed: kyanite = sillimanite, muscovite = sillimanite + K-feldspar, partial melting of pelites, and hornblende = orthopyroxene + clinopyroxene + garnet. The mineral compositions of low-variance assemblages in mafic and intermediate rocks are almost identical for the two granulite facies assemblages. In light of their different fluid regimes and possible mechanisms for heat flow augmentation, it seems surprising that these Archean and Phanerozoic granulite terranes were apparently metamorphosed under such similar conditions of pressure and temperature. Comparison with other terrains containing continuous amphibolite-to-granulite facies transitions will be necessary before this problem can be addressed.

  20. 2.9-1.9 Ga paleoalterations of Archean granitic basement of the Franceville basin (Gabon) (United States)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; El Albani, Abderrazak; Meunier, Alain; Boulvais, Philippe; Gauthier-Lafaye, François; Paquette, Jean-Louis; Martin, Hervé; Cuney, Michel


    The Archean granitoids in the Kiéné area, Gabon, are overlained by the Paleoproterozoic sediments of the Franceville basin (2.1 Ga). The basin is known for its high-grade uranium deposits among which some have been forming natural nuclear fission reactors. Most of the studies were dedicated to the FA-FB Paleoproterozoic sediments hosting these uranium deposits. Little is known on the Archean basement itself and specifically on the hydrous alteration events it experienced before and after the sediment deposition. The present work is focused on their petrographical, mineralogical and geochemical characterization. Dating the successive alteration events has been attempted on altered monazite crystals. Rocks in different alteration states have been sampled from eight drill cores crosscutting the Archean - Paleoproterozoic unconformity. The Archean granitoids observed in the deepest levels exhibit typical petrographical features of a propylitic alteration while they are intensely illitized up to the unconformity. The propylitic alteration is mainly pervasive but the original texture of the granitoïds is conserved in spite of the formation of new minerals: Mg-chlorite, allanite and epidote forming a typical paragenesis. The illitic alteration is much more invasive near the unconformity. The illitization process leads to the replacement of feldspars and the corrosion of quartz crysals by an illitic matrix while the ferromagnesian minerals are pseudomorphosed by a Fe-chlorite + phengite + hematite assemblage. The final fluid-rock interaction step is marked by fissural deposits of calcite and anhydrite. The δ13C isotopic data show that the fissural carbonates precipitated from diagenetic fluids enriched carbon products deriving from the maturation of organic matter. The U-Pb isotopic analyzes performed on monazite crystals have dated three distinct events: 3.0-2.9 Ga (magmatic), 2.6 Ga (propylitic alteration) and 1.9 Ga (diagenetic illitization). The calculation of

  1. Iron deficiency. (United States)

    Scrimshaw, N S


    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world.

  2. Brazil's premier gold province. Part I: The tectonic, magmatic, and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero (United States)

    Lobato, Lydia; Ribeiro-Rodrigues, Luiz; Zucchetti, Márcia; Noce, Carlos; Baltazar, Orivaldo; da Silva, Luiz; Pinto, Claiton


    Rocks of the Rio das Velhas Supergroup comprise one of the most significant Archean greenstone-belt successions in Brazil, in both their appreciable mineral productivity and extensive mineral potential. A large part of this greenstone belt is contained within the Quadrilátero Ferrífero (Iron Quadrangle) region, Minas Gerais state, southeastern Brazil, which occupies the southernmost portion of the São Francisco craton. The Nova Lima Group rocks, at the base of the Rio das Velhas greenstone belt, host important orogenic gold deposits. The group contains lithological associations from bottom to top as follows: (1) mafic-ultramafic volcanic, (2) volcanic-chemical, (3) clastic-chemical, (4) volcaniclastic, and (5) resedimented rocks. Rocks of the resedimented, volcanic-chemical, and mafic-ultramafic volcanic associations mainly host the most important gold deposits. An early compressional deformation occurs in the rocks of the Rio das Velhas greenstone belt and basement gneisses, with tangential thrusting from the north to the south or southwest. Structures generated during a second, compressional deformation, encompass NW-striking thrust faults and SW-vergent, tight to isoclinal folds, inferring a general southwest transport direction. In the central portion of the Quadrilátero Ferrífero, the Paciência lineament, which strikes northwest and dips to the northeast in the south, or strikes northeast and dips to the southeast in the north, is a thrust-related, oblique ramp fault that hosts important gold deposits. The convergence of these two trends in the Nova Lima region is accommodated by roughly E-W-striking transcurrent faults, which are the most favored sites for large gold concentrations. Intracratonic extension in Late Archean to early Paleoproterozoic times and NW-vergent, Trans-Amazonian compressional deformation post-date gold deposition. Late extension during the Paleoproterozoic led to basin formation and the prominent dome-and-keel architecture of the

  3. Strontium and neodymium isotopic variations in early Archean gneisses affected by middle to late Archean high-grade metamorphic processes: West Greenland and Labrador (United States)

    Collerson, K. D.; Mcculloch, M. T.; Bridgwater, D.; Mcgregor, V. R.; Nutman, A. P.


    Relicts of continental crust formed more than 3400 Ma ago are preserved fortuitously in most cratons. The cratons provide the most direct information about crust and mantle evolutionary processes during the first billion years of Earth history. In view of their polymetamorphic character, these terrains are commonly affected by subsequent tectonothermal events. Hence, their isotope systematics may be severely disturbed as a result of bulk chemical change or local isotopic homogenization. This leads to equivocal age and source information for different components within these terrains. The Sr and Nd isotopic data are presented for early Archean gneisses from the North Atlantic Craton in west Greenland and northern Labrador which were affected by younger metamorphic events.

  4. Iron-tolerant Cyanobacteria as a Tool to Study Terrestrial and Extraterrestrial Iron Deposition (United States)

    Brown, I. I.; Mummey, D.; Cooksey, K. E.; McKay, D. S.


    We are investigating biological mechanisms of terrestrial iron deposition as analogs for Martian hematite recently confirmed by. Possible terrestrial analogs include iron oxide hydrothermal deposits, rock varnish, iron-rich laterites, ferricrete soils, moki balls, and banded iron formations (BIFs). With the discovery of recent volcanic activity in the summit craters of five Martian volcanoes, renewed interest in the iron dynamics of terrestrial hydrothermal environments and associated microorganisms is warranted. In this study we describe a new genus and species of CB exhibiting elevated dissolved iron tolerance and the ability to precipitate hematite on the surface of their exopolymeric sheathes.

  5. Nb/Ta variations of mafic volcanics on the Archean-Proterozoic boundary: Implications for the Nb/Ta imbalance

    Institute of Scientific and Technical Information of China (English)

    LIU Yongsheng; GAO Shan; WANG Xuance; HU Shenghong; WANG Jianqi


    The HFSE and REE of the Precambrian mafic volcanics from the North China craton demonstrate obvious A(Archean)-P(Proterozoic) boundary. The Neoarchean mafic vol-canics show weak correlation between HFSE and TiO2. Their superchondritic Nb/Ta ratio (18.8(1.2) could be attributed to partial melting of mantle peridotite in the presence of garnet. Compared with Neoarchean mafic volcanics, the Paleoproterozoic ones have higher HFSE contents and lower Nb/Ta ratio (15.6(2.9). The significantly elevated HFSE and REE contents of Paleoproterozoic mafic volcanics imply metasomatic enrichment of mantle source, in which Ti-rich silicates could be present as suggested by significant positive correlations between TiO2 and HFSE. The global database of Precambrian mafic volcanics shows a similar A-P boundary. 23 Archean mafic volcanic suites yield an average Nb/Ta ratio of 17.8(1.9 higher than or close to the PM value; Proterozoic mafic volcanics from 28 suites yield an average Nb/Ta ratio of 14.7(4.1 deficit could be mainly formed in post-Archean time. Archean mafic volcanics could be one of the geochemical reservoirs complementing the low Nb/Ta of the post-Archean continental crust and DM.

  6. EPR study of thermally treated Archean microbial mats analogues and comparison with Archean cherts: towards a possible marker of oxygenic photosynthesis? (United States)

    Bourbin, M.; Derenne, S.; Westall, F.; Gourier, D.; Gautret, P.; Rouzaud, J.-N.; Robert, F.


    The datation of photosynthesis apparition remains an open question nowadays: did oxygenic photosynthesis appear just before the Great Oxidation Event (GOE) of the atmosphere, 2.3 to 2.4 Gyr ago, or does it originate much earlier? It is therefore of uttermost interest to find markers of oxygenic photosynthesis, applicable to samples of archean age. In order to handle this problem, Microcoleus Chtonoplastes cyanobacteria and Chloroflexus-like non-oxygenic photosynthetic bacteria, were studied using Electron Paramagnetic Resonance (EPR) spectroscopy, a high sensitivity technique for the study of organic radicals in mature geological samples (coals, cherts, meteorites...). M. chtonoplastes and Chloroflexus-like bacteria were sampled in mats from the hypersaline lake "La Salada de Chiprana" (Spain), an analogue to an Archean environment, and were submitted to accelerated ageing through cumulative thermal treatments. For thermal treatment temperatures higher than 620° C, a drastic increase in the EPR linewidth of the oxygenic photosynthetic bacteria (M. chtonoplastes) occurred, as compared with the anoxygenic photosynthetic one (Chloroflexus-like). The EPR study of a thermally treated mixture of the two bacteria evidences that this linewidth increase is driven by catalytic reaction at high temperatures on an element selectively fixed by M. chtonoplastes. Based on comparative EDS analyses, Mg is a potential candidate for this catalytic activity but its precise role and the nature of the reaction are still to be determined. The EPR study of organic radicals in chert rocks of ages ranging from 0.42 to 3.5 Gyr, from various localities and that underwent various metamorphisms, revealed a dispersion of the signal width for the most mature samples. This comparative approach between modern bacterial samples and Precambrian cherts leads to propose the EPR linewidth of mature organic matter in cherts as a potential marker of oxygenic photosynthesis. If confirmed, this marker

  7. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth (United States)

    Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric T.; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G.


    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ˜ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets.

  8. Leucogranites of the Teton Range, Wyoming: A record of Archean collisional orogeny (United States)

    Frost, Carol D.; Swapp, Susan M.; Frost, B. Ronald; Finley-Blasi, Lee; Fitz-Gerald, D. Braden


    Leucogranitic rocks formed by crustal melting are a prominent feature of collisional orogens of all ages. This study describes leucogranitic gneisses associated with an Archean collisional orogeny preserved in the Teton Range of northwestern Wyoming, USA. These leucogneisses formed at 2.68 Ga, and initial Nd isotopic compositions suggest they are derived from relatively juvenile sources. Two distinct groups of leucogneisses, both trondhjemitic, are identified on the basis of field relations, petrology, and geochemistry. The Webb Canyon gneiss forms large, sheet-like bodies of hornblende biotite trondhjemite and granodiorite. This gneiss is silica-rich (SiO2 = 70-80%), strongly ferroan, comparatively low in alumina, and is characterized by high Zr and Y, low Sr, and high REE contents that define "seagull"-shaped REE patterns. The Bitch Creek gneiss forms small sills, dikes, and plutons of biotite trondhjemite. Silica, Zr, Y, and REE are lower and alumina and Sr are higher than in the Webb Canyon gneiss. These differences reflect different melting conditions: the Webb Canyon gneiss formed by dehydration melting in which amphibole and quartz breaks down, accounting for the low alumina, high FeO, high silica content and observed trace element characteristics. The Bitch Creek gneiss formed by H2O-excess melting in which plagioclase breaks down leaving an amphibole-rich restite, producing magmas higher in alumina and Sr and lower in FeO and HREE. Both melt mechanisms are expected in collisional environments: dehydration melting accompanies gravitational collapse and tectonic extension of dramatically thickened crust, and water-excess melting may occur when collision places a relatively cool, hydrous lower plate beneath a hotter upper plate. The Archean leucogranitic gneisses of the Teton Range are calcic trondhjemites and granodiorites whereas younger collisional leucogranites typically are true granites. The difference in leucogranite composition reflects the

  9. Controls on Atmospheric O2: The Anoxic Archean and the Suboxic Proterozoic (United States)

    Kasting, J. F.


    Geochemists have now reached consensus that the Archean atmosphere was mostly anoxic, that a Great Oxidation Event (GOE) occurred at around 2.5 Ga, and that the ensuing Proterozoic atmosphere was consistently oxidized [1,2]. Evidence for this broad-scale change in atmospheric composition comes from a variety of sources, most importantly from multiple sulfur isotopes [3,4]. The details of both the Archean and Proterozoic environments remain controversial, however, as does the underlying cause of the GOE. Evidence of 'whiffs' of oxygen during the Archean [5] now extend back as far as 3.0 Ga, based on Cr isotopes [6]. This suggests that O2 was being produced by cyanobacteria well before the GOE and that the timing of this event may have been determined by secular changes in O2 sinks. Catling et al. [7] emphasized escape of hydrogen to space, coupled with progressive oxidation of the continents and a concomitant decrease in the flux of reduced gases from metamorphism. But hydrogen produced by serpentinization of seafloor could also have been a controlling factor [8]. Higher mantle temperatures during the Archean should have resulted in thicker, more mafic seafloor and higher H2 production; decreasing mantle temperatures during the Proterozoic should have led to seafloor more like that of today and a corresponding decrease in H2 production, perhaps by enough to trigger the GOE. Once the atmosphere became generally oxidizing, it apparently remained that way during the rest of Earth's history. But O2 levels in the mid-Proterozoic could have been as low at 10-3 times the Present Atmospheric Level (PAL) [9]. The evidence, once again, is based on Cr isotopes. Possible mechanisms for maintaining such a 'suboxic' Proterozoic atmosphere will be discussed. Refs: 1. H. D. Holland, Geochim. Cosmochim. Acta 66, 3811 (2002). 2. H. D. Holland, Philosophical Transactions of the Royal Society B-Biological Sciences 361, 903 (Jun 29, 2006). 3. J. Farquhar, H. Bao, M. Thiemans, Science

  10. The Archean sulfur cycle and the early history of atmospheric oxygen. (United States)

    Canfield, D E; Habicht, K S; Thamdrup, B


    The isotope record of sedimentary sulfides can help resolve the history of oxygen accumulation into the atmosphere. We measured sulfur isotopic fractionation during microbial sulfate reduction up to 88 degrees C and show how sulfate reduction rate influences the preservation of biological fractionations in sediments. The sedimentary sulfur isotope record suggests low concentrations of seawater sulfate and atmospheric oxygen in the early Archean (3.4 to 2.8 billion years ago). The accumulation of oxygen and sulfate began later, in the early Proterozoic (2.5 to 0.54 billion years ago).

  11. An Archean Geomagnetic Reversal in the Kaap Valley Pluton, South Africa (United States)

    Layer; Kroner; McWilliams


    The Kaap Valley pluton in South Africa is a tonalite intrusion associated with the Archean Barberton Greenstone Belt. Antipodal paleomagnetic directions determined from the central and marginal parts of the pluton record a geomagnetic reversal that occurred as the pluton cooled. The age of the reversal is constrained by an 40Ar/39Ar plateau age from hornblende at 3214 +/- 4 million years, making it the oldest known reversal. The data presented here suggest that Earth has had a reversing, perhaps dipolar, magnetic field since at least 3.2 billion years ago.

  12. The Case for a Hot Archean Climate and its Implications to the History of the Biosphere


    Schwartzman, David W.


    The case for a much warmer climate on the early Earth than now is presented. The oxygen isotope record in sedimentary chert and the compelling case for a near constant isotopic oxygen composition of seawater over geologic time support thermophilic surface temperatures prevailing in the Archean, with some support for hot conditions lasting until about 1.5 billion years ago, aside from lower temperatures including glacial episodes at 2.1-2.4 Ga and possibly an earlier one at 2.9 Ga. Other evide...

  13. Band Together! (United States)

    Olson, Cathy Applefeld


    After nearly a decade as band director at St. James High School in St. James, Missouri, Derek Limback knows that the key to building a successful program is putting the program itself above everything else. Limback strives to augment not only his students' musical prowess, but also their leadership skills. Key to his philosophy is instilling a…

  14. Iron Homeostasis and Nutritional Iron Deficiency123



    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins enc...

  15. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean (United States)

    Kendall, Brian; Creaser, Robert A.; Reinhard, Christopher T.; Lyons, Timothy W.; Anbar, Ariel D.


    It is not known whether environmental O2 levels increased in a linear fashion or fluctuated dynamically between the evolution of oxygenic photosynthesis and the later Great Oxidation Event. New rhenium-osmium isotope data from the late Archean Mount McRae Shale, Western Australia, reveal a transient episode of oxidative continental weathering more than 50 million years before the onset of the Great Oxidation Event. A depositional age of 2495 ± 14 million years and an initial 187Os/188Os of 0.34 ± 0.19 were obtained for rhenium- and molybdenum-rich black shales. The initial 187Os/188Os is higher than the mantle/extraterrestrial value of 0.11, pointing to mild environmental oxygenation and oxidative mobilization of rhenium, molybdenum, and radiogenic osmium from the upper continental crust and to contemporaneous transport of these metals to seawater. By contrast, stratigraphically overlying black shales are rhenium- and molybdenum-poor and have a mantle-like initial 187Os/188Os of 0.06 ± 0.09, indicating a reduced continental flux of rhenium, molybdenum, and osmium to seawater because of a drop in environmental O2 levels. Transient oxygenation events, like the one captured by the Mount McRae Shale, probably separated intervals of less oxygenated conditions during the late Archean. PMID:26702438

  16. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents (United States)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua


    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  17. Oxygen-Dependent Morphogenesis of Modern Clumped Photosynthetic Mats and Implications for the Archean Stromatolite Record

    Directory of Open Access Journals (Sweden)

    Malcolm R. Walter


    Full Text Available Some modern filamentous oxygenic photosynthetic bacteria (cyanobacteria form macroscopic tufts, laminated cones and ridges that are very similar to some Archean and Proterozoic stromatolites. However, it remains unclear whether microbes that constructed Archean clumps, tufts, cones and ridges also produced oxygen. Here, we address this question by examining the physiology of cyanobacterial clumps, aggregates ~0.5 mm in diameter that initiate the growth of modern mm- and cm-scale cones. Clumps contain more particulate organic carbon in the form of denser, bowed and bent cyanobacterial filaments, abandoned sheaths and non-cyanobacterial cells relative to the surrounding areas. Increasing concentrations of oxygen in the solution enhance the bending of filaments and the persistence of clumps by reducing the lateral migration of filaments away from clumps. Clumped mats in oxic media also release less glycolate, a soluble photorespiration product, and retain a larger pool of carbon in the mat. Clumping thus benefits filamentous mat builders whose incorporation of inorganic carbon is sensitive to oxygen. The morphogenetic sequence of mm-scale clumps, reticulate ridges and conical stromatolites from the 2.7 Ga Tumbiana Formation likely records similar O2-dependent behaviors, preserving currently the oldest morphological signature of oxygenated environments on Early Earth.

  18. Electron paramagnetic resonance study of a photosynthetic microbial mat and comparison with Archean cherts. (United States)

    Bourbin, M; Derenne, S; Gourier, D; Rouzaud, J-N; Gautret, P; Westall, F


    Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.

  19. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. (United States)

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis


    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids.

  20. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. (United States)

    Kendall, Brian; Creaser, Robert A; Reinhard, Christopher T; Lyons, Timothy W; Anbar, Ariel D


    It is not known whether environmental O2 levels increased in a linear fashion or fluctuated dynamically between the evolution of oxygenic photosynthesis and the later Great Oxidation Event. New rhenium-osmium isotope data from the late Archean Mount McRae Shale, Western Australia, reveal a transient episode of oxidative continental weathering more than 50 million years before the onset of the Great Oxidation Event. A depositional age of 2495 ± 14 million years and an initial (187)Os/(188)Os of 0.34 ± 0.19 were obtained for rhenium- and molybdenum-rich black shales. The initial (187)Os/(188)Os is higher than the mantle/extraterrestrial value of 0.11, pointing to mild environmental oxygenation and oxidative mobilization of rhenium, molybdenum, and radiogenic osmium from the upper continental crust and to contemporaneous transport of these metals to seawater. By contrast, stratigraphically overlying black shales are rhenium- and molybdenum-poor and have a mantle-like initial (187)Os/(188)Os of 0.06 ± 0.09, indicating a reduced continental flux of rhenium, molybdenum, and osmium to seawater because of a drop in environmental O2 levels. Transient oxygenation events, like the one captured by the Mount McRae Shale, probably separated intervals of less oxygenated conditions during the late Archean.

  1. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà


    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  2. No coincidence? Exploring the connection between the Great Oxidation Event and craton stabilization during the Archean-Proterozoic transition (United States)

    Kump, L. R.


    As geochronological constraints on the timing of the Great Oxidation Event (here defined as the passage of atmospheric oxygen levels through the proposed upper limit of 10-5 of present) have improved, it has become increasingly clear that this event is somehow tied to the tectonic factors that have defined the Archean-Proterozoic boundary for decades, namely the stabilization of continental cratons allowing for the growth of large continents. We have proposed two connections in the past: 1) elevated late Archean mantle plume activity brought oxidized material from the lithospheric graveyard to the upper mantle, reducing the oxygen fugacity of post-Archean volcanism, and 2) that the stabilization of the cratons allowed for a proportional increase in less-reducing, subaerial volcanism at the expense of more reducing, submarine volcanism. Critiques of these two proposals will be addressed in the context of subsequent work by the geosciences community on the geodynamics and geochemistry of the Archean-Proterozoic transition, and a synthetic hypothesis for a tectonic driver for atmospheric oxygenation will be presented.

  3. Iron refractory iron deficiency anemia


    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole


    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in ad...

  4. Cast irons

    CERN Document Server


    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  5. Archean relic body at lower crust in Sulu area: Evidence from magnetic data

    Institute of Scientific and Technical Information of China (English)


    After the new 1:1000000 aero magnetic data were processed and the three-dimensional inversion work was carried out, a vast high magnetic body northwestward was discovered. The magnetic body is located at the depth of about 20 km on the west side of Tanlu fault and at about 25 km on the east side of Tanlu fault beneath the Sulu area. There is a difference of vertical distance of 3-5 km in depth between both sides. We think that the magnetic body is an Archean metamorphic plate and belongs to the North China block. The discovery of the magnetic body is significant for us to reconstruct the structure model of the Sulu orogenic belt, delineate the suture of collision between the North China block and the Yangtze block, and estimate the depth of slipping surface when the eastside of Tanlu fault moved northward.

  6. Evidence for crustal recycling during the Archean: The parental magmas of the stillwater complex (United States)

    Mccallum, I. S.


    The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area.

  7. Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. (United States)

    Walsh, M M


    There is widespread textural evidence for microbial activity in the cherts of the Early Archean Onverwacht Group. Layers with fine carbonaceous laminations resembling fossil microbial mats are abundant in the cherty metasediments of the predominantly basaltic Hooggenoeg and Kromberg Formations. In rare cases, filamentous microfossils are associated with the laminae. The morphologies of the fossils, as well as the texture of the encompassing laminae suggest an affinity to modern mat-dwelling cyanobacteria or bacteria. A variety of spheroidal and ellipsoidal structures present in cherts of the Hooggenoeg and Kromberg Formations resemble modern coccoidal bacteria and bacterial structures, including spores. The development of spores may have enabled early microorganisms to survive the relatively harsh surficial conditions, including the effects of very large meteorite impacts on the young Earth.

  8. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province (United States)

    Ashwal, Lewis D.; Wooden, Joseph L.


    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  9. Modeling the globally-integrated spectral variability of the Archean Earth: The purple planet (United States)

    Palle, E.; Sanroma, E.; Parenteau, M. N.; Kiang, N. Y.; Gutierrez-Navarro, A. M.; Lopez, R.; Montañes-Rodríguez, P.


    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. But the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3 Gyr ago. At that time, one of the more widespread life forms on the planet were purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and bacteria concentration/ distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  10. Characterizing the Purple Earth: Modeling the Globally Integrated Spectral Variability of the Archean Earth (United States)

    Sanromá, E.; Pallé, E.; Parenteau, M. N.; Kiang, N. Y.; Gutiérrez-Navarro, A. M.; López, R.; Montañés-Rodríguez, P.


    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At that time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  11. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event (United States)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.


    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our results provide new empirical data that should allow for more precise quantitative constraints on atmospheric pO2 based on the sedimentary rock record. 1Anbar, A.D. et al., 2007. Science, 317, i. 5846: 1903-1906. 2Williamson & Rimstidt, 1994. Geochim. et Cosmochim. Acta, 58, n. 24: 5443-5454. 3Lehner et al., 2015. PLoS ONE, 10, n. 6: 1-15.



    Saito, Hiroshi


    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since th...

  13. Iron Dextran Injection (United States)

    ... allergic to iron dextran injection; any other iron injections such as ferric carboxymaltose (Injectafer), ferumoxytol (Feraheme), iron sucrose (Venofer), or sodium ferric gluconate (Ferrlecit);any other ...

  14. The Bombardment of the Earth During the Hadean and Early Archean Eras (United States)

    Marchi, S.; Bottke, W. F.; Elkins-Tanton, L. T.; Morbidelli, A.; Wuennemann, K.; Kring, D. A.; Bierhaus, M.


    Our knowledge of the Earth during the Hadean and early Archean eons (ca 4.5-3.5 Ga) is very limited, mainly because few rocks older than 3.8 Ga have been found (e.g. Harrison 2009). Hadean-era zircons have allowed us to glean important insights into this era, but their data has led to considerably different evolution models for the evolution of the early Earth; some predict a hellish world dominated by a molten surface with a sporadic steam atmosphere (e.g. Pollack 1997), while others have predicted a tranquil, cool surface with stable oceans (e.g. Wilde et al 2001; Valley et al 2002). To understand whether either model (or both) could be right, we believe it is useful to quantitatively examine the post Moon-forming impact bombardment of the early Earth. Over the last several years, through a combination of observations (e.g., Marchi et al 2012), theoretical models (e.g., Bottke et al 2012), and geochemical constraints from lunar rock (e.g. highly siderophile elements -HSE- abundances delivered to the Moon by impactors; the global number of lunar basins; the record of Archean-era impact spherule beds on Earth; Walker 2009; Neumann et al 2012), we have constructed a calibrated model of the early lunar impactor flux (Morbidelli et al 2012). Our results have now been extrapolated to the Earth, where they can make predictions about its early bombardment. Using a Monte Carlo code to account for the stochastic nature of major impacts, and constraining our results by the estimated HSE abundances of Earth's mantle (that were presumably delivered by impactors; Walker 2009; Bottke et al. 2010), we find the following trends. In the first ~100-200 Myr after the formation of the Moon, which we assume was created ~4.5 Ga, the Earth was almost entirely resurfaced by impacts. This bombardment, which included numerous D > 1000 km diameter impactors, should have vigorously mixed the crust and upper mantle. Between ~4.1-4.3 Ga, the impactor flux steadily decreased; though an uptick

  15. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere (United States)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre


    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ˜+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non-33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  16. Development of the archean crust in the medina mountain area, wind river range, wyoming (U.S.A.) (United States)

    Koesterer, M.E.; Frost, C.D.; Frost, B.R.; Hulsebosch, T.P.; Bridgwater, D.; Worl, R.G.


    Evidence for an extensive Archean crustal history in the Wind River Range is preserved in the Medina Mountain area in the west-central part of the range. The oldest rocks in the area are metasedimentary, mafic, and ultramafic blocks in a migmatite host. The supracrustal rocks of the Medina Mountain area (MMS) are folded into the migmatites, and include semi-pelitic and pelitic gneisses, and mafic rocks of probable volcanic origin. Mafic dikes intrude the older migmatites but not the MMS, suggesting that the MMS are distinctly younger than the supracrustal rocks in the migmatites. The migmatites and the MMS were engulfed by the late Archean granite of the Bridger, Louis Lake, and Bears Ears batholiths, which constitutes the dominant rock of the Wind River Range. Isotopic data available for the area include Nd crustal residence ages from the MMS which indicate that continental crust existed in the area at or before 3.4 Ga, but the age of the older supracrustal sequence is not yet known. The upper age of the MMS is limited by a 2.7 Ga RbSr age of the Bridger batholith, which was emplaced during the waning stages of the last regional metamorphism. The post-tectonic Louis Lake and Bears Ears batholiths have ages of 2.6 and 2.5 Ga, respectively (Stuckless et al., 1985). At least three metamorphic events are recorded in the area: (1) an early regional granulite event (M1) that affected only the older inclusions within the migmatites, (2) a second regional amphibolite event (M2) that locally reached granulite facies conditions, and (3) a restricted, contact granulite facies event (M3) caused by the intrusion of charnockitic melts associated with the late Archean plutons. Results from cation exchange geobarometers and geothermometers yield unreasonablu low pressures and temperatures, suggesting resetting during the long late Archean thermal evenn. ?? 1987.

  17. Sulfur Isotope Trends in Archean Microbialite Facies Record Early Oxygen Production and Consumption (United States)

    Zerkle, A.; Meyer, N.; Izon, G.; Poulton, S.; Farquhar, J.; Claire, M.


    The major and minor sulfur isotope composition (δ34S and Δ33S) of pyrites preserved in ~2.65-2.5 billion-year-old (Ga) microbialites record localized oxygen production and consumption near the mat surface. These trends are preserved in two separate drill cores (GKF01 and BH1-Sacha) transecting the Campbellrand-Malmani carbonate platform (Ghaap Group, Transvaal Supergroup, South Africa; Zerkle et al., 2012; Izon et al., in review). Microbialite pyrites possess positive Δ33S values, plotting parallel to typical Archean trends (with a Δ33S/δ34S slope of ~0.9) but enriched in 34S by ~3 to 7‰. We propose that these 34S-enriched pyrites were formed from a residual pool of sulfide that was partially oxidized via molecular oxygen produced by surface mat-dwelling cyanobacteria. Sulfide, carrying the range of Archean Δ33S values, could have been produced deeper within the microbial mat by the reduction of sulfate and elemental sulfur, then fractionated upon reaction with O2 produced by oxygenic photosynthesis. Preservation of this positive 34S offset requires that: 1) sulfide was only partially (50­­-80%) consumed by oxidation, meaning H2S was locally more abundant (or more rapidly produced) than O2, and 2) the majority of the sulfate produced via oxidation was not immediately reduced to sulfide, implying either that the sulfate pool was much larger than the sulfide pool, or that the sulfate formed near the mat surface was transported and reduced in another part of the system. Contrastingly, older microbialite facies (> 2.7 Ga; Thomazo et al., 2013) appear to lack these observed 34S enrichments. Consequently, the onset of 34S enrichments could mark a shift in mat ecology, from communities dominated by anoxygenic photosynthesizers to cyanobacteria. Here, we test these hypotheses with new spatially resolved mm-scale trends in sulfur isotope measurements from pyritized stromatolites of the Vryburg Formation, sampled in the lower part of the BH1-Sacha core. Millimeter

  18. How to draw down CO2 from severe Hadean to habitable Archean? (United States)

    Zhelezinskaia, I.; Ding, S.; Mulyukova, E.; Martirosyan, N.; Johnson, A.; West, J. D.; Kolesnichenko, M.; Saloor, N.; Moucha, R.


    It has been hypothesized that as the magma ocean crystallized in the Hadean, volatiles such as CO2 and H2O were released to the surface culminating with the formation of a liquid ocean by about 4.4 Ga [1] and hot CO2-rich atmosphere [2]. The resulting late Hadean atmospheric pCO2 may have been as high as 100 bars [3] with corresponding surface temperatures ~500 K [4]. Geological evidence suggests that by the early-to-mid Archean, atmospheric pCO2 became less than 1 bar [5]. However, the mechanisms responsible for the great amount of CO2 drawdown in a relatively short period of time remain enigmatic. To identify these possible mechanisms, we have developed a box model during the CIDER 2015 Summer Program that takes into account geological constraints on basalt alteration [6, 7] and possible rate of new oceanic crust formation [8] for the Archean. Our model integrates geodynamic and geochemical approaches of interaction between the Hadean atmosphere, hydrosphere, oceanic crust, and mantle to drawdown CO2. Our primary assumption for the Hadean is the absence of the continental crust and thus continental weathering. Therefore in the model we present, the level of CO2 in the atmosphere is regulated by the formation of oceanic crust (OC), rate of the interaction between the ocean and OC, and carbonate subduction/CO2 degassing. Preliminary results suggest that it would take about 1 billion years for the atmospheric CO2 to decrease to 1 bar if the production of oceanic crust was 10 times more than today and the pH of the ocean was less than 7, making the basalt alteration more efficient. However, there is evidence that some continental crust began to form as early as 4.4 Ga [9] and therefore the role of continental weathering and its rate of CO2 drawdown will need to be further explored. References: [1] Wilde et al. (2001). Nature 409(6817), 175-178. [2] Walker (1985). Origins of Life and Evolution of the Biosphere 16(2), 117-127. [3] Elkins-Tanton (2008). EPSL, 271, 181

  19. Eclogite-High-Pressure Granulite Belt in Northern Edge of the Archean North China Craton

    Institute of Scientific and Technical Information of China (English)


    The discovery of retrograded eclogites and high-pressure basic granulites in the joining region of Hebei-Shanxi-Inner Mongolia (HSIM) abandon the old thoughts that Archean granulites in the North China craton are of middle or low pressure facies and promote the reconsideration of Early Precambrian cratonization tectonic process, and reveal the geological fact that the scale, rigid behavior and geological structure of Archean cratonic blocks have strong similarities to the present fundamental plate tectonics, which suggest new tectonic mechanism to understand the early continental evolution of the North China craton. (1) The retrograded eclogites and high-pressure granulites constitute a ENE-NE-striking structure-rock zone termed as the Sanggan structural belt. (2) The retrograded eclogites are closely associated with high-pressure granulites. We can call this belt a transitional eclogite-granulite facies metamorphic belt. Petrographically three metamorphic stages, at least, in the retrograded eclogite can be distinguished. ① The main mineral assemblage is composed of garnet+clinopyroxene+quartz+rutile. The mineral inclusions in garnet are fine-grained quartz, rutile and small inclusions of fine-grained second stage mineral aggregate. This aggregate consists of hypersthene+albite, and has the typical texture of small hypersthene core surrounded by albite micro-grained grains. ② The second mineral assemblage is represented by corona of garnet and symplectite of clinopyroxene. The corona of garnet is composed of hypersthene+plagioclase+clinopyroxene+a minor amount of quartz and magnetite. The symplectite of clinopyroxene is composed of hypersthene + albite+clinopyroxene. The secondary mineral assemblage along boundaries between quartz and garnet (or clinopyroxene) is fine-grained aggregate of hypersthene and clinopyroxene. ③ The third retrograded metamorphic minerals are mainly amphiboles replacing pyroxenes and plagioclases replacing garnets. The estimated

  20. In search of early life: Carbonate veins in Archean metamorphic rocks as potential hosts of biomarkers (United States)

    Peters, Carl A.; Piazolo, Sandra; Webb, Gregory E.; Dutkiewicz, Adriana; George, Simon C.


