WorldWideScience

Sample records for archaeal translation elongation

  1. Rapid fold and structure determination of the archaeal translation elongation factor 1{beta} from Methanobacterium thermoautotrophicum

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, Guennadi [McGill University, Department of Biochemistry (Canada); Ekiel, Irena [National Research Council of Canada, Biomolecular NMR Group, Sector of Pharmaceutical Biotechnology, Biotechnology Research Institute (Canada); Beglova, Natalia [McGill University, Department of Biochemistry (Canada); Yee, Adelinda; Dharamsi, Akil; Engel, Asaph [University of Toronto, Department of Medical Biophysics (Canada); Siddiqui, Nadeem; Nong, Andrew; Gehring, Kalle [McGill University, Department of Biochemistry (Canada)

    2000-07-15

    The tertiary fold of the elongation factor, aEF-1{beta}, from Methanobacterium thermoautotrophicum was determined in a high-throughput fashion using a minimal set of NMR experiments. NMR secondary structure prediction, deuterium exchange experiments and the analysis of chemical shift perturbations were combined to identify the protein fold as an alpha-beta sandwich typical of many RNA binding proteins including EF-G. Following resolution of the tertiary fold, a high resolution structure of aEF-1{beta} was determined using heteronuclear and homonuclear NMR experiments and a semi-automated NOESY assignment strategy. Analysis of the aEF-1{beta} structure revealed close similarity to its human analogue, eEF-1{beta}. In agreement with studies on EF-Ts and human EF-1{beta}, a functional mechanism for nucleotide exchange is proposed wherein Phe46 on an exposed loop acts as a lever to eject GDP from the associated elongation factor G-protein, aEF-1{alpha}. aEF-1{beta} was also found to bind calcium in the groove between helix {alpha}2 and strand {beta}4. This novel feature was not observed previously and may serve a structural function related to protein stability or may play a functional role in archaeal protein translation.

  2. Rapid fold and structure determination of the archaeal translation elongation factor 1β from Methanobacterium thermoautotrophicum

    International Nuclear Information System (INIS)

    Kozlov, Guennadi; Ekiel, Irena; Beglova, Natalia; Yee, Adelinda; Dharamsi, Akil; Engel, Asaph; Siddiqui, Nadeem; Nong, Andrew; Gehring, Kalle

    2000-01-01

    The tertiary fold of the elongation factor, aEF-1β, from Methanobacterium thermoautotrophicum was determined in a high-throughput fashion using a minimal set of NMR experiments. NMR secondary structure prediction, deuterium exchange experiments and the analysis of chemical shift perturbations were combined to identify the protein fold as an alpha-beta sandwich typical of many RNA binding proteins including EF-G. Following resolution of the tertiary fold, a high resolution structure of aEF-1β was determined using heteronuclear and homonuclear NMR experiments and a semi-automated NOESY assignment strategy. Analysis of the aEF-1β structure revealed close similarity to its human analogue, eEF-1β. In agreement with studies on EF-Ts and human EF-1β, a functional mechanism for nucleotide exchange is proposed wherein Phe46 on an exposed loop acts as a lever to eject GDP from the associated elongation factor G-protein, aEF-1α. aEF-1β was also found to bind calcium in the groove between helix α2 and strand β4. This novel feature was not observed previously and may serve a structural function related to protein stability or may play a functional role in archaeal protein translation

  3. Translational Control of Cell Division by Elongator

    Directory of Open Access Journals (Sweden)

    Fanelie Bauer

    2012-05-01

    Full Text Available Elongator is required for the synthesis of the mcm5s2 modification found on tRNAs recognizing AA-ending codons. In order to obtain a global picture of the role of Elongator in translation, we used reverse protein arrays to screen the fission yeast proteome for translation defects. Unexpectedly, this revealed that Elongator inactivation mainly affected three specific functional groups including proteins implicated in cell division. The absence of Elongator results in a delay in mitosis onset and cytokinesis defects. We demonstrate that the kinase Cdr2, which is a central regulator of mitosis and cytokinesis, is under translational control by Elongator due to the Lysine codon usage bias of the cdr2 coding sequence. These findings uncover a mechanism by which the codon usage, coupled to tRNA modifications, fundamentally contributes to gene expression and cellular functions.

  4. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.

    Science.gov (United States)

    Zhao, Fangzhou; Yu, Chien-Hung; Liu, Yi

    2017-08-21

    Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    Science.gov (United States)

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  6. (R)-β-lysine-modified elongation factor P functions in translation elongation

    DEFF Research Database (Denmark)

    Bullwinkle, Tammy J; Zou, S Betty; Rajkovic, Andrei

    2013-01-01

    Post-translational modification of bacterial elongation factor P (EF-P) with (R)-β-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has......-(β)-lysyl-EF-P showed 30% increased puromycin reactivity but no differences in dipeptide synthesis rates when compared with the β-lysylated form. Unlike disruption of the other genes required for EF-P modification, deletion of yfcM had no phenotypic consequences in Salmonella. Taken together, our findings indicate...

  7. Archaeal RNA polymerase arrests transcription at DNA lesions.

    Science.gov (United States)

    Gehring, Alexandra M; Santangelo, Thomas J

    2017-01-01

    Transcription elongation is not uniform and transcription is often hindered by protein-bound factors or DNA lesions that limit translocation and impair catalysis. Despite the high degree of sequence and structural homology of the multi-subunit RNA polymerases (RNAP), substantial differences in response to DNA lesions have been reported. Archaea encode only a single RNAP with striking structural conservation with eukaryotic RNAP II (Pol II). Here, we demonstrate that the archaeal RNAP from Thermococcus kodakarensis is sensitive to a variety of DNA lesions that pause and arrest RNAP at or adjacent to the site of DNA damage. DNA damage only halts elongation when present in the template strand, and the damage often results in RNAP arresting such that the lesion would be encapsulated with the transcription elongation complex. The strand-specific halt to archaeal transcription elongation on modified templates is supportive of RNAP recognizing DNA damage and potentially initiating DNA repair through a process akin to the well-described transcription-coupled DNA repair (TCR) pathways in Bacteria and Eukarya.

  8. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    Science.gov (United States)

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  9. Inhibition of eukaryotic translation elongation by the antitumor natural product Mycalamide B.

    Science.gov (United States)

    Dang, Yongjun; Schneider-Poetsch, Tilman; Eyler, Daniel E; Jewett, John C; Bhat, Shridhar; Rawal, Viresh H; Green, Rachel; Liu, Jun O

    2011-08-01

    Mycalamide B (MycB) is a marine sponge-derived natural product with potent antitumor activity. Although it has been shown to inhibit protein synthesis, the molecular mechanism of action by MycB remains incompletely understood. We verified the inhibition of translation elongation by in vitro HCV IRES dual luciferase assays, ribosome assembly, and in vivo [(35)S]methinione labeling experiments. Similar to cycloheximide (CHX), MycB inhibits translation elongation through blockade of eEF2-mediated translocation without affecting the eEF1A-mediated loading of tRNA onto the ribosome, AUG recognition, or dipeptide synthesis. Using chemical footprinting, we identified the MycB binding site proximal to the C3993 28S rRNA residue on the large ribosomal subunit. However, there are also subtle, but significant differences in the detailed mechanisms of action of MycB and CHX. First, MycB arrests the ribosome on the mRNA one codon ahead of CHX. Second, MycB specifically blocked tRNA binding to the E-site of the large ribosomal subunit. Moreover, they display different polysome profiles in vivo. Together, these observations shed new light on the mechanism of inhibition of translation elongation by MycB.

  10. Decoding the biosynthesis and function of diphthamide, an enigmatic modification of translation elongation factor 2 (EF2

    Directory of Open Access Journals (Sweden)

    Raffael Schaffrath

    2014-05-01

    Full Text Available Diphthamide is a highly conserved modification of archaeal and eukaryal translation elongation factor 2 (EF2 and yet why cells need EF2 to contain diphthamide is unclear. In yeast, the first steps of diphthamide synthesis and the genes (DPH1-DPH5 required to form the intermediate diphthine are well-documented. However, the last step, amidadation of diphthine to diphthamide, had largely been ill-defined. Remarkably, through mining genome-wide synthetic gene array (SGA and chemical genomics databases, recent studies by Uthman et al. [PLoS Genetics (2013 9, e1003334] and Su et al. [Proc. Natl. Acad. Sci. USA (2012 109, 19983-19987] have identified two more diphthamide players, DPH6 and DPH7. Consistent with roles in the amidation step, dph6 and dph7 deletion strains fail to complete diphthamide synthesis and accumulate diphthine-modified EF2. In contrast to Dph6, the catalytically relevant amidase, Dph7 appears to be regulatory. As shown by Uthman et al., it promotes dissociation of diphthine synthase (Dph5 from EF2, allowing diphthine amidation by Dph6 to occur and thereby coupling diphthine synthesis to the terminal step in the pathway. Remarkably, the study by Uthman et al. suggests that Dph5 has a novel role as an EF2 inhibitor that affects cell growth when diphthamide synthesis is blocked or incomplete and, importantly, shows that diphthamide promotes the accuracy of EF2 performance during translation.

  11. Translational Capacity of a Cell Is Determined during Transcription Elongation via the Ccr4-Not Complex

    Directory of Open Access Journals (Sweden)

    Ishaan Gupta

    2016-05-01

    Full Text Available The current understanding of gene expression considers transcription and translation to be independent processes. Challenging this notion, we found that translation efficiency is determined during transcription elongation through the imprinting of mRNAs with Not1, the central scaffold of the Ccr4-Not complex. We determined that another subunit of the complex, Not5, defines Not1 binding to specific mRNAs, particularly those produced from ribosomal protein genes. This imprinting mechanism specifically regulates ribosomal protein gene expression, which in turn determines the translational capacity of cells. We validate our model by SILAC and polysome profiling experiments. As a proof of concept, we demonstrate that enhanced translation compensates for transcriptional elongation stress. Taken together, our data indicate that in addition to defining mRNA stability, components of the Ccr4-Not imprinting complex regulate RNA translatability, thus ensuring global gene expression homeostasis.

  12. Diversity and subcellular distribution of archaeal secreted proteins

    Directory of Open Access Journals (Sweden)

    Mechthild ePohlschroder

    2012-07-01

    Full Text Available Secreted proteins make up a significant percentage of a prokaryotic proteome and play critical roles in important cellular processes such as polymer degradation, nutrient uptake, signal transduction, cell wall biosynthesis and motility. The majority of archaeal proteins are believed to be secreted either in an unfolded conformation via the universally conserved Sec pathway or in a folded conformation via the Twin arginine transport (Tat pathway. Extensive in vivo and in silico analyses of N-terminal signal peptides that target proteins to these pathways have led to the development of computational tools that not only predict Sec and Tat substrates with high accuracy but also provide information about signal peptide processing and targeting. Predictions therefore include indications as to whether a substrate is a soluble secreted protein, a membrane or cell-wall anchored protein, or a surface structure subunit, and whether it is targeted for post-translational modification such as glycosylation or the addition of a lipid. The use of these in silico tools, in combination with biochemical and genetic analyses of transport pathways and their substrates, has resulted in improved predictions of the subcellular localization of archaeal secreted proteins, allowing for a more accurate annotation of archaeal proteomes, and has led to the identification of potential adaptations to extreme environments, as well as archaeal kingdom-specific pathways. A more comprehensive understanding of the transport pathways and post-translational modifications of secreted archaeal proteins will also generate invaluable insights that will facilitate the identification of commercially valuable archaeal enzymes and the development of heterologous systems in which to efficiently express them.

  13. Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease.

    Science.gov (United States)

    Lyu, Zhe; Whitman, William B

    2017-01-01

    Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.

  14. 2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation.

    Science.gov (United States)

    Choi, Junhong; Indrisiunaite, Gabriele; DeMirci, Hasan; Ieong, Ka-Weng; Wang, Jinfan; Petrov, Alexey; Prabhakar, Arjun; Rechavi, Gideon; Dominissini, Dan; He, Chuan; Ehrenberg, Måns; Puglisi, Joseph D

    2018-03-01

    Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.

  15. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis

    Science.gov (United States)

    Onouchi, Hitoshi; Nagami, Yoko; Haraguchi, Yuhi; Nakamoto, Mari; Nishimura, Yoshiko; Sakurai, Ryoko; Nagao, Nobuhiro; Kawasaki, Daisuke; Kadokura, Yoshitomo; Naito, Satoshi

    2005-01-01

    Expression of the Arabidopsis CGS1 gene that codes for cystathionine γ-synthase is feedback regulated at the step of mRNA stability in response to S-adenosyl-L-methionine (AdoMet). A short stretch of amino acid sequence, called the MTO1 region, encoded by the first exon of CGS1 itself is involved in this regulation. Here, we demonstrate, using a cell-free system, that AdoMet induces temporal translation elongation arrest at the Ser-94 codon located immediately downstream of the MTO1 region, by analyzing a translation intermediate and performing primer extension inhibition (toeprint) analysis. This translation arrest precedes the formation of a degradation intermediate of CGS1 mRNA, which has its 5′ end points near the 5′ edge of the stalled ribosome. The position of ribosome stalling also suggests that the MTO1 region in nascent peptide resides in the ribosomal exit tunnel when translation elongation is temporarily arrested. In addition to the MTO1 region amino acid sequence, downstream Trp-93 is also important for the AdoMet-induced translation arrest. This is the first example of nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in eukaryotes. Furthermore, our data suggest that the ribosome stalls at the step of translocation rather than at the step of peptidyl transfer. PMID:16027170

  16. Diversity and subcellular distribution of archaeal secreted proteins.

    Science.gov (United States)

    Szabo, Zalan; Pohlschroder, Mechthild

    2012-01-01

    Secreted proteins make up a significant percentage of a prokaryotic proteome and play critical roles in important cellular processes such as polymer degradation, nutrient uptake, signal transduction, cell wall biosynthesis, and motility. The majority of archaeal proteins are believed to be secreted either in an unfolded conformation via the universally conserved Sec pathway or in a folded conformation via the Twin arginine transport (Tat) pathway. Extensive in vivo and in silico analyses of N-terminal signal peptides that target proteins to these pathways have led to the development of computational tools that not only predict Sec and Tat substrates with high accuracy but also provide information about signal peptide processing and targeting. Predictions therefore include indications as to whether a substrate is a soluble secreted protein, a membrane or cell wall anchored protein, or a surface structure subunit, and whether it is targeted for post-translational modification such as glycosylation or the addition of a lipid. The use of these in silico tools, in combination with biochemical and genetic analyses of transport pathways and their substrates, has resulted in improved predictions of the subcellular localization of archaeal secreted proteins, allowing for a more accurate annotation of archaeal proteomes, and has led to the identification of potential adaptations to extreme environments, as well as phyla-specific pathways among the archaea. A more comprehensive understanding of the transport pathways used and post-translational modifications of secreted archaeal proteins will also facilitate the identification and heterologous expression of commercially valuable archaeal enzymes.

  17. Translation termination in pyrrolysine-utilizing archaea.

    Science.gov (United States)

    Alkalaeva, Elena; Eliseev, Boris; Ambrogelly, Alexandre; Vlasov, Peter; Kondrashov, Fyodor A; Gundllapalli, Sharath; Frolova, Lyudmila; Söll, Dieter; Kisselev, Lev

    2009-11-03

    Although some data link archaeal and eukaryotic translation, the overall mechanism of protein synthesis in archaea remains largely obscure. Both archaeal (aRF1) and eukaryotic (eRF1) single release factors recognize all three stop codons. The archaeal genus Methanosarcinaceae contains two aRF1 homologs, and also uses the UAG stop to encode the 22nd amino acid, pyrrolysine. Here we provide an analysis of the last stage of archaeal translation in pyrrolysine-utilizing species. We demonstrated that only one of two Methanosarcina barkeri aRF1 homologs possesses activity and recognizes all three stop codons. The second aRF1 homolog may have another unknown function. The mechanism of pyrrolysine incorporation in the Methanosarcinaceae is discussed.

  18. Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Tomas Grousl

    Full Text Available In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs. Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p and eEF1Bγ2 (Tef4p as well as translation termination factors eRF1 (Sup45p and eRF3 (Sup35p. Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.

  19. Archaeal extrachromosomal genetic elements

    DEFF Research Database (Denmark)

    Wang, Haina; Peng, Nan; Shah, Shiraz Ali

    2015-01-01

    SUMMARY: Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spind......SUMMARY: Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes...... on archaeal ECEs has just started to unravel the molecular biology of these genetic entities and their interactions with archaeal hosts, it is expected to accelerate in the next decade....

  20. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα.

    Science.gov (United States)

    Trosiuk, Tetiana V; Shalak, Vyacheslav F; Szczepanowski, Roman H; Negrutskii, Boris S; El'skaya, Anna V

    2016-02-01

    Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect. © 2015 FEBS.

  1. Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution

    DEFF Research Database (Denmark)

    Greber, Basil J; Boehringer, Daniel; Godinic-Mikulcic, Vlatka

    2012-01-01

    additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter...... between this archaeal ribosome and eukaryotic ribosomes but are mostly absent in bacteria and in some archaeal lineages. Furthermore, the structure reveals that, in spite of highly divergent evolutionary trajectories of the ribosomal particle and the acquisition of novel functions of IF6 in eukaryotes......, the molecular binding of IF6 on the ribosome is conserved between eukaryotes and archaea. The structure also provides a snapshot of the reductive evolution of the archaeal ribosome and offers new insights into the evolution of the translation system in archaea....

  2. [A novel archaeal phylum: thaumarchaeota--a review].

    Science.gov (United States)

    Zhang, Limei; He, Jizheng

    2012-04-04

    Based on the archaeal 16S rRNA gene phylogenetic tree, the archaeal domain is divided into two major phyla, Euryarchaeota and Crenarchaeota. During the past 20 years, diverse groups of archaea have been found to be widely distributed in moderate environments with the rapid development and application of molecular techniques in microbial ecology. Increasing evidence demonstrated that these archaea, especially ammonia-oxidizing archaea, play a major role in biogeochemical cycles of nitrogen and carbon elements. These mesophilic archaea were placed initially as a sister group of the Crenarchaeota and named as "non-thermophilic Crenarchaeota". More recently, phylogenetic analyses based on more SSU and SLU rDNA sequences suggested that the non-thermophilic Crenarchaeota constituted a separate phylum of the Archaea that branched off before the separation of Crenarchaeota and Euryarchaeota. The Thaumarchaeota (the Greek "Thaumas", meaning wonder) was therefore proposed for a novel phylum, as the third archaeal phylum. More studies based on r-proteins and comparative genomics confirm that the Thaumarchaeota are distinct from Crenarchaeota. In this paper, we gave a translated Chinese name for Thaumarchaeota and reviewed the recent progress on the phylogeny position, genetics, ecology and physiology of the Thaumarchaeota.

  3. Cryo-EM Structure of the Archaeal 50S Ribosomal Subunit in Complex with Initiation Factor 6 and Implications for Ribosome Evolution

    Science.gov (United States)

    Greber, Basil J.; Boehringer, Daniel; Godinic-Mikulcic, Vlatka; Crnkovic, Ana; Ibba, Michael; Weygand-Durasevic, Ivana; Ban, Nenad

    2013-01-01

    Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter thermautotrophicus in complex with archaeal IF6 at 6.6 Å resolution using cryo-electron microscopy (EM). The structure provides detailed architectural insights into the 50S ribosomal subunit from a methanogenic archaeon through identification of the rRNA expansion segments and ribosomal proteins that are shared between this archaeal ribosome and eukaryotic ribosomes but are mostly absent in bacteria and in some archaeal lineages. Furthermore, the structure reveals that, in spite of highly divergent evolutionary trajectories of the ribosomal particle and the acquisition of novel functions of IF6 in eukaryotes, the molecular binding of IF6 on the ribosome is conserved between eukaryotes and archaea. The structure also provides a snapshot of the reductive evolution of the archaeal ribosome and offers new insights into the evolution of the translation system in archaea. PMID:22306461

  4. The enigmatic archaeal virosphere.

    Science.gov (United States)

    Prangishvili, David; Bamford, Dennis H; Forterre, Patrick; Iranzo, Jaime; Koonin, Eugene V; Krupovic, Mart

    2017-11-10

    One of the most prominent features of archaea is the extraordinary diversity of their DNA viruses. Many archaeal viruses differ substantially in morphology from bacterial and eukaryotic viruses and represent unique virus families. The distinct nature of archaeal viruses also extends to the gene composition and architectures of their genomes and the properties of the proteins that they encode. Environmental research has revealed prominent roles of archaeal viruses in influencing microbial communities in ocean ecosystems, and recent metagenomic studies have uncovered new groups of archaeal viruses that infect extremophiles and mesophiles in diverse habitats. In this Review, we summarize recent advances in our understanding of the genomic and morphological diversity of archaeal viruses and the molecular biology of their life cycles and virus-host interactions, including interactions with archaeal CRISPR-Cas systems. We also examine the potential origins and evolution of archaeal viruses and discuss their place in the global virosphere.

  5. Archaeal Viruses from High-Temperature Environments.

    Science.gov (United States)

    Munson-McGee, Jacob H; Snyder, Jamie C; Young, Mark J

    2018-02-27

    Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  6. Archaeal Viruses from High-Temperature Environments

    Directory of Open Access Journals (Sweden)

    Jacob H. Munson-McGee

    2018-02-01

    Full Text Available Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  7. Translation elongation factor 1A facilitates the assembly of the tombusvirus replicase and stimulates minus-strand synthesis.

    OpenAIRE

    Zhenghe Li; Judit Pogany; Steven Tupman; Anthony M Esposito; Terri Goss Kinzy; Peter D Nagy

    2010-01-01

    Replication of plus-strand RNA viruses depends on host factors that are recruited into viral replicase complexes. Previous studies showed that eukaryotic translation elongation factor (eEF1A) is one of the resident host proteins in the highly purified tombusvirus replicase complex. Using a random library of eEF1A mutants, we identified one mutant that decreased and three mutants that increased Tomato bushy stunt virus (TBSV) replication in a yeast model host. Additional in vitro assays with w...

  8. A pea chloroplast translation elongation factor that is regulated by abiotic factors

    International Nuclear Information System (INIS)

    Singh, B.N.; Mishra, R.N.; Agarwal, Pradeep K.; Goswami, Mamta; Nair, Suresh; Sopory, S.K.; Reddy, M.K.

    2004-01-01

    We report the cloning and characterization of both the cDNA (tufA) and genomic clones encoding for a chloroplast translation elongation factor (EF-Tu) from pea. The analysis of the deduced amino acids of the cDNA clone reveals the presence of putative transit peptide sequence and four GTP binding domains and two EF-Tu signature motifs in the mature polypeptide region. Using in vivo immunostaining followed by confocal microscopy pea EF-Tu was localized to chloroplast. The steady state transcript level of pea tufA was high in leaves and not detectable in roots. The expression of this gene is stimulated by light. The differential expression of this gene in response to various abiotic stresses showed that it is down-regulated in response to salinity and ABA and up-regulated in response to low temperature and salicylic acid treatment. These results indicate that regulation of pea tufA may have an important role in plant adaptation to environmental stresses

  9. Heat shock protein 70 promotes coxsackievirus B3 translation initiation and elongation via Akt-mTORC1 pathway depending on activation of p70S6K and Cdc2.

    Science.gov (United States)

    Wang, Fengping; Qiu, Ye; Zhang, Huifang M; Hanson, Paul; Ye, Xin; Zhao, Guangze; Xie, Ronald; Tong, Lei; Yang, Decheng

    2017-07-01

    We previously demonstrated that coxsackievirus B3 (CVB3) infection upregulated heat shock protein 70 (Hsp70) and promoted CVB3 multiplication. Here, we report the underlying mechanism by which Hsp70 enhances viral RNA translation. By using an Hsp70-overexpressing cell line infected with CVB3, we found that Hsp70 enhanced CVB3 VP1 translation at two stages. First, Hsp70 induced upregulation of VP1 translation at the initiation stage via upregulation of internal ribosome entry site trans-acting factor lupus autoantigen protein and activation of eIF4E binding protein 1, a cap-dependent translation suppressor. Second, we found that Hsp70 increased CVB3 VP1 translation by enhancing translation elongation. This was mediated by the Akt-mammalian target of rapamycin complex 1 signal cascade, which led to the activation of eukaryotic elongation factor 2 via p70S6K- and cell division cycle protein 2 homolog (Cdc2)-mediated phosphorylation and inactivation of eukaryotic elongation factor 2 kinase. We also determined the position of Cdc2 in this signal pathway, indicating that Cdc2 is regulated by mammalian target of rapamycin complex 1. This signal transduction pathway was validated using a number of specific pharmacological inhibitors, short interfering RNAs (siRNAs) and a dominant negative Akt plasmid. Because Hsp70 is a central component of the cellular network of molecular chaperones enhancing viral replication, these data may provide new strategies to limit this viral infection. © 2017 John Wiley & Sons Ltd.

  10. Archaeal Viruses: Diversity, Replication, and Structure.

    Science.gov (United States)

    Dellas, Nikki; Snyder, Jamie C; Bolduc, Benjamin; Young, Mark J

    2014-11-01

    The Archaea-and their viruses-remain the most enigmatic of life's three domains. Once thought to inhabit only extreme environments, archaea are now known to inhabit diverse environments. Even though the first archaeal virus was described over 40 years ago, only 117 archaeal viruses have been discovered to date. Despite this small number, these viruses have painted a portrait of enormous morphological and genetic diversity. For example, research centered around the various steps of the archaeal virus life cycle has led to the discovery of unique mechanisms employed by archaeal viruses during replication, maturation, and virion release. In many instances, archaeal virus proteins display very low levels of sequence homology to other proteins listed in the public database, and therefore, structural characterization of these proteins has played an integral role in functional assignment. These structural studies have not only provided insights into structure-function relationships but have also identified links between viruses across all three domains of life.

  11. Identification and functional verification of archaeal-type phosphoenolpyruvate carboxylase, a missing link in archaeal central carbohydrate metabolism.

    Science.gov (United States)

    Ettema, Thijs J G; Makarova, Kira S; Jellema, Gera L; Gierman, Hinco J; Koonin, Eugene V; Huynen, Martijn A; de Vos, Willem M; van der Oost, John

    2004-11-01

    Despite the fact that phosphoenolpyruvate carboxylase (PEPC) activity has been measured and in some cases even purified from some Archaea, the gene responsible for this activity has not been elucidated. Using sensitive sequence comparison methods, we detected a highly conserved, uncharacterized archaeal gene family that is distantly related to the catalytic core of the canonical PEPC. To verify the predicted function of this archaeal gene family, we cloned a representative from the hyperthermophilic acidophile Sulfolobus solfataricus and functionally produced the corresponding enzyme as a fusion with the Escherichia coli maltose-binding protein. The purified fusion protein indeed displayed highly thermostable PEPC activity. The structural and biochemical properties of the characterized archaeal-type PEPC (atPEPC) from S. solfataricus are in good agreement with previously reported biochemical analyses of other archaeal PEPC enzymes. The newly identified atPEPC, with its distinct properties, constitutes yet another example of the versatility of the enzymes of the central carbon metabolic pathways in the archaeal domain.

  12. Shaping the Archaeal Cell Envelope

    Directory of Open Access Journals (Sweden)

    Albert F. Ellen

    2010-01-01

    Full Text Available Although archaea have a similar cellular organization as other prokaryotes, the lipid composition of their membranes and their cell surface is unique. Here we discuss recent developments in our understanding of the archaeal protein secretion mechanisms, the assembly of macromolecular cell surface structures, and the release of S-layer-coated vesicles from the archaeal membrane.

  13. Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases

    NARCIS (Netherlands)

    Szabó, Zalán; Oliveira Stahl, Adriana; Albers, Sonja-V.; Kissinger, Jessica C.; Driessen, Arnold J.M.; Pohlschröder, Mechthild; Pohlschroder, M.

    2007-01-01

    Most secreted archaeal proteins are targeted to the membrane via a tripartite signal composed of a charged N terminus and a hydrophobic domain, followed by a signal peptidase-processing site. Signal peptides of archaeal flagellins, similar to class III signal peptides of bacterial type IV pilins,

  14. An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions

    DEFF Research Database (Denmark)

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Hausmann, Corinne D

    2011-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translatio...... of a complex between MtSerRS and MtArgRS provides a means by which methanogenic archaea can optimize an early step in translation under a wide range of extreme environmental conditions....

  15. Extensive proteomic remodeling is induced by eukaryotic translation elongation factor 1Bγ deletion in Aspergillus fumigatus.

    Science.gov (United States)

    O'Keeffe, Grainne; Jöchl, Christoph; Kavanagh, Kevin; Doyle, Sean

    2013-11-01

    The opportunistic pathogen Aspergillus fumigatus is ubiquitous in the environment and predominantly infects immunocompromised patients. The functions of many genes remain unknown despite sequencing of the fungal genome. A putative translation elongation factor 1Bγ (eEF1Bγ, termed elfA; 750 bp) is expressed, and exhibits glutathione S-transferase activity, in A. fumigatus. Here, we demonstrate the role of ElfA in the oxidative stress response, as well as a possible involvement in translation and actin cytoskeleton organization, respectively. Comparative proteomics, in addition to phenotypic analysis, under basal and oxidative stress conditions, demonstrated a role for A. fumigatus elfA in the oxidative stress response. An elfA-deficient strain (A. fumigatus ΔelfA) was significantly more sensitive to the oxidants H2O2, diamide, and 4,4'-dipyridyl disulfide (DPS) than the wild-type. This was further supported with the identification of differentially expressed proteins of the oxidative stress response, including; mitochondrial peroxiredoxin Prx1, molecular chaperone Hsp70 and mitochondrial glycerol-3-phosphate dehydrogenase. Phenotypic analysis also revealed that A. fumigatus ΔelfA was significantly more tolerant to voriconazole than the wild-type. The differential expression of two aminoacyl-tRNA synthetases suggests a role for A. fumigatus elfA in translation, while the identification of actin-bundling protein Sac6 and vacuolar dynamin-like GTPase VpsA link A. fumigatus elfA to the actin cytoskeleton. Overall, this work highlights the diverse roles of A. fumigatus elfA, with respect to translation, oxidative stress and actin cytoskeleton organization. In addition to this, the strategy of combining targeted gene deletion with comparative proteomics for elucidating the role of proteins of unknown function is further revealed. © 2013 The Protein Society.

  16. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  17. Eukaryotic elongation factor 1-beta interacts with the 5' untranslated region of the M gene of Nipah virus to promote mRNA translation.

    Science.gov (United States)

    Uchida, Shotaro; Sato, Hiroki; Yoneda, Misako; Kai, Chieko

    2016-09-01

    Nipah virus belongs to the genus Henipavirus in the family Paramyxoviridae, and its RNA genome is larger than those of other paramyxoviruses because it has long untranslated regions (UTRs) in each gene. However, the functions of these UTRs are not fully understood. In this study, we investigated the functions of the 5' UTRs and found that the 5' UTR of the M gene upregulated the translation of a reporter gene. Using an RNA pull-down assay, we showed that eukaryotic elongation factor 1-beta (EEF1B2) interacts with nucleotides 81-100 of the M 5' UTR and specifically enhances its translation efficiency. Our results suggest that the M 5' UTR promotes the production of M protein and viral budding by recruiting EEF1B2.

  18. MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes

    Directory of Open Access Journals (Sweden)

    Yang Yi-Fan

    2007-03-01

    Full Text Available Abstract Background Despite a remarkable success in the computational prediction of genes in Bacteria and Archaea, a lack of comprehensive understanding of prokaryotic gene structures prevents from further elucidation of differences among genomes. It continues to be interesting to develop new ab initio algorithms which not only accurately predict genes, but also facilitate comparative studies of prokaryotic genomes. Results This paper describes a new prokaryotic genefinding algorithm based on a comprehensive statistical model of protein coding Open Reading Frames (ORFs and Translation Initiation Sites (TISs. The former is based on a linguistic "Entropy Density Profile" (EDP model of coding DNA sequence and the latter comprises several relevant features related to the translation initiation. They are combined to form a so-called Multivariate Entropy Distance (MED algorithm, MED 2.0, that incorporates several strategies in the iterative program. The iterations enable us to develop a non-supervised learning process and to obtain a set of genome-specific parameters for the gene structure, before making the prediction of genes. Conclusion Results of extensive tests show that MED 2.0 achieves a competitive high performance in the gene prediction for both 5' and 3' end matches, compared to the current best prokaryotic gene finders. The advantage of the MED 2.0 is particularly evident for GC-rich genomes and archaeal genomes. Furthermore, the genome-specific parameters given by MED 2.0 match with the current understanding of prokaryotic genomes and may serve as tools for comparative genomic studies. In particular, MED 2.0 is shown to reveal divergent translation initiation mechanisms in archaeal genomes while making a more accurate prediction of TISs compared to the existing gene finders and the current GenBank annotation.

  19. The life and death of translation elongation factor 2

    DEFF Research Database (Denmark)

    Jørgensen, Rene; Merrill, A.R.; Andersen, Gregers Rom

    2006-01-01

    The eukaryotic elongation factor 2 (eEF2) occupies an essential role in protein synthesis where it catalyses the translocation of the two tRNAs and the mRNA after peptidyl transfer on the 80S ribosome. Recent crystal structures of eEF2 and the cryo-EM reconstruction of its 80S complex now provide...... diphthamide residue, which is ADP-ribosylated by diphtheria toxin from Corynebacterium diphtheriae and exotoxin A from Pseudomonas aeruginosa....

  20. Magnetic Au Nanoparticles on Archaeal S-Layer Ghosts as Templates

    Directory of Open Access Journals (Sweden)

    Sonja Selenska-Pobell

    2011-10-01

    Full Text Available Cell‐ghosts representing empty cells of the archaeon Sulfolobus acidocaldarius, consisting only of their highly ordered and unusually stable outermost proteinaceous surface layer (S‐layer, were used as templates for Au nanoparticles fabrication. The properties of these archaeal Au nanoparticles differ significantly from those produced earlier by us onto bacterial S‐layer sheets. The archaeal Au nanoparticles, with a size of about 2.5 nm, consist exclusively of metallic Au(0, while those produced on the bacterial S‐layer had a size of about 4 nm and represented a mixture of Au(0 and Au(III in the ratio of 40 to 60 %. The most impressive feature of the archaeal Au nanoparticles is that they are strongly paramagnetic, in contrast to the bacterial ones and also to bulk gold. SQUID magnetometry and XMCD measurements demonstrated that the archaeal Au nanoparticles possess a rather large magnetic moment of about 0.1 µB/atom. HR‐ TEM‐EDX analysis revealed that the archaeal Au nanoparticles are linked to the sulfur atoms of the thiol groups of the amino acid cysteine, characteristic only for archaeal S‐layers. This is the first study demonstrating the formation of such unusually strong magnetic Au nanoparticles on a non‐modified archaeal S‐layer.

  1. Characterization of novel peptide-specific antibodies against the translation elongation factor eEF1A2 and their application for cancer research

    Directory of Open Access Journals (Sweden)

    Shalak V. F.

    2014-11-01

    Full Text Available Aim. We intend to characterize the new peptide-specific antibodies against the isoform 2 of translation elongation factor 1A (eEF1A2 and determine its presence in the postoperative samples of human breast, lung and stomach tumor tissues. Methods. The analysis of antibody specificity was performed by enzyme-linked immunosorbent assay, immunoblotting and immunohistochemistry. Immunoblotting and immunohistochemistry were used for the determination of the eEF1A2 in the human tumor samples, as well as in the samples of normal tissues surrounding tumors. Results. The antibodies obtained against the eEF1A2 specifically recognized this protein in the cell extracts and histological sections and did not cross-react with the elongation factor 1A isoform 1. eEF1A2 was revealed in the postoperative samples of breast, lung and stomach tumors as well as in the putative normal tissues surrounding tumors. Conclusions. The antibodies obtained against eEF1A2 are highly specific for the antigen and can be used for the immunological studies of tumors.

  2. The Dynamics of SecM-Induced Translational Stalling

    Directory of Open Access Journals (Sweden)

    Albert Tsai

    2014-06-01

    Full Text Available SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.

  3. Geochemical Constraints on Archaeal Diversity in the Vulcano Hydrothermal System

    Science.gov (United States)

    Rogers, K. L.; Amend, J. P.

    2006-12-01

    The shallow marine hydrothermal system of Vulcano, Italy hosts a wide diversity of cultured thermophilic Archaea, including Palaeococcus helgesonii, Archaeoglobus fulgidus, and Pyrococcus furiosus, to name a few. However, recent studies have revealed a plethora of uncultured archaeal lineages in the Vulcano system. For example, a 16S rRNA gene survey of an onshore geothermal well identified a diverse archaeal community including deeply-branching uncultured Crenarchaeota, Korarchaeota, and Euryarchaeota. Additionally, culture-independent hybridization techniques suggested that Archaea account for nearly half of the microbial community in the Vulcano system. Furthermore, geochemical characterization of fluids revealed numerous lithotrophic and heterotrophic exergonic reactions that could support as yet uncultured organisms. Archaeal diversity throughout the Vulcano hydrothermal system was investigated using 16S rRNA gene surveys at five submarine vents and an onshore sediment seep. Overall, archaeal diversity was higher (10 groups) at submarine vents with moderate temperatures (59°C) compared with higher temperature (94°C) vents (4 groups). Archaeal communities at the moderately thermal vents were dominated by Thermococcales and also contained Archaeoglobales, Thermoproteales, and uncultured archaea among the Korarchaeota, Marine Group I, and the Deep-sea Hydrothermal Vent Euryarchaeota (DHVE). Fluid composition also affects the microbial community structure. At two high-temperature sites variations in archaeal diversity can be attributed to differences in iron and hydrogen concentrations, and pH. Comparing sites with similar temperature and pH conditions suggests that the presence of Desulfurococcales is limited to sites at which metabolic energy yields exceed 10 kJ per mole of electrons transferred. The Vulcano hydrothermal system hosts diverse archaeal communities, containing both cultured and uncultured species, whose distribution appears to be constrained by

  4. A Survey of Protein Structures from Archaeal Viruses

    Directory of Open Access Journals (Sweden)

    Nikki Dellas

    2013-01-01

    Full Text Available Viruses that infect the third domain of life, Archaea, are a newly emerging field of interest. To date, all characterized archaeal viruses infect archaea that thrive in extreme conditions, such as halophilic, hyperthermophilic, and methanogenic environments. Viruses in general, especially those replicating in extreme environments, contain highly mosaic genomes with open reading frames (ORFs whose sequences are often dissimilar to all other known ORFs. It has been estimated that approximately 85% of virally encoded ORFs do not match known sequences in the nucleic acid databases, and this percentage is even higher for archaeal viruses (typically 90%–100%. This statistic suggests that either virus genomes represent a larger segment of sequence space and/or that viruses encode genes of novel fold and/or function. Because the overall three-dimensional fold of a protein evolves more slowly than its sequence, efforts have been geared toward structural characterization of proteins encoded by archaeal viruses in order to gain insight into their potential functions. In this short review, we provide multiple examples where structural characterization of archaeal viral proteins has indeed provided significant functional and evolutionary insight.

  5. Molecular characterization of factors involved in regulation of archaeal translation

    NARCIS (Netherlands)

    Blombach, F.

    2010-01-01

    The three domains of life – Bacteria, Archaea, and Eukaryotes – can be easily distinguished based on how the genetic information is processed during transcription, translation, and (DNA) replication. Generally, Eukaryotes turned out to employ machineries for these processes that are in their essence

  6. Genome-Scale Analysis of Translation Elongation with a Ribosome Flow Model

    Science.gov (United States)

    Meilijson, Isaac; Kupiec, Martin; Ruppin, Eytan

    2011-01-01

    We describe the first large scale analysis of gene translation that is based on a model that takes into account the physical and dynamical nature of this process. The Ribosomal Flow Model (RFM) predicts fundamental features of the translation process, including translation rates, protein abundance levels, ribosomal densities and the relation between all these variables, better than alternative (‘non-physical’) approaches. In addition, we show that the RFM can be used for accurate inference of various other quantities including genes' initiation rates and translation costs. These quantities could not be inferred by previous predictors. We find that increasing the number of available ribosomes (or equivalently the initiation rate) increases the genomic translation rate and the mean ribosome density only up to a certain point, beyond which both saturate. Strikingly, assuming that the translation system is tuned to work at the pre-saturation point maximizes the predictive power of the model with respect to experimental data. This result suggests that in all organisms that were analyzed (from bacteria to Human), the global initiation rate is optimized to attain the pre-saturation point. The fact that similar results were not observed for heterologous genes indicates that this feature is under selection. Remarkably, the gap between the performance of the RFM and alternative predictors is strikingly large in the case of heterologous genes, testifying to the model's promising biotechnological value in predicting the abundance of heterologous proteins before expressing them in the desired host. PMID:21909250

  7. Archaeal virus-host interactions

    NARCIS (Netherlands)

    Quax, T.E.F.

    2013-01-01

    The work presented in this thesis provides novel insights in several aspects of the molecular

    biology of archaea, bacteria and their viruses.

    Three fundamentally different groups of viruses are associated with the three domains of life.

    Archaeal viruses are

  8. Mitochondrial Respiration Inhibitors Suppress Protein Translation and Hypoxic Signaling via the Hyperphosphorylation and Inactivation of Translation Initiation Factor eIF2α and Elongation Factor eEF2

    Science.gov (United States)

    Li, Jun; Mahdi, Fakhri; Du, Lin; Datta, Sandipan; Nagle, Dale G.; Zhou, Yu-Dong

    2011-01-01

    Over 20000 lipid extracts of plants and marine organisms were evaluated in a human breast tumor T47D cell-based reporter assay for hypoxia-inducible factor-1 (HIF-1) inhibitory activity. Bioassay-guided isolation and dereplication-based structure elucidation of an active extract from the Bael tree (Aegle marmelos) afforded two protolimonoids, skimmiarepin A (1) and skimmiarepin C (2). In T47D cells, 1 and 2 inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.063 µM and 0.068 µM, respectively. Compounds 1 and 2 also suppressed hypoxic induction of the HIF-1 target genes GLUT-1 and VEGF. Mechanistic studies revealed that 1 and 2 inhibited HIF-1 activation by blocking the hypoxia-induced accumulation of HIF-1α protein. At the range of concentrations that inhibited HIF-1 activation, 1 and 2 suppressed cellular respiration by selectively inhibiting the mitochondrial electron transport chain at complex I (NADH dehydrogenase). Further investigation indicated that mitochondrial respiration inhibitors such as 1 and rotenone induced the rapid hyperphosphorylation and inhibition of translation initiation factor eIF2α and elongation factor eEF2. The inhibition of protein translation may account for the short-term exposure effects exerted by mitochondrial inhibitors on cellular signaling, while the suppression of cellular ATP production may contribute to the inhibitory effects following extended treatment periods. PMID:21875114

  9. Characterization of Olkiluoto bacterial and archaeal communities by 454 pyrosequencing

    Energy Technology Data Exchange (ETDEWEB)

    Bomberg, M.; Nyyssoenen, M.; Itaevaara, M. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-06-15

    Recent advancement in sequencing technologies, 'Next Generation Sequencing', such as FLX 454 pyrosequencing has made it possible to obtain large amounts of sequence data where previously only few sequences could be obtained. This technique is especially useful for the study of community composition of uncultured microbial populations in environmental samples. In this project, the FLX 454 pyrosequencing technique was used to obtain up to 20 000 16S rRNA sequences or 10 000 mRNA sequences from each sample for identification of the microbial species composition as well as for comparison of the microbial communities between different samples. This project focused on the characterization of active microbial communities in the groundwater at the final disposal site of high radioactive wastes in Olkiluoto by FLX 454 pyrosequencing of the bacterial and archaeal ribosomal RNA as well as of the mRNA transcripts of the dsrB gene and mcrA gene of sulphate reducing bacteria and methanogenic archaea, respectively. Specific emphasis was put on studying the relationship of active and latent sulphate reducers and methanogens by qPCR due to their important roles in deep geobiochemical processes connected to copper corrosion. Seven packered boreholes were sampled anaerobically in Olkiluoto during 2009-2010. Groundwater was pumped from specific depths and the microbial cells werecollected by filtration on a membrane. Active microbial communities were studied based on RNA extracted from the membranes and translated to copy DNA, followed by sequencing by 454 Tag pyrosequencing. A total of 27 different bacterial and 17 archaeal taxonomic groups were detected.

  10. Characterization of Olkiluoto bacterial and archaeal communities by 454 pyrosequencing

    Energy Technology Data Exchange (ETDEWEB)

    Bomberg, M; Nyyssoenen, M; Itaevaara, M [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-06-15

    Recent advancement in sequencing technologies, 'Next Generation Sequencing', such as FLX 454 pyrosequencing has made it possible to obtain large amounts of sequence data where previously only few sequences could be obtained. This technique is especially useful for the study of community composition of uncultured microbial populations in environmental samples. In this project, the FLX 454 pyrosequencing technique was used to obtain up to 20 000 16S rRNA sequences or 10 000 mRNA sequences from each sample for identification of the microbial species composition as well as for comparison of the microbial communities between different samples. This project focused on the characterization of active microbial communities in the groundwater at the final disposal site of high radioactive wastes in Olkiluoto by FLX 454 pyrosequencing of the bacterial and archaeal ribosomal RNA as well as of the mRNA transcripts of the dsrB gene and mcrA gene of sulphate reducing bacteria and methanogenic archaea, respectively. Specific emphasis was put on studying the relationship of active and latent sulphate reducers and methanogens by qPCR due to their important roles in deep geobiochemical processes connected to copper corrosion. Seven packered boreholes were sampled anaerobically in Olkiluoto during 2009-2010. Groundwater was pumped from specific depths and the microbial cells werecollected by filtration on a membrane. Active microbial communities were studied based on RNA extracted from the membranes and translated to copy DNA, followed by sequencing by 454 Tag pyrosequencing. A total of 27 different bacterial and 17 archaeal taxonomic groups were detected.

  11. Characterization of Olkiluoto bacterial and archaeal communities by 454 pyrosequencing

    International Nuclear Information System (INIS)

    Bomberg, M.; Nyyssoenen, M.; Itaevaara, M.

    2012-06-01

    Recent advancement in sequencing technologies, 'Next Generation Sequencing', such as FLX 454 pyrosequencing has made it possible to obtain large amounts of sequence data where previously only few sequences could be obtained. This technique is especially useful for the study of community composition of uncultured microbial populations in environmental samples. In this project, the FLX 454 pyrosequencing technique was used to obtain up to 20 000 16S rRNA sequences or 10 000 mRNA sequences from each sample for identification of the microbial species composition as well as for comparison of the microbial communities between different samples. This project focused on the characterization of active microbial communities in the groundwater at the final disposal site of high radioactive wastes in Olkiluoto by FLX 454 pyrosequencing of the bacterial and archaeal ribosomal RNA as well as of the mRNA transcripts of the dsrB gene and mcrA gene of sulphate reducing bacteria and methanogenic archaea, respectively. Specific emphasis was put on studying the relationship of active and latent sulphate reducers and methanogens by qPCR due to their important roles in deep geobiochemical processes connected to copper corrosion. Seven packered boreholes were sampled anaerobically in Olkiluoto during 2009-2010. Groundwater was pumped from specific depths and the microbial cells werecollected by filtration on a membrane. Active microbial communities were studied based on RNA extracted from the membranes and translated to copy DNA, followed by sequencing by 454 Tag pyrosequencing. A total of 27 different bacterial and 17 archaeal taxonomic groups were detected

  12. Copper Pollution Increases the Resistance of Soil Archaeal Community to Changes in Water Regime.

    Science.gov (United States)

    Li, Jing; Liu, Yu-Rong; Cui, Li-Juan; Hu, Hang-Wei; Wang, Jun-Tao; He, Ji-Zheng

    2017-11-01

    Increasing efforts have been devoted to exploring the impact of environmental stresses on soil bacterial communities, but the work on the archaeal community is seldom. Here, we constructed microcosm experiments to investigate the responses of archaeal communities to the subsequent dry-rewetting (DW) disturbance in two contrasting soils (fluvo-aquic and red soil) after 6 years of copper pollution. Ten DW cycles were exerted on the two soils with different copper levels, followed by a 6-week recovery period. In both soils, archaeal diversity (Shannon index) in the high copper-level treatments increased over the incubation period, and archaeal community structure changed remarkably as revealed by the non-metric multidimensional scaling ordinations. In both soils, copper pollution altered the response of dominant operational taxonomic units (OTUs) to the DW disturbance. Throughout the incubation and recovery period, the resistance of archaeal abundance to the DW disturbance was higher in the copper-polluted soils than soils without pollution. Taken together, copper pollution altered the response of soil archaeal diversity and community composition to the DW disturbance and increased the resistance of the archaeal abundance. These findings have important implications for understanding soil microbial responses to ongoing environmental change.

  13. Simulation and analysis of single-ribosome translation

    International Nuclear Information System (INIS)

    Tinoco, Ignacio Jr; Wen, Jin-Der

    2009-01-01

    In the cell, proteins are synthesized by ribosomes in a multi-step process called translation. The ribosome translocates along the messenger RNA to read the codons that encode the amino acid sequence of a protein. Elongation factors, including EF-G and EF-Tu, are used to catalyze the process. Recently, we have shown that translation can be followed at the single-molecule level using optical tweezers; this technique allows us to study the kinetics of translation by measuring the lifetime the ribosome spends at each codon. Here, we analyze the data from single-molecule experiments and fit the data with simple kinetic models. We also simulate the translation kinetics based on a multi-step mechanism from ensemble kinetic measurements. The mean lifetimes from the simulation were consistent with our experimental single-molecule measurements. We found that the calculated lifetime distributions were fit in general by equations with up to five rate-determining steps. Two rate-determining steps were only obtained at low concentrations of elongation factors. These analyses can be used to design new single-molecule experiments to better understand the kinetics and mechanism of translation

  14. Archaeal S-Layers: Overview and Current State of the Art

    Directory of Open Access Journals (Sweden)

    Thiago Rodrigues-Oliveira

    2017-12-01

    Full Text Available In contrast to bacteria, all archaea possess cell walls lacking peptidoglycan and a number of different cell envelope components have also been described. A paracrystalline protein surface layer, commonly referred to as S-layer, is present in nearly all archaea described to date. S-layers are composed of only one or two proteins and form different lattice structures. In this review, we summarize current understanding of archaeal S-layer proteins, discussing topics such as structure, lattice type distribution among archaeal phyla and glycosylation. The hexagonal lattice type is dominant within the phylum Euryarchaeota, while in the Crenarchaeota this feature is mainly associated with specific orders. S-layers exclusive to the Crenarchaeota have also been described, which are composed of two proteins. Information regarding S-layers in the remaining archaeal phyla is limited, mainly due to organism description through only culture-independent methods. Despite the numerous applied studies using bacterial S-layers, few reports have employed archaea as a study model. As such, archaeal S-layers represent an area for exploration in both basic and applied research.

  15. Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system

    DEFF Research Database (Denmark)

    Mansilla, Francisco; Friis, Irene; Jadidi, Mandana

    2002-01-01

    In eukaryotes, the eukaryotic translation elongation factor eEF1A responsible for transporting amino-acylated tRNA to the ribosome forms a higher-order complex, eEF1H, with its guanine-nucleotide-exchange factor eEF1B. In metazoans, eEF1B consists of three subunits: eEF1B alpha, eEF1B eta and eEF1B...... of in vitro experiments have been proposed for the macromolecular organization of the eEF1H complex. However, these models differ in various aspects. This might be due to the difficulties of handling, particularly the eEF1B beta and eEF1B gamma subunits in vitro. Here, the human eEF1H complex is for the first...... gamma:eEF1B beta, where the last was observed using a three-hybrid approach. Surprisingly, eEF1A2 showed no or only little affinity for the guanine-nucleotide-exchange factors. Truncated versions of the subunits of eEF1B were used to orientate these subunits within the resulting model. The model unit...

  16. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion

    Science.gov (United States)

    Heinemann, Ilka U.; Rovner, Alexis J.; Aerni, Hans R.; Rogulina, Svetlana; Cheng, Laura; Olds, William; Fischer, Jonathan T.; Söll, Dieter; Isaacs, Farren J.; Rinehart, Jesse

    2012-01-01

    Genetically encoded phosphoserine incorporation programmed by the UAG codon was achieved by addition of engineered elongation factor and an archaeal aminoacyl-tRNA synthetase to the normal Escherichia coli translation machinery (Park (2011) Science 333, 1151). However, protein yield suffers from expression of the orthogonal phosphoserine translation system and competition with release factor 1 (RF-1). In a strain lacking RF-1, phosphoserine phosphatase, and where 7 UAG codons residing in essential genes were converted to UAA, phosphoserine incorporation into GFP and WNK4 was significantly elevated, but with an accompanying loss in cellular fitness and viability. PMID:22982858

  17. RNA-Based Assessment of Diversity and Composition of Active Archaeal Communities in the German Bight

    Directory of Open Access Journals (Sweden)

    Bernd Wemheuer

    2012-01-01

    Full Text Available Archaea play an important role in various biogeochemical cycles. They are known extremophiles inhabiting environments such as thermal springs or hydrothermal vents. Recent studies have revealed a significant abundance of Archaea in moderate environments, for example, temperate sea water. Nevertheless, the composition and ecosystem function of these marine archaeal communities is largely unknown. To assess diversity and composition of active archaeal communities in the German Bight, seven marine water samples were taken and studied by RNA-based analysis of ribosomal 16S rRNA. For this purpose, total RNA was extracted from the samples and converted to cDNA. Archaeal community structures were investigated by pyrosequencing-based analysis of 16S rRNA amplicons generated from cDNA. To our knowledge, this is the first study combining next-generation sequencing and metatranscriptomics to study archaeal communities in marine habitats. The pyrosequencing-derived dataset comprised 62,045 archaeal 16S rRNA sequences. We identified Halobacteria as the predominant archaeal group across all samples with increased abundance in algal blooms. Thermoplasmatales (Euryarchaeota and the Marine Group I (Thaumarchaeota were identified in minor abundances. It is indicated that archaeal community patterns were influenced by environmental conditions.

  18. Characterizing Novel Archaeal Lineages in Salton Sea Sediments

    Science.gov (United States)

    Tarn, J.; Valentine, D. L.

    2016-12-01

    Biological communities in extreme environments are often dominated by microorganisms of the domain Archaea. Abundant microbial assemblages of this group are found in the hottest, saltiest, and most thermodynamically-limited ecosystems on earth. These taxing surroundings are thought to impose a state of chronic energy stress on resident organisms due to high costs of cellular maintenance relative to resource availability. Even in more temperate settings, Archaea are regularly associated with low-nutrient lifestyles, reflecting their adaptation to extreme, biologically-limiting conditions, which may be an ancestral, domain-wide trait. In this study, we seek to characterize the Archaeal community of the Salton Sea, where members of this domain are novel and highly abundant. Previous work by Swan et al. in 2010 showed that gradients in salinity, sulfate, carbon and nitrogen across sediment horizons of the Salton Sea are linked to changes in Archaeal dominance and community structure. In light of recent taxonomic revisions of the domain, I reclassified the 107 published small subunit rRNA Archaeal sequences from the 2010 study using updated reference databases. The majority of these Euryarchaeal sequences were reassigned to the so-called DPANN superphylum, with Pacearchaeota-related sequences being very abundant in shallow, organic-rich sediments. In deeper, energy-limited strata, several groups of Bathyarchaeota and one divergent DPANN clade were dominant. Ongoing metagenomic work on these sediment communities is being used to assemble genomes of these novel Archaeal groups. These results will help define genomic adaptations of Salton Sea Archaea to varying levels of energy stress as well as inform future cultivation efforts.