    The detection of early life signatures using hydrocarbon biomarkers in Precambrian rocks struggles with contamination issues, unspecific biomarkers and the lack of suitable sedimentary rocks due to extensive thermal overprints. Importantly, host rocks must not have been exposed to temperatures above 250 °C as at these temperatures biomarkers are destroyed. Here we show that Archean sedimentary rocks from the Jeerinah Formation (2.63 billion yrs) and Carawine Dolomite (2.55 billion yrs) of the Pilbara Craton (Western Australia) drilled by the Agouron Institute in 2012, which previously were suggested to be suitable for biomarker studies, were metamorphosed to the greenschist facies. This is higher than previously reported. Both the mineral assemblages (carbonate, quartz, Fe-chlorite, muscovite, microcline, rutile, and pyrite with absence of illite) and chlorite geothermometry suggest that the rocks were exposed to temperatures higher than 300 °C and probably ∼400 °C, consistent with greenschist-facies metamorphism. This facies leads to the destruction of any biomarkers and explains why the extraction of hydrocarbon biomarkers from pristine drill cores has not been successful. However, we show that the rocks are cut by younger formation-specific carbonate veins containing primary oil-bearing fluid inclusions and solid bitumens. Type 1 veins in the Carawine Dolomite consist of dolomite, quartz and solid bitumen, whereas type 2 veins in the Jeerinah Formation consist of calcite. Within the veins fluid inclusion homogenisation temperatures and calcite twinning geothermometry indicate maximum temperatures of ∼200 °C for type 1 veins and ∼180 °C for type 2 veins. Type 1 veins have typical isotopic values for reprecipitated Archean sea-water carbonates, with δ13CVPDB ranging from - 3 ‰ to 0‰ and δ18OVPDB ranging from - 13 ‰ to - 7 ‰, while type 2 veins have isotopic values that are similar to hydrothermal carbonates, with δ13CVPDB ranging from - 18

  1. HYBASE : HYperspectral BAnd SElection

    NARCIS (Netherlands)

    Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van


    Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to assess the minimum number of spe

  2. Iron Sucrose Injection (United States)

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due ... and may cause the kidneys to stop working). Iron sucrose injection is in a class of medications called iron ...

  3. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox (United States)

    Boness, D. A.; Terrell-Martinez, B.


    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  4. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life (United States)

    Waldbauer, Jacob R.; Newman, Dianne K.; Summons, Roger E.


    The power of molecular oxygen to drive many crucial biogeochemical processes, from cellular respiration to rock weathering, makes reconstructing the history of its production and accumulation a first-order question for understanding Earth’s evolution. Among the various geochemical proxies for the presence of O2 in the environment, molecular fossils offer a unique record of O2 where it was first produced and consumed by biology: in sunlit aquatic habitats. As steroid biosynthesis requires molecular oxygen, fossil steranes have been used to draw inferences about aerobiosis in the early Precambrian. However, better quantitative constraints on the O2 requirement of this biochemistry would clarify the implications of these molecular fossils for environmental conditions at the time of their production. Here we demonstrate that steroid biosynthesis is a microaerobic process, enabled by dissolved O2 concentrations in the nanomolar range. We present evidence that microaerobic marine environments (where steroid biosynthesis was possible) could have been widespread and persistent for long periods of time prior to the earliest geologic and isotopic evidence for atmospheric O2. In the late Archean, molecular oxygen likely cycled as a biogenic trace gas, much as compounds such as dimethylsulfide do today. PMID:21825157

  5. Large sulfur-isotope anomaly in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere. (United States)

    Shaheen, Robina; Abaunza, Mariana M; Jackson, Teresa L; McCabe, Justin; Savarino, Joël; Thiemens, Mark H


    Sulfur-isotopic anomalies have been used to trace the evolution of oxygen in the Precambrian atmosphere and to document past volcanic eruptions. High-precision sulfur quadruple isotope measurements of sulfate aerosols extracted from a snow pit at the South Pole (1984-2001) showed the highest S-isotopic anomalies (Δ(33)S = +1.66‰ and Δ(36)S = +2‰) in a nonvolcanic (1998-1999) period, similar in magnitude to Pinatubo and Agung, the largest volcanic eruptions of the 20th century. The highest isotopic anomaly may be produced from a combination of different stratospheric sources (sulfur dioxide and carbonyl sulfide) via SOx photochemistry, including photoexcitation and photodissociation. The source of anomaly is linked to super El Niño Southern Oscillation (ENSO) (1997-1998)-induced changes in troposphere-stratosphere chemistry and dynamics. The data possess recurring negative S-isotope anomalies (Δ(36)S = -0.6 ± 0.2‰) in nonvolcanic and non-ENSO years, thus requiring a second source that may be tropospheric. The generation of nonvolcanic S-isotopic anomalies in an oxidizing atmosphere has implications for interpreting Archean sulfur deposits used to determine the redox state of the paleoatmosphere.

  6. New Constraints on Archean-Paleoproterozoic Carbonate Chemistry and pCO2 (United States)

    Blättler, C. L.; Higgins, J. A.


    Very few constraints exist on Archean and Proterozoic seawater chemistry, leaving huge uncertainties on the boundary conditions for the evolution of life and a habitable environment. Ancient carbonate chemistry, which is intimately related to oceanic pH and atmospheric pCO2, remains particularly uncertain, despite its importance for understanding environments and temperatures on early Earth. Using a new application of high-precision calcium isotope measurements, we present data from the Tumbiana Formation (2.7 Ga, Western Australia), the Campbellrand Platform (2.6 Ga, South Africa) and the Pethei Group (1.9 Ga, Northwest Territories, Canada) that allow us to place constraints on carbonate chemistry both before and after the Great Oxidation Event. By analogy with calcium isotope behavior in sulfate minerals (Blättler and Higgins, 2014) and Mono Lake (Nielsen and DePaolo, 2013), we infer a lower limit on the ratio of calcium ions to carbonate alkalinity during deposition of these three sedimentary sequences. These data rule out the soda ocean hypothesis (Kempe and Degens, 1985) and make further predictions about the role of CO2 in solving the faint young Sun problem.

  7. Characterizing the purple Earth: Modelling the globally-integrated spectral variability of the Archean Earth

    CERN Document Server

    Sanromá, E; Parenteau, M N; Kiang, N Y; Gutiérrez-Navarro, A M; López, R; Montañés-Rodríguez, P


    The ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected, and the efforts of future missions are placed on the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly what we know about our planet will be our guideline for the characterization of such planets. But the Earth has been inhabited for at least 3.8 Ga, and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Ga ago. At that time one of the more widespread life forms on the planet were purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we used a radiative transfer model to simulate the visible and near-IR radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents an...

  8. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth

    CERN Document Server

    Arney, Giada; Meadows, Victoria S; Wolf, Eric T; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G


    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (tau ~ 5 at 200 nm) even with the fainter young sun. We find that optically thicker hazes are self-...

  9. Geochemistry of Archean Tonalitic—Ganodioritic Gneisses from Chicheng County,Northwestern Hebei Province

    Institute of Scientific and Technical Information of China (English)

    陈岳龙; 陈伟邦; 等


    Detailed geological,chronological,mineralogical,petrological and geochemical studies have been conducted of the Chichent gneissic complex in northwestern Hebei province.The gneissic complex is composed mainly of tonalitic-granodioritic rocks according to O'Connor's classification.The zircou U-Pb age of the gneissic complex is 2468-27+33 Ma.,consistent with that of the rocks in the North Tonalitic-granodioritic Gneiss Belt in the North China Platorm.The Archean Chicheng gneissic complex is part of the belt.No significant difference in composition between early anhedral metasomatic and late semi-euhedral plagiocalases suggests that the gneissic complex is not composed merely of mafic rocks replaced by felsic fiuids.The REE patterns in the complex,in conjunction with major and trace elements data,show that the gneissic complex is the mixture of felsic magma produced by partial melting of FI dacitic granulite and crystallate derived from the magma produced by 50%±partial melting of TH2 tholeiitic granulite and 40%±fractional crystallization of hornblende.

  10. Trace element differences between Archean, Proterozoic and Phanerozoic crustal components: Implications for crustal growth processes (United States)

    Tarney, J.; Wyborn, L. E. A.; Sheraton, J. W.; Wyborn, D.


    Critical to models for continental crust growth and recycling are the processes through which crustal growth takes place. In particular, it is important to know whether these processes have changed fundamentally with time in response to the earth's thermal evolution, and whether the crustal compositions generated are compatible with crustal remobilization, crustal recycling, or represent primary additions. There are some significant and consistent differences in the major and trace element compositions of crustal components with time which have important implications for crustal growth processes. These will be illustrated with reference to Archean rocks from a number of shield areas, Proterozoic granitoids from Australia and elsewhere, Palaeozoic granitoids from Australia and Scotland, and Mesozoic - recent granitoids from present continental margin belts. Surprisingly some rather simple and consistent patterns energy using this technique. There are then significant differences in compositions of granitoid crustal additions throughout geological time, with a particular type of granitoid apparently dominating a particular time period. This implies that the tectonic processes giving rise to granite generation have changed in response to the earth's thermal evolution.

  11. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja


    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  12. A Detailed Record of Archean Biogochemical Cycles and Seawater Chemistry Preserved in Black Shales of the Abitibi Greenstone Belt (United States)

    Scott, C.; Planavsky, N. J.; Bates, S. M.; Wing, B. A.; Lyons, T. W.


    Geological and biological evolution are intimately linked within the Earth System through the medium of seawater. Thus, in order to track the co-evolution of Life and Earth during the Archean Eon we must determine how biogeochemical cycles responded to and initiated changes in the composition of Archean seawater. Among our best records of biogeochemical cycles and seawater chemistry are organic carbon-rich black shales. Here we present a detailed multi-proxy study of 2.7 Ga black shales from the Abitibi Greenstone Belt, Canada. Abitibi shales demonstrate extreme enrichments in total organic carbon (up to 15 wt. %) and total sulfur (up to 6 wt. %) reflecting vigorous biogeochemical cycling in the basin, likely driven by cyanobacteria. The speciation of reactive Fe minerals indicates that pyrite formed in a sulfidic water column (euxinia) and that dissolved Fe was the limiting reactant. The deposition of more than 50 m of euxinic black shales suggests that the Fe-rich conditions reflected by Archean BIF deposition were not necessarily ubiquitous. Biologically significant trace metals fall into two categories. Metals that can be delivered to seawater in large quantities from hydrothermal sources (e.g., Cu and Zn) are enriched in the shales, reflecting their relative abundance in seawater. Conversely, metals that are primarily delivered to the ocean during oxidative weathering of the continents (e. g., Mo and V) are largely absent from the shales, reflecting depleted seawater inventories. Thus, trace metal supply at 2.7 Ga was still dominated by geological processes. Biological forcing of trace metal inventories, through oxidative weathering of the continents, was not initiated until 2.5 Ga, when Mo enrichments are first observed in the Mt. McRae Shale, Hamersley Basin. Multiple sulfur isotope analysis (32S, 33S, 34S) of disseminated pyrite displays large mass independent fractionations (Δ33S up to 6 %) reflecting a sulfur cycle dominated by atmospheric processes

  13. Missing Fe: hydrogenated iron nanoparticles

    CERN Document Server

    Bilalbegovic, G; Mohacek-Grosev, V


    Although it was found that the FeH lines exist in the spectra of some stars, none of the spectral features in the ISM have been assigned to this molecule. We suggest that iron atoms interact with hydrogen and produce Fe-H nanoparticles which sometimes contain many H atoms. We calculate infrared spectra of hydrogenated iron nanoparticles using density functional theory methods and find broad, overlapping bands. Desorption of H2 could induce spinning of these small Fe-H dust grains. Some of hydrogenated iron nanoparticles posses magnetic and electric moments and should interact with electromagnetic fields in the ISM. Fe_nH_m nanoparticles could contribute to the polarization of the ISM and the anomalous microwave emission. We discuss the conditions required to form FeH and Fe_nH_m in the ISM.

  14. Missing Fe: hydrogenated iron nanoparticles (United States)

    Bilalbegović, G.; Maksimović, A.; Mohaček-Grošev, V.


    Although it was found that the FeH lines exist in the spectra of some stars, none of the spectral features in the interstellar medium (ISM) have been assigned to this molecule. We suggest that iron atoms interact with hydrogen and produce Fe-H nanoparticles which sometimes contain many H atoms. We calculate infrared spectra of hydrogenated iron nanoparticles using density functional theory methods and find broad, overlapping bands. Desorption of H2 could induce spinning of these small Fe-H dust grains. Some of hydrogenated iron nanoparticles possess magnetic and electric moments and should interact with electromagnetic fields in the ISM. FenHm nanoparticles could contribute to the polarization of the ISM and the anomalous microwave emission. We discuss the conditions required to form FeH and FenHm in the ISM.

  15. The evaluation of iron deficiency and anemia in male blood donors with other related factors

    Directory of Open Access Journals (Sweden)

    Yousefinejad Vahid


    Full Text Available Aims and Background: Iron deficiency is one of the most common nutritional disorders worldwide and blood donation may cause iron depletion. Limited studies with large sample size have been done on male donors. The aim of this study is to determine the prevalence of iron deficiency and iron deficiency anemia among male donors in the Kurdistan Organization of Blood Transfusion in Iran. Materials and Methods: This was a cross-sectional study. Sample size was 1184 blood donors selected by systematic random sampling. Hemoglobin, serum iron, serum ferritin, total iron banding capacity (TIBC and transferin saturation were measured in donors. Iron depletion, lack of iron stores, iron deficiency, iron deficiency anemia and anemia were evaluated among them. Data was analyzed with SPSS software and X΂, one-way ANOVA, and LSD test. Results: Iron deficiency, anemia, iron deficiency anemia, iron depletion and lack of iron resources were seen in 2.3, 4.08, 2.14, 22.76 and 4.66 percent respectively. There was a significant relationship of iron deficiency and iron deficiency anemia with instances of donation and interval from last donation (P < 0.05. A significant relationship was seen between iron deficiency and iron deficiency anemia among blood donors with more than ten times blood donation (P < 0.05. Conclusions: This study showed regular male donors require especial attention. Therefore, serum ferritin is recommended as a more adequate index to use for iron deficiency screening and planning purposes for iron supplementation among them.

  16. The F'derik-Zouerate iron district: Mesoarchean and Paleoproterozoic iron formation of the Tiris Complex, Islamic Republic of Mauritania (United States)

    Taylor, Cliff D.; Finn, Carol A.; Anderson, Eric D.; Bradley, Dwight C.; Joud, Mohamed; Taleb Mohamed, Ahmed; Horton, John D.; Johnson, Craig A.; Bouabdellah, Mohammed; Slack, John F.


    High-grade hematitic iron ores (of HIF, containing 60-65 wt%Fe) have been mined in Mauritania since 1952 from Superior-type iron deposits of the F'derik-Zouerate district.  Depletion of the high-grade ores in recent years has resulted in new exploration projects focused on lower-grade magnetite ores occurring in Algoma-type banded iron formation (of BIF, containing ca. 35 wt% Fe).  Mauritania is the seventeenth largest iron producer in the world and currently has about 1.1 Gt of crude iron ore reserves. 

  17. Mesoproterozoic suturing of Archean crustal blocks in western peninsular India: Implications for India-Madagascar correlations (United States)

    Ishwar-Kumar, C.; Santosh, M.; Wilde, S. A.; Tsunogae, T.; Itaya, T.; Windley, B. F.; Sajeev, K.


    The Kumta and Mercara suture zones welding together Archean crustal blocks in western peninsular India offer critical insights into Precambrian continental juxtapositions and the crustal evolution of eastern Gondwana. Here we present the results from an integrated study of the structure, geology, petrology, mineral chemistry, metamorphic P-T conditions, zircon U-Pb ages and Lu-Hf isotopes of metasedimentary rocks from the two sutures. The dominant rocks in the Kumta suture are greenschist- to amphibolite-facies quartz-phengite schist, garnet-biotite schist, chlorite schist, fuchsite schist and marble. The textural relations, mineral chemistry and thermodynamic modelling of garnet-biotite schist from the Kumta suture indicate peak metamorphic P-T conditions of ca. 11 kbar at 790 °C, with detrital SHRIMP U-Pb zircon ages ranging from 3420 to 2547 Ma, εHf (t) values from - 9.2 to 5.6, and TDMc model ages from 3747 to 2792 Ma. The K-Ar age of phengite from quartz-phengite schist is ca. 1326 Ma and that of biotite from garnet-biotite schist is ca. 1385 Ma, which are interpreted to broadly constrain the timing of metamorphism related to the suturing event. The Mercara suture contains amphibolite- to granulite-facies mylonitic quartzo-feldspathic gneiss, garnet-kyanite-sillimanite gneiss, garnet-biotite-kyanite-gedrite-cordierite gneiss, garnet-biotite-hornblende gneiss, calc-silicate granulite and metagabbro. The textural relations, mineral chemistry and thermodynamic modelling of garnet-biotite-kyanite-gedrite-cordierite gneiss from the Mercara suture indicate peak metamorphic P-T conditions of ca. 13 kbar at 825 °C, followed by isothermal decompression and cooling. For pelitic gneisses from the Mercara suture, LA-ICP-MS U-Pb zircon ages vary from 3249 to 3045 Ma, εHf (t) values range from - 18.9 to 4.2, and TDMc model ages vary from 4094 to 3314 Ma. The lower intercept age of detrital zircons in the pelitic gneisses from the Mercara suture ranges from 1464 to 1106

  18. Cenozoic uplift on the West Greenland margin: active sedimentary basins in quiet Archean terranes. (United States)

    Jess, Scott; Stephenson, Randell; Brown, Roderick


    The North Atlantic is believed by some authors to have experienced tectonically induced uplift within the Cenozoic. Examination of evidence, onshore and offshore, has been interpreted to imply the presence of kilometre scale uplift across the margins of the Barents Sea, North Sea, Baffin Bay and Greenland Sea. Development of topography on the West Greenland margin (Baffin Bay), in particular, has been subject to much discussion and dispute. A series of low temperature thermochronological (AFT and AHe) studies onshore and interpretation of seismic architecture offshore have suggested uplift of the entire margin totalling ~3km. However, challenges to this work and recent analysis on the opposing margin (Baffin Island) have raised questions about the validity of this interpretation. The present work reviews and remodels the thermochronological data from onshore West Greenland with the aim of re-evaluating our understanding of the margin's history. New concepts within the discipline, such as effect of radiation damage on Helium diffusivity, contemporary modelling approaches and denudational mapping are all utilised to investigate alternative interpretations to this margins complex post rift evolution. In contrast to earlier studies our new approach indicates slow protracted cooling across much of the region; however, reworked sedimentary samples taken from the Cretaceous Nuussuaq Basin display periods of rapid reheating and cooling. These new models suggest the Nuussuaq Basin experienced a tectonically active Cenozoic, while the surrounding Archean basement remained quiet. Faults located within the basin appear to have been reactivated during the Palaeocene and Eocene, a period of well-documented inversion events throughout the North Atlantic, and may have resulted in subaerial kilometre scale uplift. This interpretation of the margin's evolution has wider implications for the treatment of low temperature thermochronological data and the geological history of the North

  19. Iron bioavailability from commercially available iron supplements



    Purpose Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including th...

  20. Block and shear-zone architecture of the Minnesota River Valley subprovince: Implications for late Archean accretionary tectonics (United States)

    Southwick, D.L.; Chandler, V.W.


    The Minnesota River Valley subprovince of the Superior Province is an Archean gneiss terrane composed internally of four crustal blocks bounded by three zones of east-northeast-trending linear geophysical anomalies. Two of the block-bounding zones are verified regional-scale shears. The geological nature of the third boundary has not been established. Potential-field geophysical models portray the boundary zones as moderately north-dipping surfaces or thin slabs similar in strike and dip to the Morris fault segment of the Great Lakes tectonic zone at the north margin of the subprovince. The central two blocks of the subprovince (Morton and Montevideo) are predominantly high-grade quartzofeldspathic gneiss, some as old as 3.6 Ga, and late-tectonic granite. The northern and southern blocks (Benson and Jeffers, respectively) are judged to contain less gneiss than the central blocks and a larger diversity of syntectonic and late-tectonic plutons. A belt of moderately metamorphosed mafic and ultramafic rocks having some attributes of a dismembered ophiolite is partly within the boundary zone between the Morton and Montevideo blocks. This and the other block boundaries are interpreted as late Archean structures that were reactivated in the Early Proterozoic. The Minnesota River Valley subprovince is interpreted as a late accretionary addition to the Superior Province. Because it was continental crust, it was not subductible when it impinged on the convergent southern margin of the Superior Craton in late Archean time, and it may have accommodated to convergent-margin stresses by dividing into blocks and shear zones capable of independent movement.

  1. Modern-style Subduction Processes in the Archean:Evidence from the Shangyi Complex in North China Craton

    Institute of Scientific and Technical Information of China (English)

    WANG Renmin; WAN Yusheng; CHENG Suhua; FENG Yonggang


    Three fragments of the Arehean oceanic crust have been found between the Archean granulite belt and the Paleo-Proterozoic Hongqiyingzi group in North China craton,which spread and geochronology evidence of the ancient oceanic fragments.The magma crystallizing age of the tonalite in the Shangyi complex is 2512+19 Ma and the geochemical characteristics suggest that the Nb-enriched basalts may be related to crustal contamination and formed in the intra-oceanic arc of the supra subduction zone setting.

  2. Archean rocks in antarctica: 2.5-billion-year uranium-lead ages of pegmatites in enderby land. (United States)

    Grew, E S; Manton, W I


    Uranium-lead isotopic data indicate that the granulite-facies Napier complex of Enderby Land, Antarctica, was cut by charnockitic pegmatites 2.5 billion years ago and by pegmatites lacking hypersthene 0.52 billion years ago. The 4-bil-lion-years lead-lead ages (whole rock) reported for the Napier complex are rejected since these leads developed in three stages. Reconstructions of Gondwanaland suggest that the Napier complex may be a continuation of the Archean granulitic terrain of southern India.

  3. Transdermal iron replenishment therapy. (United States)

    Modepalli, Naresh; Shivakumar, H N; Kanni, K L Paranjothy; Murthy, S Narasimha


    Iron deficiency anemia is one of the major nutritional deficiency disorders. Iron deficiency anemia occurs due to decreased absorption of iron from diet, chronic blood loss and other associated diseases. The importance of iron and deleterious effects of iron deficiency anemia are discussed briefly in this review followed by the transdermal approaches to deliver iron. Transdermal delivery of iron would be able to overcome the side effects associated with conventional oral and parenteral iron therapy and improves the patient compliance. During preliminary investigations, ferric pyrophosphate and iron dextran were selected as iron sources for transdermal delivery. Different biophysical techniques were explored to assess their efficiency in delivering iron across the skin, and in vivo studies were carried out using anemic rat model. Transdermal iron delivery is a promising approach that could make a huge positive impact on patients suffering with iron deficiency.

  4. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. (United States)

    Keller, Markus A; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V; Griffin, Julian L; Ralser, Markus


    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.

  5. Early Archean (approximately 3.4 Ga) prokaryotic filaments from cherts of the apex basalt, Western Australia: The oldest cellularly preserved microfossils now known (United States)

    Schopf, J. W.


    In comparison with that known from later geologic time, the Archean fossil record is miniscule: although literally hundreds of Proterozoic formations, containing more that 2800 occurrences of bona fide microfossils are now known, fewer than 30 units containing some 43 categories of putative microfossils (the vast majority of which are of questionable authenticity) have been reported from the Archean. Among the oldest known fossils are Early Archean filaments reported from cherts of the Towers Formation and the Apex Basalt of the 3.3-3.6 Ga-old Warrawoona Group of Western Australia. The paleobiologic significance of the Towers Formation microstructures is open to question: thin aggregated filaments are properly regarded as dubiomicrofossils (perhaps biogenic, but perhaps not); therefore, they cannot be regarded as firm evidence of Archean life. Although authentic, filamentous microfossiles were reported from a second Towers Formation locality, because the precise layer containing the fossiliferous cherts was not relocated, this discovery can neither be reconfirmed by the original collector nor confirmed independently by other investigators. Discovery of microfossils in bedded cherts of the Apex Basalt, the stratigraphic unit immediately overlying the Towers Formation, obviates the difficulties stored above. The cellularly preserved filaments of the Apex Basalt meet all of the criteria required of a bona fide Archean microfossils. Recent studies indicate that the Apex assemblage includes at least six morphotypes of uniseriate filaments, composed of barrel-shaped, discoidal, or quadrate cells and exhibiting rounded or conical terminal cells and medial bifurcated and paired half-cells that reflect the occurrence of prokaryotic binary cell division. Interestingly, the majority of these morphotypes are morphologically more similar to extant cyanobacteria than to modern filamentous bacteria. Prokaryotes seem clearly to have been hypobradytelic, and the evidence suggests

  6. Iron and iron derived radicals

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.; Schaich, K.M.


    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  7. Gutzwiller theory of band magnetism in LaOFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Schickling, Tobias; Gebhard, Florian [Fachbereich Physik, Philipps Universitaet, D-35037 Marburg (Germany); Buenemann, Joerg [Institut fuer Physik, BTU Cottbus, D-03013 Cottbus (Germany); Boeri, Lilia; Andersen, Ole K. [Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Weber, Werner [Fakultaet Physik, TU Dortmund, D-44221 Dortmund (Germany)


    For the iron pnictide LaOFeAs we investigate multi-band Hubbard models which are assumed to capture the relevant physics. In our calculations, we employ the Gutzwiller variational theory which is a genuine many particle approach. We will present results both on the paramagnetic and antiferromagnetic phases of our model systems. These results show that a five band-model is not adequate to capture the relevant physics in LaOFeAs. However, our results for the eight band-model which includes the arsenic 4p bands reproduce the experimental data, especially the small magnetic moment, for a broad parameter regime.

  8. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M


    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  9. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.


    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...

  10. Abrasive wear behaviour of as cast and austempered ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Baydogan, M.; Koekden, M.U.; Cimenoglu, H. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Science Engineering Istanbul (Turkey)


    In this study, abrasive wear behaviour of as cast and austempered GGG 50 and GGG 80 quality ductile irons was investigated. In the as cast condition, GGG 50 and GGG 80 quality ductile irons were having ferritic and pearlitic matrix structures, respectively. Austempering at 250 C after austenitisation at 900 C for 100 minutes produced bainitic matrix structure in both of the investigated ductile irons. Abrasive wear tests performed by rubbing the as cast and austempered specimens on Al{sub 2}O{sub 3} abrasive bands, revealed that austempering treatment improves abrasion resistance about 10-70% depending on the abrasive particle size and composition of the base iron. In the as cast condition, pearlitic GGG 80 grade ductile iron, has higher wear resistance than ferritic GGG 50 grade ductile iron. In the austempered condition GGG 50 and GGG 80 grade ductile irons which have bainitic matrix structure, exhibit almost similar wear resistance. (orig.)

  11. Retrograde fluids in the Archean Shawmere anorthosite, Kapuskasing Structural Zone, Ontario, Canada (United States)

    Lamb, William M.; Morrison, Jean

    The Archean Shawmere anorthosite lies within the granulite facies portion of the Kapuskasing Structural Zone (KSZ), Ontario, and is crosscut by numerous linear alteration veins containing calcite+quartz+/- dolomite+/-zoisite+/-clinozoisite+/-margarite+/-paragonite+/-chlorite. These veins roughly parallel the trend of the Ivanhoe Lake Cataclastic Zone. Equilibria involving clinozoisite+margarite+quartz+/-calcite +/-plagioclase show that the vein minerals were stable at T0.9. Thus, vein formation, while clearly retrograde, spanned a range of temperatures, and fluid compositions evolved from H2O-rich to CO2-rich. The calcite in the retrograde veins has δ18O values that range from 8.4 to 11.2‰ (average=+9.7+/-0.9‰) and δ13C values that range from -3.9 to -1.6‰ (average=-3.1+/-0.6‰). These values indicate that the fluids from which calcite precipitated underwent extensive exchange with the anorthosite and other crustal lithologies. The fluids may have been initially derived either from devolatilization of metamorphic rocks or crystallization of igneous rocks in the adjacent Abitibi subprovince. Vein quartz contains CO2-rich fluid inclusions (final melting T=-57.0 to -58.7°C) that range in size from 5 to 17 μm. Measured homogenization temperatures (T h) range from -44.0 to 14.5°C, however for most inclusions (46 of S1), T h=-44.0 to -21.1°C (ρCO2 1.13 to 1.05g/cm3). At 400 to 600°C, these densities correspond to pressures of 3.5 to 7 kbar, which is the best estimate of pressures of vein formation. It has been argued that some high density CO2-rich fluid inclusions found in the KSZ were formed during peak metamorphism and thus document the presence of a CO2-rich fluid during peak granulite facies metamorphism (Rudnick et al. 1984). The association of high density CO2-rich fluid inclusions with clearly retrograde veins documents the formation of similar composition and density inclusions after the peak of metamorphism. Thus, the coincidence of entrapment

  12. Structural development of an Archean Orogen, Western Point Lake, Northwest Territories (United States)

    Kusky, Timothy M.


    The Point Lake orogen in the central Archean Slave Province of northwestern Canada preserves more than 10 km of structural relief through an eroded antiformal thrust stack and deeper anastomosing midcrustal mylonites. Fault restoration along a 25 km long transect requires a minimum of 69 km slip and 53 km horizontal shortening. In the western part of the orogen the basal decollement places mafic plutonic/volcanic rocks over an ancient tonalitic gneiss complex. Ten kilometers to the east in the Keskarrah Bay area, slices of gneiss unroofed on brittle thrusts shed molasse into several submerged basins. Conglomerates and associated thinly bedded sedimentary rocks are interpreted as channel, levee, and overbank facies of this thrust-related sedimentary fan system. The synorogenic erosion surface at the base of the conglomerate truncates premetamorphic or early metamorphic thrust faults formed during foreland propagation, while other thrusts related to hinterland-progressing imbrication displace this unconformity. Tightening of synorogenic depositional troughs resulted in the conglomerates' present localization in synclines to the west of associated thrust faults and steepening of structural dips. Eastern parts of the orogen consist of isoclinally folded graywackes composed largely of Mutti and Ricci-Lucchi turbidite facies B, C, and D, interpreted as submarine fan deposits eroded from a distant volcanic arc. Thrust faults in the metasedimentary terrane include highly disrupted slate horizons with meter-scale duplex structures, and recrystallized calcmylonites exhibiting sheath folds and boudin trains with very large interboudin distances. The sequence of fabric development and the overall geometry of this metasedimentary terrane strongly resembles younger forearc accretionary prisms. Conditions of deformation along the thrusts parallel the regional metamorphic zonation: amphibolite facies in the basal decollement through greenschist facies shear zones to cataclastic

  13. Structural development of high-temperature mylonites in the Archean Wyoming province, northwestern Madison Range, Montana (United States)

    Kellogg, Karl S.; Mogk, David W.


    The Crooked Creek mylonite, in the northwestern Madison Range, southwestern Montana, is defined by several curved lenses of high non-coaxial strain exposed over a 7-km-wide, northeast-trending strip. The country rocks, part of the Archean Wyoming province, are dominantly trondhjemitic to granitic orthogneiss with subordinate amphibolite, quartzite, aluminous gneiss, and sills of metabasite (mafic granulite). Data presented here support an interpretation that the mylonite formed during a period of rapid, heterogeneous strain at near-peak metamorphic conditions during an early deformational event (D1) caused by northwest–southeast-directed transpression. The mylonite has a well-developed L-S tectonite fabric and a fine-grained, recrystallized (granoblastic) texture. The strong linear fabric, interpreted as the stretching direction, is defined by elongate compositional “fish,” fold axes, aligned elongate minerals, and mullion axes. The margins of the mylonitic zones are concordant with and grade into regions of unmylonitized gneiss. A second deformational event (D2) has folded the mylonite surface to produce meter- to kilometer-scale, tight-to-isoclinal, gently plunging folds in both the mylonite and country rock, and represents a northwest–southeast shortening event. Planar or linear fabrics associated with D2 are remarkably absent. A third regional deformational event (D3) produced open, kilometer-scale folds generally with gently north-plunging fold axes. Thermobarometric measurements presented here indicate that metamorphic conditions during D1 were the same in both the mylonite and the country gneiss, reaching upper amphibolite- to lower granulite-facies conditions: 700 ± 50° C and 8.5 ± 0.5 kb. Previous geochronological studies of mylonitic and cross-cutting rocks in the Jerome Rock Lake area, east of the Crooked Creek mylonite, bracket the timing of this high-grade metamorphism and mylonitization between 2.78 and 2.56 Ga, nearly a billion years

  14. Iron and Your Child (United States)

    ... extra iron in their diets. People following a vegetarian diet might also need additional iron. What's Iron ... as Whole Milk? About Anemia Minerals What's a Vegetarian? Word! Anemia Anemia Food Labels Vitamins and Minerals ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type ... of the condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may require ...

  16. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination? (United States)

    Brocks, Jochen J.


    Archean shales from the Pilbara in Western Australia contain biomarkers that have been interpreted as evidence for the existence of cyanobacteria and eukaryotes 2.7 billion years (Ga) ago, with far reaching implications for the evolution of Earth's early biosphere. To re-evaluate the provenance of the biomarkers, this study determined the spatial distribution of hydrocarbons in the original drill core material. Rock samples were cut into millimeter-thick slices, and the molecular content of each slice was analyzed. In core from the Hamersley Group (˜2.5 Ga), C chromatographic phenomena associated with live-oil escape and contaminant diffusion have strong effects on molecular ratios and maturity parameters, potentially with broad implications for oil-source rock correlation studies and paleoenvironmental interpretations. For the Archean shales, the live-oil effect is consistent with some of the observed patterns, but only the contamination model fully explains the complex chromatographic fingerprints. Therefore, the biomarkers in the Pilbara samples have an anthropogenic origin, and previous conclusions about the origin of eukaryotes and oxygenic photosynthesis based on these samples are not valid. However, the study also identified indigenous molecules. The spatial distribution of particular aromatic hydrocarbons suggests they are syngenetic. Although devoid of biological information, these aromatics now represent the oldest known clearly-indigenous terrestrial liquid hydrocarbons.

  17. Archean Lithosphere Beneath Arctic Canada: Lu-Hf Isotope Systematics for Kimberlite-Hosted Garnet-Peridotites From Somerset Island (United States)

    Schmidberger, S. S.; Simonetti, A.; Francis, D.; Gariepy, C.


    Knowledge of the age of lithospheric mantle underlying the continents provides valuable constraints for the timing of formation and stabilization of Archean cratons. This study reports Lu-Hf isotopic data for garnet-peridotites, and their constituent garnets, from the Nikos kimberlite (100 Ma) on Somerset Island in the Canadian Arctic obtained using a Micromass IsoProbe multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) at GEOTOP-UQAM. The low temperature peridotites (1100 C; 160-190 km) and their 176Hf/177Hf(0.1Ga) isotopic compositions (0.28265-0.28333; \\epsilonHf(0.1Ga)=-2 to +22) are less radiogenic than those of the shallow xenoliths. A Lu-Hf isochron for six peridotites yields a mid Archean age of 3.4\\pm0.3 Ga and an initial 176Hf/177Hf ratio of 0.28101\\pm24. The remaining peridotites (n=9), in contrast, are characterized by extremely high (+35) initial \\epsilonHf(3.4Ga) values, which correlate negatively with their 176Lu/177Hf ratios, suggesting addition of Hf as a result of metasomatic interaction with the host kimberlite. The garnets from the low temperature (3.4 Ga old) peridotites are characterized by high 176Lu/177Hf ratios and define an errorchron age of 1.4\\pm0.2 Ga, which may reflect re-equilibration of Hf during kimberlite magmatism.

  18. Stratigraphy of the Archean western Superior Province from P- and S-wave receiver functions: Further evidence for tectonic accretion? (United States)

    Angus, D. A.; Kendall, J.-M.; Wilson, D. C.; White, D. J.; Sol, S.; Thomson, C. J.


    The Archean western Superior Province in Canada represents the nucleus of the North American continent whose origin has been speculated to be the result of widespread crustal accretion some 2.7 Ga ago. In this paper, crustal and upper-mantle seismic discontinuities beneath the western Superior Province of the Canadian shield are imaged with teleseismic P-to-S and S-to-P converted phases using the receiver function method. Three crustal discontinuities are observed: the Moho, ranging in depth between 38 and 47 km and dipping to the south; and two intra-crustal discontinuities having depths of approximately 15 and 30 km. The crustal discontinuities undulate laterally and often lose continuity, possibly indicating an imbricated structure and/or regions of velocity gradients. In the shallow lithosphere, a positive discontinuity is imaged at approximately 65 km depth and is consistent with earlier refraction and wide-angle reflection results. Additionally, two zones of negative receiver function amplitudes at 55 km depth are observed and are coincident with a region of anomalous tomographic low P- and S-wave velocities as well as a zone of high electrical conductivity. The images for the crust and shallow upper-mantle, when integrated with previous geophysical studies, are consistent with ideas of continental root formation due to imbrication of Archean subducted material and accretion of island arcs observed in surface geology.

  19. Extensive seismic anisotropy in the lower crust of Archean metamorphic terrain, South India, inferred from ambient noise tomography (United States)

    Das, Ritima; Rai, S. S.


    We use Rayleigh and Love wave empirical Green's function (EGF) recovered from the cross correlation of seismic ambient noise to study the spatial distribution of radial anisotropy in the southern India crust. The corresponding dispersion curves in the period 2 to 32 s are measured from ambient noise data recorded at 57 sites, and the strength of anisotropy computed from the discrepancy between shear velocities obtained from Rayleigh (VSV) and Love (VSH) at various depths down to 40 km. In upper crust (up to a depth of 20 km) the region is characterized by anisotropy coefficients of - 2 to + 2% that could be explained due to a combination of fluid-filled open cracks and foliated metamorphic rocks. At deeper levels (beyond 20 km), except for the Archean metamorphic terrain, most part of south India has anisotropies of up to 5%. This may be due to rocks with varying degree of metamorphism. Beneath the Archean metamorphic terrain, the anisotropy is recorded up to 9% in the depth range of 20-40 km. This high anisotropy is unlikely to be the manifestation of any recent geodynamic process, considering that the region has low surface heat flow ( 30 mW/m2). We propose that the observed strong anisotropy in the metamorphic belt of southern India crust could best be explained as due to the presence of micaceous minerals or amphiboles in the deep crust that are formed possibly during the evolution of granulite terrain at 2.5 Ga.

  20. Genetics Home Reference: iron-refractory iron deficiency anemia (United States)

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  1. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.;


    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...

  2. Low Power Band to Band Tunnel Transistors (United States)


    the E-field and tunneling at the source- pocket junction you form a parasitic NPN + transistor and the injection mechanism of carriers into the...hypothesis that the 1000 ° C, 5s anneal split lead to a very wide pocket and the accidental formation of a NPN + transistor , while the 1000 ° C, 1s anneal...Low Power Band to Band Tunnel Transistors Anupama Bowonder Electrical Engineering and Computer Sciences University of California at Berkeley

  3. Iron-refractory iron deficiency anemia. (United States)

    Yılmaz Keskin, Ebru; Yenicesu, İdil


    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the "atypical" microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field.

  4. Iron-Refractory Iron Deficiency Anemia (United States)

    Yılmaz Keskin, Ebru; Yenicesu, İdil


    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the “atypical” microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field. PMID:25805669

  5. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach


    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  6. Liver iron transport

    Institute of Scientific and Technical Information of China (English)

    Ross M Graham; Anita CG Chua; Carly E Herbison; John K Olynyk; Debbie Trinder


    The liver plays a central role in iron metabolism. It is the major storage site for iron and also expresses a complex range of molecules which are involved in iron transport and regulation of iron homeostasis. An increasing number of genes associated with hepatic iron transport or regulation have been identified. These include transferrin receptors (TFR1 and 2), a ferrireductase (STEAP3), the transporters divalent metal transporter-1 (DMT1) and ferroportin (FPN) as well as the haemochromatosis protein, HFE and haemojuvelin (HJV),which are signalling molecules. Many of these genes also participate in iron regulatory pathways which focus on the hepatic peptide hepcidin. However, we are still only beginning to understand the complex interactions between liver iron transport and iron homeostasis. This review outlines our current knowledge of molecules of iron metabolism and their roles in iron transport and regulation of iron homeostasis.

  7. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent


    System, was reduced. The oxidized outer layers of the Earth have formed by two processes. Firstly, water is decomposed to oxygen and hydrogen by solar radiation in the upper parts of the atmosphere, the light hydrogen diffusing to space, leaving oxygen behind. Secondly, plants, over the course......We live in an oxidized world: oxygen makes up 22 percent of the atmosphere and by reacting with organic matter produces most of our energy, including the energy our bodies use to function: breathe, think, move, etc. It has not always been thus. Originally the Earth, in common with most of the Solar......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost...

  8. Decreasing µ142Nd Variation in the Archean Convecting Mantle from 4.0 to 2.5 Ga: Heterogeneous Domain Mixing or Crustal Recycling? (United States)

    Brandon, A. D.; Debaille, V.


    The 146Sm-142Nd (t1/2=68 Ma) chronometer can be used to examine silicate differentiation in the first 400 Ma of Earth history. Early fractionation between Sm and Nd is recorded in cratonic Archean rocks in their 142Nd/144Nd ratios that that deviate up to ±20 ppm, or μ142Nd - ppm deviation relative to the present-day convecting mantle at 0. These values likely record early extraction of incompatible trace element (ITE) enriched material with -μ142Nd, either as crust or late stage residual melt from a magma ocean, and resulting in a complimentary ITE depleted residual mantle with +μ142Nd. If this early-formed ITE-enriched material was re-incorporated rapidly back into the convecting mantle, both ITE-enriched and ITE-depleted mantle domains would have been established in the Hadean. Alternatively, if it was early-formed crust that remained stable it could have slowly eroded and progressively remixed into the convecting mantle as subducted sediment during the Archean. Each of these scenarios could potentially explain the decrease in the maximum variation in µ142Nd from ±20 at 4.0 Ga to 0 at 2.5 Ga [1,2,3]. In the scenario where these variations reflect mixing of mantle domains, this implies long mantle mixing times of greater than 1 Ga in the Archean in order to preserve the early-formed heterogeneities. This can be achieved in a stagnant lid tectonic regime in the Archean with sporadic and short subduction cycles [2]. This scenario would also indicate that mixing times in the convecting mantle were much slower than the previously proposed 100 Ma in the Hadean and Archean. In the alternative scenario, sediment with -µ142Nd was progressively mixed into the mantle via subduction in the Archean [3]. This scenario doesn't require slow mantle mixing times or a stagnant-lid regime. It requires crustal resident times of up to 750 Ma to maintain a steady supply of ancient sediment recycling over the Archean. Each of these scenarios evoke very contrasting conditions for

  9. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: Is this really archean crust? (United States)

    Premo, Wayne R.; Castineiras, Pedro; Wooden, Joseph L.


    New SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) data confirm the existence of Archean components within zircon grains of a sample from the orthogneiss of Angel Lake, Nevada, United States, previously interpreted as a nappe of Archean crust. However, the combined evidence strongly suggests that this orthogneiss is a highly deformed, Late Cretaceous monzogranite derived from melting of a sedimentary source dominated by Archean detritus. Zircon grains from the same sample used previously for isotope dilution-thermal ionization mass spectrometry (ID-TIMS) isotopic work were analyzed using the SHRIMP-RG to better define the age and origin of the orthogneiss. Prior to analysis, imaging revealed a morphological variability and intragrain, polyphase nature of the zircon population. The SHRIMP-RG yielded 207Pb/206Pb ages between ca. 2430 and 2580 Ma (a best-fit mean 207Pb/206Pb age of 2531 ± 19 Ma; 95% confidence) from mostly rounded to subrounded zircons and zircon components (cores). In addition, several analyses from rounded to subrounded cores or grains yielded discordant 207Pb/206Pb ages between ca. 1460 and ca. 2170 Ma, consistent with known regional magmatic events. All cores of Proterozoic to latest Archean age were encased within clear, typically low Th/U (206Pb/238U ages between 72 and 91 Ma, consistent with magmatic ages from Lamoille Canyon to the south. An age of ca. 90 Ma is suggested, the younger 206Pb/238U ages resulting from Pb loss. The Cretaceous and Precambrian zircon components also have distinct trace element characteristics, indicating that these age groups are not related to the same igneous source. These results support recent geophysical interpretations and negate the contention that the Archean-Proterozoic boundary extends into the central Great Basin area. They further suggest that the world-class gold deposits along the Carlin Trend are not underlain by Archean cratonal crust, but rather by the Proterozoic Mojave

  10. Returning from the deep: Archean atmospheric fingerprints in modern hotspot lavas (Invited) (United States)

    Jackson, M. G.; Cabral, R. A.; Rose-Koga, E. F.; Koga, K. T.; Whitehouse, M. J.; Antonelli, M. A.; Farquhar, J.; Day, J. M.; Hauri, E. H.


    Ocean plates transport surface materials, including oceanic crust and sediment, into the mantle at subduction zones. However, the fate of the subducted package--oceanic crust and sediment--in the mantle is poorly understood. A long-standing hypothesis maintains that subducted materials reside in the mantle for an extended, but unknown, period of time and are then recycled back to the Earth's surface in regions of buoyantly upwelling mantle and melted beneath hotspots. Sulfur isotopes provide an important new tool to evaluate the presence of ancient recycled materials in hotspot lavas. Widespread terrestrial mass independently fractionated sulfur (MIF-S) isotope signatures were generated exclusively through atmospheric photochemical reactions until ~2.45 Ga. In fact, the only significant reservoirs of MIF-S containing rocks documented so far are sediments and hydrothermal rocks older than ~2.45 Ga. Armed with this insight, we examined sulfur isotopes in olivine phenocrysts and olivine-hosted sulfides in lavas from the island of Mangaia, Cook Islands. Lavas from this location host unusually radiogenic Pb-isotopic compositions--referred to as a HIMU (high U/Pb) component--and this has been attributed to ancient recycled oceanic crust in the mantle source. In Cabral et al. (2013), we report MIF-S in olivine phenocrysts and olivine-hosted sulfides. The discovery of MIF-S isotopic signatures in young hotspot lavas appears to provide a "timestamp" and "signature" for preservation of subducted Archean surface materials in the mantle sourcing Mangaia lavas. We report new sulfur isotope data on olivine-hosted sulfides from the Mangaia lavas that reinforce our discovery of MIF-S anomalies reported in Cabral et al. (2013). We also report new sulfur isotopic data on Mangaia whole rock powders, and we find no evidence of MIF-S signatures. It is not yet clear why the individual Mangaia sulfides and the olivine separates have more extreme MIF-S than the whole rocks. We consider it

  11. Archean Arctic continental crust fingerprints revealing by zircons from Alpha Ridge bottom rocks (United States)

    Sergeev, Sergey; Petrov, Oleg; Morozov, Andrey; Shevchenko, Sergey; Presnyakov, Sergey; Antonov, Anton; Belyatsky, Boris


    Whereas thick Cenozoic sedimentary cover overlapping bedrock of the Arctic Ocean, some tectonic windows were sampled by scientific submarine manipulator, as well as by grabbing, dredging and drilling during «Arctic-2012» Russian High-Arctic expedition (21 thousands samples in total, from 400-km profile along Alpha-Mendeleev Ridges). Among others, on the western slope of Alpha Ridge one 10x10 cm fragment without any tracks of glacial transportation of fine-layered migmatitic-gneiss with prominent quartz veinlets was studied. Its mineral (47.5 vol.% plagioclase + 29.6% quartz + 16.6% biotite + 6.1% orthoclase) and chemical composition (SiO2:68.2, Al2O3:14.9, Fe2O3:4.44, TiO2:0.54, MgO:2.03, CaO:3.13, Na2O:3.23, K2O:2.16%) corresponds to trachydacite vulcanite, deformed and metamorphozed under amphibolite facies. Most zircon grains (>80%) from this sample has an concordant U-Pb age 3450 Ma with Th/U 0.8-1.4 and U content of 100-400 ppm, epsilon Hf from -4 up to 0, and ca 20% - ca 3.3 Ga with Th/U 0.7-1.4 and 90-190 ppm U, epsilon Hf -6.5 to -4.5, while only 2% of the grains show Proterozoic age of ca 1.9 Ga (Th/U: 0.02-0.07, U~500 ppm, epsilon Hf about 0). No younger zircons were revealed at all. We suppose that magmatic zircon crystallized as early as 3450 Ma ago during acid volcanism, the second phase zircon crystallization from partial melt (or by volcanics remelting) under amphibolite facies metamorphism was at 3.3 Ga ago with formation of migmatitie gneisses. Last zircon formation from crustal fluids under low-grade metamorphic conditions was 1.9 Ga ago. There are two principal possibilities for the provenance of this metavolcanic rock. The first one - this is ice-rafted debris deposited by melted glacial iceberg. However, presently there are no temporal and compositional analogues of such rocks in basement geology of peri-oceanic regions, including Archean Itsaq Gneiss Complex, Lewisian Complex and Baltic Shield but these regions are far from the places of

  12. [Iron-refractory iron deficiency anemia]. (United States)

    Kawabata, Hiroshi


    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked.

  13. Serum iron test (United States)

    Fe+2; Ferric ion; Fe++; Ferrous ion; Iron - serum; Anemia - serum iron; Hemochromatosis - serum iron ... A blood sample is needed. Iron levels are highest in the morning. Your health care provider will likely have you do this test in the morning.

  14. Iron deficiency anemia (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  15. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.


    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  16. Iron stress in plants. (United States)

    Connolly, Erin L; Guerinot, Mary


    Although iron is an essential nutrient for plants, its accumulation within cells can be toxic. Plants, therefore, respond to both iron deficiency and iron excess by inducing expression of different gene sets. Here, we review recent advances in the understanding of iron homeostasis in plants gained through functional genomic approaches

  17. Iron stress in plants


    Connolly, Erin L.; Guerinot, Mary Lou


    Although iron is an essential nutrient for plants, its accumulation within cells can be toxic. Plants, therefore, respond to both iron deficiency and iron excess by inducing expression of different gene sets. Here, we review recent advances in the understanding of iron homeostasis in plants gained through functional genomic approaches.

  18. Evidence for an Early Archean component in the Middle to Late Archean gneisses of the Wind River Range, west-central Wyoming: conventional and ion microprobe U-Pb data (United States)

    Aleinikoff, J.N.; Williams, I.S.; Compston, W.; Stuckless, J.S.; Worl, R.G.


    Gneissic rocks that are basement to the Late Archean granites comprising much of the Wind River Range, west-central Wyoming, have been dated by the zircon U-Pb method using both conventional and ion microprobe techniques. A foliated hornblende granite gneiss member from the southern border of the Bridger batholith is 2670??13 Ma. Zircons from a granulite just north of the Bridger batholith are equant and faceted, a typical morphology for zircon grown under high grade metamorphic conditions. This granulite, which may be related to a second phase of migmatization in the area, is 2698??8 Ma. South of the Bridger batholith, zircons from a granulite (charnockite), which is related to an earlier phase of migmatization in the Range, yield a discordia with intercept ages of about 2.3 and 3.3 Ga. However, ion microprobe analyses of single zircon grains indicate that this rock contains several populations of zircon, ranging in age from 2.67 to about 3.8 Ga. Based on zircon morphology and regional geologic relationships, we interpret the data as indicating an age of ???3.2 Ga for the first granulite metamorphism and migmatization. Older, possibly xenocrystic zircons give ages of ???3.35, 3.65 and ???3.8 Ga. Younger zircons grew at 2.7 and 2.85 Ga in response to events, including the second granulite metamorphism at 2.7 Ga, that culminated in the intrusion of the Bridger batholith and migmatization at 2.67 Ga. These data support the field and petrographic evidence for two granulite events and provide some temporal constraints for the formation of continental crust in the Early and Middle Archean in the Wyoming Province. ?? 1989 Springer-Verlag.

  19. Possible magmatic underplating beneath the west coast of India and adjoining Dharwar craton: Imprint from Archean crustal evolution to breakup of India and Madagascar (United States)

    Saikia, Utpal; Das, Ritima; Rai, S. S.


    The shear wave velocity of the crust along a ∼660 km profile from the west to the east coast of South India is mapped through the joint inversion of receiver functions and Rayleigh wave group velocity. The profile, consisting of 38 broadband seismic stations, covers the Archean Dharwar craton, Proterozoic Cuddapah basin, and rifted margin and escarpment. The Moho is mapped at a depth of ∼40 km beneath the mid-Archean Western Dharwar Craton (WDC), Cuddapah Basin (CB), and the west and east coasts formed through the rifting process. This is in contrast with a thin (∼35 km) crust beneath the late-Archean Eastern Dharwar Craton (EDC). Along the profile, the average thickness of the upper, middle and lower crust is ∼4 km, 12 ± 4 km and 24 ± 4 km respectively. Above the Moho, we observe a high-velocity layer (HVL, Vs > 4 km/s) of variable thickness increasing from 3 ± 1 km beneath the EDC to 11 ± 3 km beneath the WDC and the CB, and 18 ± 2 km beneath the west coast of India. The seismic wave velocity in this layer is greater than typical oceanic lower crust. We interpret the high-velocity layer as a signature of magmatic underplating due to past tectonic processes. Its significant thinning beneath the EDC may be attributed to crustal delamination or relamination at 2.5 Ga. These results demonstrate the dual signature of the Archean Dharwar crust. The change in the geochemical character of the crust possibly occurred at the end of Archean when Komatiite volcanism ceased. The unusually thick HVL beneath the west coast of India and the adjoining region may represent underplated material formed due to India-Madagascar rifting, which is supported by the presence of seaward dipping reflectors and a 85-90 Ma mafic dyke in the adjoining island.

  20. Urinary iron excretion test in iron deficiency anemia.

    Directory of Open Access Journals (Sweden)



    Full Text Available A urinary iron excretion test was carried out in 22 patients with iron deficiency anemia. The iron excretion index was significantly higher in patients with intractable iron deficiency anemia compared with normal subjects and anemic patients who were responsive to iron therapy. The findings suggest that iron excretion may be a factor that modulates the response of patients to iron therapy.

  1. Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt. (United States)

    Lepot, K; Philippot, P; Benzerara, K; Wang, G-Y


    The study of the earliest traces of life on Earth can be complicated by abiotically formed biomorphs. We report here the finding of clustered micrometer-sized filaments of iron- and calcium-rich garnets associated with carbonaceous matter in an agate amygdale from a 2.7-billion-year-old basalt of the Maddina Formation, Western Australia. The distribution of carbonaceous matter and the mineral phases composing the filaments were analyzed using a combination of confocal laser scanning microscopy, laser-Raman micro-spectroscopy, focused ion beam sectioning and transmission electron microscopy. The results allow consideration of possible biogenic and abiotic processes that produced the filamentous structures. The filaments have a range of sizes, morphologies and distributions similar to those of certain modern iron-mineralized filamentous bacteria and some ancient filamentous structures interpreted as microfossils. They also share a high morphological similarity with tubular structures produced by microbial boring activity. However, the microstructures and the distribution of carbonaceous matter are more suggestive of an abiotic origin for the filaments. They are characteristic features of trails produced by the displacement of inclusions associated with local dissolution of their silica matrix. Organic compounds found in kerogen or bitumen inclusions may have contributed significantly to the dissolution of the quartz (or silica gel) matrix driving filamentous growth. Discriminating the products of such abiotic organic-mediated processes from filamentous microfossils or microbial borings is important to the interpretation of the scarce Precambrian fossil record and requires investigation down to the nanoscale.

  2. Oxygen toxicity in Streptococcus mutans: manganese, iron and superoxide dismutase

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.E.; Strachan, R.C.; Aranha, H.; Evans, S.L.; Salin, M.L.; Welch, B.; Arceneaux, J.E.L.; Byers, B.R.


    When cultured anaerobically in a chemically defined medium that was treated with Chelex-100 to lower its trace metal content, Streptococcus mutans OMZ176 had no apparent requirement for manganese or iron. Manganese or iron was necessary for aerobic cultivation in deep static cultures. During continuous aerobic cultivation in a stirred chemostat, iron did not support the growth rate achieved with manganese. Since the dissolved oxygen level in the chemostat cultures was higher than the final level in the static cultures, manganese may be required for growth at elevated levels. In medium supplemented with manganese, cells grown anaerobically contained a low level of superoxide dismutase (SOD) activity; aerobic cultivation increased SOD activity at least threefold. In iron-supplemented medium, cells grown anaerobically also had low SOD activity; aerobic incubation resulted in little increase in SOD activity. Polyacrylamide gel electrophoresis of the cell extracts revealed a major band and a minor band of SOD activity in the cells grown with manganese; however, cells grown with iron contained a single band of SOD activity with an R/sub f/ value similar to that of the major band found in cells grown with manganese. None of the SOD activity bands were abolished by the inclusion of 2 mM hydrogen peroxide in the SOD activity strain. S. mutans may not produce a separate iron-containing SOD but may insert either iron or manganese into an apo-SOD protein. Alternatively, iron may function in another activity (not SOD) that augments the defense against oxygen toxicity at low SOD levels. 28 references, 3 figures, 1 table.

  3. Gutzwiller theory of band magnetism in LaOFeAs. (United States)

    Schickling, Tobias; Gebhard, Florian; Bünemann, Jörg; Boeri, Lilia; Andersen, Ole K; Weber, Werner


    We use the Gutzwiller variational theory to calculate the ground-state phase diagram and quasiparticle bands of LaOFeAs. The Fe3d-As4p Wannier-orbital basis obtained from density-functional theory defines the band part of our eight-band Hubbard model. The full atomic interaction between the electrons in the iron orbitals is parametrized by the Hubbard interaction U and an average Hund's-rule interaction J. We reproduce the experimentally observed small ordered magnetic moment over a large region of (U,J) parameter space. The magnetically ordered phase is a stripe spin-density wave of quasiparticles.


    NARCIS (Netherlands)



    Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric C-b

  5. Stretch Band Exercise Program (United States)

    Skirka, Nicholas; Hume, Donald


    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  6. Progressive Band Selection (United States)

    Fisher, Kevin; Chang, Chein-I


    Progressive band selection (PBS) reduces spectral redundancy without significant loss of information, thereby reducing hyperspectral image data volume and processing time. Used onboard a spacecraft, it can also reduce image downlink time. PBS prioritizes an image's spectral bands according to priority scores that measure their significance to a specific application. Then it uses one of three methods to select an appropriate number of the most useful bands. Key challenges for PBS include selecting an appropriate criterion to generate band priority scores, and determining how many bands should be retained in the reduced image. The image's Virtual Dimensionality (VD), once computed, is a reasonable estimate of the latter. We describe the major design details of PBS and test PBS in a land classification experiment.

  7. Chloroflexus aurantiacus and ultraviolet radiation: Implications for archean shallow-water stromatolites (United States)

    Pierson, Beverly K.; Mitchell, Heather K.; Ruff-Roberts, Alyson L.


    The phototrophic growth ofChloroflexus aurantiacus under anoxic conditions was determined as a function of continuous UV irradiance. Cultures grown under an irradiance of 0.01 Wm-2 exhibited a slightly depressed yield over the nonirradiated control. Yields decreased further with increasing irradiance. Inhibition was severe at an irradiance of 0.66 Wm-2. Growth ofE. coli cultures was severely depressed at UV-C irradiances that permitted good growth ofC. aurantiacus. Low levels of Fe3+ provided a very effective UV absorbing screen. The apparent UV resistance ofChloroflexus and the effectiveness of iron as a UV-absorbing screen in sediments and microbial mats are suggested to be likely mechanisms of survival of early phototrophs in the Precambrian in the absence of an ozone shield.

  8. Nature of the emission band of Dergaon meteorite in the region 5700—6700 Å

    Indian Academy of Sciences (India)

    S Bhattacharyya; A Gohain Barua; R Konwar; R Changmai; G D Baruah


    An emission band system in the region 5700—6700 Å from Dergaon stoney iron meteorite which fell at Dergaon, India on March 2, 16.40 local time (2001) was excited with the help of a continuous 500 mW Ar+ laser. The band system is attributed to silicate (olivine), a major component of the meteorite.

  9. Iron supplements (image) (United States)

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... easily treated condition that occurs if you don't have enough iron in your body. Low iron ... can occur if your red blood cells don't contain enough hemoglobin (HEE-muh-glow-bin). Hemoglobin ...

  11. Iliotibial band friction syndrome. (United States)

    Lavine, Ronald


    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy.

  12. Iron age: novel targets for iron overload. (United States)

    Casu, Carla; Rivella, Stefano


    Excess iron deposition in vital organs is the main cause of morbidity and mortality in patients affected by β-thalassemia and hereditary hemochromatosis. In both disorders, inappropriately low levels of the liver hormone hepcidin are responsible for the increased iron absorption, leading to toxic iron accumulation in many organs. Several studies have shown that targeting iron absorption could be beneficial in reducing or preventing iron overload in these 2 disorders, with promising preclinical data. New approaches target Tmprss6, the main suppressor of hepcidin expression, or use minihepcidins, small peptide hepcidin agonists. Additional strategies in β-thalassemia are showing beneficial effects in ameliorating ineffective erythropoiesis and anemia. Due to the suppressive nature of the erythropoiesis on hepcidin expression, these approaches are also showing beneficial effects on iron metabolism. The goal of this review is to discuss the major factors controlling iron metabolism and erythropoiesis and to discuss potential novel therapeutic approaches to reduce or prevent iron overload in these 2 disorders and ameliorate anemia in β-thalassemia.

  13. Iron deficiency anemia


    Naigamwalla, Dinaz Z.; Webb, Jinelle A.; Giger, Urs


    Iron is essential to virtually all living organisms and is integral to multiple metabolic functions. The most important function is oxygen transport in hemoglobin. Iron deficiency anemia in dogs and cats is usually caused by chronic blood loss and can be discovered incidentally as animals may have adapted to the anemia. Severe iron deficiency is characterized by a microcytic, hypochromic, potentially severe anemia with a variable regenerative response. Iron metabolism and homeostasis will be ...

  14. Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition (United States)

    Planavsky, Noah; Bekker, Andrey; Rouxel, Olivier J.; Kamber, Balz; Hofmann, Axel; Knudsen, Andrew; Lyons, Timothy W.


    The ocean and atmosphere were largely anoxic in the early Precambrian, resulting in an Fe cycle that was dramatically different than today's. Extremely Fe-rich sedimentary deposits—i.e., Fe formations—are the most conspicuous manifestation of this distinct Fe cycle. Rare Earth Element (REE) systematics have long been used as a tool to understand the origin of Fe formations and the corresponding chemistry of the ancient ocean. However, many earlier REE studies of Fe formations have drawn ambiguous conclusions, partially due to analytical limitations and sampling from severely altered units. Here, we present new chemical analyses of Fe formation samples from 18 units, ranging in age from ca. 3.0 to 1.8 billion years old (Ga), which allow a reevaluation of the depositional mechanisms and significance of Precambrian Fe formations. There are several temporal trends in our REE and Y dataset that reflect shifts in marine redox conditions. In general, Archean Fe formations do not display significant shale-normalized negative Ce anomalies, and only Fe formations younger than 1.9 Ga display prominent positive Ce anomalies. Low Y/Ho ratios and high shale-normalized light to heavy REE (LREE/HREE) ratios are also present in ca. 1.9 Ga and younger Fe formations but are essentially absent in their Archean counterparts. These marked differences in Paleoproterozoic versus Archean REE + Y patterns can be explained in terms of varying REE cycling in the water column. Similar to modern redox-stratified basins, the REE + Y patterns in late Paleoproterozoic Fe formations record evidence of a shuttle of metal and Ce oxides across the redoxcline from oxic shallow seawater to deeper anoxic waters. Oxide dissolution—mainly of Mn oxides—in an anoxic water column lowers the dissolved Y/Ho ratio, raises the light to heavy REE ratio, and increases the concentration of Ce relative to the neighboring REE (La and Pr). Fe oxides precipitating at or near the chemocline will capture these REE

  15. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: is this really Archean crust? REPLY (United States)

    Premo, Wayne R.


    The comments from McGrew and Snoke are well received and their concerns for the interpretations in our paper (Premo et al., 2008), which questions the original contention that the Angel Lake orthogneiss is an Archean rock, are many and varied—all of which we will attempt to address. As they point out, this issue is an important one as this particular crustal exposure may delimit the southwestern extent of the Archean Wyoming province (Foster et al., 2006; Mueller and Frost, 2006), which has implications for the true crustal evolution of this region of the Great Basin and perhaps more importantly its relationship (if any) to the location of the world-class gold deposits of north-central Nevada (e.g., Howard, 2003).

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  17. Iron-Deficiency Anemia (United States)

    ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  18. Iron-Deficiency Anemia (United States)

    ... page from the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, ... Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by ...

  19. Diet after gastric banding (United States)

    ... helps people who have a gastric band stay satisfied longer. This includes things like salad with grilled ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  20. HYBASE - HYperspectral BAnd SElection tool

    NARCIS (Netherlands)

    Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van


    Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to calculate the minimum number of

  1. Probing Archean lithosphere using the Lu-Hf isotope systematics of peridotite xenoliths from Somerset Island kimberlites, Canada (United States)

    Schmidberger, Stefanie S.; Simonetti, Antonio; Francis, Don; Gariépy, Clément


    A knowledge of the Hf isotopic composition of the subcontinental lithosphere beneath Archean cratons is essential to constrain the Hf isotope budget of the Earth's mantle. Hf isotopic measurements were obtained by MC-ICP-MS for a suite of refractory peridotite xenoliths and constituent garnets from the Nikos kimberlite (100 Ma) on Somerset Island in order to constrain the isotopic composition and age of the lithosphere beneath the northern Canadian craton. The low-temperature Nikos peridotites (Somerset lithosphere, are characterized by higher 176Lu/ 177Hf ratios (0.03-0.05) and Hf isotopic values ( 176Hf/ 177Hf (0.1Ga)=0.28296-0.28419) than the deep-seated high-temperature peridotites (>1100°C; 0.004-0.03, 0.28265-0.28333, respectively). These differences in Hf isotope signatures suggest that shallow and deep subcontinental lithosphere beneath Somerset Island represent isotopically distinct domains and do not share a common petrogenetic history. The Lu-Hf isotope systematics of the shallow low-temperature peridotites define a positively sloped line that plot along a 2.8 Ga reference isochron. A number of these peridotites are characterized by highly radiogenic Hf isotopic compositions suggestive of long-term radiogenic ingrowth (billions of years). These findings are consistent with an interpretation that the shallow Somerset lithosphere (to depths of ˜150 km) stabilized in the Archean. The majority of the high-temperature peridotites plot closer to the composition of the host kimberlite. Although the observed isotopic variation may be attributed in part to kimberlite-related Hf addition, it is possible that these deep-seated xenoliths represent younger mantle. The superchondritic 176Lu/ 177Hf ratios observed for a number of the shallow low-temperature peridotites indicate strong fractionation of Lu and Hf, suggesting mantle root formation in the garnet stability field (depths >80 km). The Hf isotope compositions for the Somerset low-temperature peridotites

  2. Melting of a subduction-modified mantle source: A case study from the Archean Marda Volcanic Complex, central Yilgarn Craton, Western Australia (United States)

    Morris, P. A.; Kirkland, C. L.


    Subduction processes on early earth are controversial, with some suggestions that tectonics did not operate until the earth cooled to a sufficient point around the Archean-Proterozoic boundary. One way of addressing this issue is to examine well-preserved successions of Archean supracrustal rocks. Here we discuss petrography, whole-rock chemical and isotopic data combined with zircon Hf isotopes from andesites, high-magnesium andesites (HMA), dacites, high-magnesium dacites (HMD), rhyolites and coeval felsic intrusive rocks of the c. 2730 Ma Marda Volcanic Complex (MVC) in the central Yilgarn Craton of Western Australia. We demonstrate that these rocks result from melting of a metasomatized mantle source, followed by fractional crystallization in a crustal magma chamber. Contamination of komatiite by Archean crust, to produce the Marda Volcanic Complex andesites, is not feasible, as most of these crustal sources are too radiogenic to act as viable contaminants. The ɛNd(2730) of MVC andesites can be produced by mixing 10% Narryer semi-pelite with komatiite, consistent with modelling using Hf isotopes, but to achieve the required trace element concentrations, the mixture needs to be melted by about 25%. The most likely scenario is the modification of a mantle wedge above a subducting plate, coeval with partial melting, producing volcanic rocks with subduction signatures and variable Mg, Cr and Ni contents. Subsequent fractionation of cognate phases can account for the chemistry of dacites and rhyolites.

  3. Sm-Nd Ages of Two Meta-Anorthosite Complexes Around Holenarsipur: Constraints on the Antiquity of Archean Supracrustal Rocks of the Dharwar Craton

    Indian Academy of Sciences (India)

    Y J Bhaskar Rao; Anil Kumar; A B Vrevsky; R Srinivasan; G V Anantha Iyer


    Whole-rock Sm-Nd isochron ages are reported for two stratiform meta-anorthosite complexes emplaced into the Archean supracrustal-gneiss association in the amphibolite facies terrain around Holenarsipur, in the Dharwar carton, South India. While these metaperidotite-pyroxenite-gabbro-anorthosite complexes are petrologically and geochemically similar, they differ in the intensity of tectonic fabric developed during the late Archean (c.2.5Ga) deformation. They also differ in their whole-rock Sm-Nd isochron ages and initial Nd isotopic compositions: 3.285 ± 0.17 Ga, Nd = 0.82 ± 0.78 for the Honnavalli meta-anorthosite complex from a supracrustal enclave in the low-strain zone, and 2.495 ± 0.033 Ga, Nd = -2.2+-0.3 for the Dodkadnur meta-anorthosites from the high-strain southern arm of the Holenarsipur Supracrustal Belt (HSB). We interpret these results as indicating that the magmatic protoliths of both meta-anorthosite complexes were derived from a marginally depleted mantle at c.3.29 Ga but only the Dodkadnur rocks were isotopically reequilibrated on a cm-scake about 800 Ma later presumably due to the development of strong penetrative fabrics in them during Late Archean thermotectonic event around 2.5Ga. Our results set a younger age limit at c.3.29Ga for the supracrustal rocks of the HSB in the Dharwar craton.

  4. Geological features and the Paleoproterozoic collision of four Archean crustal segments of the São Francisco Craton, Bahia, Brazil: a synthesis

    Directory of Open Access Journals (Sweden)



    Full Text Available Recent geological, geochronological and isotopic research has identified four important Archean crustal segments in the basement of the São Francisco Craton in the State of Bahia. The oldest Gavião Block occurs in the WSW part, composed essentially of granitic, granodioritic and migmatitic rocks. It includes remnants of TTG suites, considered to represent the oldest rocks in the South American continent (~ 3,4Ga and associated Archean greenstone belt sequences. The youngest segment, termed the Itabuna-Salvador-Curaçá Belt is exposed along the Atlantic Coast, from the SE part of Bahia up to Salvador and then along a NE trend. It is mainly composed of tonalite/trondhjemites, but also includes stripes of intercalated metasediments and ocean-floor/back-arc gabbros and basalts. The Jequié Block, the third segment, is exposed in the SE-SSW area, being characterized by Archean granulitic migmatites with supracrustal inclusions and several charnockitic intrusions. The Serrinha Block (fourth segment occurs to the NE, composed of orthogneisses and migmatites, which represent the basement of Paleoproterozoic greenstone belts sequences. During the Paleoproterozoic Transamazonian Orogeny, these four crustal segments collided, resulting in the formation of an important mountain belt. Geochronological constrains indicate that the regional metamorphism resulting from crustal thickening associated with the collision process took place around 2.0 Ga.

  5. Macrophages and Iron Metabolism. (United States)

    Soares, Miguel P; Hamza, Iqbal


    Iron is a transition metal that due to its inherent ability to exchange electrons with a variety of molecules is essential to support life. In mammals, iron exists mostly in the form of heme, enclosed within an organic protoporphyrin ring and functioning primarily as a prosthetic group in proteins. Paradoxically, free iron also has the potential to become cytotoxic when electron exchange with oxygen is unrestricted and catalyzes the production of reactive oxygen species. These biological properties demand that iron metabolism is tightly regulated such that iron is available for core biological functions while preventing its cytotoxic effects. Macrophages play a central role in establishing this delicate balance. Here, we review the impact of macrophages on heme-iron metabolism and, reciprocally, how heme-iron modulates macrophage function.