  19. Conserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-08-01

    Full Text Available Cold shock proteins (Csps enable organisms to acclimate to and survive in cold environments and the bacterial CspA family exerts the cold protection via its RNA chaperone activity. However, most Archaea do not contain orthologs to the bacterial csp. TRAM, a conserved domain among RNA modification proteins ubiquitously distributed in organisms, occurs as an individual protein in most archaeal phyla and has a structural similarity to Csp proteins, yet its biological functions remain unknown. Through physiological and biochemical studies on four TRAM proteins from a cold adaptive archaeon Methanolobus psychrophilus R15, this work demonstrated that TRAM is an archaeal Csp and exhibits RNA chaperone activity. Three TRAM encoding genes (Mpsy_0643, Mpsy_3043, and Mpsy_3066 exhibited remarkable cold-shock induced transcription and were preferentially translated at lower temperature (18°C, while the fourth (Mpsy_2002 was constitutively expressed. They were all able to complement the cspABGE mutant of Escherichia coli BX04 that does not grow in cold temperatures and showed transcriptional antitermination. TRAM3066 (gene product of Mpsy_3066 and TRAM2002 (gene product of Mpsy_2002 displayed sequence-non-specific RNA but not DNA binding activity, and TRAM3066 assisted RNases in degradation of structured RNA, thus validating the RNA chaperone activity of TRAMs. Given the chaperone activity, TRAM is predicted to function beyond a Csp.

  20. A Meta-Analysis of the Bacterial and Archaeal Diversity Observed in Wetland Soils

    Directory of Open Access Journals (Sweden)

    Xiaofei Lv

    2014-01-01

    Full Text Available This study examined the bacterial and archaeal diversity from a worldwide range of wetlands soils and sediments using a meta-analysis approach. All available 16S rRNA gene sequences recovered from wetlands in public databases were retrieved. In November 2012, a total of 12677 bacterial and 1747 archaeal sequences were collected in GenBank. All the bacterial sequences were assigned into 6383 operational taxonomic units (OTUs 0.03, representing 31 known bacterial phyla, predominant with Proteobacteria (2791 OTUs, Bacteroidetes (868 OTUs, Acidobacteria (731 OTUs, Firmicutes (540 OTUs, and Actinobacteria (418 OTUs. The genus Flavobacterium (11.6% of bacterial sequences was the dominate bacteria in wetlands, followed by Gp1, Nitrosospira, and Nitrosomonas. Archaeal sequences were assigned to 521 OTUs from phyla Euryarchaeota and Crenarchaeota. The dominating archaeal genera were Fervidicoccus and Methanosaeta. Rarefaction analysis indicated that approximately 40% of bacterial and 83% of archaeal diversity in wetland soils and sediments have been presented. Our results should be significant for well-understanding the microbial diversity involved in worldwide wetlands.

  1. Doc toxin is a kinase that inactivates elongation factor Tu.

    Science.gov (United States)

    Cruz, Jonathan W; Rothenbacher, Francesca P; Maehigashi, Tatsuya; Lane, William S; Dunham, Christine M; Woychik, Nancy A

    2014-03-14

    The Doc toxin from bacteriophage P1 (of the phd-doc toxin-antitoxin system) has served as a model for the family of Doc toxins, many of which are harbored in the genomes of pathogens. We have shown previously that the mode of action of this toxin is distinct from the majority derived from toxin-antitoxin systems: it does not cleave RNA; in fact P1 Doc expression leads to mRNA stabilization. However, the molecular triggers that lead to translation arrest are not understood. The presence of a Fic domain, albeit slightly altered in length and at the catalytic site, provided a clue to the mechanism of P1 Doc action, as most proteins with this conserved domain inactivate GTPases through addition of an adenylyl group (also referred to as AMPylation). We demonstrated that P1 Doc added a single phosphate group to the essential translation elongation factor and GTPase, elongation factor (EF)-Tu. The phosphorylation site was at a highly conserved threonine, Thr-382, which was blocked when EF-Tu was treated with the antibiotic kirromycin. Therefore, we have established that Fic domain proteins can function as kinases. This distinct enzymatic activity exhibited by P1 Doc also solves the mystery of the degenerate Fic motif unique to the Doc family of toxins. Moreover, we have established that all characterized Fic domain proteins, even those that phosphorylate, target pivotal GTPases for inactivation through a post-translational modification at a single functionally critical acceptor site.

  2. Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements.

    Science.gov (United States)

    Iranzo, Jaime; Koonin, Eugene V; Prangishvili, David; Krupovic, Mart

    2016-12-15

    Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions

  3. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    2015-01-01

    Full Text Available Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1 uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  4. Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins

    Science.gov (United States)

    Samson, Rachel Y.; Abeyrathne, Priyanka D.; Bell, Stephen D.

    2015-01-01

    Summary Cellular DNA replication origins direct the recruitment of replicative helicases via the action of initiator proteins belonging to the AAA+ superfamily of ATPases. Archaea have a simplified subset of the eukaryotic DNA replication machinery proteins and possess initiators that appear ancestral to both eukaryotic Orc1 and Cdc6. We have reconstituted origin-dependent recruitment of the homohexameric archaeal MCM in vitro with purified recombinant proteins. Using this system, we reveal that archaeal Orc1-1 fulfills both Orc1 and Cdc6 functions by binding to a replication origin and directly recruiting MCM helicase. We identify the interaction interface between these proteins and reveal how ATP binding by Orc1-1 modulates recruitment of MCM. Additionally, we provide evidence that an open-ring form of the archaeal MCM homohexamer is loaded at origins. PMID:26725007

  5. Elongation factor Ts directly facilitates the formation and disassembly of the Escherichia coli elongation factor Tu·GTP·aminoacyl-tRNA ternary complex.

    Science.gov (United States)

    Burnett, Benjamin J; Altman, Roger B; Ferrao, Ryan; Alejo, Jose L; Kaur, Navdep; Kanji, Joshua; Blanchard, Scott C

    2013-05-10

    Aminoacyl-tRNA (aa-tRNA) enters the ribosome in a ternary complex with the G-protein elongation factor Tu (EF-Tu) and GTP. EF-Tu·GTP·aa-tRNA ternary complex formation and decay rates are accelerated in the presence of the nucleotide exchange factor elongation factor Ts (EF-Ts). EF-Ts directly facilitates the formation and disassociation of ternary complex. This system demonstrates a novel function of EF-Ts. Aminoacyl-tRNA enters the translating ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here, we describe bulk steady state and pre-steady state fluorescence methods that enabled us to quantitatively explore the kinetic features of Escherichia coli ternary complex formation and decay. The data obtained suggest that both processes are controlled by a nucleotide-dependent, rate-determining conformational change in EF-Tu. Unexpectedly, we found that this conformational change is accelerated by elongation factor Ts (EF-Ts), the guanosine nucleotide exchange factor for EF-Tu. Notably, EF-Ts attenuates the affinity of EF-Tu for GTP and destabilizes ternary complex in the presence of non-hydrolyzable GTP analogs. These results suggest that EF-Ts serves an unanticipated role in the cell of actively regulating the abundance and stability of ternary complex in a manner that contributes to rapid and faithful protein synthesis.

  6. Mapping Escherichia coli elongation factor Tu residues involved in binding of aminoacyl-tRNA

    DEFF Research Database (Denmark)

    Wiborg, Ove; Andersen, C; Knudsen, Charlotte Rohde

    1996-01-01

    Two residues of Escherichia coli elongation factor Tu involved in binding of aminoacyl-tRNA were identified and subjected to mutational analysis. Lys-89 and Asn-90 were each replaced by either Ala or Glu. The four single mutants were denoted K89A, K89E, N90A, and N90E, respectively. The mutants...... were characterized with respect to thermal and chemical stability, GTPase activity, tRNA affinity, and activity in an in vitro translation assay. Most conspicuously tRNA affinities were reduced for all mutants. The results verify our structural analysis of elongation factor Tu in complex with aminoacyl....... Their functional roles are discussed in relation to the structure of elongation factor Tu in complex with aminoacyl-tRNA. Udgivelsesdato: 1996-Aug-23...

  7. Biosynthesis of archaeal membrane ether lipids

    Directory of Open Access Journals (Sweden)

    Samta eJain

    2014-11-01

    Full Text Available A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA. In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol and the tetraether (or caldarchaeol lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the last universal common ancestor LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria.

  8. Phylogenomic reconstruction of archaeal fatty acid metabolism

    Science.gov (United States)

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  9. Archaeal community of cattle digestive system

    Czech Academy of Sciences Publication Activity Database

    Němcová, Anna; Elhottová, Dana; Gattinger, A.

    2007-01-01

    Roč. 48, - (2007), s. 233 ISSN 0009-0646. [Kongres Československé společnosti mikrobiologické /24./. 02.10.2007-05.10.2007, Liberec] Institutional research plan: CEZ:AV0Z60660521 Keywords : archaeal community * cattle digestive system Subject RIV: EH - Ecology, Behaviour

  10. pH dominates variation in tropical soil archaeal diversity and community structure.

    Science.gov (United States)

    Tripathi, Binu M; Kim, Mincheol; Lai-Hoe, Ang; Shukor, Nor A A; Rahim, Raha A; Go, Rusea; Adams, Jonathan M

    2013-11-01

    Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the best predictor of diversity and community composition of Archaea, being a stronger predictor than land use. Archaeal OTU richness was highest in the most acidic soils. Overall archaeal abundance in tropical soils (determined by qPCR) also decreased at higher pH. This contrasts with the opposite trend previously found in temperate soils. Thaumarcheota group 1.1b was more abundant in alkaline soils, whereas group 1.1c was only detected in acidic soils. These results parallel those found in previous studies in cooler climates, emphasizing niche conservatism among broad archaeal groups. Among the most abundant operational taxonomic units (OTUs), there was clear evidence of niche partitioning by pH. No individual OTU occurred across the entire range of pH values. Overall, the results of this study show that pH plays a major role in structuring tropical soil archaeal communities. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Doc Toxin Is a Kinase That Inactivates Elongation Factor Tu*

    Science.gov (United States)

    Cruz, Jonathan W.; Rothenbacher, Francesca P.; Maehigashi, Tatsuya; Lane, William S.; Dunham, Christine M.; Woychik, Nancy A.

    2014-01-01

    The Doc toxin from bacteriophage P1 (of the phd-doc toxin-antitoxin system) has served as a model for the family of Doc toxins, many of which are harbored in the genomes of pathogens. We have shown previously that the mode of action of this toxin is distinct from the majority derived from toxin-antitoxin systems: it does not cleave RNA; in fact P1 Doc expression leads to mRNA stabilization. However, the molecular triggers that lead to translation arrest are not understood. The presence of a Fic domain, albeit slightly altered in length and at the catalytic site, provided a clue to the mechanism of P1 Doc action, as most proteins with this conserved domain inactivate GTPases through addition of an adenylyl group (also referred to as AMPylation). We demonstrated that P1 Doc added a single phosphate group to the essential translation elongation factor and GTPase, elongation factor (EF)-Tu. The phosphorylation site was at a highly conserved threonine, Thr-382, which was blocked when EF-Tu was treated with the antibiotic kirromycin. Therefore, we have established that Fic domain proteins can function as kinases. This distinct enzymatic activity exhibited by P1 Doc also solves the mystery of the degenerate Fic motif unique to the Doc family of toxins. Moreover, we have established that all characterized Fic domain proteins, even those that phosphorylate, target pivotal GTPases for inactivation through a post-translational modification at a single functionally critical acceptor site. PMID:24448800

  12. Elongation Factor Ts Directly Facilitates the Formation and Disassembly of the Escherichia coli Elongation Factor Tu·GTP·Aminoacyl-tRNA Ternary Complex*

    Science.gov (United States)

    Burnett, Benjamin J.; Altman, Roger B.; Ferrao, Ryan; Alejo, Jose L.; Kaur, Navdep; Kanji, Joshua; Blanchard, Scott C.

    2013-01-01

    Aminoacyl-tRNA enters the translating ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here, we describe bulk steady state and pre-steady state fluorescence methods that enabled us to quantitatively explore the kinetic features of Escherichia coli ternary complex formation and decay. The data obtained suggest that both processes are controlled by a nucleotide-dependent, rate-determining conformational change in EF-Tu. Unexpectedly, we found that this conformational change is accelerated by elongation factor Ts (EF-Ts), the guanosine nucleotide exchange factor for EF-Tu. Notably, EF-Ts attenuates the affinity of EF-Tu for GTP and destabilizes ternary complex in the presence of non-hydrolyzable GTP analogs. These results suggest that EF-Ts serves an unanticipated role in the cell of actively regulating the abundance and stability of ternary complex in a manner that contributes to rapid and faithful protein synthesis. PMID:23539628

  13. Bioinformatic Analysis Reveals Archaeal tRNATyr and tRNATrp Identities in Bacteria

    Directory of Open Access Journals (Sweden)

    Takahito Mukai

    2017-02-01

    Full Text Available The tRNA identity elements for some amino acids are distinct between the bacterial and archaeal domains. Searching in recent genomic and metagenomic sequence data, we found some candidate phyla radiation (CPR bacteria with archaeal tRNA identity for Tyr-tRNA and Trp-tRNA synthesis. These bacteria possess genes for tyrosyl-tRNA synthetase (TyrRS and tryptophanyl-tRNA synthetase (TrpRS predicted to be derived from DPANN superphylum archaea, while the cognate tRNATyr and tRNATrp genes reveal bacterial or archaeal origins. We identified a trace of domain fusion and swapping in the archaeal-type TyrRS gene of a bacterial lineage, suggesting that CPR bacteria may have used this mechanism to create diverse proteins. Archaeal-type TrpRS of bacteria and a few TrpRS species of DPANN archaea represent a new phylogenetic clade (named TrpRS-A. The TrpRS-A open reading frames (ORFs are always associated with another ORF (named ORF1 encoding an unknown protein without global sequence identity to any known protein. However, our protein structure prediction identified a putative HIGH-motif and KMSKS-motif as well as many α-helices that are characteristic of class I aminoacyl-tRNA synthetase (aaRS homologs. These results provide another example of the diversity of molecular components that implement the genetic code and provide a clue to the early evolution of life and the genetic code.

  14. A genome-scale integration and analysis of Lactococcus lactis translation data.

    Directory of Open Access Journals (Sweden)

    Julien Racle

    Full Text Available Protein synthesis is a template polymerization process composed by three main steps: initiation, elongation, and termination. During translation, ribosomes are engaged into polysomes whose size is used for the quantitative characterization of translatome. However, simultaneous transcription and translation in the bacterial cytosol complicates the analysis of translatome data. We established a procedure for robust estimation of the ribosomal density in hundreds of genes from Lactococcus lactis polysome size measurements. We used a mechanistic model of translation to integrate the information about the ribosomal density and for the first time we estimated the protein synthesis rate for each gene and identified the rate limiting steps. Contrary to conventional considerations, we find significant number of genes to be elongation limited. This number increases during stress conditions compared to optimal growth and proteins synthesized at maximum rate are predominantly elongation limited. Consistent with bacterial physiology, we found proteins with similar rate and control characteristics belonging to the same functional categories. Under stress conditions, we found that synthesis rate of regulatory proteins is becoming comparable to proteins favored under optimal growth. These findings suggest that the coupling of metabolic states and protein synthesis is more important than previously thought.

  15. Prediction of novel archaeal enzymes from sequence-derived features

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Skovgaard, Marie; Brunak, Søren

    2002-01-01

    The completely sequenced archaeal genomes potentially encode, among their many functionally uncharacterized genes, novel enzymes of biotechnological interest. We have developed a prediction method for detection and classification of enzymes from sequence alone (available at http://www.cbs.dtu.dk/......The completely sequenced archaeal genomes potentially encode, among their many functionally uncharacterized genes, novel enzymes of biotechnological interest. We have developed a prediction method for detection and classification of enzymes from sequence alone (available at http......://www.cbs.dtu.dk/services/ArchaeaFun/). The method does not make use of sequence similarity; rather, it relies on predicted protein features like cotranslational and posttranslational modifications, secondary structure, and simple physical/chemical properties....

  16. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.

    Science.gov (United States)

    Zhu, Chun; Wakeham, Stuart G; Elling, Felix J; Basse, Andreas; Mollenhauer, Gesine; Versteegh, Gerard J M; Könneke, Martin; Hinrichs, Kai-Uwe

    2016-12-01

    Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal (i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (≤ 100 m) and deep (>100 m) populations of archaea, (ii) stratification of unsaturated GDGTs with varying redox conditions, and (iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We, thus, provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    Directory of Open Access Journals (Sweden)

    Yendi E. Navarro-Noya

    2015-01-01

    Full Text Available In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5, indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances clearly clustered the communities by pH.

  18. IHH and FGF8 coregulate elongation of digit primordia.

    Science.gov (United States)

    Zhou, Jian; Meng, Junwei; Guo, Shengzhen; Gao, Bo; Ma, Gang; Zhu, Xuming; Hu, Jianxin; Xiao, Yue; Lin, Chuwen; Wang, Hongsheng; Ding, Lusheng; Feng, Guoyin; Guo, Xizhi; He, Lin

    2007-11-23

    In the developing limb bud, digit pattern arises from anterior-posterior (A-P) positional information which is provided by the concentration gradient of SHH. However, the mechanisms of translating early asymmetry into morphological form are still unclear. Here, we examined the ability of IHH and FGF8 signaling to regulate digital chondrogenesis, by implanting protein-loaded beads in the interdigital space singly and in combination. We found that IHH protein induced an elongated digit and that FGF8 protein blocked the terminal phalange formation. Molecular marker analysis showed that IHH expanded Sox9 expression in mesenchymal cells possibly through up-regulated FGF8 expression. Application of both IHH and FGF8 protein induced a large terminal phalange. These results suggest that both enhanced IHH and FGF8 signaling are required for the development of additional cartilage element in limbs. IHH and FGF8 maybe play different roles and act synergistically to promote chondrogenesis during digit primordia elongation.

  19. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures.

    Science.gov (United States)

    Lassak, Kerstin; Ghosh, Abhrajyoti; Albers, Sonja-Verena

    2012-01-01

    Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures. Copyright © 2012. Published by Elsevier Masson SAS.

  20. CEP295 interacts with microtubules and is required for centriole elongation.

    Science.gov (United States)

    Chang, Ching-Wen; Hsu, Wen-Bin; Tsai, Jhih-Jie; Tang, Chieh-Ju C; Tang, Tang K

    2016-07-01

    Centriole duplication is a tightly ordered process during which procentrioles are assembled in G1-S and elongate during S and G2. Here, we show that human CEP295 (Drosophila Ana1) is not essential for initial cartwheel assembly, but is required to build distal half centrioles during S and G2. Using super-resolution and immunogold electron microscopy, we demonstrate that CEP295 is recruited to the proximal end of procentrioles in early S phase, when it is also localized at the centriolar microtubule wall that surrounds the human SAS6 cartwheel hub. Interestingly, depletion of CEP295 not only inhibits the recruitments of POC5 and POC1B to the distal half centrioles in G2, resulting in shorter centrioles, it also blocks the post-translational modification of centriolar microtubules (e.g. acetylation and glutamylation). Importantly, our results indicate that CEP295 directly interacts with microtubules, and that excess CEP295 could induce the assembly of overly long centrioles. Furthermore, exogenous expression of the N-terminal domain of CEP295 exerts a dominant-negative effect on centriole elongation. Collectively, these findings suggest that CEP295 is essential for building the distal half centrioles and for post-translational modification of centriolar microtubules. © 2016. Published by The Company of Biologists Ltd.

  1. Seasonal effects in a lake sediment archaeal community of the Brazilian Savanna.

    Science.gov (United States)

    Rodrigues, Thiago; Catão, Elisa; Bustamante, Mercedes M C; Quirino, Betania F; Kruger, Ricardo H; Kyaw, Cynthia M

    2014-01-01

    The Cerrado is a biome that corresponds to 24% of Brazil's territory. Only recently microbial communities of this biome have been investigated. Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the dry and rainy seasons, when the first rains occur. Gene libraries were constructed, using Archaea-specific primers for the 16S rRNA and amoA genes. Analysis revealed marked differences between the archaeal communities found in the two seasons. I.1a and I.1c Thaumarchaeota were found in greater numbers in the transition period, while MCG Archaea was dominant on the dry season. Methanogens were only found in the dry season. Analysis of 16S rRNA sequences revealed lower diversity on the transition period. We detected archaeal amoA sequences in both seasons, but there were more OTUs during the dry season. These sequences were within the same cluster as Nitrosotalea devanaterra's amoA gene. The principal coordinate analysis (PCoA) test revealed significant differences between samples from different seasons. These results provide information on archaeal diversity in freshwater lake sediments of the Cerrado and indicates that rain is likely a factor that impacts these communities.

  2. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations.

    Science.gov (United States)

    Xie, Sitan; Lipp, Julius S; Wegener, Gunter; Ferdelman, Timothy G; Hinrichs, Kai-Uwe

    2013-04-09

    Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([(14)C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6-73 ky in sediments deeper than 1 m, 50-96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg⋅mL(-1) sediment⋅y(-1) at the surface to 0.2 pg⋅mL(-1)⋅y(-1) at 1 km depth, equivalent to production of 7 × 10(5) to 140 archaeal cells⋅mL(-1) sediment⋅y(-1), respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle.

  3. Influence of the number of elongated fiducial markers on the localization accuracy of the prostate

    Science.gov (United States)

    de Boer, Johan; de Bois, Josien; van Herk, Marcel; Sonke, Jan-Jakob

    2012-10-01

    Implanting fiducial markers for localization purposes has become an accepted practice in radiotherapy for prostate cancer. While many correction strategies correct for translations only, advanced correction protocols also require knowledge of the rotation of the prostate. For this purpose, typically, three or more markers are implanted. Elongated fiducial markers provide more information about their orientation than traditional round or cylindrical markers. Potentially, fewer markers are required. In this study, we evaluate the effect of the number of elongated markers on the localization accuracy of the prostate. To quantify the localization error, we developed a model that estimates, at arbitrary locations in the prostate, the registration error caused by translational and rotational uncertainties of the marker registration. Every combination of one, two and three markers was analysed for a group of 24 patients. The average registration errors at the prostate surface were 0.3-0.8 mm and 0.4-1 mm for registrations on, respectively, three markers and two markers located on different sides of the prostate. Substantial registration errors (2.0-2.2 mm) occurred at the prostate surface contralateral to the markers when two markers were implanted on the same side of the prostate or only one marker was used. In conclusion, there is no benefit in using three elongated markers: two markers accurately localize the prostate if they are implanted at some distance from each other.

  4. Archaeal orthologs of Cdc45 and GINS form a stable complex that stimulates the helicase activity of MCM.

    Science.gov (United States)

    Xu, Yuli; Gristwood, Tamzin; Hodgson, Ben; Trinidad, Jonathan C; Albers, Sonja-Verena; Bell, Stephen D

    2016-11-22

    The regulated recruitment of Cdc45 and GINS is key to activating the eukaryotic MCM(2-7) replicative helicase. We demonstrate that the homohexameric archaeal MCM helicase associates with orthologs of GINS and Cdc45 in vivo and in vitro. Association of these factors with MCM robustly stimulates the MCM helicase activity. In contrast to the situation in eukaryotes, archaeal Cdc45 and GINS form an extremely stable complex before binding MCM. Further, the archaeal GINS•Cdc45 complex contains two copies of Cdc45. Our analyses give insight into the function and evolution of the conserved core of the archaeal/eukaryotic replisome.

  5. Abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China.

    Science.gov (United States)

    Song, Zhao-Qi; Wang, Li; Wang, Feng-Ping; Jiang, Hong-Chen; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Li, Wen-Jun

    2013-09-01

    It has been suggested that archaea carrying the accA gene, encoding the alpha subunit of the acetyl CoA carboxylase, autotrophically fix CO2 using the 3-hydroxypropionate/4-hydroxybutyrate pathway in low-temperature environments (e.g., soils, oceans). However, little new information has come to light regarding the occurrence of archaeal accA genes in high-temperature ecosystems. In this study, we investigated the abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China, using DNA- and RNA-based phylogenetic analyses and quantitative polymerase chain reaction. The results showed that archaeal accA genes were present and expressed in the investigated Yunnan hot springs with a wide range of temperatures (66-96 °C) and pH (4.3-9.0). The majority of the amplified archaeal accA gene sequences were affiliated with the ThAOA/HWCG III [thermophilic ammonia-oxidizing archaea (AOA)/hot water crenarchaeotic group III]. The archaeal accA gene abundance was very close to that of AOA amoA gene, encoding the alpha subunit of ammonia monooxygenase. These data suggest that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  6. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Priscu, John C; Xiong, Jinbo; Conrad, Ralf; Vick-Majors, Trista; Chu, Haiyan; Hou, Juzhi

    2016-03-01

    Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogens were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly 2000 km on the Tibetan Plateau. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Nannocystin A: an Elongation Factor 1 Inhibitor from Myxobacteria with Differential Anti-Cancer Properties.

    Science.gov (United States)

    Krastel, Philipp; Roggo, Silvio; Schirle, Markus; Ross, Nathan T; Perruccio, Francesca; Aspesi, Peter; Aust, Thomas; Buntin, Kathrin; Estoppey, David; Liechty, Brigitta; Mapa, Felipa; Memmert, Klaus; Miller, Howard; Pan, Xuewen; Riedl, Ralph; Thibaut, Christian; Thomas, Jason; Wagner, Trixie; Weber, Eric; Xie, Xiaobing; Schmitt, Esther K; Hoepfner, Dominic

    2015-08-24

    Cultivation of myxobacteria of the Nannocystis genus led to the isolation and structure elucidation of a class of novel cyclic lactone inhibitors of elongation factor 1. Whole genome sequence analysis and annotation enabled identification of the putative biosynthetic cluster and synthesis process. In biological assays the compounds displayed anti-fungal and cytotoxic activity. Combined genetic and proteomic approaches identified the eukaryotic translation elongation factor 1α (EF-1α) as the primary target for this compound class. Nannocystin A (1) displayed differential activity across various cancer cell lines and EEF1A1 expression levels appear to be the main differentiating factor. Biochemical and genetic evidence support an overlapping binding site of 1 with the anti-cancer compound didemnin B on EF-1α. This myxobacterial chemotype thus offers an interesting starting point for further investigations of the potential of therapeutics targeting elongation factor 1. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Seasonal Effects in a Lake Sediment Archaeal Community of the Brazilian Savanna

    Directory of Open Access Journals (Sweden)

    Thiago Rodrigues

    2014-01-01

    Full Text Available The Cerrado is a biome that corresponds to 24% of Brazil’s territory. Only recently microbial communities of this biome have been investigated. Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the dry and rainy seasons, when the first rains occur. Gene libraries were constructed, using Archaea-specific primers for the 16S rRNA and amoA genes. Analysis revealed marked differences between the archaeal communities found in the two seasons. I.1a and I.1c Thaumarchaeota were found in greater numbers in the transition period, while MCG Archaea was dominant on the dry season. Methanogens were only found in the dry season. Analysis of 16S rRNA sequences revealed lower diversity on the transition period. We detected archaeal amoA sequences in both seasons, but there were more OTUs during the dry season. These sequences were within the same cluster as Nitrosotalea devanaterra’s amoA gene. The principal coordinate analysis (PCoA test revealed significant differences between samples from different seasons. These results provide information on archaeal diversity in freshwater lake sediments of the Cerrado and indicates that rain is likely a factor that impacts these communities.

  9. Archaeal “Dark Matter” and the Origin of Eukaryotes

    Science.gov (United States)

    Williams, Tom A.; Embley, T. Martin

    2014-01-01

    Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise, or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukaryotes analyzed. When these issues were resolved, analyses including the new archaeal lineages placed core eukaryotic genes within the Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic models agree in supporting the eocyte tree over the three domains hypothesis. PMID:24532674

  10. Translation of an FRC plasma into a quasi-spherical confinement region

    International Nuclear Information System (INIS)

    Sekiguchi, Jun'ichi; Asai, Tomohiko; Takahashi, Tsutomu; Takahashi, Toshiki

    2014-01-01

    Translation of a Field-Reversed Configuration (FRC) into a quasi-spherical confinement region with super-alfvenic translation speed has been successfully conducted. Translation speed can be controlled in the range from 80 to 150 km/s by changing statically filled gas pressure. The translated FRC experiences radial decompression process rapidly when it enters into the confinement chamber. The separatrix shape of translated FRC is controlled through the translation process. Especially, in the case of FRC translation into deuterium gas atmosphere, elongation of the FRC is roughly unity. It indicates possible application of center solenoid onto the high-beta compact torus of FRC. Also, as a new finding, a rotational instability with an n=2 deformation has been observed in the translated FRC. (author)

  11. Determinants of translation speed are randomly distributed across transcripts resulting in a universal scaling of protein synthesis times

    Science.gov (United States)

    Sharma, Ajeet K.; Ahmed, Nabeel; O'Brien, Edward P.

    2018-02-01

    Ribosome profiling experiments have found greater than 100-fold variation in ribosome density along mRNA transcripts, indicating that individual codon elongation rates can vary to a similar degree. This wide range of elongation times, coupled with differences in codon usage between transcripts, suggests that the average codon translation-rate per gene can vary widely. Yet, ribosome run-off experiments have found that the average codon translation rate for different groups of transcripts in mouse stem cells is constant at 5.6 AA/s. How these seemingly contradictory results can be reconciled is the focus of this study. Here, we combine knowledge of the molecular factors shown to influence translation speed with genomic information from Escherichia coli, Saccharomyces cerevisiae and Homo sapiens to simulate the synthesis of cytosolic proteins in these organisms. The model recapitulates a near constant average translation rate, which we demonstrate arises because the molecular determinants of translation speed are distributed nearly randomly amongst most of the transcripts. Consequently, codon translation rates are also randomly distributed and fast-translating segments of a transcript are likely to be offset by equally probable slow-translating segments, resulting in similar average elongation rates for most transcripts. We also show that the codon usage bias does not significantly affect the near random distribution of codon translation rates because only about 10 % of the total transcripts in an organism have high codon usage bias while the rest have little to no bias. Analysis of Ribo-Seq data and an in vivo fluorescent assay supports these conclusions.

  12. Factors affecting Archaeal Lipid Compositions of the Sulfolobus Species

    Science.gov (United States)

    He, L.; Han, J.; Wei, Y.; Lin, L.; Wei, Y.; Zhang, C.

    2010-12-01

    Temperature is the best known variable affecting the distribution of the archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) in marine and freshwater systems. Other variables such as pH, ionic strength, or bicarbonate concentration may also affect archaeal GDGTs in terrestrial systems. Studies of pure cultures can help us pinpoint the specific effects these variables may have on archaeal lipid distribution in natural environments. In this study, three Sulfolobus species (HG4, HB5-2, HB9-6) isolated from Tengchong hot springs (pH 2-3, temperature 73-90°C) in China were used to investigate the effects of temperature, pH, substrate, and type of strain on the composition of GDGTs. Results showed that increase in temperature had negative effects on the relative contents of GDGT-0 (no cyclopentyl rings), GDGT-1 (one cyclopentyl ring), GDGT-2 and GDGT-3 but positive effects on GDGT-4, GDGT-4', GDGT-5 and GDGT-5'. Increase in pH, on the other hand, had negative effects on GDGT-0, GDGT-1, GDGT-4', GDGT-5 and GDGT-5', and positive effects on GDGT-3 and GDGT-4. GDGT-2 remained relatively constant with changing pH. When the HG4 was grown on different substrates, GDGT-5 was five time more abundant in sucrose-grown cultures than in yeast extract- or sulfur- grown cultures, suggesting that carbohydrates may stimulate the production of GDGT-5. For all three species, the ring index (average number of rings) of GDGTs correlated positively with incubation temperature. In HG4, ring index was much lower at optimal pH (3.5) than at other pH values. Ring index of HB5-2 or HB9-6 is higher than that of HG4, suggesting that speciation may affect the degree of cyclization of GDGT of the Sulfolobus. These results indicate that individual archaeal lipids respond differently to changes in environmental variables, which may be also species specific.

  13. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    Science.gov (United States)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  14. Familial relationships in hyperthermo- and acidophilic archaeal viruses

    DEFF Research Database (Denmark)

    Happonen, Lotta Johanna; Redder, Peter; Peng, Xu

    2010-01-01

    Archaea often live in extreme, harsh environments such as acidic hot springs and hypersaline waters. To date, only two icosahedrally symmetric, membrane-containing archaeal viruses, SH1 and Sulfolobus turreted icosahedral virus (STIV), have been described in detail. We report the sequence and thr...

  15. Studies of archaeal virus-host systems in thermal environments

    DEFF Research Database (Denmark)

    Erdmann, Susanne

    Since the first organisms were isolated from hot springs, a large number of viruses were found in these geothermal active environments, most of them infecting Archaea. Archaeal viruses form a separate lineage from those of Eukarya and Bacteria often showing exceptional morphologies and genomic...... features. Most of the isolated archaeal viruses infecting members of the Crenarchaeota have been characterized regarding their genome, the structure of their virions and their influence on the host viability. Only a few, SIRV a rod-shaped and STIV an icosahedrical virus, have been subjected to more...... extensive studies. This work investigates tailed spindle-shaped viruses that we have isolated from different geographical acidothermal, terrestrial hot springs and they primarily infect members of the genus Sulfolobales. The wide distribution of these viruses was established and, moreover, genomic...

  16. Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean.

    Science.gov (United States)

    Lincoln, Sara A; Wai, Brenner; Eppley, John M; Church, Matthew J; Summons, Roger E; DeLong, Edward F

    2014-07-08

    Archaea are ubiquitous in marine plankton, and fossil forms of archaeal tetraether membrane lipids in sedimentary rocks document their participation in marine biogeochemical cycles for >100 million years. Ribosomal RNA surveys have identified four major clades of planktonic archaea but, to date, tetraether lipids have been characterized in only one, the Marine Group I Thaumarchaeota. The membrane lipid composition of the other planktonic archaeal groups--all uncultured Euryarchaeota--is currently unknown. Using integrated nucleic acid and lipid analyses, we found that Marine Group II Euryarchaeota (MG-II) contributed significantly to the tetraether lipid pool in the North Pacific Subtropical Gyre at shallow to intermediate depths. Our data strongly suggested that MG-II also synthesize crenarchaeol, a tetraether lipid previously considered to be a unique biomarker for Thaumarchaeota. Metagenomic datasets spanning 5 y indicated that depth stratification of planktonic archaeal groups was a stable feature in the North Pacific Subtropical Gyre. The consistent prevalence of MG-II at depths where the bulk of exported organic matter originates, together with their ubiquitous distribution over diverse oceanic provinces, suggests that this clade is a significant source of tetraether lipids to marine sediments. Our results are relevant to archaeal lipid biomarker applications in the modern oceans and the interpretation of these compounds in the geologic record.

  17. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2007-11-01

    Full Text Available Abstract Background An evolutionary classification of genes from sequenced genomes that distinguishes between orthologs and paralogs is indispensable for genome annotation and evolutionary reconstruction. Shortly after multiple genome sequences of bacteria, archaea, and unicellular eukaryotes became available, an attempt on such a classification was implemented in Clusters of Orthologous Groups of proteins (COGs. Rapid accumulation of genome sequences creates opportunities for refining COGs but also represents a challenge because of error amplification. One of the practical strategies involves construction of refined COGs for phylogenetically compact subsets of genomes. Results New Archaeal Clusters of Orthologous Genes (arCOGs were constructed for 41 archaeal genomes (13 Crenarchaeota, 27 Euryarchaeota and one Nanoarchaeon using an improved procedure that employs a similarity tree between smaller, group-specific clusters, semi-automatically partitions orthology domains in multidomain proteins, and uses profile searches for identification of remote orthologs. The annotation of arCOGs is a consensus between three assignments based on the COGs, the CDD database, and the annotations of homologs in the NR database. The 7538 arCOGs, on average, cover ~88% of the genes in a genome compared to a ~76% coverage in COGs. The finer granularity of ortholog identification in the arCOGs is apparent from the fact that 4538 arCOGs correspond to 2362 COGs; ~40% of the arCOGs are new. The archaeal gene core (protein-coding genes found in all 41 genome consists of 166 arCOGs. The arCOGs were used to reconstruct gene loss and gene gain events during archaeal evolution and gene sets of ancestral forms. The Last Archaeal Common Ancestor (LACA is conservatively estimated to possess 996 genes compared to 1245 and 1335 genes for the last common ancestors of Crenarchaeota and Euryarchaeota, respectively. It is inferred that LACA was a chemoautotrophic hyperthermophile

  18. Expression, purification and crystallization of an archaeal-type phosphoenolpyruvate carboxylase

    International Nuclear Information System (INIS)

    Dharmarajan, Lakshmi; Kraszewski, Jessica L.; Mukhopadhyay, Biswarup; Dunten, Pete W.

    2009-01-01

    The expression, purification, crystallization and preliminary diffraction analysis of an archaeal-type phosphoenolpyruvate carboxylase are described. Complete highly redundant X-ray data have been measured from a crystal diffracting to 3.13 Å resolution. An archaeal-type phosphoenolpyruvate carboxylase (PepcA) from Clostridium perfringens has been expressed in Escherichia coli in a soluble form with an amino-terminal His tag. The recombinant protein is enzymatically active and two crystal forms have been obtained. Complete diffraction data extending to 3.13 Å resolution have been measured from a crystal soaked in KAu(CN) 2 , using radiation at a wavelength just above the Au L III edge. The asymmetric unit contains two tetramers of PepcA

  19. The N-terminal region of eukaryotic translation initiation factor 5A signals to nuclear localization of the protein

    International Nuclear Information System (INIS)

    Parreiras-e-Silva, Lucas T.; Gomes, Marcelo D.; Oliveira, Eduardo B.; Costa-Neto, Claudio M.

    2007-01-01

    The eukaryotic translation initiation factor 5A (eIF5A) is a ubiquitous protein of eukaryotic and archaeal organisms which undergoes hypusination, a unique post-translational modification. We have generated a polyclonal antibody against murine eIF5A, which in immunocytochemical assays in B16-F10 cells revealed that the endogenous protein is preferentially localized to the nuclear region. We therefore analyzed possible structural features present in eIF5A proteins that could be responsible for that characteristic. Multiple sequence alignment analysis of eIF5A proteins from different eukaryotic and archaeal organisms showed that the former sequences have an extended N-terminal segment. We have then performed in silico prediction analyses and constructed different truncated forms of murine eIF5A to verify any possible role that the N-terminal extension might have in determining the subcellular localization of the eIF5A in eukaryotic organisms. Our results indicate that the N-terminal extension of the eukaryotic eIF5A contributes in signaling this protein to nuclear localization, despite of bearing no structural similarity with classical nuclear localization signals

  20. The translation factors of Drosophila melanogaster.

    Science.gov (United States)

    Marygold, Steven J; Attrill, Helen; Lasko, Paul

    2017-01-02

    Synthesis of polypeptides from mRNA (translation) is a fundamental cellular process that is coordinated and catalyzed by a set of canonical 'translation factors'. Surprisingly, the translation factors of Drosophila melanogaster have not yet been systematically identified, leading to inconsistencies in their nomenclature and shortcomings in functional (Gene Ontology, GO) annotations. Here, we describe the complete set of translation factors in D. melanogaster, applying nomenclature already in widespread use in other species, and revising their functional annotation. The collection comprises 43 initiation factors, 12 elongation factors, 3 release factors and 6 recycling factors, totaling 64 of which 55 are cytoplasmic and 9 are mitochondrial. We also provide an overview of notable findings and particular insights derived from Drosophila about these factors. This catalog, together with the incorporation of the improved nomenclature and GO annotation into FlyBase, will greatly facilitate access to information about the functional roles of these important proteins.

  1. Elevational characteristics of the archaeal community in full-scale activated sludge wastewater treatment plants at a 3,660-meter elevational scale.

    Science.gov (United States)

    Niu, Lihua; Zhang, Xue; Li, Yi; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Wang, Qing

    2017-07-01

    Due to the important roles of archaea in wastewater treatment processes, archaeal communities have been studied extensively in various anaerobic reactors, but the knowledge of archaeal communities in full-scale activated sludge wastewater treatment plants (WWTPs) remains quite poor. In this study, 454-pyrosequencing was for the first time employed to investigate archaeal communities from 20 full-scale activated sludge WWTPs distributed at a 3,660-meter elevational scale in China. Results showed that archaeal communities from WWTPs were dominated by Methanosarcinales (84.6%). A core archaeal population (94.5%) composed of Methanosaeta, Methanosarcina, Methanogenium and Methanobrevibacter was shared among WWTPs. The elevational pattern of archaeal communities was observed in WWTPs, with an elevational threshold associated with archaeal community richness and structures at approximately 1,500 meters above sea level (masl). A declining trend in community richness with increasing elevation was observed at higher elevations, whereas no trend was presented at lower elevations. Spearman correlation analysis indicated that the archaeal community richness at higher elevations was associated with more environmental variables than that at lower elevations. Redundancy analysis indicated that wastewater variables were the dominant contributors to the variation of community structures at higher elevations, followed by operational variables and elevation.

  2. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Influence of the number of elongated fiducial markers on the localization accuracy of the prostate

    International Nuclear Information System (INIS)

    De Boer, Johan; De Bois, Josien; Van Herk, Marcel; Sonke, Jan-Jakob

    2012-01-01

    Implanting fiducial markers for localization purposes has become an accepted practice in radiotherapy for prostate cancer. While many correction strategies correct for translations only, advanced correction protocols also require knowledge of the rotation of the prostate. For this purpose, typically, three or more markers are implanted. Elongated fiducial markers provide more information about their orientation than traditional round or cylindrical markers. Potentially, fewer markers are required. In this study, we evaluate the effect of the number of elongated markers on the localization accuracy of the prostate. To quantify the localization error, we developed a model that estimates, at arbitrary locations in the prostate, the registration error caused by translational and rotational uncertainties of the marker registration. Every combination of one, two and three markers was analysed for a group of 24 patients. The average registration errors at the prostate surface were 0.3–0.8 mm and 0.4–1 mm for registrations on, respectively, three markers and two markers located on different sides of the prostate. Substantial registration errors (2.0–2.2 mm) occurred at the prostate surface contralateral to the markers when two markers were implanted on the same side of the prostate or only one marker was used. In conclusion, there is no benefit in using three elongated markers: two markers accurately localize the prostate if they are implanted at some distance from each other. (paper)

  4. The Vertical Distribution of Sediment Archaeal Community in the “Black Bloom” Disturbing Zhushan Bay of Lake Taihu

    Science.gov (United States)

    Fan, Xianfang; Xing, Peng

    2016-01-01

    Using the Illumina sequencing technology, we investigated the vertical distribution of archaeal community in the sediment of Zhushan Bay of Lake Taihu, where the black bloom frequently occurred in summer. Overall, the Miscellaneous Crenarchaeotal Group (MCG), Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), and Methanobacterium dominated the archaeal community. However, we observed significant difference in composition of archaeal community among different depths of the sediment. DHVEG-6 dominated in the surface layer (0–3 cm) sediment. Methanobacterium was the dominating archaeal taxa in the L2 (3–6 cm) and L3 (6–10) sediment. MCG was most abundant in the L4 (10–15 cm) and L5 (15–20 cm) sediment. Besides, DHVEG-6 was significantly affected by the concentration of total phosphorus (TP). And loss on ignition (LOI) was an important environmental factor for Methanobacterium. As the typical archaeal taxa in the surface layer sediment, DHVEG-6 and Methanobacterium might be more adapted to abundant substrate supply from cyanobacterial blooms and take active part in the biomass transformation. We propose that DHVEG-6 and Methanobacterium could be the key archaeal taxa correlated with the “black bloom” formation in Zhushan Bay. PMID:26884723

  5. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    Science.gov (United States)

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-01-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats. PMID:27966673

  6. Response of archaeal communities in the rhizosphere of maize and soybean to elevated atmospheric CO2 concentrations.

    Directory of Open Access Journals (Sweden)

    David M Nelson

    Full Text Available BACKGROUND: Archaea are important to the carbon and nitrogen cycles, but it remains uncertain how rising atmospheric carbon dioxide concentrations ([CO(2] will influence the structure and function of soil archaeal communities. METHODOLOGY/PRINCIPAL FINDINGS: We measured abundances of archaeal and bacterial 16S rRNA and amoA genes, phylogenies of archaeal 16S rRNA and amoA genes, concentrations of KCl-extractable soil ammonium and nitrite, and potential ammonia oxidation rates in rhizosphere soil samples from maize and soybean exposed to ambient (∼385 ppm and elevated (550 ppm [CO(2] in a replicated and field-based study. There was no influence of elevated [CO(2] on copy numbers of archaeal or bacterial 16S rRNA or amoA genes, archaeal community composition, KCl-extractable soil ammonium or nitrite, or potential ammonia oxidation rates for samples from maize, a model C(4 plant. Phylogenetic evidence indicated decreased relative abundance of crenarchaeal sequences in the rhizosphere of soybean, a model leguminous-C(3 plant, at elevated [CO(2], whereas quantitative PCR data indicated no changes in the absolute abundance of archaea. There were no changes in potential ammonia oxidation rates at elevated [CO(2] for soybean. Ammonia oxidation rates were lower in the rhizosphere of maize than soybean, likely because of lower soil pH and/or abundance of archaea. KCl-extractable ammonium and nitrite concentrations were lower at elevated than ambient [CO(2] for soybean. CONCLUSION: Plant-driven shifts in soil biogeochemical processes in response to elevated [CO(2] affected archaeal community composition, but not copy numbers of archaeal genes, in the rhizosphere of soybean. The lack of a treatment effect for maize is consistent with the fact that the photosynthesis and productivity of maize are not stimulated by elevated [CO(2] in the absence of drought.

  7. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.

    Science.gov (United States)

    Bengtson, Per; Sterngren, Anna E; Rousk, Johannes

    2012-08-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.

  8. [Correlation of codon biases and potential secondary structures with mRNA translation efficiency in unicellular organisms].

    Science.gov (United States)

    Vladimirov, N V; Likhoshvaĭ, V A; Matushkin, Iu G

    2007-01-01

    Gene expression is known to correlate with degree of codon bias in many unicellular organisms. However, such correlation is absent in some organisms. Recently we demonstrated that inverted complementary repeats within coding DNA sequence must be considered for proper estimation of translation efficiency, since they may form secondary structures that obstruct ribosome movement. We have developed a program for estimation of potential coding DNA sequence expression in defined unicellular organism using its genome sequence. The program computes elongation efficiency index. Computation is based on estimation of coding DNA sequence elongation efficiency, taking into account three key factors: codon bias, average number of inverted complementary repeats, and free energy of potential stem-loop structures formed by the repeats. The influence of these factors on translation is numerically estimated. An optimal proportion of these factors is computed for each organism individually. Quantitative translational characteristics of 384 unicellular organisms (351 bacteria, 28 archaea, 5 eukaryota) have been computed using their annotated genomes from NCBI GenBank. Five potential evolutionary strategies of translational optimization have been determined among studied organisms. A considerable difference of preferred translational strategies between Bacteria and Archaea has been revealed. Significant correlations between elongation efficiency index and gene expression levels have been shown for two organisms (S. cerevisiae and H. pylori) using available microarray data. The proposed method allows to estimate numerically the coding DNA sequence translation efficiency and to optimize nucleotide composition of heterologous genes in unicellular organisms. http://www.mgs.bionet.nsc.ru/mgs/programs/eei-calculator/.

  9. Neurite outgrowth mediated by translation elongation factor eEF1A1: a target for antiplatelet agent cilostazol.

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    Full Text Available Cilostazol, a type-3 phosphodiesterase (PDE3 inhibitor, has become widely used as an antiplatelet drug worldwide. A recent second Cilostazol Stroke Prevention Study demonstrated that cilostazol is superior to aspirin for prevention of stroke after an ischemic stroke. However, its precise mechanisms of action remain to be determined. Here, we report that cilostazol, but not the PDE3 inhibitors cilostamide and milrinone, significantly potentiated nerve growth factor (NGF-induced neurite outgrowth in PC12 cells. Furthermore, specific inhibitors for the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP(3 receptors and several common signaling pathways (PLC-γ, PI3K, Akt, p38 MAPK, and c-Jun N-terminal kinase (JNK, and the Ras/Raf/ERK/MAPK significantly blocked the potentiation of NGF-induced neurite outgrowth by cilostazol. Using a proteomics analysis, we identified that levels of eukaryotic translation elongation factor eEF1A1 protein were significantly increased by treatment with cilostazol, but not cilostamide, in PC12 cells. Moreover, the potentiating effects of cilostazol on NGF-induced neurite outgrowth were significantly antagonized by treatment with eEF1A1 RNAi, but not the negative control of eEF1A1. These findings suggest that eEF1A1 and several common cellular signaling pathways might play a role in the mechanism of cilostazol-induced neurite outgrowth. Therefore, agents that can increase the eEF1A1 protein may have therapeutic relevance in diverse conditions with altered neurite outgrowth.

  10. Archaeal CRISPR-based immune systems

    DEFF Research Database (Denmark)

    Garrett, Roger A; Vestergaard, Gisle Alberg; Shah, Shiraz Ali

    2011-01-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-based immune systems are essentially modular with three primary functions: the excision and integration of new spacers, the processing of CRISPR transcripts to yield mature CRISPR RNAs (crRNAs), and the targeting and cleavage...... of foreign nucleic acid. The primary target appears to be the DNA of foreign genetic elements, but the CRISPR/Cmr system that is widespread amongst archaea also specifically targets and cleaves RNA in vitro. The archaeal CRISPR systems tend to be both diverse and complex. Here we examine evidence...... of CRISPR loci and the evidence for intergenomic exchange of CRISPR systems....

  11. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples.

    Science.gov (United States)

    Pires, Ana C C; Cleary, Daniel F R; Almeida, Adelaide; Cunha, Angela; Dealtry, Simone; Mendonça-Hagler, Leda C S; Smalla, Kornelia; Gomes, Newton C M

    2012-08-01

    Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages.

  12. Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome.

    Science.gov (United States)

    Lupatini, Manoeli; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Suleiman, Afnan Khalil Ahmad; Fulthorpe, Roberta R; Roesch, Luiz Fernando Würdig

    2013-02-01

    The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.

  13. Massive activation of archaeal defense genes during viral infection

    NARCIS (Netherlands)

    Quax, T.E.F.; Voet, M.; Sismeiro, O.; Dillies, M.A.; Jagla, B.; Coppée, J.Y.; Sezonov, G.; Forterre, P.; Oost, van der J.; Lavigne, R.; Prangishvili, D.

    2013-01-01

    Archaeal viruses display unusually high genetic and morphological diversity. Studies of these viruses proved to be instrumental for the expansion of knowledge on viral diversity and evolution. The Sulfolobus islandicus rod-shaped virus 2 (SIRV2) is a model to study virus-host interactions in

  14. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China.

    Science.gov (United States)

    Song, Zhao-Qi; Wang, Feng-Ping; Zhi, Xiao-Yang; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Tang, Shu-Kun; Jiang, Hong-Chen; Zhang, Chuanlun L; Dong, Hailiang; Li, Wen-Jun

    2013-04-01

    Thousands of hot springs are located in the north-eastern part of the Yunnan-Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2-8.6; temperature 47-96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene-pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus-Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non-acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non-acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Regulation of oxidative enzyme activity and eukaryotic elongation factor 2 in human skeletal muscle: influence of gender and exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Schjerling, P.; Vistisen, Bodil

    2005-01-01

    AIM: To investigate gender-related differences in the responses of oxidative enzymes and eukaryotic elongation factor-2 (eEF2) to exercise. METHODS: The influence of exercise (90 min, 60%VO(2peak)) on citrate synthase (CS) and beta-hydroxyacyl-CoA dehydrogenase (HAD) activity and mRNA content...... expression and phosphorylation were unaffected by training status (NS). CONCLUSION: Basal transcriptional, translational, and/or post-translational control of CS and HAD seems to be gender-dependent. Also, gender differences in translation and/or post-translational protein modification of CS occur during...... not differ between females and males (NS). In females only, CS activity was enhanced (P differ between UT and ET but, nevertheless, CS activity was 56% higher in ET than in UT volunteers (P

  16. Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Hussmann

    2015-12-01

    Full Text Available Ribosome profiling produces snapshots of the locations of actively translating ribosomes on messenger RNAs. These snapshots can be used to make inferences about translation dynamics. Recent ribosome profiling studies in yeast, however, have reached contradictory conclusions regarding the average translation rate of each codon. Some experiments have used cycloheximide (CHX to stabilize ribosomes before measuring their positions, and these studies all counterintuitively report a weak negative correlation between the translation rate of a codon and the abundance of its cognate tRNA. In contrast, some experiments performed without CHX report strong positive correlations. To explain this contradiction, we identify unexpected patterns in ribosome density downstream of each type of codon in experiments that use CHX. These patterns are evidence that elongation continues to occur in the presence of CHX but with dramatically altered codon-specific elongation rates. The measured positions of ribosomes in these experiments therefore do not reflect the amounts of time ribosomes spend at each position in vivo. These results suggest that conclusions from experiments in yeast using CHX may need reexamination. In particular, we show that in all such experiments, codons decoded by less abundant tRNAs were in fact being translated more slowly before the addition of CHX disrupted these dynamics.

  17. The Drosophila PNG kinase complex regulates the translation of cyclin B.

    Science.gov (United States)

    Vardy, Leah; Orr-Weaver, Terry L

    2007-01-01

    The Drosophila PAN GU (PNG) kinase complex regulates the developmental translation of cyclin B. cyclin B mRNA becomes unmasked during oogenesis independent of PNG activity, but PNG is required for translation from egg activation. We find that although polyadenylation of cyclin B augments translation, it is not essential, and a fully elongated poly(A) is not required for translation to proceed. In fact, changes in poly(A) tail length are not sufficient to account for PNG-mediated control of cyclin B translation and of the early embryonic cell cycles. We present evidence that PNG functions instead as an antagonist of PUMILIO-dependent translational repression. Our data argue that changes in poly(A) tail length are not a universal mechanism governing embryonic cell cycles, and that PNG-mediated derepression of translation is an important alternative mechanism in Drosophila.