  6. [Iron function and carcinogenesis]. (United States)

    Akatsuka, Shinya; Toyokuni, Shinya


    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models.

  7. Experiments and computer simulations of iron profiles in p/p + silicon: segregation and the position of the iron donor level (United States)

    Hieslmair, H.; Istratov, A. A.; Flink, C.; McHugo, S. A.; Weber, E. R.


    The position of the iron donor trap level in the silicon band gap at processing temperatures determines numerous important properties of iron such as its solubility and effective diffusivity. Thus this position influences the time and efficiency of the widely used p/p+ segregation gettering, i.e. the removal of iron from an epitaxial p-type silicon layer (the device region) by a heavily p+-doped silicon substrate. In this work, the iron concentration profiles within a 70 μm p-type epitaxial layer on a p+-type substrate were quantitatively measured using deep level transient spectroscopy in order to determine the position of the iron donor level. The samples are first intentionally contaminated with iron at 920°C and then annealed at 472°C for various times. The measured iron profiles are fitted with computer simulations in order to determine the iron trap level and the segregation coefficient at 472°C. The results indicate that the iron trap level is at Ev +0.32 eV at 472°C. The results of this study and of previous studies indicate that the iron donor level decreases in proportion to the band-gap narrowing.

  8. Chondritic osmium isotopic composition of late Archean convecting upper mantle:Evidence from Zunhua podiform chromitites, Hebei, North China

    Institute of Scientific and Technical Information of China (English)

    XIA Qiongxia; ZHI Xiachen; LI Jianghai; HUANG Xiongnan


    Podiform chromite deposits are a characteristic feature of the mantle sequences of harzburgitic ophiolites. The chromites usually have very low Re and high Os contents, which makes it the most resistant phase remaining from the primary magmatic history of the ultramafic sections of ophiolites. The podiform chromite is one of the robust indicators of initial Os isotopic compositions of the ophiolites where podiform chromites were derived from, which provides strong evidence for the origin and evolution of oceanic lithosphere. The Re and Os contents and the Os isotopic compositions of seven podiform chromitites from Zunhua ophiolitic mélange belt, North China are reported in this study. The Re contents range from 0.019 to 0.128 ng/g, Os from 8.828 to 354.0 ng/g, and the 187Os/188Os ratio from 0.11003 to 0.11145. Three massive chromitites among the sample set have very high Os contents (>300 ng/g), and their 187Os/188Os ratios range from 0.11021 to 0.11030, averaging 0.11026 ± 0.00005 (σ), equivalent to a γOs = -0.12 ± 0.06 at 2.6 Ga, which means that the Os isotopic composition of convecting upper mantle is chondritic in late Archean. It is the Os isotopic composition of podiform chromitites that are derived from the oldest ophiolite in the world till now.

  9. Magnetotelluric survey to locate the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada, Utah, and Idaho (United States)

    Sampson, Jay A.; Rodriguez, Brian D.


    North-central Nevada contains a large amount of gold in linear belts, the origin of which is not fully understood. During July 2008, September 2009, and August 2010, the U.S. Geological Survey, as part of the Assessment Techniques for Concealed Mineral Resources project, collected twenty-three magnetotelluric soundings along two profiles in Box Elder County, Utah; Elko County, Nevada; and Cassia, Minidoka, and Blaine Counties, Idaho. The main twenty-sounding north-south magnetotelluric profile begins south of Wendover, Nev., but north of the Deep Creek Range. It continues north of Wendover and crosses into Utah, with the north profile terminus in the Snake River Plain, Idaho. A short, three-sounding east-west segment crosses the main north-south profile near the northern terminus of the profile. The magnetotelluric data collected in this study will be used to better constrain the location and strike of the concealed suture zone between the Archean crust and the Paleoproterozoic Mojave province. This report releases the magnetotelluric sounding data that was collected. No interpretation of the data is included.

  10. Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM

    CERN Document Server

    Charnay, Benjamin; Wordsworth, Robin; Leconte, Jérémy; Millour, Ehouarn; Codron, Francis; Spiga, Aymeric


    Different solutions have been proposed to solve the "faint young Sun problem", defined by the fact that the Earth was not fully frozen during the Archean despite the fainter Sun. Most previous studies were performed with simple 1-D radiative convective models and did not account well for the clouds and ice-albedo feedback or the atmospheric and oceanic transport of energy. We apply a global climate model (GCM) to test the different solutions to the faint young Sun problem. We explore the effect of greenhouse gases (CO2 and CH4), atmospheric pressure, cloud droplet size, land distribution, and Earth's rotation rate. We show that neglecting organic haze, 100 mbar of CO2 with 2 mbar of CH4 at 3.8 Ga and 10 mbar of CO2 with 2 mbar of CH4 at 2.5 Ga allow a temperate climate (mean surface temperature between 10{\\deg}C and 20{\\deg}C). Such amounts of greenhouse gases remain consistent with the geological data. Removing continents produces a warming lower than +4{\\deg}C. The effect of rotation rate is even more limit...

  11. Photonic band gap materials (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  12. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    K S Rane; V M S Verenkar; P Y Sawant


    Iron oxyhydroxides and hydroxides were synthesized from chemically beneficiated high SiO2/Al2O3 low-grade iron ore (57.49% Fe2O3) rejects and heated to get iron oxides of 96–99.73% purity. The infrared band positions, isothermal weight loss and thermogravimetric and chemical analysis established the chemical formulas of iron-oxyhydroxides as -FeOOH.0.3H2O; -FeOOH.0.2H2O and amorphous FeOOH. The thermal products of all these were -Fe2O3 excepting that of -FeOOH.0.3H2O which gave mainly -Fe2O3 and some admixture of -Fe2O3. The hydrazinated iron hydroxides and oxyhydroxides, on the other hand, decomposed autocatalytically to mainly -Fe2O3. Hydrazine method modifies the thermal decomposition path of the hydroxides. The saturation magnetization, s, values were found to be in the range 60–71 emu g–1 which are close to the reported values for -Fe2O3. Mechanism of the -Fe2O3 formation by hydrazine method is discussed.

  13. New rat models of iron sucrose-induced iron overload. (United States)

    Vu'o'ng Lê, Bá; Khorsi-Cauet, Hafida; Villegier, Anne-Sophie; Bach, Véronique; Gay-Quéheillard, Jérôme


    The majority of murine models of iron sucrose-induced iron overload were carried out in adult subjects. This cannot reflect the high risk of iron overload in children who have an increased need for iron. In this study, we developed four experimental iron overload models in young rats using iron sucrose and evaluated different markers of iron overload, tissue oxidative stress and inflammation as its consequences. Iron overload was observed in all iron-treated rats, as evidenced by significant increases in serum iron indices, expression of liver hepcidin gene and total tissue iron content compared with control rats. We also showed that total tissue iron content was mainly associated with the dose of iron whereas serum iron indices depended essentially on the duration of iron administration. However, no differences in tissue inflammatory and antioxidant parameters from controls were observed. Furthermore, only rats exposed to daily iron injection at a dose of 75 mg/kg body weight for one week revealed a significant increase in lipid peroxidation in iron-treated rats compared with their controls. The present results suggest a correlation between iron overload levels and the dose of iron, as well as the duration and frequency of iron injection and confirm that iron sucrose may not play a crucial role in inflammation and oxidative stress. This study provides important information about iron sucrose-induced iron overload in rats and may be useful for iron sucrose therapy for iron deficiency anemia as well as for the prevention and diagnosis of iron sucrose-induced iron overload in pediatric patients.

  14. Multiple phase transitions in Pauli limited iron-based superconductors


    Ptok, Andrzej


    Specific heat measurements have been successfully used to probe unconventional superconducting phases in one-band heavy-fermion and organic superconductors. We extend the method to study successive phase transitions in multi-band materials such as iron based superconductors. The signatures are multiple peaks in the specific heat, at low temperatures and high magnetic field, which can lead the experimental verification of unconventional superconducting states with non-zero total momentum.

  15. Iron chelating agents for iron overload diseases

    Directory of Open Access Journals (Sweden)

    Guido Crisponi


    Full Text Available Although iron is an essential element for life, an excessive amount may become extremely toxic both for its ability to generate reactive oxygen species, and for the lack in humans of regulatory mechanisms for iron excretion. Chelation therapy has been introduced in clinical practice in the seventies of last century to defend thalassemic patients from the effects of iron overload and, in spite of all its limitations, it has dramatically changed both life expectancy and quality of life of patients. It has to be considered that the drugs in clinical use present some disadvantages too, this makes urgent new more suitable chelating agents. The requirements of an iron chelator have been better and better defined over the years and in this paper they will be discussed in detail. As a final point the most interesting ligands studied in the last years will be presented.

  16. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models (United States)

    Polat, Ali; Wang, Lu; Appel, Peter W. U.


    The Archean craton of West Greenland consists of many fault-bounded Eoarchean to Neoarchean tectonic terranes (crustal blocks). These tectonic terranes are composed mainly of tonalite-trondhjemite-granodiorite (TTG) gneisses, granitic gneisses, metavolcanic-dominated supracrustal belts, layered anorthositic complexes, and late- to post-tectonic granites. Rock assemblages and geochemical signatures in these terranes suggest that they represent fragments of dismembered oceanic island arcs, consisting mainly of TTG plutons, tholeiitic to calc-alkaline basalts, boninites, picrites, and cumulate layers of ultramafic rocks, gabbros, leucogabbros and anorthosites, with minor sedimentary rocks. The structural characteristics of the terrane boundaries are consistent with the assembly of these island arcs through modern style of horizontal tectonics, suggesting that the Archean craton of West Greenland grew at convergent plate margins. Several supracrustal belts that occur at or near the terrane boundaries are interpreted as relict accretionary prisms. The terranes display fold and thrust structures and contain numerous 10 cm to 20 m wide bifurcating, ductile shear zones that are characterized by a variety of structures including transposed and redistributed isoclinal folds. Geometrically these structures are similar to those occurring on regional scales, suggesting that the Archean craton of West Greenland can be interpreted as a continental scale accretionary complex, such as the Paleozoic Altaids. Melting of metavolcanic rocks during tectonic thickening in the arcs played an important role in the generation of TTGs. Non-uniformitarian models proposed for the origin of Archean terranes have no analogs in the geologic record and are inconsistent with structural, lithological, petrological and geochemical data collected from Archean terranes over the last four decades. The style of deformation and generation of felsic rocks on outcrop scales in the Archean craton of West

  17. Distribution Free Prediction Bands

    CERN Document Server

    Lei, Jing


    We study distribution free, nonparametric prediction bands with a special focus on their finite sample behavior. First we investigate and develop different notions of finite sample coverage guarantees. Then we give a new prediction band estimator by combining the idea of "conformal prediction" (Vovk et al. 2009) with nonparametric conditional density estimation. The proposed estimator, called COPS (Conformal Optimized Prediction Set), always has finite sample guarantee in a stronger sense than the original conformal prediction estimator. Under regularity conditions the estimator converges to an oracle band at a minimax optimal rate. A fast approximation algorithm and a data driven method for selecting the bandwidth are developed. The method is illustrated first in simulated data. Then, an application shows that the proposed method gives desirable prediction intervals in an automatic way, as compared to the classical linear regression modeling.

  18. The ubiquity of iron. (United States)

    Frey, Perry A; Reed, George H


    The importance of iron in living systems can be traced to the many complexes within which it is found, to its chemical mobility in undergoing oxidation-reduction reactions, and to the abundance of iron in Earth's crust. Iron is the most abundant element, by mass, in the Earth, constituting about 80% of the inner and outer cores of Earth. The molten outer core is about 8000 km in diameter, and the solid inner core is about 2400 km in diameter. Iron is the fourth most abundant element in Earth's crust. It is the chemically functional component of mononuclear iron complexes, dinuclear iron complexes, [2Fe-2S] and [4Fe-4S] clusters, [Fe-Ni-S] clusters, iron protophorphyrin IX, and many other complexes in protein biochemistry. Metals such as nickel, cobalt, copper, and manganese are present in the crust and could in principle function chemically in place of iron, but they are scarce in Earth's crust. Iron is plentiful because of its nuclear stability in stellar nuclear fusion reactions. It seems likely that other solid planets, formed by the same processes as Earth, would also foster the evolution of life and that iron would be similarly important to life on those planets as it is on Earth.

  19. Iron deficiency anaemia. (United States)

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent


    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment.

  20. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier


    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  1. Brain iron homeostasis. (United States)

    Moos, Torben


    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  2. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng


    @@ Chapter 3 Spheroidal Graphite Cast Iron(I) Spheroidal Graphite Cast Iron, SG iron in short, refers to the cast iron in which graphite precipitates as spheroidal shape during solidification of liquid iron. The graphite in common commercial cast iron can only be changed from flake to spheroidal shape by spheroidising treatment. Since spheroidal graphite reduces the cutting effect of stress concentration, the metal matrix strength of SG iron can be applied around 70%-90%, thus the mechanical property of SG iron is significantly superior to other cast irons;even the tensile strength of SG iron is higher than that carbon steel.

  3. Iron and Stony-iron Meteorites (United States)

    Haack, H.; McCoy, T. J.


    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich sampling of the deep interiors of differentiated asteroids.Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar to that continuing on Earth - although on much smaller length- and timescales - with melting of the metal and silicates, differentiation into core, mantle, and crust, and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth and other terrestrial planets. This fact has been recognized since the work of Chladni (1794), who argued that stony-iron meteorites must have originated in outer space and fallen during fireballs and that they provide our closest analogue to the material that comprises our own planet's core. This chapter deals with our current knowledge of these meteorites. How did they form? What can they tell us about the early evolution of the solar system and its solid bodies? How closely do they resemble the materials from planetary interiors? What do we know and don't we know?Iron and stony-iron meteorites constitute ˜6% of meteorite falls (Grady, 2000). Despite their scarcity among falls, iron meteorites are our only samples of ˜75 of the ˜135 asteroids from which meteorites originate ( Keil et al., 1994; Scott, 1979; Meibom and Clark, 1999; see also Chapter 1.05), suggesting that both differentiated asteroids and the geologic processes that produced them were common.Despite the highly evolved nature of iron and stony-iron meteorites, their chemistry provides important

  4. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng


    @@ Spheroidal Graphite Cast Iron(Ⅳ) 3.7 Segregation of SG iron The non-uniform distribution of solute elements during solidification results in the micro segregation of SG iron.As for the redistribution of elements in the phases of the solidification structure,there is no intrinsic difference between SG iron and grey iron[132].

  5. Colloquium: Topological band theory (United States)

    Bansil, A.; Lin, Hsin; Das, Tanmoy


    The first-principles band theory paradigm has been a key player not only in the process of discovering new classes of topologically interesting materials, but also for identifying salient characteristics of topological states, enabling direct and sharpened confrontation between theory and experiment. This review begins by discussing underpinnings of the topological band theory, which involve a layer of analysis and interpretation for assessing topological properties of band structures beyond the standard band theory construct. Methods for evaluating topological invariants are delineated, including crystals without inversion symmetry and interacting systems. The extent to which theoretically predicted properties and protections of topological states have been verified experimentally is discussed, including work on topological crystalline insulators, disorder and interaction driven topological insulators (TIs), topological superconductors, Weyl semimetal phases, and topological phase transitions. Successful strategies for new materials discovery process are outlined. A comprehensive survey of currently predicted 2D and 3D topological materials is provided. This includes binary, ternary, and quaternary compounds, transition metal and f -electron materials, Weyl and 3D Dirac semimetals, complex oxides, organometallics, skutterudites, and antiperovskites. Also included is the emerging area of 2D atomically thin films beyond graphene of various elements and their alloys, functional thin films, multilayer systems, and ultrathin films of 3D TIs, all of which hold exciting promise of wide-ranging applications. This Colloquium concludes by giving a perspective on research directions where further work will broadly benefit the topological materials field.

  6. Exceptionally large banded spherulites (United States)

    Lagasse, R. R.


    This article concerns the crystallization of maleic anhydride from a blend containing 2 wt% of poly(acrylonitrile). High speed photography and temperature measurements during the crystallization as well as X-ray diffraction from the blend after crystallization are consistent with a banded spherulitic morphology.

  7. Austempered Ductile Iron Machining (United States)

    Pilc, Jozef; Šajgalík, Michal; Holubják, Jozef; Piešová, Marianna; Zaušková, Lucia; Babík, Ondrej; Kuždák, Viktor; Rákoci, Jozef


    This article deals with the machining of cast iron. In industrial practice, Austempered Ductile Iron began to be used relatively recently. ADI is ductile iron that has gone through austempering to get improved properties, among which we can include strength, wear resistance or noise damping. This specific material is defined also by other properties, such as high elasticity, ductility and endurance against tenigue, which are the properties, that considerably make the tooling characteristic worse.

  8. Iron and the athlete. (United States)

    Suedekum, Natalie A; Dimeff, Robert J


    Iron is an important mineral necessary for many biologic pathways. Different levels of deficiency can occur in the athlete, resulting in symptoms that range from none to severe fatigue. Iron deficiency without anemia may adversely affect athletic performance. Causes of iron deficiency include poor intake, menstrual losses, gastrointestinal and genitourinary losses due to exercise-induced ischemia or organ movement, foot strike hemolysis, thermohemolysis, and sweat losses. A higher incidence of deficiency occurs in female athletes compared with males.


    Directory of Open Access Journals (Sweden)

    P. Jithu


    Full Text Available The WLAN and Bluetooth applications become popular in mobile devices, integrating GSM and ISM bands operation in one compact antenna, can reduce the size of mobile devices. Recently, lot many investigations are carried out in designing a dual band antennas with operating frequencies in GSM band and in ISM band for mobile devices. Printed monopoles are under this investigation. In this paper, dual-band printed monopoles are presented to operate at GSM band i.e. 900 MHz and ISM band i.e. 2.4 GHz. We intend to observe the antenna characteristics on the network analyzer and verify the theoretical results with the practical ones.

  10. Preliminary Iron Distribution on Vesta (United States)

    Mittlefehldt, David W.; Mittlefehldt, David W.


    The distribution of iron on the surface of the asteroid Vesta was investigated using Dawn's Gamma Ray and Neutron Detector (GRaND) [1,2]. Iron varies predictably with rock type for the howardite, eucrite, and diogenite (HED) meteorites, thought to be representative of Vesta. The abundance of Fe in howardites ranges from about 12 to 15 wt.%. Basaltic eucrites have the highest abundance, whereas, lower crustal and upper mantle materials (cumulate eucrites and diogenites) have the lowest, and howardites are intermediate [3]. We have completed a mapping study of 7.6 MeV gamma rays produced by neutron capture by Fe as measured by the bismuth germanate (BGO) detector of GRaND [1]. The procedures to determine Fe counting rates are presented in detail here, along with a preliminary distribution map, constituting the necessary initial step to quantification of Fe abundances. We find that the global distribution of Fe counting rates is generally consistent with independent mineralogical and compositional inferences obtained by other instruments on Dawn such as measurements of pyroxene absorption bands by the Visual and Infrared Spectrometer (VIR) [4] and Framing Camera (FC) [5] and neutron absorption measurements by GRaND [6].

  11. Recalling the Iron Girls

    Institute of Scientific and Technical Information of China (English)


    The phrase "iron girl" is symbolic of an era. Widely used in the 1960s and the early 1970s, it was a term that described women who, in the spirit of sexual equality, found in themselves a physical strength that surpassed their psychologi cal expectations. With their might and power, they proved to society that women could do everything that men could. The title of "iron girl" was their pride.The well-known writer Fan Xiaoqing, was one such iron girl. She says the "iron girls" were nothing less than a quest for perfection.

  12. Iron, Meat and Health

    Directory of Open Access Journals (Sweden)

    Catherine Geissler


    Full Text Available This article is a summary of the publication “Iron and Health” by the Scientific Advisory Committee on Nutrition (SACN to the U.K. Government (2010, which reviews the dietary intake of iron and the impact of different dietary patterns on the nutritional and health status of the U.K. population. It concludes that several uncertainties make it difficult to determine dose-response relationships or to confidently characterize the risks associated with iron deficiency or excess. The publication makes several recommendations concerning iron intakes from food, including meat, and from supplements, as well as recommendations for further research.

  13. Physics of iron

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, O.


    This volume comprises papers presented at the AIRAPT Conference, June 28 to July 1993. The iron sessions at the meeting were identified as the Second Ironworkers Convention. The renewal of interest stems from advances in technologies in both diamond-anvil cell (DAC) and shock wave studies as well as from controversies arising from a lack of consensus among both experimentalists and theoreticians. These advances have produced new data on iron in the pressure-temperature regime of interest for phase diagrams and for temperatures of the core/mantle and inner-core/outer-core boundaries. Particularly interesting is the iron phase diagram inferred from DAC studies. A new phase, {beta}, with a {gamma}-{beta}-{epsilon} triple point at about 30 GPa and 1190 K, and possible sixth phase, {omega}, with an {epsilon}-{Theta}-melt triple point at about 190 GPa and 4000 K are deemed possible. The importance of the equation of state of iron in consideration of Earth`s heat budget and the origin of its magnetic field invoke the interest of theoreticians who argue on the basis of molecular dynamics and other first principles methods. While the major thrust of both meetings was on the physics of pure iron, there was notable contributions on iron alloys. Hydrogen-iron alloys, iron-sulfur liquids, and the comparability to rhenium in phase diagram studies are discussed. The knowledge of the physical properties of iron were increased by several contributions.

  14. Iron overload and immunity

    Institute of Scientific and Technical Information of China (English)

    Gra(c)a Porto; Maria De Sousa


    Progress in the characterization of genes involved in the control of iron homeostasis in humans and in mice has improved the definition of iron overload and of the cells affected by it. The cell involved in iron overload with the greatest effect on immunity is the macrophage.Intriguing evidence has emerged, however, in the last 12 years indicating that parenchymal iron overload is linked to genes classically associated with the immune system. This review offers an update of the genes and proteins relevant to iron metabolism expressed in cells of the innate immune system, and addresses the question of how this system is affected in clinical situations of iron overload. The relationship between iron and the major cells of adaptive immunity, the T lymphocytes,will also be reviewed. Most studies addressing this last question in humans were performed in the clinical model of Hereditary Hemochromatosis. Data will also be reviewed demonstrating how the disruption of molecules essentially involved in adaptive immune responses result in the spontaneous development of iron overload and how they act as modifiers of iron overload.

  15. On the nature and origin of garnet in highly-refractory Archean lithosphere: implications for continent stabilisation (United States)

    Gibson, Sally


    The nature and timescales of garnet formation in the Earth's subcontinental lithospheric mantle (SCLM) are important to our understanding of how this rigid outer shell has evolved and stabilised since the Archean. Nevertheless, the widespread occurrence of pyrope garnet in the sub-cratonic mantle remains one of the 'holy grails' of mantle petrology. The paradox is that garnet often occurs in mantle lithologies (dunites and harzburgites) which represent residues of major melting events (up to 40 %) whereas experimental studies on fertile peridotite suggest this phase should be exhausted by <20 % melting. Furthermore, garnets commonly found in mantle peridotite suites have diverse compositions that are typically in equilibrium with high-pressure, small-fraction, mantle melts suggesting they formed as a result of enrichment of the lithospheric mantle following cratonisation. This refertilisation -- which typically involves addition of Fe, incompatible trace elements and volatiles -- affects the lower 30 km of the lithosphere and potentially leads to negative buoyancy and destabilisation. Pyrope garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle stabilised and evolved during the last 3 billion years. The garnets display systematic trends from ultra-depleted to enriched compositions that have not been recognised in peridotite suites from elsewhere (Gibson et al., 2013). Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element (REE) patterns similar to hypothetical garnets proposed by Stachel et al. (2004) to have formed in the Earth's SCLM during the Archean, prior to metasomatism. These rare ultra-depleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with

  16. Benefits and harms of iron supplementation in iron-deficient and iron-sufficient children. (United States)

    Domellöf, Magnus


    Due to high iron requirements, young children are at risk for iron deficiency anemia. Iron supplements are therefore often recommended, especially since iron deficiency anemia in children is associated with poor neurodevelopment. However, in contrast to most other nutrients, excess iron cannot be excreted by the human body and it has recently been suggested that excessive iron supplementation of young children may have adverse effects on growth, risk of infections, and even on cognitive development. Recent studies support that iron supplements are beneficial in iron-deficient children but there is a risk of adverse effects in those who are iron replete. In populations with a low prevalence of iron deficiency, general supplementation should therefore be avoided. Iron-fortified foods can still be generally recommended since they seem to be safer than medicinal iron supplements, but the level of iron fortification should be limited. General iron supplementation is recommended in areas with a high prevalence of iron deficiency, with the exception of malarious areas where a cautious supplementation approach needs to be adopted, based either on screening or a combination of iron supplements and infection control measures. More studies are urgently needed to better determine the risks and benefits of iron supplementation and iron-fortified foods given to iron-deficient and iron-sufficient children.

  17. Volcano-sedimentary processes operating on a marginal continental arc: the Archean Raquette Lake Formation, Slave Province, Canada (United States)

    Mueller, W. U.; Corcoran, P. L.


    The 200-m thick, volcano-sedimentary Raquette Lake Formation, located in the south-central Archean Slave Province, represents a remnant arc segment floored by continental crust. The formation overlies the gneissic Sleepy Dragon Complex unconformably, is laterally interstratified with subaqueous mafic basalts of the Cameron River volcanic belt, and is considered the proximal equivalent of the turbidite-dominated Burwash Formation. A continuum of events associated with volcanism and sedimentation, and controlled by extensional tectonics, is advocated. A complex stratigraphy with three volcanic and three sedimentary lithofacies constitute the volcano-sedimentary succession. The volcanic lithofacies include: (1) a mafic volcanic lithofacies composed of subaqueous pillow-pillow breccia, and subaerial massive to blocky flows, (2) a felsic volcanic lithofacies representing felsic flows that were deposited in a subaerial environment, and (3) a felsic volcanic sandstone lithofacies interpreted as shallow-water, wave- and storm-reworked pyroclastic debris derived from explosive eruptions. The sedimentary lithofacies are represented by: (1) a conglomerate-sandstone lithofacies consistent with unconfined debris flow, hyperconcentrated flood flow and talus scree deposits, as well as minor high-energy stream flow conglomerates that formed coalescing, steep-sloped, coarse-clastic fan deltas, (2) a sandstone lithofacies, interpreted as hyperconcentrated flood flow deposits that accumulated at the subaerial-subaqueous interface, and (3) a mudstone lithofacies consistent with suspension sedimentation in a small restricted lagoon-type setting. The Raquette Lake Formation is interpreted as a fringing continental arc that displays both high-energy clastic sedimentation and contemporaneous effusive and explosive mafic and felsic volcanism. Modern analogues that develop along active plate margins in which continental crust plays a significant role include Japan and the Baja California

  18. Geology of the Early Archean Mid-Ocean Ridge Hydrothermal System in the North Pole Dome, Pilbara Craton, Western Australia (United States)

    Kitajima, K.; Maruyama, S.


    An Archean hydrothermal system in the North Pole Dome, Pilbara Craton is associated with extensive fluid circulation driven by numerous extensional fracture systems and the underlying heat source. The fracture system is now occupied by abundant fine-grained quartz aggregate, hence we call this as silica dikes. Some of the fracture system extends deeper structural levels as listric normal faults down to 1000 m depth in the MORB crust. Barite-bearing fine-grained quartz predominant mineralogy indicates the extensive development of fracturing and quenching in a short time. Accompanying the fluid circulation, the extensive metasomatism proceeded to form the four different chemical courses, (1) silicification, (2) carbonation, (3) potassium-enrichment, and (4) Fe- enrichment. Silicification occurs along the silica dikes, carbonated greenstones are distributed relatively shallower level. Potassium-enriched (mica-rich) greenstones occur at the top of the greenstone sequence, and Fe-enriched (chlorite-rich) greenstones are distributed at lower part of the basaltic greenstones. The down going fluid precipitated carbonate-rich layer at shallow levels, whereas depleted in SiO2. Then, the fluid went down to more deeper level, and was dissolved SiO2 at high temperature (~350°C) and chlorite-rich greenstone was formed by water-rock interaction. The upwelling fluid precipitated dominantly SiO2 and formed silica dikes. Silica dikes cement the fractures formed by extensional faulting at earliest stage of development of oceanic crust. Therefore, the hydrothermal system must have related to normal fault system simultaneously with MORB volcanism. Particularly the greenish breccia with cherty matrix (oregano chert) was formed at positions by upwelling near ridge axis. After the horizontal removal of MORB crust from the ridge-axis with time, the propagating fracture into deeper levels, transports hydrothermal fluids into 500-1000 m depth range where metasomatic element exchange between

  19. Bedded Precambrian iron deposits of the Tobacco Root Mountains, southwestern Montana (United States)

    James, H.L.


    Bedded deposits of iron-formation are minor components of the thoroughly metamorphosed and deformed Precambrian rocks that make up the core of the Tobacco Root Mountains. The rocks are Archean in age; they predate a major Precambrian orogeny that affected all of southwestern Montana about 2,750 m.y. ago. The principal bed of iron-formation occurs within a metasedimentary sequence that has dolomite marble at the base and rests on quartzofeldspathic gneiss of uncertain origin. The stratigraphic thickness of the preserved part of the metasedimentary group cannot readily be established because of structural complexities, including both thickening and attenuation, but it probably does not exceed 300 m. The true (original) thickness of the iron-formation is even more difficult to determine because of the structural incompetence of the rock, but it ranges from 15 to 30 m. All the rocks, with the exception of a few younger Precambrian (Proterozoic Y) diabase dikes, are metamorphosed to amphibolite or hornblende granulite facies. The iron-formation typically consists of quartz and magnetite, with subordinate amounts of iron silicates, mainly hypersthene, garnet, clinopyroxene, and grunerite. The principal deposits of iron-formation are in the Copper Mountain area, an area of about 13 km 2 in the west-central part of the Tobacco Root range that has been mapped in some detail. The structure consists of an early set of tight isoclinal folds, trending north-south and overturned to the east, that are deformed by later crossfolds that trend and plunge northwest. The most prominent belt of iron-formation is on a tight anticlinal buckle within the northsouth-trending Ramshorn syncline, a major structure of the first fold set. This belt of iron-formation is estimated to contain about 63 million t of potential low-grade ore (taconite) to a depth of 100 m. The rock contains about 35 weight percent Fe, mostly in the form of magnetite. Iron-formation occurs in many other localities in

  20. [Iron deficiency and digestive disorders]. (United States)

    Cozon, G J N


    Iron deficiency anemia still remains problematic worldwide. Iron deficiency without anemia is often undiagnosed. We reviewed, in this study, symptoms and syndromes associated with iron deficiency with or without anemia: fatigue, cognitive functions, restless legs syndrome, hair loss, and chronic heart failure. Iron is absorbed through the digestive tract. Hepcidin and ferroportin are the main proteins of iron regulation. Pathogenic micro-organisms or intestinal dysbiosis are suspected to influence iron absorption.

  1. Diffuse interstellar absorption bands

    Institute of Scientific and Technical Information of China (English)

    XIANG FuYuan; LIANG ShunLin; LI AiGen


    The diffuse interstellar bands (DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s, the exact nature of DIBs still remains unclear. This article reviews the history of the detec-tions of DIBs in the Milky Way and external galaxies, the major observational characteristics of DIBs, the correlations or anti-correlations among DIBs or between DIBs and other interstellar features (e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise), and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.

  2. Diffuse interstellar absorption bands

    Institute of Scientific and Technical Information of China (English)


    The diffuse interstellar bands(DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s,the exact nature of DIBs still remains unclear. This article reviews the history of the detections of DIBs in the Milky Way and external galaxies,the major observational characteristics of DIBs,the correlations or anti-correlations among DIBs or between DIBs and other interstellar features(e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise),and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.

  3. Micromechanics of shear banding

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, J.J.


    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  4. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka


    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  5. Total iron binding capacity (United States)

    ... the intestines not properly absorbing vitamin B12 ( pernicious anemia ) Sickle cell anemia Risks There is very little risk involved with ... test Hemoglobin Hemolytic anemia Iron deficiency anemia Pernicious anemia Serum iron test Sickle cell anemia Review Date 2/11/2016 Updated by: ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Blood Tests Blood Transfusion Restless Legs Syndrome Send a link to NHLBI to someone by E-MAIL | ... Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily treated condition that occurs if you ...

  7. Iron deficiency in childhood

    NARCIS (Netherlands)

    Uijterschout, L.


    Iron deficiency (ID) is the most common micronutrient deficiency in the world. Iron is involved in oxygen transport, energy metabolism, immune response, and plays an important role in brain development. In infancy, ID is associated with adverse effects on cognitive, motor, and behavioral development

  8. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng


    White Cast Iron (Ⅰ) White cast iron or ‘white iron' refers to the type of cast iron in which all of the carbon exists as carbide;there is no graphite in the as-cast structure and the fractured surface shows a white colour.White cast iron can be divided in three classes:· Normal white cast iron — this iron contains only C,Si,Mn,P and S,with no other alloying elements.· Low-alloy white cast iron — the total mass fraction of alloying elements is less than 5%.

  9. Tourmaline from the Archean G.R.Halli gold deposit, Chitradurga greenstone belt, Dharwar craton (India): Implications for the gold metallogeny


    Susmita Gupta; Jayananda, M.; Fareeduddin


    Tourmaline occurs as a minor but important mineral in the alteration zone of the Archean orogenic gold deposit of Guddadarangavanahalli (G.R.Halli) in the Chitradurga greenstone belt of the western Dharwar craton, southern India. It occurs in the distal alteration halo of the G.R.Halli gold deposit as (a) clusters of very fine grained aggregates which form a minor constituent in the matrix of the altered metabasalt (AMB tourmaline) and (b) in quartz-carbonate veins (vein tourmaline). The vein...

  10. High-grade metamorphism during Archean-Paleoproterozoic transition associated with microblock amalgamation in the North China Craton: Mineral phase equilibria and zircon geochronology (United States)

    Yang, Qiong-Yan; Santosh, M.; Tsunogae, Toshiaki


    Metamorphic regimes in Archean terranes provide important keys to the plate tectonic processes in early Earth. The North China Craton (NCC) is one of the ancient continental nuclei in Asia and recent models propose that the cratonic architecture was built through the assembly of several Archean microcontinental blocks into larger crustal blocks. Here we investigate garnet- and pyroxene-bearing granulite facies rocks along the periphery of the Jiaoliao microcontinental block in the NCC. The garnet-bearing granulites contain peak mineral assemblage of garnet + clinopyroxene + orthopyroxene + magnetite + plagioclase + quartz ± biotite ± ilmenite. Mineral phase equilibria computations using pseudosection and geothermobarometry suggest peak P-T condition of 800-830 °C and 7-8 kbar for metamorphism. Isopleths using XMg of orthopyroxene and XCa of garnet in another sample containing the peak mineral assemblage of garnet + orthopyroxene + quartz + magnetite ± fluid yield peak P-T conditions of 860-920 °C and 11-14 kbar. Geochemical data show tonalitic to granodioritic composition and arc-related tectonic setting for the magmatic protoliths of these rocks. Zircon LA-ICP-MS analyses yield well-defined discordia with upper intercept ages of 2562 ± 20 Ma (MSWD = 0.94) and 2539 ± 21 Ma (MSWD = 0.59) which is correlated with the timing of emplacement of the magmatic protolith. A younger group of zircons with upper intercept ages of 2449 ± 41 Ma (MSWD = 0.83); N = 6 as 2449 ± 41 Ma (MSWD = 0.83; N = 6) and 2480 ± 44 Ma (MSWD = 1.2; N = 9) constrains the timing of metamorphism. Zircon Lu-Hf data show dominantly positive εHf(t) values (up to 8.5), and yield crustal residence ages (TDMC) in the range of 2529 to 2884 Ma, suggesting magma sources from Meso-Neoarchean juvenile components. The high temperature and medium to high pressure metamorphism is considered to have resulted from the subduction-collision tectonics associated with microblock amalgamation in the NCC at

  11. Iron replacement therapy

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Coskun, Mehmet; Weiss, Günter


    PURPOSE OF REVIEW: Approximately, one-third of the world's population suffers from anemia, and at least half of these cases are because of iron deficiency. With the introduction of new intravenous iron preparations over the last decade, uncertainty has arisen when these compounds should...... be administered and under which circumstances oral therapy is still an appropriate and effective treatment. RECENT FINDINGS: Numerous guidelines are available, but none go into detail about therapeutic start and end points or how iron-deficiency anemia should be best treated depending on the underlying cause...... of iron deficiency or in regard to concomitant underlying or additional diseases. SUMMARY: The study points to major issues to be considered in revisions of future guidelines for the true optimal iron replacement therapy, including how to assess the need for treatment, when to start and when to stop...

  12. Aerogravity and remote sensing observations of an iron deposit in Gara Djebilet, southwestern Algeria (United States)

    Bersi, Mohand; Saibi, Hakim; Chabou, Moulley Charaf


    The Gara Djebilet iron ore region is one of the most important regions in Africa. Located in the southwestern part of Algeria at the border with Mauritania, the Gara Djebilet region is characterized by steep terrain, which makes this area not easily accessible. Due to these conditions, remote sensing techniques and geophysics are the best ways to map this iron ore. The Gara Djebilet formations are characterized by high iron content that is especially rich in hematite, chamosite and goethite. The high iron content causes an absorption band at 0.88 μm, which is referred to as band 5 in the Operational Land Imager (OLI) Landsat 8 images. In this study, we integrated geological data, aerogravity data, and remote sensing data for the purpose of mapping the distribution of the Gara Djebilet iron deposit. Several remote sensing treatments were applied to the Landsat 8 OLI image, such as color composites, band ratioing, principal component analysis and a mathematical index, which helped locate the surface distribution of the iron ore. The results from gravity gradient interpretation techniques, 2-D forward modeling and 3-D inversion of aerogravity data provided information about the 2-D and 3-D distribution of the iron deposit. The combination of remote sensing and gravity results help us evaluate the ore potential of Gara Djebilet. The estimated tonnage of the iron ore at Gara Djebilet is approximately 2.37 billion tonnes with 57% Fe.

  13. Neutrophilic iron oxidizers adapted to highly oxic environments

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    oxidation of iron would be retarded. For that reason, no attempts have been documented to describe the density and diversity of iron oxidizing bacteria (FeOB) in oxic neutrophilic environments. Under low temperatures (5 to 10°C) conditions, as typically found in groundwater, extremely low rates of chemical...... indicate that neutrophilic iron oxidizers in highly oxic environments like drinking water treatment systems can be abundant (5 E+04 to 7 E+05 cells per gram of wet sand material). It was furthermore observed that the diversity of the cultivated dominant iron oxidizers differs substantially from those...... technique, and dominant bands were isolated and sequenced for identification of dominant enrichment members. Enrichment were microscopically examined via CSLM in combination with FeOB specific or generic cytostains to verify enrichments, check cell morphologies and quantify cell densities. Our results...

  14. Iron and the endurance athlete. (United States)

    Hinton, Pamela S


    Iron is a trace mineral that is highly significant to endurance athletes. Iron is critical to optimal athletic performance because of its role in energy metabolism, oxygen transport, and acid-base balance. Endurance athletes are at increased risk for suboptimal iron status, with potential negative consequences on performance, because of the combination of increased iron needs and inadequate dietary intake. This review paper summarizes the role of iron in maximal and submaximal exercise and describes the effects of iron deficiency on exercise performance. Mechanisms that explain the increased risk of iron deficiency in endurance athletes, including exercise-associated inflammation and hepcidin release on iron sequestration, are described. Information on screening athletes for iron deficiency is presented, and suggestions to increase iron intake through diet modification or supplemental iron are provided.

  15. Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution. (United States)

    Robbins, L J; Lalonde, S V; Saito, M A; Planavsky, N J; Mloszewska, A M; Pecoits, E; Scott, C; Dupont, C L; Kappler, A; Konhauser, K O


    Here, we explore enrichments in paleomarine Zn as recorded by authigenic iron oxides including Precambrian iron formations, ironstones, and Phanerozoic hydrothermal exhalites. This compilation of new and literature-based iron formation analyses track dissolved Zn abundances and constrain the magnitude of the marine reservoir over geological time. Overall, the iron formation record is characterized by a fairly static range in Zn/Fe ratios throughout the Precambrian, consistent with the shale record (Scott et al., 2013, Nature Geoscience, 6, 125-128). When hypothetical partitioning scenarios are applied to this record, paleomarine Zn concentrations within about an order of magnitude of modern are indicated. We couple this examination with new chemical speciation models to interpret the iron formation record. We present two scenarios: first, under all but the most sulfidic conditions and with Zn-binding organic ligand concentrations similar to modern oceans, the amount of bioavailable Zn remained relatively unchanged through time. Late proliferation of Zn in eukaryotic metallomes has previously been linked to marine Zn biolimitation, but under this scenario the expansion in eukaryotic Zn metallomes may be better linked to biologically intrinsic evolutionary factors. In this case, zinc's geochemical and biological evolution may be decoupled and viewed as a function of increasing need for genome regulation and diversification of Zn-binding transcription factors. In the second scenario, we consider Archean organic ligand complexation in such excess that it may render Zn bioavailability low. However, this is dependent on Zn-organic ligand complexes not being bioavailable, which remains unclear. In this case, although bioavailability may be low, sphalerite precipitation is prevented, thereby maintaining a constant Zn inventory throughout both ferruginous and euxinic conditions. These results provide new perspectives and constraints on potential couplings between the

  16. Iron-Based Superconductors as topological matter (United States)

    Hu, Jiangping

    We show the existence of non-trivial topological properties in Iron-based superconductors. Several examples are provided, including (1) the single layer FeSe grown on SrTiO3 substrate, in which an topological insulator phase exists due to the band inversion at M point; (2) CaFeAs2, a staggered intercalation compound that integrates both quantum spin hall and superconductivity in which the nontrivial topology stems from the chain-like As layers away from FeAs layers; (3) the Fe(Te,Se) thin films in which the nontrivial Z2 topological invariance originates from the parity exchange at Γ point that is controlled by the Te(Se) height; (4 nontrivial topology that is driven by the nematic order in FeSe. These results lay ground for integrating high Tc superconductivity with topological properties to realize new emergent phenomena, such as majorana particles, in iron-based high temperature superconductors

  17. Topological properties in Iron-Based Superconductors (United States)

    Hu, Jiangping; Hao, Ningning; Wu, X. X.


    We show the existence of non-trivial topological properties in Iron-based superconductors. Several examples are provided, including (1) the single layer FeSe grown on SrTiO3 substrate, in which an topological insulator phase exists due to the band inversion at M point; (2) CaFeAs2, a staggered intercalation compound that integrates both quantum spin hall and superconductivity in which the nontrivial topology stems from the chain-like As layers away from FeAs layers; (3) the Fe(Te,Se) thin films in which the nontrivial Z2 topological invariance originates from the parity exchange at ? point that is controlled by the Te(Se) height. These results lay ground for integrating high Tc superconductivity with topological properties to realize new emergent phenomena, such as majorana particles, in iron-based high temperature superconductors. The work is supported by NSFC and the Ministry of Science and Technology of China.

  18. From Iron Bowl to Iron Stomach

    Institute of Scientific and Technical Information of China (English)



    A few decades ago, "Iron Bowl" referred to not having to go hungry in China if you were employed by the Agovernment. The government gave you a job that secured the filling of one’s rice bowl. This concept and practice did create loyalty, as the times were hard. China has moved far past those times to become the

  19. 21 CFR 310.518 - Drug products containing iron or iron salts. (United States)


    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  20. Geology of East Egypt greenstone field in Neoproterozoic isoand arc: Reconstruction of Iron formation sedimentary environment. (United States)

    Kiyokawa, S.; Suzuki, T.


    Geology of East Egypt greenstone-granit belt which is northern part of Nubia shield was identified neoproterozoic island arc amalgamated sections. There are several iron formation within these greenstone belt. Age data shows this iron formation may be overlaped during 700 Ma Snowball period, how ever, there is no detail report of well preserved ice related evidences. We now started detail field work for identified tectonic reconstruction, original stratigraphy around Iron formation and sedimentary environment during the iron formation sedimentation area. East Egyptian shield was divided three geology, Proterozoic greenstone complex, 700-600 Granitic domes and cover sequence (Hammamet Group). We focus three area to identified sedimentary environment of iron sedimentation. Along the north-south trend of Wadi EL Dabban area are, we named Wadi branch as West site is RW-0 ~ 12, East site is RE-0 ~ 12 from north to south. Northern area is structurally moderate, southern portion is north dipping. Southern portion was intruded by granite and several place contain granitic dikes. Northeast to eastern area are identified younger sedimentary sequence (Hammamat Group) which is unconformablly overlay on the other iron formation bearing greenstone belt. Structurally these area is divided four units. Wadi was divided by right-lateral strike-ship fault. The displacement are more than 3 km. Also north dipping faults are identified.East-West trend fault are divided two units. It is divided NE, SE, NW and NS units.SW unit is most well preserved thick sequence of the Iron formation. SW unit is well preserved iron formation sequence within thick volcaniclastics. This unit mostly north dipping around 40-60 degree. Structural repetition in not well understand. Reconstract stratigraphy in this unit is at least 4000m in thickness. 5 member is identified in this sequence. Several thin iron formations are observed with in pillow lava and volcaniclastic sequence. These very thick

  1. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K


    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  2. Separation of hematite from banded hematite jasper (BHJ) by magnetic coating

    Institute of Scientific and Technical Information of China (English)

    Subhashree Singh; H.Sahoo; S.S.Rath; B.B.Palei; B.Das


    The separation of iron oxide from banded hematite jasper (BHJ) assaying 47.8% Fe, 25.6% SiO2 and 2.30%Al2O3 using selective magnetic coating was studied. Characterization studies of the low grade ore indicate that besides hematite and goethite, jasper, a microcrystalline form of quartzite, is the major impurity associated with this ore. Beneficiation by conventional magnetic separation technique could yield a magnetic concentrate containing 60.8% Fe with 51% Fe recovery. In order to enhance the recovery of the iron oxide minerals, fine magnetite, colloidal magnetite and oleate colloidal magnetite were used as the coating material. When subjected to magnetic separation, the coated ore produces an iron concentrate containing 60.2% Fe with an enhanced recovery of 56%. The AFM studies indicate that the coagulation of hematite particles with the oleate colloidal magnetite facilitates the higher recovery of iron particles from the low grade BHJ iron ore under appropriate conditions.

  3. The Wulf bands of oxygen (United States)

    Bernath, Peter; Carleer, Michel; Fally, Sophie; Jenouvrier, Alain; Vandaele, Ann Carine; Hermans, Christian; Mérienne, Marie-France; Colin, Reginald


    The Wulf bands of oxygen in the 240-290 nm spectral region are caused by collision-induced absorption of the Herzberg III ( A' 3Δu- X3Σ-g) system. These bands had been previously attributed to the oxygen dimer, (O 2) 2. Under atmospheric conditions the Wulf bands are thus the long-wavelength extension of the Herzberg continuum. Absorption of solar radiation by the Wulf bands may be an additional source of NO in the stratosphere.

  4. Petrogenesis and Tectonic Implications of Paleoproterozoic Metapelitic Rocks in the Archean Kongling Complex from the Northern Yangtze Craton, South China (United States)

    Li, Y.; Zheng, J.; Wang, W.; Xiong, Q.


    The Archean Kongling Complex in the northern Yangtze Craton is an ideal target to investigate the Precambrian accretion and evolution of continental crust in South China. This study aims to unravel the crustal evolution and tectonic setting of the Yangtze Craton during the Paleoproterozoic time, using integrated studies of petrography, zircon U-Pb and Hf isotopes and whole-rock geochemistry of Paleoproterozoic metapelitic rocks in the Kongling Complex. These rocks contain garnet, sillimanite, biotite, plagioclase, minor graphite and ilmenite. Zircons from the samples show nebulous sector-zoning and rim-core structure, suggesting both metamorphic origin and detrital origin with metamorphic overprints. The metamorphic zircons and metamorphic overprints have concordant 207Pb/206Pb age at ~2.0 Ga, while detrital grains yield three distinct concordant-age populations of >2.5 Ga, 2.4-2.2 Ga and 2.2-2.1 Ga. The age patterns indicate that the depositional age of the metasedimentary rocks was 2.1-2.0 Ga. Those 2.2-2.1 Ga detrital zircons with variable ɛHf(t) values (-7.28 to 2.97) suggest the addition of juvenile materials from depleted mantle to the crust during 2.2-2.1 Ga. The 2.4-2.2 Ga zircons have Hf model ages (TDM2) of ~2.6-3.5 Ga and >2.5 Ga zircons have TDM2 ages varying from 2.9 Ga to 3.3 Ga. The new data suggest that the Kongling Complex was originally a Paleoarchean (old up to 3.5 Ga) continental nucleus, which experienced multiple episodes of growth and reworking events at 3.3-3.2 Ga, 2.9 Ga, 2.7-2.6 Ga, 2.4-2.2 Ga and 2.2-2.1 Ga. In combination with available data, the new results in this study suggest a continent-arc-continent evolution model to explain the tectonic evolution of the Yangtze Craton during the Paleoproterozoic time: the western margin of Yangtze Craton was originally an individual continent, which underwent a reworking event during 2.4-2.2 Ga and a crust growth event caused by continent-arc collision during 2.2-2.1 Ga; it subsequently collided

  5. Superconductivity between standard types: Multiband versus single-band materials

    Energy Technology Data Exchange (ETDEWEB)

    Vagov, A.; Shanenko, A. A.; Milošević, M. V.; Axt, V. M.; Vinokur, V. M.; Aguiar, J. Albino; Peeters, F. M.


    In the nearest vicinity of the critical temperature, types I and II of conventional single-band superconductors interchange at the Ginzburg-Landau parameter κ = 1/√2. At lower temperatures this point unfolds into a narrow but finite interval of κ’s, shaping an intertype (transitional) domain in the (κ,T ) plane. In the present work, based on the extended Ginzburg-Landau formalism, we show that the same picture of the two standard types with the transitional domain in between applies also to multiband superconductors. However, the intertype domain notably widens in the presence of multiple bands and can become extremely large when the system has a significant disparity between the band parameters. It is concluded that many multiband superconductors, such as recently discovered borides and iron-based materials, can belong to the intertype regime.

  6. Cannon Wear and Erosion Science and Technology Objective Program (STO) 155-mm Projectile Rotating Band/Obturation for Extended Range (United States)


    differences may be due to the changes in the stainless steel material properties from welding and fabrication in addition to the limitations of the 1-D...models and body engraving models have been developed to aid in the design of new bands. Welding techniques and parameters for soft iron, nickel, MONEL...sticker test 21 TABLES 1 Candidate materials for rotating bands 7 2 Characterization of as- welded and fired bands 8 3 Mass properties

  7. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng


    @@ This book consists of five sections:Chapter 1 Introduction,Chapter 2 Grey Iron,Chapter 3 Ductile Iron,Chapter 4Vermicular Cast Iron,and Chapter 5 White Cast Iron. CHINA FOUNDRY publishs this book in several parts serially,starting from the first issue of 2009.

  8. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Ph.D Liu Jincheng


    @@ Note: This book consists of five sections: Chapter 1 Introduction, Chapter 2 Grey Iron, Chapter 3 Spheroidal Graphite Cast Iron, Chapter 4 Vermicular Cast Iron, and Chapter 5 White Cast Iron. CHINA FOUNDRY publishes this book in several parts serially, starting from the first issue of 2009.

  9. Nonlinear FMR spectra in yttrium iron garnet

    Directory of Open Access Journals (Sweden)

    Yu.M. Bunkov, P.M. Vetoshko, I.G. Motygullin, T.R. Safin, M.S. Tagirov, N.A. Tukmakova


    Full Text Available Results of demagnetizing effect studies in yttrium iron garnet Y3Fe5O12 thin films are reported. Experiments were performed on X-Band of electron paramagnetic resonance spectrometer at room temperature. The ferromagnetic resonance (FMR spectra were obtained for one-layer single crystal YIG films for different values of the applied microwave power. Nonlinear FMR spectra transformation by the microwave power increasing in various directions of magnetic field sweep was observed. It is explained by the influence of the demagnetization action of nonequilibrium magnons.

  10. Paleoproterozoic magmatism across the Archean-Proterozoic boundary in central Fennoscandia: Geochronology, geochemistry and isotopic data (Sm-Nd, Lu-Hf, O) (United States)

    Lahtinen, Raimo; Huhma, Hannu; Lahaye, Yann; Lode, Stefanie; Heinonen, Suvi; Sayab, Mohammad; Whitehouse, Martin J.


    The central Fennoscandia is characterized by the Archean-Proterozoic (AP) boundary and the Central Finland Granitoid Complex (CFGC), a roundish area of approximately 40,000 km2 surrounded by supracrustal belts. Deep seismic reflection profile FIRE 3A runs across these units, and we have re-interpreted the profile and crustal evolution along the profile using 1.92-1.85 Ga plutonic rocks as lithospheric probes. The surface part of the profile has been divided into five subareas: Archean continent (AC) in the east, AP, CFGC, boundary zone (BZ) and the Bothnian Belt (BB) in the west. There are 12 key samples from which zircons were studied for inclusions and analyzed (core-rim) by ion probe for U-Pb dating and oxygen isotopes, followed by analyzes for Lu-Hf by LA-MC-ICP-MS. The AC plutonic rocks (1.87-1.85 Ga) form a bimodal suite, where the proposed mantle source for the mafic rocks is 2.1-2.0 Ga metasomatized lower part of the Archean subcontinental lithospheric mantle (SCLM) and the source for the felsic melts is related plume-derived underplated mafic material in the lower crust. Variable degrees of contamination of the Archean lower crust have produced "subduction-like" Nb-Ta anomalies in spidergrams and negative εNd (T) values in the mafic-intermediate rocks. The felsic AC granitoids originate from a low degree melting of eclogitic or garnet-bearing amphibolites with titanite ± rutile partly prevailing in the residue (Nb-Ta fractionation) followed by variable degree of assimilation/melting of the Archean lower crust. The AP plutonic rocks (ca. 1.88 Ga) can be divided into I-type and A-type granitoids (AP/A), where the latter follow the sediment assimilation trend in ASI diagram, have high δ18O values (up to 8‰) in zircons and exhibit negative Ba anomalies (Rb-Ba-Th in spidergram), as found in sedimentary rocks. A mixing/assimilation of enriched mantle-derived melts with melts from already migmatized sedimentary rocks ± amphibolites is proposed. The CFGC is

  11. Evidence for Archean inheritance in the pre-Panafrican crust of Central Cameroon: Insight from zircon internal structure and LA-MC-ICP-MS Usbnd Pb ages (United States)

    Ganwa, Alembert Alexandre; Klötzli, Urs Stephan; Hauzenberger, Christoph


    sources. It is likely that erosion, transport and deposition took place between 2116 and 821 Ma. Geochemical data show that the REE, Y, Yb, Sr/Y of some samples are similar to the known Archean craton formations (depletion in REE, Y ≤ 10 ppm, Yb ≤ 1 ppm, Sr/Y ≥ 30). These characteristics are known as specific for the Archean TTG (Tonalite-Trondhjemite-Granodiorite). It means that: i) Archean TTG contribute significantly to the detritus of the sedimentary basin, ii) The depositional basin and the source rock were close and the detritus was immature. Our results show that the Pre-Panafrican history of central Cameroon includes Meso- to Neo-Archean crustal accretion and associated magmatism prior to the Paleoproterozoic event of the West Central African Belt. In respect to this new insight, any evolutionary reconstruction of the area should integrate the presence of Archean crust.

  12. Effect of Iron Deficiency on Heterocyst Differentiation and Physiology of the Filamentous Cyanobacterium Anabaena sp. PCC 7120

    Institute of Scientific and Technical Information of China (English)

    Zhang Cheng-cai


    The effect of iron deficiency on heterocyst differentiation and some physiological properties of the filamentous cyanobacterium Anabaena sp. PCC 7120was investigated. Under moderate iron limitation conditions, achieved by addition of iron chelator 2,2′-Dipyridyl (<80 μmol/L) led to delayed heterocyst differentiation,no heterocyst differentiation was observed under severe iron limitation conditions,when the concentration of 2,2′-Dipyridyl in the medium was more than 100 μmol/L.It seemed that there are certain iron-regulated genes or operons whose function is to control heterocyst development. In addition, iron deficiency impaired the growth.Low-iron cells had a decrease in the quantities of pigment content (chlorophyll and phycocyanin content), the whole cell in vivo absorbance spectra confirmed the de crease, the protein electrophoretic profiles revealed that iron-deficient cells had less protein bands, with the increase of 2,2′ Dipyridyl , the protein bands was more and more less. And differently, iron deficiency also caused an increase of ROS (Reactive Oxygen Species)and SOD activity, it suggests that iron deficiency led to oxidative stress, which generally occured under high-iron conditions.

  13. Effect of Iron Deficiency on Heterocyst Differentiation and Physiology of the Filamentous Cyanobacterium Anabaena sp. PCC 7120

    Institute of Scientific and Technical Information of China (English)

    XuWen-liang; LiuYong-ding; ZhangCheng-cai


    The effect of iron deficiency on heterocyst differentiation and some physiological properties of the filamentous cyanobacterium Anabaena sp. PCC 7120 was investigated. Under moderate iron limitation conditions, achieved by addition of iron chelator 2,2′-Dipyridyl (<80 μmol/L) led to delayed heterocyst differentiation,no heterocyst differentiation was observed under severe iron limitation conditions,when the concentration of 2,2′-Dipyridyl in the medium was more than 100 μmol/L.It seemed that there are certain iron-regulated genes or operons whose function is to control heterocyst development. In addition, iron deficiency impaired the growth.Low-iron cells had a decrease in the quantities of pigment content (chlorophyll and phycocyanin content), the whole cell in vivo absorbance spectra confirmed the decrease, the protein electrophoretic profiles revealed that iron-deficient cells had less protein bands, with the increase of 2,2'-Dipyridyl , the protein bands was more and more less. And differently, iron deficiency also caused an increase of ROS (Reactive Oxygen Species)and SOD activity, it suggests that iron deficiency led to oxidative stress, which uenerallv occured under hiuh-iron conditions.

  14. Iron in diet (United States)

    ... rich in vitamin C ( such as citrus, strawberries, tomatoes, and potatoes) also increase iron absorption. Cooking foods ... Vomiting Headache Weight loss Shortness of breath Grayish color to the skin

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... chest pain, and other symptoms. Severe iron-deficiency anemia can lead to heart problems, infections, problems with growth and development in children, and other complications. Infants and young children and ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Events Spokespeople Email Alerts E-Newsletters About NHLBI Organization NHLBI Director Budget, Planning, & Legislative Advisory Committees Jobs ... food. Overview Iron-deficiency anemia is a common type of anemia . The term "anemia" usually refers to ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... CAUSES WHO IS AT RISK SIGNS & SYMPTOMS DIAGNOSIS TREATMENTS PREVENTION LIVING WITH CLINICAL TRIALS LINKS Related Topics ... Doctors usually can successfully treat iron-deficiency anemia. Treatment will depend on the cause and severity of ...

  18. Ocean iron fertilization

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Smetacek, V.

    In 2009 and 2010, an Indo-German scientific expedition dusted the ocean with iron to stimulate the biological pump that captures atmosphereic carbon dioxide. Two onboard scientists tell the story of this controversial project. Besides raising...

  19. Ferrous Sulfate (Iron) (United States)

    ... is used to treat or prevent iron-deficiency anemia, a condition that occurs when the body has ... and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  20. Iron and Your Child (United States)

    ... red blood cell that carries oxygen from the lungs to the body. Iron gives hemoglobin the strength ... dried beans and peas dried fruits leafy dark green ... serving coffee or tea at mealtime — both contain tannins that reduce the ...

  1. Iron deficiency and iron deficiency anemia in women. (United States)

    Coad, Jane; Pedley, Kevin


    Iron deficiency is one of the most common nutritional problems in the world and disproportionately affects women and children. Stages of iron deficiency can be characterized as mild deficiency where iron stores become depleted, marginal deficiency where the production of many iron-dependent proteins is compromised but hemoglobin levels are normal and iron deficiency anemia where synthesis of hemoglobin is decreased and oxygen transport to the tissues is reduced. Iron deficiency anemia is usually assessed by measuring hemoglobin levels but this approach lacks both specificity and sensitivity. Failure to identify and treat earlier stages of iron deficiency is concerning given the neurocognitive implications of iron deficiency without anemia. Most of the daily iron requirement is derived from recycling of senescent erythrocytes by macrophages; only 5-10 % comes from the diet. Iron absorption is affected by inhibitors and enhancers of iron absorption and by the physiological state. Inflammatory conditions, including obesity, can result in iron being retained in the enterocytes and macrophages causing hypoferremia as a strategic defense mechanism to restrict iron availability to pathogens. Premenopausal women usually have low iron status because of iron loss in menstrual blood. Conditions which further increase iron loss, compromise absorption or increase demand, such as frequent blood donation, gastrointestinal lesions, athletic activity and pregnancy, can exceed the capacity of the gastrointestinal tract to upregulate iron absorption. Women of reproductive age are at particularly high risk of iron deficiency and its consequences however there is a controversial argument that evolutionary pressures have resulted in an iron deficient phenotype which protects against infection.

  2. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng


    @@ Vermicular graphite cast iron(VG iron for short in the following sections)is a type of cast iron in which the graphite is intermediate in shape between flake and spheroidal.Compared with the normal flake graphite in grey iron, the graphite in VG iron is shorter and thicker and shows a curved, more rounded shape.Because its outer contour is exactly like a worm, hence it is called vermicular graphite.

  3. Iron-Air Rechargeable Battery (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)


    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  4. Iron isomaltoside 1000: a new intravenous iron for treating iron deficiency in chronic kidney disease

    DEFF Research Database (Denmark)

    Wikström, Björn; Bhandari, Sunil; Barany, Peter;


    Patients with chronic kidney disease (CKD) often suffer from iron deficiency anemia necessitating treatment with intravenous iron. This study was designed to assess the safety of iron isomaltoside 1000 (Monofer) in CKD patients. The secondary objective was to assess its effect on iron deficiency...... anemia....

  5. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation (United States)

    Czaja, Andrew D.; Johnson, Clark M.; Roden, Eric E.; Beard, Brian L.; Voegelin, Andrea R.; Nägler, Thomas F.; Beukes, Nicolas J.; Wille, Martin


    Most geochemical proxies and models of atmospheric evolution suggest that the amount of free O2 in Earth’s atmosphere stayed below 10-5 present atmospheric level (PAL) until the Great Oxidation Event (GOE) that occurred between ∼2.2 and 2.4 Ga, at which time free O2 in the atmosphere increased to approximately 10-1 to 10-2 PAL. Although photosynthetically produced “O2 oases” have been proposed for the photic zone of the oceans prior to the GOE, it has been difficult to constrain absolute O2 concentrations and fluxes in such paleoenvironments. Here we constrain free O2 levels in the photic zone of a Late Archean marine basin by the combined use of Fe and Mo isotope systematics of Ca-Mg carbonates and shales from the 2.68 to 2.50 Ga Campbellrand-Malmani carbonate platform of the Kaapvaal Craton in South Africa. Correlated Fe and Mo isotope compositions require a key role for Fe oxide precipitation via oxidation of aqueous Fe(II) by photosynthetically-derived O2, followed by sorption of aqueous Mo to the newly formed Fe oxides. A dispersion/reaction model illustrates the effects of Fe oxide production and Mo sorption to Fe oxides, and suggests that a few to a few tens of μM free O2 was available in the photic zone of the Late Archean marine basin, consistent with some previous estimates. The coupling of Fe and Mo isotope systematics provides a unique view into the processes that occurred in the ancient shallow ocean after production of free O2 began, but prior to oxygenation of the deep ocean, or significant accumulation of free O2 in the atmosphere. These results require oxygenic photosynthesis to have evolved by at least 2.7 Ga and suggest that the Neoarchean ocean may have had a different oxygenation history than that of the atmosphere. The data also suggest that the extensive iron formation deposition that occurred during this time was unlikely to have been produced by anoxygenic photosynthetic Fe(II) oxidation. Finally, these data indicate that the ocean

  6. Sentinel-2 for Mapping Iron Absorption Feature Parameters

    Directory of Open Access Journals (Sweden)

    Harald van der Werff


    Full Text Available Iron is an indicator for soil fertility and the usability of an area for cultivating crops. Remote sensing is the only suitable tool for surveying large areas at a high temporal and spatial interval, yet a relative high spectral resolution is needed for mapping iron contents with reflectance data. Sentinel-2 has several bands that cover the 0.9 μm iron absorption feature, while space-borne sensors traditionally used for geologic remote sensing, like ASTER and Landsat, had only one band in this feature. In this paper, we introduce a curve-fitting technique for Sentinel-2 that approximates the iron absorption feature at a hyperspectral resolution. We test our technique on library spectra of different iron bearing minerals and we apply it to a Sentinel-2 image synthesized from an airborne hyperspectral dataset. Our method finds the wavelength position of maximum absorption and absolute absorption depth for minerals Beryl, Bronzite, Goethite, Jarosite and Hematite. Sentinel-2 offers information on the 0.9 μm absorption feature that until now was reserved for hyperspectral instruments. Being a satellite mission, this information comes at a lower spatial resolution than airborne hyperspectral data, but with a large spatial coverage and frequent revisit time.

  7. Formation and occurrence of biogenic iron-rich minerals (United States)

    Fortin, Danielle; Langley, Sean


    unidentified iron-rich mineral phase forms inside Shewanella cells during the anaerobic reduction of ferrihydrite. Several studies have clearly shown that biogenic iron oxides form in present-day environments, but they might also be important components of ancient geological formations, such as banded-iron formations (BIF). BIF formation is still being debated, but there is now strong evidence that bacteria, more specifically, phototrophic iron oxidizers and possibly iron reducers might have been involved. Biogenic iron oxides represent a potential tool in the search for past and present life on Earth and other planetary systems. Despite the promising use of Fe-isotopes and magnetosomes, there is still no clear proof that they can form only as a result of biological activity. In fact, Fe isotope fractionation of abiotic iron oxides is often similar to that of biogenic oxides and the specific mineralogical characteristics of magnetite crystals present inside magnetotactic bacteria can be reproduced under abiotic conditions. In summary, the role of bacteria in iron cycling has been the focus of several studies in the last few decades, but clearly, more research is needed in order to fully assess the role of microorganisms in their formation.

  8. Iron-Refractory Iron Deficiency Anemia


    Ebru Yılmaz Keskin; İdil Yenicesu


    Demir, oksijenin taşınması, DNA sentezi ve hücre çoğalması gibi çeşitli biyolojik reaksiyonlar için vazgeçilmez olduğundan, yaşam için zorunludur. Demir metabolizması ve bu elementin düzenlenmesiyle ilgili bilgilerimiz, son yıllarda belirgin şekilde değişmiştir. Demir metabolizması ile ilgili yeni bozukluklar tanımlanmış ve demirin başka bozuklukların kofaktörü olduğu anlaşılmaya başlamıştır. Hemokromatozis ve demir tedavisine dirençli demir eksikliği anemisi (IRIDA; “iron-refractory iron def...

  9. Iron Absorption in Drosophila melanogaster (United States)

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis


    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  10. Iron Absorption in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Fanis Missirlis


    Full Text Available The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import, the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export and the role of ferritin in the process of iron acquisition (iron storage. We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration.

  11. Theoretical Simulation for Identical Bands

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Jing; CHEN Yong-Shou; GAO Zao-Chun


    @@ The frequency of occurrence of identical bands is studied by analysing a large number of rotational bands calculated with the reflection asymmetric shell model, and the statistical properties of identical bands indicated in all the experimental observations are reproduced within the mean field approximation and beyond mean field treatment, such as angular momentum projection. The distributions of the calculated J(2), Eγ and the fractional change of J(2) are discussed.

  12. Cluster banding heat source model

    Institute of Scientific and Technical Information of China (English)

    Zhang Liguo; Ji Shude; Yang Jianguo; Fang Hongyuan; Li Yafan


    Concept of cluster banding heat source model is put forward for the problem of overmany increment steps in the process of numerical simulation of large welding structures, and expression of cluster banding heat source model is deduced based on energy conservation law.Because the expression of cluster banding heat source model deduced is suitable for random weld width, quantitative analysis of welding stress field for large welding structures which have regular welds can be made quickly.

  13. Electronic and vibrational properties of graphene monolayers with iron adatoms: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, Nicholas, E-mail: [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX (United States); Navarro, Nestor E. [Department of Chemistry, University of Texas-Pan American, Edinburg, TX (United States); Velazquez, Julian; Salgado, Andres [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX (United States)


    Highlights: • Periodic density functional calculations were performed on graphene monolayers with and without an iron adatom. • Densities of states, charge transfers, and overlap populations were used to elucidate the effects of weak iron adsorption on graphene compared to CO adsorption on Pt. • Infrared intensities and normal mode analysis verify weak iron adsorption on graphene by studying the shift in prominent vibrational modes and changes in lattice dynamics. - Abstract: Periodic density functional calculations on graphene monolayers with and without an iron adatom have been used to elucidate iron-graphene adsorption and its effects on graphene electronic and vibrational properties. Density-of-states calculations and charge density contour plots reveal charge transfer from the iron s orbitals to the d orbitals, in agreement with past reports. Adsorbed iron atoms covalently bind to the graphene substrate, verified by the strong hybridization of iron d-states with the graphene bands in the energy region just below the Fermi level. This adsorption is weak and compared to the well-analyzed CO adsorption on Pt: It is indicated by its small adsorption energy and the minimal change of the substrate geometry due to the presence of the iron adatoms. Graphene vibrational spectra are analyzed though a systematic variation of the graphene supercell size. The shifts of graphene most prominent infrared active vibrational modes due to iron adsorption are explored using normal mode eigenvectors.

  14. Iron-Ore Sintering Process Optimization / Optymalizacja Procesu Aglomeracji Rudy Żelaza

    Directory of Open Access Journals (Sweden)

    Fröhlichová M.


    Full Text Available The work deals with examination of the influence of the ratio between iron ore concentrate and iron ore on quality of produced iron ore sinter. One of the possibilities to increase iron content in sinter is the modification of raw materials ratio, when iron ore materials are added into sintering mixture. If the ratio is in favor of iron ore sinter, iron content in resulting sintering mixture will be lower. If the ratio is in favor of iron ore concentrate and recycled materials, which is more finegrained, a proportion of a fraction under 0.5 mm will increase, charge permeability property will be reduced, sintering band performance will decrease and an occurrence of solid particulate matter in product of sintering process will rise. The sintering mixture permeability can be optimized by increase of fuel content in charge or increase of sinter charge moisture. A change in ratio between concentrate and iron ore has been experimentally studied. An influence of sintering mixture grain size composition, a charge grains shape on quality and phase composition on quality of the produced iron sinter has been studied.

  15. Band calculation of lonsdaleite Ge (United States)

    Chen, Pin-Shiang; Fan, Sheng-Ting; Lan, Huang-Siang; Liu, Chee Wee


    The band structure of Ge in the lonsdaleite phase is calculated using first principles. Lonsdaleite Ge has a direct band gap at the Γ point. For the conduction band, the Γ valley is anisotropic with the low transverse effective mass on the hexagonal plane and the large longitudinal effective mass along the c axis. For the valence band, both heavy-hole and light-hole effective masses are anisotropic at the Γ point. The in-plane electron effective mass also becomes anisotropic under uniaxial tensile strain. The strain response of the heavy-hole mass is opposite to the light hole.