  18. Non-equilibrium coupling of protein structure and function to translation-elongation kinetics.

    Science.gov (United States)

    Sharma, Ajeet K; O'Brien, Edward P

    2018-04-01

    Protein folding research has been dominated by the assumption that thermodynamics determines protein structure and function. And that when the folding process is compromised in vivo the proteostasis machinery-chaperones, deaggregases, the proteasome-work to restore proteins to their soluble, functional form or degrade them to maintain the cellular pool of proteins in a quasi-equilibrium state. During the past decade, however, more and more proteins have been identified for which altering only their speed of synthesis alters their structure and function, the efficiency of the down-stream processes they take part in, and cellular phenotype. Indeed, evidence has emerged that evolutionary selection pressures have encoded translation-rate information into mRNA molecules to coordinate diverse co-translational processes. Thus, non-equilibrium physics can play a fundamental role in influencing nascent protein behavior, mRNA sequence evolution, and disease. Here, we discuss how our understanding of this phenomenon is being advanced by the application of theoretical tools from the physical sciences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Advances toward DNA-based identification and phylogeny of North American Armillaria species using elongation factor-1 alpha gene

    Science.gov (United States)

    Amy L. Ross-Davis; John W. Hanna; Mee-Sook Kim; Ned B. Klopfenstein

    2012-01-01

    The translation elongation factor-1 alpha gene was used to examine the phylogenetic relationships among 30 previously characterized isolates representing ten North American Armillaria species: A. solidipes (=A. ostoyae), A. gemina, A. calvescens, A. sinapina, A. mellea, A. gallica, A. nabsnona, North American biological species X, A. cepistipes, and A. tabescens. The...

  20. Characterization of an archaeal two-component system that regulates methanogenesis in Methanosaeta harundinacea.

    Directory of Open Access Journals (Sweden)

    Jie Li

    Full Text Available Two-component signal transduction systems (TCSs are a major mechanism used by bacteria in response to environmental changes. Although many sequenced archaeal genomes encode TCSs, they remain poorly understood. Previously, we reported that a methanogenic archaeon, Methanosaeta harundinacea, encodes FilI, which synthesizes carboxyl-acyl homoserine lactones, to regulate transitions of cellular morphology and carbon metabolic fluxes. Here, we report that filI, the cotranscribed filR2, and the adjacent filR1 constitute an archaeal TCS. FilI possesses a cytoplasmic kinase domain (histidine kinase A and histidine kinase-like ATPase and its cognate response regulator. FilR1 carries a receiver (REC domain coupled with an ArsR-related domain with potential DNA-binding ability, while FilR2 carries only a REC domain. In a phosphorelay assay, FilI was autophosphorylated and specifically transferred the phosphoryl group to FilR1 and FilR2, confirming that the three formed a cognate TCS. Through chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR using an anti-FilR1 antibody, FilR1 was shown to form in vivo associations with its own promoter and the promoter of the filI-filR2 operon, demonstrating a regulatory pattern common among TCSs. ChIP-qPCR also detected FilR1 associations with key genes involved in acetoclastic methanogenesis, acs4 and acs1. Electrophoretic mobility shift assays confirmed the in vitro tight binding of FilR1 to its own promoter and those of filI-filR2, acs4, and mtrABC. This also proves the DNA-binding ability of the ArsR-related domain, which is found primarily in Archaea. The archaeal promoters of acs4, filI, acs1, and mtrABC also initiated FilR1-modulated expression in an Escherichia coli lux reporter system, suggesting that FilR1 can up-regulate both archaeal and bacterial transcription. In conclusion, this work identifies an archaeal FilI/FilRs TCS that regulates the methanogenesis of M. harundinacea.

  1. Mean of the typical decoding rates: a new translation efficiency index based on the analysis of ribosome profiling data.

    Science.gov (United States)

    Dana, Alexandra; Tuller, Tamir

    2014-12-01

    Gene translation modeling and prediction is a fundamental problem that has numerous biomedical implementations. In this work we present a novel, user-friendly tool/index for calculating the mean of the typical decoding rates that enables predicting translation elongation efficiency of protein coding genes for different tissue types, developmental stages, and experimental conditions. The suggested translation efficiency index is based on the analysis of the organism's ribosome profiling data. This index could be used for example to predict changes in translation elongation efficiency of lowly expressed genes that usually have relatively low and/or biased ribosomal densities and protein levels measurements, or can be used for example for predicting translation efficiency of new genetically engineered genes. We demonstrate the usability of this index via the analysis of six organisms in different tissues and developmental stages. Distributable cross platform application and guideline are available for download at: http://www.cs.tau.ac.il/~tamirtul/MTDR/MTDR_Install.html. Copyright © 2015 Dana and Tuller.

  2. Bending Elasticity Modulus of Giant Vesicles Composed of Aeropyrum Pernix K1 Archaeal Lipid

    Directory of Open Access Journals (Sweden)

    Julia Genova

    2015-03-01

    Full Text Available Thermally induced shape fluctuations were used to study elastic properties of giant vesicles composed of archaeal lipids C25,25-archetidyl (glucosyl inositol and C25,25-archetidylinositol isolated from lyophilised Aeropyrum pernix K1 cells. Giant vesicles were created by electroformation in pure water environment. Stroboscopic illumination using a xenon flash lamp was implemented to remove the blur effect due to the finite integration time of the camera and to obtain an instant picture of the fluctuating vesicle shape. The mean weighted value of the bending elasticity modulus kc of the archaeal membrane determined from the measurements meeting the entire set of qualification criteria was (1.89 ± 0.18 × 10−19 J, which is similar to the values obtained for a membrane composed of the eukaryotic phospholipids SOPC (1.88 ± 0.17 × 10−19 J and POPC (2.00 ± 0.21 ´ 10−19 J. We conclude that membranes composed of archaeal lipids isolated from Aeropyrum pernix K1 cells have similar elastic properties as membranes composed of eukaryotic lipids. This fact, together with the importance of the elastic properties for the normal circulation through blood system, provides further evidence in favor of expectations that archaeal lipids could be appropriate for the design of drug delivery systems.

  3. Thermophilic archaeal enzymes and applications in biocatalysis.

    Science.gov (United States)

    Littlechild, Jennifer A

    2011-01-01

    Thermophilic enzymes have advantages for their use in commercial applications and particularly for the production of chiral compounds to produce optically pure pharmaceuticals. They can be used as biocatalysts in the application of 'green chemistry'. The thermophilic archaea contain enzymes that have already been used in commercial applications such as the L-aminoacylase from Thermococcus litoralis for the resolution of amino acids and amino acid analogues. This enzyme differs from bacterial L-aminoacylases and has similarities to carboxypeptidases from other archaeal species. An amidase/γ-lactamase from Sulfolobus solfataricus has been used for the production of optically pure γ-lactam, the building block for antiviral carbocyclic nucleotides. This enzyme has similarities to the bacterial signature amidase family. An alcohol dehydrogenase from Aeropyrum pernix has been used for the production of optically pure alcohols and is related to the zinc-containing eukaryotic alcohol dehydrogenases. A transaminase and a dehalogenase from Sulfolobus species have also been studied. The archaeal transaminase is found in a pathway for serine synthesis which is found only in eukaryotes and not in bacteria. It can be used for the asymmetric synthesis of homochiral amines of high enantioselective purity. The L-2-haloacid dehalogenase has applications both in biocatalysis and in bioremediation. All of these enzymes have increased thermostability over their mesophilic counterparts.

  4. Distribution of Archaeal Communities along the Coast of the Gulf of Finland and Their Response to Oil Contamination

    Science.gov (United States)

    Yan, Lijuan; Yu, Dan; Hui, Nan; Naanuri, Eve; Viggor, Signe; Gafarov, Arslan; Sokolov, Sergei L.; Heinaru, Ain; Romantschuk, Martin

    2018-01-01

    The Baltic Sea is vulnerable to environmental changes. With the increasing shipping activities, the risk of oil spills remains high. Archaea are widely distributed in many environments. However, the distribution and the response of archaeal communities to oil contamination have rarely been investigated in brackish habitats. Hence, we conducted a survey to investigate the distribution, diversity, composition, and species interactions of indigenous archaeal communities at oil-contaminated sites along the coast of the Gulf of Finland (GoF) using high-throughput sequencing. Surface water and littoral sediment samples were collected at presumably oil-contaminated (oil distribution facilities) and clean sites along the coastline of the GoF in the winter 2015 and the summer 2016. Another three samples of open sea surface water were taken as offshore references. Of Archaea, Euryarchaeota dominated in the surface water and the littoral sediment of the coast of the GoF, followed by Crenarchaeota (including Thaumarchaeota, Thermoprotei, and Korarchaeota based on the Greengenes database used). The unclassified sequences accounted for 5.62% of the total archaeal sequences. Our study revealed a strong dependence of the archaeal community composition on environmental variables (e.g., salinity, pH, oil concentration, TOM, electrical conductivity, and total DNA concentration) in both littoral sediment and coastal water in the GoF. The composition of archaeal communities was season and ecosystem dependent. Archaea was highly diverse in the three ecosystems (littoral sediment, coastal water, and open sea water). Littoral sediment harbored the highest diversity of archaea. Oil was often detected in the littoral sediment but rarely detected in water at those presumably contaminated sites. Although the composition of archaeal community in the littoral sediment was sensitive to low-input oil contamination, the unchanged putative functional profiles and increased interconnectivity of the

  5. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile.

    Science.gov (United States)

    Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines

    2010-11-01

    Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Identification of a conserved archaeal RNA polymerase subunit contacted by the basal transcription factor TFB.

    Science.gov (United States)

    Magill, C P; Jackson, S P; Bell, S D

    2001-12-14

    Archaea possess two general transcription factors that are required to recruit RNA polymerase (RNAP) to promoters in vitro. These are TBP, the TATA-box-binding protein and TFB, the archaeal homologue of TFIIB. Thus, the archaeal and eucaryal transcription machineries are fundamentally related. In both RNAP II and archaeal transcription systems, direct contacts between TFB/TFIIB and the RNAP have been demonstrated to mediate recruitment of the polymerase to the promoter. However the subunit(s) directly contacted by these factors has not been identified. Using systematic yeast two-hybrid and biochemical analyses we have identified an interaction between the N-terminal domain of TFB and an evolutionarily conserved subunit of the RNA polymerase, RpoK. Intriguingly, homologues of RpoK are found in all three nuclear RNA polymerases (Rpb6) and also in the bacterial RNA polymerase (omega-subunit).

  7. Hyperthermophilic Archaeal Viruses as Novel Nanoplatforms

    DEFF Research Database (Denmark)

    Uldahl, Kristine Buch

    Viruses are the most abundant biological entities on earth, and with an estimated 1031 virus-like particles in the biosphere, viruses are virtually everywhere. Traditionally, the study of viruses has focused on their roles as infectious agents. However, over the last decades with the development...... presents an in depth investigation of the hyperthermophilic archaeal virus SMV. Decisive steps in the viral life-cycle are studied with focus on the early stages of infection. TEM observations suggest that SMV1 virions enter into host cells via a fusion entry mechanism, involving three distinct stages...

  8. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge

    Science.gov (United States)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-05-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  9. Role of the ribosomal P-site elements of m²G966, m⁵C967, and the S9 C-terminal tail in maintenance of the reading frame during translational elongation in Escherichia coli.

    Science.gov (United States)

    Arora, Smriti; Bhamidimarri, Satya Prathyusha; Weber, Michael H W; Varshney, Umesh

    2013-08-01

    The ribosomal P-site hosts the peptidyl-tRNAs during translation elongation. Which P-site elements support these tRNA species to maintain codon-anticodon interactions has remained unclear. We investigated the effects of P-site features of methylations of G966, C967, and the conserved C-terminal tail sequence of Ser, Lys, and Arg (SKR) of the S9 ribosomal protein in maintenance of the translational reading frame of an mRNA. We generated Escherichia coli strains deleted for the SKR sequence in S9 ribosomal protein, RsmB (which methylates C967), and RsmD (which methylates G966) and used them to translate LacZ from its +1 and -1 out-of-frame constructs. We show that the S9 SKR tail prevents both the +1 and -1 frameshifts and plays a general role in holding the P-site tRNA/peptidyl-tRNA in place. In contrast, the G966 and C967 methylations did not make a direct contribution to the maintenance of the translational frame of an mRNA. However, deletion of rsmB in the S9Δ3 background caused significantly increased -1 frameshifting at 37°C. Interestingly, the effects of the deficiency of C967 methylation were annulled when the E. coli strain was grown at 30°C, supporting its context-dependent role.

  10. Archaeal ribonuclease P proteins have potential for biotechnological applications where precise hybridization of nucleic acids is needed.

    Science.gov (United States)

    Miyanoshita, Mitsuru; Nakashima, Takashi; Kakuta, Yoshimitsu; Kimura, Makoto

    2015-01-01

    Fluorescence resonance energy transfer-based assay showed that archaeal ribonuclease P (RNase P) proteins significantly promoted DNA annealing and strand displacement. Moreover, we found that archaeal RNase P proteins could discriminate nucleotide exchanges in DNA chains via their activity accelerating DNA strand displacement, suggesting that they have potential for biotechnological application to genetic diagnosis.

  11. Synthesis of Elongated Microcapsules

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry; Calle, Luz M.

    2011-01-01

    One of the factors that influence the effectiveness of self-healing in functional materials is the amount of liquid healing agents that can be delivered to the damaged area. The use of hollow tubes or fibers and the more sophisticated micro-vascular networks has been proposed as a way to increase the amount of healing agents that can be released when damage is inflicted. Although these systems might be effective in some specific applications, they are not practical for coatings applications. One possible practical way to increase the healing efficiency is to use microcapsules with high-aspect-ratios, or elongated microcapsules. It is understood that elongated microcapsules will be more efficient because they can release more healing agent than a spherical microcapsule when a crack is initiated in the coating. Although the potential advantage of using elongated microcapsules for self healing applications is clear, it is very difficult to make elongated microcapsules from an emulsion system because spherical microcapsules are normally formed due to the interfacial tension between the dispersed phase and the continuous phase. This paper describes the two methods that have been developed by the authors to synthesize elongated microcapsules. The first method involves the use of an emulsion with intermediate stability and the second involves the application of mechanical shear conditions to the emulsion.

  12. The structure of an E. coli tRNAfMet A1-U72 variant shows an unusual conformation of the A1-U72 base pair.

    Science.gov (United States)

    Monestier, Auriane; Aleksandrov, Alexey; Coureux, Pierre-Damien; Panvert, Michel; Mechulam, Yves; Schmitt, Emmanuelle

    2017-05-01

    Translation initiation in eukaryotes and archaea involves a methionylated initiator tRNA delivered to the ribosome in a ternary complex with e/aIF2 and GTP. Eukaryotic and archaeal initiator tRNAs contain a highly conserved A 1 -U 72 base pair at the top of the acceptor stem. The importance of this base pair to discriminate initiator tRNAs from elongator tRNAs has been established previously using genetics and biochemistry. However, no structural data illustrating how the A 1 -U 72 base pair participates in the accurate selection of the initiator tRNAs by the translation initiation systems are available. Here, we describe the crystal structure of a mutant E. coli initiator tRNA f Met A 1 -U 72 , aminoacylated with methionine, in which the C 1 :A 72 mismatch at the end of the tRNA acceptor stem has been changed to an A 1 -U 72 base pair. Sequence alignments show that the mutant E. coli tRNA is a good mimic of archaeal initiator tRNAs. The crystal structure, determined at 2.8 Å resolution, shows that the A 1 -U 72 pair adopts an unusual arrangement. A 1 is in a syn conformation and forms a single H-bond interaction with U 72 This interaction requires protonation of the N1 atom of A 1 Moreover, the 5' phosphoryl group folds back into the major groove of the acceptor stem and interacts with the N7 atom of G 2 A possible role of this unusual geometry of the A 1 -U 72 pair in the recognition of the initiator tRNA by its partners during eukaryotic and archaeal translation initiation is discussed. © 2017 Monestier et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours

    International Nuclear Information System (INIS)

    Tomlinson, Victoria AL; Newbery, Helen J; Wray, Naomi R; Jackson, Juliette; Larionov, Alexey; Miller, William R; Dixon, J Michael; Abbott, Catherine M

    2005-01-01

    The tissue-specific translation elongation factor eEF1A2 was recently shown to be a potential oncogene that is overexpressed in ovarian cancer. Although there is no direct evidence for an involvement of eEF1A2 in breast cancer, the genomic region to which EEF1A2 maps, 20q13, is frequently amplified in breast tumours. We therefore sought to establish whether eEF1A2 expression might be upregulated in breast cancer. eEF1A2 is highly similar (98%) to the near-ubiquitously expressed eEF1A1 (formerly known as EF1-α) making analysis with commercial antibodies difficult. We have developed specific anti-eEF1A2 antibodies and used them in immunohistochemical analyses of tumour samples. We report the novel finding that although eEF1A2 is barely detectable in normal breast it is moderately to strongly expressed in two-thirds of breast tumours. This overexpression is strongly associated with estrogen receptor positivity. eEF1A2 should be considered as a putative oncogene in breast cancer that may be a useful diagnostic marker and therapeutic target for a high proportion of breast tumours. The oncogenicity of eEF1A2 may be related to its role in protein synthesis or to its potential non-canonical functions in cytoskeletal remodelling or apoptosis

  14. Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs

    Directory of Open Access Journals (Sweden)

    Bo Liang

    2018-04-01

    Full Text Available To get a better knowledge on how archaeal communities differ between the oil and aqueous phases and whether environmental factors promote substantial differences on microbial distributions among production wells, we analyzed archaeal communities in oil and aqueous phases from four high-temperature petroleum reservoirs (55–65°C by using 16S rRNA gene based 454 pyrosequencing. Obvious dissimilarity of the archaeal composition between aqueous and oil phases in each independent production wells was observed, especially in production wells with higher water cut, and diversity in the oil phase was much higher than that in the corresponding aqueous phase. Statistical analysis further showed that archaeal communities in oil phases from different petroleum reservoirs tended to be more similar, but those in aqueous phases were the opposite. In the high-temperature ecosystems, temperature as an environmental factor could have significantly affected archaeal distribution, and archaeal diversity raised with the increase of temperature (p < 0.05. Our results suggest that to get a comprehensive understanding of petroleum reservoirs microbial information both in aqueous and oil phases should be taken into consideration. The microscopic habitats of oil phase, technically the dispersed minuscule water droplets in the oil could be a better habitat that containing the indigenous microorganisms.

  15. Archaeal Diversity and CO2 Fixers in Carbonate-/Siliciclastic-Rock Groundwater Ecosystems

    Directory of Open Access Journals (Sweden)

    Cassandre Sara Lazar

    2017-01-01

    Full Text Available Groundwater environments provide habitats for diverse microbial communities, and although Archaea usually represent a minor fraction of communities, they are involved in key biogeochemical cycles. We analysed the archaeal diversity within a mixed carbonate-rock/siliciclastic-rock aquifer system, vertically from surface soils to subsurface groundwater including aquifer and aquitard rocks. Archaeal diversity was also characterized along a monitoring well transect that spanned surface land uses from forest/woodland to grassland and cropland. Sequencing of 16S rRNA genes showed that only a few surface soil-inhabiting Archaea were present in the groundwater suggesting a restricted input from the surface. Dominant groups in the groundwater belonged to the marine group I (MG-I Thaumarchaeota and the Woesearchaeota. Most of the groups detected in the aquitard and aquifer rock samples belonged to either cultured or predicted lithoautotrophs (e.g., Thaumarchaeota or Hadesarchaea. Furthermore, to target autotrophs, a series of 13CO2 stable isotope-probing experiments were conducted using filter pieces obtained after filtration of 10,000 L of groundwater to concentrate cells. These incubations identified the SAGMCG Thaumarchaeota and Bathyarchaeota as groundwater autotrophs. Overall, the results suggest that the majority of Archaea on rocks are fixing CO2, while archaeal autotrophy seems to be limited in the groundwater.

  16. Effect of soil properties and hydrology on Archaeal community composition in three temperate grasslands on peat

    DEFF Research Database (Denmark)

    Görres, Carolyn-Monika; Conrad, Ralf; Petersen, Søren O

    2013-01-01

    Grasslands established on drained peat soils are regarded as negligible methane (CH4) sources; however, they can still exhibit considerable soil CH4 dynamics. We investigated archaeal community composition in two different fen peat soils and one bog peat soil under permanent grassland in Denmark........ Overall, there seemed to be a significant coupling between peat type and archaeal community composition, with local hydrology modifying the strength of this coupling....

  17. Specificity and Function of Archaeal DNA Replication Initiator Proteins

    Directory of Open Access Journals (Sweden)

    Rachel Y. Samson

    2013-02-01

    Full Text Available Chromosomes with multiple DNA replication origins are a hallmark of Eukaryotes and some Archaea. All eukaryal nuclear replication origins are defined by the origin recognition complex (ORC that recruits the replicative helicase MCM(2-7 via Cdc6 and Cdt1. We find that the three origins in the single chromosome of the archaeon Sulfolobus islandicus are specified by distinct initiation factors. While two origins are dependent on archaeal homologs of eukaryal Orc1 and Cdc6, the third origin is instead reliant on an archaeal Cdt1 homolog. We exploit the nonessential nature of the orc1-1 gene to investigate the role of ATP binding and hydrolysis in initiator function in vivo and in vitro. We find that the ATP-bound form of Orc1-1 is proficient for replication and implicates hydrolysis of ATP in downregulation of origin activity. Finally, we reveal that ATP and DNA binding by Orc1-1 remodels the protein’s structure rather than that of the DNA template.

  18. Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein.

    Science.gov (United States)

    Defeu Soufo, Hervé Joël; Reimold, Christian; Linne, Uwe; Knust, Tobias; Gescher, Johannes; Graumann, Peter L

    2010-02-16

    We show that translation initiation factor EF-Tu plays a second important role in cell shape maintenance in the bacterium Bacillus subtilis. EF-Tu localizes in a helical pattern underneath the cell membrane and colocalizes with MreB, an actin-like cytoskeletal element setting up rod cell shape. The localization of MreB and of EF-Tu is interdependent, but in contrast to the dynamic MreB filaments, EF-Tu structures are more static and may serve as tracks for MreB filaments. In agreement with this idea, EF-Tu and MreB interact in vivo and in vitro. Lowering of the EF-Tu levels had a minor effect on translation but a strong effect on cell shape and on the localization of MreB, and blocking of the function of EF-Tu in translation did not interfere with the localization of MreB, showing that, directly or indirectly, EF-Tu affects the cytoskeletal MreB structure and thus serves two important functions in a bacterium.

  19. Translation initiation in bacterial polysomes through ribosome loading on a standby site on a highly translated mRNA

    Science.gov (United States)

    Andreeva, Irena

    2018-01-01

    During translation, consecutive ribosomes load on an mRNA and form a polysome. The first ribosome binds to a single-stranded mRNA region and moves toward the start codon, unwinding potential mRNA structures on the way. In contrast, the following ribosomes can dock at the start codon only when the first ribosome has vacated the initiation site. Here we show that loading of the second ribosome on a natural 38-nt-long 5′ untranslated region of lpp mRNA, which codes for the outer membrane lipoprotein from Escherichia coli, takes place before the leading ribosome has moved away from the start codon. The rapid formation of this standby complex depends on the presence of ribosomal proteins S1/S2 in the leading ribosome. The early recruitment of the second ribosome to the standby site before translation by the leading ribosome and the tight coupling between translation elongation by the first ribosome and the accommodation of the second ribosome can contribute to high translational efficiency of the lpp mRNA. PMID:29632209

  20. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Supercritical fluid extraction (SFE was used in the analysis of bacterial respiratory quinone (RQ, bacterial phospholipid fatty acid (PLFA, and archaeal phospholipid ether lipid (PLEL from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC. Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS. The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile.

  1. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 genome editing enhances antiviral response in porcine cells

    Science.gov (United States)

    Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...

  2. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Trans-acting translational regulatory RNA binding proteins.

    Science.gov (United States)

    Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E

    2018-05-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.

  4. Elongational viscosity of narrow molar mass distribution polystyrene

    DEFF Research Database (Denmark)

    Bach, Anders; Almdal, Kristoffer; Rasmussen, Henrik Koblitz

    2003-01-01

    Transient and steady elongational viscosity has been measured for two narrow molar mass distribution polystyrene melts of molar masses 200 000 and 390 000 by means of a filament stretching rheometer. Total Hencky strains of about five have been obtained. The transient elongational viscosity rises...... above the linear viscoelastic prediction at intermediate strains, indicating strain hardening. The steady elongational viscosities are monotone decreasing functions of elongation rate. At elongation rates larger than the inverse reptation time, the steady elongational viscosity scales linearly...

  5. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil.

    Science.gov (United States)

    Lynn, Tin Mar; Liu, Qiong; Hu, Yajun; Yuan, Hongzhao; Wu, Xiaohong; Khai, Aye Aye; Wu, Jinshui; Ge, Tida

    2017-07-01

    Studying shifts in microbial communities under different land use can help in determining the impact of land use on microbial diversity. In this study, we analyzed four different land-use types to determine their bacterial and archaeal diversity and abundance. Three natural ecosystems, that is, wetland (WL), grassland (GL), and forest (FR) soils, and one agricultural soil, that is, tea plantation (TP) soil, were investigated to determine how land use shapes bacterial and archaeal diversity. For this purpose, molecular analyses, such as quantitative polymerase chain reaction (Q-PCR), 16S rRNA gene sequencing, and terminal restriction fragment length polymorphism (T-RFLP), were used. Soil physicochemical properties were determined, and statistical analyses were performed to identify the key factors affecting microbial diversity in these soils. Phylogenetic affiliations determined using the Ribosomal Database Project (RDP) database and T-RFLP revealed that the soils had differing bacterial diversity. WL soil was rich in only Proteobacteria, whereas GR soil was rich in Proteobacteria, followed by Actinobacteria. FR soil had higher abundance of Chloroflexi species than these soils. TP soil was rich in Actinobacteria, followed by Chloroflexi, Acidobacteria, Proteobacteria, and Firmicutes. The archaeal diversity of GL and FR soils was similar in that most of their sequences were closely related to Nitrososphaerales (Thaumarchaeota phylum). In contrast, WL soil, followed by TP soil, had greater archaeal diversity than other soils. Eight different archaeal classes were found in WL soil, and Pacearchaeota class was the richest one. The abundance of bacterial and archaeal 16S rRNA gene copies in WL and GL soils was significantly higher than that in FR and TP soils. Redundancy analysis showed that bacterial diversity was influenced by abiotic factors, e.g., total organic carbon and pH, whereas total nitrogen, pH, and cation exchange capacity (CEC) significantly affected

  6. The ribosome uses two active mechanisms to unwind messenger RNA during translation.

    Science.gov (United States)

    Qu, Xiaohui; Wen, Jin-Der; Lancaster, Laura; Noller, Harry F; Bustamante, Carlos; Tinoco, Ignacio

    2011-07-06

    The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs. ©2011 Macmillan Publishers Limited. All rights reserved

  7. Shifts in phylogenetic diversity of archaeal communities in mangrove sediments at different sites and depths in southeastern Brazil.

    Science.gov (United States)

    Mendes, Lucas William; Taketani, Rodrigo Gouvêa; Navarrete, Acácio Aparecido; Tsai, Siu Mui

    2012-06-01

    This study focused on the structure and composition of archaeal communities in sediments of tropical mangroves in order to obtain sufficient insight into two Brazilian sites from different locations (one pristine and another located in an urban area) and at different depth levels from the surface. Terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene fragments was used to scan the archaeal community structure, and 16S rRNA gene clone libraries were used to determine the community composition. Redundancy analysis of T-RFLP patterns revealed differences in archaeal community structure according to location, depth and soil attributes. Parameters such as pH, organic matter, potassium and magnesium presented significant correlation with general community structure. Furthermore, phylogenetic analysis revealed a community composition distributed differently according to depth where, in shallow samples, 74.3% of sequences were affiliated with Euryarchaeota and 25.7% were shared between Crenarchaeota and Thaumarchaeota, while for the deeper samples, 24.3% of the sequences were affiliated with Euryarchaeota and 75.7% with Crenarchaeota and Thaumarchaeota. Archaeal diversity measurements based on 16S rRNA gene clone libraries decreased with increasing depth and there was a greater difference between depths (25% of sequences shared). Taken together, our findings indicate that mangrove ecosystems support a diverse archaeal community; it might possibly be involved in nutrient cycles and are affected by sediment properties, depth and distinct locations. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. A site-specific endonuclease encoded by a typical archaeal intron

    DEFF Research Database (Denmark)

    Dalgaard, Jacob; Garrett, Roger Antony; Belfort, Malene

    1993-01-01

    The protein encoded by the archaeal intron in the 23S rRNA gene of the hyperthermophile Desulfurococcus mobilis is a double-strand DNase that, like group I intron homing endonucleases, is capable of cleaving an intronless allele of the gene. This enzyme, I-Dmo I, is unusual among the intron...

  9. Elongational viscosity of multiarm (Pom-Pom) polystyrene

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Almdal, Kristoffer

    2006-01-01

    -Pom was estimated to have 2.5 arms on average, while the estimate is 3.3 for the asymmetric star. The molar mass of each arm is about 27 kg/mol. The melts were characterized in the linear viscoelastic regime and in non-linear elongational rheometry. The transient elongational viscosity for the Pom-Pom molecule...... it corresponds well with an estimate of the maximum stretchability of the backbone. Time-strain separability was not observed for the 'Asymmetric star' molecule at the elongation rates investigated. The transient elongational viscosity for the 'Pom-Pom' molecule went through a reproducible maximum...... in the viscosity at the highest elongational rate....

  10. Global occurrence of archaeal amoA genes in terrestrial hot springs.

    Science.gov (United States)

    Zhang, Chuanlun L; Ye, Qi; Huang, Zhiyong; Li, Wenjun; Chen, Jinquan; Song, Zhaoqi; Zhao, Weidong; Bagwell, Christopher; Inskeep, William P; Ross, Christian; Gao, Lei; Wiegel, Juergen; Romanek, Christopher S; Shock, Everett L; Hedlund, Brian P

    2008-10-01

    Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86 degrees C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were

  11. Global Occurrence of Archaeal amoA Genes in Terrestrial Hot Springs▿

    Science.gov (United States)

    Zhang, Chuanlun L.; Ye, Qi; Huang, Zhiyong; Li, WenJun; Chen, Jinquan; Song, Zhaoqi; Zhao, Weidong; Bagwell, Christopher; Inskeep, William P.; Ross, Christian; Gao, Lei; Wiegel, Juergen; Romanek, Christopher S.; Shock, Everett L.; Hedlund, Brian P.

    2008-01-01

    Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86°C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were

  12. Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours

    Directory of Open Access Journals (Sweden)

    Miller William R

    2005-09-01

    Full Text Available Abstract Background The tissue-specific translation elongation factor eEF1A2 was recently shown to be a potential oncogene that is overexpressed in ovarian cancer. Although there is no direct evidence for an involvement of eEF1A2 in breast cancer, the genomic region to which EEF1A2 maps, 20q13, is frequently amplified in breast tumours. We therefore sought to establish whether eEF1A2 expression might be upregulated in breast cancer. Methods eEF1A2 is highly similar (98% to the near-ubiquitously expressed eEF1A1 (formerly known as EF1-α making analysis with commercial antibodies difficult. We have developed specific anti-eEF1A2 antibodies and used them in immunohistochemical analyses of tumour samples. We report the novel finding that although eEF1A2 is barely detectable in normal breast it is moderately to strongly expressed in two-thirds of breast tumours. This overexpression is strongly associated with estrogen receptor positivity. Conclusion eEF1A2 should be considered as a putative oncogene in breast cancer that may be a useful diagnostic marker and therapeutic target for a high proportion of breast tumours. The oncogenicity of eEF1A2 may be related to its role in protein synthesis or to its potential non-canonical functions in cytoskeletal remodelling or apoptosis.

  13. Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

    Science.gov (United States)

    Koga, Yosuke

    2012-01-01

    The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1) the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2) the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3) the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.” PMID:22927779

  14. Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Yosuke Koga

    2012-01-01

    Full Text Available The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1 the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2 the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3 the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.”

  15. Cooperative RNP assembly: Complementary rescue of structural defects by protein and RNA subunits of archaeal RNase P

    Science.gov (United States)

    Chen, Wen-Yi; Xu, Yiren; Cho, I-Ming; Oruganti, Sri Vidya; Foster, Mark P.; Gopalan, Venkat

    2011-01-01

    RNase P is a ribonucleoprotein (RNP) complex that utilizes a Mg2+-dependent RNA catalyst to cleave the 5′-leader of precursor tRNAs (pre-tRNAs) and generate mature tRNAs. The bacterial RNase P protein (RPP) aids RNase P RNA (RPR) catalysis by promoting substrate binding, Mg2+ coordination, and product release. Archaeal RNase P comprises an RPR and at least four RPPs, which have eukaryal homologs and function as two binary complexes (POP5•RPP30 and RPP21•RPP29). In this study, we employed a previously characterized substrate-enzyme conjugate [pre-tRNATyr-Methanocaldococcus jannaschii (Mja) RPR] to investigate the functional role of a universally conserved uridine in a bulge-helix structure in archaeal RPRs. Deletion of this bulged uridine resulted in an 80-fold decrease in the self-cleavage rate of pre-tRNATyr-MjaΔU RPR compared to the wildtype, and this defect was partially ameliorated upon addition of either RPP pair. The catalytic defect in the archaeal mutant RPR mirrors that reported in a bacterial RPR and highlights a parallel in their active sites. Furthermore, an N-terminal deletion mutant of Pyrococcus furiosus (Pfu) RPP29 that is defective in assembling with its binary partner RPP21, as assessed by isothermal titration calorimetry and NMR spectroscopy, is functional when reconstituted with the cognate Pfu RPR. Collectively, these results indicate that archaeal RPPs are able to compensate for structural defects in their cognate RPR and vice-versa, and provide striking examples of the cooperative subunit interactions critical for driving archaeal RNase P towards its functional conformation. (236 words) PMID:21683084

  16. Characterizing the metatranscriptomic profile of archaeal metabolic genes at deep-sea hydrothermal vents in the Mid-Cayman Rise

    Science.gov (United States)

    Galambos, D.; Reveillaud, J. C.; Anderson, R.; Huber, J. A.

    2017-12-01

    Deep-sea hydrothermal vent systems host a wide diversity of bacteria, archaea and viruses. Although the geochemical conditions at these vents are well-documented, the relative metabolic activity of microbial lineages, especially among archaea, remains poorly characterized. The deep, slow-spreading Mid-Cayman Rise, which hosts the mafic-influenced Piccard and ultramafic-influenced Von Damm vent fields, allows for the comparison of vent sites with different geochemical characteristics. Previous metagenomic work indicated that despite the distinct geochemistry at Von Damm and Piccard, the functional profile of microbial communities between the two sites was similar. We examined relative metabolic gene activity using a metatranscriptomic analysis and observed functional similarity between Von Damm and Piccard, which is consistent with previous results. Notably, the relative expression of the methyl-coenzyme M reductase (mcr) gene was elevated in both vent fields. Additionally, we analyzed the ratio of RNA expression to DNA abundance of fifteen archaeal metagenome-assembled genomes (MAGs) across the two fields. Previous work showed higher archaeal diversity at Von Damm; our results indicate relatively even expression among archaeal lineages at Von Damm. In contrast, we observed lower archaeal diversity at Piccard, but individual archaeal lineages were very highly expressed; Thermoprotei showed elevated transcriptional activity, which is consistent with higher temperatures and sulfur levels at Piccard. At both Von Damm and Piccard, specific Methanococcus lineages were more highly expressed than others. Future analyses will more closely examine metabolic genes in these Methanococcus MAGs to determine why some lineages are more active at a vent field than others. We will conduct further statistical analyses to determine whether significant differences exist between Von Damm and Piccard and whether there are correlations between geochemical metadata and metabolic gene or

  17. Aphidicolin-induced nuclear elongation in tobacco BY-2 cells.

    Science.gov (United States)

    Yasuhara, Hiroki; Kitamoto, Kazuki

    2014-05-01

    Plant nuclei are known to differentiate into various shapes within a single plant. However, little is known about the mechanisms of nuclear morphogenesis. We found that nuclei of tobacco BY-2 cells were highly elongated on long-term treatment with 5 mg l⁻¹ aphidicolin, an inhibitor of DNA polymerase α. In aphidicolin-treated cells, the nuclear length was correlated with the cell length. During culture in the presence of aphidicolin, the nuclei were elongated in parallel with cell elongation. Nuclear elongation was inhibited by the inhibition of cell elongation with 2,6-dichlorobenzonitrile, a cellulose synthesis inhibitor. However, cell elongation induced in the auxin-depleted medium in the absence of aphidicolin did not cause nuclear elongation, indicating that cell elongation alone is not sufficient for nuclear elongation. Treatment with either latrunculin B or propyzamide inhibited the aphidicolin-induced nuclear elongation, indicating that both actin filaments and microtubules (MTs) are required for nuclear elongation. Observations using BY-YTHCLR2 cells, in which actin filaments, MTs and nuclei were simultaneously visualized, revealed that the longitudinally arranged MT bundles associated with the nucleus play an important role in nuclear elongation, and that actin filaments affect the formation of these MT bundles. In aphidicolin-treated cells, the nuclear DNA contents of the elongated nuclei exceeded 4C, and the nuclear length was highly correlated with the nuclear DNA content. In cells treated with 50 mg l⁻¹ aphidicolin, cells were elongated and nucleus-associated longitudinal MT bundles were formed, but the nuclear DNA contents did not exceed 4C and the nuclei did not elongate. These results indicate that an increase in the nuclear DNA content above 4C is also required for nuclear elongation.

  18. Archaeal viruses of the sulfolobales

    DEFF Research Database (Denmark)

    Erdmann, Susanne; Garrett, Roger Antony

    2015-01-01

    in CRISPR loci of Sulfolobus species from a second coinfecting conjugative plasmid or virus (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012; Erdmann et al. Mol Microbiol 91:900-917, 2014). Here we describe, firstly, the isolation of archaeal virus mixtures from terrestrial hot springs...... with an environmental virus mixture isolated from Yellowstone National Park (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012). Experimental studies of isolated genetic elements from this mixture revealed that SMV1 (S ulfolobus Monocauda Virus 1), a tailed spindle-shaped virus, can induce spacer acquisition...... and the techniques used both to infect laboratory strains with these virus mixtures and to obtain purified virus particles. Secondly, we present the experimental conditions required for activating SMV1-induced spacer acquisition in two different Sulfolobus species....

  19. Plant cell wall polysaccharide analysis during cell elongation

    DEFF Research Database (Denmark)

    Guo, Xiaoyuan

    Plant cell walls are complex structures whose composition and architecture are important to various cellular activities. Plant cell elongation requires a high level of rearrangement of the cell wall polymers to enable cell expansion. However, the cell wall polysaccharides dynamics during plant cell...... elongation is poorly understood. This PhD project aims to elucidate the cell wall compositional and structural change during cell elongation by using Comprehensive Microarray Polymer Profiling (CoMPP), microscopic techniques and molecular modifications of cell wall polysaccharide. Developing cotton fibre......, pea and Arabidopsis thaliana were selected as research models to investigate different types of cell elongation, developmental elongation and tropism elongation. A set of comprehensive analysis covering 4 cotton species and 11 time points suggests that non-cellulosic polysaccharides contribute...

  20. Respons of archaeal communities in beach sediments to spilled oil and bioremediation.

    NARCIS (Netherlands)

    Roling, W.F.M.; Couo de Brito, I.R.; Swannell, R.P.J.; Head, I.M.

    2004-01-01

    While the contribution of Bacteria to bioremediation of oil-contaminated shorelines is well established, the response of Archaea to spilled oil and bioremediation treatments is unknown. The relationship between archaeal community structure and oil spill bioremediation was examined in laboratory

  1. Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs.

    Science.gov (United States)

    Pearson, Ann; Pi, Yundan; Zhao, Weidong; Li, WenJun; Li, Yiliang; Inskeep, William; Perevalova, Anna; Romanek, Christopher; Li, Shuguang; Zhang, Chuanlun L

    2008-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87 degrees C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX(86) paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies.

  2. Factors Controlling the Distribution of Archaeal Tetraethers in Terrestrial Hot Springs▿

    Science.gov (United States)

    Pearson, Ann; Pi, Yundan; Zhao, Weidong; Li, WenJun; Li, Yiliang; Inskeep, William; Perevalova, Anna; Romanek, Christopher; Li, Shuguang; Zhang, Chuanlun L.

    2008-01-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87°C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX86 paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies. PMID:18390673

  3. Archaeal community changes in Lateglacial lake sediments: Evidence from ancient DNA

    Science.gov (United States)

    Ahmed, Engy; Parducci, Laura; Unneberg, Per; Ågren, Rasmus; Schenk, Frederik; Rattray, Jayne E.; Han, Lu; Muschitiello, Francesco; Pedersen, Mikkel W.; Smittenberg, Rienk H.; Yamoah, Kweku Afrifa; Slotte, Tanja; Wohlfarth, Barbara

    2018-02-01

    The Lateglacial/early Holocene sediments from the ancient lake at Hässeldala Port, southern Sweden provide an important archive for the environmental and climatic shifts at the end of the last ice age and the transition into the present Interglacial. The existing multi-proxy data set highlights the complex interplay of physical and ecological changes in response to climatic shifts and lake status changes. Yet, it remains unclear how microorganisms, such as Archaea, which do not leave microscopic features in the sedimentary record, were affected by these climatic shifts. Here we present the metagenomic data set of Hässeldala Port with a special focus on the abundance and biodiversity of Archaea. This allows reconstructing for the first time the temporal succession of major Archaea groups between 13.9 and 10.8 ka BP by using ancient environmental DNA metagenomics and fossil archaeal cell membrane lipids. We then evaluate to which extent these findings reflect physical changes of the lake system, due to changes in lake-water summer temperature and seasonal lake-ice cover. We show that variations in archaeal composition and diversity were related to a variety of factors (e.g., changes in lake water temperature, duration of lake ice cover, rapid sediment infilling), which influenced bottom water conditions and the sediment-water interface. Methanogenic Archaea dominated during the Allerød and Younger Dryas pollen zones, when the ancient lake was likely stratified and anoxic for large parts of the year. The increase in archaeal diversity at the Younger Dryas/Holocene transition is explained by sediment infilling and formation of a mire/peatbog.

  4. Novel archaeal plasmid pAH1 and its interactions with the lipothrixvirus AFV1

    DEFF Research Database (Denmark)

    Basta, Tamara; Smyth, John; Forterre, Patrick

    2009-01-01

    . Although nucleotide sequence comparisons revealed extensive intergenomic exchange during the evolution of archaeal conjugative plasmids, pAH1 was shown to be stably maintained suggesting that the host system is suitable for studying plasmid-virus interactions. AFV1 infection and propagation leads to a loss...... of the circular form of pAH1 and this effect correlates positively with the increase in the intracellular quantity of AFV1 DNA. We infer that the virus inhibits plasmid replication since no pAH1 degradation was observed. This mechanism of archaeal viral inhibition of plasmid propagation is not observed...... in bacteria where relevant bacteriophages either are dependent on a conjugative plasmid for successful infection or are excluded by a resident plasmid....

  5. Archaeal Viruses Multiply: Temporal Screening in a Solar Saltern

    Directory of Open Access Journals (Sweden)

    Nina S. Atanasova

    2015-04-01

    Full Text Available Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010. Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26. This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment.

  6. Archaeal viruses multiply: temporal screening in a solar saltern.

    Science.gov (United States)

    Atanasova, Nina S; Demina, Tatiana A; Buivydas, Andrius; Bamford, Dennis H; Oksanen, Hanna M

    2015-04-10

    Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010). Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses) was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses) were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26). This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment.

  7. Loss of elongation factor P disrupts bacterial outer membrane integrity

    DEFF Research Database (Denmark)

    Zou, S Betty; Hersch, Steven J; Roy, Hervé

    2012-01-01

    background ameliorates the detergent, antibiotic, and osmosensitivity phenotypes and restores wild-type permeability to NPN. Our data support a role for EF-P in the translational regulation of a limited number of proteins that, when perturbed, renders the cell susceptible to stress by the adventitious......Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants......, Salmonella strains lacking EF-P display increased susceptibility to hypoosmotic conditions, antibiotics, and detergents and enhanced resistance to the compound S-nitrosoglutathione. The susceptibility phenotypes are largely explained by the enhanced membrane permeability of the efp mutant, which exhibits...

  8. Methodology for the analysis of transcription and translation in transcription-coupled-to-translation systems in vitro.

    Science.gov (United States)

    Castro-Roa, Daniel; Zenkin, Nikolay

    2015-09-15

    The various properties of RNA polymerase (RNAP) complexes with nucleic acids during different stages of transcription involve various types of regulation and different cross-talk with other cellular entities and with fellow RNAP molecules. The interactions of transcriptional apparatus with the translational machinery have been focused mainly in terms of outcomes of gene expression, whereas the study of the physical interaction of the ribosome and the RNAP remains obscure partly due to the lack of a system that allows such observations. In this article we will describe the methodology needed to set up a pure, transcription-coupled-to-translation system in which the translocation of the ribosome can be performed in a step-wise manner towards RNAP allowing investigation of the interactions between the two machineries at colliding and non-colliding distances. In the same time RNAP can be put in various types of states, such as paused, roadblocked, backtracked, etc. The experimental system thus allows studying the effects of the ribosome on different aspects of transcription elongation and the effects by RNAP on translation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    Science.gov (United States)

    Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  10. Trade studies of plasma elongation for next-step tokamaks

    International Nuclear Information System (INIS)

    Galambos, J.D.; Strickler, D.J.; Peng, Y.K.M.; Reid, R.L.

    1988-09-01

    The effect of elongation on minimum-cost devices is investigated for elongations ranging from 2 to 3. The analysis, carried out with the TETRA tokamak systems code, includes the effects of elongation on both physics (plasma beta limit) and engineering (poloidal field coil currents) issues. When ignition is required, the minimum cost occurs for elongations from 2.3 to 2.9, depending on the plasma energy confinement scaling used. Scalings that include favorable plasma current dependence and/or degradation with fusion power tend to have minimum cost at higher elongation (2.5-2.9); scalings that depend primarily on size result in lower elongation (/approximately/2.3) for minimum cost. For design concepts that include steady-state current-driven operation, minimum cost occurs at an elongation of 2.3. 12 refs., 13 figs

  11. Mechanism and function of the chaperonin from Methanococcus maripaludis: implications for archaeal protein homeostasis and energy production

    Energy Technology Data Exchange (ETDEWEB)

    frydman, judith

    2018-03-23

    Archaea offer a potentially cost effective and renewable source of energy. The methanogen M. maripaludis, a fast growing archaea that obtains energy by sequestering H2 and reducing CO2 to methane by the methanogenic pathway, is an attractive source for biofuel production. More recently, it has also been suggested that the methanogenesis pathway could be run in reverse, to produce H2 growing the organism in formate. A multi-level understanding of archaeal protein homeostasis, should be instrumental for improving the functionality and design of the enzyme pathways and complexes involved in energy production and storage. One additional importance consequence of a better understanding of archaeal protein homeostasis will be to increase their stress resistance, since their utilization for the efficient large-scale production of methane (and eventually also of H2) requires that the organisms are resistance to a range of growth conditions. This proposal was focused on understanding how archaea achieve protein folding and assembly and maintain protein homeostasis, which are essential for function and viability. We hypothesize that the homo-oligomeric ring shaped chaperonin from M. maripaludis, Mm-Cpn, is central to achaeal protein homeostasis and assists folding of a wide spectrum of metabolic, structural and regulatory archaeal proteins. Through a combination of biochemistry, systems biology, computational and structural biology, we have been testing this hypothesis through two complementary efforts: (i) identify the archaeal substrate repertoire of Mm-Cpn, and (ii) define mechanistic and structural principles of Mm-Cpn mediated protein folding.

  12. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  13. Archaeal MCM Proteins as an Analog for the Eukaryotic Mcm2–7 Helicase to Reveal Essential Features of Structure and Function

    Science.gov (United States)

    Miller, Justin M.; Enemark, Eric J.

    2015-01-01

    In eukaryotes, the replicative helicase is the large multisubunit CMG complex consisting of the Mcm2–7 hexameric ring, Cdc45, and the tetrameric GINS complex. The Mcm2–7 ring assembles from six different, related proteins and forms the core of this complex. In archaea, a homologous MCM hexameric ring functions as the replicative helicase at the replication fork. Archaeal MCM proteins form thermostable homohexamers, facilitating their use as models of the eukaryotic Mcm2–7 helicase. Here we review archaeal MCM helicase structure and function and how the archaeal findings relate to the eukaryotic Mcm2–7 ring. PMID:26539061

  14. ENERGY-TRANSDUCING PROPERTIES OF PRIMARY PROTON PUMPS RECONSTITUTED INTO ARCHAEAL BIPOLAR LIPID VESICLES

    NARCIS (Netherlands)

    ELFERINK, MGL; DEWIT, JG; DRIESSEN, AJM; KONINGS, WN; Elferink, Marieke G.L.

    1993-01-01

    Archaeal lipids differ considerably from eubacterial and eukaryotic lipids in their structure and physical properties. From the membranes of the extreme thermophilic archaea Sulfolobus acidocaldarius a tetraether lipid fraction was isolated, which can form closed and stable monolayer liposomes in

  15. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    Directory of Open Access Journals (Sweden)

    Pedro R Frade

    Full Text Available Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%. About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater, host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  16. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    NARCIS (Netherlands)

    Frade, P.R.; Roll, K.; Bergauer, K.; Herndl, G.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associatedwith the surface mucus layer of corals have rarely taken place. It has thereforeremained enigmatic whether mucus-associated archaeal and bacterial communities exhibita similar specificity towards coral hosts

  17. Bacterial and archaeal communities in sediments of the north Chinese marginal seas.

    Science.gov (United States)

    Liu, Jiwen; Liu, Xiaoshou; Wang, Min; Qiao, Yanlu; Zheng, Yanfen; Zhang, Xiao-Hua

    2015-07-01

    Microbial communities of the Chinese marginal seas have rarely been reported. Here, bacterial and archaeal community structures and abundance in the surface sediment of four sea areas including the Bohai Sea (BS), North Yellow Sea (NYS), South Yellow Sea (SYS), and the north East China Sea (NECS) were surveyed by 16S ribosomal RNA (rRNA) gene pyrosequencing and quantitative PCR. The results showed that microbial communities of the four geographic areas were distinct from each other at the operational taxonomic unit (OTU) level, whereas the microbial communities of the BS, NYS, and SYS were more similar to each other than to the NECS at higher taxonomic levels. Across all samples, Bacteria were numerically dominant relative to Archaea, and among them, Gammaproteobacteria and Euryarchaeota were predominant in the BS, NYS, and SYS, while Deltaproteobacteria and Thaumarchaeota were prevalent in the NECS. The most abundant bacterial genera were putative sulfur oxidizer and sulfate reducer, suggesting that sulfur cycle processes might prevail in these areas, and the high abundance of dsrB (10(7)-10(8) copies g(-1)) in all sites verified the dominance of sulfate reducer in the north Chinese marginal seas. The differences in sediment sources among the sampling areas were potential explanations for the observed microbial community variations. Furthermore, temperature and dissolved oxygen of bottom water were significant environmental factors in determining both bacterial and archaeal communities, whereas chlorophyll a in sediment was significant only in structuring archaeal community. This study presented an outline of benthic microbial communities and provided insights into understanding the biogeochemical cycles in sediments of the north Chinese marginal seas.

  18. Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes

    Directory of Open Access Journals (Sweden)

    Nicholas T. Ingolia

    2014-09-01

    Full Text Available Ribosome profiling suggests that ribosomes occupy many regions of the transcriptome thought to be noncoding, including 5′ UTRs and long noncoding RNAs (lncRNAs. Apparent ribosome footprints outside of protein-coding regions raise the possibility of artifacts unrelated to translation, particularly when they occupy multiple, overlapping open reading frames (ORFs. Here, we show hallmarks of translation in these footprints: copurification with the large ribosomal subunit, response to drugs targeting elongation, trinucleotide periodicity, and initiation at early AUGs. We develop a metric for distinguishing between 80S footprints and nonribosomal sources using footprint size distributions, which validates the vast majority of footprints outside of coding regions. We present evidence for polypeptide production beyond annotated genes, including the induction of immune responses following human cytomegalovirus (HCMV infection. Translation is pervasive on cytosolic transcripts outside of conserved reading frames, and direct detection of this expanded universe of translated products enables efforts at understanding how cells manage and exploit its consequences.

  19. On the Archaeal Origins of Eukaryotes and the Challenges of Inferring Phenotype from Genotype.

    Science.gov (United States)

    Dey, Gautam; Thattai, Mukund; Baum, Buzz

    2016-07-01

    If eukaryotes arose through a merger between archaea and bacteria, what did the first true eukaryotic cell look like? A major step toward an answer came with the discovery of Lokiarchaeum, an archaeon whose genome encodes small GTPases related to those used by eukaryotes to regulate membrane traffic. Although 'Loki' cells have yet to be seen, their existence has prompted the suggestion that the archaeal ancestor of eukaryotes engulfed the future mitochondrion by phagocytosis. We propose instead that the archaeal ancestor was a relatively simple cell, and that eukaryotic cellular organization arose as the result of a gradual transfer of bacterial genes and membranes driven by an ever-closer symbiotic partnership between a bacterium and an archaeon. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation

    DEFF Research Database (Denmark)

    Jakobsson, Magnus E; Małecki, Jędrzej; Falnes, Pål Ø

    2018-01-01

    Lysine methylation is a frequent post-translational protein modification, which has been intensively studied in the case of histone proteins. Lysine methylations are also found on many non-histone proteins, and one prominent example is eukaryotic elongation factor 1 alpha (eEF1A). Besides its...... essential role in the protein synthesis machinery, a number of non-canonical functions have also been described for eEF1A, such as regulation of the actin cytoskeleton and the promotion of viral replication. The functional significance of the extensive lysine methylations on eEF1A, as well as the identity...

  1. Methanobacterium Dominates Biocathodic Archaeal Communities in Methanogenic Microbial Electrolysis Cells

    KAUST Repository

    Siegert, Michael

    2015-07-06

    © 2015 American Chemical Society. Methane is the primary end product from cathodic current in microbial electrolysis cells (MECs) in the absence of methanogenic inhibitors, but little is known about the archaeal communities that develop in these systems. MECs containing cathodes made from different materials (carbon brushes, or plain graphite blocks or blocks coated with carbon black and platinum, stainless steel, nickel, ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide) were inoculated with anaerobic digester sludge and acclimated at a set potential of -600 mV (versus a standard hydrogen electrode). The archaeal communities on all cathodes, except those coated with platinum, were predominated by Methanobacterium (median 97% of archaea). Cathodes with platinum contained mainly archaea most similar to Methanobrevibacter. Neither of these methanogens were abundant (<0.1% of archaea) in the inoculum, and therefore their high abundance on the cathode resulted from selective enrichment. In contrast, bacterial communities on the cathode were more diverse, containing primarily δ-Proteobacteria (41% of bacteria). The lack of a consistent bacterial genus on the cathodes indicated that there was no similarly selective enrichment of bacteria on the cathode. These results suggest that the genus Methanobacterium was primarily responsible for methane production in MECs when cathodes lack efficient catalysts for hydrogen gas evolution. (Figure Presented).

  2. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems.

    Science.gov (United States)

    Makarova, Kira S; Wolf, Yuri I; Snir, Sagi; Koonin, Eugene V

    2011-11-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.

  3. ATFL elongation after Brostrom procedure: a biomechanical investigation.

    Science.gov (United States)

    Kirk, Kevin L; Campbell, John T; Guyton, Gregory P; Parks, Brent G; Schon, Lew C

    2008-11-01

    Elongation of ligaments during early mobilization after reconstruction may be associated with decreased stability. We evaluated elongation of the anterior talofibular ligament (ATFL) before and after lateral ligament reconstruction within a physiologic range of motion with protected and unprotected, isolated dorsiflexion/plantarflexion range of motion. Six fresh frozen cadaver legs were used with the ATFL meticulously dissected. A differential variable reluctance transducer (DVRT) was spaced to span the course of the ATFL using consistent placement points based on previous reports. Elongation was measured in a load frame with protected motion of 30 degrees plantarflexion and 10 degrees dorsiflexion for the intact and sectioned ATFL and for the repaired specimen with and without protected motion. The proximal DVRT anchor point was detached for sectioning and repair of the ATFL and replaced at the same position. Testing was 1000 cycles at 1 Hz for the repaired protected specimen and 10 cycles at 1 Hz for all other stages. Initial elongation in the unprotected, repaired group was significantly higher than initial elongation in the intact (p ankle after lateral ankle ligament reconstruction was not associated with elongation of the ATFL. The ATFL elongated significantly by comparison without protected dorsiflexion/plantarflexion. The study provides biomechanical support for the safety of early protected dorsiflexion/plantarflexion range of motion after Broström reconstruction.

  4. Solution structure of an archaeal DNA binding protein with an eukaryotic zinc finger fold.

    Directory of Open Access Journals (Sweden)

    Florence Guillière

    Full Text Available While the basal transcription machinery in archaea is eukaryal-like, transcription factors in archaea and their viruses are usually related to bacterial transcription factors. Nevertheless, some of these organisms show predicted classical zinc fingers motifs of the C2H2 type, which are almost exclusively found in proteins of eukaryotes and most often associated with transcription regulators. In this work, we focused on the protein AFV1p06 from the hyperthermophilic archaeal virus AFV1. The sequence of the protein consists of the classical eukaryotic C2H2 motif with the fourth histidine coordinating zinc missing, as well as of N- and C-terminal extensions. We showed that the protein AFV1p06 binds zinc and solved its solution structure by NMR. AFV1p06 displays a zinc finger fold with a novel structure extension and disordered N- and C-termini. Structure calculations show that a glutamic acid residue that coordinates zinc replaces the fourth histidine of the C2H2 motif. Electromobility gel shift assays indicate that the protein binds to DNA with different affinities depending on the DNA sequence. AFV1p06 is the first experimentally characterised archaeal zinc finger protein with a DNA binding activity. The AFV1p06 protein family has homologues in diverse viruses of hyperthermophilic archaea. A phylogenetic analysis points out a common origin of archaeal and eukaryotic C2H2 zinc fingers.

  5. Stability of tokamaks with elongated cross section

    International Nuclear Information System (INIS)

    An, C.H.; Bateman, G.

    1978-08-01

    Fixed boundary n = 1 MHD instabilities are studied computationally as a function of diamagnetism (β/sub pol/) and current profile in elongated toroidal equilibria (1 2) or a diamagnetic plasma (β/sub pol/ > 1) with only a mildly elongated cross section

  6. Archaeal and bacterial community analysis of several Yellowstone National Park hot springs

    Science.gov (United States)

    Colman, D. R.; Takacs-Vesbach, C. D.

    2012-12-01

    The hot springs of Yellowstone National Park (YNP) are home to a diverse assemblage of microorganisms. Culture-independent studies have significantly expanded our understanding of the diversity of both Bacteria and Archaea present in YNP springs as well as the geochemical and ecological controls on communities. While the ecological analysis of Bacteria among the physicochemically heterogenous springs of YNP has been previously conducted, less is known about the extent of diversity of Archaeal communities and the chemical and ecological controls on their populations. Here we report a culture-independent analysis of 31 hot spring archaeal and bacterial communities of YNP springs using next generation sequencing. We found the phylogenetic diversity of Archaea to be generally comparable to that of co-occurring bacterial communities although overall, in the springs we investigated, diversity was higher for Bacteria than Archaea. Chemical and physical controls were similar for both domains with pH correlating most strongly with community composition. Community differences reflected the partitioning of taxonomic groups in low or high pH springs for both domains. Results will be discussed in a geochemical and ecological context.

  7. High n ballooning modes in highly elongated tokamaks

    International Nuclear Information System (INIS)

    An, C.H.; Bateman, G.

    1980-02-01

    An analytic study of stability against high n ballooning modes in highly elongated axisymmetric plasmas is presented and compared with computational results. From the equation for the marginal pressure gradient, it is found that the local shear plays an important role on the stability of elongated and shifted plasma, and that high elongation deteriorates the stability by decreasing the stabilizing effects of field line bending and local shear. The net contribution of the local shear to stability decreases with elongation and shift for strongly ballooning modes (eigenfunctions strongly localized near the outer edge of the toroidal flux surfaces) but increases for interchange modes (eigenfunctions more uniform along the flux surfaces). The computational study of high n ballooning modes in a highly elongated plasma reveals that lowering the aspect ratio and broadening the pressure profile enhance the marginal beta for β/sub p/ less than unity but severely reduce the marginal beta for β/sub p/ larger than unity

  8. Analysis of the archaeal sub-seafloor community at Suiyo Seamount on the Izu-Bonin Arc.

    Science.gov (United States)

    Hara, Kurt; Kakegawa, Takeshi; Yamashiro, Kan; Maruyama, Akihiko; Ishibashi, Jun-Ichiro; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2005-01-01

    A sub-surface archaeal community at the Suiyo Seamount in the Western Pacific Ocean was investigated by 16S rRNA gene sequence and whole-cell in situ hybridization analyses. In this study, we drilled and cased holes at the hydrothermal area of the seamount to minimize contamination of the hydrothermal fluid in the sub-seafloor by penetrating seawater. PCR clone analysis of the hydrothermal fluid samples collected from a cased hole indicated the presence of chemolithoautotrophic primary biomass producers of Archaeoglobales and the Methanococcales-related archaeal HTE1 group, both of which can utilize hydrogen as an electron donor. We discuss the implication of the microbial community on the early history of life and on the search for extraterrestrial life. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. Abscisic Acid Stimulates Elongation of Excised Pea Root Tips

    Science.gov (United States)

    Gaither, Douglas H.; Lutz, Donald H.; Forrence, Leonard E.

    1975-01-01

    Excised Pisum sativum L. root tips were incubated in a pH 5.2 sucrose medium containing abscisic acid. Elongation growth was inhibited by 100 μm abscisic acid. However, decreasing the abscisic acid concentration caused stimulation of elongation, the maximum response (25% to 30%) occurring at 1 μm abscisic acid. Prior to two hours, stimulation of elongation by 1 μm abscisic acid was not detectable. Increased elongation did not occur in abscisic acid-treated root tips of Lens culinaris L., Phaseolus vulgaris L., or Zea mays L. PMID:16659198

  10. Quantitative analysis of ribosome–mRNA complexes at different translation stages

    Science.gov (United States)

    Shirokikh, Nikolay E.; Alkalaeva, Elena Z.; Vassilenko, Konstantin S.; Afonina, Zhanna A.; Alekhina, Olga M.; Kisselev, Lev L.; Spirin, Alexander S.

    2010-01-01

    Inhibition of primer extension by ribosome–mRNA complexes (toeprinting) is a proven and powerful technique for studying mechanisms of mRNA translation. Here we have assayed an advanced toeprinting approach that employs fluorescently labeled DNA primers, followed by capillary electrophoresis utilizing standard instruments for sequencing and fragment analysis. We demonstrate that this improved technique is not merely fast and cost-effective, but also brings the primer extension inhibition method up to the next level. The electrophoretic pattern of the primer extension reaction can be characterized with a precision unattainable by the common toeprint analysis utilizing radioactive isotopes. This method allows us to detect and quantify stable ribosomal complexes at all stages of translation, including initiation, elongation and termination, generated during the complete translation process in both the in vitro reconstituted translation system and the cell lysate. We also point out the unique advantages of this new methodology, including the ability to assay sites of the ribosomal complex assembly on several mRNA species in the same reaction mixture. PMID:19910372

  11. Ubiquitylation and degradation of elongating RNA polymerase II

    DEFF Research Database (Denmark)

    Wilson, Marcus D; Harreman, Michelle; Svejstrup, Jesper Q

    2013-01-01

    During its journey across a gene, RNA polymerase II has to contend with a number of obstacles to its progression, including nucleosomes, DNA-binding proteins, DNA damage, and sequences that are intrinsically difficult to transcribe. Not surprisingly, a large number of elongation factors have....... In this review, we describe the mechanisms and factors responsible for the last resort mechanism of transcriptional elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation....

  12. Archaeal Clusters of Orthologous Genes (arCOGs): An Update and Application for Analysis of Shared Features between Thermococcales, Methanococcales, and Methanobacteriales

    OpenAIRE

    Makarova, Kira; Wolf, Yuri; Koonin, Eugene

    2015-01-01

    With the continuously accelerating genome sequencing from diverse groups of archaea and bacteria, accurate identification of gene orthology and availability of readily expandable clusters of orthologous genes are essential for the functional annotation of new genomes. We report an update of the collection of archaeal Clusters of Orthologous Genes (arCOGs) to cover, on average, 91% of the protein-coding genes in 168 archaeal genomes. The new arCOGs were constructed using refined algorithms for...

  13. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering.

    Science.gov (United States)

    Chroňáková, Alica; Schloter-Hai, Brigitte; Radl, Viviane; Endesfelder, David; Quince, Christopher; Elhottová, Dana; Šimek, Miloslav; Schloter, Michael

    2015-01-01

    Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning.

  14. Planar Elongation Measurements on Soft Elastomers

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Skov, Anne Ladegaard; Rasmussen, Henrik K.

    2009-01-01

    A new fixture to the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks. To validate this new technique, soft polymeric networks of poly(propyleneoxide) (PPO) were investigated during deformation.......A new fixture to the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks. To validate this new technique, soft polymeric networks of poly(propyleneoxide) (PPO) were investigated during deformation....

  15. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    Science.gov (United States)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  16. Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hangarter Roger P

    2007-07-01

    Full Text Available Abstract Background Proper development of plastids in embryo and seedling tissues is critical for plant development. During germination, plastids develop to perform many critical functions that are necessary to establish the seedling for further growth. A growing body of work has demonstrated that components of the plastid transcription and translation machinery must be present and functional to establish the organelle upon germination. Results We have identified Arabidopsis thaliana mutants in a gene that encodes a plastid-targeted elongation factor G (SCO1 that is essential for plastid development during embryogenesis since two T-DNA insertion mutations in the coding sequence (sco1-2 and sco1-3 result in an embryo-lethal phenotype. In addition, a point mutation allele (sco1-1 and an allele with a T-DNA insertion in the promoter (sco1-4 of SCO1 display conditional seedling-lethal phenotypes. Seedlings of these alleles exhibit cotyledon and hypocotyl albinism due to improper chloroplast development, and normally die shortly after germination. However, when germinated on media supplemented with sucrose, the mutant plants can produce photosynthetically-active green leaves from the apical meristem. Conclusion The developmental stage-specific phenotype of the conditional-lethal sco1 alleles reveals differences in chloroplast formation during seedling germination compared to chloroplast differentiation in cells derived from the shoot apical meristem. Our identification of embryo-lethal mutant alleles in the Arabidopsis elongation factor G indicates that SCO1 is essential for plant growth, consistent with its predicted role in chloroplast protein translation.

  17. Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China.

    Science.gov (United States)

    Pagaling, Eulyn; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2012-07-01

    We investigated the bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong in the Yunnan Province, China, using direct molecular analyses. The Langpu (LP) laminated mat was found by the side of a boiling pool with temperature of 60-65 °C and a pH of 8.5, while the Tengchong (TC) streamer mat consisted of white streamers in a slightly acidic (pH 6.5) hot pool outflow with a temperature of 72 °C. Four 16S rRNA gene clone libraries were constructed and restriction enzyme analysis of the inserts was used to identify unique sequences and clone frequencies. From almost 200 clones screened, 55 unique sequences were retrieved. Phylogenetic analysis showed that the LP mat consisted of a diverse bacterial population [Cyanobacteria, Chloroflexi, Chlorobia, Nitrospirae, 'Deinococcus-Thermus', Proteobacteria (alpha, beta and delta subdivisions), Firmicutes, Bacteroidetes and Actinobacteria], while the archaeal population was dominated by methanogenic Euryarchaeota and Crenarchaeota. In contrast, the TC streamer mat consisted of a bacterial population dominated by Aquificae, while the archaeal population also contained Korarchaeota as well as Crenarchaeota and methanogenic Euryarchaeota. These mats harboured clone sequences affiliated to unidentified lineages, suggesting that they are a potential source for discovering novel bacteria and archaea.

  18. Recognition of extremophilic archaeal viruses by eukaryotic cells: a promising nanoplatform from the third domain of life

    Science.gov (United States)

    Uldahl, Kristine Buch; Wu, Linping; Hall, Arnaldur; Papathanasiou, Pavlos; Peng, Xu; Moghimi, Seyed Moein

    2016-01-01

    Viruses from the third domain of life, Archaea, exhibit unusual features including extreme stability that allow their survival in harsh environments. In addition, these species have never been reported to integrate into human or any other eukaryotic genomes, and could thus serve for exploration of novel medical nanoplatforms. Here, we selected two archaeal viruses Sulfolobus monocaudavirus 1 (SMV1) and Sulfolobus spindle shaped virus 2 (SSV2) owing to their unique spindle shape, hyperthermostable and acid-resistant nature and studied their interaction with mammalian cells. Accordingly, we followed viral uptake, intracellular trafficking and cell viability in human endothelial cells of brain (hCMEC/D3 cells) and umbilical vein (HUVEC) origin. Whereas SMV1 is efficiently internalized into both types of human cells, SSV2 differentiates between HUVECs and hCMEC/D3 cells, thus opening a path for selective cell targeting. On internalization, both viruses localize to the lysosomal compartments. Neither SMV1, nor SSV2 induced any detrimental effect on cell morphology, plasma membrane and mitochondrial functionality. This is the first study demonstrating recognition of archaeal viruses by eukaryotic cells which provides good basis for future exploration of archaeal viruses in bioengineering and development of multifunctional vectors. PMID:27892499

  19. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes

    Directory of Open Access Journals (Sweden)

    Tim Soderberg

    2005-01-01

    Full Text Available A phylogenetic analysis of the genes encoding enzymes in the pentose phosphate pathway (PPP, the ribulose monophosphate (RuMP pathway, and the chorismate pathway of aromatic amino acid biosynthesis, employing data from 13 complete archaeal genomes, provides a potential explanation for the enigmatic phylogenetic patterns of the PPP genes in archaea. Genomic and biochemical evidence suggests that three archaeal species (Methanocaldococcus jannaschii, Thermoplasma acidophilum and Thermoplasma volcanium produce ribose-5-phosphate via the nonoxidative PPP (NOPPP, whereas nine species apparently lack an NOPPP but may employ a reverse RuMP pathway for pentose synthesis. One species (Halobacterium sp. NRC-1 lacks both the NOPPP and the RuMP pathway but may possess a modified oxidative PPP (OPPP, the details of which are not yet known. The presence of transketolase in several archaeal species that are missing the other two NOPPP genes can be explained by the existence of differing requirements for erythrose-4-phosphate (E4P among archaea: six species use transketolase to make E4P as a precursor to aromatic amino acids, six species apparently have an alternate biosynthetic pathway and may not require the ability to make E4P, and one species (Pyrococcus horikoshii probably does not synthesize aromatic amino acids at all.

  20. Long-term Fertilization Structures Bacterial and Archaeal Communities along Soil Depth Gradient in a Paddy Soil

    Directory of Open Access Journals (Sweden)

    Yunfu Gu

    2017-08-01

    Full Text Available Soil microbes provide important ecosystem services. Though the effects of changes in nutrient availability due to fertilization on the soil microbial communities in the topsoil (tilled layer, 0–20 cm have been extensively explored, the effects on communities and their associations with soil nutrients in the subsoil (below 20 cm which is rarely impacted by tillage are still unclear. 16S rRNA gene amplicon sequencing was used to investigate bacterial and archaeal communities in a Pup-Calric-Entisol soil treated for 32 years with chemical fertilizer (CF and CF combined with farmyard manure (CFM, and to reveal links between soil properties and specific bacterial and archaeal taxa in both the top- and subsoil. The results showed that both CF and CFM treatments increased soil organic carbon (SOC, soil moisture (MO and total nitrogen (TN while decreased the nitrate_N content through the profile. Fertilizer applications also increased Olsen phosphorus (OP content in most soil layers. Microbial communities in the topsoil were significantly different from those in subsoil. Compared to the CF treatment, taxa such as Nitrososphaera, Nitrospira, and several members of Acidobacteria in topsoil and Subdivision 3 genera incertae sedis, Leptolinea, and Bellilinea in subsoil were substantially more abundant in CFM. A co-occurrence based network analysis demonstrated that SOC and OP were the most important soil parameters that positively correlated with specific bacterial and archaeal taxa in topsoil and subsoil, respectively. Hydrogenophaga was identified as the keystone genus in the topsoil, while genera Phenylobacterium and Steroidobacter were identified as the keystone taxa in subsoil. The taxa identified above are involved in the decomposition of complex organic compounds and soil carbon, nitrogen, and phosphorus transformations. This study revealed that the spatial variability of soil properties due to long-term fertilization strongly shapes the bacterial

  1. Segregated Planktonic and Bottom-Dwelling Archaeal Communities in High-Temperature Acidic/Sulfuric Ponds of the Tatun Volcano Group, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Ting-Wen Cheng

    2013-01-01

    Full Text Available Geothermal environments are characterized by dynamic redox and temperature fluctuations inherited from the exposure of deeply-sourced, hot, reducing fluids to low-temperature, oxidizing ambient environments. To investigate whether microbial assemblages shifted in response to the changes of a redox state within acidic hot ponds, we collected three paired water and sediment samples from the Tatun Volcano Group, assessed metabolic roles of community members, and correlated their functional capabilities with geochemical factors along depth. Molecular analyses revealed that Sulfolobus spp., Acidianus spp. and Vulcanisaeta spp. capable of respiring elemental sulfur under oxic and/or low-oxygen conditions were the major archaeal members in planktonic communities. In contrast, obligate anaerobic Caldisphaera spp. dominated over others in bottom-dwelling communities. Bacteria were only detected in one locality wherein the majority was affiliated with microaerophilic Hydrogenobaculum spp. Cluster analyses indicated that archaeal communities associated with sediments tended to cluster together and branch off those with water. In addition, the quantities of dissolved oxygen within the water column were substantially less than those in equilibrium with atmospheric oxygen, indicating a net oxygen consumption most likely catalyzed by microbial processes. These lines of evidence suggest that the segregation of planktonic from bottom-dwelling archaeal assemblages could be accounted for by the oxygen affinities inherited in individual archaeal members. Community assemblages in geothermal ecosystems would be often underrepresented without cautious sampling of both water and sediments.

  2. Elongation of Flare Ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman MT (United States); Cassak, Paul A. [Department of Physics and Astronomy, West Virginia University, Morgantown WV (United States); Priest, Eric R. [School of Mathematics and Statistics, University of St. Andrews, Fife KY16 9SS, Scotland (United Kingdom)

    2017-03-20

    We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s{sup −1}. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, which may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.

  3. The protozoa dinoflagellate Oxyrrhis marina contains selenoproteins and the relevant translation apparatus

    International Nuclear Information System (INIS)

    Osaka, Takashi; Beika, Asa; Hattori, Asuka; Kohno, Yoshinori; Kato, Koichi H.; Mizutani, Takaharu

    2003-01-01

    In the phylogenetic tree, selenoproteins and the corresponding translation machinery are found in Archaea, Eubacteria, and animals, but not in fungi and higher plants. As very little is known about Protozoa, we searched for the presence of selenoproteins in the primitive dinoflagellate Oxyrrhis marina, belonging to the Protoctista kingdom. Four selenoproteins could be obtained from O. marina cells cultured in the presence of 75 Se. Using O. marina or bovine liver cytosolic extracts, we could serylate and selenylate in vitro total O. marina tRNAs. Moreover, the existence of a tRNA Sec could be deduced from in vivo experiments. Lastly, an anti-serum against the specialized mammalian translation elongation factor mSelB reacted with a protein of 48-kDa molecular mass. Altogether, our data showed that O. marina contains selenoproteins and suggests that the corresponding translation machinery is related to that found in animals

  4. Interaction of extremophilic archaeal viruses with human and mouse complement system and viral biodistribution in mice

    DEFF Research Database (Denmark)

    Wu, Linping; Uldahl, Kristine Buch; Chen, Fangfang

    2017-01-01

    -dependent manner, but C3 deficiency has no overall effect on viral clearance by organs of the reticuloendothelial system on intravenous injection. However, splenic deposition was significantly higher in C3 knockout animals compared with the corresponding wild type mice. We discuss the potential application......Archaeal viruses offer exceptional biophysical properties for modification and exploration of their potential in bionanotechnology, bioengineering and nanotherapeutic developments. However, the interaction of archaeal viruses with elements of the innate immune system has not been explored, which...... surface, but factor H deposition is purely C3-dependent. This suggests that unlike some virulent pathogens Sulfolobus monocaudavirus 1 does not acquire factor H for protection. Complement activation with Sulfolobus monocaudavirus 1 also proceeds in murine sera through MBL-A/C as well as factor D...

  5. Elongational viscosity of photo-oxidated LDPE

    Science.gov (United States)

    Rolón-Garrido, Víctor H.; Wagner, Manfred H.

    2014-05-01

    Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.

  6. Loss of translation elongation factor (eEF1A2) expression in vivo differentiates between Wallerian degeneration and dying-back neuronal pathology.

    Science.gov (United States)

    Murray, Lyndsay M; Thomson, Derek; Conklin, Annalijn; Wishart, Thomas M; Gillingwater, Thomas H

    2008-12-01

    Wallerian degeneration and dying-back pathology are two well-known cellular pathways capable of regulating the breakdown and loss of axonal and synaptic compartments of neurons in vivo. However, the underlying mechanisms and molecular triggers of these pathways remain elusive. Here, we show that loss of translation elongation factor eEF1A2 expression in lower motor neurons and skeletal muscle fibres in homozygous Wasted mice triggered a dying-back neuropathy. Synaptic loss at the neuromuscular junction occurred in advance of axonal pathology and by a mechanism morphologically distinct from Wallerian degeneration. Dying-back pathology in Wasted mice was accompanied by reduced expression levels of the zinc finger protein ZPR1, as found in other dying-back neuropathies such as spinal muscular atrophy. Surprisingly, experimental nerve lesion revealed that Wallerian degeneration was significantly delayed in homozygous Wasted mice; morphological assessment revealed that approximately 80% of neuromuscular junctions in deep lumbrical muscles at 24 h and approximately 50% at 48 h had retained motor nerve terminals following tibial nerve lesion. This was in contrast to wild-type and heterozygous Wasted mice where < 5% of neuromuscular junctions had retained motor nerve terminals at 24 h post-lesion. These data show that eEF1A2 expression is required to prevent the initiation of dying-back pathology at the neuromuscular junction in vivo. In contrast, loss of eEF1A2 expression significantly inhibited the initiation and progression of Wallerian degeneration in vivo. We conclude that loss of eEF1A2 expression distinguishes mechanisms underlying dying-back pathology from those responsible for Wallerian degeneration in vivo and suggest that eEF1A2-dependent cascades may provide novel molecular targets to manipulate neurodegenerative pathways in lower motor neurons.

  7. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering.

    Directory of Open Access Journals (Sweden)

    Alica Chroňáková

    Full Text Available Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI and long-term impact (17 years; LTI, one is regenerating from cattle impact (REG and a control is unaffected by cattle (CON. Cattle manure (CMN, the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning.

  8. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering

    Science.gov (United States)

    Chroňáková, Alica; Schloter-Hai, Brigitte; Radl, Viviane; Endesfelder, David; Quince, Christopher; Elhottová, Dana; Šimek, Miloslav; Schloter, Michael

    2015-01-01

    Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning. PMID:26274496

  9. Bacterial and Archaeal Community Dynamics at CO2-RICH Shallow-Sea Hydrothermal Vents (panarea, Italy)

    Science.gov (United States)

    Schubotz, F.; Huang, C.; Meyerdierks, A.; Amend, J.; Price, R. E.; Amann, R.; Hinrichs, K.; Summons, R. E.

    2013-12-01

    Shallow marine hydrothermal vents are highly dynamic systems with unique habitats that can support both chemosynthetic and photosynthetic communities at steep temperature and geochemical gradients. Here, we present a combined organic geochemical and microbiological approach to describe the microbial community composition and their metabolism at the CO2-rich shallow hydrothermal vents off Panarea Island, in Sicily. We investigated two contrasting hydrothermal environments: Hot Lake, a depression filled with hydrothermal fluids diffusing gradually out of the seafloor, with temperatures ranging from 40 to 70°C, and Blackpoint, a site with vigorous venting of hydrothermal gasses and fluids with temperatures as high as 135°C. At Hot Lake, Bacteria dominate the microbial community composition in the sediments. 16S rRNA clone libraries revealed Bacteriodetes-, Epsilonproteobacteria- and Deltaproteobacteria-related sequences as the most abundant members. Bacterial intact polar membrane lipids (IPLs) were dominated by the non-phosphorous containing ornithine lipids throughout all depths, indicating an important role of this aminolipid at elevated temperatures and/or low pH. At Hot Lake, archaeal IPLs were comprised mainly of glycosidic tetraethers and increased up to 20% of total IPLs with increasing temperature and depth. At the same site, archaeal 16S rRNA clone libraries were mainly comprised of Euryarchaea-affiliated sequences; crenarchaeotal sequences were only found in deeper sediment layers with temperatures of ca. 70°C. In contrast to Hot Lake, Archaea dominated sediments at the much hotter site at Blackpoint. Here, novel methylated H-shaped archaeal tetraethers, with multiple sugars as head groups, were the most abundant membrane lipids. Reports on these lipids in cultures are very limited, but their abundant occurrence at elevated temperatures suggests an important role in membrane homeostastis in thermophilic Archaea. Stable carbon isotope values of -35‰ to

  10. A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition

    Directory of Open Access Journals (Sweden)

    Hiromi Daiyasu

    2005-01-01

    Full Text Available Cellular membrane lipids, of which phospholipids are the major constituents, form one of the characteristic features that distinguish Archaea from other organisms. In this study, we focused on the steps in archaeal phospholipid synthetic pathways that generate polar lipids such as archaetidylserine, archaetidylglycerol, and archaetidylinositol. Only archaetidylserine synthase (ASS, from Methanothermobacter thermautotrophicus, has been experimentally identified. Other enzymes have not been fully examined. Through database searching, we detected many archaeal hypothetical proteins that show sequence similarity to members of the CDP alcohol phosphatidyltransferase family, such as phosphatidylserine synthase (PSS, phosphatidylglycerol synthase (PGS and phosphatidylinositol synthase (PIS derived from Bacteria and Eukarya. The archaeal hypothetical proteins were classified into two groups, based on the sequence similarity. Members of the first group, including ASS from M. thermautotrophicus, were closely related to PSS. The rough agreement between PSS homologue distribution within Archaea and the experimentally identified distribution of archaetidylserine suggested that the hypothetical proteins are ASSs. We found that an open reading frame (ORF tends to be adjacent to that of ASS in the genome, and that the order of the two ORFs is conserved. The sequence similarity of phosphatidylserine decarboxylase to the product of the ORF next to the ASS gene, together with the genomic context conservation, suggests that the ORF encodes archaetidylserine decarboxylase, which may transform archaetidylserine to archaetidylethanolamine. The second group of archaeal hypothetical proteins was related to PGS and PIS. The members of this group were subjected to molecular phylogenetic analysis, together with PGSs and PISs and it was found that they formed two distinct clusters in the molecular phylogenetic tree. The distribution of members of each cluster within Archaea

  11. Bilateral elongated styloid process: Its anatomical, embryological and clinical implications

    OpenAIRE

    Bagoji Ishwar B, Hadimani Gavishiddappa A, Patil Balasaheb G, Bannur Balappa M,Ambadasu B

    2013-01-01

    The styloid process is a slender, elongated, cylindrical bony projection from temporal bone. It normally varies in length from 2 cm to 3 cm. During a routine demonstration of skull for MBBS students we found the bilateral elongated styloid process in dry human skull. The length of elongation measured on the right and left side was 6.0 & 5.9 cms respectively. Such abnormal elongation of the styloid process may cause compression on a number of vital vessels and nerves related to it, producing i...

  12. Archaeal rRNA operons, intron splicing and homing endonucleases, RNA polymerase operons and phylogeny

    DEFF Research Database (Denmark)

    Garrett, Roger Antony; Aagaard, Claus Sindbjerg; Andersen, Morten

    1994-01-01

    Over the past decade our laboratory has had a strong interest in defining the phylogenetic status of the archaea. This has involved determining and analysing the sequences of operons of both rRNAs and RNA polymerases and it led to the discovery of the first archaeal rRNA intron. What follows...

  13. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  14. Using dynamic input allocation for elongation control at FTU

    International Nuclear Information System (INIS)

    Boncagni, L.; Galeani, S.; Granucci, G.; Varano, G.; Vitale, V.; Zaccarian, L.

    2010-01-01

    In this paper we exploit the dynamic allocation scheme for input redundant control systems proposed in to achieve elongation control on FTU (Frascati Tokamak Upgrade). The scheme first serves as a means for regulating the current in the F coils. Then, due to the quasi-static relationship between the plasma elongation and the F coils current, elongation control is achieved by suitably generalizing the allocation scheme. Both simulation and experimental results are reported.

  15. Diverse archaeal community of a bat guano pile in Domica Cave (Slovak Karst, Slovakia)

    Czech Academy of Sciences Publication Activity Database

    Chroňáková, Alica; Horák, Aleš; Elhottová, Dana; Krištůfek, Václav

    2009-01-01

    Roč. 54, č. 5 (2009), s. 436-446 ISSN 0015-5632 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60660521; CEZ:AV0Z60220518 Keywords : archaeal community * bat guano pile * Domica Cave Subject RIV: EH - Ecology, Behaviour Impact factor: 0.978, year: 2009

  16. Protein Adaptations in Archaeal Extremophiles

    Directory of Open Access Journals (Sweden)

    Christopher J. Reed

    2013-01-01

    Full Text Available Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  17. Protein Adaptations in Archaeal Extremophiles

    Science.gov (United States)

    Reed, Christopher J.; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. PMID:24151449

  18. Measurement and analysis of pressure tube elongation in the Douglas Point reactor

    International Nuclear Information System (INIS)

    Causey, A.R.; MacEwan, S.R.; Jamieson, H.C.; Mitchell, A.B.

    1980-02-01

    Elongations of zirconium alloy pressure tubes in CANDU reactors, which occur as a result of neutron-irradiation-induced creep and growth, have been measured over the past 6 years, and the consequences of thses elongations have recently been analysed. Elongation rates, previously deduced from extensive measurements of elongations of cold-worked Zircaloy-2 pressure tubes in the Pickering reactors, have been modified to apply to the pressure tubes in the Douglas Point (DP) reactor by taking into account measured diffences in texture and dislocation density. Using these elongation rates, and structural data unique to the DP reactor, the analysis predicts elongation behaviour which is in good agreement with pressure tube elongations measured during the ten years of reactor operation. (Auth)

  19. Ribosomal elongation factor 4 promotes cell death associated with lethal stress.

    Science.gov (United States)

    Li, Liping; Hong, Yuzhi; Luan, Gan; Mosel, Michael; Malik, Muhammad; Drlica, Karl; Zhao, Xilin

    2014-12-09

    Ribosomal elongation factor 4 (EF4) is highly conserved among bacteria, mitochondria, and chloroplasts. However, the EF4-encoding gene, lepA, is nonessential and its deficiency shows no growth or fitness defect. In purified systems, EF4 back-translocates stalled, posttranslational ribosomes for efficient protein synthesis; consequently, EF4 has a protective role during moderate stress. We were surprised to find that EF4 also has a detrimental role during severe stress: deletion of lepA increased Escherichia coli survival following treatment with several antimicrobials. EF4 contributed to stress-mediated lethality through reactive oxygen species (ROS) because (i) the protective effect of a ΔlepA mutation against lethal antimicrobials was eliminated by anaerobic growth or by agents that block hydroxyl radical accumulation and (ii) the ΔlepA mutation decreased ROS levels stimulated by antimicrobial stress. Epistasis experiments showed that EF4 functions in the same genetic pathway as the MazF toxin, a stress response factor implicated in ROS-mediated cell death. The detrimental action of EF4 required transfer-messenger RNA (tmRNA, which tags truncated proteins for degradation and is known to be inhibited by EF4) and the ClpP protease. Inhibition of a protective, tmRNA/ClpP-mediated degradative activity would allow truncated proteins to indirectly perturb the respiratory chain and thereby provide a potential link between EF4 and ROS. The connection among EF4, MazF, tmRNA, and ROS expands a pathway leading from harsh stress to bacterial self-destruction. The destructive aspect of EF4 plus the protective properties described previously make EF4 a bifunctional factor in a stress response that promotes survival or death, depending on the severity of stress. Translation elongation factor 4 (EF4) is one of the most conserved proteins in nature, but it is dispensable. Lack of strong phenotypes for its genetic knockout has made EF4 an enigma. Recent biochemical work has

  20. Stochastic model of template-directed elongation processes in biology.

    Science.gov (United States)

    Schilstra, Maria J; Nehaniv, Chrystopher L

    2010-10-01

    We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Time of action of 4.5 S RNA in Escherichia coli translation

    DEFF Research Database (Denmark)

    Brown, S

    1989-01-01

    A new class of suppressor mutants helps to define the role of 4.5 S RNA in translation. The suppressors reduce the requirement for 4.5 S RNA by increasing the intracellular concentration of uncharged tRNA. Suppression probably occurs by prolonging the period in which translating ribosomes have...... translocated but not yet released the uncharged tRNA, indicating that this is the point at which 4.5 S RNA enters translation. The release of 4.5 S RNA from polysomes is affected by antibiotics that inhibit protein synthesis. The antibiotic-sensitivity of this release indicates that 4.5 S RNA exits...... the ribosome following translocation and prior to release of protein synthesis elongation factor G. These results indicate that 4.5 S RNA acts immediately after ribosomal translocation. A model is proposed in which 4.5 S RNA stabilizes the post-translocation state by replacing 23 S ribosomal RNA as a binding...

  2. Archaeal Life on Tangkuban Perahu-Sampling and Culture Growth in Indonesian Laboratories

    Directory of Open Access Journals (Sweden)

    SRI HANDAYANI

    2012-09-01

    Full Text Available The aim of the expedition to Tangkuban Perahu, West Java was to obtain archaeal samples from the solfatara fields located in Domas crater. This was one of the places, where scientists from the University of Regensburg Germany had formerly isolated Indonesian archaea, especially Thermoplasma and Sulfolobus species but not fully characterized. We collected five samples from mud holes with temperatures from 57 to 88 °C and pH of 1.5-2. A portion of each sample was grown at the University of Regensburg in modified Allen's medium at 80 °C. From four out of five samples enrichment cultures were obtained, autotrophically on elemental sulphur and heterotrophically on sulfur and yeast extract; electron micrographs are presented. In the laboratories of Universitas Indonesia the isolates were cultured at 55-60 °C in order to grow tetraetherlipid synthesizing archaea, both Thermoplasmatales and Sulfolobales. Here, we succeeded to culture the same type of archaeal cells, which had been cultured in Regensburg, probably a Sulfolobus species and in Freundt's medium, Thermoplasma species. The harvested cells are documented by phase contrast microscope equipped with a digital camera. Our next steps will be to further characterize genetically the cultured cells from Tangkuban Perahu isolates.

  3. Archaeal Life on Tangkuban Perahu- Sampling and Culture Growth in Indonesian Laboratories

    Directory of Open Access Journals (Sweden)

    SRI HANDAYANI

    2012-09-01

    Full Text Available The aim of the expedition to Tangkuban Perahu, West Java was to obtain archaeal samples from the solfatara fields located in Domas crater. This was one of the places, where scientists from the University of Regensburg Germany had formerly isolated Indonesian archaea, especially Thermoplasma and Sulfolobus species but not fully characterized. We collected five samples from mud holes with temperatures from 57 to 88 oC and pH of 1.5-2. A portion of each sample was grown at the University of Regensburg in modified Allen’s medium at 80 oC. From four out of five samples enrichment cultures were obtained, autotrophically on elemental sulphur and heterotrophically on sulfur and yeast extract; electron micrographs are presented. In the laboratories of Universitas Indonesia the isolates were cultured at 55-60 oC in order to grow tetraetherlipid synthesizing archaea, both Thermoplasmatales and Sulfolobales. Here, we succeeded to culture the same type of archaeal cells, which had been cultured in Regensburg, probably a Sulfolobus species and in Freundt’s medium, Thermoplasma species. The harvested cells are documented by phase contrast microscope equipped with a digital camera. Our next steps will be to further characterize genetically the cultured cells from Tangkuban Perahu isolates.

  4. Insights into the phylogeny of Northern Hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-α gene sequences.

    Science.gov (United States)

    Klopfenstein, Ned B; Stewart, Jane E; Ota, Yuko; Hanna, John W; Richardson, Bryce A; Ross-Davis, Amy L; Elías-Román, Rubén D; Korhonen, Kari; Keča, Nenad; Iturritxa, Eugenia; Alvarado-Rosales, Dionicio; Solheim, Halvor; Brazee, Nicholas J; Łakomy, Piotr; Cleary, Michelle R; Hasegawa, Eri; Kikuchi, Taisei; Garza-Ocañas, Fortunato; Tsopelas, Panaghiotis; Rigling, Daniel; Prospero, Simone; Tsykun, Tetyana; Bérubé, Jean A; Stefani, Franck O P; Jafarpour, Saeideh; Antonín, Vladimír; Tomšovský, Michal; McDonald, Geral I; Woodward, Stephen; Kim, Mee-Sook

    2017-01-01

    Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequence-based analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation elongation factor 1-α (tef1) sequences are highly informative for phylogenetic analysis of Armillaria species within diverse global regions. This study used Neighbor-net and coalescence-based Bayesian analyses to examine phylogenetic relationships of newly determined and existing tef1 sequences derived from diverse Armillaria species from across the Northern Hemisphere, with Southern Hemisphere Armillaria species included for reference. Based on the Bayesian analysis of tef1 sequences, Armillaria species from the Northern Hemisphere are generally contained within the following four superclades, which are named according to the specific epithet of the most frequently cited species within the superclade: (i) Socialis/Tabescens (exannulate) superclade including Eurasian A. ectypa, North American A. socialis (A. tabescens), and Eurasian A. socialis (A. tabescens) clades; (ii) Mellea superclade including undescribed annulate North American Armillaria sp. (Mexico) and four separate clades of A. mellea (Europe and Iran, eastern Asia, and two groups from North America); (iii) Gallica superclade including Armillaria Nag E (Japan), multiple clades of A. gallica (Asia and Europe), A. calvescens (eastern North America), A. cepistipes (North America), A. altimontana (western USA), A. nabsnona (North America and Japan), and at least two A. gallica clades (North America); and (iv) Solidipes/Ostoyae superclade including two A. solidipes/ostoyae clades (North America), A. gemina (eastern USA), A. solidipes/ostoyae (Eurasia), A. cepistipes (Europe and Japan), A. sinapina (North America and Japan), and A. borealis

  5. Land-use systems affect Archaeal community structure and functional diversity in western Amazon soils

    Directory of Open Access Journals (Sweden)

    Acácio Aparecido Navarrete

    2011-10-01

    Full Text Available The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure and ammonia-oxidizing Archaea (richness and community composition were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009 from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old, agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA of Archaea (306 sequences, the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366, followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715, crops (H' = 1.4613; D = 0.3309 and secondary forest (H' = 0.8633; D = 0.5405. All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 % previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.

  6. Nuclear starburst activity induced by elongated bulges in spiral galaxies

    Science.gov (United States)

    Kim, Eunbin; Kim, Sungsoo S.; Choi, Yun-Young; Lee, Gwang-Ho; de Grijs, Richard; Lee, Myung Gyoon; Hwang, Ho Seong

    2018-06-01

    We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.

  7. Archaeal Genome Guardians Give Insights into Eukaryotic DNA Replication and Damage Response Proteins

    Directory of Open Access Journals (Sweden)

    David S. Shin

    2014-01-01

    Full Text Available As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine.

  8. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis

    DEFF Research Database (Denmark)

    Villa, Elizabeth; Sengupta, Jayati; Trabuco, Leonard G.

    2009-01-01

    In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.......7-A cryo-electron microscopy map of the aminoacyl-tRNA x EF-Tu x GDP x kirromycin-bound Escherichia coli ribosome, together with an atomic model of the complex obtained through molecular dynamics flexible fitting. The model reveals the conformational changes in the conserved GTPase switch regions...... of EF-Tu that trigger hydrolysis of GTP, along with key interactions, including those between the sarcin-ricin loop and the P loop of EF-Tu, and between the effector loop of EF-Tu and a conserved region of the 16S rRNA. Our data suggest that GTP hydrolysis on EF-Tu is controlled through a hydrophobic...

  9. Translation Control of Swarming Proficiency in Bacillus subtilis by 5-Amino-pentanolylated Elongation Factor P.

    Science.gov (United States)

    Rajkovic, Andrei; Hummels, Katherine R; Witzky, Anne; Erickson, Sarah; Gafken, Philip R; Whitelegge, Julian P; Faull, Kym F; Kearns, Daniel B; Ibba, Michael

    2016-05-20

    Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys(32) of B. subtilis EF-P that is required for swarming motility. A fluorescent in vivo B. subtilis reporter system identified peptide motifs whose efficient synthesis was most dependent on 5-aminopentanol EF-P. Examination of the B. subtilis genome sequence showed that these EF-P-dependent peptide motifs were represented in flagellar genes. Taken together, these data show that, in B. subtilis, a previously uncharacterized posttranslational modification of EF-P can modulate the synthesis of specific diprolyl motifs present in proteins required for swarming motility. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Structure of Pfu Pop5, an archaeal RNase P protein.

    Science.gov (United States)

    Wilson, Ross C; Bohlen, Christopher J; Foster, Mark P; Bell, Charles E

    2006-01-24

    We have used NMR spectroscopy and x-ray crystallography to determine the three-dimensional structure of PF1378 (Pfu Pop5), one of four protein subunits of archaeal RNase P that shares a homolog in the eukaryotic enzyme. RNase P is an essential and ubiquitous ribonucleoprotein enzyme required for maturation of tRNA. In bacteria, the enzyme's RNA subunit is responsible for cleaving the single-stranded 5' leader sequence of precursor tRNA molecules (pre-tRNA), whereas the protein subunit assists in substrate binding. Although in bacteria the RNase P holoenzyme consists of one large catalytic RNA and one small protein subunit, in archaea and eukarya the enzyme contains several (> or =4) protein subunits, each of which lacks sequence similarity to the bacterial protein. The functional role of the proteins is poorly understood, as is the increased complexity in comparison to the bacterial enzyme. Pfu Pop5 has been directly implicated in catalysis by the observation that it pairs with PF1914 (Pfu Rpp30) to functionally reconstitute the catalytic domain of the RNA subunit. The protein adopts an alpha-beta sandwich fold highly homologous to the single-stranded RNA binding RRM domain. Furthermore, the three-dimensional arrangement of Pfu Pop5's structural elements is remarkably similar to that of the bacterial protein subunit. NMR spectra have been used to map the interaction of Pop5 with Pfu Rpp30. The data presented permit tantalizing hypotheses regarding the role of this protein subunit shared by archaeal and eukaryotic RNase P.

  11. Scatter factor corrections for elongated fields

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sohn, W.H.; Sibata, C.H.; McCarthy, W.A.

    1989-01-01

    Measurements have been made to determine scatter factor corrections for elongated fields of Cobalt-60 and for nominal linear accelerator energies of 6 MV (Siemens Mevatron 67) and 18 MV (AECL Therac 20). It was found that for every energy the collimator scatter factor varies by 2% or more as the field length-to-width ratio increases beyond 3:1. The phantom scatter factor is independent of which collimator pair is elongated at these energies. For 18 MV photons it was found that the collimator scatter factor is complicated by field-size-dependent backscatter into the beam monitor

  12. Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis.

    Science.gov (United States)

    Aviner, Ranen; Hofmann, Sarah; Elman, Tamar; Shenoy, Anjana; Geiger, Tamar; Elkon, Ran; Ehrlich, Marcelo; Elroy-Stein, Orna

    2017-06-02

    Precise regulation of mRNA translation is critical for proper cell division, but little is known about the factors that mediate it. To identify mRNA-binding proteins that regulate translation during mitosis, we analyzed the composition of polysomes from interphase and mitotic cells using unbiased quantitative mass-spectrometry (LC-MS/MS). We found that mitotic polysomes are enriched with a subset of proteins involved in RNA processing, including alternative splicing and RNA export. To demonstrate that these may indeed be regulators of translation, we focused on heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a test case and confirmed that it is recruited to elongating ribosomes during mitosis. Then, using a combination of pulsed SILAC, metabolic labeling and ribosome profiling, we showed that knockdown of hnRNP C affects both global and transcript-specific translation rates and found that hnRNP C is specifically important for translation of mRNAs that encode ribosomal proteins and translation factors. Taken together, our results demonstrate how proteomic analysis of polysomes can provide insight into translation regulation under various cellular conditions of interest and suggest that hnRNP C facilitates production of translation machinery components during mitosis to provide daughter cells with the ability to efficiently synthesize proteins as they enter G1 phase. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Bacterial and Archaeal Diversity in the Gastrointestinal Tract of the North American Beaver (Castor canadensis.

    Directory of Open Access Journals (Sweden)

    Robert J Gruninger

    Full Text Available The North American Beaver (Castor canadensis is the second largest living rodent and an iconic symbol of Canada. The beaver is a semi-aquatic browser whose diet consists of lignocellulose from a variety of plants. The beaver is a hindgut fermenter and has an enlarged ceacum that houses a complex microbiome. There have been few studies examining the microbial diversity in gastrointestinal tract of hindgut fermenting herbivores. To examine the bacterial and archaeal communities inhabiting the gastrointestinal tract of the beaver, the microbiome of the ceacum and feaces was examined using culture-independent methods. DNA from the microbial community of the ceacum and feaces of 4 adult beavers was extracted, and the16S rRNA gene was sequenced using either bacterial or archaeal specific primers. A total of 1447 and 1435 unique bacterial OTUs were sequenced from the ceacum and feaces, respectively. On average, the majority of OTUs within the ceacum were classified as Bacteroidetes (49.2% and Firmicutes (47.6%. The feaces was also dominated by OTUs from Bacteroidetes (36.8% and Firmicutes (58.9%. The composition of bacterial community was not significantly different among animals. The composition of the ceacal and feacal microbiome differed, but this difference is due to changes in the abundance of closely related OTUs, not because of major differences in the taxonomic composition of the communities. Within these communities, known degraders of lignocellulose were identified. In contrast, to the bacterial microbiome, the archaeal community was dominated by a single species of methanogen, Methanosphaera stadtmanae. The data presented here provide the first insight into the microbial community within the hindgut of the beaver.

  14. Bacterial and Archaeal Diversity in the Gastrointestinal Tract of the North American Beaver (Castor canadensis).

    Science.gov (United States)

    Gruninger, Robert J; McAllister, Tim A; Forster, Robert J

    2016-01-01

    The North American Beaver (Castor canadensis) is the second largest living rodent and an iconic symbol of Canada. The beaver is a semi-aquatic browser whose diet consists of lignocellulose from a variety of plants. The beaver is a hindgut fermenter and has an enlarged ceacum that houses a complex microbiome. There have been few studies examining the microbial diversity in gastrointestinal tract of hindgut fermenting herbivores. To examine the bacterial and archaeal communities inhabiting the gastrointestinal tract of the beaver, the microbiome of the ceacum and feaces was examined using culture-independent methods. DNA from the microbial community of the ceacum and feaces of 4 adult beavers was extracted, and the16S rRNA gene was sequenced using either bacterial or archaeal specific primers. A total of 1447 and 1435 unique bacterial OTUs were sequenced from the ceacum and feaces, respectively. On average, the majority of OTUs within the ceacum were classified as Bacteroidetes (49.2%) and Firmicutes (47.6%). The feaces was also dominated by OTUs from Bacteroidetes (36.8%) and Firmicutes (58.9%). The composition of bacterial community was not significantly different among animals. The composition of the ceacal and feacal microbiome differed, but this difference is due to changes in the abundance of closely related OTUs, not because of major differences in the taxonomic composition of the communities. Within these communities, known degraders of lignocellulose were identified. In contrast, to the bacterial microbiome, the archaeal community was dominated by a single species of methanogen, Methanosphaera stadtmanae. The data presented here provide the first insight into the microbial community within the hindgut of the beaver.

  15. FtsZ-Dependent Elongation of a Coccoid Bacterium

    Directory of Open Access Journals (Sweden)

    Ana R. Pereira

    2016-09-01

    Full Text Available A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5 expressing the ftsZG193D allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZG193D filaments are more twisted and shorter than wild-type filaments. In vivo, M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci.

  16. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the arctic mid-ocean spreading ridge

    Directory of Open Access Journals (Sweden)

    Steffen Leth eJørgensen

    2013-10-01

    Full Text Available In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms. We estimated the abundance of 16S rRNA genes from Archaea, Bacteria and DSAG in 52 sediment horizons from two cores collected at the slow-spreading Arctic Mid-Ocean Ridge, using qPCR. The results indicate that members of the DSAG make up the entire archaeal population in certain horizons and constitute up to ~ 50% of the total microbial community. The quantitative data were correlated to 30 different geophysical and geochemical parameters obtained from the same sediment horizons. We observed a significant correlation between the relative abundance of DSAG 16S rRNA genes and the content of organic carbon (p < 0.0001. Further, significant co-variation with iron oxide, and dissolved iron and manganese (all p < 0.0000, indicated a direct or indirect link to iron and manganese cycling. Neither of these parameters correlated with the relative abundance of archaeal or bacterial 16S rRNA genes, nor did any other major electron donor or acceptor measured. Phylogenetic analysis of DSAG 16S rRNA gene sequences reveals three monophyletic lineages with no apparent habitat-specific distribution. In this study we support the hypothesis that members of the DSAG are tightly linked to the content of organic carbon and directly or indirectly involved in the cycling of iron and/or manganese compounds. Further, we provide a molecular tool to assess their abundance in environmental samples and enrichment cultures.

  17. Influence of Gradual Elongation to the Patella Tendon Insertion in Rabbits

    Directory of Open Access Journals (Sweden)

    Hirotaka Mutsuzaki

    2014-08-01

    Full Text Available The purpose of this study was to examine the histological changes at the patella tendon (PT insertion site under gradual elongation in rabbits. Gradual elongation of the PT was performed using external fixation for 4 weeks, with a lengthening speed of 0.5 mm/day (elongation group; n = 24. Rabbits in the sham group underwent the same surgical procedure without gradual elongation (sham group; n = 24. Eight animals were sacrificed 1, 2 and 4 weeks after surgery in each group, respectively. Average thicknesses of stained glycosaminoglycan (GAGs areas by Safranin-O staining in the total cartilage layer and the uncalcified fibrocartilage layer in the elongation group were significantly higher than that in the sham group at 4 weeks (p < 0.05 and that in the intact PT group (n = 6, p < 0.05. In the elongation group, the peak in the average thicknesses of the stained GAGs areas in the total cartilage layer and the uncalcified fibrocartilage layer were observed at 4 weeks. Gradual elongation of PT insertion significantly affected the increase in the average thicknesses of the stained GAGs areas in the cartilage layer especially in the uncalcified fibrocartilage layer at 4 weeks in rabbits. Clinically, insertions of tendon and ligament can extend during gradual elongation using external fixation more than 4 weeks after the operation.

  18. Thermal conductivity and rectification in asymmetric archaeal lipid membranes

    Science.gov (United States)

    Youssefian, Sina; Rahbar, Nima; Van Dessel, Steven

    2018-05-01

    Nature employs lipids to construct nanostructured membranes that self-assemble in an aqueous environment to separate the cell interior from the exterior environment. Membrane composition changes among species and according to environmental conditions, which allows organisms to occupy a wide variety of different habitats. Lipid bilayers are phase-change materials that exhibit strong thermotropic and lyotropic phase behavior in an aqueous environment, which may also cause thermal rectification. Among different types of lipids, archaeal lipids are of great interest due to their ability to withstand extreme conditions. In this paper, nonequilibrium molecular dynamics simulations were employed to study the nanostructures and thermal properties of different archaeols and to investigate thermal rectification effects in asymmetric archaeal membranes. In particular, we are interested in understanding the role of bridged phytanyl chains and cyclopentane groups in controlling the phase transition temperature and heat flow across the membrane. Our results indicate that the bridged phytanyl chains decrease the molecular packing of lipids, whereas the existence of cyclopentane rings on the tail groups increases the molecular packing by enhancing the interactions between isoprenoid chains. We found that macrocyclic archaeols have the highest thermal conductivity, whereas macrocyclic archaeols with two cyclopentane rings have the lowest. The effect of the temperature on the variation of thermal conductivity was found to be progressive. Our results further indicate that small thermal rectification effects occur in asymmetric archaeol bilayer membranes at around 25 K temperature gradient. The calculated thermal rectification factor was around 0.09 which is in the range of rectification factor obtained experimentally for nanostructures such as carbon nanotubes (0.07). Such phenomena may be of biological significance and could also be optimized for use in various engineering

  19. Tree-shoot elongation patterns in a gamma-irradiated northern forest community

    International Nuclear Information System (INIS)

    Buech, R.R.; Salmonson, B.J.

    1977-01-01

    Shoot elongation in the upper crowns of seven tree species was studied in a gamma-irradiated northern forest community near Rhinelander, Wis. Observations on the pattern and duration of shoot elongation are presented for the irradiation (1972) and postirradiation (1973) growing seasons. The gymnosperm Abies balsamea was the most radiosensitive species. Significant alteration in pattern and duration was observed in 1973 at exposure rates of 4 to 25 r/20-hr day; 31 r/20-hr day was lethal. At the other extreme, 116 r/20-hr day produced no significant effects on Acer saccharum shoot elongation pattern or duration. Acer rubrum, Betula papyrifera, Populus tremuloides, Quercus rubra, and Tilia americana were intermediate in radiosensitivity. Observed responses to radiation were alteration in the elongation pattern, suppression of internodal elongation, and death. Effects of the 1972 growing-season exposure were most obvious in the subsequent growing seasons. Retardation of initial elongation was characteristic of all species. Cessation of elongation was variable, even within species (e.g., P. tremuloides). The results suggest that bud differentiation and morphology and dependency on food reserves contributed to the lag in manifestation of radiation damage. The resultant crown characteristics are described and explained

  20. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea.

    Science.gov (United States)

    Swan, Brandon K; Ehrhardt, Christopher J; Reifel, Kristen M; Moreno, Lilliana I; Valentine, David L

    2010-02-01

    Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.

  1. Defense Islands in Bacterial and Archaeal Genomes and Prediction of Novel Defense Systems ▿†‡

    Science.gov (United States)

    Makarova, Kira S.; Wolf, Yuri I.; Snir, Sagi; Koonin, Eugene V.