  16. Scarless platysmaplasty for platysmal bands

    Directory of Open Access Journals (Sweden)

    Shiffman Melvin


    Full Text Available Transection of plastysmal bands has required a surgical approach that leaves scars and limits patient activities for a period of time. The author has developed a simple method to transect the platysmal bands under local anesthesia without resorting to skin incisions. The transection is performed with the use of a Vicryl ® suture that is inserted through the skin, around the platysmal band, and then out through the original entry point. A back and forth motion of the suture cuts through the band.

  17. Iliotibial band Z-lengthening. (United States)

    Richards, David P; Alan Barber, F; Troop, Randal L


    Iliotibial band friction syndrome (ITBFS) is a common overuse injury reported to afflict 1.6% to 12% of runners. It results from an inflammatory response secondary to excessive friction that occurs between the lateral femoral epicondyle and the iliotibial band. Initial treatments include rest, anti-inflammatory medication, modalities (ice or heat), stretching, physical therapy, and possibly a cortisone injection. In recalcitrant cases of ITBFS, surgery has been advocated. This report describes a surgical technique of Z-lengthening of the iliotibial band in patients presenting with lateral knee pain localized to the iliotibial band at the lateral femoral epicondyle and Gerdy's tubercle who failed all nonoperative efforts.

  18. Correlation effects in the iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jian-xin [Los Alamos National Laboratory; Si, Qimiao [RICE UNIV; Abrahams, Elihu [RUTGERS UNIV; Dai, Jianhui [ZHEJIANG UNIV


    One of the central questions about the iron pnictides concerns the extent to which their electrons are strongly correlated. Here we address this issue through the phenomenology of the charge transport and dynamics, single-electron excitation spectrum, and magnetic ordering and dynamics. We outline the evidence that the parent compounds, while metallic, have electron interactions that are sufficiently strong to produce incipient Mott physics. In other words, in terms of the strength of electron correlations compared to the kinetic energy, the iron pnictides are closer to intermediately-coupled systems lying at the boundary between itinerancy and localization, such as V{sub 2}O{sub 3} a or Se-doped NiS{sub 2} , rather than to simple antiferromagnetic metals like Cr. This level of electronic correlations produces a new small parameter for controlled theoretical analyses, namely the fraction of the single-electron spectral weight that lies in the coherent part. Using this expansion parameter, we construct the effective low-energy Hamiltonian and discuss its implications for the magnetic order and magnetic quantum criticality. Finally, this approach sharpens the notion of magnetic frustration for such a metallic system, and brings about a multi band matrix t-J{sub 1}-J{sub 2} model for the carrier-doped iron pnictides.

  19. Garage Band or GarageBand[R]? Remixing Musical Futures (United States)

    Vakeva, Lauri


    In this paper, I suggest that it is perhaps time to consider the pedagogy of popular music in more extensive terms than conventional rock band practices have to offer. One direction in which this might lead is the expansion of the informal pedagogy based on a "garage band" model to encompass various modes of digital artistry wherever this artistry…

  20. [Iron deficiency and iron deficiency anemia are global health problems]. (United States)

    Dahlerup, Jens; Lindgren, Stefan; Moum, Björn


    Iron deficiency and iron deficiency anemia are global health problems leading to deterioration in patients' quality of life and more serious prognosis in patients with chronic diseases. The cause of iron deficiency and anemia is usually a combination of increased loss and decreased intestinal absorption and delivery from iron stores due to inflammation. Oral iron is first line treatment, but often hampered by intolerance. Intravenous iron is safe, and the preferred treatment in patients with chronic inflammation and bowel diseases. The goal of treatment is normalisation of hemoglobin concentration and recovery of iron stores. It is important to follow up treatment to ensure that these objectives are met and also long-term in patients with chronic iron loss and/or inflammation to avoid recurrence of anemia.

  1. A randomized trial of iron isomaltoside versus iron sucrose in patients with iron deficiency anemia. (United States)

    Derman, Richard; Roman, Eloy; Modiano, Manuel R; Achebe, Maureen M; Thomsen, Lars L; Auerbach, Michael


    Iron deficiency anemia (IDA) is common in many chronic diseases, and intravenous (IV) iron offers a rapid and efficient iron correction. This trial compared the efficacy and safety of iron isomaltoside and iron sucrose in patients with IDA who were intolerant of, or unresponsive to, oral iron. The trial was an open-label, comparative, multi-center trial. Five hundred and eleven patients with IDA from different causes were randomized 2:1 to iron isomaltoside or iron sucrose and followed for 5 weeks. The cumulative dose of iron isomaltoside was based on body weight and hemoglobin (Hb), administered as either a 1000 mg infusion over more than 15 minutes or 500 mg injection over 2 minutes. The cumulative dose of iron sucrose was calculated according to Ganzoni and administered as repeated 200 mg infusions over 30 minutes. The mean cumulative dose of iron isomaltoside was 1640.2 (standard deviation (SD): 357.6) mg and of iron sucrose 1127.9 (SD: 343.3) mg. The primary endpoint was the proportion of patients with a Hb increase ≥2 g/dL from baseline at any time between weeks 1-5. Both non-inferiority and superiority were confirmed for the primary endpoint, and a shorter time to Hb increase ≥2 g/dL was observed with iron isomaltoside. For all biochemical efficacy parameters, faster and/or greater improvements were found with iron isomaltoside. Both treatments were well tolerated; 0.6% experienced a serious adverse drug reaction. Iron isomaltoside was more effective than iron sucrose in achieving a rapid improvement in Hb. Furthermore, iron isomaltoside has an advantage over iron sucrose in allowing higher cumulative dosing in fewer administrations. Both treatments were well tolerated in a broad population with IDA.

  2. Iron deficiency and cognitive functions

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I


    Full Text Available Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with emotions and behavior, often directly related to the presence of iron deficiency anemia. In addition, iron deficiency without anemia may cause cognitive disturbances. At present, the prevalence of iron deficiency and iron deficiency anemia is 2%–6% among European children. Given the importance of iron deficiency relative to proper cognitive development and the alterations that can persist through adulthood as a result of this deficiency, the objective of this study was to review the current state of knowledge about this health problem. The relevance of iron deficiency and iron deficiency anemia, the distinction between the cognitive consequences of iron deficiency and those affecting specifically cognitive development, and the debate about the utility of iron supplements are the most relevant and controversial topics. Despite there being methodological differences among studies, there is some evidence that iron supplementation improves cognitive functions. Nevertheless, this must be confirmed by means of adequate follow-up studies among different groups. Keywords: iron deficiency, anemia, cognitive functions, supplementation

  3. Granite-hosted molybdenite mineralization from Archean Bundelkhand cratonmolybdenite characterization, host rock mineralogy, petrology, and fluid inclusion characteristics of Mo-bearing quartz

    Indian Academy of Sciences (India)

    J K Pati; M K Panigrahi; M Chakarborty


    The dominantly high-K, moderate to high SiO2 containing, variably fractionated, volcanic-arc granitoids (± sheared) from parts of Bundelkhand craton, northcentral India are observed to contain molybdenite (Mo) in widely separated 23 locations in the form of specks, pockets, clots and stringers along with quartz ± pyrite ± arsenopyrite ± chalcopyrite ± bornite ± covellite ± galena ± sphalerite and in invisible form as well. The molybdenite mineralization is predominantly associated with Bundelkhand Tectonic Zone, Raksa Shear Zone, and localized shear zones. The incidence of molybdenite is also observed within sheared quartz and tonalite–trondhjemite–granodiorite (TTG) gneisses. The fluid inclusion data show the presence of bi-phase (H2O–CO2), hypersaline and moderate temperature (100°–300°C) primary stretched fluid inclusions suggesting a possible hydrothermal origin for the Mo-bearing quartz occurring within variably deformed different granitoids variants of Archean Bundelkhand craton.

  4. Identification of 3.5 Ga detrital zircons from Yangtze craton in south China and the implication for Archean crust evolution

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaoming; GAO Shan; LING Wenli; YUAN Honglin; HU Zhaochu


    The LA-ICP-MS U-Pb dating of hundreds of detrital zircon grains from the Sinian sandstones of Liantuo formation and tillites of Nantuo formation at Sanxia area in Yichang identified 3319-3508 Ma zircon grains. Their 207pb/206pb and 206pb/238U ages show excellent agreement (concordia degree 99 %-100 % ). Their CL images exhibit well-developed oscillatory zoning and the Th/U ratios are within 0. 46-0. 76, implying that they are igneous zircons which formed during middle-early Archean. These zircons are the oldest ones discovered in Yangtze craton until now. However, the detrital zircons with ages older than 3.3 Ga in the metamorphic rocks of Kongling group were not found by further investigation, which suggests the presence of crust older than high-grade metamorphic Kongling terrain in Yangtze craton.

  5. Unconventional temperature enhanced magnetism in iron telluride

    Energy Technology Data Exchange (ETDEWEB)

    Zalinznyak, I. [Brookhaven National Laboratory (BNL); Xu, Zhijun [ORNL; Tranquada, John M. [Brookhaven National Laboratory (BNL); Gu, G. D. [Brookhaven National Laboratory (BNL); Tsvelik, A. [Brookhaven National Laboratory (BNL); Stone, Matthew B [ORNL


    Discoveries of copper and iron-based high-temperature superconductors (HTSC)1-2 have challenged our views of superconductivity and magnetism. Contrary to the pre-existing view that magnetism, which typically involves localized electrons, and superconductivity, which requires freely-propagating itinerant electrons, are mutually exclusive, antiferromagnetic phases were found in all HTSC parent materials3,4. Moreover, highly energetic magnetic fluctuations, discovered in HTSC by inelastic neutron scattering (INS) 5,6, are now widely believed to be vital for the superconductivity 7-10. In two competing scenarios, they either originate from local atomic spins11, or are a property of cooperative spin-density-wave (SDW) behavior of conduction electrons 12,13. Both assume clear partition into localized electrons, giving rise to local spins, and itinerant ones, occupying well-defined, rigid conduction bands. Here, by performing an INS study of spin dynamics in iron telluride, a parent material of one of the iron-based HTSC families, we have discovered that this very assumption fails, and that conduction and localized electrons are fundamentally entangled. In the temperature range relevant for the superconductivity we observe a remarkable redistribution of magnetism between the two groups of electrons. The effective spin per Fe at T 10 K, in the2 antiferromagnetic phase, corresponds to S 1, consistent with the recent analyses that emphasize importance of Hund s intra-atomic exchange15-16. However, it grows to S 3/2 in the disordered phase, a result that profoundly challenges the picture of rigid bands, broadly accepted for HTSC.

  6. A biological switch at the ocean surface as a cause of laminations in a Precambrian iron formation (United States)

    Hashizume, K.; Pinti, D. L.; Orberger, B.; Cloquet, C.; Jayananda, M.; Soyama, H.


    Banded iron formations (BIFs) exhibit alternating silica- and iron-rich laminae, potentially reflecting the dynamics of the paleo-environments in which they were formed, although the exact mechanism remains unclear. Here the formation of a 2.7-2.9 Ga BIF from Dharwar Craton, India, is deciphered by analyzing the inter-band variations of the redox-sensitive isotope biomarkers, 15N/14N and 56Fe/54Fe. Organic matter with δ15N values as high as + 12.0 ± 0.8 ‰ appears to be trapped in silica. Iron oxides exhibit systematically positive δ56Fe values, ranging between + 0.80 ± 0.05 ‰ and + 1.67 ± 0.02 ‰. Compared to the iron-rich bands, silica-rich bands, which show higher δ56Fe values, exhibit an order of magnitude higher concentrations of 15N-rich organic nitrogen, normalized by the abundances of its host silica. The presence of 15N-rich organic matter may imply the emergence of a modern-like biological nitrogen cycle that requires the formation of oxidized nitrogen compounds. The higher concentration of 15N-rich organic nitrogen for the silica-rich bands possibly suggests that the photosynthetic activity was higher during the formation periods of these bands. The heavier iron isotope compositions of the silica-rich bands cannot be explained alone by iron oxidation through probable pathways. The relative 56Fe-enrichment in silica-rich bands is explained here by the progressive dissolution of iron oxides to the ocean, through iron reduction by 15N-rich organic matter actively produced at the ocean surface. The formation of iron-rich bands possibly corresponds to periods of reduced biological productivity, when precipitated iron was not effectively dissolved to the ocean. The observed shift in the organic concentration between Fe- and Si-rich bands could be the switch that triggered the BIF laminations. This shift could conceivably represent periodic fluctuations in the oxygen generation, which possibly occurred over periods of millennia, at the dawn of the

  7. Iron prophylaxis during pregnancy -- how much iron is needed? A randomized dose- response study of 20-80 mg ferrous iron daily in pregnant women

    DEFF Research Database (Denmark)

    Milman, Nils; Bergholt, Thomas; Eriksen, Lisbeth


    To determine the lowest dose of iron preventative of iron deficiency and iron deficiency anemia in pregnancy.......To determine the lowest dose of iron preventative of iron deficiency and iron deficiency anemia in pregnancy....

  8. Lu Hf systematics of the ultra-high temperature Napier Metamorphic Complex in Antarctica: Evidence for the early Archean differentiation of Earth's mantle (United States)

    Choi, Sung Hi; Mukasa, Samuel B.; Andronikov, Alexandre V.; Osanai, Yasuhito; Harley, Simon L.; Kelly, Nigel M.


    The Napier Complex of the East Antarctic Craton comprises some of the oldest rocks on Earth (˜ 3.8 billion years old), overprinted by an ultra-high temperature (UHT) metamorphic event near the Archean-Proterozoic boundary. Garnet, orthopyroxene, sapphirine, osumilite, rutile and a whole rock representing a fully equilibrated assemblage from this UHT granulite belt have yielded a Lu-Hf isochron age of 2403 ± 43 Ma, the first ever determined on a UHT mineral assemblage. Preservation of the UHT mineral assemblage in the rock analyzed, without any significant retrogression, suggests rapid cooling with closure likely to have occurred for the Lu-Hf system at post-peak UHT conditions near a temperature of ˜ 800 °C. This mineral-whole rock isochron yields an initial 176Hf/ 177Hf ratio corresponding to an ɛHf value of - 14 ± 1, acquired during UHT metamorphism. Such a low value demonstrates that overall UHT granulites evolved in a low Lu/Hf environment, probably formed when the rocks were first extracted from a highly depleted mantle. Zircon ɛHf values we have measured "see through" the UHT metamorphism and show that the source materials for the magmas that formed the Napier Complex were extremely depleted (> + 5.6 ɛHf at 3.85 Ga) relative to the chondritic uniform reservoir (CHUR). These results also suggest significant depletion of the early Archean mantle, in agreement with the early differentiation of the Earth that the latest core formation models require.

  9. Archean Mass-independent Fractionation of Sulfur Isotope:New Evidence of Bedded Sulfide Deposits in the Yanlingguan-Shihezhuang area of Xintai, Shandong Province

    Institute of Scientific and Technical Information of China (English)

    LI Yanhe; HOU Kejun; WAN Defang; YUE Guoliang


    Multiple sulfur isotope ratios (34S/33S/32S) of Archean bedded sulfides deposits were measured in the Yanlingguan Formation of the Taishan Group in Xintai, Shandong Province, East of China; δ33S =-0.7‰ to 3.8‰,δ34S = 0.1‰-8.8‰, △33S = -2.3‰ to -0.7‰ The sulfur isotope compositions show obvious mass-independent fractionation (MIF) signatures. The presence of MIF of sulfur isotope in Archean sulfides indicates that the sulfur was from products of photochemical reactions of volcanic SO2 induced by solar UV radiation, implying that the ozone shield was not formed in atmosphere at that time, and the oxygen level was less than 10-5PAL (the present atmosphere level). The sulfate produced by photolysis of SO2 with negative △33S precipitated near the volcanic activity center; and the product of element S with positive △33S precipitated far away from the volcanic activity center. The lower △33S values of sulfide (-2.30‰ to-0.25‰) show that Shihezhuang was near the volcanic center,and sulfur was mostly from sulfate produced by photolysis. The higher △33S values (-0.5‰ to-2‰)indicate that Yanlingguan was far away from the volcanic center and that some of sulfur were from sulfate, another from element S produced by photolysis. The data points of sulfur isotope from Yanlingguan are in a line parallel to MFL (mass dependent fractionation line) on the plot of δ34S-δ33S,showing that the volcanic sulfur species went through the atmospheric cycle into the ocean, and then mass dependent fractionation occurred during deposition of sulfide. The data points of sulfur isotope from Shihezhuang represent a mix of different sulfur source.

  10. Oral iron chelators. (United States)

    Kwiatkowski, Janet L


    Effective chelation therapy can prevent or reverse organ toxicity related to iron overload, yet cardiac complications and premature death continue to occur, largely related to difficulties with compliance in patients who receive parenteral therapy. The use of oral chelators may be able to overcome these difficulties and improve patient outcomes. A chelator's efficacy at cardiac and liver iron removal and side-effect profile should be considered when tailoring individual chelation regimens. Broader options for chelation therapy, including possible combination therapy, should improve clinical efficacy and enhance patient care.

  11. Iron deficiency anemia in children. (United States)

    Subramaniam, Girish; Girish, Meenakshi


    Iron deficiency is not just anemia; it can be responsible for a long list of other manifestations. This topic is of great importance, especially in infancy and early childhood, for a variety of reasons. Firstly, iron need is maximum in this period. Secondly, diet in infancy is usually deficient in iron. Thirdly and most importantly, iron deficiency at this age can result in neurodevelopmental and cognitive deficits, which may not be reversible. Hypochromia and microcytosis in a complete blood count (CBC) makes iron deficiency anemia (IDA) most likely diagnosis. Absence of response to iron should make us look for other differential diagnosis like β thalassemia trait and anemia of chronic disease. Celiac disease is the most important cause of true IDA not responding to oral iron therapy. While oral ferrous sulphate is the cheapest and most effective therapy for IDA, simple nonpharmacological and pharmacological measures can go a long way in prevention of iron deficiency.

  12. Long Lake banding project, 1965 (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the results of a banding project on Long Lake in 1965. The dates at the banding site were July 27th through August 8th. As in the past, the...

  13. On the metamorphism of the Huoqiu Group, forming ages and mechanism of BIF and iron deposit in the Huoqiu region, southern margin of North China carton%论华北克拉通南缘霍邱群变质作用、形成时代及霍邱BIF铁矿成矿机制

    Institute of Scientific and Technical Information of China (English)

    杨晓勇; 王波华; 杜贞保; 王启才; 王玉贤; 涂政标; 张文利; 孙卫东


    The Huoqiu iron ore field in Northwest Anhui Province is located in the North China craton. As a large BIF iron ore field, the ore bodies are resident in a middle-high grade of metamorphism formation in the period of Neo-Archean, forming a banded silicon-iron series from north and south. The main ore bodies can be divided into two sub-belts from bottom to upper layers, I. E. , the A + B ore belt, consisting of granulite-schist-magnetite-quartz formation; and the D ore belt, consisting of schist-marble-hematite-quartz formation. Combined with the geological background, geophysical and geochemical exploration, ore-forming conditions and structural form of the iron deposit, we present a comprehensive understanding on structural types, speculation surrounding, deep tectonic and ore-controlling factors as well as characteristics and distribution of this colossal BIF ore filed in the Huoqiu region. Using LA-ICP-MS techniques, we obtained the oldest U-Pb age of ca. 2. 8Ga for plagioclase amphibolites as the forming age of original rock and 1. 8Ga for magmatitic granites. The Hf isotopes were also obtained from zircons separated from the Huoqiu Group. We measured an oldest Hf model age of 3. 5Ga in zircon. According to the characteristics of this BIF and iron ores, this paper firstly proposed the concept of " Huoying Movement", accounting for tectonic event with the metamorphism and metallogenesis in the Neo-Archean around 2. 7Ga in the Huoqiu-Yingshang-Shouxian-Mengcheng regions, Northwest Anhui, which is differed from the former Bengbu Movement occurred in Northeast Anhui for description on both metamorphism and metallogenesis in these two regions. Finally we regard the iron deposit and BIF in the Huoqiu region as a transitional iron formation between Algoma and Superior types according to the volcanic-sedimentary characteristics in the Huoqiu Group.%安徽霍邱铁矿位于华北克拉通南缘,是一个大型BIF铁矿田,矿体均赋存于一套新太古代中高级

  14. Hepcidin Suppresses Brain Iron Accumulation by Downregulating Iron Transport Proteins in Iron-Overloaded Rats. (United States)

    Du, Fang; Qian, Zhong-Ming; Luo, Qianqian; Yung, Wing-Ho; Ke, Ya


    Iron accumulates progressively in the brain with age, and iron-induced oxidative stress has been considered as one of the initial causes for Alzheimer's disease (AD) and Parkinson's disease (PD). Based on the role of hepcidin in peripheral organs and its expression in the brain, we hypothesized that this peptide has a role to reduce iron in the brain and hence has the potential to prevent or delay brain iron accumulation in iron-associated neurodegenerative disorders. Here, we investigated the effects of hepcidin expression adenovirus (ad-hepcidin) and hepcidin peptide on brain iron contents, iron transport across the brain-blood barrier, iron uptake and release, and also the expression of transferrin receptor-1 (TfR1), divalent metal transporter 1 (DMT1), and ferroportin 1 (Fpn1) in cultured microvascular endothelial cells and neurons. We demonstrated that hepcidin significantly reduced brain iron in iron-overloaded rats and suppressed transport of transferrin-bound iron (Tf-Fe) from the periphery into the brain. Also, the peptide significantly inhibited expression of TfR1, DMT1, and Fpn1 as well as reduced Tf-Fe and non-transferrin-bound iron uptake and iron release in cultured microvascular endothelial cells and neurons, while downregulation of hepcidin with hepcidin siRNA retrovirus generated opposite results. We concluded that, under iron-overload, hepcidin functions to reduce iron in the brain by downregulating iron transport proteins. Upregulation of brain hepcidin by ad-hepcidin emerges as a new pharmacological treatment and prevention for iron-associated neurodegenerative disorders.

  15. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang


    @@ Grey Iron(Ⅲ) 2.5 Crystallization of the LTF during final stage of eutectic solidification of grey iron In the final stage of eutectic solidification, eutectic cells grow gradually into large sizes; the liquid iron between the cells enters the last stage of solidification. At this time, the region of the remaining liquid iron is called last to freeze volume, LTF in short, as shown in Fig.2-39.

  16. Electronic correlations at the alpha-gamma structural phase transition in paramagnetic iron


    Leonov, I.; Poteryaev, A. I.; Anisimov, V. I.; Vollhardt, D.


    We compute the equilibrium crystal structure and phase stability of iron at the alpha(bcc)-gamma(fcc) phase transition as a function of temperature, by employing a combination of ab initio methods for calculating electronic band structures and dynamical mean-field theory. The magnetic correlation energy is found to be an essential driving force behind the alpha-gamma structural phase transition in paramagnetic iron.

  17. Neutrophilic iron oxidizers adapted to highly oxic environments

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen;

    of iron oxidizing bacterial in the highly oxic environments found in typical rapid sand filters. The neutrophilic FeOB were enriched by the Fe2+/O2 opposing gradient technique and quantified by MPN methodology. Diversity fingerprints of the enrichment cultures were obtained with a 16S rRNA targeted DGGE...... oxidation of iron would be retarded. For that reason, no attempts have been documented to describe the density and diversity of iron oxidizing bacteria (FeOB) in oxic neutrophilic environments. Under low temperatures (5 to 10°C) conditions, as typically found in groundwater, extremely low rates of chemical...... technique, and dominant bands were isolated and sequenced for identification of dominant enrichment members. Enrichment were microscopically examined via CSLM in combination with FeOB specific or generic cytostains to verify enrichments, check cell morphologies and quantify cell densities. Our results...

  18. Pica in iron deficiency: a case series

    Directory of Open Access Journals (Sweden)

    Tisman Glenn


    Full Text Available Abstract Introduction Pica is an unusual condition where patients develop cravings for non-nutritive substances that can cause significant health risks. We report three patients with pica, two of them showing evolutionary changes associated with pica and the third demonstrating a peculiar nature of pica, which has yet to be reported. Case presentation We describe three patients who presented with symptoms of pica. The first patient is a 36-year-old Caucasian woman who had dysfunctional uterine bleeding associated with daily ingestion of two super-sized cups of ice as iced tea. The second patient is a 62-year-old Caucasian man who presented with bleeding from colonic polyps associated with drinking partially frozen bottled water. Lastly, the third patient, a 37-year-old Hispanic woman, presented with dysfunctional uterine bleeding and habitually chewed rubber bands. All three patients presented with hematological parameters diagnostic for iron deficiency anemia. Conclusion Pica has been practiced for centuries without a clear etiology. We have noticed that the younger community of academic and community physicians are not aware of the importance of complaints related to pica. None of our patients we describe here, as well as their primary care physicians, were aware of the importance of their pica related symptoms. Pica symptoms abated in one of our patients upon iron supplementation, while the other two are currently under treatment as of this writing. We believe pica is an important sign of iron deficiency that should never be ignored, and the craving for any unusual substance should compel clinicians to search for occult blood loss with secondary iron deficiency.

  19. Phytases for improved iron absorption

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Meyer, Anne S.


    Phytase enzymes present an alternative to iron supplements, because they have been shown to improve iron absorption by means of catalysing the degradation of a potent iron absorption inhibitor: phytic acid. Phytic acid is a hexaphosphate of inositol and is particularly prevalent in cereal grains,...

  20. Iron deficiency and cardiovascular disease

    NARCIS (Netherlands)

    von Haehling, Stephan; Jankowska, Ewa A.; van Veldhuisen, Dirk J.; Ponikowski, Piotr; Anker, Stefan D.


    Iron deficiency affects up to one-third of the world's population, and is particularly common in elderly individuals and those with certain chronic diseases. Iron excess can be detrimental in cardiovascular illness, and research has now also brought anaemia and iron deficiency into the focus of card

  1. Iron deficiency anemia in children


    Pochinok, T. V.


    In the article the role of iron in the human body is highlighted. The mechanism of development of iron deficiency states, their consequences and the basic principles of diagnosis and correction of children of different ages are shown.Key words: children, iron deficiency anemia, treatment.

  2. Extracting phosphoric iron under laboratorial conditions smelting bog iron ores (United States)

    Török, B.; Thiele, A.


    In recent years it has been indicated by archaeometric investigations that phosphoric-iron (P-iron, low carbon steel with 0,5-1,5wt% P), which is an unknown and unused kind of steel in the modern industry, was widely used in different parts of the world in medieval times. In this study we try to explore the role of phosphorus in the arhaeometallurgy of iron and answer some questions regarding the smelting bog iron ores with high P-content. XRF analyses were performed on bog iron ores collected in Somogy county. Smelting experiments were carried out on bog iron ores using a laboratory model built on the basis of previously conducted reconstructed smelting experiments in copies of excavated furnaces. The effect of technological parameters on P-content of the resulted iron bloom was studied. OM and SEM-EDS analyses were carried out on the extracted iron and slag samples. On the basis of the material analyses it can be stated that P-iron is usually extracted but the P-content is highly affected by technological parameters. Typical microstructures of P-iron and of slag could also be identified. It could also be established that arsenic usually solved in high content in iron as well.

  3. Iron, transferrin and myelinogenesis (United States)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Baron, B.; Guillou, F.


    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

  4. State of the iron

    DEFF Research Database (Denmark)

    Reinisch, Walter; Staun, Michael; Bhandari, Sunil


    Iron deficiency anemia (IDA) frequently occurs in patients suffering from inflammatory bowel disease (IBD) and negatively impacts their quality of life. Nevertheless, the condition appears to be both under-diagnosed and undertreated. Regular biochemical screening of patients with IBD for anemia...

  5. Development of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Sikka, V.K.; Andleigh, V.K. [and others


    The primary reason for the poor room-temperature ductility of Fe{sub 3}Al-based alloys is generally accepted to be environmental embrittlement due to hydrogen produced by the reaction of aluminum with water vapor present in the test atmosphere. In the as-cast condition, another possible reason for the low room-temperature ductility is the large grain size (0.5 to 3 mm) of the cast material. While recent studies on iron aluminides in the wrought condition have led to higher room-temperature ductility and increased high-temperature strength, limited studies have been conducted on iron aluminides in the as-cast condition. The purpose of this study was to induce grain refinement of the as-cast alloy through alloying additions to the melt and study the effect on room-temperature ductility as measured by the strain corresponding to the maximum stress obtained in a three-point bend test. A base charge of Fe-28% Al-5% Cr alloy was used; as in previous studies this ternary alloy exhibited the highest tensile ductility of several alloys tested. Iron aluminide alloys are being considered for many structural uses, especially for applications where their excellent corrosion resistance is needed. Several alloy compositions developed at ORNL have been licensed to commercial vendors for development of scale-up procedures. With the licensees and other vendors, several applications for iron aluminides are being pursued.

  6. The New Iron Man

    Institute of Scientific and Technical Information of China (English)


    Sinosteel wins a hard-fought victory in the marathon battle for Australia’s Midwest Sinosteel Corp.,one of China’s larg- est steelmakers,has finally clinched its AU$1.36 billion($1.31 billion) takeover of Midwest Corp.,a Perth (Australia)-based iron ore miner,after a

  7. New insights into iron deficiency and iron deficiency anemia. (United States)

    Camaschella, Clara


    Recent advances in iron metabolism have stimulated new interest in iron deficiency (ID) and its anemia (IDA), common conditions worldwide. Absolute ID/IDA, i.e. the decrease of total body iron, is easily diagnosed based on decreased levels of serum ferritin and transferrin saturation. Relative lack of iron in specific organs/tissues, and IDA in the context of inflammatory disorders, are diagnosed based on arbitrary cut offs of ferritin and transferrin saturation and/or marker combination (as the soluble transferrin receptor/ferritin index) in an appropriate clinical context. Most ID patients are candidate to traditional treatment with oral iron salts, while high hepcidin levels block their absorption in inflammatory disorders. New iron preparations and new treatment modalities are available: high-dose intravenous iron compounds are becoming popular and indications to their use are increasing, although long-term side effects remain to be evaluated.

  8. Nutritional iron deficiency: the role of oral iron supplementation. (United States)

    Lachowicz, J I; Nurchi, V M; Fanni, D; Gerosa, C; Peana, M; Zoroddu, M A


    Nutritional iron deficiency represents a relevant health problem mainly in developing countries. Children and pregnant women represent the main target of this disease, and the low amount of bio-available iron mostly depends on plant-based diets. Iron deficiency may have serious consequences, with severe impairment of the immune function leading to infectious diseases. The brain development in embryos and fetuses during gestation can be greatly affected by iron deficiency of the mother with heavy outcomes on the cognition status of children. A better understanding of molecular pathways involved in iron absorption and metabolism are the basis for new strategies for developing a therapy for iron deficiency. Different therapeutic strategies are summarized, and iron fortification appears the best tool.

  9. Relativistic iron K X-ray Reverberation in NGC 4151

    CERN Document Server

    Zoghbi, A; Reynolds, C S; Cackett, E M


    Recent X-ray observations have enabled the study of reverberation delays in AGN for the first time. All the detections so far are in sources with a strong soft excess, and the measured delay is between the hard (1-3 keV) direct continuum and the soft excess (0.5-1 keV), interpreted as the reflection continuum smeared by relativistic effects. There is however an inherent ambiguity in identifying and studying the details of the lines in the soft excess. Here we report the first detection of reverberation in the iron K band in any AGN. Using XMM-Newton observations of NGC 4151, we find delays of order 2000 s on time-scales of 10e5 s between the 5-6 keV band and 2-3 and 7-8 keV bands, with a broad lag profile resembling a relativistically-broadened iron line. The peak of the lag spectra shifts to lower energies at higher frequencies, consistent with the red wing of the line being emitted at smaller radii, as expected from reflection off the inner accretion disk. This is a first detection of a broad iron line usin...

  10. 49 CFR 192.373 - Service lines: Cast iron and ductile iron. (United States)


    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  11. Iron-fortified milk can improve iron status in young women with low iron stores

    NARCIS (Netherlands)

    Scholz-Ahrens, K.E.; Schaafsma, G.; Kip, P.; Elbers, F.; Boeing, H.; Schrezenmeir, J.


    A considerable proportion of the populations of developing and industrialised nations does not meet the recommended daily allowance for iron and are thus at risk of chronic iron-deficiency anaemia. In a placebo-controlled, double-blind study we investigated whether supplementation with iron-enriched

  12. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    V Subramanian


    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are formed by removing the substrate material in a periodic manner. This paper also demonstrates that these structures can serve as a non-destructive characterization tool for materials, a duplexor and frequency selective coupler. The paper presents both experimental results and theoretical simulation based on a commercially available finite element methodology for comparison.

  13. Band head spin assignment of superdeformed bands in 86Zr (United States)

    Dadwal, Anshul; Mittal, H. M.


    Two parameter expressions for rotational spectra viz. variable moment of inertia (VMI), ab formula and three parameter Harris ω 2 expansion are used to assign the band head spins (I 0) of four rotational superdeformed bands in 86Zr. The least-squares fitting method is employed to obtain the band head spins of these four bands in the A ∼ 80 mass region. Model parameters are extracted by fitting of intraband γ-ray energies, so as to obtain a minimum root-mean-square (rms) deviation between the calculated and the observed transition energies. The calculated transition energies are found to depend sensitively on the assigned spins. Whenever an accurate band head spin is assigned, the calculated transition energies are in agreement with the experimental transition energies. The dynamic moment of inertia is also extracted and its variation with rotational frequency is investigated. Since a better agreement of band head spin with experimental results is found using the VMI model, it is a more powerful tool than the ab formula and Harris ω 2 expansion.

  14. Genetic defects of iron transport. (United States)

    Bannerman, R M


    Five genetic traits in man and laboratory animals have major effects on iron transport. The heterogeneous condition, hemochromatosis, in some families appears to segregate as a Mendelian trait, and is associated with defective control of intestinal iron absorption. In the very rare human autosomal recessive trait, atransferrinemia, there is an almost total lack of transferrin and gross maldistribution of iron through the body. In mice, sex-linked anemia (an X-linked recessive trait) causes iron deficiency through defective iron absorption, at the "exit" step; a similar defect probably exists in placental iron transfer. In microcytic anemia of mice, an autosomal recessive trait, iron absorption is also impaired because of a defect of iron entry into cells, which is probably generalized. Belgrade rat anemia, less understood at present, also may involve a major disorder of iron metabolism. Study of these mutations has provided new knowledge of iron metabolism and its genetic control Their phenotypic interaction with nutritional factors, especially the form and quantity of iron in the diet, may provide new insights for the study of nutrition.

  15. Meso-unsubstituted iron corrole in hemoproteins: remarkable differences in effects on peroxidase activities between myoglobin and horseradish peroxidase. (United States)

    Matsuo, Takashi; Hayashi, Akihiro; Abe, Masato; Matsuda, Takaaki; Hisaeda, Yoshio; Hayashi, Takashi


    Myoglobin (Mb) and horseradish peroxidase (HRP) were both reconstituted with a meso-unsubstituted iron corrole and their electronic configurations and peroxidase activities were investigated. The appearance of the 540 nm band upon incorporation of the iron corrole into apoMb indicates axial coordination by the proximal histidine imidazole in the Mb heme pocket. Based on (1)H NMR measurements using the Evans method, the total magnetic susceptibility of the iron corrole reconstituted Mb was evaluated to be S = 3/2. In contrast, although a band does not appear in the vicinity of 540 nm during reconstitution of the iron corrole into the matrix of HRP, a spectrum similar to that of the iron corrole reconstituted Mb is observed upon the addition of dithionite. This observation suggests that the oxidation state of the corrole iron in the reconstituted HRP can be assigned as +4. The catalytic activities of both proteins toward guaiacol oxidation are quite different; the iron corrole reconstituted HRP decelerates H(2)O(2)-dependent oxidation of guaiacol, while the same reaction catalyzed by iron corrole reconstituted Mb has the opposite effect and accelerates the reaction. This finding can be attributed to the difference in the oxidation states of the corrole iron when these proteins are in the resting state.