    2011-01-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic “sinks” that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands. PMID:21908672

  2. Insights into archaeal evolution and symbiosis from the genomes of a Nanoarchaeon and its crenarchaeal host from Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Podar, Mircea [ORNL; Graham, David E [ORNL; Reysenbach, Anna-Louise [Portland State University; Koonin, Eugene [National Center for Biotechnology Information; Wolf, Yuri [National Center for Biotechnology Information; Makarova, Kira S. [National Center for Biotechnology Information

    2013-01-01

    A hyperthemophilic member of the Nanoarchaeota from Obsidian Pool, a thermal feature in Yellowstone National Park was characterized using single cell isolation and sequencing, together with its putative host, a Sulfolobales archaeon. This first representative of a non-marine Nanoarchaeota (Nst1) resembles Nanoarchaeum equitans by lacking most biosynthetic capabilities, the two forming a deep-branching archaeal lineage. However, the Nst1 genome is over 20% larger, encodes a complete gluconeogenesis pathway and a full complement of archaeal flagellum proteins. Comparison of the two genomes suggests that the marine and terrestrial Nanoarchaeota lineages share a common ancestor that was already a symbiont of another archaeon. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. The two distinct Nanoarchaeota-host genomic data sets offer insights into the evolution of archaeal symbiosis and parasitism and will further enable studies of the cellular and molecular mechanisms of these relationships.

  3. Genomic Comparison of Two Family-Level Groups of the Uncultivated NAG1 Archaeal Lineage from Chemically and Geographically Disparate Hot Springs

    Directory of Open Access Journals (Sweden)

    Eric D. Becraft

    2017-10-01

    Full Text Available Recent progress based on single-cell genomics and metagenomic investigations of archaea in a variety of extreme environments has led to significant advances in our understanding of the diversity, evolution, and metabolic potential of archaea, yet the vast majority of archaeal diversity remains undersampled. In this work, we coordinated single-cell genomics with metagenomics in order to construct a near-complete genome from a deeply branching uncultivated archaeal lineage sampled from Great Boiling Spring (GBS in the U.S. Great Basin, Nevada. This taxon is distantly related (distinct families to an archaeal genome, designated “Novel Archaeal Group 1” (NAG1, which was extracted from a metagenome recovered from an acidic iron spring in Yellowstone National Park (YNP. We compared the metabolic predictions of the NAG1 lineage to better understand how these archaea could inhabit such chemically distinct environments. Similar to the NAG1 population previously studied in YNP, the NAG1 population from GBS is predicted to utilize proteins as a primary carbon source, ferment simple carbon sources, and use oxygen as a terminal electron acceptor under oxic conditions. However, GBS NAG1 populations contained distinct genes involved in central carbon metabolism and electron transfer, including nitrite reductase, which could confer the ability to reduce nitrite under anaerobic conditions. Despite inhabiting chemically distinct environments with large variations in pH, GBS NAG1 populations shared many core genomic and metabolic features with the archaeon identified from YNP, yet were able to carve out a distinct niche at GBS.

  4. Characterization of soil bacterial, archaeal and fungal communities inhabiting archaeological human-impacted layers at Monte Iato settlement (Sicily, Italy).

    Science.gov (United States)

    Siles, José A; Öhlinger, Birgit; Cajthaml, Tomas; Kistler, Erich; Margesin, Rosa

    2018-01-30

    Microbial communities in human-impacted soils of ancient settlements have been proposed to be used as ecofacts (bioindicators) of different ancient anthropogenic activities. In this study, bacterial, archaeal and fungal communities inhabiting soil of three archaic layers, excavated at the archaeological site on Monte Iato (Sicily, Italy) and believed to have been created in a chronological order in archaic times in the context of periodic cultic feasts, were investigated in terms of (i) abundance (phospholipid fatty acid (PLFA) analysis and quantitative PCR)), (ii) carbon(C)-source consumption patterns (Biolog-Ecoplates) and (iii) diversity and community composition (Illumina amplicon sequencing). PLFA analyses demonstrated the existence of living bacteria and fungi in the soil samples of all three layers. The upper layer showed increased levels of organic C, which were not concomitant with an increment in the microbial abundance. In taxonomic terms, the results indicated that bacterial, archaeal and fungal communities were highly diverse, although differences in richness or diversity among the three layers were not detected for any of the communities. However, significantly different microbial C-source utilization patterns and structures of bacterial, archaeal and fungal communities in the three layers confirmed that changing features of soil microbial communities reflect different past human activities.

  5. Bacterial and Archaeal Lipids Recovered from Subsurface Evaporites of Dalangtan Playa on the Tibetan Plateau and Their Astrobiological Implications

    Science.gov (United States)

    Cheng, Ziye; Xiao, Long; Wang, Hongmei; Yang, Huan; Li, Jingjing; Huang, Ting; Xu, Yi; Ma, Nina

    2017-11-01

    Qaidam Basin (Tibetan Plateau) is considered an applicable analogue to Mars with regard to sustained extreme aridity and abundant evaporites. To investigate the possibility of the preservation of microbial lipids under these Mars analog conditions, we conducted a mineralogical and organic geochemistry study on samples collected from two Quaternary sections in Dalangtan Playa, northwestern Qaidam Basin, which will enhance our understanding of the potential preservation of molecular biomarkers on Mars. Two sedimentary units were identified along two profiles: one salt unit characterized by a predominance of gypsum and halite, and one detrital unit with a decrease of gypsum and halite and enrichment in siliciclastic minerals. Bacterial fatty acids and archaeal acyclic diether and tetraether membrane lipids were detected, and they varied throughout the sections in concentration and abundance. Bacterial and archaeal biomolecules indicate a dominance of Gram-positive bacteria and halophilic archaea in this hypersaline ecosystem that is similar to those in other hypersaline environments. Furthermore, the abundance of bacterial lipids decreases with the increase of salinity, whereas archaeal lipids showed a reverse trend. The detection of microbial lipids in hypersaline environments would indicate, for example on Mars, a high potential for the detection of microbial biomarkers in evaporites over geological timescales.

  6. Mutual interdependence of splicing and transcription elongation.

    Science.gov (United States)

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  7. Evolution and Allometry of Calcaneal Elongation in Living and Extinct Primates

    Science.gov (United States)

    Boyer, Doug M.; Seiffert, Erik R.; Gladman, Justin T.; Bloch, Jonathan I.

    2013-01-01

    Specialized acrobatic leaping has been recognized as a key adaptive trait tied to the origin and subsequent radiation of euprimates based on its observed frequency in extant primates and inferred frequency in extinct early euprimates. Hypothesized skeletal correlates include elongated tarsal elements, which would be expected to aid leaping by allowing for increased rates and durations of propulsive acceleration at takeoff. Alternatively, authors of a recent study argued that pronounced distal calcaneal elongation of euprimates (compared to other mammalian taxa) was related primarily to specialized pedal grasping. Testing for correlations between calcaneal elongation and leaping versus grasping is complicated by body size differences and associated allometric affects. We re-assess allometric constraints on, and the functional significance of, calcaneal elongation using phylogenetic comparative methods, and present an evolutionary hypothesis for the evolution of calcaneal elongation in primates using a Bayesian approach to ancestral state reconstruction (ASR). Results show that among all primates, logged ratios of distal calcaneal length to total calcaneal length are inversely correlated with logged body mass proxies derived from the area of the calcaneal facet for the cuboid. Results from phylogenetic ANOVA on residuals from this allometric line suggest that deviations are explained by degree of leaping specialization in prosimians, but not anthropoids. Results from ASR suggest that non-allometric increases in calcaneal elongation began in the primate stem lineage and continued independently in haplorhines and strepsirrhines. Anthropoid and lorisid lineages show stasis and decreasing elongation, respectively. Initial increases in calcaneal elongation in primate evolution may be related to either development of hallucal-grasping or a combination of grasping and more specialized leaping behaviors. As has been previously suggested, subsequent increases in calcaneal

  8. Global translational impacts of the loss of the tRNA modification t6A in yeast

    Directory of Open Access Journals (Sweden)

    Patrick C. Thiaville

    2015-12-01

    Full Text Available The universal tRNA modification t6A is found at position 37 of nearly all tRNAs decoding ANN codons. The absence of t6A37 leads to severe growth defects in baker’s yeast, phenotypes similar to those caused by defects in mcm5s2U34 synthesis. Mutants in mcm5s2U34 can be suppressed by overexpression of tRNALysUUU, but we show t6A phenotypes could not be suppressed by expressing any individual ANN decoding tRNA, and t6A and mcm5s2U are not determinants for each other’s formation. Our results suggest that t6A deficiency, like mcm5s2U deficiency, leads to protein folding defects, and show that the absence of t6A led to stress sensitivities (heat, ethanol, salt and sensitivity to TOR pathway inhibitors. Additionally, L-homoserine suppressed the slow growth phenotype seen in t6A-deficient strains, and proteins aggregates and Advanced Glycation End-products (AGEs were increased in the mutants. The global consequences on translation caused by t6A absence were examined by ribosome profiling. Interestingly, the absence of t6A did not lead to global translation defects, but did increase translation initiation at upstream non-AUG codons and increased frame-shifting in specific genes. Analysis of codon occupancy rates suggests that one of the major roles of t6A is to homogenize the process of elongation by slowing the elongation rate at codons decoded by high abundance tRNAs and I34:C3 pairs while increasing the elongation rate of rare tRNAs and G34:U3 pairs. This work reveals that the consequences of t6A absence are complex and multilayered and has set the stage to elucidate the molecular basis of the observed phenotypes.

  9. QTL analysis of internode elongation in response to gibberellin in deepwater rice

    OpenAIRE

    Nagai, Keisuke; Kondo, Yuma; Kitaoka, Takuya; Noda, Tomonori; Kuroha, Takeshi; Angeles-Shim, Rosalyn B.; Yasui, Hideshi; Yoshimura, Atsushi; Ashikari, Motoyuki

    2014-01-01

    Gibberellin (GA) is a plant hormone that has important roles in numerous plant developmental phases. Rice plants known as deepwater rice respond to flooding by elongating their internodes to avoid anoxia. Previous studies reported that GA is essential for internode elongation in deepwater rice. Quantitative trait locus (QTL) analyses identified QTLs regulating internode elongation in response to deepwater conditions. However, the interaction between internode elongation and regulators of GA s...

  10. Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees

    Directory of Open Access Journals (Sweden)

    Henry eMueller

    2015-03-01

    Full Text Available Endophytes have an intimate and often symbiotic interaction with their hosts. Less is known about the composition and function of endophytes in trees. In order to evaluate our hypothesis that plant genotype and origin have a strong impact on both, endophytes of leaves from 10 Olea europaea L. cultivars from the Mediterranean basin growing at a single agricultural site in Spain and from nine wild olive trees located in natural habitats in Greece, Cyprus and on Madeira Island were studied. The composition of the bacterial endophytic communities as revealed by 16S rRNA gene amplicon sequencing and the subsequent PCoA analysis showed a strong correlation to the plant genotypes. The bacterial distribution patterns were congruent with the plant origins in Eastern and Western areas of the Mediterranean basin. Subsequently, the endophytic microbiome of wild olives was shown to be closely related to those of cultivated olives of the corresponding geographic origins. The olive leaf endosphere harbored mostly Proteobacteria, followed by Firmicutes, Actinobacteria and Bacteroidetes. The detection of a high portion of archaeal taxa belonging to the phyla Thaumarchaeota, Crenarchaeota and Euryarchaeota in the amplicon libraries was an unexpected discovery, which was confirmed by quantitative real-time PCR revealing an archaeal portion of up to 35.8%. Although the function of these Archaea for their host plant remains speculative, this finding suggests a significant relevance of archaeal endophytes for plant-microbe interactions. In addition, the antagonistic potential of culturable endophytes was determined; all isolates with antagonistic activity against the olive-pathogenic fungus Verticillium dahliae Kleb. belong to Bacillus amyloliquefaciens. In contrast to the specific global structural diversity, BOX-fingerprints of the antagonistic Bacillus isolates were highly similar and independent of the olive genotype from which they were isolated.

  11. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice.

    Science.gov (United States)

    Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki

    2014-10-01

    Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  12. The Caenorhabditis elegans Elongator complex regulates neuronal alpha-tubulin acetylation.

    Directory of Open Access Journals (Sweden)

    Jachen A Solinger

    2010-01-01

    Full Text Available Although acetylated alpha-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate alpha-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of alpha-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of alpha-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating alpha-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3 and in a scaffold subunit (Elp1 have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology.

  13. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers

    Directory of Open Access Journals (Sweden)

    Céline Brochier-Armanet

    2006-01-01

    Full Text Available Reverse gyrase, an enzyme of uncertain funtion, is present in all hyperthermophilic archaea and bacteria. Previous phylogenetic studies have suggested that the gene for reverse gyrase has an archaeal origin and was transferred laterally (LGT to the ancestors of the two bacterial hyperthermophilic phyla, Thermotogales and Aquificales. Here, we performed an in-depth analysis of the evolutionary history of reverse gyrase in light of genomic progress. We found genes coding for reverse gyrase in the genomes of several thermophilic bacteria that belong to phyla other than Aquificales and Thermotogales. Several of these bacteria are not, strictly speaking, hyperthermophiles because their reported optimal growth temperatures are below 80 °C. Furthermore, we detected a reverse gyrase gene in the sequence of the large plasmid of Thermus thermophilus strain HB8, suggesting a possible mechanism of transfer to the T. thermophilus strain HB8 involving plasmids and transposases. The archaeal part of the reverse gyrase tree is congruent with recent phylogenies of the archaeal domain based on ribosomal proteins or RNA polymerase subunits. Although poorly resolved, the complete reverse gyrase phylogeny suggests an ancient acquisition of the gene by bacteria via one or two LGT events, followed by its secondary distribution by LGT within bacteria. Finally, several genes of archaeal origin located in proximity to the reverse gyrase gene in bacterial genomes have bacterial homologues mostly in thermophiles or hyperthermophiles, raising the possibility that they were co-transferred with the reverse gyrase gene. Our new analysis of the reverse gyrase history strengthens the hypothesis that the acquisition of reverse gyrase may have been a crucial evolutionary step in the adaptation of bacteria to high-temperature environments. However, it also questions the role of this enzyme in thermophilic bacteria and the selective advantage its presence could provide.

  14. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers.

    Science.gov (United States)

    Brochier-Armanet, Céline; Forterre, Patrick

    2007-05-01

    Reverse gyrase, an enzyme of uncertain funtion, is present in all hyperthermophilic archaea and bacteria. Previous phylogenetic studies have suggested that the gene for reverse gyrase has an archaeal origin and was transferred laterally (LGT) to the ancestors of the two bacterial hyperthermophilic phyla, Thermotogales and Aquificales. Here, we performed an in-depth analysis of the evolutionary history of reverse gyrase in light of genomic progress. We found genes coding for reverse gyrase in the genomes of several thermophilic bacteria that belong to phyla other than Aquificales and Thermotogales. Several of these bacteria are not, strictly speaking, hyperthermophiles because their reported optimal growth temperatures are below 80 degrees C. Furthermore, we detected a reverse gyrase gene in the sequence of the large plasmid of Thermus thermophilus strain HB8, suggesting a possible mechanism of transfer to the T. thermophilus strain HB8 involving plasmids and transposases. The archaeal part of the reverse gyrase tree is congruent with recent phylogenies of the archaeal domain based on ribosomal proteins or RNA polymerase subunits. Although poorly resolved, the complete reverse gyrase phylogeny suggests an ancient acquisition of the gene by bacteria via one or two LGT events, followed by its secondary distribution by LGT within bacteria. Finally, several genes of archaeal origin located in proximity to the reverse gyrase gene in bacterial genomes have bacterial homologues mostly in thermophiles or hyperthermophiles, raising the possibility that they were co-transferred with the reverse gyrase gene. Our new analysis of the reverse gyrase history strengthens the hypothesis that the acquisition of reverse gyrase may have been a crucial evolutionary step in the adaptation of bacteria to high-temperature environments. However, it also questions the role of this enzyme in thermophilic bacteria and the selective advantage its presence could provide.

  15. Effects of oxytetracycline on archaeal community, and tetracycline resistance genes in anaerobic co-digestion of pig manure and wheat straw.

    Science.gov (United States)

    Wang, Xiaojuan; Pan, Hongjia; Gu, Jie; Qian, Xun; Gao, Hua; Qin, Qingjun

    2016-12-01

    In this study, the effects of different concentrations of oxytetracycline (OTC) on biogas production, archaeal community structure, and the levels of tetracycline resistance genes (TRGs) were investigated in the anaerobic co-digestion products of pig manure and wheat straw. PCR denaturing gradient gel electrophoresis analysis and real-time quantitative polymerase chain reaction (RT-qPCR) (PCR) were used to detect the archaeal community structure and the levels of four TRGs: tet(M), tet(Q), tet(W), and tet(C). The results showed that anaerobic co-digestion with OTC at concentrations of 60, 100, and 140 mg/kg (dry weight of pig manure) reduced the cumulative biogas production levels by 9.9%, 10.4%, and 14.1%, respectively, compared with that produced by the control, which lacked the antibiotic. The addition of OTC substantially modified the structure of the archaeal community. Two orders were identified by phylogenetic analysis, that is, Pseudomonadales and Methanomicrobiales, and the methanogen present during anaerobic co-digestion with OTC may have been resistant to OTC. The abundances of tet(Q) and tet(W) genes increased as the OTC concentration increased, whereas the abundances of tet(M) and tet(C) genes decreased as the OTC concentration increased.

  16. Identification of GH15 Family Thermophilic Archaeal Trehalases That Function within a Narrow Acidic-pH Range.

    Science.gov (United States)

    Sakaguchi, Masayoshi; Shimodaira, Satoru; Ishida, Shin-Nosuke; Amemiya, Miko; Honda, Shotaro; Sugahara, Yasusato; Oyama, Fumitaka; Kawakita, Masao

    2015-08-01

    Two glucoamylase-like genes, TVN1315 and Ta0286, from the archaea Thermoplasma volcanium and T. acidophilum, respectively, were expressed in Escherichia coli. The gene products, TVN1315 and Ta0286, were identified as archaeal trehalases. These trehalases belong to the CAZy database family GH15, although they have putative (α/α)6 barrel catalytic domain structures similar to those of GH37 and GH65 family trehalases from other organisms. These newly identified trehalases function within a narrow range of acidic pH values (pH 3.2 to 4.0) and at high temperatures (50 to 60°C), and these enzymes display Km values for trehalose higher than those observed for typical trehalases. These enzymes were inhibited by validamycin A; however, the inhibition constants (Ki) were higher than those of other trehalases. Three TVN1315 mutants, corresponding to E408Q, E571Q, and E408Q/E571Q mutations, showed reduced activity, suggesting that these two glutamic acid residues are involved in trehalase catalysis in a manner similar to that of glucoamylase. To date, TVN1315 and Ta0286 are the first archaeal trehalases to be identified, and this is the first report of the heterologous expression of GH15 family trehalases. The identification of these trehalases could extend our understanding of the relationships between the structure and function of GH15 family enzymes as well as glycoside hydrolase family enzymes; additionally, these enzymes provide insight into archaeal trehalose metabolism. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Transition zone cells reach G2 phase before initiating elongation in maize root apex

    Directory of Open Access Journals (Sweden)

    M. Victoria Alarcón

    2017-06-01

    Full Text Available Root elongation requires cell divisions in the meristematic zone and cell elongation in the elongation zone. The boundary between dividing and elongating cells is called the transition zone. In the meristem zone, initial cells are continuously dividing, but on the basal side of the meristem cells exit the meristem through the transition zone and enter in the elongation zone, where they stop division and rapidly elongate. Throughout this journey cells are accompanied by changes in cell cycle progression. Flow cytometry analysis showed that meristematic cells are in cycle, but exit when they enter the elongation zone. In addition, the percentage of cells in G2 phase (4C strongly increased from the meristem to the elongation zone. However, we did not observe remarkable changes in the percentage of cells in cell cycle phases along the entire elongation zone. These results suggest that meristematic cells in maize root apex stop the cell cycle in G2 phase after leaving the meristem.

  18. Adenylate cyclase regulates elongation of mammalian primary cilia

    International Nuclear Information System (INIS)

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J.; Rattner, Jerome B.; Hoorn, Frans A. van der

    2009-01-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3β by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  19. Adenylate cyclase regulates elongation of mammalian primary cilia

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J. [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Rattner, Jerome B. [Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Hoorn, Frans A. van der, E-mail: fvdhoorn@ucalgary.ca [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada)

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  20. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures

    DEFF Research Database (Denmark)

    Häring, Monika; Vestergaard, Gisle Alberg; Brügger, Kim

    2005-01-01

    A novel filamentous virus, AFV2, from the hyperthermophilic archaeal genus Acidianus shows structural similarity to lipothrixviruses but differs from them in its unusual terminal and core structures. The double-stranded DNA genome contains 31,787 bp and carries eight open reading frames homologous...

  1. p16(INK4a translation suppressed by miR-24.

    Directory of Open Access Journals (Sweden)

    Ashish Lal

    2008-03-01

    Full Text Available Expression of the tumor suppressor p16(INK4a increases during aging and replicative senescence.Here, we report that the microRNA miR-24 suppresses p16 expression in human diploid fibroblasts and cervical carcinoma cells. Increased p16 expression with replicative senescence was associated with decreased levels of miR-24, a microRNA that was predicted to associate with the p16 mRNA coding and 3'-untranslated regions. Ectopic miR-24 overexpression reduced p16 protein but not p16 mRNA levels. Conversely, introduction of antisense (AS-miR-24 blocked miR-24 expression and markedly enhanced p16 protein levels, p16 translation, and the production of EGFP-p16 reporter bearing the miR-24 target recognition sites.Together, our results suggest that miR-24 represses the initiation and elongation phases of p16 translation.

  2. Effector region of the translation elongation factor EF-Tu.GTP complex stabilizes an orthoester acid intermediate structure of aminoacyl-tRNA in a ternary complex.

    Science.gov (United States)

    Förster, C; Limmer, S; Zeidler, W; Sprinzl, M

    1994-01-01

    tRNA(Val) from Escherichia coli was aminoacylated with [1-13C]valine and its complex with Thermus thermophilus elongation factor EF-Tu.GTP was analyzed by 13C NMR spectroscopy. The results suggest that the aminoacyl residue of the valyl-tRNA in ternary complex with bacterial EF-Tu and GTP is not attached to tRNA by a regular ester bond to either a 2'- or 3'-hydroxyl group; instead, an intermediate orthoester acid structure with covalent linkage to both vicinal hydroxyls of the terminal adenosine-76 is formed. Mutation of arginine-59 located in the effector region of EF-Tu, a conserved residue in protein elongation factors and the alpha subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins), abolishes the stabilization of the orthoester acid structure of aminoacyl-tRNA. PMID:8183898

  3. Film dosimetry of small elongated electron beams for treatment planning

    International Nuclear Information System (INIS)

    Niroomand-Rad, A.

    1989-01-01

    The characteristics of 5, 7, 10, 12, 15, and 18 Mev electron beams for small elongated fields of dimensions L x W (where L=1, 2, 3, 4, 5, and 10 cm; and W=1, 2, 3, 4, 5, and 10 cm) have been studied. Film dosimetry and parallel-plate ion chamber measurements have been used to obtain various dose parameters. Selective results of a series of systematic measurements for central axis depth dose data, uniformity index, field flatness, and relative output factors of small elongated electron beams are reported. The square-root method is employed to predict the beam data of small elongated electron fields from corresponding small square electron fields using film dosimetry. The single parameter area/perimeter radio A/P is used to characterize the relative output factors of elongated electron beams. It is our conclusion that for clinical treatment planning square-root method may be applied with caution in determining the beam characteristics of small elongated electron fields from film dosimetry. The calculated and estimated relative output factors from square-root method and A/P ratio are in good agreement and show agreement to within 1% with the measured film values

  4. Fluoride exposure regulates the elongation phase of protein synthesis in cultured Bergmann glia cells.

    Science.gov (United States)

    Flores-Méndez, Marco; Ramírez, Diana; Alamillo, Nely; Hernández-Kelly, Luisa C; Del Razo, Luz María; Ortega, Arturo

    2014-08-17

    Fluoride is an environmental pollutant present in dental products, food, pesticides and water. The latter, is the greatest source of exposure to this contaminant. Structural and functional damages to the central nervous system are present in exposed population. An established consequence of the neuronal is the release of a substantial amount of glutamate to the extracellular space, leading to an excitotoxic insult. Glutamate exerts its actions through the activation of specific plasma membrane receptors and transporters present in neurons and in glia cells and it is the over-activation of glutamate receptors and transporters, the biochemical hallmark of neuronal and oligodendrocyte cell death. In this context, taking into consideration that fluoride leads to degeneration of cerebellar cells, we took the advantage of the well-established model of cerebellar Bergmann glia cultures to gain insight into the molecular mechanisms inherent to fluoride neurotoxicity that might be triggered in glia cells. We could establish that fluoride decreases [(35)S]-methionine incorporation into newly synthesized polypeptides, in a time-dependent manner, and that this halt in protein synthesis is the result of a decrease in the elongation phase of translation, mediated by an augmentation of eukaryotic elongation factor 2 phosphorylation. These results favor the notion of glial cells as targets of fluoride toxicity and strengthen the idea of a critical involvement of glia cells in the function and dysfunction of the brain. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Identity and diversity of archaeal communities during anaerobic co-digestion of chicken feathers and other animal wastes.

    Science.gov (United States)

    Xia, Yun; Massé, Daniel I; McAllister, Tim A; Kong, Yunhong; Seviour, Robert; Beaulieu, Carole

    2012-04-01

    Digestion of raw feathers in anaerobic digesters inoculated with adapted swine manure, slaughterhouse sludge or dairy manure was investigated using twelve 42-L anaerobic digesters at 25°C. After 120days 74%, 49% and 40% added feathers were converted to methane in swine manure, dairy manure and slaughterhouse sludge anaerobic digesters respectively. 16S rRNA gene clone library analyses identified twenty-one operational taxonomic units containing clone sequences from 5 genera, 5 families and 2 phyla of members of the Archaea from 158 sequenced clones. Fluorescence insitu hybridization revealed that methanogens from the Methanomicrobiales, Methanosarcinales and Methanobacteriales constituted a major fraction (>78%) of these Archaea. A high correlation was seen between the distribution of functional archaeal groups and the NH(3)-N levels of digester mixed liquors. The compositions of archaeal communities fed different substrates were statistically significantly different (P<0.05). Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  6. Shifts in bacterial and archaeal community structures during the batch biomethanation of Ulva biomass under mesophilic conditions.

    Science.gov (United States)

    Kim, Jaai; Jung, Heejung; Lee, Changsoo

    2014-10-01

    Mesophilic biomethanation of Ulva biomass was performed in a batch bioreactor, and a high organic removal of 77% was obtained on the basis of chemical oxygen demand (COD) after a month of operation. The estimated methane yield was 0.43 ± 0.02 L CH4/g COD(removed) which is close to the theoretical methane potential. Transitions of bacterial and archaeal community structures, associated with process performance data, were investigated using a combination of molecular fingerprinting and biostatistical tools. During the operation, archaeal community structure had no significant changes while bacterial community structure shifted continuously and dynamically. The reactor completely stabilized volatile fatty acids (primarily acetate and propionate) accumulated from the acidogenesis phase, with Methanosaeta- and Methanolinea-related microbes respectively being the main aceticlastic and hydrogenotrophic methanogens. Methanolinea- and Syntrophobacter-related populations were likely the key members to form a syntrophic propionate-degrading consortium. A Methanolinea-related population was likely the dominant methane producer in the experimental reactor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts

    Science.gov (United States)

    Woese, C. R.; Achenbach, L.; Rouviere, P.; Mandelco, L.

    1991-01-01

    A major and too little recognized source of artifact in phylogenetic analysis of molecular sequence data is compositional difference among sequences. The problem becomes particularly acute when alignments contain ribosomal RNAs from both mesophilic and thermophilic species. Among prokaryotes the latter are considerably higher in G + C content than the former, which often results in artificial clustering of thermophilic lineages and their being placed artificially deep in phylogenetic trees. In this communication we review archaeal phylogeny in the light of this consideration, focusing in particular on the phylogenetic position of the sulfate reducing species Archaeoglobus fulgidus, using both 16S rRNA and 23S rRNA sequences. The analysis shows clearly that the previously reported deep branching of the A. fulgidus lineage (very near the base of the euryarchaeal side of the archaeal tree) is incorrect, and that the lineage actually groups with a previously recognized unit that comprises the Methanomicrobiales and extreme halophiles.

  8. Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation.

    Science.gov (United States)

    Kanekura, Kohsuke; Yagi, Takuya; Cammack, Alexander J; Mahadevan, Jana; Kuroda, Masahiko; Harms, Matthew B; Miller, Timothy M; Urano, Fumihiko

    2016-05-01

    The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the Chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This genetic alteration leads to the accumulation of five types of poly-dipeptides translated from the GGGGCC hexanucleotide repeat. Among these, poly-proline-arginine (poly-PR) and poly-glycine-arginine (poly-GR) peptides are known to be neurotoxic. However, the mechanisms of neurotoxicity associated with these poly-dipeptides are not clear. A proteomics approach identified a number of interacting proteins with poly-PR peptide, including mRNA-binding proteins, ribosomal proteins, translation initiation factors and translation elongation factors. Immunostaining of brain sections from patients with C9orf72 ALS showed that poly-GR was colocalized with a mRNA-binding protein, hnRNPA1. In vitro translation assays showed that poly-PR and poly-GR peptides made insoluble complexes with mRNA, restrained the access of translation factors to mRNA, and blocked protein translation. Our results demonstrate that impaired protein translation mediated by poly-PR and poly-GR peptides plays a role in neurotoxicity and reveal that the pathways altered by the poly-dipeptides-mRNA complexes are potential therapeutic targets for treatment of C9orf72 FTD/ALS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. The Impact of Machine Translation and Computer-aided Translation on Translators

    Science.gov (United States)

    Peng, Hao

    2018-03-01

    Under the context of globalization, communications between countries and cultures are becoming increasingly frequent, which make it imperative to use some techniques to help translate. This paper is to explore the influence of computer-aided translation on translators, which is derived from the field of the computer-aided translation (CAT) and machine translation (MT). Followed by an introduction to the development of machine and computer-aided translation, it then depicts the technologies practicable to translators, which are trying to analyze the demand of designing the computer-aided translation so far in translation practice, and optimize the designation of computer-aided translation techniques, and analyze its operability in translation. The findings underline the advantages and disadvantages of MT and CAT tools, and the serviceability and future development of MT and CAT technologies. Finally, this thesis probes into the impact of these new technologies on translators in hope that more translators and translation researchers can learn to use such tools to improve their productivity.

  10. Uni-axial Elongational Viscosity of Linear and Branched polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    About 40 years ago interest in the measurement of elongational viscosity of polymer melts started to grow. Here we present measurements of transient (and steady) uni-axial elongational viscosity, using the FSR, of the following melts: Four narrow MMD polystyrene (PS) samples with weight......-average molar mass Mw in the range of 50k to 390k. Three different bi-disperse samples, mixed from the narrow MMD PS. Two low-density polyethylene (LDPE) melts (Lupolen 1840D and 3020D). A steady-state viscosity was kept for 1-2.5 Hencky strain units in all measurements.The measurements on the bi-disperse PS...... melts have demonstrated that both the transient and steady elongational viscosity is quite sensitive to polydispersity. Bi-disperse PS resembles the behaviour of mono-disperse melts only at elongational rates larger then the inverse of maximal time constant of the smallest molecule. As observed in Boger...

  11. Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues.

    Science.gov (United States)

    Bengelsdorf, Frank R; Gerischer, Ulrike; Langer, Susanne; Zak, Manuel; Kazda, Marian

    2013-04-01

    The resident microbiota was analyzed in a mesophilic, continuously operating biogas plant predominantly utilizing food residues, stale bread, and other waste cosubstrates together with pig manure and maize silage. The dominating bacterial, archaeal, and eukaryotic community members were characterized by two different 16S/18S rRNA gene culture-independent approaches. Prokaryotic 16S rRNA gene and eukaryotic 18S rRNA gene clone libraries were constructed and further analyzed by restriction fragment length polymorphism (RFLP), 16S/18S rRNA gene sequencing, and phylogenetic tree reconstruction. The most dominant bacteria belonged to the phyla Bacteriodetes, Chloroflexus, and Firmicutes. On the family level, the bacterial composition confirmed high differences among biogas plants studied so fare. In contrast, the methanogenic archaeal community was similar to that of other studied biogas plants. Furthermore, it was possible to identify fungi at the genus level, namely Saccharomyces and Mucor. Both genera, which are important for microbial degradation of complex compounds, were up to now not found in biogas plants. The results revealed their long-term presence as indicated by denaturating gradient gel electrophoresis (DGGE). The DGGE method confirmed that the main members of the microbial community were constantly present over more than one-year period. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Light quality and elongation growth. 1: Effect of duration and time of far red irradiation on stem elongation of Argyranthemum frutescens cv. Silver Leaf

    International Nuclear Information System (INIS)

    Jatzkowski, M.; Zimmer, K.

    1994-01-01

    The phenomenon of stem elongation by far red irradiation was shown with Argyranthemum frutescens 'Silver Leaf'. Stem elongation was promoted by incandescent lighting (mainly far red) during the day and night period. More intense reactions were observed with the isolated application during the nighttime. Reaction was strongly modified by the point of time the application took place. No effect could be shown by lighting with incandescent lamps for two hours during the daytime given within the first six hours of the main light period. During the nighttime two hours of lighting (incandescent lamps) promoted stem elongation atany point of time, especially in the middle of the dark period

  13. Scattering phaseshift formulas for mesons and baryons in elongated boxes

    Science.gov (United States)

    Lee, Frank X.; Alexandru, Andrei

    2018-03-01

    We derive Lüscher phaseshift formulas for two-particle states in boxes elongated in one of the dimensions. Such boxes offer a cost-effective way of varying the relative momentum of the particles. Boosted states in the elongated direction, which allow wider access to energies, are also considered. The formulas for the various scenarios (moving and zero-momentum states in cubic and elongated boxes) are compared and relations between them are clarified. The results are applicable to a wide set of meson-meson and meson-baryon elastic scattering processes, with the two-particle system having equal or unequal masses.

  14. The Level of Autoantibodies Targeting Eukaryote Translation Elongation Factor 1 α1 and Ubiquitin-Conjugating Enzyme 2L3 in Nondiabetic Young Adults

    Directory of Open Access Journals (Sweden)

    Eunhee G. Kim

    2016-01-01

    Full Text Available BackgroundThe prevalence of novel type 1 diabetes mellitus (T1DM antibodies targeting eukaryote translation elongation factor 1 alpha 1 autoantibody (EEF1A1-AAb and ubiquitin-conjugating enzyme 2L3 autoantibody (UBE2L3-AAb has been shown to be negatively correlated with age in T1DM subjects. Therefore, we aimed to investigate whether age affects the levels of these two antibodies in nondiabetic subjects.MethodsEEF1A1-AAb and UBE2L3-AAb levels in nondiabetic control subjects (n=150 and T1DM subjects (n=101 in various ranges of age (18 to 69 years were measured using an enzyme-linked immunosorbent assay. The cutoff point for the presence of each autoantibody was determined based on control subjects using the formula: [mean absorbance+3×standard deviation].ResultsIn nondiabetic subjects, there were no significant correlations between age and EEF1A1-AAb and UBE2L3-AAb levels. However, there was wide variation in EEF1A1-AAb and UBE2L3-AAb levels among control subjects <40 years old; the prevalence of both EEF1A1-AAb and UBE2L3-AAb in these subjects was 4.4%. When using cutoff points determined from the control subjects <40 years old, the prevalence of both autoantibodies in T1DM subjects was decreased (EEFA1-AAb, 15.8% to 8.9%; UBE2L3-AAb, 10.9% to 7.9% when compared to the prevalence using the cutoff derived from the totals for control subjects.ConclusionThere was no association between age and EEF1A1-AAb or UBE2L3-AAb levels in nondiabetic subjects. However, the wide variation in EEF1A1-AAb and UBE2L3-AAb levels apparent among the control subjects <40 years old should be taken into consideration when determining the cutoff reference range for the diagnosis of T1DM.

  15. Discontinuation of orthokeratology on eyeball elongation (DOEE).

    Science.gov (United States)

    Cho, P; Cheung, S W

    2017-04-01

    To evaluate and compare changes in axial elongation, over a 14-month period, in subjects who discontinued and then resumed ortho-k lens wear with those who continued to wear their lenses or spectacles following a 2-year myopia control study. This single masked, prospective study recruited subjects who had just completed a 2-year myopia control study. Ortho-k subjects were classified as Group OKc, in which subjects continued ortho-k lens wear for the duration of the study; or Group OKd in which subjects discontinued lens wear for seven months and wore single-vision spectacles (Phase I) and then resumed ortho-k lens wear for another seven months (Phase II). Spectacle-wearing control subjects from the initial myopia control study continued wearing spectacles as control subjects. Axial lengths were measured at scheduled visits using the IOLMaster. Thirteen, 16, and 15 Control, OKc, and OKd subjects, aged 8-14 years, respectively completed the study. Significant increase in axial elongation was found in OKd subjects only in Phase I but not in Phase II. On resuming lens wear, in Phase II, the rate of axial elongation was no longer significantly different from those of the Control or OKc subjects. Stopping ortho-k lens wear at or before the age of 14 years led to a more rapid increase in axial length; comparable to those wearing spectacles during the initial 2-year myopia control study, but greater than the Control and OKc group in this study. Axial elongation slowed again with resumed lens wear after six months. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  16. Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Nielsen, Jens Kromann; Bach, Anders

    2005-01-01

    The transient uniaxial elongational viscosity of BASF Lupolen 1840D and 3020D melts has been measured on a filament stretch rheometer up to Hencky strains of 6-7. The elongational viscosity of both melts was measured at 130 degrees C within a broad range of elongational rates. At high elongation ...

  17. Photo-oxidation of LDPE: Effects on elongational viscosity

    Science.gov (United States)

    Rolón-Garrido, Víctor H.; Wagner, Manfred H.

    2013-04-01

    Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, time-deformation separability is confirmed for all samples, independent of the degree of photo-oxidation.

  18. Translation Theory 'Translated'

    DEFF Research Database (Denmark)

    Wæraas, Arild; Nielsen, Jeppe

    2016-01-01

    Translation theory has proved to be a versatile analytical lens used by scholars working from different traditions. On the basis of a systematic literature review, this study adds to our understanding of the ‘translations’ of translation theory by identifying the distinguishing features of the most...... common theoretical approaches to translation within the organization and management discipline: actor-network theory, knowledge-based theory, and Scandinavian institutionalism. Although each of these approaches already has borne much fruit in research, the literature is diverse and somewhat fragmented......, but also overlapping. We discuss the ways in which the three versions of translation theory may be combined and enrich each other so as to inform future research, thereby offering a more complete understanding of translation in and across organizational settings....

  19. Binary translation using peephole translation rules

    Science.gov (United States)

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  20. Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2013-05-01

    Full Text Available Geothermal habitats in Yellowstone National Park (YNP provide an unparalled opportunity to understand the environmental factors that control the distribution of archaea in thermal habitats. Here we describe, analyze and synthesize metagenomic and geochemical data collected from seven high-temperature sites that contain microbial communities dominated by archaea relative to bacteria. The specific objectives of the study were to use metagenome sequencing to determine the structure and functional capacity of thermophilic archaeal-dominated microbial communities across a pH range from 2.5 to 6.4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (~40-45 Mbase Sanger sequencing per site was obtained from environmental DNA extracted from high-temperature sediments and/or microbial mats and subjected to numerous phylogenetic and functional analyses. Analysis of individual sequences (e.g., MEGAN and G+C content and assemblies from each habitat type revealed the presence of dominant archaeal populations in all environments, 10 of whose genomes were largely reconstructed from the sequence data. Analysis of protein family occurrence, particularly of those involved in energy conservation, electron transport and autotrophic metabolism, revealed significant differences in metabolic strategies across sites consistent with differences in major geochemical attributes (e.g., sulfide, oxygen, pH. These observations provide an ecological basis for understanding the distribution of indigenous archaeal lineages across high temperature systems of YNP.

  1. Bilateral elongated styloid process: Its anatomical, embryological and clinical implications

    Directory of Open Access Journals (Sweden)

    Bagoji Ishwar B, Hadimani Gavishiddappa A, Patil Balasaheb G, Bannur Balappa M,Ambadasu B

    2013-04-01

    Full Text Available The styloid process is a slender, elongated, cylindrical bony projection from temporal bone. It normally varies in length from 2 cm to 3 cm. During a routine demonstration of skull for MBBS students we found the bilateral elongated styloid process in dry human skull. The length of elongation measured on the right and left side was 6.0 & 5.9 cms respectively. Such abnormal elongation of the styloid process may cause compression on a number of vital vessels and nerves related to it, producing inflammatory changes that include continuous chronic pain in the pharyngeal region. Mechanical stresses stretching the second brachial arch during fetal development probably induce variable involvement of Reichert’s cartilage in morphogenesis of the styloid process. It is important that clinicians especially dentists and otolaryngologists are aware of the natural variations of the styloid process and do not consider the styloid process with a length of 30 mm as an abnormality or as an anomaly.

  2. The tRNA-like structure of Turnip yellow mosaic virus RNA is a 3'-translational enhancer

    International Nuclear Information System (INIS)

    Matsuda, Daiki; Dreher, Theo W.

    2004-01-01

    Many positive stand RNA viral genomes lack the poly(A) tail that is characteristic of cellular mRNAs and that promotes translation in cis. The 3' untranslated regions (UTRs) of such genomes are expected to provide similar translation-enhancing properties as a poly(A) tail, yet the great variety of 3' sequences suggests that this is accomplished in a range of ways. We have identified a translational enhancer present in the 3' UTR of Turnip yellow mosaic virus (TYMV) RNA using luciferase reporter RNAs with generic 5' sequences transfected into plant cells. The 3' terminal 109 nucleotides comprising the tRNA-like structure (TLS) and an upstream pseudoknot (UPSK) act in synergy with a 5'-cap to enhance translation, with a minor contribution in stabilizing the RNA. Maximum enhancement requires that the RNA be capable of aminoacylation, but either the native valine or engineered methionine is acceptable. Mutations that decrease the affinity for translation elongation factor eEF1A (but also diminish aminoacylation efficiency) strongly decrease translational enhancement, suggesting that eEF1A is mechanistically involved. The UPSK seems to act as an important, though nonspecific, spacer element ensuring proper presentation of a functional TLS. Our studies have uncovered a novel type of translational enhancer and a new role for a plant viral TLS

  3. An Equatorial Contractile Mechanism Drives Cell Elongation but not Cell Division

    Science.gov (United States)

    Denker, Elsa; Bhattachan, Punit; Deng, Wei; Mathiesen, Birthe T.; Jiang, Di

    2014-01-01

    Cell shape changes and proliferation are two fundamental strategies for morphogenesis in animal development. During embryogenesis of the simple chordate Ciona intestinalis, elongation of individual notochord cells constitutes a crucial stage of notochord growth, which contributes to the establishment of the larval body plan. The mechanism of cell elongation is elusive. Here we show that although notochord cells do not divide, they use a cytokinesis-like actomyosin mechanism to drive cell elongation. The actomyosin network forming at the equator of each notochord cell includes phosphorylated myosin regulatory light chain, α-actinin, cofilin, tropomyosin, and talin. We demonstrate that cofilin and α-actinin are two crucial components for cell elongation. Cortical flow contributes to the assembly of the actomyosin ring. Similar to cytokinetic cells, membrane blebs that cause local contractions form at the basal cortex next to the equator and participate in force generation. We present a model in which the cooperation of equatorial actomyosin ring-based constriction and bleb-associated contractions at the basal cortex promotes cell elongation. Our results demonstrate that a cytokinesis-like contractile mechanism is co-opted in a completely different developmental scenario to achieve cell shape change instead of cell division. We discuss the occurrences of actomyosin rings aside from cell division, suggesting that circumferential contraction is an evolutionally conserved mechanism to drive cell or tissue elongation. PMID:24503569

  4. Machine Translation and Other Translation Technologies.

    Science.gov (United States)

    Melby, Alan

    1996-01-01

    Examines the application of linguistic theory to machine translation and translator tools, discusses the use of machine translation and translator tools in the real world of translation, and addresses the impact of translation technology on conceptions of language and other issues. Findings indicate that the human mind is flexible and linguistic…

  5. Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1alpha genes.

    Science.gov (United States)

    Voigt, K; Wöstemeyer, J

    2001-05-30

    True fungi (Eumycota) are heterotrophic eukaryotic microorganisms encompassing ascomycetes, basidiomycetes, chytridiomycetes and zygomycetes. The natural systematics of the latter group, Zygomycota, are very poorly understood due to the lack of distinguishing morphological characters. We have determined sequences for the nuclear-encoded genes actin (act) from 82 zygomycetes representing all 54 currently recognized genera from the two zygomycetous orders Mucorales and Mortierellales. We also determined sequences for translation elongation factor EF-1alpha (tef) from 16 zygomycetes (total of 96,837 bp). Phylogenetic analysis in the context of available sequence data (total 2,062 nucleotide positions per species) revealed that current classification schemes for the mucoralean fungi are highly unnatural at the family and, to a large extent, at the genus level. The data clearly indicate a deep, ancient and distinct dichotomy of the orders Mucorales and Mortierellales, which are recognized only in some zygomycete systems. Yet at the same time the data show that two genera - Umbelopsis and Micromucor - previously placed within the Mortierellales on the basis of their weakly developed columella (a morphological structure of the sporangiophore well-developed within all Mucorales) are in fact members of the Mucorales. Phylogenetic analyses of the encoded amino acid sequences in the context of homologues from eukaryotes and archaebacterial outgroups indicate that the Eumycota studied here are a natural group but provide little or no support for the monophyly of either zygomycetes, ascomycetes or basidiomycetes. The data clearly indicate that a complete revision of zygomycete natural systematics is necessary.

  6. Algal and archaeal polyisoprenoids in a recent marine sediment

    DEFF Research Database (Denmark)

    Bian, Liangqiao; Hinrichs, Kai-Uwe; Xie, Tianmin

    2001-01-01

    Analyses of C-13 contents of individual organic molecules in a marine sediment show that crocetane, 2,6,11,15-tetramethylhexadecane, an isomer of phytane, is produced by microorganisms that use methane as their main source of carbon. The sediments lie at a water depth of 68 m in the Kattegat......, the strait between Denmark and Sweden. Crocetane appears first 185 cm below the sediment-water interface, in the zone marking the transition from sulfate reduction to methanogenesis. Its delta C-13 value is -90 +/- 10 parts per thousand versus Vienna Pee Dee Belemnite (VPDB). Its structure, which includes......-consuming member of the microbial consortium responsible for the anaerobic oxidation of methane [Hoehler et al., 1994], in which, as first demonstrated quantitatively in these sediments [Iversen and Jorgensen, 1985], electrons are transferred from methane to sulfate. The presence of archaeal biomass throughout...

  7. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes.

    Science.gov (United States)

    Crepin, Thibaut; Shalak, Vyacheslav F; Yaremchuk, Anna D; Vlasenko, Dmytro O; McCarthy, Andrew; Negrutskii, Boris S; Tukalo, Michail A; El'skaya, Anna V

    2014-11-10

    Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon-anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the 'GTP'- and 'GDP'-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang; Zhu, Xuling; Torelli, Andrew T; Lee, Michael; Dzikovski, Boris; Koralewski, Rachel M; Wang, Eileen; Freed, Jack; Krebs, Carsten; Ealick, Steve E; Lin, Hening [Cornell; (Penn)

    2010-08-30

    Archaeal and eukaryotic translation elongation factor 2 contain a unique post-translationally modified histidine residue called diphthamide, which is the target of diphtheria toxin. The biosynthesis of diphthamide was proposed to involve three steps, with the first being the formation of a C-C bond between the histidine residue and the 3-amino-3-carboxypropyl group of S-adenosyl-l-methionine (SAM). However, further details of the biosynthesis remain unknown. Here we present structural and biochemical evidence showing that the first step of diphthamide biosynthesis in the archaeon Pyrococcus horikoshii uses a novel iron-sulphur-cluster enzyme, Dph2. Dph2 is a homodimer and each of its monomers can bind a [4Fe-4S] cluster. Biochemical data suggest that unlike the enzymes in the radical SAM superfamily, Dph2 does not form the canonical 5'-deoxyadenosyl radical. Instead, it breaks the Cγ,Met-S bond of SAM and generates a 3-amino-3-carboxypropyl radical. Our results suggest that P. horikoshii Dph2 represents a previously unknown, SAM-dependent, [4Fe-4S]-containing enzyme that catalyses unprecedented chemistry.

  9. Adherens junction distribution mechanisms during cell-cell contact elongation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Gabrielle Goldenberg

    Full Text Available During Drosophila gastrulation, amnioserosa (AS cells flatten and spread as an epithelial sheet. We used AS morphogenesis as a model to investigate how adherens junctions (AJs distribute along elongating cell-cell contacts in vivo. As the contacts elongated, total AJ protein levels increased along their length. However, genetically blocking this AJ addition indicated that it was not essential for maintaining AJ continuity. Implicating other remodeling mechanisms, AJ photobleaching revealed non-directional lateral mobility of AJs along the elongating contacts, as well as local AJ removal from the membranes. Actin stabilization with jasplakinolide reduced AJ redistribution, and live imaging of myosin II along elongating contacts revealed fragmented, expanding and contracting actomyosin networks, suggesting a mechanism for lateral AJ mobility. Actin stabilization also increased total AJ levels, suggesting an inhibition of AJ removal. Implicating AJ removal by endocytosis, clathrin endocytic machinery accumulated at AJs. However, dynamin disruption had no apparent effect on AJs, suggesting the involvement of redundant or dynamin-independent mechanisms. Overall, we propose that new synthesis, lateral diffusion, and endocytosis play overlapping roles to populate elongating cell-cell contacts with evenly distributed AJs in this in vivo system.

  10. Vertical distribution of archaeal communities associated with anaerobic degradation of pentabromodiphenyl ether (BDE-99) in river-based groundwater recharge with reclaimed water.

    Science.gov (United States)

    Yan, Yulin; Ma, Mengsi; Liu, Xiang; Ma, Weifang; Li, Yangyao

    2018-02-01

    When groundwater is recharged with reclaimed water, the presence of trace amounts of biorefractory pentabromodiphenyl ether (PBDE, specifically BDE-99) might cause potential groundwater pollution. A laboratory-scale column was designed to investigate the distribution of the community of archaea in this scenario and the associated anaerobic degradation of BDE-99. The concentration of BDE-99 decreased significantly as soil depth increased, and fluorescence in situ hybridization (FISH) analysis suggested that archaea exerted significant effects on the biodegradation of PBDE. Through 454 pyrosequencing of 16s rRNA genes, we found that the distribution and structure of the archaeal community associated with anaerobic degradation of BDE-99 in the river-based aquifer media changed significantly between different soil depths. The primary debrominated metabolites varied with changes in the vertically distributed archaeal community. The archaea in the surface layer were dominated by Methanomethylovorans, and the middle layer was mainly composed of Nitrososphaera. Nitrosopumilus and Nitrososphaera were equally abundant in the bottom layer. In addition, Methanomethylovorans abundance depended on the depth of soil, and the relative abundance of Nitrosopumilus increased with increasing depth, which was associated with the oxidation-reduction potential and the content of intermediate metabolites. We propose that Nitrososphaera and Nitrosopumilus might be the key archaeal taxa mediating the biodegradation of BDE-99.

  11. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering

    OpenAIRE

    Chro??kov?, Alica; Schloter-Hai, Brigitte; Radl, Viviane; Endesfelder, David; Quince, Christopher; Elhottov?, Dana; ?imek, Miloslav; Schloter, Michael

    2015-01-01

    Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of...

  12. Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation

    OpenAIRE

    Chen, W.S.; Ye, Y.; Steinbusch, K.J.J.; Strik, D.P.B.T.B.; Buisman, C.J.N.

    2016-01-01

    Chain elongation is an emerging mixed culture biotechnology converting acetate into valuable biochemicals by using ethanol as an external electron donor. In this study we proposed to test another potential electron donor, methanol, in chain elongation. Methanol can be produced through the thermochemical conversion of lignocellulosic biowaste. Use of methanol in chain elongation integrates the lignocellulosic feedstocks and the thermochemical platform technologies into chain elongation. After ...

  13. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.

    Science.gov (United States)

    Gan, Rui; Perez, Jessica G; Carlson, Erik D; Ntai, Ioanna; Isaacs, Farren J; Kelleher, Neil L; Jewett, Michael C

    2017-05-01

    The ability to site-specifically incorporate non-canonical amino acids (ncAAs) into proteins has made possible the study of protein structure and function in fundamentally new ways, as well as the bio synthesis of unnatural polymers. However, the task of site-specifically incorporating multiple ncAAs into proteins with high purity and yield continues to present a challenge. At the heart of this challenge lies the lower efficiency of engineered orthogonal translation system components compared to their natural counterparts (e.g., translation elements that specifically use a ncAA and do not interact with the cell's natural translation apparatus). Here, we show that evolving and tuning expression levels of multiple components of an engineered translation system together as a whole enhances ncAA incorporation efficiency. Specifically, we increase protein yield when incorporating multiple p-azido-phenylalanine(pAzF) residues into proteins by (i) evolving the Methanocaldococcus jannaschii p-azido-phenylalanyl-tRNA synthetase anti-codon binding domain, (ii) evolving the elongation factor Tu amino acid-binding pocket, and (iii) tuning the expression of evolved translation machinery components in a single vector. Use of the evolved translation machinery in a genomically recoded organism lacking release factor one enabled enhanced multi-site ncAA incorporation into proteins. We anticipate that our approach to orthogonal translation system development will accelerate and expand our ability to site-specifically incorporate multiple ncAAs into proteins and biopolymers, advancing new horizons for synthetic and chemical biotechnology. Biotechnol. Bioeng. 2017;114: 1074-1086. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Status of the tube elongation problem as of June 1976

    International Nuclear Information System (INIS)

    Alexander, W.K.

    1976-01-01

    It was discovered in May of 1971 that the N Reactor process tubes had apparently increased in length by as much as one inch. Preliminary observations and measurements led to the tentative conclusion that this observed elongation was linear with accumulated tube exposure and also that it was related in some manner to the tube fabrication process. It appeared that the observed elongation was approximately proportional to the degree of cold work retained in the finished tubes. This latter conclusion was based on the observation that those tubes with approximately 17-18 percent cold work had elongated only about half as much as the standard 30-percent-cold-worked tubes. It was immediately recognized that if such elongation was to continue unchecked it could pose a limit to reactor life since total possible tube expansion, from all causes, is limited to 1.75 inches by nozzle design considerations as shown in Figure 1. Thermal and hydraulic expansion were calculated to total approximately 0.75 inches which left only one inch available to accommodate tube growth or creep. Since discovery of this phenomenon, an extensive measurements program has been carried out to evaluate the extent and rate of tube elongation. Two corrective approaches have been developed and a small number of tubes were modified by each method during the 1976 summer outage. During the 1974, 1975 and 1976 Summer Outages, measurements were made on all tubes to determine the clearance remaining between the nozzle keys and the gas packing ring. These readings not only give an overall picture of the extent of elongation, but also provide immediate data indicating which tubes are about out of clearance. The report presents an evaluation of the measurements taken to date

  15. Mitochondrial translation factors of Trypanosoma brucei: elongation factor-Tu has a unique subdomain that is essential for its function

    Czech Academy of Sciences Publication Activity Database

    Cristodero, M.; Mani, J.; Oeljeklaus, S.; Aeberhard, L.; Hashimi, Hassan; Ramrath, D.J.F.; Lukeš, Julius; Warscheid, B.; Schneider, A.

    2013-01-01

    Roč. 90, č. 4 (2013), s. 744-755 ISSN 0950-382X R&D Projects: GA ČR GAP305/12/2261 Institutional support: RVO:60077344 Keywords : mitochondrial translation * Trypanosoma brucei * EF-Tu Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.026, year: 2013

  16. Rhizome elongation and seagrass clonal growth

    NARCIS (Netherlands)

    Marbà, N.; Duarte, C.M.

    1998-01-01

    A compilation of published and original data on rhizome morphometry, horizontal and vertical elongation rates and branching patterns for 27 seagrass species developing in 192 seagrass stands allowed an examination of the variability of seagrass rhizome and clonal growth programmes across and within

  17. Bacillus anthracis Prolyl 4-Hydroxylase Interacts with and Modifies Elongation Factor Tu

    Energy Technology Data Exchange (ETDEWEB)

    Schnicker, Nicholas J. [Department; Razzaghi, Mortezaali [Department; Guha Thakurta, Sanjukta [Department; Chakravarthy, Srinivas [Biophysics; Dey, Mishtu [Department

    2017-10-17

    Prolyl hydroxylation is a very common post-translational modification and plays many roles in eukaryotes such as collagen stabilization, hypoxia sensing, and controlling protein transcription and translation. There is a growing body of evidence that suggests that prokaryotes contain prolyl 4-hydroxylases (P4Hs) homologous to the hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) enzymes that act on elongation factor Tu (EFTu) and are likely involved in the regulation of bacterial translation. Recent biochemical and structural studies with a PHD from Pseudomonas putida (PPHD) determined that it forms a complex with EFTu and hydroxylates a prolyl residue of EFTu. Moreover, while animal, plant, and viral P4Hs act on peptidyl proline, most prokaryotic P4Hs have been known to target free l-proline; the exceptions include PPHD and a P4H from Bacillus anthracis (BaP4H) that modifies collagen-like proline-rich peptides. Here we use biophysical and mass spectrometric methods to demonstrate that BaP4H recognizes full-length BaEFTu and a BaEFTu 9-mer peptide for site-specific proline hydroxylation. Using size-exclusion chromatography coupled small-angle X-ray scattering (SEC–SAXS) and binding studies, we determined that BaP4H forms a 1:1 heterodimeric complex with BaEFTu. The SEC–SAXS studies reveal dissociation of BaP4H dimeric subunits upon interaction with BaEFTu. While BaP4H is unusual within bacteria in that it is structurally and functionally similar to the animal PHDs and collagen P4Hs, respectively, this work provides further evidence of its promiscuous substrate recognition. It is possible that the enzyme might have evolved to hydroxylate a universally conserved protein in prokaryotes, similar to the PHDs, and implies a functional role in B. anthracis.

  18. Amphiregulin Antibody and Reduction of Axial Elongation in Experimental Myopia

    Directory of Open Access Journals (Sweden)

    Wen Jun Jiang

    2017-03-01

    Full Text Available To examine the mechanism of ocular axial elongation in myopia, guinea pigs (age: 2–3 weeks which either underwent unilateral or bilateral lens-induced myopization (group 1 or which were primarily myopic at baseline (group 2 received unilateral intraocular injections of amphiregulin antibody (doses: 5, 10, or 15 μg three times in intervals of 9 days. A third group of emmetropic guinea pigs got intraocular unilateral injections of amphiregulin (doses: 0.25, 0.50 or 1.00 ng, respectively. In each group, the contralateral eyes received intraocular injections of Ringer's solution. In intra-animal inter-eye comparison and intra-eye follow-up comparison in groups 1 and 2, the study eyes as compared to the contralateral eyes showed a dose-dependent reduction in axial elongation. In group 3, study eyes and control eyes did not differ significantly in axial elongation. Immunohistochemistry revealed amphiregulin labelling at the retinal pigment epithelium in eyes with lens-induced myopization and Ringer's solution injection, but not in eyes with amphiregulin antibody injection. Intraocular injections of amphiregulin-antibody led to a reduction of lens-induced axial myopic elongation and of the physiological eye enlargement in young guinea pigs. In contrast, intraocularly injected amphiregulin in a dose of ≤1 ng did not show a significant effect. Amphiregulin may be one of several essential molecular factors for axial elongation.

  19. Impaired rate of microsomal fatty acid elongation in undernourished neonatal rat brain

    International Nuclear Information System (INIS)

    Yeh, Y.Y.

    1986-01-01

    Hypomyelination caused by undernourishment in characterized by low concentrations of myelin lipids and marked reduction in lignocerate (C/sub 24:0/) and nervonate (C/sub 24:1/) moiety of cerebroside and sulfatide. Since microsomal elongation is the major source of long chain (22 to 24 carbons) fatty acids in the brain, the effect of neonatal undernourishment on acyl elongation was investigated. Undernourishment of suckling rats were induced after birth by restricting maternal dietary intake to 40% of that consumed by dams fed ad libitum. Neonates suckled by the normally fed dams served as controls. Microsomal elongation was measured as nmol from [2- 14 C] malonyl CoA incorporated/h per mg of protein. At 19 days of age, rates of behenoyl CoA (C/sub 22:0/) and erucoyl CoA (C/sub 22:1/) elongation in whole brain of undernourished neonates were 30-40% lower than that of the control, whereas the elongation rates of acyl CoA 16, 18 and 20 carbons in length either saturated or monounsaturated were similar in both groups. Undernourishment had no effect on cytoplasmic de novo fatty acid synthesis from acetyl CoA. If there are multiple elongation factors, the results indicate that the depressed activity of elongating enzyme(s) for C/sub 22:0/ and C/sub 22:1/ is an important contributing factor in lowering S/sub 24:0/ and C/sub 24:1/ content in cerebroside and sulfatide. This impairment may be a specific lesion leading to hypomyelination in undernourished rats

  20. The Helicase Activity of Hyperthermophilic Archaeal MCM is Enhanced at High Temperatures by Lysine Methylation.

    Science.gov (United States)

    Xia, Yisui; Niu, Yanling; Cui, Jiamin; Fu, Yang; Chen, Xiaojiang S; Lou, Huiqiang; Cao, Qinhong

    2015-01-01

    Lysine methylation and methyltransferases are widespread in the third domain of life, archaea. Nevertheless, the effects of methylation on archaeal proteins wait to be defined. Here, we report that recombinant sisMCM, an archaeal homolog of Mcm2-7 eukaryotic replicative helicase, is methylated by aKMT4 in vitro. Mono-methylation of these lysine residues occurs coincidently in the endogenous sisMCM protein purified from the hyperthermophilic Sulfolobus islandicus cells as indicated by mass spectra. The helicase activity of mini-chromosome maintenance (MCM) is stimulated by methylation, particularly at temperatures over 70°C. The methylated MCM shows optimal DNA unwinding activity after heat-treatment between 76 and 82°C, which correlates well with the typical growth temperatures of hyperthermophilic Sulfolobus. After methylation, the half life of MCM helicase is dramatically extended at 80°C. The methylated sites are located on the accessible protein surface, which might modulate the intra- and inter- molecular interactions through changing the hydrophobicity and surface charge. Furthermore, the methylation-mimic mutants of MCM show heat resistance helicase activity comparable to the methylated MCM. These data provide the biochemical evidence that posttranslational modifications such as methylation may enhance kinetic stability of proteins under the elevated growth temperatures of hyperthermophilic archaea.

  1. Linking the composition of bacterial and archaeal communities to characteristics of soil and flora composition in the Atlantic rainforest

    NARCIS (Netherlands)

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of

  2. A nested PCR approach for improved recovery of archaeal 16S rRNA gene fragments from freshwater samples

    NARCIS (Netherlands)

    Vissers, E.W.; Bodelier, P.L.E.; Muyzer, G.; Laanbroek, R.

    2009-01-01

    In a survey on the presence of archaea in a number of European lakes, it was found that known archaeal primer sets for PCR were not suited for use in freshwater environment, as some lack selectivity, while others were too selective. A nested PCR was developed for denaturing gradient gel

  3. Strigolactones Stimulate Internode Elongation Independently of Gibberellins1[C][W

    Science.gov (United States)

    de Saint Germain, Alexandre; Ligerot, Yasmine; Dun, Elizabeth A.; Pillot, Jean-Paul; Ross, John J.; Beveridge, Christine A.; Rameau, Catherine

    2013-01-01

    Strigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4. Cytological analysis of internode epidermal cells indicates that SLs control cell number but not cell length, suggesting that SL may affect stem elongation by stimulating cell division. Consequently, SLs can repress (in axillary buds) or promote (in the stem) cell division in a tissue-dependent manner. Because gibberellins (GAs) increase internode length by affecting both cell division and cell length, we tested if SLs stimulate internode elongation by affecting GA metabolism or signaling. Genetic analyses using SL-deficient and GA-deficient or DELLA-deficient double mutants, together with molecular and physiological approaches, suggest that SLs act independently from GAs to stimulate internode elongation. PMID:23943865

  4. Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans.

    Science.gov (United States)

    McEwan, Deborah L; Kirienko, Natalia V; Ausubel, Frederick M

    2012-04-19

    Intestinal epithelial cells are exposed to both innocuous and pathogenic microbes, which need to be distinguished to mount an effective immune response. To understand the mechanisms underlying pathogen recognition, we investigated how Pseudomonas aeruginosa triggers intestinal innate immunity in Caenorhabditis elegans, a process independent of Toll-like pattern recognition receptors. We show that the P. aeruginosa translational inhibitor Exotoxin A (ToxA), which ribosylates elongation factor 2 (EF2), upregulates a significant subset of genes normally induced by P. aeruginosa. Moreover, immune pathways involving the ATF-7 and ZIP-2 transcription factors, which protect C. elegans from P. aeruginosa, are required for preventing ToxA-mediated lethality. ToxA-responsive genes are not induced by enzymatically inactive ToxA protein but can be upregulated independently of ToxA by disruption of host protein translation. Thus, C. elegans has a surveillance mechanism to recognize ToxA through its effect on protein translation rather than by direct recognition of either ToxA or ribosylated EF2. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Analysis of cracking potential and micro-elongation of linerboard

    Directory of Open Access Journals (Sweden)

    Supattra Panthai

    2016-11-01

    Full Text Available Folding cracks of linerboards in relation to their micro-elongation and the forming conditions were studied using an industrial linerboard machine with a top former. The experiments consisted of the study of various forming conditions by manipulating the jet/wire speed ratio to produce linerboard with differences in fiber structures that were related to the cracked and uncracked products. The results showed that changes to the jet/wire speed ratio of about 0.01–0.02 to improve the tested folding endurance in the machine direction potentially produced folding cracks in the linerboard, which indicated an ambiguous interpretation of the foldability tests. The delaminated cracked layers were found to have a high folding endurance and tensile strength, while the decrease in the micro-elongation formulated in this study was found to be related to cracking. A lower micro-elongation of about 350–500 μm/N·g was found in a range of products with folding cracks.

  6. On the decrease of ultimate elongation of gum elastomer by irradiation

    International Nuclear Information System (INIS)

    Ito, Masayuki

    1986-01-01

    The reason why the ultimate elongation of gum elastomer decreases by irradiation was studied. The sample used is tetrafluoroethylenepropylene copolymer vulcanized which is a heat resistant elastomer. The sample was irradiated by a electron beam at room temperature. Cross-linking predominate in the operation. (Case 1) Scission predominant condition (Case 2) was given by irradiation of Co-60 γ ray at 100 deg C. Alternative irradiation of γ ray and electron beam under above condition can keep the original cross-linking density by the appropriate choice of each of the doses. (Case 3) The three cases mentioned above involve all of the cases of radiation induced aging of elastomers. Therefor, the following explanation for three cases shows the reason why the ultimate elongation of gum elastomer decreases by irradiation. Case 1. Cross-linking predominant condition. Ultimate elongation is proportional to -0.5 power of the dose. This fact can be explicable by the model of Buche, i.e. the breaking of a short chain causes another to break and that so on throughout the whole sample. Case 2. Chain scission predominant condition. Ultimate elongation increases by irradiation for a certain dose. This fact can understand by the model of Buche. But from a certain dose ultimate elongation does not increase. In the period the structure of the sample turned to be the same structure as the low molecular weight amorphose polymer vulcanized. Case 3. Rate of cross-linking and scission is the same. The average chain length does not chainge in the condition. But the distribution of chain length became wider and wider by irradiation. The increase of short chain result the decrease in ultimate elongation. (author)

  7. A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts.

    Science.gov (United States)

    Fox, Hannah L; Dembowski, Jill A; DeLuca, Neal A

    2017-06-13

    Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (RNA Pol II). While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22) function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16) was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq). The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq), we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production. IMPORTANCE HSV-1 interacts with many cellular proteins throughout productive infection. Here, we demonstrate the interaction of a viral protein, ICP22, with a subset of cellular proteins known to be involved in transcription elongation. We determined that ICP22 is required to recruit the FACT complex and other transcription

  8. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation......Due to the growing uptake of translation technology in the language industry and its documented impact on the translation profession, translation students and scholars need in-depth and empirically founded knowledge of the nature and influences of translation technology (e.g. Christensen....../Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...

  9. Endogenous abscisic acid as a key switch for natural variation in flooding-induced shoot elongation.

    Science.gov (United States)

    Chen, Xin; Pierik, Ronald; Peeters, Anton J M; Poorter, Hendrik; Visser, Eric J W; Huber, Heidrun; de Kroon, Hans; Voesenek, Laurentius A C J

    2010-10-01

    Elongation of leaves and stem is a key trait for survival of terrestrial plants during shallow but prolonged floods that completely submerge the shoot. However, natural floods at different locations vary strongly in duration and depth, and, therefore, populations from these locations are subjected to different selection pressure, leading to intraspecific variation. Here, we identified the signal transduction component that causes response variation in shoot elongation among two accessions of the wetland plant Rumex palustris. These accessions differed 2-fold in petiole elongation rates upon submergence, with fast elongation found in a population from a river floodplain and slow elongation in plants from a lake bank. Fast petiole elongation under water consumes carbohydrates and depends on the (inter)action of the plant hormones ethylene, abscisic acid, and gibberellic acid. We found that carbohydrate levels and dynamics in shoots did not differ between the fast and slow elongating plants, but that the level of ethylene-regulated abscisic acid in petioles, and hence gibberellic acid responsiveness of these petioles explained the difference in shoot elongation upon submergence. Since this is the exact signal transduction level that also explains the variation in flooding-induced shoot elongation among plant species (namely, R. palustris and Rumex acetosa), we suggest that natural selection results in similar modification of regulatory pathways within and between species.

  10. Gibberellin-induced changes in the populations of translatable mRNAs and accumulated polypeptides in dwarfs of maize and pea

    International Nuclear Information System (INIS)

    Chory, J.; Voytas, D.F.; Olszewski, N.E.; Ausubel, F.M.

    1987-01-01

    Two-dimensional gel electrophoresis was used to characterize the molecular mechanism of gibberellin-induced stem elongation in maize and pea. Dwarf mutants of maize and pea lack endogenous gibberellin (GA 1 ) but become phenotypically normal with exogenous applications of this hormone. Sections from either etiolated maize or green pea seedlings were incubated in the presence of [ 35 S] methionine for 3 hours with or without gibberellin. Labeled proteins from soluble and particulate fractions were analyzed by two-dimensional gel electrophoresis and specific changes in the patterns of protein synthesis were observed upon treatment with gibberellin. Polyadenylated mRNAs from etiolated or green maize shoots and green pea epicotyls treated or not with gibberellin (a 0.5 to 16 hour time course) were assayed by translation in a rabbit reticulocyte extract and separation of products by two-dimensional gel electrophoresis. Both increases and decreases in the levels of specific polypeptides were seen for pea and corn, and these changes were observed within 30 minutes of treatment with gibberellin. Together, these data indicate that gibberellin induces changes in the expression of a subset of gene products within elongating dwarfs. This may be due to changes in transcription rate, mRNA stability, or increased efficiency of translation of certain mRNAs

  11. Experimental results on elongation control using dynamic input allocation at FTU

    International Nuclear Information System (INIS)

    Varano, G.; Boncagni, L.; Galeani, S.; Granucci, G.; Vitale, V.; Zaccarian, L.

    2011-01-01

    We report on the experimental results related to a recently proposed control scheme for the regulation of plasma elongation using the poloidal field coils available at FTU, already used for the horizontal position control. The proposed technique allows to realize elongation regulation as a secondary task using the same poloidal coils.

  12. Archaeal and bacterial H-GDGTs are abundant in peat and their relative abundance is positively correlated with temperature

    Science.gov (United States)

    Naafs, B. D. A.; McCormick, D.; Inglis, G. N.; Pancost, R. D.; T-GRES Peat Database Collaborators

    2018-04-01

    Glycerol monoalkyl glycerol tetraether lipids (GMGTs; also called 'H-GDGTs') differ from the more commonly studied glycerol dialkyl glycerol tetraether (GDGTs) in that they have an additional covalent bond that links the two alkyl chains. Six different archaeal isoprenoidal H-GDGTs (H-isoGDGTs) and one branched H-GDGT (H-brGDGT), presumably produced by bacteria, have previously been found. However, the function of H-GDGTs in both domains of life is unknown. It is thought that the formation of this additional covalent bond results in enhanced membrane stability, accounting for the high abundance of H-GDGTs in extreme environments such as geothermal settings, but so far there has been little evidence to support this hypothesis. Here we report the distribution of H-GDGTs in a global peat database (n = 471) with a broad range in mean annual air temperature (MAAT) and pH. This is the first finding of H-GDGTs in soils (specifically, peat), highlighting that H-GDGTs are widespread in mesophilic settings. In addition, we report the presence of two new H-brGDGTs with one (H-1034) and two (H-1048) additional methyl groups, respectively. Our results suggest that the relative abundance of both bacterial and archaeal H-GDGTs compared to regular GDGTs is related to temperature with the highest relative abundance of H-GDGTs in tropical peats. Although other factors besides temperature likely also play a role, these results do support the hypothesis that H-GDGTs are an adaptation to temperature to maintain membrane stability. The observation that both bacterial and archaeal membrane lipids respond to temperature indicates the same adaption across the lipid divide between these two domains of life, suggesting parallel or convergent evolution (potentially facilitated by lateral gene transfer).

  13. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    Directory of Open Access Journals (Sweden)

    Nathan eBasiliko

    2013-07-01

    Full Text Available Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide and methane production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between mined and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and methane or carbon dioxide production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought

  14. Simultaneous Binding of Multiple EF-Tu Copies to Translating Ribosomes in Live Escherichia coli.

    Science.gov (United States)

    Mustafi, Mainak; Weisshaar, James C

    2018-01-16

    In bacteria, elongation factor Tu is a translational cofactor that forms ternary complexes with aminoacyl-tRNA (aa-tRNA) and GTP. Binding of a ternary complex to one of four flexible L7/L12 units on the ribosome tethers a charged tRNA in close proximity to the ribosomal A site. Two sequential tests for a match between the aa-tRNA anticodon and the current mRNA codon then follow. Because one elongation cycle can occur in as little as 50 ms and the vast majority of aa-tRNA copies are not cognate with the current mRNA codon, this testing must occur rapidly. We present a single-molecule localization and tracking study of fluorescently labeled EF-Tu in live Escherichia coli Imaging at 2 ms/frame distinguishes 60% slowly diffusing EF-Tu copies (assigned as transiently bound to translating ribosome) from 40% rapidly diffusing copies (assigned as a mixture of free ternary complexes and free EF-Tu). Combining these percentages with copy number estimates, we infer that the four L7/L12 sites are essentially saturated with ternary complexes in vivo. The results corroborate an earlier inference that all four sites can simultaneously tether ternary complexes near the A site, creating a high local concentration that may greatly enhance the rate of testing of aa-tRNAs. Our data and a combinatorial argument both suggest that the initial recognition test for a codon-anticodon match occurs in less than 1 to 2 ms per aa-tRNA copy. The results refute a recent study (A. Plochowietz, I. Farrell, Z. Smilansky, B. S. Cooperman, and A. N. Kapanidis, Nucleic Acids Res 45:926-937, 2016, https://doi.org/10.1093/nar/gkw787) of tRNA diffusion in E. coli that inferred that aa-tRNAs arrive at the ribosomal A site as bare monomers, not as ternary complexes. IMPORTANCE Ribosomes catalyze translation of the mRNA codon sequence into the corresponding sequence of amino acids within the nascent polypeptide chain. Polypeptide elongation can be as fast as 50 ms per added amino acid. Each amino acid

  15. Gradual nerve elongation affects nerve cell bodies and neuro-muscular junctions.

    Science.gov (United States)

    Kazuo Ikeda, K I; Masaki Matsuda, M M; Daisuke Yamauchi, D Y; Katsuro Tomita, K T; Shigenori Tanaka, S T

    2005-07-01

    The purpose of this study is to clarify the reactions of the neuro-muscular junction and nerve cell body to gradual nerve elongation. The sciatic nerves of Japanese white rabbits were lengthened by 30 mm in increments of 0.8 mm/day, 2.0 mm/day and 4.0 mm/day. A scanning electron microscopic examination showed no degenerative change at the neuro-muscular junction, even eight weeks after elongation in the 4-mm group. Hence, neuro-muscular junction is not critical for predicting damage from gradual nerve elongation. There were no axon reaction cells in the 0.8-mm group, a small amount in the 2-mm group, and a large amount in the 4-mm group. The rate of growth associated protein-43 positive nerve cells was significant in the 4-mm group. Hence, the safe speed for nerve cells appeared to be 0.8-mm/day, critical speed to be 2.0-mm/day, and dangerous speed to be 4.0-mm/day in this elongation model.

  16. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    Science.gov (United States)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  17. An Interbacterial NAD(P)+ Glycohydrolase Toxin Requires Elongation Factor Tu for Delivery to Target Cells

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, John C.; Quentin, Dennis; Sawai, Shin; LeRoux, Michele; Harding, Brittany N.; Ledvina, Hannah E.; Tran, Bao Q.; Robinson, Howard; Goo, Young Ah; Goodlett, David R.; Raunser, Stefan; Mougous, Joseph D.

    2015-10-08

    Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD+ and NADP+. Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.

  18. Cladding axial elongation models for FRAP-T6

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.; Berna, G.A.

    1983-01-01

    This paper presents a description of the cladding axial elongation models developed at the Idaho National Engineering Laboratory (INEL) for use by the FRAP-T6 computer code in analyzing the response of fuel rods during reactor transients in light water reactors (LWR). The FRAP-T6 code contains models (FRACAS-II subcode) that analyze the structural response of a fuel rod including pellet-cladding-mechanical-interaction (PCMI). Recently, four models were incorporated into FRACAS-II to calculate cladding axial deformation: (a) axial PCMI, (b) trapped fuel stack, (c) fuel relocation, and (d) effective fuel thermal expansion. Comparisons of cladding axial elongation measurements from two experiments with the corresponding FRAP-T6 calculations are presented

  19. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markakis Marios

    2012-11-01

    Full Text Available Abstract Background Along the root axis of Arabidopsis thaliana, cells pass through different developmental stages. In the apical meristem repeated cycles of division increase the numbers of cells. Upon leaving the meristem, these cells pass the transition zone where they are physiologically and mechanically prepared to undergo subsequent rapid elongation. During the process of elongation epidermal cells increase their length by 300% in a couple of hours. When elongation ceases, the cells acquire their final size, shape and functions (in the differentiation zone. Ethylene administered as its precursor 1-aminocyclopropane-1-carboxylic acid (ACC is capable of inhibiting elongation in a concentration-dependent way. Using a microarray analysis, genes and/or processes involved in this elongation arrest are identified. Results Using a CATMA-microarray analysis performed on control and 3h ACC-treated roots, 240 differentially expressed genes were identified. Quantitative Real-Time RT-PCR analysis of the 10 most up and down regulated genes combined with literature search confirmed the accurateness of the analysis. This revealed that inhibition of cell elongation is, at least partly, caused by restricting the events that under normal growth conditions initiate elongation and by increasing the processes that normally stop cellular elongation at the end of the elongation/onset of differentiation zone. Conclusions ACC interferes with cell elongation in the Arabidopsis thaliana roots by inhibiting cells from entering the elongation process and by immediately stimulating the formation of cross-links in cell wall components, diminishing the remaining elongation capacity. From the analysis of the differentially expressed genes, it becomes clear that many genes identified in this response, are also involved in several other kind of stress responses. This suggests that many responses originate from individual elicitors, but that somewhere in the downstream

  20. Segmentation of elongated structures in medical images

    NARCIS (Netherlands)

    Staal, Jozef Johannes

    2004-01-01

    The research described in this thesis concerns the automatic detection, recognition and segmentation of elongated structures in medical images. For this purpose techniques have been developed to detect subdimensional pointsets (e.g. ridges, edges) in images of arbitrary dimension. These

  1. [Abundances of ammonia-oxidizing archaeal accA and amoA genes in response to NO2 - and NO3 - of hot springs in Yunnan province].

    Science.gov (United States)

    Song, Zhaoqi; Wang, Li; Zhou, Enmin; Wang, Fengping; Xiao, Xiang; Zhang, Chuanlun; Li, Wenjun

    2014-12-04

    Yunnan hot springs have highly diverseammonia-oxidizing archaea (AOA), which are autotrophic and can fix CO2 using the 3-hydroxypropionate/ 4-hydroxybutyrate (HP/HD) pathway. In this study, we investigated the abundances of prokaryotic 16S rRNA gene and archaeal accA and amoA genes in the sediments of hot springs of Yunnan Province, and analysed the correlations between the above gene abundances and environmental factors. We selected the sediments of twenty representative hot springs, and detected the gene abundances by quantitative polymerase chain reaction (qPCR). The principal component analysis (PCA) and the Mantel test in the R software package were performed for the correlations of gene abundance and environmental variables. The bacterial and archaeal 16S rRNA gene abundances were from 6.6 x 10(7) to 4.19 x 10(11) and from 1.27 x 10(6) to 1.51 x 10(11) copies/g sediment, respectively; Archaeal accA and amoA genes were from 8.89 x 10(3) to 6.49 x 10(5) and from 7.64 x 10(3) to 4.36 x 10(5) copies/g sediment, respectively. The results of mantel test showed that accA gene was significantly (R = 0.98, P < 0.001) correlated with amoA gene; Both of them also were correlated significantly with NO2- and NO3 -, but not with pH. The abundances of bacterial and archaeal 16S rRNA genes and the ratio between them varied significantly among Yunnan hot springs. The archaealaccA and amoA genes showed significant correlation with each other, validating our previous finding that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  2. Understanding Translation

    DEFF Research Database (Denmark)

    Schjoldager, Anne Gram; Gottlieb, Henrik; Klitgård, Ida

    Understanding Translation is designed as a textbook for courses on the theory and practice of translation in general and of particular types of translation - such as interpreting, screen translation and literary translation. The aim of the book is to help you gain an in-depth understanding...... of the phenomenon of translation and to provide you with a conceptual framework for the analysis of various aspects of professional translation. Intended readers are students of translation and languages, but the book will also be relevant for others who are interested in the theory and practice of translation...... - translators, language teachers, translation users and literary, TV and film critics, for instance. Discussions focus on translation between Danish and English....

  3. A sensitive, support-vector-machine method for the detection of horizontal gene transfers in viral, archaeal and bacterial genomes.

    Science.gov (United States)

    Tsirigos, Aristotelis; Rigoutsos, Isidore

    2005-01-01

    In earlier work, we introduced and discussed a generalized computational framework for identifying horizontal transfers. This framework relied on a gene's nucleotide composition, obviated the need for knowledge of codon boundaries and database searches, and was shown to perform very well across a wide range of archaeal and bacterial genomes when compared with previously published approaches, such as Codon Adaptation Index and C + G content. Nonetheless, two considerations remained outstanding: we wanted to further increase the sensitivity of detecting horizontal transfers and also to be able to apply the method to increasingly smaller genomes. In the discussion that follows, we present such a method, Wn-SVM, and show that it exhibits a very significant improvement in sensitivity compared with earlier approaches. Wn-SVM uses a one-class support-vector machine and can learn using rather small training sets. This property makes Wn-SVM particularly suitable for studying small-size genomes, similar to those of viruses, as well as the typically larger archaeal and bacterial genomes. We show experimentally that the new method results in a superior performance across a wide range of organisms and that it improves even upon our own earlier method by an average of 10% across all examined genomes. As a small-genome case study, we analyze the genome of the human cytomegalovirus and demonstrate that Wn-SVM correctly identifies regions that are known to be conserved and prototypical of all beta-herpesvirinae, regions that are known to have been acquired horizontally from the human host and, finally, regions that had not up to now been suspected to be horizontally transferred. Atypical region predictions for many eukaryotic viruses, including the alpha-, beta- and gamma-herpesvirinae, and 123 archaeal and bacterial genomes, have been made available online at http://cbcsrv.watson.ibm.com/HGT_SVM/.

  4. Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect

    DEFF Research Database (Denmark)

    Antonicka, Hana; Østergaard, Elsebet; Sasarman, Florin

    2010-01-01

    We investigated the genetic basis for a global and uniform decrease in mitochondrial translation in fibroblasts from patients in two unrelated pedigrees who developed Leigh syndrome, optic atrophy, and ophthalmoplegia. Analysis of the assembly of the oxidative phosphorylation complexes showed...... severe decreases of complexes I, IV, and V and a smaller decrease in complex III. The steady-state levels of mitochondrial mRNAs, tRNAs, and rRNAs were not reduced, nor were those of the mitochondrial translation elongation factors or the protein components of the mitochondrial ribosome. Using...... includes mtRF1a, mtRF1, and Ict1, all characterized by the presence of a GGQ motif at the active site. However, C12orf65 does not exhibit peptidyl-tRNA hydrolase activity in an in vitro assay with bacterial ribosomes. We suggest that it might play a role in recycling abortive peptidyl-tRNA species...

  5. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves.

    Science.gov (United States)

    Dias, Juliana; Marcondes, Marcos I; Noronha, Melline F; Resende, Rafael T; Machado, Fernanda S; Mantovani, Hilário C; Dill-McFarland, Kimberly A; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea , and Succinivribrio ). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides , and Parabacteroides ). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces . Relative

  6. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    Science.gov (United States)

    Dias, Juliana; Marcondes, Marcos I.; Noronha, Melline F.; Resende, Rafael T.; Machado, Fernanda S.; Mantovani, Hilário C.; Dill-McFarland, Kimberly A.; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative

  7. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    Directory of Open Access Journals (Sweden)

    Juliana Dias

    2017-08-01

    Full Text Available At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days. Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio. Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides. In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces

  8. The C-terminal helix of ribosomal P stalk recognizes a hydrophobic groove of elongation factor 2 in a novel fashion.

    Science.gov (United States)

    Tanzawa, Takehito; Kato, Koji; Girodat, Dylan; Ose, Toyoyuki; Kumakura, Yuki; Wieden, Hans-Joachim; Uchiumi, Toshio; Tanaka, Isao; Yao, Min

    2018-04-06

    Archaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of Pyrococcus horikoshii EF-2 (PhoEF-2) in the Apo-form, GDP-form, GMPPCP-form (GTP-form), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G' of PhoEF-2, where is completely different from that of aEF-1α in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining PhoEF-2 P1-binding assays with a structural comparison of current PhoEF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPases.

  9. Experimental and mathematical methods for representing relative surface elongation of the ACL

    NARCIS (Netherlands)

    Pioletti, D. P.; Heegaard, J. H.; Rakotomanana, R. L.; Leyvraz, P. F.; Blankevoort, L.

    1995-01-01

    The common approach to assess the stabilizing role of the ACL in the knee has been to measure the elongation of a few marked fibers in the ligament. A comparison of the relative elongation (RE) of these marked fibers between different specimens and studies is delicate due to the difficulty of

  10. The Drosophila mitochondrial translation elongation factor G1 contains a nuclear localization signal and inhibits growth and DPP signaling.

    Science.gov (United States)

    Trivigno, Catherine; Haerry, Theodor E

    2011-02-25

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low.

  11. Sound propagation in elongated superfluid fermionic clouds

    International Nuclear Information System (INIS)

    Capuzzi, P.; Vignolo, P.; Federici, F.; Tosi, M. P.

    2006-01-01

    We use hydrodynamic equations to study sound propagation in a superfluid Fermi gas at zero temperature inside a strongly elongated cigar-shaped trap, with main attention to the transition from the BCS to the unitary regime. First, we treat the role of the radial density profile in the limit of a cylindrical geometry and then evaluate numerically the effect of the axial confinement in a configuration in which a hole is present in the gas density at the center of the trap. We find that in a strongly elongated trap the speed of sound in both the BCS and the unitary regime differs by a factor √(3/5) from that in a homogeneous three-dimensional superfluid. The predictions of the theory could be tested by measurements of sound-wave propagation in a setup such as that exploited by Andrews et al. [Phys. Rev. Lett. 79, 553 (1997)] for an atomic Bose-Einstein condensate

  12. Phylogenetic diversity of archaeal 16S rRNA and ammonia monooxygenase genes from tropical estuarine sediments on the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, S.K.; Verma, P.; Ramaiah, N.; Anil, A.C.; Shouche, Y.S.

    of Euryarchaeota. Our results indicate that archaeal diversity in tropical estuarine sediments is influenced by the mangrove vegetation bordering the lower stretches of both estuaries. Higher diversity may be related to elevated land drainage during the monsoon...

  13. Combining native MS approaches to decipher archaeal box H/ACA ribonucleoprotein particle structure and activity.

    Science.gov (United States)

    Saliou, Jean-Michel; Manival, Xavier; Tillault, Anne-Sophie; Atmanene, Cédric; Bobo, Claude; Branlant, Christiane; Van Dorsselaer, Alain; Charpentier, Bruno; Cianférani, Sarah

    2015-08-01

    Site-specific isomerization of uridines into pseudouridines in RNAs is catalyzed either by stand-alone enzymes or by box H/ACA ribonucleoprotein particles (sno/sRNPs). The archaeal box H/ACA sRNPs are five-component complexes that consist of a guide RNA and the aCBF5, aNOP10, L7Ae, and aGAR1 proteins. In this study, we performed pairwise incubations of individual constituents of archaeal box H/ACA sRNPs and analyzed their interactions by native MS to build a 2D-connectivity map of direct binders. We describe the use of native MS in combination with ion mobility-MS to monitor the in vitro assembly of the active H/ACA sRNP particle. Real-time native MS was used to monitor how box H/ACA particle functions in multiple-turnover conditions. Native MS also unambiguously revealed that a substrate RNA containing 5-fluorouridine (f(5) U) was hydrolyzed into 5-fluoro-6-hydroxy-pseudouridine (f(5) ho(6) Ψ). In terms of enzymatic mechanism, box H/ACA sRNP was shown to catalyze the pseudouridylation of a first RNA substrate, then to release the RNA product (S22 f(5) ho(6) ψ) from the RNP enzyme and reload a new substrate RNA molecule. Altogether, our native MS-based approaches provide relevant new information about the potential assembly process and catalytic mechanism of box H/ACA RNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Phytosterol content and the campesterol:sitosterol ratio influence cotton fiber development: role of phytosterols in cell elongation.

    Science.gov (United States)

    Deng, Shasha; Wei, Ting; Tan, Kunling; Hu, Mingyu; Li, Fang; Zhai, Yunlan; Ye, Shue; Xiao, Yuehua; Hou, Lei; Pei, Yan; Luo, Ming

    2016-02-01

    Phytosterols play an important role in plant growth and development, including cell division, cell elongation, embryogenesis, cellulose biosynthesis, and cell wall formation. Cotton fiber, which undergoes synchronous cell elongation and a large amount of cellulose synthesis, is an ideal model for the study of plant cell elongation and cell wall biogenesis. The role of phytosterols in fiber growth was investigated by treating the fibers with tridemorph, a sterol biosynthetic inhibitor. The inhibition of phytosterol biosynthesis resulted in an apparent suppression of fiber elongation in vitro or in planta. The determination of phytosterol quantity indicated that sitosterol and campesterol were the major phytosterols in cotton fibers; moreover, higher concentrations of these phytosterols were observed during the period of rapid elongation of fibers. Furthermore, the decrease and increase in campesterol:sitosterol ratio was associated with the increase and decease in speed of elongation, respectively, during the elongation stage. The increase in the ratio was associated with the transition from cell elongation to secondary cell wall synthesis. In addition, a number of phytosterol biosynthetic genes were down-regulated in the short fibers of ligon lintless-1 mutant, compared to its near-isogenic wild-type TM-1. These results demonstrated that phytosterols play a crucial role in cotton fiber development, and particularly in fiber elongation.

  15. Archaeal Nitrification in Hot Springs

    Science.gov (United States)

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.

    2006-12-01

    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  16. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    /Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...... section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation...... technology research as a subdiscipline of TS, and we define and discuss some basic concepts and models of the field that we use in the rest of the paper. Based on a small-scale study of papers published in TS journals between 2006 and 2016, Section 3 attempts to map relevant developments of translation...

  17. Temporal change of composition and potential activity of the thermophilic archaeal community during the composting of organic material.

    Science.gov (United States)

    Thummes, Kathrin; Kämpfer, Peter; Jäckel, Udo

    2007-07-01

    To date, composting has been regarded as an aerobic process but it has been shown that composting piles are often sources of atmospheric methane. In order to gain a more comprehensive view on the diversity of methanogenic Archaea in compost, gas chromatographical methods and molecular cloning were used to study relationships of thermophilic archaeal communities and changes in methane production potential during compost maturation. According to the thermophilic methane production potential, wide differences could be detected between differently aged compost materials. In material derived from 3- and 4-week-old piles, low and no thermophilic methane production potential, respectively, was observed at 50 degrees C. Material from a 6-week-old pile showed the maximum methane production. With compost maturation, the production slowly decreased again with 6 weeks, 8 weeks, and mature compost showing an optimum methane production potential at 60 degrees C. At 70 degrees C, only 6-week-old material showed a comparable high production of methane. The 16S rRNA-based phylogenetic surveys revealed an increase of archaeal diversity with compost maturation. In the 6-week-old material, 86% of the sequences in the archaeal 16S rRNA library had the highest sequence similarities to Methanothermobacter spp. and the remaining 14% of the clones were related to Methanosarcina thermophila. Quantification of methanogens in 6-week-old material, on the basis of the methane production rate, resulted in values of about 2x10(7) cells per gram fresh weight. In 8-week-old and mature compost material, the proportion of sequences similar to Methanothermobacter spp. decreased to 34% and 0%, respectively. The mature compost material showed the highest variation in identified sequences, although 33% could be assigned to as yet uncultured Archaea (e.g. Rice cluster I, III, and IV). Our results indicate that compost harbours a diverse community of thermophilic methanogens, with changing composition

  18. An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.

    Science.gov (United States)

    West, Junior J; Zulueta-Coarasa, Teresa; Maier, Janna A; Lee, Donghoon M; Bruce, Ashley E E; Fernandez-Gonzalez, Rodrigo; Harris, Tony J C

    2017-08-07

    In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Active feedback stabilization of axisymmetric modes in highly elongated tokamak plasmas

    International Nuclear Information System (INIS)

    Ward, D.J.; Hofmann, F.

    1993-07-01

    Active feedback stabilization of the vertical instability is studied for highly elongated tokamak plasmas (1≤κ≤3), and evaluated in particular for the TCV configuration. It is shown that the feedback can strongly affect the form of the eigenfunction for these highly elongated equilibria, and this can have detrimental effects on the ability of the feedback system to properly detect and stabilize the plasma. A calculation of the vertical displacement that uses poloidal flux measurements, poloidal magnetic field measurements, and corrections for the vessel eddy currents and active feedback currents was found to be effective even in the cases with the worst deformations of the eigenfunction. We also examine how these deformations affect differently shaped equilibria, and it is seen that the magnitude of the deformation of the eigenfunction is strongly function of the plasma elongation. (author) 15 figs., 13 refs

  20. Functional, electrophysiological recoveries of rats with sciatic nerve lesions following transplantation of elongated DRG cells.

    Science.gov (United States)

    Dayawansa, Samantha; Zhang, Jun; Shih, Chung-Hsuan; Tharakan, Binu; Huang, Jason H

    2016-04-01

    Functional data are essential when confirming the efficacy of elongated dorsal root ganglia (DRG) cells as a substitute for autografting. We present the quantitative functional motor, electrophysiological findings of engineered DRG recipients for the first time. Elongated DRG neurons and autografts were transplanted to bridge 1-cm sciatic nerve lesions of Sprague Dawley (SD) rats. Motor recoveries of elongated DRG recipients (n=9), autograft recipients (n=9), unrepaired rats (n=9) and intact rats (n=6) were investigated using the angle board challenge test following 16 weeks of recovery. Electrophysiology studies were conducted to assess the functional recovery at 16 weeks. In addition, elongated DRGs were subjected to histology assessments. At threshold levels (35° angle) of the angle board challenge test, the autograft recipients', DRG recipients' and unrepaired group's performances were equal to each other and were less than the intact group (pDRG recipients' performance was similar to both the intact group and the autograft nerve recipients, and was better (pDRG constructs had intact signal transmission when recorded over the lesion, while the unrepaired rats did not. It was observed that elongated DRG neurons closely resembled an autograft during histological assessments. Performances of autograft and elongated DRG construct recipients were similar. Elongated DRG neurons should be further investigated as a substitute for autografting.

  1. Overexpression of rice LRK1 restricts internode elongation by down-regulating OsKO2.

    Science.gov (United States)

    Yang, Mengfei; Qi, Weiwei; Sun, Fan; Zha, Xiaojun; Chen, Mingluan; Huang, Yunqing; Feng, Yu-Qi; Yang, Jinshui; Luo, Xiaojin

    2013-01-01

    Rice (Oryza sativa) has the potential to undergo rapid internodal elongation which determines plant height. Gibberellin is involved in internode elongation. Leucine-rich repeat receptor-like kinases (LRR-RLKs) are the largest subfamily of transmembrane receptor-like kinases in plants. LRR-RLKs play important functions in mediating a variety of cellular processes and regulating responses to environmental signals. LRK1, a PSK receptor homolog, is a member of the LRR-RLK family. In the present study, differences in ectopic expression of LRK1 were consistent with extent of rice internode elongation. Analyses of gene expression demonstrated that LRK1 restricts gibberellin biosynthesis during the internode elongation process by down-regulation of the gibberellin biosynthetic gene coding for ent-kaurene oxidase.

  2. 1,8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells.

    Science.gov (United States)

    Yoshimura, Hiroko; Sawai, Yu; Tamotsu, Satoshi; Sakai, Atsushi

    2011-03-01

    Volatile monoterpenes such as 1,8-cineole inhibit the growth of Brassica campestris seedlings in a dose-dependent manner, and the growth-inhibitory effects are more severe for roots than hypocotyls. The preferential inhibition of root growth may be explained if the compounds inhibit cell proliferation more severely than cell elongation because root growth requires both elongation and proliferation of the constituent cells, whereas hypocotyl growth depends exclusively on elongation of existing cells. In order to examine this possibility, BY-2 suspension-cultured tobacco (Nicotiana tabacum) cells were treated with 1,8-cineole, and the inhibitory effects on cell proliferation and on cell elongation were assessed quantitatively. Treatment with 1,8-cineole lowered both the mitotic index and elongation of the cells in a dose-dependent manner, and the half-maximal inhibitory concentration (IC₅₀) for cell elongation was lower than that for cell proliferation. Moreover, 1,8-cineole also inhibited starch synthesis, with IC₅₀ lower than that for cell proliferation. Thus, the inhibitory effects of 1,8-cineole were not specific to cell proliferation; rather, 1,8-cineole seemed inhibitory to a variety of physiological activities when it was in direct contact with target cells. Based on these results, possible mechanisms for the mode of action of 1,8-cineole and for its preferential inhibition on root growth are discussed.

  3. Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration

    Science.gov (United States)

    Park, Yongjin; Yoon, Sang Sun

    2011-01-01

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2 −) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process. PMID:21267455

  4. Significant enhancement by biochar of caproate production via chain elongation.

    Science.gov (United States)

    Liu, Yuhao; He, Pinjing; Shao, Liming; Zhang, Hua; Lü, Fan

    2017-08-01

    In this study, biochar was introduced into a chain elongation system to enhance the bioproduction of caproate and caprylate. The concentration of caproate increased to 21.1 g/L upon the addition of biochar, which is the highest level of caproate reported for such a system to date when ethanol was used as electron donor. The addition of biochar created a tougher system with more stable microorganism community structure for chain elongation, in which no obvious inhibition by products or substrates was observed, moreover, the lag phase was reduced 2.3-fold compared to the system without biochar. These reinforcement effect of biochar are attributed to the enhanced conductivity due to the significant enrichment of functional microorganisms via the microbial network surrounding smaller biochar particles, and via the adsorption on the rough surfaces or pores of larger particles, which facilitated electron transfer. Higher amounts of extracellular polymer substances and higher conductivity induced by biochar could contribute to the reinforcement effect in chain elongation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. pix-1 controls early elongation in parallel with mel-11 and let-502 in Caenorhabditis elegans.

    Science.gov (United States)

    Martin, Emmanuel; Harel, Sharon; Nkengfac, Bernard; Hamiche, Karim; Neault, Mathieu; Jenna, Sarah

    2014-01-01

    Cell shape changes are crucial for metazoan development. During Caenorhabditis elegans embryogenesis, epidermal cell shape changes transform ovoid embryos into vermiform larvae. This process is divided into two phases: early and late elongation. Early elongation involves the contraction of filamentous actin bundles by phosphorylated non-muscle myosin in a subset of epidermal (hypodermal) cells. The genes controlling early elongation are associated with two parallel pathways. The first one involves the rho-1/RHOA-specific effector let-502/Rho-kinase and mel-11/myosin phosphatase regulatory subunit. The second pathway involves the CDC42/RAC-specific effector pak-1. Late elongation is driven by mechanotransduction in ventral and dorsal hypodermal cells in response to body-wall muscle contractions, and involves the CDC42/RAC-specific Guanine-nucleotide Exchange Factor (GEF) pix-1, the GTPase ced-10/RAC and pak-1. In this study, pix-1 is shown to control early elongation in parallel with let-502/mel-11, as previously shown for pak-1. We show that pix-1, pak-1 and let-502 control the rate of elongation, and the antero-posterior morphology of the embryos. In particular, pix-1 and pak-1 are shown to control head, but not tail width, while let-502 controls both head and tail width. This suggests that let-502 function is required throughout the antero-posterior axis of the embryo during early elongation, while pix-1/pak-1 function may be mostly required in the anterior part of the embryo. Supporting this hypothesis we show that low pix-1 expression level in the dorsal-posterior hypodermal cells is required to ensure high elongation rate during early elongation.

  6. Translational Creativity

    DEFF Research Database (Denmark)

    Nielsen, Sandro

    2010-01-01

    A long-established approach to legal translation focuses on terminological equivalence making translators strictly follow the words of source texts. Recent research suggests that there is room for some creativity allowing translators to deviate from the source texts. However, little attention...... is given to genre conventions in source texts and the ways in which they can best be translated. I propose that translators of statutes with an informative function in expert-to-expert communication may be allowed limited translational creativity when translating specific types of genre convention....... This creativity is a result of translators adopting either a source-language or a target-language oriented strategy and is limited by the pragmatic principle of co-operation. Examples of translation options are provided illustrating the different results in target texts. The use of a target-language oriented...

  7. Interplay between DNA supercoiling and transcription elongation.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  8. Topical Review: Translating Translational Research in Behavioral Science.

    Science.gov (United States)

    Hommel, Kevin A; Modi, Avani C; Piazza-Waggoner, Carrie; Myers, James D

    2015-01-01

    To present a model of translational research for behavioral science that communicates the role of behavioral research at each phase of translation. A task force identified gaps in knowledge regarding behavioral translational research processes and made recommendations regarding advancement of knowledge. A comprehensive model of translational behavioral research was developed. This model represents T1, T2, and T3 research activities, as well as Phase 1, 2, 3, and 4 clinical trials. Clinical illustrations of translational processes are also offered as support for the model. Behavioral science has struggled with defining a translational research model that effectively articulates each stage of translation and complements biomedical research. Our model defines key activities at each phase of translation from basic discovery to dissemination/implementation. This should be a starting point for communicating the role of behavioral science in translational research and a catalyst for better integration of biomedical and behavioral research. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications.

    Science.gov (United States)

    Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail

    2014-01-01

    Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity.

  10. Finite translation surfaces with maximal number of translations

    OpenAIRE

    Schlage-Puchta, Jan-Christoph; Weitze-Schmithuesen, Gabriela

    2013-01-01

    The natural automorphism group of a translation surface is its group of translations. For finite translation surfaces of genus g > 1 the order of this group is naturally bounded in terms of g due to a Riemann-Hurwitz formula argument. In analogy with classical Hurwitz surfaces, we call surfaces which achieve the maximal bound Hurwitz translation surfaces. We study for which g there exist Hurwitz translation surfaces of genus g.

  11. A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts

    Directory of Open Access Journals (Sweden)

    Hannah L. Fox

    2017-06-01

    Full Text Available Herpes simplex virus 1 (HSV-1 genes are transcribed by cellular RNA polymerase II (RNA Pol II. While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22 function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16 was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq. The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq, we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production.

  12. Machine Translation Tools - Tools of The Translator's Trade

    DEFF Research Database (Denmark)

    Kastberg, Peter

    2012-01-01

    In this article three of the more common types of translation tools are presented, discussed and critically evaluated. The types of translation tools dealt with in this article are: Fully Automated Machine Translation (or FAMT), Human Aided Machine Translation (or HAMT) and Machine Aided Human...... Translation (or MAHT). The strengths and weaknesses of the different types of tools are discussed and evaluated by means of a number of examples. The article aims at two things: at presenting a sort of state of the art of what is commonly referred to as “machine translation” as well as at providing the reader...... with a sound basis for considering what translation tool (if any) is the most appropriate in order to meet his or her specific translation needs....

  13. Insights into the phylogeny of Northern Hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-α gene sequences

    Science.gov (United States)

    Ned B. Klopfenstein; Jane E. Stewart; Yuko Ota; John W. Hanna; Bryce A. Richardson; Amy L. Ross-Davis; Ruben D. Elias-Roman; Kari Korhonen; Nenad Keca; Eugenia Iturritxa; Dionicio Alvarado-Rosales; Halvor Solheim; Nicholas J. Brazee; Piotr Lakomy; Michelle R. Cleary; Eri Hasegawa; Taisei Kikuchi; Fortunato Garza-Ocanas; Panaghiotis Tsopelas; Daniel Rigling; Simone Prospero; Tetyana Tsykun; Jean A. Berube; Franck O. P. Stefani; Saeideh Jafarpour; Vladimir Antonin; Michal Tomsovsky; Geral I. McDonald; Stephen Woodward; Mee-Sook Kim

    2017-01-01

    Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequence–based analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation...

  14. Molecular evidence that rough endoplasmic reticulum is the site of calreticulin translation in Petunia pollen tubes growing in vitro.

    Science.gov (United States)

    Suwińska, Anna; Lenartowski, Robert; Smoliński, Dariusz Jan; Lenartowska, Marta

    2015-07-01

    In germinating pollen grains and growing pollen tubes, CRT is translated on ER membrane-bound ribosomes in the regions where its activity is required for stabilization of tip-focused Ca (2+) gradient. Pollen tube growth requires coordination of signaling, exocytosis, and actin cytoskeletal organization. Many of these processes are thought to be controlled by finely tuned regulation of cytoplasmic Ca(2+) in discrete regions of the tube cytoplasm. Most notably, a mechanism must function to maintain a steep gradient of Ca(2+) that exists at the tip of growing pollen tube. Several pieces of evidence point to calreticulin (CRT) as a key Ca(2+)-binding/-buffering protein involved in pollen germination and pollen tube growth. We previously hypothesized that in germinating pollen and growing tubes, CRT is translated on the ribosomes associated with endoplasmic reticulum (ER) in the regions where its activity might be required. In this report, we have addressed this idea by identifying the sites where CRT mRNA, CRT protein, 18S rRNA, and rough ER are localized in Petunia pollen tubes. We observed all four components in the germinal aperture of pollen grains and in subapical regions of elongating tubes. These results seem to support our idea that CRT is translated on ER membrane-bound ribosomes during pollen germination and pollen tube growth. In elongated pollen tubes, we found CRT mainly localized in the subapical zone, where ER and Golgi stacks are abundant. In eukaryotic cells, these organelles serve as mobile intracellular stores of easily releasable Ca(2+), which can be buffered by proteins such as CRT. Therefore, we postulate that subapical-localized CRT is involved in pollen tube growth by maintaining the stable tip-focused Ca(2+) gradient and thus modulating local Ca(2+) concentration within the tube cytoplasm.

  15. The effect of heat and radiation on the initiation and elongation processes of DNA synthesis

    International Nuclear Information System (INIS)

    Davies, R.C.; Bowden, G.T.; Cress, A.E.

    1983-01-01

    The pH step alkaline elution and alkaline sucrose gradient techniques were utilized to evaluate alterations in DNA replication (initiation and elongation) induced by heat and low dose X-irradiation in synchronized Chinese hamster ovary cells. The initiation and elongation processes of DNA synthesis were radioresistant at the G 1 /S boundary (4 hours after mitosis) while in mid S phase (9 hours after mitosis) DNA initiation and elongation were sensitive to X-irradiation. The initiation and elongation processes of DNA synthesis which were radiation resistant at the G 1 /S boundary could be inhibited by a hyperthermia treatment (43 0 C for 1 hour beginning at 4 hours after mitosis). The impairment of initiation in the heated cells was maintained through late S phase while that of elongation was reversible as judged by full recovery at 15 hours after mitosis. These data suggest that the known synergistic lethality of heat and radiation may be mediated by an impairment of initiation of DNA synthesis. (author)

  16. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level.

    Science.gov (United States)

    Derbyshire, Paul; McCann, Maureen C; Roberts, Keith

    2007-06-17

    Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing) cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. We present evidence that the degree of pectin methyl-esterification (DE%) limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongation in Arabidopsis hypocotyls. When the average DE% falls below this level, as in two gibberellic acid (GA) mutants ga1-3 and gai, and plants expressing pectin methyl-esterase (PME1) from Aspergillus aculeatus, then hypocotyl elongation is reduced. Low average levels of pectin DE% are associated with reduced cell elongation, implicating PMEs, the enzymes that regulate DE%, in the cell elongation process and in responses to GA. At high average DE% other components of the cell wall limit GA-induced growth.