  16. High efficiency iron electrode and additives for use in rechargeable iron-based batteries

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Sri R.; Prakash, G. K. Surya; Aniszfeld, Robert; Manohar, Aswin; Malkhandi, Souradip; Yang, Bo


    An iron electrode and a method of manufacturing an iron electrode for use in an iron-based rechargeable battery are disclosed. In one embodiment, the iron electrode includes carbonyl iron powder and one of a metal sulfide additive or metal oxide additive selected from the group of metals consisting of bismuth, lead, mercury, indium, gallium, and tin for suppressing hydrogen evolution at the iron electrode during charging of the iron-based rechargeable battery. An iron-air rechargeable battery including an iron electrode comprising carbonyl iron is also disclosed, as is an iron-air battery wherein at least one of the iron electrode and the electrolyte includes an organosulfur additive.

  17. Osmundiron, cleaved iron bars and slags (Osmundjern, kloder og kalotslagger)

    DEFF Research Database (Denmark)

    Buchwald, Vagn Fabritius


    Investigation of so-called Osmund iron, iron bars and slags from iron production in the medieval ages.......Investigation of so-called Osmund iron, iron bars and slags from iron production in the medieval ages....

  18. Combustion iron distribution and deposition (United States)

    Luo, Chao; Mahowald, N.; Bond, T.; Chuang, P. Y.; Artaxo, P.; Siefert, R.; Chen, Y.; Schauer, J.


    Iron is hypothesized to be an important micronutrient for ocean biota, thus modulating carbon dioxide uptake by the ocean biological pump. Studies have assumed that atmospheric deposition of iron to the open ocean is predominantly from mineral aerosols. For the first time we model the source, transport, and deposition of iron from combustion sources. Iron is produced in small quantities during fossil fuel burning, incinerator use, and biomass burning. The sources of combustion iron are concentrated in the industrialized regions and biomass burning regions, largely in the tropics. Model results suggest that combustion iron can represent up to 50% of the total iron deposited, but over open ocean regions it is usually less than 5% of the total iron, with the highest values (ocean biogeochemistry the bioavailability of the iron is important, and this is often estimated by the fraction which is soluble (Fe(II)). Previous studies have argued that atmospheric processing of the relatively insoluble Fe(III) occurs to make it more soluble (Fe(II)). Modeled estimates of soluble iron amounts based solely on atmospheric processing as simulated here cannot match the variability in daily averaged in situ concentration measurements in Korea, which is located close to both combustion and dust sources. The best match to the observations is that there are substantial direct emissions of soluble iron from combustion processes. If we assume observed soluble Fe/black carbon ratios in Korea are representative of the whole globe, we obtain the result that deposition of soluble iron from combustion contributes 20-100% of the soluble iron deposition over many ocean regions. This implies that more work should be done refining the emissions and deposition of combustion sources of soluble iron globally.

  19. Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil

    Directory of Open Access Journals (Sweden)

    Diego Fernando Ducart

    Full Text Available ABSTRACT: Mapping methods for iron oxides and clay minerals, using Landsat-8/Operational Land Imager (OLI and Earth Observing 1 (EO-1/Hyperion imagery integrated with airborne geophysical data, were applied in the N4, N5, and N4WS iron deposits, Serra Norte, Carajás, Brazil. Band ratios were achieved on Landsat-8/OLI imagery, allowing the recognition of the main minerals from iron deposits. The Landsat-8/OLI imagery showed a robust performance for iron oxide exploration, even in vegetated shrub areas. Feature extraction and Spectral Angle Mapper hyperspectral classification methods were carried out on EO-1/Hyperion imagery with good results for mapping high-grade iron ore, the hematite-goethite ratio, and clay minerals from regolith. The EO-1/Hyperion imagery proved an excellent tool for fast remote mineral mapping in open-pit areas, as well as mapping waste and tailing disposal facilities. An unsupervised classification was carried out on a data set consisting of EO-1/Hyperion visible near-infrared 74 bands, Landsat-8/OLI-derived Normalized Difference Vegetation Index, Laser Imaging Detection and Ranging-derived Digital Terrain Model, and high-resolution airborne geophysical data (gamma ray spectrometry, Tzz component of gradiometric gravimetry data. This multisource classification proved to be an adequate alternative for mapping iron oxides in vegetated shrub areas and to enhance the geology of the regolith and mineralized areas.

  20. Studies on the pathogenesis in iron deficiency anemia Part 1. Urinary iron excretion in iron deficiency anemia patients and rats in various iron states



    In the "iron excretion test" , urinary iron excretion after injection of saccharated iron oxide has been reported to be accelerated in relapsing idiopathic iron deficiency anemia. To determine the relevance of urinary iron excretion to clinical factors other than iron metabolism, 15 clinical parameters were evaluated. The serum creatinine level was positively and the serum albumin level was negatively correlated with urinary iron excretion, showing coefficients of r=0.97,-0.86 respectively, a...

  1. Iron deficiency or anemia of inflammation?


    Nairz, Manfred; Theurl, Igor; Wolf, Dominik; Weiss, Günter


    Summary Iron deficiency and immune activation are the two most frequent causes of anemia, both of which are based on disturbances of iron homeostasis. Iron deficiency anemia results from a reduction of the body’s iron content due to blood loss, inadequate dietary iron intake, its malabsorption, or increased iron demand. Immune activation drives a diversion of iron fluxes from the erythropoietic bone marrow, where hemoglobinization takes place, to storage sites, particularly the mononuclear ph...

  2. Assessing the utility of trace and rare earth elements as biosignatures in microbial iron oxyhydroxides

    Directory of Open Access Journals (Sweden)

    Christine eHeim


    Full Text Available Microbial iron oxyhydroxides are common deposits in natural waters, recent sediments and mine drainage systems and often contain significant accumulations of trace and rare earth elements (TREE. TREE patterns are widely used to characterize minerals and rocks, and to elucidate their evolution and origin. Whether and which characteristic TREE signatures distinguish between a biological and an abiological origin of iron minerals is still not well understood. Long-term flow reactor studies were performed in the Äspö Hard Rock Laboratory to investigate the development of microbial mats dominated by iron-oxidizing bacteria, namely Mariprofundus sp. and Gallionella sp. The experiments investigated the accumulation and fractionation of TREE under controlled conditions and enabled us to assess potential biosignatures evolving within the microbial iron oxyhydroxides. Concentrations of Be, Y, Zn, Zr, Hf, W, Th, Pb, and U in the microbial mats were 1e3- to 1e5-fold higher than in the feeder fluids whereas the rare earth elements and Y (REE+Y contents were 1e4 and 1e6 fold enriched. Except for a hydrothermally induced Eu anomaly, the normalized REE+Y patterns of the microbial iron oxyhydroxides were very similar to published REE+Y distributions of Archaean Banded Iron Formations. The microbial iron oxyhydroxides from the flow reactors were compared to iron oxyhydroxides that were artificially precipitated from the same feeder fluid. These abiotic and inorganic iron oxyhydroxides show the same REE+Y distribution patterns. Our results indicate that the REE+Y mirror quite exactly the water chemistry, but they do not allow to distinguish microbially mediated from inorganic iron precipitates. All TREE studied showed an overall similar fractionation behavior in biogenic, abiotic and inorganic iron oxyhydroxides. Exceptions are Ni and Tl, which were only accumulated in the microbial iron oxyhydroxides and may point to a potential usage of these elements as

  3. Iron and Prochlorococcus (United States)


    some cyanobacteria has been investigated through culture-based and genomic approaches (Ferreira and Straus, 1994; Katoh et al, 2001; Kutzki, 1998...numerically abundant marine cyanobacterium, Prochlorococcus. With its minimal genome and ubiquity in the global ocean, Prochlorococcus represents a model...then examined the molecular basis for the ability of MIT9313 to grow at lower iron concentrations than MED4 by assessing whole- genome transcription

  4. Iron Curtains ?


    Maria Vlček


    This paper explores the emotional and multi-sensorial dimensions of care within a transnational family separated by the Iron Curtain during the Cold War. It will argue that processes of supportive and compassionate engagement amongst transnational kin are not only shaped by long-distance communication, financial support and practical help within specific political and economic contexts, but also by personal desires and interpersonal conflict. The dialectics of proximity and distance are explo...

  5. Petrology of the Rainy Lake area, Minnesota, USA-implications for petrotectonic setting of the archean southern Wabigoon subprovince of the Canadian Shield (United States)

    Day, W.C.


    The Rainy Lake area in northern Minnesota and southwestern, Ontario is a Late Archean (2.7 Ga) granite-greenstone belt within the Wabigoon subprovince of the Canadian Shield. In Minnesota the rocks include mafic and felsic volcanic rocks, volcaniclastic, chemical sedimentary rocks, and graywacke that are intrucded by coeval gabbro, tonalite, and granodiorite. New data presented here focus on the geochemistry and petrology of the Minnesota part of the Rainy Lake area. Igneous rocks in the area are bimodal. The mafic rocks are made up of three distinct suites: (1) low-TiO2 tholeiite and gabbro that have slightly evolved Mg-numbers (63-49) and relatively flat rare-earth element (REE) patterns that range from 20-8 x chondrites (Ce/YbN=0.8-1.5); (2) high-TiO2 tholeiite with evolved Mg-numbers (46-29) and high total REE abundances that range from 70-40 x chondrites (Ce/YbN=1.8-3.3), and (3) calc-alkaline basaltic andesite and geochemically similar monzodiorite and lamprophyre with primitive Mg-numbers (79-63), enriched light rare-earth elements (LREE) and depleted heavy rare-earth elements (HREE). These three suites are not related by partial melting of a similar source or by fractional crystallization of a common parental magma; they resulted from melting of heterogeneous Archean mantle. The felsic rocks are made up of two distinct suites: (1)low-Al2O3 tholeiitic rhyolite, and (2) high-Al2O3 calc-alkaline dacite and rhyolite and consanguineous tonalite. The tholeiitic felsic rocks are high in Y, Zr, Nb, and total REE that are unfractionated and have pronounced negative Eu anomalies. The calcalkaline felsic rocks are depleted in Y, Zr, and Nb, and the REE that are highly fractionated with high LREE and depleted HREE, and display moderate negative Eu anomalies. Both suites of felsic rocks were generated by partial melting of crustal material. The most reasonable modern analog for the paleotectonic setting is an immature island arc. The bimodal volcanic rocks are

  6. The geology of the Morro Velho gold deposit in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil (United States)

    Vial, Diogenes Scipioni; DeWitt, Ed; Lobato, Lydia Maria; Thorman, Charles H.


    The Morro Velho gold deposit, Quadrilátero Ferrífero region, Minas Gerais, Brazil, is hosted by rocks at the base of the Archean Rio das Velhas greenstone belt. The deposit occurs within a thick carbonaceous phyllite package, containing intercalations of felsic and intermediate volcaniclastic rocks and dolomites. Considering the temporal and spatial association of the deposit with the Rio das Velhas orogeny, and location in close proximity to a major NNW-trending fault zone, it can be classified as an orogenic gold deposit. Hydrothermal activity was characterized by intense enrichment in alteration zones of carbonates, sulfides, chlorite, white mica±biotite, albite and quartz, as described in other Archean lode-type gold ores. Two types of ore occur in the deposit: dark gray quartz veins and sulfide-rich gold orebodies. The sulfide-rich orebodies range from disseminated concentrations of sulfide minerals to massive sulfide bodies. The sulfide assemblage comprises (by volume), on average, 74% pyrrhotite, 17% arsenopyrite, 8% pyrite and 1% chalcopyrite. The orebodies have a long axis parallel to the local stretching lineation, with continuity down the plunge of fold axis for at least 4.8 km. The group of rocks hosting the Morro Velho gold mineralization is locally referred to as lapa seca. These were isoclinally folded and metamorphosed prior to gold mineralization. The lapa seca and the orebodies it hosts are distributed in five main tight folds related to F1 (the best examples are the X, Main and South orebodies, in level 25), which are disrupted by NE- to E-striking shear zones. Textural features indicate that the sulfide mineralization postdated regional peak metamorphism, and that the massive sulfide ore has subsequently been neither metamorphosed nor deformed. Lead isotope ratios indicate a model age of 2.82 ± 0.05 Ga for both sulfide and gold mineralization. The lapa seca are interpreted as the results of a pre-gold alteration process and may be

  7. Iron deficiency and cardiovascular disease. (United States)

    von Haehling, Stephan; Jankowska, Ewa A; van Veldhuisen, Dirk J; Ponikowski, Piotr; Anker, Stefan D


    Iron deficiency affects up to one-third of the world's population, and is particularly common in elderly individuals and those with certain chronic diseases. Iron excess can be detrimental in cardiovascular illness, and research has now also brought anaemia and iron deficiency into the focus of cardiovascular medicine. Data indicate that iron deficiency has detrimental effects in patients with coronary artery disease, heart failure (HF), and pulmonary hypertension, and possibly in patients undergoing cardiac surgery. Around one-third of all patients with HF, and more than one-half of patients with pulmonary hypertension, are affected by iron deficiency. Patients with HF and iron deficiency have shown symptomatic improvements from intravenous iron administration, and some evidence suggests that these improvements occur irrespective of the presence of anaemia. Improved exercise capacity has been demonstrated after iron administration in patients with pulmonary hypertension. However, to avoid iron overload and T-cell activation, it seems that recipients of cardiac transplantations should not be treated with intravenous iron preparations.

  8. Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora (United States)

    Groiss, Silvia; Selvaraj, Raja; Varadavenkatesan, Thivaharan; Vinayagam, Ramesh


    In the present investigation, the leaf extract of Cynometra ramiflora was used to synthesize iron oxide nanoparticles. Within minutes of adding iron sulphate to the leaf extract, iron oxide nanoparticles were formed and thus, the method is very simple and fast. UV-VIS spectra showed the strong absorption band in the visible region. SEM images showed discrete spherical shaped particles and EDS spectra confirmed the iron and oxygen presence. The XRD results depicted the crystalline structure of iron oxide nanoparticles. FT-IR spectra portrayed the existence of functional groups of phytochemicals which are probably involved in the formation and stabilization of nanoparticles. The iron oxide nanoparticles exhibited effective inhibition against E. coli and S. epidermidis which may find its applications in the antibacterial drug development. Furthermore, the catalytic activity of the nanoparticles as Fenton-like catalyst was successfully investigated for the degradation of Rhodamine-B dye. This outcome could play a prominent role in the wastewater treatment.

  9. Flare Plasma Iron Abundance (United States)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.


    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  10. A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: Example from the Pietersburg block (South Africa) (United States)

    Laurent, Oscar; Zeh, Armin


    Combined U-Pb and Lu-Hf isotope data from zircon populations are widely used to constrain Hadean-Archean crustal evolution. Linear Hf isotope-age arrays are interpreted to reflect the protracted, internal reworking of crust derived from the (depleted) mantle during a short-lived magmatic event, and related 176Lu/177Hf ratios are used to constrain the composition of the reworked crustal reservoir. Results of this study, however, indicate that Hf isotope-age arrays can also result from complex geodynamic processes and crust-mantle interactions, as shown by U-Pb and Lu-Hf isotope analyses of zircons from well characterized granitoids of the Pietersburg Block (PB), northern Kaapvaal Craton (South Africa). Apart from scarce remnants of Paleoarchean crust, most granitoids of the PB with ages between 2.94 and 2.05 Ga (n = 32) define a straight Hf isotope-age array with low 176Lu/177Hf of 0.0022, although they show a wide compositional range, were derived from various sources and emplaced successively in different geodynamic settings. The crustal evolution occurred in five stages: (I) predominately mafic crust formation in an intra-oceanic environment (3.4-3.0 Ga); (II) voluminous TTG crust formation in an early accretionary orogen (3.0-2.92 Ga); (III) internal TTG crust reworking and subduction of TTG-derived sediments in an Andean-type setting (2.89-2.75 Ga); (IV) (post-)collisional high-K magmatism from both mantle and crustal sources (2.71-2.67 Ga); and (V) alkaline magmatism in an intra-cratonic environment (2.05-2.03 Ga). The inferred array results from voluminous TTG crust formation during stage II, and involvement of this crust during all subsequent stages by two different processes: (i) internal crust reworking through both partial melting and assimilation at 2.89-2.75 Ga, leading to the formation of biotite granites coeval with minor TTGs, and (ii) subduction of TTG-derived sediments underneath the PB, causing enrichment of the mantle that subsequently became

  11. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth (United States)

    Siebert, C.; Kramers, J. D.; Meisel, Th.; Morel, Ph.; Nägler, Th. F.


    Re-Os data and PGE concentrations as well as Mo concentrations and isotope data are reported for suites of fine clastic sediments and black shales from the Barberton Greenstone Belt, South Africa (Fig Tree and Moodies Groups, 3.25-3.15 Ga), the Belingwe Greenstone Belt, Zimbabwe (Manjeri Formation, ca. 2.7 Ga) and shales from the Witwatersrand, Ventersdorp and Transvaal Supergroups, South Africa ranging from 2.95 to 2.2 Ga. Moderately oxidizing conditions are required to mobilize Re and Mo in the environment, Mo fractionation only occurs in solution, and these parameters thus have potential use as paleoredox proxies for the early Earth. PGE + Re abundance patterns of Barberton Greenstone Belt sediments are uniform and very similar in shape to those of komatiites. This indicates (1) that the PGE came from a source of predominantly ultramafic composition and, (2) that PGE were transported and deposited essentially in particulate form. Sediments from the younger Belingwe Greenstone Belt show more fractionated PGE + Re patterns and have Re/Os ratios 10 to 100× higher than those of Barberton sediments. Their PGE abundance patterns and Re/Os ratios are intermediate between those of the mid-Archean shales and Neoproterozoic to Recent black shales. They reflect scavenging of Re from solution in the sedimentary environment. δ 98/95Mo values of black shales of all ages correlate with their concentrations. The Barberton Greenstone Belt samples have ˜1-3 ppm Mo, similar to a granitoid-basaltic source. This Mo has δ 98/95Mo between -1.9 and -2.4‰ relative to present day mean ocean water molybdenum, MOMO and is thus not isotopically fractionated relative to such a source. Similar to the PGE this indicates transport in solid form. Sediments from the Belingwe Greenstone Belt show in part enhanced Mo concentrations (up to 6 ppm) and Mo isotope fractionation (δ 98/95Mo up to -1.4‰ relative to MOMO). The combined PGE + Re and Mo data show mainly reducing conditions in the

  12. Iron homeostasis: new players, newer insights. (United States)

    Edison, Eunice S; Bajel, Ashish; Chandy, Mammen


    Although iron is a relatively abundant element in the universe, it is estimated that more than 2 billion people worldwide suffer from iron deficiency anemia. Iron deficiency results in impaired production of iron-containing proteins, the most prominent of which is hemoglobin. Cellular iron deficiency inhibits cell growth and subsequently leads to cell death. Hemochromatosis, an inherited disorder results in disproportionate absorption of iron and the extra iron builds up in tissues resulting in organ damage. As both iron deficiency and iron overload have adverse effects, cellular and systemic iron homeostasis is critically important. Recent advances in the field of iron metabolism have led to newer understanding of the pathways involved in iron homeostasis and the diseases which arise from alteration in the regulators. Although insight into this complex regulation of the proteins involved in iron homeostasis has been obtained mainly through animal studies, it is most likely that this knowledge can be directly extrapolated to humans.

  13. Intestinal Iron Homeostasis and Colon Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yatrik M. Shah


    Full Text Available Colorectal cancer (CRC is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC.

  14. Microbial reduction of iron ore (United States)

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory


    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  15. The irony of iron -- biogenic iron oxides as an iron source to the ocean

    Directory of Open Access Journals (Sweden)

    David eEmerson


    Full Text Available Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity.

  16. Iron deficiency in the young athlete. (United States)

    Rowland, T W


    Although overt anemia is uncommon, depletion of body iron stores is common among adolescent female athletes. Poor dietary iron intake, menstruation, and increased iron losses associated with physical training all appear to be important factors. Whether nonanemic iron deficiency can impair exercise performance is uncertain. Nonetheless, athletes with low ferritin levels are at risk for impaired erythropoiesis and should receive therapeutic iron supplementation.

  17. William Band at Yenching University (United States)

    Hu, Danian


    William Band (1906-1993) has been widely remembered by his American colleagues and students as ``a fine physicist and teacher,'' who taught at Washington State University in Pullman between 1949 and 1971 and authored Introduction to Quantum Statistics (1954) and Introduction to Mathematical Physics (1959). Not many, however, knew much about Band's early career, which was very ``uncommon and eventful.'' Born in England, Band graduated from University of Liverpool in 1927 with an MsSc degree in physics. Instead of pursuing his Ph.D. at Cambridge, he chose to teach physics at Yenching University, a prestigious Christian university in Beijing, China. Arriving in 1929, Band established his career at Yenching, where he taught and researched the theory of relativity and quantum mechanics, pioneered the study on low-temperature superconductivity in China, founded the country's first graduate program in physics, and chaired the Physics Department for 10 years until he fled from Yenching upon hearing of the attack on Pearl Harbor. It took him two years to cross Japanese occupied areas under the escort of the Communist force; he left China in early 1945. This presentation will explore Band's motivation to work in China and his contributions to the Chinese physics research and education.

  18. Pathogenic Mechanisms Underlying Iron Deficiency and Iron Overload: New Insights for Clinical Application


    Kotze, MJ; van Velden, DP; van Rensburg, SJ; Erasmus, R


    Iron uptake, utilisation, release and storage occur at the gene level. Individuals with variant forms of genes involved in iron metabolism may have different requirements for iron and are likely to respond differently to the same amount of iron in the diet, a concept termed nutrigenetics. Iron deficiency, iron overload and the anemia of inflammation are the commonest iron-related disorders. While at least four types of hereditary iron overload have been identified to date, our knowledge of th...

  19. Iron in Skin of Mice with Three Etiologies of Systemic Iron Overload



    In human hemochromatosis, tissue toxicity is a function of tissue iron levels. Despite reports of skin toxicity in hemochromatosis, little is known about iron levels in skin of individuals with systemic iron overload. We measured skin iron and studied skin histology in three mouse models of systemic iron overload: mice with a deletion of the hemochromatosis (Hfe) gene, mice fed a high iron diet, and mice given parenteral injections of iron. In Hfe−/− mice, iron content in the epidermis and de...

  20. Management of Iron Deficiency Anemia


    Jimenez, Kristine; Kulnigg-Dabsch, Stefanie; Gasche, Christoph


    Anemia affects one-fourth of the world’s population, and iron deficiency is the predominant cause. Anemia is associated with chronic fatigue, impaired cognitive function, and diminished well-being. Patients with iron deficiency anemia of unknown etiology are frequently referred to a gastroenterologist because in the majority of cases the condition has a gastrointestinal origin. Proper management improves quality of life, alleviates the symptoms of iron deficiency, and reduces the need for blo...

  1. Formation of iron disilicide on amorphous silicon (United States)

    Erlesand, U.; Östling, M.; Bodén, K.


    Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  2. Iron fortification and iron supplementation are cost-effective interventions to reduce iron deficiency in four subregions of the world

    NARCIS (Netherlands)

    C. Knai; M. Sharan; R.M.P.M. Baltussen (Rob)


    textabstractIron deficiency is the most common and widespread nutritional disorder in the world, affecting millions of people in both nonindustrialized and industrialized countries. We estimated the costs, effects, and cost-effectiveness of iron supplementation and iron fortificati

  3. Chemiluminescence of iron-chlorophyllin. (United States)

    Nagoshi, Toshimasa; Ohno, Osamu; Kotake, Tomohiko; Igarashi, Shukuro


    The iron-chlorophyllin complex was found to be chemiluminescent (CL) in an acetonitrile (22%)/water mixed solvent. In the presence of hydrogen peroxide, when iron-chlorophyllin was added to the mixed solvent, a sharp CL signal immediately appeared. Also, analysis of the absorption spectra revealed decomposition of iron-chlorophyllin (based on decrease in absorbance at 396 nm), hence iron-chlorophyllin is the CL substance. Moreover, the CL intensity decreased in the presence of potassium thiocyanate (KSCN), indicating that the axial coordinative position of iron-chlorophyllin acts as a point of catalytic activation. In addition, when fluorophores were present with iron-chlorophyllin CL, their CL intensity values were similar to or greater than that of the well-known trichlorophenylperoxalate ester (TCPO) CL. Thus, during the decomposition reaction of iron-chlorophyllin, the latter transfers its energy to the coexisting fluorophores. Moreover, since the decomposed compound in this CL reaction had a fluorescence, it was found that the iron-chlorophyllin also functions as an energy donor. Therefore, the iron-chlorophyllin complex acts not only as a CL substance, but also as a catalyst and energy donor in the reaction.

  4. Iron Deficiency Anemia in Pregnancy. (United States)

    Breymann, Christian


    Anemia is a common problem in obstetrics and perinatal care. Any hemoglobin below 10.5 g/dL can be regarded as true anemia regardless of gestational age. Reasons for anemia in pregnancy are mainly nutritional deficiencies, parasitic and bacterial diseases, and inborn red blood cell disorders such as thalassemias. The main cause of anemia in obstetrics is iron deficiency, which has a worldwide prevalence between estimated 20%-80% and consists of a primarily female population. Stages of iron deficiency are depletion of iron stores, iron-deficient erythropoiesis without anemia, and iron deficiency anemia, the most pronounced form of iron deficiency. Pregnancy anemia can be aggravated by various conditions such as uterine or placental bleedings, gastrointestinal bleedings, and peripartum blood loss. In addition to the general consequences of anemia, there are specific risks during pregnancy for the mother and the fetus such as intrauterine growth retardation, prematurity, feto-placental miss ratio, and higher risk for peripartum blood transfusion. Besides the importance of prophylaxis of iron deficiency, the main therapy options for the treatment of pregnancy anemia are oral iron and intravenous iron preparations.

  5. 46 CFR 56.60-10 - Cast iron and malleable iron. (United States)


    ... 46 Shipping 2 2010-10-01 2010-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and malleable iron should be recognized and the use of these metals where shock loading may occur should...

  6. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines. (United States)


    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to...

  7. X-Band PLL Synthesizer

    Directory of Open Access Journals (Sweden)

    P. Kutin


    Full Text Available This paper deals with design and realization of a PLL synthesizer for the microwave X−band. The synthesizer is intended for use as a local oscillator in a K−band downconverter. The design goal was to achieve very low phase noise and spurious free signal with a sufficient power level. For that purpose a low phase noise MMIC VCO was used in phase locked loop. The PLL works at half the output frequency, therefore there is a frequency doubler at the output of the PLL. The output signal from the frequency doubler is filtered by a band-pass filter and finally amplified by a single stage amplifier.

  8. Iron-Refractory Iron Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Ebru Yılmaz Keskin


    Full Text Available Demir, oksijenin taşınması, DNA sentezi ve hücre çoğalması gibi çeşitli biyolojik reaksiyonlar için vazgeçilmez olduğundan, yaşam için zorunludur. Demir metabolizması ve bu elementin düzenlenmesiyle ilgili bilgilerimiz, son yıllarda belirgin şekilde değişmiştir. Demir metabolizması ile ilgili yeni bozukluklar tanımlanmış ve demirin başka bozuklukların kofaktörü olduğu anlaşılmaya başlamıştır. Hemokromatozis ve demir tedavisine dirençli demir eksikliği anemisi (IRIDA; “iron-refractory iron deficiency anemia” gibi genetik durumlar üzerinde yapılan çalışmalar, vücuttaki demir dengesini kontrol eden moleküler mekanizmalar ile ilgili önemli ipuçları sunmuştur. Bu ilerlemeler, gelecekte, hem genetik hem de kazanılmış demir bozukluklarının daha etkili şekilde tedavi edilmesi amacıyla kullanılabilir. IRIDA, demir eksikliği ile giden durumlarda, hepsidin üretimini baskılayan matriptaz-2’yi kodlayan TMPRSS6 genindeki mutasyonlardan kaynaklanmaktadır. Hastalığın tipik özellikleri, hipokrom, mikrositer anemi, çok düşük ortalama eritrosit hacmi, oral demir tedavisine yanıtsızlık (veya yetersiz yanıt ve parenteral demire kısmi yanıttır. Klasik demir eksikliği anemisinin aksine, serum ferritin değeri genellikle hafif düşük ya da normal aralıkta; serum ve idrar hepsidin değerleri ise, aneminin derecesi ile orantısız şekilde yüksek bulunur. Şimdiye kadar literatürde bildirilmiş olguların sayısı 100’ü geçmediği halde, IRIDA’nın, “atipik” mikrositik anemilerin en sık nedeni olduğu düşünülmektedir. Bu derlemenin amacı, IRIDA hakkındaki güncel bilgileri araştırıcılar ile paylaşmak ve bu alandaki farkındalıklarını arttırmaktır.

  9. Holographic Multi-Band Superconductor

    CERN Document Server

    Huang, Ching-Yu; Maity, Debaprasad


    We propose a gravity dual for the holographic superconductor with multi-band carriers. Moreover, the currents of these carriers are unified under a global non-Abelian symmetry, which is dual to the bulk non-Abelian gauge symmetry. We study the phase diagram of our model, and find it qualitatively agrees with the one for the realistic 2-band superconductor, such as MgB2. We also evaluate the holographic conductivities and find the expected mean-field like behaviors in some cases. However, for a wide range of the parameter space, we also find the non-mean-field like behavior with negative conductivities.

  10. X-Band PLL Synthesizer


    P. Kutin; Vagner, P.


    This paper deals with design and realization of a PLL synthesizer for the microwave X−band. The synthesizer is intended for use as a local oscillator in a K−band downconverter. The design goal was to achieve very low phase noise and spurious free signal with a sufficient power level. For that purpose a low phase noise MMIC VCO was used in phase locked loop. The PLL works at half the output frequency, therefore there is a frequency doubler at the output of the PLL. The output signal ...

  11. Oxidative release of chromium from Archean ultramafic rocks, its transport and environmental impact – A Cr isotope perspective on the Sukinda valley ore district (Orissa, India)

    DEFF Research Database (Denmark)

    Paulukat, Cora Stefanie; Døssing, Lasse Nørbye; Mondal, Sisir K.;


    This study investigates Cr isotope fractionation during soil formation from Archean (3.1–3.3 Ga) ultramafic rocks in a chromite mining area in the southern Singhbhum Craton (Orissa, India). The Cr-isotope signatures of two studied weathering profiles, range from non-fractionated mantle values...... to negatively fractionated values as low as δ53Cr = −1.29 ± 0.04‰. Local surface waters are isotopically heavy relative to the soils. This supports the hypothesis that during oxidative weathering isotopically heavy Cr(VI) is leached from the soils to runoff. The impact of mining pollution is observed downstream...... in controlling the hazardous impact of Cr(VI) on health and environment. The positive Cr isotope signatures of the Brahmani estuary and coastal seawater collected from the Bay of Bengal further indicate that the positively fractionated Cr isotope signal from the catchment area is preserved during its transport...

  12. Reactions of OH Radicals with Tris (1,10-Phenanthroline) Iron (II) Studied by Pulse Radiolysis

    DEFF Research Database (Denmark)

    Siekierska Floryan, E.; Pagsberg, Palle Bjørn


    The reaction of OH radicals with aqueous tris(1,10-phenanthroline)iron(II) leads to the formation of an adduct, which exhibits a broad absorption band at rmpH = 6, λmax = 460 nm, and epsilon (Porson)460 = 6700 (molar, decadic, 1 mol−1 cm−1). The rate of formation of the adduct is first order in c...

  13. Iron oxide surfaces (United States)

    Parkinson, Gareth S.


    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  14. Iron and iron-related proteins in asbestosis. (United States)

    ABSTRACT: We tested the postulate that iron homeostasis is altered among patients diagnosed to have asbestosis. Lung tissue from six individuals diagnosed to have had asbestosis at autopsy was stained for iron, ferritin, divalent metal transporter 1 (DMT1), and ferroportin 1 (FP...

  15. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.


    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have...

  16. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud;


    exothermic than that of amorphous calcium carbonate (ACC). This suggests that enthalpy of crystallization in carbonate systems is ionic-size controlled, which may have significant implications in a wide variety of conditions, including geological sequestration of anthropogenic carbon dioxide.......Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  17. Iron-Deficiency Anemia (For Parents) (United States)

    ... Your 1- to 2-Year-Old Iron-Deficiency Anemia KidsHealth > For Parents > Iron-Deficiency Anemia Print A ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  18. Iron Meteorites and Upwelling in Antarctica (United States)

    Gourlay, B. S.; Behr, E.; Mardon, A.; Behr, E.


    In Antarctica, a meteorite stranding zone, stone meteorites are more common than iron. Dr. Evatt's team suggests that the heat conductivity of iron may be opposing the upwelling effects so iron meteorites sink under the ice unlike the stone ones.

  19. Iron-Deficiency Anemia (For Parents) (United States)

    ... Your 1- to 2-Year-Old Iron-Deficiency Anemia KidsHealth > For Parents > Iron-Deficiency Anemia A A ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  20. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. (United States)

    Bjerrum, Christian J; Canfield, Donald E


    After the evolution of oxygen-producing cyanobacteria at some time before 2.7 billion years ago, oxygen production on Earth is thought to have depended on the availability of nutrients in the oceans, such as phosphorus (in the form of orthophosphate). In the modern oceans, a significant removal pathway for phosphorus occurs by way of its adsorption onto iron oxide deposits. Such deposits were thought to be more abundant in the past when, under low sulphate conditions, the formation of large amounts of iron oxides resulted in the deposition of banded iron formations. Under these circumstances, phosphorus removal by iron oxide adsorption could have been enhanced. Here we analyse the phosphorus and iron content of banded iron formations to show that ocean orthophosphate concentrations from 3.2 to 1.9 billion years ago (during the Archaean and early Proterozoic eras) were probably only approximately 10-25% of present-day concentrations. We suggest therefore that low phosphorus availability should have significantly reduced rates of photosynthesis and carbon burial, thereby reducing the long-term oxygen production on the early Earth--as previously speculated--and contributing to the low concentrations of atmospheric oxygen during the late Archaean and early Proterozoic.

  1. Metaphyseal bands in osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Suresh S


    Full Text Available An increasing number of patients with osteogenesis imperfecta are undergoing pamidronate therapy to prevent the incidence of fragility fractures. The authors herein report a child aged 3 years who received five cycles of pamidronate, resulting in metaphyseal bands, known as "zebra lines."

  2. Bands for girls and boys

    Institute of Scientific and Technical Information of China (English)



    Like many people, you may be dreaming of a career(职业) as rock and roll stars. There are two ways to go about getting one. First is the traditional way. Find some friends and form a group. Learn to play the guitar or the drums. Write your own songs. Spend hours arguing about the band name. Then go out on the road.


    DEFF Research Database (Denmark)


    An optical fibre having a periodicidal cladding structure provididing a photonic band gap structure with superior qualities. The periodical structure being one wherein high index areas are defined and wherein these are separated using a number of methods. One such method is the introduction...

  4. Familial band-shaped keratopathy. (United States)

    Ticho, U; Lahav, M; Ivry, M


    A brother and sister out of a consanguinous family of four siblings are presented as prototypes of primary band-shaped keratopathy. The disease manifested sever progressive changes of secondary nature over two years of follow-up. Histology and treatment are described.

  5. K-Band Latching Switches (United States)

    Piotrowski, W. S.; Raue, J. E.