  17. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level

    Directory of Open Access Journals (Sweden)

    Derbyshire Paul

    2007-06-01

    Full Text Available Abstract Background Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. Results We present evidence that the degree of pectin methyl-esterification (DE% limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongation in Arabidopsis hypocotyls. When the average DE% falls below this level, as in two gibberellic acid (GA mutants ga1-3 and gai, and plants expressing pectin methyl-esterase (PME1 from Aspergillus aculeatus, then hypocotyl elongation is reduced. Conclusion Low average levels of pectin DE% are associated with reduced cell elongation, implicating PMEs, the enzymes that regulate DE%, in the cell elongation process and in responses to GA. At high average DE% other components of the cell wall limit GA-induced growth.

  18. The Drosophila mitochondrial translation elongation factor G1 contains a nuclear localization signal and inhibits growth and DPP signaling.

    Directory of Open Access Journals (Sweden)

    Catherine Trivigno

    2011-02-01

    Full Text Available Mutations in the human mitochondrial elongation factor G1 (EF-G1 are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico, which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low.

  19. Translation Techniques

    OpenAIRE

    Marcia Pinheiro

    2015-01-01

    In this paper, we discuss three translation techniques: literal, cultural, and artistic. Literal translation is a well-known technique, which means that it is quite easy to find sources on the topic. Cultural and artistic translation may be new terms. Whilst cultural translation focuses on matching contexts, artistic translation focuses on matching reactions. Because literal translation matches only words, it is not hard to find situations in which we should not use this technique.  Because a...

  20. Stereotypical reaching movements of the octopus involve both bend propagation and arm elongation.

    Science.gov (United States)

    Hanassy, S; Botvinnik, A; Flash, T; Hochner, B

    2015-05-13

    The bend propagation involved in the stereotypical reaching movement of the octopus arm has been extensively studied. While these studies have analyzed the kinematics of bend propagation along the arm during its extension, possible length changes have been ignored. Here, the elongation profiles of the reaching movements of Octopus vulgaris were assessed using three-dimensional reconstructions. The analysis revealed that, in addition to bend propagation, arm extension movements involve elongation of the proximal part of the arm, i.e., the section from the base of the arm to the propagating bend. The elongations are quite substantial and highly variable, ranging from an average strain along the arm of -0.12 (i.e. shortening) up to 1.8 at the end of the movement (0.57 ± 0.41, n = 64 movements, four animals). Less variability was discovered in an additional set of experiments on reaching movements (0.64 ± 0.28, n = 30 movements, two animals), where target and octopus positions were kept more stationary. Visual observation and subsequent kinematic analysis suggest that the reaching movements can be broadly segregated into two groups. The first group involves bend propagation beginning at the base of the arm and propagating towards the arm tip. In the second, the bend is formed or present more distally and reaching is achieved mainly by elongation and straightening of the segment proximal to the bend. Only in the second type of movements is elongation significantly positively correlated with the distance of the bend from the target. We suggest that reaching towards a target is generated by a combination of both propagation of a bend along the arm and arm elongation. These two motor primitives may be combined to create a broad spectrum of reaching movements. The dynamical model, which recapitulates the biomechanics of the octopus muscular hydrostatic arm, suggests that achieving the observed elongation requires an extremely low ratio of longitudinal to transverse muscle

  1. Translation Ambiguity but Not Word Class Predicts Translation Performance

    Science.gov (United States)

    Prior, Anat; Kroll, Judith F.; Macwhinney, Brian

    2013-01-01

    We investigated the influence of word class and translation ambiguity on cross-linguistic representation and processing. Bilingual speakers of English and Spanish performed translation production and translation recognition tasks on nouns and verbs in both languages. Words either had a single translation or more than one translation. Translation…

  2. Examining English-German Translation Ambiguity Using Primed Translation Recognition

    Science.gov (United States)

    Eddington, Chelsea M.; Tokowicz, Natasha

    2013-01-01

    Many words have more than one translation across languages. Such "translation-ambiguous" words are translated more slowly and less accurately than their unambiguous counterparts. We examine the extent to which word context and translation dominance influence the processing of translation-ambiguous words. We further examine how these factors…

  3. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution.

    Directory of Open Access Journals (Sweden)

    Thomas Claverie

    Full Text Available Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation and the main vector of shape variation (first principal component for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae, the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae. In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of

  4. A Morphospace for Reef Fishes: Elongation Is the Dominant Axis of Body Shape Evolution

    Science.gov (United States)

    Claverie, Thomas; Wainwright, Peter C.

    2014-01-01

    Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation) and the main vector of shape variation (first principal component) for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae), the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae). In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of developmental processes

  5. A GRAMMATICAL ADJUSTMENT ANALYSIS OF STATISTICAL MACHINE TRANSLATION METHOD USED BY GOOGLE TRANSLATE COMPARED TO HUMAN TRANSLATION IN TRANSLATING ENGLISH TEXT TO INDONESIAN

    Directory of Open Access Journals (Sweden)

    Eko Pujianto

    2017-04-01

    Full Text Available Google translate is a program which provides fast, free and effortless translating service. This service uses a unique method to translate. The system is called ―Statistical Machine Translation‖, the newest method in automatic translation. Machine translation (MT is an area of many kinds of different subjects of study and technique from linguistics, computers science, artificial intelligent (AI, translation theory, and statistics. SMT works by using statistical methods and mathematics to process the training data. The training data is corpus-based. It is a compilation of sentences and words of the languages (SL and TL from translation done by human. By using this method, Google let their machine discovers the rules for themselves. They do this by analyzing millions of documents that have already been translated by human translators and then generate the result based on the corpus/training data. However, questions arise when the results of the automatic translation prove to be unreliable in some extent. This paper questions the dependability of Google translate in comparison with grammatical adjustment that naturally characterizes human translators' specific advantage. The attempt is manifested through the analysis of the TL of some texts translated by the SMT. It is expected that by using the sample of TL produced by SMT we can learn the potential flaws of the translation. If such exists, the partial of more substantial undependability of SMT may open more windows to the debates of whether this service may suffice the users‘ need.

  6. DNA damage regulates alternative splicing through changes in POL II elongation

    International Nuclear Information System (INIS)

    Munoz, M.J.; Perez Santangelo, M.S.; De la Mata, M.; Kornblihtt, A.R.

    2008-01-01

    Many apoptotic genes are regulated via alternative splicing (AS) but little is known about the mechanisms controlling AS in stress situations derived from DNA damage. Here we show that ultraviolet (UV) radiation affects co-transcriptional, but not post transcriptional, AS through a systemic mechanism involving a CDK-9-dependent hyper phosphorylation of RNA polymerase II carboxy terminal domain (CTD) and a subsequent and unprecedented inhibition of transcriptional elongation, estimated in vivo and in real time by FRAP. To mimic this hyper phosphorylation we used CTD mutants with serines 2 or 5 substituted by glutamic acids and found that they not only display lower elongation rates but duplicate the effects of UV light on AS in the absence of irradiation. Consistently, substitution of the serines with alanines prevents the UV effect on splicing. These results represent the first in vivo proof of modulation of elongation in response to an environmental signal, affecting in turn the kinetic coupling between transcription and splicing. (authors)

  7. Tide as steering factor in structuring archaeal and bacterial ammonia-oxidizing communities in mangrove forest soils dominated by Avicennia germinans and Rhizophora mangle

    NARCIS (Netherlands)

    Marcos, Magali S.; Barboza, A.D.H.; Keijzer, R.M.; Laanbroek, H.J.

    2018-01-01

    Mangrove species are adapted to grow at specific zones in a tidal gradient. Here we tested the hypothesis that the archaeal and bacterial ammonia-oxidizing microbial communities differ in soils dominated by the mangrove species Avicennia germinans and Rhizophora mangle. Two of the sampling locations

  8. [Archaeal diversity in permafrost deposits of Bunger Hills Oasis and King George Island (Antarctica) according to the 16S rRNA gene sequencing].

    Science.gov (United States)

    Karaevskaia, E S; Demchenko, L S; Demidov, N É; Rivkina, E M; Bulat, S A; Gilichinskiĭ, D A

    2014-01-01

    Archaeal communities of permafrost deposits of King George Island and Bunger Hills Oasis (Antarctica) differing in the content of biogenic methane were analyzed using clone libraries of two 16S rRNA gene regions. Phylotypes belonging to methanogenic archaea were identified in all horizons.

  9. Translation-coupling systems

    Science.gov (United States)

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  10. The Role of Semantics in Translation Recognition: Effects of Number of Translations, Dominance of Translations and Semantic Relatedness of Multiple Translations

    Science.gov (United States)

    Laxen, Jannika; Lavaur, Jean-Marc

    2010-01-01

    This study aims to examine the influence of multiple translations of a word on bilingual processing in three translation recognition experiments during which French-English bilinguals had to decide whether two words were translations of each other or not. In the first experiment, words with only one translation were recognized as translations…

  11. Non-extremophilic 'extremophiles' - Archaeal dominance in the subsurface and their implication for life

    Science.gov (United States)

    Reitschuler, Christoph; Lins, Philipp; Illmer, Paul

    2014-05-01

    Archaea - besides bacteria and eukaryota constituting the third big domain of life - were so far regarded as typical inhabitants of extreme environments, as indicated by the name (Archaeon, Greek: 'original', 'primal'). Previous research and cultivation successes were basically carried out in habitats characterized by extreme temperature, pH and salinity regimes. Such extreme conditions, as expected at the beginning of the Earth's evolution, are occasionally also prevalent on extraterrestrial planets and moons and make the Archaeal domain a key group to be studied concerning life's evolution and the most likely pioneer organisms to colonize environments that are regarded as hostile. However, in recent years it became obvious that Archaea, in particular non-extremophilic species, can be found almost ubiquitously in marine, freshwater, terrestrial and also subsurface habitats and occasionally outnumber other microbial domains and hold key positions in globally relevant energy and nutrient cycles. Besides extreme environments - the big question remains how to define a parameter as extreme - subsurface and cave environments present a window to the past, where adaptions to early life's conditions can be studied and how microbiomes may be structured in a habitat that represents a refugium on extraterrestrial celestial bodies, were surface conditions might be at first sight too extreme for life. The lower part of the alpine Hundsalm cave in Tyrol (Austria) offered a unique opportunity to study an almost pristine cave habitat, which is separated from the touristic part of the ice cave. The main focus of our research was laid on the microbial communities that were supposed to be in connection with secondary carbonate precipitations ('moonmilk'). For the ascertainment of these so far poorly evaluated structures a multiple approach assessment was chosen to generate a virtually complete picture of these subsurface microbiomes. Thereby, a combination of different cultivation

  12. Are lesions induced by ionizing radiation direct blocks to DNA chain elongation

    International Nuclear Information System (INIS)

    Painter, R.B.

    1983-01-01

    Ionizing radiation blocks DNA chain elongation in normal diploid fibroblasts but not in fibroblasts from patients with ataxia-telangiectasia, even though there are no differences in the damage induced between the two cell types. This difference suggests that radiation-induced lesions in DNA are not themselves blocks to chain elongation in ataxia cells and raises the possibility that in normal cells a mediator exists between DNA damage and chain termination

  13. DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids

    Directory of Open Access Journals (Sweden)

    Emad A. Ahmed

    2015-12-01

    Full Text Available Spermatids are extremely sensitive to genotoxic exposures since during spermiogenesis only error-prone non homologous end joining (NHEJ repair pathways are available. Hence, genomic damage may accumulate in sperm and be transmitted to the zygote. Indirect, delayed DNA fragmentation and lesions associated with apoptotic-like processes have been observed during spermatid elongation, 27 days after irradiation. The proliferating spermatogonia and early meiotic prophase cells have been suggested to retain a memory of a radiation insult leading later to this delayed fragmentation. Here, we used meiotic spread preparations to localize phosphorylate histone H2 variant (γ-H2AX foci marking DNA double strand breaks (DSBs in elongated spermatids. This technique enabled us to determine the background level of DSB foci in elongated spermatids of RAD54/RAD54B double knockout (dko mice, severe combined immunodeficiency SCID mice, and poly adenosine diphosphate (ADP-ribose polymerase 1 (PARP1 inhibitor (DPQ-treated mice to compare them with the appropriate wild type controls. The repair kinetics data and the protein expression patterns observed indicate that the conventional NHEJ repair pathway is not available for elongated spermatids to repair the programmed and the IR-induced DSBs, reflecting the limited repair capacity of these cells. However, although elongated spermatids express the proteins of the alternative NHEJ, PARP1-inhibition had no effect on the repair kinetics after IR, suggesting that DNA damage may be passed onto sperm. Finally, our genetic mutant analysis suggests that an incomplete or defective meiotic recombinational repair of Spo11-induced DSBs may lead to a carry-over of the DSB damage or induce a delayed nuclear fragmentation during the sensitive programmed chromatin remodeling occurring in elongated spermatids.

  14. Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation

    NARCIS (Netherlands)

    Chen, W.S.; Ye, Y.; Steinbusch, K.J.J.; Strik, D.P.B.T.B.; Buisman, C.J.N.

    2016-01-01

    Chain elongation is an emerging mixed culture biotechnology converting acetate into valuable biochemicals by using ethanol as an external electron donor. In this study we proposed to test another potential electron donor, methanol, in chain elongation. Methanol can be produced through the

  15. Suppression of vertical instability in elongated current-carrying plasmas by applying stellarator rotational transform

    International Nuclear Information System (INIS)

    ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Maurer, D. A.; Pandya, M. D.; Traverso, P.

    2014-01-01

    The passive stability of vertically elongated current-carrying toroidal plasmas has been investigated in the Compact Toroidal Hybrid, a stellarator/tokamak hybrid device. In this experiment, the fractional transform f, defined as the ratio of the imposed external rotational transform from stellarator coils to the total rotational transform, was varied from 0.04 to 0.50, and the elongation κ was varied from 1.4 to 2.2. Plasmas that were vertically unstable were evidenced by motion of the plasma in the vertical direction. Vertical drifts are measured with a set of poloidal field pickup coils. A three chord horizontally viewing interferometer and a soft X-ray diode array confirmed the drifts. Plasmas with low fractional transform and high elongation are the most susceptible to vertical instability, consistent with analytic predictions that the vertical mode in elongated plasmas can be stabilized by the poloidal field of a relatively weak stellarator equilibrium

  16. The high temperature out-of-pile test of LVDT for elongation measurement of fuel pellet

    Energy Technology Data Exchange (ETDEWEB)

    Son, J. M.; Kim, B. K.; Jo, M. S.; Joo, K. N.; Park, S. J.; Gang, Y. H.; Kim, Y. J. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    As a part of the development of instrumentation technologies for the nuclear fuel irradiation test in HANARO(High-flux Advanced Nuclear Application Reactor), the elongation measurement technique of the fuel pellet is being developed using LVDT(Linear Variable Differential Transformer). The well qualified out-of-pile test were needed to understand the LVDT's detail characteristics at high temperature for the detail design of the fuel irradiation instrumented capsule, because LVDT is very sensitive to variation of temperature. Therefore, the high temperature out-of-pile test system for fuel pellet elongation was developed, and this test was performed under the temperature condition between room temperature and 300 .deg. C with increasing the elongation from 0 to 5 mm. The LVDT's high temperature characteristics and temperature sensitivity of LVDT were analyzed through this experiment. Based on the result of this test, the method for the application of LVDT and elongation detector at high temperature was introduced. It is known that the results will be used to predict accurately the elongation of fuel pellet during irradiation test.

  17. A pollen-specific RALF from tomato that regulates pollen tube elongation.

    Science.gov (United States)

    Covey, Paul A; Subbaiah, Chalivendra C; Parsons, Ronald L; Pearce, Gregory; Lay, Fung T; Anderson, Marilyn A; Ryan, Clarence A; Bedinger, Patricia A

    2010-06-01

    Rapid Alkalinization Factors (RALFs) are plant peptides that rapidly increase the pH of plant suspension cell culture medium and inhibit root growth. A pollen-specific tomato (Solanum lycopersicum) RALF (SlPRALF) has been identified. The SlPRALF gene encodes a preproprotein that appears to be processed and released from the pollen tube as an active peptide. A synthetic SlPRALF peptide based on the putative active peptide did not affect pollen hydration or viability but inhibited the elongation of normal pollen tubes in an in vitro growth system. Inhibitory effects of SlPRALF were detectable at concentrations as low as 10 nm, and complete inhibition was observed at 1 mum peptide. At least 10-fold higher levels of alkSlPRALF, which lacks disulfide bonds, were required to see similar effects. A greater effect of peptide was observed in low-pH-buffered medium. Inhibition of pollen tube elongation was reversible if peptide was removed within 15 min of exposure. Addition of 100 nm SlPRALF to actively growing pollen tubes inhibited further elongation until tubes were 40 to 60 mum in length, after which pollen tubes became resistant to the peptide. The onset of resistance correlated with the timing of the exit of the male germ unit from the pollen grain into the tube. Thus, exogenous SlPRALF acts as a negative regulator of pollen tube elongation within a specific developmental window.

  18. PERSONALITY TYPE AND TRANSLATION PERFORMANCE OF PERSIAN TRANSLATOR TRAINEES

    Directory of Open Access Journals (Sweden)

    Reza Shaki

    2017-09-01

    Full Text Available The study investigated the relationship between the personality typology of a sample of Iranian translation students and their translation quality in terms of expressive, appellative, and informative text types. The study also attempted to identify the personality types that can perform better in English to Persian translation of the three text types. For that purpose, the personality type and the translation quality of the participants was assessed using Myers-Briggs Type Indicator (MBTI personality test and translation quality assessment (TQA, respectively. The analysis of the data revealed that the personality type of the participants seemed relevant to the translation quality of all the text types. The translation quality of the participants with intuitive and thinking types was significantly better than the sensing type counterparts in translating expressive texts. The participants with intuitive and feeling types also performed better than their counterparts with sensing type in translation of the informative text. Moreover, the participants with intuitive, feeling, and thinking personality types performed more successfully than the participants with sensing type in translation of the appellative text. The findings of the study are discussed in light of the existing research literature.

  19. Protein phosphorylation and its role in archaeal signal transduction

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  20. Influence of ovarian muscle contraction and oocyte growth on egg chamber elongation in Drosophila.

    Science.gov (United States)

    Andersen, Darcy; Horne-Badovinac, Sally

    2016-04-15

    Organs are formed from multiple cell types that make distinct contributions to their shape. The Drosophila egg chamber provides a tractable model to dissect such contributions during morphogenesis. Egg chambers consist of 16 germ cells (GCs) surrounded by a somatic epithelium. Initially spherical, these structures elongate as they mature. This morphogenesis is thought to occur through a 'molecular corset' mechanism, whereby structural elements within the epithelium become circumferentially organized perpendicular to the elongation axis and resist the expansive growth of the GCs to promote elongation. Whether this epithelial organization provides the hypothesized constraining force has been difficult to discern, however, and a role for GC growth has not been demonstrated. Here, we provide evidence for this mechanism by altering the contractile activity of the tubular muscle sheath that surrounds developing egg chambers. Muscle hypo-contraction indirectly reduces GC growth and shortens the egg, which demonstrates the necessity of GC growth for elongation. Conversely, muscle hyper-contraction enhances the elongation program. Although this is an abnormal function for this muscle, this observation suggests that a corset-like force from the egg chamber's exterior could promote its lengthening. These findings highlight how physical contributions from several cell types are integrated to shape an organ. © 2016. Published by The Company of Biologists Ltd.

  1. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    The startup and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 kg/mole (PS52K) and 103 kg/mole (PS103K), and for three bidisperse polystyrene melts. The bidisperse melts consist of PS103K or PS52K and a monodisperse...... (closed loop proportional regulator) using the laser in such a way that the stretch rate at the neck is kept constant. The rheometer has been described in more detail in (A. Bach, H.K. Rasmussen and O. Hassager, Journal of Rheology, 47 (2003) 429). PS390K show a decrease in the steady viscosity as a power......-law function of the elongational rate (A. Bach, K. Almdal, H.K. Rasmussen and O. Hassager, Macromolecules 36 (2003) 5174). PS52K and PS103K show that the steady viscosity has a maximum that is respectively 100% and 50% above 3 times the zero-shear-rate viscosity. The bidisperse melts show a significant...

  2. Purification, crystallization and preliminary X-ray crystallographic analysis of the archaeal phosphoglycerate mutase PH0037 from Pyrococcus horikoshii OT3

    Energy Technology Data Exchange (ETDEWEB)

    Lokanath, Neratur K.; Kunishima, Naoki, E-mail: kunisima@spring8.or.jp [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2006-08-01

    The archaeal phosphoglycerate mutase PH0037 from P. horikoshii OT3 has been crystallized in space group R32, with unit-cell parameters a = 155.62, c = 230.35 Å. A 2.2 Å resolution data was collected at SPring-8 beamline BL26B1. Phosphoglycerate mutases catalyze the interconversion of 2-phosphoglycerate and 3-phosphoglycerate in glycolysis and gluconeogenesis pathways. The archaeal phosphoglycerate mutase PH0037 from Pyrococcus horikoshii OT3 has been overexpressed in Escherichia coli and purified. Crystals were obtained using the oil-microbatch method at 291 K. A native data set extending to a resolution of 2.2 Å has been collected and processed in space group R32. Assuming the presence of a dimer in the asymmetric unit, the V{sub M} value is calculated to be 3.0 Å{sup 3} Da{sup −1}, consistent with the dynamic light-scattering experiment result, which shows a dimeric state of the protein in solution. Molecular-replacement trials using the crystal structure of Bacilllus stearothermophilus phosphoglycerate mutase as a search model did not provide a satisfactory solution, indicating substantially different structures of these two phophoglycerate mutases.

  3. Hamstring Elongation Quantified Using Ultrasonography During the Straight Leg Raise Test in Individuals With Low Back Pain.

    Science.gov (United States)

    Kellis, Eleftherios; Ellinoudis, Athanasios; Kofotolis, Nikolaos

    2015-06-01

    Although the straight leg raise (SLR) test frequently is used to assess hamstring extensibility in individuals with low back pain (LBP), evidence relating LBP, SLR, and hamstring extensibility remains unclear. The SLR measures the angle between the lifted leg and the horizontal, however, and, as such, it is not a direct measure of the elongation capacity of the hamstrings. To examine the differences in hamstring elongation (quantified via ultrasonography) and SLR score between individuals with LBP and asymptomatic controls and to determine the relationship between hamstring elongation, SLR, and functional disability scores. Cross-sectional study. University laboratory. Forty men and women with chronic LBP (mean ± SD, age 43.51 ± 3.71 years and 40 control subjects (age 45.11 ± 4.01 years) participated in this study. Passive SLR, elongation assessed via ultrasonography, and functional disability. SLR score, elongation of tendinous tissue within the semitendinosus muscle, and Oswestry Disability Index. Two-way analysis of variance tests indicated a significantly lower SLR score and a greater Oswestry score in LBP group compared with control subjects (P hamstring elongation (P > .05). Gender did not have an effect on all dependent measures (P > .05). Hamstring elongation showed a low correlation with SLR score and a minimal correlation with Oswestry score. These results indicate that the SLR score is not determined by hamstring elongation (quantified via ultrasonography). Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  4. Methanofullerene elongated nanostructure formation for enhanced organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Reyes, M. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico)], E-mail: reyesm@cactus.iico.uaslp.mx; Lopez-Sandoval, R. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, CP 78216. San Luis Potosi (Mexico); Arenas-Alatorre, J. [Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000, Mexico, D.F. (Mexico); Garibay-Alonso, R. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, CP 78216. San Luis Potosi (Mexico); Carroll, D.L. [Center for Nanotechnology and Molecular Materials, Department of Physics. Wake Forest University, Winston-Salem NC 27109 (United States); Lastras-Martinez, A. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico)

    2007-11-01

    Using transmission electron microscopy (TEM) and Z-contrast imaging we have demonstrated elongated nanostructure formation of fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) within an organic host through annealing. The annealing provides an enhanced mobility of the PCBM molecules and, with good initial dispersion, allows for the formation of exaggerated grain growth within the polymer host. We have assembled these nanostructures within the regioregular conjugated polymer poly(3-hexylthiophene) (P3HT). This PCBM elongated nanostructure formation maybe responsible for the very high efficiencies observed, at very low loadings of PCBM (1:0.6, polymer to PCBM), in annealed photovoltaics. Moreover, our high resolution TEM and electron energy loss spectroscopy studies clearly show that the PCBM crystals remain crystalline and are unaffected by the 200-keV electron beam.

  5. Methanofullerene elongated nanostructure formation for enhanced organic solar cells

    International Nuclear Information System (INIS)

    Reyes-Reyes, M.; Lopez-Sandoval, R.; Arenas-Alatorre, J.; Garibay-Alonso, R.; Carroll, D.L.; Lastras-Martinez, A.

    2007-01-01

    Using transmission electron microscopy (TEM) and Z-contrast imaging we have demonstrated elongated nanostructure formation of fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) within an organic host through annealing. The annealing provides an enhanced mobility of the PCBM molecules and, with good initial dispersion, allows for the formation of exaggerated grain growth within the polymer host. We have assembled these nanostructures within the regioregular conjugated polymer poly(3-hexylthiophene) (P3HT). This PCBM elongated nanostructure formation maybe responsible for the very high efficiencies observed, at very low loadings of PCBM (1:0.6, polymer to PCBM), in annealed photovoltaics. Moreover, our high resolution TEM and electron energy loss spectroscopy studies clearly show that the PCBM crystals remain crystalline and are unaffected by the 200-keV electron beam

  6. Effect of supplementing coconut or krabok oil, rich in medium-chain fatty acids on ruminal fermentation, protozoa and archaeal population of bulls

    NARCIS (Netherlands)

    Panyakaew, P.; Boon, N.; Goel, G.; Yuangklang, C.; Schonewille, J.T.; Hendriks, W.H.; Fievez, V.

    2013-01-01

    Medium-chain fatty acids (MCFA), for example, capric acid (C10:0), myristic (C14:0) and lauric (C12:0) acid, have been suggested to decrease rumen archaeal abundance and protozoal numbers. This study aimed to compare the effect of MCFA, either supplied through krabok (KO) or coconut (CO) oil, on

  7. Applied force and elongation in the medial rectus in esotropic patients with and without movement restriction.

    Science.gov (United States)

    Krieger, Fernanda; Cvintal, Tadeu; Bicas, Harley

    2004-12-01

    To study the different ways of expressing the force-elongation relationship in medial rectus muscles in esotropia with and without muscular restriction. Twenty-nine passive force-elongation curves were obtained without restriction (group I, n = 13) and with restriction (group II, n = 10) by means of a manual pachymeter and a digital dynamometer. In group I, the mean age was 14 years and 7 days and the mean esotropia was 53.88(Delta) while in group II the mean age was 35 years and 5 days and the mean esotropia was 60.5(Delta). Comparisons of structural muscular parameters between groups I and II were made for length (38.69 +/- 0.75 vs. 32.48 +/- 1.84 mm, p elongation relationship, whether normalized or not, followed an exponential curve. The constant c, which represents force when the elongation is zero, remained the same in all curves. In contrast, the constant b, which represents the slope of the curve, showed a significant difference between the two groups only for the curves of force-absolute elongation and tension-absolute elongation. The results imply that the constant b is better for characterizing the difference between the behavior of the medial rectus in esotropia with and without restriction. In addition, the elongation normalization showed that the contractile component is similar between the two groups and, therefore, the classical way of analysis, which does not employ normalization, is appropriate to correlate muscle properties with clinical findings.

  8. Temperature increases from 55 to 75 C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure

    Energy Technology Data Exchange (ETDEWEB)

    Rademacher, Antje [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik; Technische Univ. Berlin (Germany). Inst. fuer Technischen Umweltschutz; Nolte, Christine; Schoenberg, Mandy; Klocke, Michael [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik

    2012-10-15

    Agricultural biogas plants were operated in most cases below their optimal performance. An increase in the fermentation temperature and a spatial separation of hydrolysis/acetogenesis and methanogenesis are known strategies in improving and stabilizing biogas production. In this study, the dynamic variability of the bacterial and archaeal community was monitored within a two-phase leach bed biogas reactor supplied with rye silage and straw during a stepwise temperature increase from 55 to 75 C within the leach bed reactor (LBR), using TRFLP analyses. To identify the terminal restriction fragments that were obtained, bacterial and archaeal 16S rRNA gene libraries were constructed. Above 65 C, the bacterial community structure changed from being Clostridiales-dominated toward being dominated by members of the Bacteroidales, Clostridiales, and Thermotogales orders. Simultaneously, several changes occurred, including a decrease in the total cell count, degradation rate, and biogas yield along with alterations in the intermediate production. A bioaugmentation with compost at 70 C led to slight improvements in the reactor performance; these did not persist at 75 C. However, the archaeal community within the downstream anaerobic filter reactor (AF), operated constantly at 55 C, altered by the temperature increase in the LBR. At an LBR temperature of 55 C, members of the Methanobacteriales order were prevalent in the AF, whereas at higher LBR temperatures Methanosarcinales prevailed. Altogether, the best performance of this two-phase reactor was achieved at an LBR temperature of below 65 C, which indicates that this temperature range has a favorable effect on the microbial community responsible for the production of biogas. (orig.)

  9. Noise analysis of genome-scale protein synthesis using a discrete computational model of translation

    Energy Technology Data Exchange (ETDEWEB)

    Racle, Julien; Hatzimanikatis, Vassily, E-mail: vassily.hatzimanikatis@epfl.ch [Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne (Switzerland); Stefaniuk, Adam Jan [Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2015-07-28

    Noise in genetic networks has been the subject of extensive experimental and computational studies. However, very few of these studies have considered noise properties using mechanistic models that account for the discrete movement of ribosomes and RNA polymerases along their corresponding templates (messenger RNA (mRNA) and DNA). The large size of these systems, which scales with the number of genes, mRNA copies, codons per mRNA, and ribosomes, is responsible for some of the challenges. Additionally, one should be able to describe the dynamics of ribosome exchange between the free ribosome pool and those bound to mRNAs, as well as how mRNA species compete for ribosomes. We developed an efficient algorithm for stochastic simulations that addresses these issues and used it to study the contribution and trade-offs of noise to translation properties (rates, time delays, and rate-limiting steps). The algorithm scales linearly with the number of mRNA copies, which allowed us to study the importance of genome-scale competition between mRNAs for the same ribosomes. We determined that noise is minimized under conditions maximizing the specific synthesis rate. Moreover, sensitivity analysis of the stochastic system revealed the importance of the elongation rate in the resultant noise, whereas the translation initiation rate constant was more closely related to the average protein synthesis rate. We observed significant differences between our results and the noise properties of the most commonly used translation models. Overall, our studies demonstrate that the use of full mechanistic models is essential for the study of noise in translation and transcription.

  10. Prevalence of transcription promoters within archaeal operons and coding sequences.

    Science.gov (United States)

    Koide, Tie; Reiss, David J; Bare, J Christopher; Pang, Wyming Lee; Facciotti, Marc T; Schmid, Amy K; Pan, Min; Marzolf, Bruz; Van, Phu T; Lo, Fang-Yin; Pratap, Abhishek; Deutsch, Eric W; Peterson, Amelia; Martin, Dan; Baliga, Nitin S

    2009-01-01

    Despite the knowledge of complex prokaryotic-transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of approximately 64% of all genes, including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein-DNA interaction data sets showed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3' ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes-events usually considered spurious or non-functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements.

  11. Germination and root elongation bioassays in six different plant species for testing Ni contamination in soil.

    Science.gov (United States)

    Visioli, Giovanna; Conti, Federica D; Gardi, Ciro; Menta, Cristina

    2014-04-01

    In vitro short-term chronic phytotoxicity germination and root elongation test were applied to test the effects of nickel (Ni) in seed germination and root elongation in six plants species: Cucumis sativus (Cucurbitaceae), Lepidium sativum and Brassica nigra (Brassicaceae), Trifolium alexandrinum and Medicago sativa (Fabaceae), Phacelia tanacetifolia (Boraginaceae). A naturally Ni rich soil was used to compare the results obtained. Unlike root elongation, germination was not affected by Ni in any of the six species tested. EC50 values, calculated on the root elongation, showed that Ni toxicity decreases in the following order: P. tanacetifolia > B. nigra > C. sativus > L. sativum > M. sativa > T. alexandrinum. The test conducted using soil elutriate revealed a significantly lower effect in both seed germination and root elongation when compared to the results obtained using untreated soil. Conversely, the test performed on soil confirmed the high sensitivity of C. sativus, P. tanacetifolia and L. sativum to Ni.

  12. The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution.

    OpenAIRE

    Czworkowski, J; Wang, J; Steitz, T A; Moore, P B

    1994-01-01

    Elongation factor G (EF-G) catalyzes the translocation step of protein synthesis in bacteria, and like the other bacterial elongation factor, EF-Tu--whose structure is already known--it is a member of the GTPase superfamily. We have determined the crystal structure of EF-G--GDP from Thermus thermophilus. It is an elongated molecule whose large, N-terminal domain resembles the G domain of EF-Tu, except for a 90 residue insert, which covers a surface that is involved in nucleotide exchange in E...

  13. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior.

    Science.gov (United States)

    Bergauer, Kristin; Sintes, Eva; van Bleijswijk, Judith; Witte, Harry; Herndl, Gerhard J

    2013-06-01

    Recently, evidence suggests that dark CO2 fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating dark CO2 fixation in the tropical Atlantic, we quantified functional genes indicative for CO2 fixation. We used a Q-PCR-based assay targeting the bifunctional acetyl-CoA/propionyl-CoA carboxylase (accA subunit), a key enzyme powering inter alia the 3-hydroxypropionate/4-hydroxybutyrate cycle (HP/HB) and the archaeal ammonia monooxygenase (amoA). Quantification of accA-like genes revealed a consistent depth profile in the upper mesopelagial with increasing gene abundances from subsurface layers towards the oxygen minimum zone (OMZ), coinciding with an increase in archaeal amoA gene abundance. Gene abundance profiles of metabolic marker genes (accA, amoA) were correlated with thaumarchaeal 16S rRNA gene abundances as well as CO2 fixation rates to link the genetic potential to actual rate measurements. AccA gene abundances correlated with archaeal amoA gene abundance throughout the water column (r(2)  = 0.309, P < 0.0001). Overall, a substantial genetic predisposition of CO2 fixation was present in the dark realm of the tropical Atlantic in both Archaea and Bacteria. Hence, dark ocean CO2 fixation might be more widespread among prokaryotes inhabiting the oxygenated water column of the ocean's interior than hitherto assumed. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Coupling genetic and chemical microbiome profiling reveals heterogeneity of archaeome and bacteriome in subsurface biofilms that are dominated by the same archaeal species.

    Directory of Open Access Journals (Sweden)

    Alexander J Probst

    Full Text Available Earth harbors an enormous portion of subsurface microbial life, whose microbiome flux across geographical locations remains mainly unexplored due to difficult access to samples. Here, we investigated the microbiome relatedness of subsurface biofilms of two sulfidic springs in southeast Germany that have similar physical and chemical parameters and are fed by one deep groundwater current. Due to their unique hydrogeological setting these springs provide accessible windows to subsurface biofilms dominated by the same uncultivated archaeal species, called SM1 Euryarchaeon. Comparative analysis of infrared imaging spectra demonstrated great variations in archaeal membrane composition between biofilms of the two springs, suggesting different SM1 euryarchaeal strains of the same species at both aquifer outlets. This strain variation was supported by ultrastructural and metagenomic analyses of the archaeal biofilms, which included intergenic spacer region sequencing of the rRNA gene operon. At 16S rRNA gene level, PhyloChip G3 DNA microarray detected similar biofilm communities for archaea, but site-specific communities for bacteria. Both biofilms showed an enrichment of different deltaproteobacterial operational taxonomic units, whose families were, however, congruent as were their lipid spectra. Consequently, the function of the major proportion of the bacteriome appeared to be conserved across the geographic locations studied, which was confirmed by dsrB-directed quantitative PCR. Consequently, microbiome differences of these subsurface biofilms exist at subtle nuances for archaea (strain level variation and at higher taxonomic levels for predominant bacteria without a substantial perturbation in bacteriome function. The results of this communication provide deep insight into the dynamics of subsurface microbial life and warrant its future investigation with regard to metabolic and genomic analyses.

  15. Pauses by Student and Professional Translators in Translation Process

    Directory of Open Access Journals (Sweden)

    Rusdi Noor Rosa

    2018-01-01

    Full Text Available Translation as a process of meaning making activity requires a cognitive process one of which is realized in a pause, a temporary stop or a break indicating doing other than typing activities in a certain period of translation process. Scholars agree that pauses are an indicator of cognitive process without which there will never be any translation practices. Despite such agreement, pauses are debatable as well, either in terms of their length or in terms of the activities managed by a translator while taking pauses. This study, in particular, aims at finding out how student translators and professional translators managed the pauses in a translation process. This was a descriptive research taking two student translators and two professional translators as the participants who were asked to translate a text from English into bahasa Indonesia. The source text (ST was a historical recount text entitled ‘Early History of Yellowstone National Park’ downloaded from http://www.nezperce.com/yelpark9.html composed of 230-word long from English into bahasa Indonesia. The data were collected using Translog protocols, think aloud protocols (TAPs and screen recording. Based on the data analysis, it was found that student translators took the longest pauses in the drafting phase spent to solve the problems related to finding out the right equivalent for the ST words or terms and to solve the difficulties encountered in encoding their ST understanding in the TL; meanwhile, professional translators took the longest pauses in the pos-drafting phase spent to ensure whether their TT had been natural and whether their TT had corresponded to the prevailing grammatical rules of the TL.

  16. Biphasic character of ribosomal translocation and non-Michaelis-Menten kinetics of translation

    Science.gov (United States)

    Xie, Ping

    2014-12-01

    We study theoretically the kinetics of mRNA translocation in the wild-type (WT) Escherichia coli ribosome, which is composed of a small 30 S and large 50 S subunit, and the ribosomes with mutations to some intersubunit bridges such as B1a, B4, B7a, and B8. The theoretical results reproduce well the available in vitro experimental data on the biphasic kinetics of the forward mRNA translocation catalyzed by elongation factor G (EF-G) hydrolyzing GTP, which can be best fit by the sum of two exponentials, and the monophasic kinetics of the spontaneous reverse mRNA translocation in the absence of the elongation factor, which can be best fit by a single-exponential function, in both the WT and mutant ribosomes. We show that both the mutation-induced increase in the maximal rate of the slow phase for the forward mRNA translocation and that in the rate of the spontaneous reverse mRNA translocation result from a reduction in the intrinsic energy barrier to resist the rotational movements between the two subunits, giving the same degree of increase in the two rates. The mutation-induced increase in the maximal rate of the fast phase for the forward mRNA translocation results mainly from the increase in the rate of the ribosomal unlocking, a conformational change in the ribosome that widens the mRNA channel for the mRNA translocation to take place, which could be partly due to the effect of the mutation on the intrasubunit 30S head rotation. Moreover, we study the translation rate of the WT and mutant ribosomes. It is shown that the translation rate versus the concentration of EF-G-GTP does not follow the Michaelis-Menten (MM) kinetics, which is in sharp contrast to the general property of other enzymes that the rate of the enzymatic reaction versus the concentration of a substrate follows the MM kinetics. The physical origin of this non-MM kinetics for the ribosome is revealed.

  17. Machine translation

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M

    1982-04-01

    Each language has its own structure. In translating one language into another one, language attributes and grammatical interpretation must be defined in an unambiguous form. In order to parse a sentence, it is necessary to recognize its structure. A so-called context-free grammar can help in this respect for machine translation and machine-aided translation. Problems to be solved in studying machine translation are taken up in the paper, which discusses subjects for semantics and for syntactic analysis and translation software. 14 references.

  18. Adiabatic compression of elongated field-reversed configurations

    International Nuclear Information System (INIS)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-01-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas

  19. Improving the Determination of Eastern Elongations of Planetary Satellites in the Astronomical Almanac

    Science.gov (United States)

    Rura, Christopher; Stollberg, Mark

    2018-01-01

    The Astronomical Almanac is an annual publication of the US Naval Observatory (USNO) and contains a wide variety of astronomical data used by astronomers worldwide as a general reference or for planning observations. Included in this almanac are the times of greatest eastern and northern elongations of the natural satellites of the planets, accurate to 0.1 hour UT. The production code currently used to determine elongation times generates X and Y coordinates for each satellite (16 total) in 5 second intervals. This consequentially caused very large data files, and resulted in the program devoted to determining the elongation times to be computationally intensive. To make this program more efficient, we wrote a Python program to fit a cubic spline to data generated with a 6-minute time step. This resulted in elongation times that were found to agree with those determined from the 5 second data currently used in a large number of cases and was tested for 16 satellites between 2017 and 2019. The accuracy of this program is being tested for the years past 2019 and, if no problems are found, the code will be considered for production of this section of The Astronomical Almanac.

  20. Gravimorphism in rice and barley: promotion of leaf elongation by vertical inversion in agravitropically growing plants.

    Science.gov (United States)

    Abe, K; Takahashi, H; Suge, H

    1998-12-01

    We have compared shoot responses of agravitropic rice and barley plants to vertical inversion with those of normal ones. When rice plants were vertically inverted, the main stems of a japonica type of rice, cv. Kamenoo, showed negative gravitropism at nodes 2-15 of both elongated and non-elongated internodes. However, shoots of lazy line of rice, lazy-Kamenoo, bent gravitropically at nodes 11-15 only elongated internodes but not at nodes 2-10 of non-elongated ones. Thus, shoots of Kamenoo responded gravitropically at all stages of growth, whereas shoots of lazy-Kamenoo did not show gravitropic response before heading. In Kamenoo plants, lengths of both leaf-sheath and leaf-blade were shortened by vertical inversion, but those of the vertically inverted plants of lazy-Kamenoo were significantly longer than the plants in an upright position. When agravitropic and normal plants of barley were vertically inverted, the same results as in rice were obtained; elongation of both leaf-sheath and leaf-blade was inhibited in normal barley plants, Chikurin-Ibaragi No. 1, but significantly stimulated in agravitropic plants of serpentina barley. These results suggest that vertical inversion of rice and barley plants enhances the elongation growth of leaves in the absence of tropistic response.

  1. Solution Structure of Pfu RPP21, a Component of the Archaeal RNase P Holoenzyme, and Interactions with its RPP29 Protein Partner

    Science.gov (United States)

    Amero, Carlos D; Boomershine, William P; Xu, Yiren; Foster, Mark

    2009-01-01

    RNase P is the ubiquitous ribonucleoprotein metalloenzyme responsible for cleaving the 5′-leader sequence of precursor tRNAs during their maturation. While the RNA subunit is catalytically active on its own at high monovalent and divalent ion concentration, four proteins subunits are associated with archaeal RNase P activity in vivo: RPP21, RPP29, RPP30 and POP5. These proteins have been shown to function in pairs: RPP21-RPP29 and POP5-RPP30. We have determined the solution structure of RPP21 from the hyperthermophilic archaeon Pyrococcus furiosus (Pfu) using conventional and paramagnetic NMR techniques. Pfu RPP21 in solution consists of an unstructured N-terminus, two alpha helices, a zinc binding motif, and an unstructured C-terminus. Moreover, we have used chemical shift perturbations to characterize the interaction of RPP21 with Pfu RPP29. The data show that the primary contact with RPP29 is localized to the two helices of RPP21. This information represents a fundamental step towards understanding structure-function relationships of the archaeal RNase P holoenzyme. PMID:18922021

  2. Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae.

    Science.gov (United States)

    Häring, Monika; Peng, Xu; Brügger, Kim; Rachel, Reinhard; Stetter, Karl O; Garrett, Roger A; Prangishvili, David

    2004-06-01

    A novel virus, termed Pyrobaculum spherical virus (PSV), is described that infects anaerobic hyperthermophilic archaea of the genera Pyrobaculum and Thermoproteus. Spherical enveloped virions, about 100 nm in diameter, contain a major multimeric 33-kDa protein and host-derived lipids. A viral envelope encases a superhelical nucleoprotein core containing linear double-stranded DNA. The PSV infection cycle does not cause lysis of host cells. The viral genome was sequenced and contains 28337 bp. The genome is unique for known archaeal viruses in that none of the genes, including that encoding the major structural protein, show any significant sequence matches to genes in public sequence databases. Exceptionally for an archaeal double-stranded DNA virus, almost all the recognizable genes are located on one DNA strand. The ends of the genome consist of 190-bp inverted repeats that contain multiple copies of short direct repeats. The two DNA strands are probably covalently linked at their termini. On the basis of the unusual morphological and genomic properties of this DNA virus, we propose to assign PSV to a new viral family, the Globuloviridae.

  3. Effects of rare earth oxide nanoparticles on root elongation of plants.

    Science.gov (United States)

    Ma, Yuhui; Kuang, Linglin; He, Xiao; Bai, Wei; Ding, Yayun; Zhang, Zhiyong; Zhao, Yuliang; Chai, Zhifang

    2010-01-01

    The phytotoxicity of four rare earth oxide nanoparticles, nano-CeO(2), nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) on seven higher plant species (radish, rape, tomato, lettuce, wheat, cabbage, and cucumber) were investigated in the present study by means of root elongation experiments. Their effects on root growth varied greatly between different nanoparticles and plant species. A suspension of 2000 mg L(-1) nano-CeO(2) had no effect on the root elongation of six plants, except lettuce. On the contrary, 2000 mg L(-1) suspensions of nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) severely inhibited the root elongation of all the seven species. Inhibitory effects of nano-La(2)O(3), nano-Gd(2)O(3), and nano-Yb(2)O(3) also differed in the different growth process of plants. For wheat, the inhibition mainly took place during the seed incubation process, while lettuce and rape were inhibited on both seed soaking and incubation process. The fifty percent inhibitory concentrations (IC(50)) for rape were about 40 mg L(-1) of nano-La(2)O(3), 20mg L(-1) of nano-Gd(2)O(3), and 70 mg L(-1) of nano-Yb(2)O(3), respectively. In the concentration ranges used in this study, the RE(3+) ion released from the nanoparticles had negligible effects on the root elongation. These results are helpful in understanding phytotoxicity of rare earth oxide nanoparticles. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Chain elongation and cyclization in type III PKS DpgA.

    Science.gov (United States)

    Wu, Hai-Chen; Li, Yi-San; Liu, Yu-Chen; Lyu, Syue-Yi; Wu, Chang-Jer; Li, Tsung-Lin

    2012-04-16

    Chain elongation and cyclization of precursors of dihydroxyphenylacetyl-CoA (DPA-CoA) catalyzed by the bacterial type III polyketide synthase DpgA were studied. Two labile intermediates, di- and tri-ketidyl-CoA (DK- and TK-CoA), were proposed and chemically synthesized. In the presence of DpgABD, each of these with [(13)C(3)]malonyl-CoA (MA-CoA) was able to form partially (13)C-enriched DPA-CoA. By NMR and MS analysis, the distribution of (13)C atoms in the partially (13)C-enriched DPA-CoA shed light on how the polyketide chain elongates and cyclizes in the DpgA-catalyzed reaction. Polyketone intermediates elongate in a manner different from that which had been believed: two molecules of DK-CoA, or one DK-CoA plus one acetoacetyl-CoA (AA-CoA), but not two molecules of AA-CoA can form one molecule of DPA-CoA. As a result, polyketidyl-CoA serves as both the starter and extender, whereas polyketone-CoA without the terminal carboxyl group can only act as an extender. The terminal carboxyl group is crucial for the cyclization that likely takes place on CoA. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Promoting chain elongation in mixed culture acidification reactors by addition of ethanol

    International Nuclear Information System (INIS)

    Grootscholten, T.I.M.; Kinsky dal Borgo, F.; Hamelers, H.V.M.; Buisman, C.J.N.

    2013-01-01

    In this research we investigate a microbial production process to produce medium chain fatty acids (MCFAs) based on the organic fraction of municipal solid waste (OFMSW). In this microbial production process, called chain elongation, bacteria produce medium chain fatty acids (MCFAs) from ethanol and volatile fatty acids (VFAs). MCFAs could be used as new biomass based building blocks for the chemical and fuel industry. The objective of this article is to investigate whether chain elongation can be promoted during acidification of OFMSW by addition of ethanol. The results show that chain elongation can be promoted during acidification of OFMSW by addition of ethanol. However, the hydrolysis rate and the carboxylic acid yield of the OFMSW in reactors with ethanol additions were lower than the hydrolysis rate and the carboxylic acid yield than in reactors without ethanol additions. Further research is required to determine whether a combined chain elongation and acidification reactor or a separated reactor system is more advantageous for MCFA production from OFMSW. -- Highlights: ► Production of medium chain fatty acids from municipal solid waste and ethanol. ► Insight in production of caproate and consumption of in-situ produced ethanol. ► Ethanol additions reduced propionate, butyrate and valerate concentrations. ► Ethanol additions hardly reduced acetate concentrations. ► Hydrolysis rate was lower in experiments with ethanol additions

  6. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-06-01

    Full Text Available Abscisic acid (ABA plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10 had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2 had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development.

  7. Differential expression of α-L-arabinofuranosidases during maize (Zea mays L.) root elongation.

    Science.gov (United States)

    Kozlova, Liudmila V; Gorshkov, Oleg V; Mokshina, Natalia E; Gorshkova, Tatyana A

    2015-05-01

    Specific α- l -arabinofuranosidases are involved in the realisation of elongation growth process in cells with type II cell walls. Elongation growth in a plant cell is largely based on modification of the cell wall. In type II cell walls, the Ara/Xyl ratio is known to decrease during elongation due to the partial removal of Ara residues from glucuronoarabinoxylan. We searched within the maize genome for the genes of all predicted α-L-arabinofuranosidases that may be responsible for such a process and related their expression to the activity of the enzyme and the amount of free arabinose measured in six zones of a growing maize root. Eight genes of the GH51 family (ZmaABFs) and one gene of the GH3 family (ZmaARA-I) were identified. The abundance of ZmaABF1 and 3-6 transcripts was highly correlated with the measured enzymatic activity and free arabinose content that significantly increased during elongation. The transcript abundances also coincided with the pattern of changes in the Ara/Xyl ratio of the xylanase-extractable glucuronoarabinoxylan described in previous studies. The expression of ZmaABF3, 5 and 6 was especially up-regulated during elongation although corresponding proteins are devoid of the catalytic glutamate at the proper position. ZmaABF2 transcripts were specifically enriched in the root cap and meristem. A single ZmaARA-I gene was not expressed as a whole gene but instead as splice variants that encode the C-terminal end of the protein. Changes in the ZmaARA-I transcript level were rather moderate and had no significant correlation with free arabinose content. Thus, elongation growth of cells with type II cell walls is accompanied by the up-regulation of specific and predicted α-L-arabinofuranosidase genes, and the corresponding activity is indeed pronounced and is important for the modification of glucuronoarabinoxylan, which plays a key role in the modification of the cell wall supramolecular organisation.

  8. Towards an understanding of structure-function relationships of elongation factor Tu

    DEFF Research Database (Denmark)

    Wiborg, O; Andersen, C; Knudsen, Charlotte Rohde

    1994-01-01

    In light of the recently determined structure of elongation factor Tu, and taking into account chemical studies mapping functional sites, a number of residues have been selected for site-directed mutagenesis studies. Gly94, Gly126, His66, His118, Lys89 and Asp90 have each been point-mutated. Prel......In light of the recently determined structure of elongation factor Tu, and taking into account chemical studies mapping functional sites, a number of residues have been selected for site-directed mutagenesis studies. Gly94, Gly126, His66, His118, Lys89 and Asp90 have each been point...

  9. Predicting the minimal translation apparatus: lessons from the reductive evolution of mollicutes.

    Directory of Open Access Journals (Sweden)

    Henri Grosjean

    2014-05-01

    Full Text Available Mollicutes is a class of parasitic bacteria that have evolved from a common Firmicutes ancestor mostly by massive genome reduction. With genomes under 1 Mbp in size, most Mollicutes species retain the capacity to replicate and grow autonomously. The major goal of this work was to identify the minimal set of proteins that can sustain ribosome biogenesis and translation of the genetic code in these bacteria. Using the experimentally validated genes from the model bacteria Escherichia coli and Bacillus subtilis as input, genes encoding proteins of the core translation machinery were predicted in 39 distinct Mollicutes species, 33 of which are culturable. The set of 260 input genes encodes proteins involved in ribosome biogenesis, tRNA maturation and aminoacylation, as well as proteins cofactors required for mRNA translation and RNA decay. A core set of 104 of these proteins is found in all species analyzed. Genes encoding proteins involved in post-translational modifications of ribosomal proteins and translation cofactors, post-transcriptional modifications of t+rRNA, in ribosome assembly and RNA degradation are the most frequently lost. As expected, genes coding for aminoacyl-tRNA synthetases, ribosomal proteins and initiation, elongation and termination factors are the most persistent (i.e. conserved in a majority of genomes. Enzymes introducing nucleotides modifications in the anticodon loop of tRNA, in helix 44 of 16S rRNA and in helices 69 and 80 of 23S rRNA, all essential for decoding and facilitating peptidyl transfer, are maintained in all species. Reconstruction of genome evolution in Mollicutes revealed that, beside many gene losses, occasional gains by horizontal gene transfer also occurred. This analysis not only showed that slightly different solutions for preserving a functional, albeit minimal, protein synthetizing machinery have emerged in these successive rounds of reductive evolution but also has broad implications in guiding the

  10. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography

    OpenAIRE

    Sauguet , Ludovic; Raia , Pierre; Henneke , Ghislaine; Delarue , Marc

    2016-01-01

    International audience; Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has ...

  11. Epimerization-free C-terminal peptide activation, elongation and cyclization

    NARCIS (Netherlands)

    Popović, S.

    2015-01-01

    C-terminal peptide activation and cyclization reactions are generally accompanied with epimerization (partial loss of C‐terminal stereointegrity). Therefore, the focus of this thesis was to develop epimerization-free methods for C-terminal peptide activation to enable C-terminal peptide elongation

  12. Structure of the protein core of translation initiation factor 2 in apo, GTP-bound and GDP-bound forms

    International Nuclear Information System (INIS)

    Simonetti, Angelita; Marzi, Stefano; Fabbretti, Attilio; Hazemann, Isabelle; Jenner, Lasse; Urzhumtsev, Alexandre; Gualerzi, Claudio O.; Klaholz, Bruno P.