    Design, development, and tests are described for two single-pole-double-throw latching waveguide ferrite switches: a K-band switch in WR-42 waveguide and a Ka-band switch in WR-28 waveguide. Both switches have structurally simple junctions, mechanically interlocked without the use of bonding materials; they are impervious to the effects of thermal, shock, and vibration stresses. Ferrite material for the Ka-band switch with a proper combination of magnetic and dielectric properties was available and resulted in excellent low loss, wideband performance. The high power handling requirement of the K-band switch limited the choice of ferrite to nickel-zinc compositions with adequate magnetic properties, but with too low relative dielectric constant. The relative dielectric constant determines the junction dimensions for given frequency responses. In this case the too low value unavoidably leads to a larger than optimum junction volume, increasing the insertion loss and restricting the operating bandwidth. Efforts to overcome the materials-related difficulties through the design of a composite junction with increased effective dielectric properties efforts to modify the relative dielectric constant of nickel-zinc ferrite are examined.

  6. K-band latching switches (United States)

    Piotrowski, W. S.; Raue, J. E.


    Design, development, and tests are described for two single-pole-double-throw latching waveguide ferrite switches: a K-band switch in WR-42 waveguide and a Ka-band switch in WR-28 waveguide. Both switches have structurally simple junctions, mechanically interlocked without the use of bonding materials; they are impervious to the effects of thermal, shock, and vibration stresses. Ferrite material for the Ka-band switch with a proper combination of magnetic and dielectric properties was available and resulted in excellent low loss, wideband performance. The high power handling requirement of the K-band switch limited the choice of ferrite to nickel-zinc compositions with adequate magnetic properties, but with too low relative dielectric constant. The relative dielectric constant determines the junction dimensions for given frequency responses. In this case the too low value unavoidably leads to a larger than optimum junction volume, increasing the insertion loss and restricting the operating bandwidth. Efforts to overcome the materials-related difficulties through the design of a composite junction with increased effective dielectric properties efforts to modify the relative dielectric constant of nickel-zinc ferrite are examined.

  7. Hunting for Iron Ore Bargains

    Institute of Scientific and Technical Information of China (English)


    One of China’s leading steel mills has turned to smaller mines for long-term, lowcost iron ore supplies china’s oldest steel producer is looking to South America to fulfill its iron ore needs in the face of rising prices from

  8. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng


    @@ Spheroidal Graphite Cast Iron(Ⅲ) 3.6 Solidification morphology of SG iron Solidification morphology refers to the description of change,distribution and interrelationship of the solidification structures such as graphite spheroids,austenite,eutectic cells,etc.[99

  9. The Pharmacokinetics and Pharmacodynamics of Iron Preparations

    Directory of Open Access Journals (Sweden)

    Susanna Burckhardt


    Full Text Available Standard approaches are not appropriate when assessing pharmacokinetics of iron supplements due to the ubiquity of endogenous iron, its compartmentalized sites of action, and the complexity of the iron metabolism. The primary site of action of iron is the erythrocyte, and, in contrast to conventional drugs, no drug-receptor interaction takes place. Notably, the process of erythropoiesis, i.e., formation of new erythrocytes, takes 3−4 weeks. Accordingly, serum iron concentration and area under the curve (AUC are clinically irrelevant for assessing iron utilization. Iron can be administered intravenously in the form of polynuclear iron(III-hydroxide complexes with carbohydrate ligands or orally as iron(II (ferrous salts or iron(III (ferric complexes. Several approaches have been employed to study the pharmacodynamics of iron after oral administration. Quantification of iron uptake from radiolabeled preparations by the whole body or the erythrocytes is optimal, but alternatively total iron transfer can be calculated based on known elimination rates and the intrinsic reactivity of individual preparations. Degradation kinetics, and thus the safety, of parenteral iron preparations are directly related to the molecular weight and the stability of the complex. High oral iron doses or rapid release of iron from intravenous iron preparations can saturate the iron transport system, resulting in oxidative stress with adverse clinical and subclinical consequences. Appropriate pharmacokinetics and pharmacodynamics analyses will greatly assist our understanding of the likely contribution of novel preparations to the management of anemia.

  10. The pharmacokinetics and pharmacodynamics of iron preparations. (United States)

    Geisser, Peter; Burckhardt, Susanna


    Standard approaches are not appropriate when assessing pharmacokinetics of iron supplements due to the ubiquity of endogenous iron, its compartmentalized sites of action, and the complexity of the iron metabolism. The primary site of action of iron is the erythrocyte, and, in contrast to conventional drugs, no drug-receptor interaction takes place. Notably, the process of erythropoiesis, i.e., formation of new erythrocytes, takes 3-4 weeks. Accordingly, serum iron concentration and area under the curve (AUC) are clinically irrelevant for assessing iron utilization. Iron can be administered intravenously in the form of polynuclear iron(III)-hydroxide complexes with carbohydrate ligands or orally as iron(II) (ferrous) salts or iron(III) (ferric) complexes. Several approaches have been employed to study the pharmacodynamics of iron after oral administration. Quantification of iron uptake from radiolabeled preparations by the whole body or the erythrocytes is optimal, but alternatively total iron transfer can be calculated based on known elimination rates and the intrinsic reactivity of individual preparations. Degradation kinetics, and thus the safety, of parenteral iron preparations are directly related to the molecular weight and the stability of the complex. High oral iron doses or rapid release of iron from intravenous iron preparations can saturate the iron transport system, resulting in oxidative stress with adverse clinical and subclinical consequences. Appropriate pharmacokinetics and pharmacodynamics analyses will greatly assist our understanding of the likely contribution of novel preparations to the management of anemia.

  11. Iron deficiency in blood donors

    Directory of Open Access Journals (Sweden)

    Armando Cortés


    Full Text Available Context: Blood donation results in a substantial loss of iron (200 to 250 mg at each bleeding procedure (425 to 475 ml and subsequent mobilization of iron from body stores. Recent reports have shown that body iron reserves generally are small and iron depletion is more frequent in blood donors than in non-donors. Objective: The aim of this study was to evaluate the frequency of iron deficiency in blood donors and to establish the frequency of iron deficiency in blood donors according to sex, whether they were first-time or multi-time donors. Design: From march 20 to April 5, 2004, three hundred potential blood donors from Hemocentro del Café y Tolima Grande were studied. Diagnostic tests: Using a combination of biochemical measurements of iron status: serum ferritin (RIA, ANNAR and the hemoglobin pre and post-donation (HEMOCUE Vital technology medical . Results: The frequency of iron deficiency in potential blood donors was 5%, and blood donors accepted was 5.1%; in blood donors rejected for low hemoglobin the frequency of iron deficiency was 3.7% and accepted blood donors was 1.7% in male and 12.6% in female. The frequency of iron deficiency was higher in multi-time blood donors than in first-time blood donors, but not stadistic significative. Increase nivel accepted hemoglobina in 1 g/dl no incidence in male; in female increase of 0.5 g/dl low in 25% blood donors accepted with iron deficiency, but increased rejected innecesary in 16.6% and increased is 1 g/dl low blood donors female accepted in 58% (7/12, but increased the rejected innecesary in 35.6%. Conclusions: We conclude that blood donation not is a important factor for iron deficiency in blood donors. The high frequency of blood donors with iron deficiency found in this study suggests a need for a more accurate laboratory trial, as hemoglobin or hematocrit measurement alone is not sufficient for detecting and excluding blood donors with iron deficiency without anemia, and ajustes hacia

  12. Pathology of hepatic iron overload

    Institute of Scientific and Technical Information of China (English)

    Yves Deugnier; Bruno Turlin


    Although progress in imaging and genetics allow for a noninvasive diagnosis of most cases of genetic iron overload, liver pathology remains often useful (1) to assess prognosis by grading fibrosis and seeking for associated lesions and (2) to guide the etiological diagnosis, especially when no molecular marker is available.Then, the type of liver siderosis (parenchymal, mesenchymal or mixed) and its distribution throughout the lobule and the liver are useful means for suggesting its etiology: HLA-linked hemochromatosis gene (HFE) hemochromatosis or other rare genetic hemochromatosis,nonhemochromatotic genetic iron overload (ferroportin disease, aceruloplasminemia), or iron overload secondary to excessive iron supply, inflammatory syndrome,noncirrhotic chronic liver diseases including dysmetabolic iron overload syndrome, cirrhosis, and blood disorders.

  13. Iron and Mechanisms of Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Gabriela A. Salvador


    Full Text Available The accumulation of transition metals (e.g., copper, zinc, and iron and the dysregulation of their metabolism are a hallmark in the pathogenesis of several neurodegenerative diseases. This paper will be focused on the mechanism of neurotoxicity mediated by iron. This metal progressively accumulates in the brain both during normal aging and neurodegenerative processes. High iron concentrations in the brain have been consistently observed in Alzheimer's (AD and Parkinson's (PD diseases. In this connection, metalloneurobiology has become extremely important in establishing the role of iron in the onset and progression of neurodegenerative diseases. Neurons have developed several protective mechanisms against oxidative stress, among them, the activation of cellular signaling pathways. The final response will depend on the identity, intensity, and persistence of the oxidative insult. The characterization of the mechanisms mediating the effects of iron-induced increase in neuronal dysfunction and death is central to understanding the pathology of a number of neurodegenerative disorders.

  14. Comparative study of oral iron and intravenous iron sucrose for the treatment of iron deficiency anemia in pregnancy

    Directory of Open Access Journals (Sweden)

    Apurva Garg


    Full Text Available Background: The aim of this study was to compare the efficacy and safety of iron sucrose with oral iron in the treatment of iron deficiency anemia of pregnancy. Methods: An interventional comparative study was conducted at Jhalawar Medical College, Jhalawar involving 80 pregnant women with iron deficiency anemia from March 2016 to August 2016. Inclusion criteria were gestational age between 24-32 weeks with established iron deficiency anemia, with hemoglobin between 7-10g/dl. Target Hemoglobin was 11 g/dl. In intravenous iron sucrose group iron sucrose dose was calculated from following formula: total iron dose required (mg = 2.4 x body weight in Kg x (target Hb – Patient’s Hb g/dl + 500. In oral iron, group patient received ferrous-sulphate 335 mg daily BD. Hb level were reviewed at 2, 4, 6 weeks. Results: Change in Hemoglobin level from baseline significantly higher in IV iron group than oral iron group. In IV iron, group mean value of baseline Hb was 8.07±0.610 g/dl and in oral iron group was 8.48±0.741 g/dl. At the end of 6-week mean hemoglobin in IV iron sucrose was 10.66±0.743 g/dl and in oral iron group was 10.08±0.860 g/dl. Conclusions: Intravenous iron sucrose elevates more Hb than oral iron, with less adverse effects.

  15. Crystallographic phases and magnetic properties of iron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ke [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Liu, Yan; Zhao, Rui-Bin [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Shen, Jun-Jie [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Hou, Deng-Lu, E-mail: [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China)


    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe.


    Directory of Open Access Journals (Sweden)



    Full Text Available We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharidetemplates. Interaction between iron sulfate and template has been carried out in aqueous phase,followed by the selective and controlled removal of the template to achieve narrow distribution ofparticle size. Particles of iron oxide obtained have been characterized for their stability in solventmedia, size, size distribution and crystallinity and it was found that when the negative value of thezeta potential increases, particle size decreases. A narrow particle size distribution with D100 = 275nm was obtained with chitosan and starch templates. SEM measurements further confirm the particlesize measurement. Diffuse reflectance UV–VIS spectra values show that the template is completelyremoved from the final iron oxide particles and powder XRD measurements show that the peaks ofthe diffractogram are in agreement with the theoretical data of hematite. The salient observations ofour study shows that there occurs a direct correlation between zeta potential, polydispersity index,band gap energy and particle size. The crystallite size of the particles was found to be 30–35 nm. Alarge negative zeta potential was found to be advantageous for achieving lower particle sizes, as theparticles remained discrete without agglomeration.

  17. Microbial acquisition of iron from ferric iron bearing minerals

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L.E. [Los Alamos National Lab., NM (United States); Sposito, G. [Univ. of California, Berkeley, CA (United States)


    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Iron is a universal requirement for all life forms. Although the fourth most abundant element in the geosphere, iron is virtually insoluble at physiological pH in oxidizing environments, existing mainly as very insoluble oxides and hydroxides. Currently it is not understood how iron is solubilized and made available for biological use. This research project addressed this topic by conducting a series of experiments that utilized techniques from both soil microbiology and mineral surface geochemistry. Microbiological analysis consisted of the examination of metabolic and physiological responses to mineral iron supplements. At the same time mineral surfaces were examined for structural changes brought about by microbially mediated dissolution. The results of these experiments demonstrated that (1) bacterial siderophores were able to promote the dissolution of iron oxides, (2) that strict aerobic microorganisms may use anaerobic processes to promote iron oxide dissolution, and (3) that it is possible to image the surface of iron oxides undergoing microbial dissolution.

  18. The Regulation of Iron Absorption and Homeostasis (United States)

    Wallace, Daniel F


    Iron is an essential element in biology, required for numerous cellular processes. Either too much or too little iron can be detrimental, and organisms have developed mechanisms for balancing iron within safe limits. In mammals there are no controlled mechanisms for the excretion of excess iron, hence body iron homeostasis is regulated at the sites of absorption, utilisation and recycling. This review will discuss the discoveries that have been made in the past 20 years into advancing our understanding of iron homeostasis and its regulation. The study of iron-associated disorders, such as the iron overload condition hereditary haemochromatosis and various forms of anaemia have been instrumental in increasing our knowledge in this area, as have cellular and animal model studies. The liver has emerged as the major site of systemic iron regulation, being the location where the iron regulatory hormone hepcidin is produced. Hepcidin is a negative regulator of iron absorption and recycling, achieving this by binding to the only known cellular iron exporter ferroportin and causing its internalisation and degradation, thereby reducing iron efflux from target cells and reducing serum iron levels. Much of the research in the iron metabolism field has focussed on the regulation of hepcidin and its interaction with ferroportin. The advances in this area have greatly increased our knowledge of iron metabolism and its regulation and have led to the development of novel diagnostics and therapeutics for iron-associated disorders.

  19. Southern Ocean Iron Experiment (SOFex)

    Energy Technology Data Exchange (ETDEWEB)

    Coale, Kenneth H.


    The Southern Ocean Iron Experiment (SOFeX) was an experiment decades in the planning. It's implementation was among the most complex ship operations that SIO has been involved in. The SOFeX field expedition was successful in creating and tracking two experimentally enriched areas of the Southern Ocean, one characterized by low silicic acid, one characterized by high silicic acid. Both experimental sites were replete with abundant nitrate. About 100 scientists were involved overall. The major findings of this study were significant in several ways: (1) The productivity of the southern ocean is limited by iron availability. (2) Carbon uptake and flux is therefore controlled by iron availability (3) In spite of low silicic acid, iron promotes non-silicious phytoplankton growth and the uptake of carbon dioxide. (4) The transport of fixed carbon from the surface layers proceeds with a C:N ratio that would indicate differential remineralization of nitrogen at shallow depths. (5) These finding have major implications for modeling of carbon export based on nitrate utilization. (6) The general results of the experiment indicate that, beyond other southern ocean enrichment experiments, iron inputs have a much wider impact of productivity and carbon cycling than previously demonstrated. Scientific presentations: Coale, K., Johnson, K, Buesseler, K., 2002. The SOFeX Group. Eos. Trans. AGU 83(47) OS11A-0199. Coale, K., Johnson, K. Buesseler, K., 2002. SOFeX: Southern Ocean Iron Experiments. Overview and Experimental Design. Eos. Trans. AGU 83 (47) OS22D-01. Buesseler, K.,et al. 2002. Does Iron Fertilization Enhance Carbon Sequestration? Particle flux results from the Southern Ocean Iron Experiment. Eos. Trans. AGU 83 (47), OS22D-09. Johnson, K. et al. 2002. Open Ocean Iron Fertilization Experiments From IronEx-I through SOFeX: What We Know and What We Still Need to Understand. Eos. Trans. AGU 83 (47), OS22D-12. Coale, K. H., 2003. Carbon and Nutrient Cycling During the

  20. Mineral resource assessment of the Iron River 1 degree x 2 degrees Quadrangle, Michigan and Wisconsin (United States)

    Cannon, William F.


    The Iron River 1? x 2? quadrangle contains identified resources of copper and iron. Copper-rich shale beds in the north part of the quadrangle contain 12.2 billion pounds (5.5 billion kilograms) of copper in well-studied deposits including 9.2 billion pounds (4.2 billion kilograms) that are economically minable by 1980 standards. At least several billion pounds of copper probably exist in other parts of the same shale beds, but not enough data are available to measure the amount. A small amount, about 250 million pounds (113 million kilograms), of native copper is known to remain in one abandoned mine, and additional but unknown amounts remain in other abandoned mines. About 13.25 billion tons (12.02 billion metric tons) of banded iron-formation averaging roughly 30 percent iron are known within 500 feet (152.4 meters) of the surface in the Gogebic, Marquette, and Iron River-Crystal Falls districts. A small percentage of that might someday be minable as taconite, but none is now believed to be economic. Some higher grade iron concentrations exist in the same iron-formations. Such material was the basis of former mining of iron in the region, but a poor market for such ore and depletion of many deposits have led to the decline of iron mining in the quadrangle. Iron mines of the quadrangle were not being worked in 1980. Many parts of the quadrangle contain belts of favorable host rocks for mineral deposits. Although deposits are not known in these belts, undiscovered deposits of copper, zinc, lead, silver, uranium, phosphate, nickel, chromium, platinum, gold, and diamonds could exist.

  1. ALMA Band 5 Cartridge Performance (United States)

    Billade, Bhushan; Lapkin, I.; Nystrom, O.; Sundin, E.; Fredrixon, M.; Finger, R.; Rashid, H.; Desmaris, V.; Meledin, D.; Pavolotsky, A.; Belitsky, Victor


    Work presented here concerns the design and performance of the ALMA Band 5 cold cartridge, one of the 10 frequency channels of ALMA project, a radio interferometer under construction at Atacama Desert in Chile. The Band 5 cartridge is a dual polarization receiver with the polarization separation performed by orthomode transducer (OMT). For each polarization, Band 5 receiver employs sideband rejection (2SB) scheme based on quadrature layout, with SIS mixers covering 163-211 GHz with 4-8 GHz IF. The LO injection circuitry is integrated with mixer chip and is implemented on the same substrate, resulting in a compact 2SB assembly. Amongst the other ALMA bands, the ALMA Band 5 being the lowest frequency band that uses all cold optics, has the largest mirror. Consequently, ALMA Band 5 mirror along with its support structure leaves very little room for placing OMT, mixers and IF subsystems. The constraints put by the size of cold optics and limited cartridge space, required of us to revise the original 2SB design and adopt a design where all the components like OMT, mixer, IF hybrid, isolators and IF amplifier are directly connected to each other without using any co-ax cables in-between. The IF subsystem uses the space between 4 K and 15 K stage of the cartridge and is thermally connected to 4 K stage. Avoiding co-ax cabling required use of custom designed IF hybrid, furthermore, due to limited cooling capacity at 4 K stage, resistive bias circuitry for the mixers is moved to 15 K stage and the IF hybrid along with an integrated bias-T is implemented using superconducting micro-strip lines. The E-probes for both LO and RF waveguide-to-microstrip transitions are placed perpendicular to the wave direction (back-piece configuration). The RF choke at the end of the probes provides a virtual ground for the RF/LO signal, and the choke is DC grounded to the chassis. The on-chip LO injection is done using a microstrip line directional coupler with slot-line branches in the

  2. Iron Mountain Electromagnetic Results

    Energy Technology Data Exchange (ETDEWEB)

    Gail Heath


    Iron Mountain Mine is located seventeen miles northwest of Redding, CA. After the completion of mining in early 1960s, the mine workings have been exposed to environmental elements which have resulted in degradation in water quality in the surrounding water sheds. In 1985, the EPA plugged ore stoops in many of the accessible mine drifts in an attempt to restrict water flow through the mine workings. During this process little data was gathered on the orientation of the stoops and construction of the plugs. During the last 25 years, plugs have begun to deteriorate and allow acidic waters from the upper workings to flow out of the mine. A team from Idaho National Laboratory (INL) performed geophysical surveys on a single mine drift and 3 concrete plugs. The project goal was to evaluate several geophysical methods to determine competence of the concrete plugs and orientation of the stopes.

  3. Iron bromide vapor laser (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.


    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  4. Iron Curtains ?

    Directory of Open Access Journals (Sweden)

    Maria Vlček


    Full Text Available This paper explores the emotional and multi-sensorial dimensions of care within a transnational family separated by the Iron Curtain during the Cold War. It will argue that processes of supportive and compassionate engagement amongst transnational kin are not only shaped by long-distance communication, financial support and practical help within specific political and economic contexts, but also by personal desires and interpersonal conflict. The dialectics of proximity and distance are explored through a focus on uses of communication technology, emotional interaction during visits, long-distance engagement through distinct sensorial experiences, and imaginary interaction through the dynamics of internalised presence. The auto/biographical analysis is mainly based on letters, faxes, diaries, interviews and personal memories.

  5. High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles. (United States)

    Krajewski, M; Brzozka, K; Lin, W S; Lin, H M; Tokarczyk, M; Borysiuk, J; Kowalski, G; Wasik, D


    This work describes an oxidation process of iron-iron oxide core-shell nanowires at temperatures between 100 °C and 800 °C. The studied nanomaterial was synthesized through a simple chemical reduction of iron trichloride in an external magnetic field under a constant flow of argon. The electron microscopy investigations allowed determining that the as-prepared nanowires were composed of self-assembled iron nanoparticles which were covered by a 3 nm thick oxide shell and separated from each other by a thin interface layer. Both these layers exhibited an amorphous or highly-disordered character which was traced by means of transmission electron microscopy and Mössbauer spectroscopy. The thermal oxidation was carried out under a constant flow of argon which contained the traces of oxygen. The first stage of process was related to slow transformations of amorphous Fe and amorphous iron oxides into crystalline phases and disappearance of interfaces between iron nanoparticles forming the studied nanomaterial (range: 25-300 °C). After that, the crystalline iron core and iron oxide shell became oxidized and signals for different compositions of iron oxide sheath were observed (range: 300-800 °C) using X-ray diffraction, Raman spectroscopy and Mössbauer spectroscopy. According to the thermal gravimetric analysis, the nanowires heated up to 800 °C under argon atmosphere gained 37% of mass with respect to their initial weight. The structure of the studied nanomaterial oxidized at 800 °C was mainly composed of α-Fe2O3 (∼ 93%). Moreover, iron nanowires treated above 600 °C lost their wire-like shape due to their shrinkage and collapse caused by the void coalescence.

  6. Lithophile and siderophile element systematics of Earth's mantle at the Archean-Proterozoic boundary: Evidence from 2.4 Ga komatiites (United States)

    Puchtel, I. S.; Touboul, M.; Blichert-Toft, J.; Walker, R. J.; Brandon, A. D.; Nicklas, R. W.; Kulikov, V. S.; Samsonov, A. V.


    likely ancient mafic crust. The large positive 182W anomaly present in the tonalites requires that the precursor crust incorporated a primordial component with Hf/W that became fractionated, relative to the bulk mantle, within the first 50 Ma of Solar System history. The absolute HSE abundances in the mantle source of the Vetreny komatiite system are estimated to be 66 ± 7% of those in the present-day Bulk Silicate Earth. This observation, coupled with the normal 182W/184W composition of the komatiitic basalts, when corrected for crustal contamination (μ182W = -0.5 ± 4.5 ppm), indicates that the W-HSE systematics of the Vetreny komatiite system most likely were established as a result of late accretion of chondritic material to Earth. Our present results, combined with isotopic and chemical data available for other early and late Archean komatiite systems, are inconsistent with the model of increasing HSE abundances in komatiitic sources as a result of slow downward mixing into the mantle of chondritic material accreted to Earth throughout the Archean. The observed HSE concentration variations rather reflect sluggish mixing of diverse post-magma ocean domains characterized by variably-fractionated lithophile and siderophile element abundances.

  7. S-Band propagation measurements (United States)

    Briskman, Robert D.


    A geosynchronous satellite system capable of providing many channels of digital audio radio service (DARS) to mobile platforms within the contiguous United States using S-band radio frequencies is being implemented. The system is designed uniquely to mitigate both multipath fading and outages from physical blockage in the transmission path by use of satellite spatial diversity in combination with radio frequency and time diversity. The system also employs a satellite orbital geometry wherein all mobile platforms in the contiguous United States have elevation angles greater than 20 deg to both of the diversity satellites. Since implementation of the satellite system will require three years, an emulation has been performed using terrestrial facilities in order to allow evaluation of DARS capabilities in advance of satellite system operations. The major objective of the emulation was to prove the feasibility of broadcasting from satellites 30 channels of CD quality programming using S-band frequencies to an automobile equipped with a small disk antenna and to obtain quantitative performance data on S-band propagation in a satellite spatial diversity system.

  8. Monoclonal antibodies against the iron regulated outer membrane Proteins of Acinetobacter baumannii are bactericidal

    Directory of Open Access Journals (Sweden)

    Goel Vikas


    Full Text Available Abstract Background Iron is an important nutrient required by all forms of life.In the case of human hosts,the free iron availability is 10-18M,which is far less than what is needed for the survival of the invading bacterial pathogen.To survive in such conditions, bacteria express new proteins in their outer membrane and also secrete iron chelators called siderophores. Results/ Discussion Acinetobacter baumannii ATCC 19606, a nosocomial pathogen which grows under iron restricted conditions, expresses four new outer membrane proteins,with molecular weight ranging from 77 kDa to 88 kDa, that are called Iron Regulated Outer Membrane Proteins (IROMPs. We studied the functional and immunological properties of IROMPs expressed by A.baumanii ATCC 19606.The bands corresponding to IROMPs were eluted from SDS-PAGE and were used to immunize BALB/c mice for the production of monoclonal antibodies. Hybridomas secreting specific antibodies against these IROMPs were selected after screening by ELISA and their reactivity was confirmed by Western Blot. The antibodies then generated belonged to IgM isotype and showed bactericidical and opsonising activities against A.baumanii in vitro.These antibodies also blocked siderophore mediated iron uptake via IROMPs in bacteria. Conclusion This proves that iron uptake via IROMPs,which is mediated through siderophores,may have an important role in the survival of A.baumanii inside the host,and helps establishing the infection.

  9. A tale of two eras: Pliocene-Pleistocene unroofing of Cenozoic and late Archean zircons from active metamorphic core complexes, Solomon Sea, Papua New Guinea (United States)

    Baldwin, Suzanne L.; Ireland, Trevor R.


    U/Pb ion microprobe analyses of zircons from gneisses and granodiorites exposed in the D'Entrecasteaux Islands, and from conglomerate sections of the Goodenough No. 1 well in the adjacent Trobriand Basin, provide constraints on the age of magmatism, peak metamorphism, and nature of rocks unroofed during initial stages of metamorphic core complex formation in the Solomon Sea. The youngest populations of zircons from felsic gneisses and granodiorites indicate late Pliocene 206Pb*/238U ages. No inherited zircons were identified in the granodiorites, and the 206Pb*/238U ages (1.65 ± 0.18 Ma; 1.98 ± 0.08 Ma [2σ]) are interpreted as crystallization ages. These synkinematically emplaced granodiorites, intruded into actively extending continental crust, are some of the youngest known granitoids currently exposed at the Earth' surface. Zircon ages from felsic gneisses (2.63 ± 0.16 Ma; 2.72 ± 0.28 Ma [2σ]) are interpreted to date zircon growth subsequent to eclogite facies metamorphism. Felsic gneiss samples also contained zircon xenocrysts from Cretaceous-Miocene protoliths. In striking contrast, zircons from igneous and metamorphic clasts from the Goodenough No. 1 well indicate a single population with a 207Pb*/206/Pb* age of 2781 ± 9 Ma (2σ). We speculate that they are derived from basement rocks unroofed during initial stages of development of the D&Entrecasteaux metamorphic core complexes. These results provide the first direct evidence for the existence of Archean protoliths in the basement rocks of southeastern Papua New Guinea.

  10. Tourmaline from the Archean G.R.Halli gold deposit, Chitradurga greenstone belt, Dharwar craton (India):Implications for the gold metallogeny

    Institute of Scientific and Technical Information of China (English)

    Susmita Gupta; M. Jayananda; Fareeduddin


    Tourmaline occurs as a minor but important mineral in the alteration zone of the Archean orogenic gold deposit of Guddadarangavanahalli (G.R.Halli) in the Chitradurga greenstone belt of the western Dharwar craton, southern India. It occurs in the distal alteration halo of the G.R.Halli gold deposit as (a) clusters of very fine grained aggregates which form a minor constituent in the matrix of the altered metabasalt (AMB tourmaline) and (b) in quartz-carbonate veins (vein tourmaline). The vein tourmaline, based upon the association of specific carbonate minerals, is further grouped as (i) albite-tourmaline-ankerite-quartz veins (vein-1 tourmaline) and (ii) albite-tourmaline-calcite-quartz veins (vein-2 tourmaline). Both the AMB tourmaline and the vein tourmalines (vein-1 and vein-2) belong to the alkali group and are clas-sified under schorl-dravite series. Tourmalines occurring in the veins are zoned while the AMB tour-malines are unzoned. Mineral chemistry and discrimination diagrams reveal that cores and rims of the vein tourmalines are distinctly different. Core composition of the vein tourmalines is similar to the composition of the AMB tourmaline. The formation of the AMB tourmaline and cores of the vein tour-malines are proposed to be related to the regional D1 deformational event associated with the emplacement of the adjoining ca. 2.61 Ga Chitradurga granite whilst rims of the vein tourmalines vis-à-vis gold mineralization is spatially linked to the juvenile magmatic accretion (2.56e2.50 Ga) east of the studied area in the western part of the eastern Dharwar craton.

  11. Formation of Archean batholith-hosted gold veins at the Lac Herbin deposit, Val-d'Or district, Canada: Mineralogical and fluid inclusion constraints (United States)

    Rezeau, Hervé; Moritz, Robert; Beaudoin, Georges


    The Lac Herbin deposit consists of a network of mineralized, parallel steep-reverse faults within the synvolcanic Bourlamaque granodiorite batholith at Val-d'Or in the Archean Abitibi greenstone belt. There are two related quartz-tourmaline-carbonate fault-fill vein sets in the faults, which consist of subvertical fault-fill veins associated with subhorizontal veins. The paragenetic sequence is characterized by a main vein filling ore stage including quartz, tourmaline, carbonate, and pyrite-hosted gold, chalcopyrite, tellurides, pyrrhotite, and cubanite inclusions. Most of the gold is located in fractures in deformed pyrite and quartz in equilibrium with chalcopyrite and carbonates, with local pyrrhotite, sphalerite, galena, cobaltite, pyrite, or tellurides. Petrography and microthermometry on quartz from the main vein filling ore stage reveal the presence of three unrelated fluid inclusion types: (1) gold-bearing aqueous-carbonic inclusions arranged in three-dimensional intragranular clusters in quartz crystals responsible for the main vein filling stage, (2) barren high-temperature, aqueous, moderately saline inclusions observed in healed fractures, postdating the aqueous-carbonic inclusions, and considered as a remobilizing agent of earlier precipitated gold in late fractures, and (3) barren low-temperature, aqueous, high saline inclusions in healed fractures, similar to the crustal brines reported throughout the Canadian Shield and considered to be unrelated to the gold mineralization. At the Lac Herbin deposit, the aqueous-carbonic inclusions are interpreted to have formed first and to represent the gold-bearing fluid, which were generated contemporaneous with regional greenschist facies metamorphism. In contrast, the high-temperature aqueous fluid dissolved gold from the main vein filling ore stage transported and reprecipitated it in late fractures during a subsequent local thermal event.

  12. An extension to flat band ferromagnetism (United States)

    Gulacsi, M.; Kovacs, G.; Gulacsi, Z.


    From flat band ferromagnetism, we learned that the lowest energy half-filled flat band gives always ferromagnetism if the localized Wannier states on the flat band satisfy the connectivity condition. If the connectivity conditions are not satisfied, ferromagnetism does not appear. We show that this is not always the case namely, we show that ferromagnetism due to flat bands can appear even if the connectivity condition does not hold due to a peculiar behavior of the band situated just above the flat band.

  13. Technology of Iron Carbide Synthesis

    Institute of Scientific and Technical Information of China (English)



    Iron carbides are very promising metallurgical products and can be used for steelmaking process, where it plays as an alternative raw material with significant economic advantages. Also it has many other applications,e.g. catalysts, magnets, sensors. The present review investigates the different properties and uses of the iron carbides. The commercial production and the different varieties for the iron carbides synthesis (gaseous carburization, mechanochemical synthesis, laser pyrolysis, plasma pyrolysis, chemical vapor deposition and ion implantation) were reviewed. Also the effect of different factors on the carburization process like gas composition, raw material, temperature, reaction time, catalyst presence and sulfur addition was indicated.

  14. Austempered ductile iron process development (United States)

    Gupta, C. D.; Keough, J. R.; Pramstaller, D. M.


    Pressure from imports and material substitution has severly affected demand for domestic iron industry products. It is estimated that the potential market for Austempered Ductile Iron (ADI) is as large as the market for carburized and/or through hardened forgings. The primary interest in ADI is generated by the economics of process. Improved machinability and reduced processing costs as well as interesting physical properties has created an enormous interest in all metalworking industries towards ADI. The development of gas-fired austempering processes and resoluton of technical and economic uncertainities concerning the process will help improve the outlook for iron founderies.

  15. [Phosphate metabolism and iron deficiency]. (United States)

    Yokoyama, Keitaro


    Autosomal dominant hypophosphatemic rickets(ADHR)is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage. Fibroblast growth factor 23(FGF23)is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. Low iron status plays a role in the pathophysiology of ADHR. Iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. It was reported that FGF23 elevation in patients with CKD, who are often iron deficient. In patients with nondialysis-dependent CKD, treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and FGF23.

  16. Magnetic study of iron sorbitol

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, F.J. E-mail:; Larrea, A.; Abadia, A.R.; Romero, M.S


    A magnetic study of iron sorbitol, an iron-containing drug to treat the iron deficiency anemia is presented. Transmission electron microscopy reveals that the system contains nanometric particles with an average diameter of 3 nm whose composition is close to two-line ferrihydrite. The characterisation by magnetisation and AC susceptibility measurements indicates superparamagnetic behaviour with progressive magnetic blocking starting at 8 K. The quantitative analysis of the magnetic results indicates that the system consists of an assembly of very small magnetic moments, presumably originated by spin uncompensation of the antiferromagnetic nanoparticles, with Arrhenius type magnetic dynamics.

  17. Hydrolysis of soybean protein improves iron bioavailability (United States)

    Iron is an important trace metal element in human body. Iron deficiency affects human health, especially pregnant women and children. Soybean protein is a popular food in Asia and can contain a high amount of iron (145.70±0.74 ug/g); however, it is usually reported as an inhibitor of iron absorption...

  18. Iron incorporation and post-malaria anaemia (United States)

    Iron supplementation is employed to treat post-malarial anaemia in environments where iron deficiency is common. Malaria induces an intense inflammatory reaction that stalls reticulo-endothelial macrophagal iron recycling from haemolysed red blood cells and inhibits oral iron absorption, but the mag...

  19. Placental iron uptake and its regulation

    NARCIS (Netherlands)

    M. Bierings (Marc)


    textabstractIron transport in pregnancy is an active one-way process, from mother to fetus. Early in gestation fetal iron needs are low, and so is trans-placental transport, but as erythropoiesis develops, rising fetal iron needs are met by trans-placental iron transport. Apparently, the fetus is pr

  20. Iron excess in recreational marathon runners

    NARCIS (Netherlands)

    Mettler, S.; Zimmermann, M.B.


    Background/Objectives: Iron deficiency and anemia may impair athletic performance, and iron supplements are commonly consumed by athletes. However, iron overload should be avoided because of the possible long-term adverse health effects. Methods: We investigated the iron status of 170 male and femal