    2013-01-01

    The crystal structures of the eubacterial translation initiation factor 2 in apo form and with bound GDP and GTP reveal conformational changes upon nucleotide binding and hydrolysis, notably of the catalytically important histidine in the switch II region. Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2 is completely unrelated. Here, the crystal structure of the apo IF2 protein core from Thermus thermophilus has been determined by MAD phasing and the structures of GTP and GDP complexes were also obtained. The IF2–GTP complex was trapped by soaking with GTP in the cryoprotectant. The structures revealed conformational changes of the protein upon nucleotide binding, in particular in the P-loop region, which extend to the functionally relevant switch II region. The latter carries a catalytically important and conserved histidine residue which is observed in different conformations in the GTP and GDP complexes. Overall, this work provides the first crystal structure of a eubacterial IF2 and suggests that activation of GTP hydrolysis may occur by a conformational repositioning of the histidine residue

  13. Structure of the protein core of translation initiation factor 2 in apo, GTP-bound and GDP-bound forms

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, Angelita [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale - INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch (France); Marzi, Stefano [Architecture et Réactivité de l’ARN, UPR 9002 CNRS, IBMC (Institute of Molecular and Cellular Biology), 15 Rue R. Descartes, 67084 Strasbourg, France, Université de Strasbourg, 67000 Strasbourg (France); Fabbretti, Attilio [University of Camerino, 62032 Camerino (Monaco) (Italy); Hazemann, Isabelle; Jenner, Lasse [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale -INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch (France); Urzhumtsev, Alexandre [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale - INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch (France); Université de Lorraine, 54506 Vandoeuvre-lès-Nancy (France); Gualerzi, Claudio O. [University of Camerino, 62032 Camerino (Monaco) (Italy); Klaholz, Bruno P., E-mail: klaholz@igbmc.fr [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale - INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch (France)

    2013-06-01

    The crystal structures of the eubacterial translation initiation factor 2 in apo form and with bound GDP and GTP reveal conformational changes upon nucleotide binding and hydrolysis, notably of the catalytically important histidine in the switch II region. Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2 is completely unrelated. Here, the crystal structure of the apo IF2 protein core from Thermus thermophilus has been determined by MAD phasing and the structures of GTP and GDP complexes were also obtained. The IF2–GTP complex was trapped by soaking with GTP in the cryoprotectant. The structures revealed conformational changes of the protein upon nucleotide binding, in particular in the P-loop region, which extend to the functionally relevant switch II region. The latter carries a catalytically important and conserved histidine residue which is observed in different conformations in the GTP and GDP complexes. Overall, this work provides the first crystal structure of a eubacterial IF2 and suggests that activation of GTP hydrolysis may occur by a conformational repositioning of the histidine residue.

  14. Translating Inclusion

    DEFF Research Database (Denmark)

    Fallov, Mia Arp; Birk, Rasmus

    2018-01-01

    The purpose of this paper is to explore how practices of translation shape particular paths of inclusion for people living in marginalized residential areas in Denmark. Inclusion, we argue, is not an end-state, but rather something which must be constantly performed. Active citizenship, today......, is not merely a question of participation, but of learning to become active in all spheres of life. The paper draws on empirical examples from a multi-sited field work in 6 different sites of local community work in Denmark, to demonstrate how different dimensions of translation are involved in shaping active...... citizenship. We propose the following different dimensions of translation: translating authority, translating language, translating social problems. The paper takes its theoretical point of departure from assemblage urbanism, arguing that cities are heterogeneous assemblages of socio-material interactions...

  15. Adiabatic compression of elongated field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-06-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas.

  16. The relationship between the types of axial elongation and the prevalence of lattice degeneration of the retina.

    Science.gov (United States)

    Yura, T

    1998-02-01

    To assess the relationship between the prevalence of lattice degeneration and the types of axial elongation. Nine hundred seventy eyes of 542 highly myopic patients with axial length of 26.00-31.99 mm were evaluated by using A-scan axial length measurements and fundus examinations. Then the prevalence of lattice degeneration was compared between eyes with posterior staphyloma and those without posterior staphyloma. At each axial length, lattice degeneration was more frequent in eyes without posterior staphyloma (the entire eye elongates) than those with posterior staphyloma (only the posterior pole elongates). The difference was statistically significant (plattice degeneration is influenced by the types of axial elongation in high myopic eyes.

  17. Effects of Diets Supplemented with Ensiled Mulberry Leaves and Sun-Dried Mulberry Fruit Pomace on the Ruminal Bacterial and Archaeal Community Composition of Finishing Steers

    NARCIS (Netherlands)

    Niu, Yuhong; Meng, Qingxiang; Li, Shengli; Ren, Liping; Zhou, Bo; Schonewille, Thomas; Zhou, Zhenming

    This study investigated the effects of ensiled mulberry leaves (EML) and sun-dried mulberry fruit pomace (SMFP) on the ruminal bacterial and archaeal community composition of finishing steers. Corn grain- and cotton meal-based concentrate was partially replaced with EML or SMFP. The diets had

  18. Translation and Culture:Translation as a Cross-cultural Mediation

    Institute of Scientific and Technical Information of China (English)

    叶谋锦

    2013-01-01

    Translation is a complex activity which involves language competence as well as proficiency in multiculturalism. From the perspective of multiculturalism, translation resembles recreation of source text by grasping essential meanings to produce a sub-tle target text which can be clearly perceived by target readers. Ignoring cultural issues can present serious mistranslations in the field of advertising translation. This paper aims to explore the significance of connotation confined by the framework of culture and point out that verbal translation is a dangerous inclination by illustrating three business examples. This paper argues that cross-cultural mediation plays an important role in translation.

  19. Cessation of reproduction-related spine elongation after multiple breeding cycles in female naked mole-rats.

    Science.gov (United States)

    Dengler-Crish, Christine M; Catania, Kenneth C

    2009-01-01

    The breeding female or "queen" naked mole-rat has a uniquely elongated body morphology attributed to the lengthening of the lumbar vertebral column that occurs during pregnancy. It is unknown whether this vertebral growth is a continuous process, or associated only with early reproductive experience. We compared pregnancy-related bone elongation in nascent primiparous queens and established queens to determine if this vertebral expansion was a lifelong process in these females. We also investigated the impact of lactation on vertebral elongation in these mole-rats because it is known to be a time of significant bone loss in other mammals. Our data show that after eight or more pregnancies, established queens no longer experienced a net gain in lumbar spine length over the reproductive cycle, whereas the nascent breeders demonstrated significant spine lengthening over this time. Despite the lack of net spine lengthening in established breeders, our results indicated that these queens still experienced some pregnancy-specific vertebral elongation. In naked mole-rats, pregnancy-induced bone elongation may serve the dual purposes of first lengthening the spine, and then once optimal spine size is achieved, serving as a homeostatic mechanism that prepares the spine for the mineral demands of lactation. Anat Rec, 2009. (c) 2008 Wiley-Liss, Inc.

  20. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna

    Science.gov (United States)

    Zhao, Hu; Hertel, Rainer; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    The plant hormone auxin affects cell elongation in both roots and shoots. In roots, the predominant action of auxin is to inhibit cell elongation while in shoots auxin, at normal physiological levels, stimulates elongation. The question of whether the primary receptor for auxin is the same in roots and shoots has not been resolved. In addition to its action on cell elongation in roots and shoots, auxin is transported in a polar fashion in both organs. Although auxin transport is well characterized in both roots and shoots, there is relatively little information on the connection, if any, between auxin transport and its action on elongation. In particular, it is not clear whether the protein mediating polar auxin movement is separate from the protein mediating auxin action on cell elongation or whether these two processes might be mediated by one and the same receptor. We examined the identity of the auxin growth receptor in roots and shoots by comparing the response of roots and shoots of the grass Zea mays L. and the legume Vigna mungo L. to indole-3-acetic acid, 2-naphthoxyacetic acid, 4,6-dichloroindoleacetic acid, and 4,7-dichloroindoleacetic acid. We also studied whether or not a single protein might mediate both auxin transport and auxin action by comparing the polar transport of indole-3-acetic acid and 2-naphthoxyacetic acid through segments from Vigna hypocotyls and maize coleoptiles. For all of the assays performed (root elongation, shoot elongation, and polar transport) the action and transport of the auxin derivatives was much greater in the dicots than in the grass species. The preservation of ligand specificity between roots and shoots and the parallels in ligand specificity between auxin transport and auxin action on growth are consistent with the hypothesis that the auxin receptor is the same in roots and shoots and that this protein may mediate auxin efflux as well as auxin action in both organ types.

  1. Geomicrobiology of Archaeal Communities Isolated from an Off-axis Abyssal Hill Fault Scarp on the East Pacific Rise Flank at 9° 27'N

    Science.gov (United States)

    Ehrhardt, C. J.; Haymon, R.; Holden, P.; Lamontagne, M.

    2003-12-01

    Although heat flow studies suggest that ~70% of the hydrothermal heat loss in the oceans occurs in the abyssal hill terrain on the flanks of mid-ocean ridges, very few off-axis hydrothermal sites have been discovered. In May 2002, sedimentary blowout structures of probable hydrothermal origin were discovered along East Pacific Rise at 9° 27'N on an off-axis abyssal hill bounded by a fault scarp covered with orange-brown microbial flocculations. Recovered samples of these flocculations have presented an opportunity to study the unknown nature and role of thermophilic and hyperthermophilic microbial communities on the ridge flanks. Furthermore, the archaeal communities that we have identified in the samples are useful "microbial tracers" which can be used to locate off-axis areas of moderate-to-high temperature fluid flow (>50° C). In this study, we used molecular techniques to isolate, amplify, and sequence community archaeal RNA sequences from fault scarp flocculations collected with a slurp pump system mounted in the Alvin basket. Molecular phylogenies based on 16S rRNA were constructed. Phylogenetic relationships of isolated clones were used to infer temperature preferences of archaeal communities. We identified 12 clones that clustered within thermophilic or hyperthermophilic clades within Archaea suggesting that moderately high temperature fluid (>50° C) exited the seafloor along this abyssal hill fault scarp. Our studies also suggest that these communities mediate the formation of Fe-sulfide mineral phases. Analysis of the samples with an Environmental Scanning Electron Microscope (ESEM) and X-ray energy dispersive analysis (EDS) revealed unique iron sulfide mineral phases with anomalously low Fe/S ratios in direct association with microbial communities.

  2. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil.

    Science.gov (United States)

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-09-29

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.

  3. Characteristics of elongated and ruptured anterior cruciate ligament grafts: An analysis of 21 consecutive revision cases

    Directory of Open Access Journals (Sweden)

    Kohei Iio

    2017-04-01

    Conclusion: The location of the original femoral tunnel was more proximal in patients with elongated grafts than in those with ruptured grafts. Different bone tunnel position from native ACL might lead to graft elongation.

  4. Barley Seed Germination/Root Elongation Toxicity Test For Evaluation Of Sludge Pre-Treatment

    DEFF Research Database (Denmark)

    Eriksson, Eva; Kusk, Kresten Ole; Barrett Sørensen, Mie

    Application of sludge from wastewater treatment plants (WWTPs) on agricultural land is an approach for nutrient recycling that rise challenges due to recalcitrant and harmful pollutants. In this study we assessed the feasibility of a seed germination test to evaluate sludge ecotoxicity and compared...... germination responses from two test parameters, root elongation and seed germination (sprouts elongation) of the barley (Hordeum vulgare). 2nd objective was to evaluate sewage sludge pre-treatments at batch-scale of sludge samples from two WWTPs using anaerobic digestion, and thermal and ozonation pre......-treatments. Glyphosate and eco-labelled soil were used as references. Inhibition of germination of seeds exposed to the glyphosate and sludge was registered and thus germination was successfully applied for sludge ecotoxicity assessment, and using the root elongation as the end-point was both faster and more precise...

  5. Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    DEFF Research Database (Denmark)

    Chen, Yun; Jørgensen, Mette; Kolde, Raivo

    2011-01-01

    of RNAPII stalling. CONCLUSIONS: In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data....... strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. RESULTS: Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII...... of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive...

  6. Positive grid corrosion elongation analysis using CAE with corrosion deformation transformed into thermal phenomenon

    Science.gov (United States)

    Mukaitani, Ichiroh; Hayashi, Koji; Shimoura, Ichiro; Takemasa, Arihiko; Takahashi, Isamu; Tsubakino, Harushige

    Valve-regulated lead-acid (VRLA) batteries have been commercially available for more than 20 years and have been enthusiastically embraced by users of uninterruptible power supplies (UPS) because of the anticipated reduction in installation and operating costs, smaller footprint and fewer environmental concerns. In Japan, communication networks are demanding reduced costs and longer life from their batteries. Among the factors limiting the life of VRLA batteries, the corrosion of positive grid material has been proven to cause elongation of the plates, loss of electrical contact and shorter lifetime. The content of Sn is also a key factor and addition of Sn in the grid alloy results in better performance in creep resistance, tensile strength and corrosion resistance [R. David Prenagaman, The Battery Man, vol. 39, September 1997, p. 16. I. Mukaitani, T. Sakamoto, T. Kikuoka, Y. Yamaguchi, H. Tsubakino, Proceedings of the 40th Battery Symposium in Japan, 1999, p. 99]. A key point is what the ratio of Sn to Ca should be, since too much Sn may lead to even worse elongation of the plates [I. Mukaitani, T. Sakamoto, T. Kikuoka, Y. Yamaguchi, H. Tsubakino, Proceedings of the 40th Battery Symposium in Japan, 1999, p. 99]. We have determined that microstructure control with a composition of lead-calcium-tin (Pb-Ca-Sn) alloy is optimal for better performance of the plates [I. Mukaitani, T. Sakamoto, T. Kikuoka, Y. Yamaguchi, H. Tsubakino, Proceedings of the 40th Battery Symposium in Japan, 1999, p. 99]. We developed a "simulation of current collector corrosion elongation" which is a technique of estimating corrosion elongation from the current collector design [I. Mukaitani, K. Hayashi, I. Shimoura, H. Takabayashi, M. Terada, A. Takemasa, I. Takahashi, K. Okamoto, Proceedings of the 44th Battery Symposium in Japan, 2003, p. 652]. Corrosion elongation occurs as the corrosion material layer grows out of the current collector metal. We resolved this problem using generally CAD

  7. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park.

    Science.gov (United States)

    Podar, Mircea; Makarova, Kira S; Graham, David E; Wolf, Yuri I; Koonin, Eugene V; Reysenbach, Anna-Louise

    2013-04-22

    A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes. The first terrestrial hyperthermophilic member of the Nanoarchaeota was collected from Obsidian Pool, a thermal feature in Yellowstone National Park, separated by single cell isolation, and sequenced together with its putative host, a Sulfolobales archaeon. Both the new Nanoarchaeota (Nst1) and N. equitans lack most biosynthetic capabilities, and phylogenetic analysis of ribosomal RNA and protein sequences indicates that the two form a deep-branching archaeal lineage. However, the Nst1 genome is more than 20% larger, and encodes a complete gluconeogenesis pathway as well as the full complement of archaeal flagellum proteins. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. These findings imply that, rather than representing ancestral characters, the extremely compact genomes and multiple split genes of Nanoarchaeota are derived characters associated with their symbiotic or parasitic lifestyle. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. Comparison of the N. equitans and Nst1 genomes suggests that the marine and terrestrial lineages of Nanoarchaeota share a common ancestor that was already a symbiont of another archaeon. The two distinct Nanoarchaeota-host genomic data sets offer novel insights into the evolution of archaeal symbiosis and parasitism, enabling further studies of the cellular and molecular mechanisms of these relationships. This article was reviewed by Patrick Forterre, Bettina Siebers (nominated by Michael Galperin) and Purification Lopez-Garcia.

  8. The Effect of Translators' Emotional Intelligence on Their Translation Quality

    Science.gov (United States)

    Varzande, Mohsen; Jadidi, Esmaeil

    2015-01-01

    Translators differ from each other in many ways in terms of their knowledge, professional and psychological conditions that may directly influence their translation. The present study aimed at investigating the impact of translators' Emotional Intelligence on their translation quality. Following a "causal-comparative study," a sample of…

  9. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice.

    Science.gov (United States)

    Tong, Hongning; Xiao, Yunhua; Liu, Dapu; Gao, Shaopei; Liu, Linchuan; Yin, Yanhai; Jin, Yun; Qian, Qian; Chu, Chengcai

    2014-11-01

    Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana. © 2014 American Society of Plant Biologists. All rights reserved.

  10. Fatty Acid Elongation in Non-Alcoholic Steatohepatitis and Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Sonja M. Kessler

    2014-04-01

    Full Text Available Non-alcoholic steatohepatitis (NASH represents a risk factor for the development of hepatocellular carcinoma (HCC and is characterized by quantitative and qualitative changes in hepatic lipids. Since elongation of fatty acids from C16 to C18 has recently been reported to promote both hepatic lipid accumulation and inflammation we aimed to investigate whether a frequently used mouse NASH model reflects this clinically relevant feature and whether C16 to C18 elongation can be observed in HCC development. Feeding mice a methionine and choline deficient diet to model NASH not only increased total hepatic fatty acids and cholesterol, but also distinctly elevated the C18/C16 ratio, which was not changed in a model of simple steatosis (ob/ob mice. Depletion of Kupffer cells abrogated both quantitative and qualitative methionine-and-choline deficient (MCD-induced alterations in hepatic lipids. Interestingly, mimicking inflammatory events in early hepatocarcinogenesis by diethylnitrosamine-induced carcinogenesis (48 h increased hepatic lipids and the C18/C16 ratio. Analyses of human liver samples from patients with NASH or NASH-related HCC showed an elevated expression of the elongase ELOVL6, which is responsible for the elongation of C16 fatty acids. Taken together, our findings suggest a detrimental role of an altered fatty acid pattern in the progression of NASH-related liver disease.

  11. Translating India

    CERN Document Server

    Kothari, Rita

    2014-01-01

    The cultural universe of urban, English-speaking middle class in India shows signs of growing inclusiveness as far as English is concerned. This phenomenon manifests itself in increasing forms of bilingualism (combination of English and one Indian language) in everyday forms of speech - advertisement jingles, bilingual movies, signboards, and of course conversations. It is also evident in the startling prominence of Indian Writing in English and somewhat less visibly, but steadily rising, activity of English translation from Indian languages. Since the eighties this has led to a frenetic activity around English translation in India's academic and literary circles. Kothari makes this very current phenomenon her chief concern in Translating India.   The study covers aspects such as the production, reception and marketability of English translation. Through an unusually multi-disciplinary approach, this study situates English translation in India amidst local and global debates on translation, representation an...

  12. Spatial and temporal variability of planktonic archaeal abundance in the Humboldt Current System off Chile

    Science.gov (United States)

    Quiñones, Renato A.; Levipan, Héctor A.; Urrutia, Homero

    2009-07-01

    The latest advances in the field of microbial ecology have shown that planktonic Archaea are one of the most abundant unicellular microorganisms of the oceans. However, no information is available on the contribution this group makes to the prokaryote assemblages that inhabit the eastern South Pacific Ocean. Here, we describe the relative abundance and vertical distribution of planktonic Archaea off northern and central-southern Chile. Data come from several cruises and a 45-month time series at a station located on the shelf off central-southern Chile. Both the taxonomic composition of the prokaryote community and its relative abundance were determined using quantitative dot blot 16S-rRNA hybridizations. Total Archaea in central-southern Chile made up 6-87% of the prokaryote rRNA in the water column and did not present evidence of any seasonal pattern. Crenarchaea were the most abundant archaeal group at this site and were significantly associated with the ammonium concentration ( r2=0.16, p=0.0003, n=80). Archaeal abundance in the time series was usually greater in the deeper layer (>50 m), with contributions reaching up to ˜90% of the prokaryote rRNA on certain occasions, and decreasing towards the surface. Important increments in the relative abundance of total Archaea were observed on given dates at the surface of the time-series station off central-southern Chile. Off northern Chile, total Archaea normally contributed from ˜10% to 50% of the prokaryote rRNA found between 10 and 1000 m, and were generally important in the mesopelagic realm. Our results indicate that Archaea constitute an important fraction of the prokaryote assemblage in the water column of the Humboldt Current System, especially in the oxygen minimum zone.

  13. The Impact of Translators' Academic Experience on Their Translation Quality

    Science.gov (United States)

    Varzande, Mohsen; Jadidi, Esmaeil

    2015-01-01

    Translators differ from each other in many ways in terms of their knowledge and professional conditions that may directly influence their translation. The present study aimed at investigating the impact of translators' academic experience on their translation quality. Following a "causal-comparative study", a sample of 100 male and…

  14. Translating Legal Collocations in Contract Agreements by Iraqi EFL Students-Translators

    Directory of Open Access Journals (Sweden)

    Muntaha A. Abdulwahid

    2017-01-01

    Full Text Available Legal translation of contract agreements is a challenge to translators as it involves combining the literary translation with the technical terminological precision. In translating legal contract agreements, a legal translator must utilize the lexical or syntactic precision and, more importantly, the pragmatic awareness of the context. This will guarantee an overall communicative process and avoid inconsistency in legal translation. However, the inability of the translator to meet these two functions in translating the contract item not only affects the contractors’ comprehension of the contract item but also affects the parties’ contractual obligations. In light of this, the purpose of this study was to find out how legal collocations used in contract agreements are translated from Arabic into English by student-translators in terms of (1 purely technical, (2 semi-technical, and (3 everyday vocabulary collocations. For the data collection, a multiple-choice collocation test was used to be answered by 35 EFL Iraqi undergraduate translator-students to decide on the aspects of weaknesses and strengths of their translation, thus decide on the aspects of correction. The findings showed that these students had serious problems in translating legal collocations as they lack the linguistic knowledge and pragmatic awareness needed to achieve the legal meaning and effect. They were also unable to make a difference among the three categories of legal collocations, purely technical, semi-technical, and everyday vocabulary collocations. These students should be exposed to more legal translation practices to obtain the required experience needed for their future career.

  15. Determinants of Elongation of the Labia Minora in Tete Province ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    women may not report current vaginal ill health, it is possible that prospective cohort ... Keywords: Labia minora elongation; vaginal practices; Mozambique; survey; cross-sectional studies. ..... had ever had vaginal discharge, which was most.

  16. Translation Analysis on Civil Engineering Text Produced by Machine Translator

    Directory of Open Access Journals (Sweden)

    Sutopo Anam

    2018-01-01

    Full Text Available Translation is extremely needed in communication since people have serious problem in the language used. Translation activity is done by the person in charge for translating the material. Translation activity is also able to be done by machine. It is called machine translation, reflected in the programs developed by programmer. One of them is Transtool. Many people used Transtool for helping them in solving the problem related with translation activities. This paper wants to deliver how important is the Transtool program, how effective is Transtool program and how is the function of Transtool for human business. This study applies qualitative research. The sources of data were document and informant. This study used documentation and in dept-interviewing as the techniques for collecting data. The collected data were analyzed by using interactive analysis. The results of the study show that, first; Transtool program is helpful for people in translating the civil engineering text and it functions as the aid or helper, second; the working of Transtool software program is effective enough and third; the result of translation produced by Transtool is good for short and simple sentences and not readable, not understandable and not accurate for long sentences (compound, complex and compound complex thought the result is informative. The translated material must be edited by the professional translator.

  17. Translation Analysis on Civil Engineering Text Produced by Machine Translator

    Science.gov (United States)

    Sutopo, Anam

    2018-02-01

    Translation is extremely needed in communication since people have serious problem in the language used. Translation activity is done by the person in charge for translating the material. Translation activity is also able to be done by machine. It is called machine translation, reflected in the programs developed by programmer. One of them is Transtool. Many people used Transtool for helping them in solving the problem related with translation activities. This paper wants to deliver how important is the Transtool program, how effective is Transtool program and how is the function of Transtool for human business. This study applies qualitative research. The sources of data were document and informant. This study used documentation and in dept-interviewing as the techniques for collecting data. The collected data were analyzed by using interactive analysis. The results of the study show that, first; Transtool program is helpful for people in translating the civil engineering text and it functions as the aid or helper, second; the working of Transtool software program is effective enough and third; the result of translation produced by Transtool is good for short and simple sentences and not readable, not understandable and not accurate for long sentences (compound, complex and compound complex) thought the result is informative. The translated material must be edited by the professional translator.

  18. The response of archaeal species to seasonal variables in a subtropical aerated soil: insight into the low abundant methanogens.

    Science.gov (United States)

    Xie, Wei; Jiao, Na; Ma, Cenling; Fang, Sa; Phelps, Tommy J; Zhu, Ruixin; Zhang, Chuanlun

    2017-08-01

    Archaea are cosmopolitan in aerated soils around the world. While the dominance of Thaumarchaeota has been reported in most soils, the methanogens are recently found to be ubiquitous but with low abundances in the aerated soil globally. However, the seasonal changes of Archaea community in the aerated soils are still in the mist. In this study, we investigated the change of Archaea in the context of environmental variables over a period of 12 months in a subtropical soil on the Chongming Island, China. The results showed that Nitrososphaera spp. were the dominant archaeal population while the methanogens were in low proportions but highly diverse (including five genera: Methanobacterium, Methanocella, Methanosaeta, Methanosarcina, and Methanomassiliicoccus) in the aerated soil samples determined by high throughput sequencing. A total of 126 LSA correlations were found in the dataset including all the 72 archaeal OTUs and 8 environmental factors. A significance index defined as the pagerank score of each OTU divided by its relative abundance was used to evaluate the significance of each OTU. The results showed that five out of 17 methanogen OTUs were significantly positively correlated with temperature, suggesting those methanogens might increase with temperature rather than being dormant in the aerated soils. Given the metabolic response of methanogens to temperature under aerated soil conditions, their contribution to the global methane cycle warrants evaluation.

  19. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest

    Science.gov (United States)

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient—namely, Santa Virginia, Picinguaba and Restinga—we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms—ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning. PMID:26752633

  20. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest.

    Science.gov (United States)

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.

  1. Dynamical modeling of microRNA action on the protein translation process.

    Science.gov (United States)

    Zinovyev, Andrei; Morozova, Nadya; Nonne, Nora; Barillot, Emmanuel; Harel-Bellan, Annick; Gorban, Alexander N

    2010-02-24

    Protein translation is a multistep process which can be represented as a cascade of biochemical reactions (initiation, ribosome assembly, elongation, etc.), the rate of which can be regulated by small non-coding microRNAs through multiple mechanisms. It remains unclear what mechanisms of microRNA action are the most dominant: moreover, many experimental reports deliver controversial messages on what is the concrete mechanism actually observed in the experiment. Nissan and Parker have recently demonstrated that it might be impossible to distinguish alternative biological hypotheses using the steady state data on the rate of protein synthesis. For their analysis they used two simple kinetic models of protein translation. In contrary to the study by Nissan and Parker, we show that dynamical data allow discriminating some of the mechanisms of microRNA action. We demonstrate this using the same models as developed by Nissan and Parker for the sake of comparison but the methods developed (asymptotology of biochemical networks) can be used for other models. We formulate a hypothesis that the effect of microRNA action is measurable and observable only if it affects the dominant system (generalization of the limiting step notion for complex networks) of the protein translation machinery. The dominant system can vary in different experimental conditions that can partially explain the existing controversy of some of the experimental data. Our analysis of the transient protein translation dynamics shows that it gives enough information to verify or reject a hypothesis about a particular molecular mechanism of microRNA action on protein translation. For multiscale systems only that action of microRNA is distinguishable which affects the parameters of dominant system (critical parameters), or changes the dominant system itself. Dominant systems generalize and further develop the old and very popular idea of limiting step. Algorithms for identifying dominant systems in multiscale

  2. Dynamical modeling of microRNA action on the protein translation process

    Directory of Open Access Journals (Sweden)

    Barillot Emmanuel

    2010-02-01

    Full Text Available Abstract Background Protein translation is a multistep process which can be represented as a cascade of biochemical reactions (initiation, ribosome assembly, elongation, etc., the rate of which can be regulated by small non-coding microRNAs through multiple mechanisms. It remains unclear what mechanisms of microRNA action are the most dominant: moreover, many experimental reports deliver controversial messages on what is the concrete mechanism actually observed in the experiment. Nissan and Parker have recently demonstrated that it might be impossible to distinguish alternative biological hypotheses using the steady state data on the rate of protein synthesis. For their analysis they used two simple kinetic models of protein translation. Results In contrary to the study by Nissan and Parker, we show that dynamical data allow discriminating some of the mechanisms of microRNA action. We demonstrate this using the same models as developed by Nissan and Parker for the sake of comparison but the methods developed (asymptotology of biochemical networks can be used for other models. We formulate a hypothesis that the effect of microRNA action is measurable and observable only if it affects the dominant system (generalization of the limiting step notion for complex networks of the protein translation machinery. The dominant system can vary in different experimental conditions that can partially explain the existing controversy of some of the experimental data. Conclusions Our analysis of the transient protein translation dynamics shows that it gives enough information to verify or reject a hypothesis about a particular molecular mechanism of microRNA action on protein translation. For multiscale systems only that action of microRNA is distinguishable which affects the parameters of dominant system (critical parameters, or changes the dominant system itself. Dominant systems generalize and further develop the old and very popular idea of limiting step

  3. High-Quality Draft Single-Cell Genome Sequence Belonging to the Archaeal Candidate Division SA1, Isolated from Nereus Deep in the Red Sea

    KAUST Repository

    Ngugi, David; Stingl, Ulrich

    2018-01-01

    Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.

  4. High-Quality Draft Single-Cell Genome Sequence Belonging to the Archaeal Candidate Division SA1, Isolated from Nereus Deep in the Red Sea

    KAUST Repository

    Ngugi, David

    2018-05-09

    Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.

  5. Dicty_cDB: VFF471 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available nomala strain NRRL Y-366 translation elongation factor 1-alpha gene, partial cds. 151 e-161 9 AF157274 |AF157274.1 Phascolomyces arti...culosus translation elongation factor 1-alpha (EF-1alpha

  6. Dicty_cDB: VFC568 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available omala strain NRRL Y-366 translation elongation factor 1-alpha gene, partial cds. 151 e-161 9 AF157274 |AF157274.1 Phascolomyces artic...ulosus translation elongation factor 1-alpha (EF-1alpha)

  7. Dicty_cDB: VFH460 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available hidium henneguyii translation elongation factor 1-alpha (TEF1) gene, partial cds. 137 1e-98 8 AF157274 |AF157274.1 Phascolomyces arti...culosus translation elongation factor 1-alpha (EF-1alpha

  8. Translation: between what can be translated and what must be translated

    Directory of Open Access Journals (Sweden)

    Magda Jeanrenaud

    2016-02-01

    Full Text Available Starting from a disconcerting interpretation of Jacques Derrida, our analysis aims at investigating and also tries to explain the blockage which appears in the English, French and Romanian translations (signed by Maurice de Gandillac, Antoine Berman, Laurent Lamy, Alexis Nouss, Harry Zohn, Steven Rendall, Martine Broda, Catrinel Pleșu etc. of a well-known text of Walter Benjamin, Die Aufgabe des Übersetzers, when translators transpose in their target languages the two quotations given by Benjamin: one of Mallarmé, left untranslated in the source text, and another, signed by Pannwitz. The fact is that both quotations have something in common: a discoursive form which results from an unusual syntax, as if they were already, in a certain sense, „translations”. As if the translators feared—a feature of the translator’s psychology?—not to render their text sufficiently accessible, even when the source text is not intended to be accessible. Hence the painful dilemma of the intentional fallacy (not only of the text to be translated.

  9. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    Science.gov (United States)

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  10. Integrating Automatic Speech Recognition and Machine Translation for Better Translation Outputs

    DEFF Research Database (Denmark)

    Liyanapathirana, Jeevanthi

    translations, combining machine translation with computer assisted translation has drawn attention in current research. This combines two prospects: the opportunity of ensuring high quality translation along with a significant performance gain. Automatic Speech Recognition (ASR) is another important area......, which caters important functionalities in language processing and natural language understanding tasks. In this work we integrate automatic speech recognition and machine translation in parallel. We aim to avoid manual typing of possible translations as dictating the translation would take less time...... to the n-best list rescoring, we also use word graphs with the expectation of arriving at a tighter integration of ASR and MT models. Integration methods include constraining ASR models using language and translation models of MT, and vice versa. We currently develop and experiment different methods...

  11. Transcription elongation factor GreA has functional chaperone activity.

    Science.gov (United States)

    Li, Kun; Jiang, Tianyi; Yu, Bo; Wang, Limin; Gao, Chao; Ma, Cuiqing; Xu, Ping; Ma, Yanhe

    2012-01-01

    Bacterial GreA is an indispensable factor in the RNA polymerase elongation complex. It plays multiple roles in transcriptional elongation, and may be implicated in resistance to various stresses. In this study, we show that Escherichia coli GreA inhibits aggregation of several substrate proteins under heat shock condition. GreA can also effectively promote the refolding of denatured proteins. These facts reveal that GreA has chaperone activity. Distinct from many molecular chaperones, GreA does not form stable complexes with unfolded substrates. GreA overexpression confers the host cells with enhanced resistance to heat shock and oxidative stress. Moreover, GreA expression in the greA/greB double mutant could suppress the temperature-sensitive phenotype, and dramatically alleviate the in vivo protein aggregation. The results suggest that bacterial GreA may act as chaperone in vivo. These results suggest that GreA, in addition to its function as a transcription factor, is involved in protection of cellular proteins against aggregation.

  12. Initiation and elongation of lateral roots in Lactuca sativa

    Science.gov (United States)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  13. (Con)figuring gender in Bible translation: Cultural, translational and ...

    African Journals Online (AJOL)

    The gendered intersection of cultural studies and Bible translation is under acknowledged. Accounting for gender criticism in translation work requires, besides responsible theory and practice of translation, also attention to interwoven gender critical aspects. After a brief investigation of the intersections between biblical, ...

  14. Translation and identity: Translation of the Freedom Charter into ...

    African Journals Online (AJOL)

    A comparative analysis of the Afrikaans translations reveals how the respective translators struggled sporadically through certain ideological constraints in order to provide a satisfactory narrative. Their inability to internalise the principles contained in the Freedom Charter resulted in them presenting a 'framed' translation ...

  15. Acetylcholine promotes the emergence and elongation of lateral roots of Raphanus sativus.

    Science.gov (United States)

    Sugiyama, Kou-ichi; Tezuka, Takafumi

    2011-10-01

    Radish (Raphanus sativus L.) was grown on four layers of paper towel moistened with distilled water with and without acetylcholine (ACh) for five days in the dark after sowing. ACh at 1 nM promoted the growth (emergence and elongation) of lateral roots of radish plants, but had no effect on the stems and main roots. Moreover, ACh enhanced the dry weight of roots [main (primary) + lateral roots]. Neostigmine, an inhibitor of acetylcholinesterase (AChE) also promoted the emergence and elongation of lateral roots, and atropine, a competitive inhibitor of ACh receptor, suppressed the emergence and elongation. ACh suppressed the activity of AChE and increased the amount of proteins and pyridine nucleotides (NAD and NADH) in the roots of the seedlings. It also increased the activities of NAD-forming enzymes [NAD synthetase and ATP-nicotinamide mononucleotide (ATP-NMN) adenyltransferase], and enhanced the amount of DNA in the roots of the seedlings. The relationship between ACh and the emergence and growth of lateral roots was discussed from a biochemical viewpoint.

  16. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    Energy Technology Data Exchange (ETDEWEB)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from (1-14C)myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from (14C)C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from (14C)acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.

  17. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    International Nuclear Information System (INIS)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development

  18. Novel mRNA-specific effects of ribosome drop-off on translation rate and polysome profile.

    Directory of Open Access Journals (Sweden)

    Pierre Bonnin

    2017-05-01

    Full Text Available The well established phenomenon of ribosome drop-off plays crucial roles in translational accuracy and nutrient starvation responses during protein translation. When cells are under stress conditions, such as amino acid starvation or aminoacyl-tRNA depletion due to a high level of recombinant protein expression, ribosome drop-off can substantially affect the efficiency of protein expression. Here we introduce a mathematical model that describes the effects of ribosome drop-off on the ribosome density along the mRNA and on the concomitant protein synthesis rate. Our results show that ribosome premature termination may lead to non-intuitive ribosome density profiles, such as a ribosome density which increases from the 5' to the 3' end. Importantly, the model predicts that the effects of ribosome drop-off on the translation rate are mRNA-specific, and we quantify their resilience to drop-off, showing that the mRNAs which present ribosome queues are much less affected by ribosome drop-off than those which do not. Moreover, among those mRNAs that do not present ribosome queues, resilience to drop-off correlates positively with the elongation rate, so that sequences using fast codons are expected to be less affected by ribosome drop-off. This result is consistent with a genome-wide analysis of S. cerevisiae, which reveals that under favourable growth conditions mRNAs coding for proteins involved in the translation machinery, known to be highly codon biased and using preferentially fast codons, are highly resilient to ribosome drop-off. Moreover, in physiological conditions, the translation rate of mRNAs coding for regulatory, stress-related proteins, is less resilient to ribosome drop-off. This model therefore allows analysis of variations in the translational efficiency of individual mRNAs by accounting for the full range of known ribosome behaviours, as well as explaining mRNA-specific variations in ribosome density emerging from ribosome profiling

  19. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Ko, E-mail: miyoshi@cc.okayama-u.ac.jp [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan); Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan)

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  20. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    International Nuclear Information System (INIS)

    Miyoshi, Ko; Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato

    2009-01-01

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li 2 CO 3 were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  1. Word translation entropy in translation

    DEFF Research Database (Denmark)

    Schaeffer, Moritz; Dragsted, Barbara; Hvelplund, Kristian Tangsgaard

    2016-01-01

    This study reports on an investigation into the relationship between the number of translation alternatives for a single word and eye movements on the source text. In addition, the effect of word order differences between source and target text on eye movements on the source text is studied....... In particular, the current study investigates the effect of these variables on early and late eye movement measures. Early eye movement measures are indicative of processes that are more automatic while late measures are more indicative of conscious processing. Most studies that found evidence of target...... language activation during source text reading in translation, i.e. co-activation of the two linguistic systems, employed late eye movement measures or reaction times. The current study therefore aims to investigate if and to what extent earlier eye movement measures in reading for translation show...

  2. (Configuring gender in Bible translation: Cultural, translational and gender critical intersections

    Directory of Open Access Journals (Sweden)

    Jeremy Punt

    2014-06-01

    Full Text Available The gendered intersection of cultural studies and Bible translation is under acknowledged. Accounting for gender criticism in translation work requires, besides responsible theory and practice of translation, also attention to interwoven gender critical aspects. After a brief investigation of the intersections between biblical, translation and gender studies, translation in a few Pauline texts with bearing on gender and sexuality are investigated.

  3. 'Inhabiting' the Translator's Habitus – Antjie Krog as Translator ...

    African Journals Online (AJOL)

    Drawing on the Bourdieusian concept of habitus and its applicability in the field of translation, this article discusses Antjie Krog's profile in the practice of translation in. South Africa. Bourdieu's conceptualisation of the relationship between the initiating activities of translators and the structures which constrain and enable ...

  4. An Elongated Leading Edge Facilitates Rotation Flap Closure: In Vivo Demonstration.

    Science.gov (United States)

    Lichon, Vanessa; Barbosa, Naiara; Gomez, Doug; Goldman, Glenn

    2016-01-01

    Variation in the design of a rotation flap may affect wound closure tension. Lengthening the leading edge of a rotation flap has been a method of reducing the tension of closure in the primary motion. An in vitro study negating this tenant has been published. The authors set out to design an in vivo experiment to determine if lengthening the leading edge of a rotation flap has the effect of reducing closure tension in the primary motion of the repair. An animal study approved by Institutional Animal Care and Use Committee was undertaken in a pig model. A tension-measuring apparatus was designed using Teflon-coated wires and digital tensiometers. Rotation flaps of a standard design and with elongated leading edges were incised on the flanks of pigs under general anesthesia. Flap closure tensions were measured at points along the leading edge of the flap and in the secondary motion. Elongating the leading edge of a flap led to a statistically significant reduction in closure tension in the primary motion of the flap and at the flap tip. The secondary motion closure tensions were essentially unaffected. The authors confirm that elongating the leading edge of a standard rotation flap will reduce closure tension in the primary flap motion.

  5. Literal Translation using Google Translate in Translating the Text from French to English in Digital Tourism Brochure “Bienvenue À Paris”

    Directory of Open Access Journals (Sweden)

    Rila Hilma

    2011-05-01

    Full Text Available Translation is basically change of form. The form from which the translation is made will be called the source language and the form into which it is to be changed will be called the receptor language. Translation consists of transferring the meaning of the source language into the receptor language. Translating is not an easy job to do because many things to be considered to do this activity because translation means determining the meaning of a text, then reconstructing this same meaning using the appropriate structure and form in the receptor language. Translation is basically divided by two types of translation, one is literal and the other is idiomatic. Literal translation is really strict to the structure and form then often can not well express the true meaning of source language. Idiomatic translation makes every effort to communicate the meaning of the source language text in the natural forms of the receptor language. Then the most popular translation machine, Google Translate, in this study shows the results of translation which remain odd, unnatural, and nonsensical because the unsuccessful of message delivery, which is notably the typically error of literal translation.

  6. The Prediction of Yarn Elongation of Kenyan Ring-Spun Yarn using Extreme Learning Machines (ELM

    Directory of Open Access Journals (Sweden)

    Josphat Igadwa Mwasiagi

    2017-03-01

    Full Text Available The optimization of the manufacture of cotton yarns involves several processes, while the prediction of yarn quality parameters forms an important area of investigation. This research work concentrated on the prediction of cotton yarn elongation. Cotton lint and yarn samples were collected in textile factories in Kenya.The collected samples were tested under standard testing conditions. Cotton lint parameters, machine parameters and yarn elongation were used to design yarn elongation prediction models. The elongation prediction models used three network training algorithms, including backpropagation (BP, an extreme learning machine (ELM, and a hybrid of differential evolution (DE and an ELM referred to as DE-ELM. The prediction models recorded a mean squared error (mse value of 0.001 using 11, 43 and 2 neurons in the hidden layer for the BP, ELM and DE-ELM models respectively. The ELM models exhibited faster training speeds than the BP algorithms, but required more neurons in the hidden layer than other models. The DEELM hybrid algorithm was faster than the BP algorithm, but slower than the ELM algorithm.

  7. Structure of the acidianus filamentous virus 3 and comparative genomics of related archaeal lipothrixviruses

    DEFF Research Database (Denmark)

    Vestergaard, Gisle Alberg; Aramayo, Ricardo; Basta, Tamara

    2008-01-01

    Four novel filamentous viruses with double-stranded DNA genomes, namely, Acidianus filamentous virus 3 (AFV3), AFV6, AFV7, and AFV8, have been characterized from the hyperthermophilic archaeal genus Acidianus, and they are assigned to the Betalipothrixvirus genus of the family Lipothrixviridae....... The structures of the approximately 2-mum-long virions are similar, and one of them, AFV3, was studied in detail. It consists of a cylindrical envelope containing globular subunits arranged in a helical formation that is unique for any known double-stranded DNA virus. The envelope is 3.1 nm thick and encases...... structural proteins; (iii) multiple overlapping open reading frames, which may be indicative of gene recoding; (iv) putative 12-bp genetic elements; and (v) partial gene sequences corresponding closely to spacer sequences of chromosomal repeat clusters....

  8. The ICNP BaT - from translation tool to translation web service.

    Science.gov (United States)

    Schrader, Ulrich

    2009-01-01

    The ICNP BaT has been developed as a web application to support the collaborative translation of different versions of the ICNP into different languages. A prototype of a web service is described that could reuse the translations in the database of the ICNP BaT to provide automatic translations of nursing content based on the ICNP terminology globally. The translation web service is based on a service-oriented architecture making it easy to interoperate with different applications. Such a global translation server would free individual institutions from the maintenance costs of realizing their own translation services.

  9. One-step purification of E. coli elongation factor Tu

    DEFF Research Database (Denmark)

    Knudsen, Charlotte Rohde; Clark, Brian F. C.; Degn, B

    1993-01-01

    The tuf A gene, encoding the E. coli elongation factor Tu, was cloned in the pGEX gene fusion system. Upon expression EF-Tu is fused to glutathione-S-transferase serving as a purification handle with affinity for glutathione immobilised on agarose. This allows purification of EF-Tu in a one...

  10. Role for ribosome-associated complex and stress-seventy subfamily B (RAC-Ssb) in integral membrane protein translation.

    Science.gov (United States)

    Acosta-Sampson, Ligia; Döring, Kristina; Lin, Yuping; Yu, Vivian Y; Bukau, Bernd; Kramer, Günter; Cate, Jamie H D

    2017-12-01

    Targeting of most integral membrane proteins to the endoplasmic reticulum is controlled by the signal recognition particle, which recognizes a hydrophobic signal sequence near the protein N terminus. Proper folding of these proteins is monitored by the unfolded protein response and involves protein degradation pathways to ensure quality control. Here, we identify a new pathway for quality control of major facilitator superfamily transporters that occurs before the first transmembrane helix, the signal sequence recognized by the signal recognition particle, is made by the ribosome. Increased rates of translation elongation of the N-terminal sequence of these integral membrane proteins can divert the nascent protein chains to the ribosome-associated complex and stress-seventy subfamily B chaperones. We also show that quality control of integral membrane proteins by ribosome-associated complex-stress-seventy subfamily B couples translation rate to the unfolded protein response, which has implications for understanding mechanisms underlying human disease and protein production in biotechnology. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. On Various Negative Translations

    Directory of Open Access Journals (Sweden)

    Gilda Ferreira

    2011-01-01

    Full Text Available Several proof translations of classical mathematics into intuitionistic mathematics have been proposed in the literature over the past century. These are normally referred to as negative translations or double-negation translations. Among those, the most commonly cited are translations due to Kolmogorov, Godel, Gentzen, Kuroda and Krivine (in chronological order. In this paper we propose a framework for explaining how these different translations are related to each other. More precisely, we define a notion of a (modular simplification starting from Kolmogorov translation, which leads to a partial order between different negative translations. In this derived ordering, Kuroda and Krivine are minimal elements. Two new minimal translations are introduced, with Godel and Gentzen translations sitting in between Kolmogorov and one of these new translations.

  12. Venus Elongation Measurements for the Transit of Venus, using the ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 11. Venus Elongation Measurements for the Transit of Venus, using the Historical Jantar Mantar Observatory. N Rathnasree. Classroom Volume 9 Issue 11 November 2004 pp 46-55 ...

  13. Lost in translation?

    DEFF Research Database (Denmark)

    Granas, Anne Gerd; Nørgaard, Lotte Stig; Sporrong, Sofia Kälvemark

    2014-01-01

    OBJECTIVE: The "Beliefs about Medicines Questionnaire" (BMQ) assess balance of necessity and concern of medicines. The BMQ has been translated from English to many languages. However, the original meaning of statements, such as "My medicine is a mystery to me", may be lost in translation. The aim...... of this study is to compare three Scandinavian translations of the BMQ. (1) How reliable are the translations? (2) Are they still valid after translation? METHODS: Translated Norwegian, Swedish and Danish versions of the BMQ were scrutinized by three native Scandinavian researchers. Linguistic differences...... and ambiguities in the 5-point Likert scale and the BMQ statements were compared. RESULTS: In the Scandinavian translations, the Likert scale expanded beyond the original version at one endpoint (Swedish) or both endpoints (Danish). In the BMQ statements, discrepancies ranged from smaller inaccuracies toward...

  14. An Evergreen Challenge for Translators – The Translation of Idioms

    Directory of Open Access Journals (Sweden)

    Kovács Gabriella

    2016-12-01

    Full Text Available Translating idioms has always been a challenging decision-making process for translators mainly because not all idioms have direct equivalents in the target language. Translators usually and ideally have a solid knowledge of the target language and its cultural aspects, but even so they cannot match the ability of a native speaker in deciding when – i.e. in what context and text type – an idiom would or would not be appropriate. This study aims to explore the main characteristics of idioms and the difficulties which might occur when translating them. A needs analysis will also be presented, where the various solutions which a group of translator trainees chose while translating certain idioms from the novel “A Game of Thrones” by George R. R. Martin into Hungarian are examined. Their strategies and the appropriateness of their choices are analysed and compared with the options of the experienced literary translator (Tamás Pétersz. We consider this an important endeavour because, based on our experience, we believe that the topic of the translation of idioms should be included into the curriculum and appropriate materials and tasks should be designed to develop the translator trainees’ knowledge and skills in this domain. Therefore, the aim of this analysis is to obtain a clearer view of the difficulties they are dealing with and bear them in mind when designing teaching materials for them.

  15. It's fun to transcribe with Fun30: A model for nucleosome dynamics during RNA polymerase II-mediated elongation.

    Science.gov (United States)

    Lee, Junwoo; Choi, Eun Shik; Lee, Daeyoup

    2018-01-01

    The ability of elongating RNA polymerase II (RNAPII) to regulate the nucleosome barrier is poorly understood because we do not know enough about the involved factors and we lack a conceptual framework to model this process. Our group recently identified the conserved Fun30/SMARCAD1 family chromatin-remodeling factor, Fun30 Fft3 , as being critical for relieving the nucleosome barrier during RNAPII-mediated elongation, and proposed a model illustrating how Fun30 Fft3 may contribute to nucleosome disassembly during RNAPII-mediated elongation. Here, we present a model that describes nucleosome dynamics during RNAPII-mediated elongation in mathematical terms and addresses the involvement of Fun30 Fft3 in this process.

  16. Translation in Language Teaching: Insights from Professional Translator Training

    Science.gov (United States)

    Carreres, Angeles; Noriega-Sanchez, Maria

    2011-01-01

    The past three decades have seen vast changes in attitudes towards translation, both as an academic discipline and as a profession. The insights we have gained in recent years, in particular in the area of professional translator training, call for a reassessment of the role of translation in language teaching. Drawing on research and practices in…

  17. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    Science.gov (United States)

    Ciszek, Theodore F.

    1994-01-01

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate.

  18. Lost in translation

    DEFF Research Database (Denmark)

    Hedegaard, Steffen; Simonsen, Jakob Grue

    2011-01-01

    of translated texts. Our results suggest (i) that frame-based classifiers are usable for author attribution of both translated and untranslated texts; (ii) that framebased classifiers generally perform worse than the baseline classifiers for untranslated texts, but (iii) perform as well as, or superior...... to the baseline classifiers on translated texts; (iv) that—contrary to current belief—naïve classifiers based on lexical markers may perform tolerably on translated texts if the combination of author and translator is present in the training set of a classifier....

  19. Reconstitution of Qbeta RNA replicase from a covalently bonded elongation factor Tu-Ts complex

    DEFF Research Database (Denmark)

    Brown, S; Blumenthal, T

    1976-01-01

    of these polypeptides, protein synthesis elongation factors EF-Tu and EF-Ts, can be covalently crosslinked with dimethyl suberimidate to form a complex which lacks the ability to catalyze the known host functions catalyzed by the individual elongation factors. Using a previously developed reconstitution system we have...... examined the effects of crosslinking the EF-Tu-Ts complex on reconstituted replicase activity. Renaturation is significantly more efficient when exogenously added native EF-Tu-Ts is crosslinked than when it is not. Crosslinked EF-Tu-Ts can be purified from a crude crosslinked postribosomal supernatant...... by its ability to replace EF-Tu and EF-Ts in the renaturation of denatured Qbeta replicase. A sample of Qbeta replicase with crosslinked EF-Tu-Ts replacing the individual elongation factors was prepared. Although it lacked EF-Tu and EF-Ts activities, it could initiate transcription of both poly...

  20. Effect of gamma rays doses on pollen germination, polysiphony and pollen tube elongation in Pinus patula Schiede et Deppe

    International Nuclear Information System (INIS)

    Katiyar, S.R.; Chauhan, Y.S.

    1987-01-01

    The present study aimed to study the effects of gamma radiation ( 60 Co) on pollen germination and pollen tube elongation in Pinus patula. Pollen germination and pollen tube elongation are stimulated by low doses of radiation. Although higher doses of radiation inhibit the germination of pollen, pollen tube elongation remains unaffected. Thus in Pinus patula pollen tube elongation is less radiosensitive than pollen germination. Compared to control pollen, irradiated pollen produced more number of long pollen tubes. Therefore pollen tube size can be improved using low doses of radiation. (author). 15 refs., 5 figs., 2 tables

  1. Reliability and applications of statistical methods based on oligonucleotide frequencies in bacterial and archaeal genomes

    DEFF Research Database (Denmark)

    Bohlin, J; Skjerve, E; Ussery, David

    2008-01-01

    with here are mainly used to examine similarities between archaeal and bacterial DNA from different genomes. These methods compare observed genomic frequencies of fixed-sized oligonucleotides with expected values, which can be determined by genomic nucleotide content, smaller oligonucleotide frequencies......, or be based on specific statistical distributions. Advantages with these statistical methods include measurements of phylogenetic relationship with relatively small pieces of DNA sampled from almost anywhere within genomes, detection of foreign/conserved DNA, and homology searches. Our aim was to explore...... the reliability and best suited applications for some popular methods, which include relative oligonucleotide frequencies (ROF), di- to hexanucleotide zero'th order Markov methods (ZOM) and 2.order Markov chain Method (MCM). Tests were performed on distant homology searches with large DNA sequences, detection...

  2. DAMAVAND - An Iranian tokamak with a highly elongated plasma cross-section

    International Nuclear Information System (INIS)

    Amrollahi, R.

    1997-01-01

    The ''DAMAVAND'' facility is an Iranian Tokamak with a highly elongated plasma cross-section and with a poloidal divertor. This Tokamak has the advantage to allow the plasma physics research under the conditions similar to those of ITER magnetic configuration. For example, the opportunity to reproduce partially the plasma disruptions without sacrificing the studies of: equilibrium, stability and control over the elongated plasma cross-section; processes in the near-wall plasma; auxiliary heating systems, etc. The range of plasma parameters, the configuration of ''DAMAVAND'' magnetic coils and passive loops, and their location within the vacuum chamber allow the creation of the plasma at the center of the vacuum chamber and the production of two poloidal volumes (upper and lower) for the divertor. (author)

  3. Writing Through: Practising Translation

    Directory of Open Access Journals (Sweden)

    Joel Scott

    2010-05-01

    Full Text Available This essay exists as a segment in a line of study and writing practice that moves between a critical theory analysis of translation studies conceptions of language, and the practical questions of what those ideas might mean for contemporary translation and writing practice. Although the underlying preoccupation of this essay, and my more general line of inquiry, is translation studies and practice, in many ways translation is merely a way into a discussion on language. For this essay, translation is the threshold of language. But the two trails of the discussion never manage to elude each other, and these concatenations have informed two experimental translation methods, referred to here as Live Translations and Series Translations. Following the essay are a number of poems in translation, all of which come from Blanco Nuclear by the contemporary Spanish poet, Esteban Pujals Gesalí. The first group, the Live Translations consist of transcriptions I made from audio recordings read in a public setting, in which the texts were translated in situ, either off the page of original Spanish-language poems, or through a process very much like that carried out by simultaneous translators, for which readings of the poems were played back to me through headphones at varying speeds to be translated before the audience. The translations collected are imperfect renderings, attesting to a moment in language practice rather than language objects. The second method involves an iterative translation process, by which three versions of any one poem are rendered, with varying levels of fluency, fidelity and servility. All three translations are presented one after the other as a series, with no version asserting itself as the primary translation. These examples, as well as the translation methods themselves, are intended as preliminary experiments within an endlessly divergent continuum of potential methods and translations, and not as a complete representation of

  4. Effect of urea-supplemented diets on the ruminal bacterial and archaeal community composition of finishing bulls.

    Science.gov (United States)

    Zhou, Zhenming; Meng, Qingxiang; Li, Shengli; Jiang, Lan; Wu, Hao

    2017-08-01

    In this study, we evaluated the effects of urea-supplemented diets on the ruminal bacterial and archaeal communities of finishing bulls using sequencing technology. Eighteen bulls were fed a total mixed ration based on maize silage and concentrate (40:60) and randomly allocated to one of three experimental diets: a basal diet with no urea (UC, 0%), a basal diet supplemented with low urea levels (UL, 0.8% dry matter (DM) basis), and a basal diet supplemented with high urea levels (UH, 2% DM basis). All treatments were iso-nitrogenous (14% crude protein, DM basis) and iso-metabolic energetic (ME = 11.3 MJ/kg, DM basis). After a 12-week feeding trial, DNA was isolated from ruminal samples and used for 16S rRNA gene amplicon sequencing. For bacteria, the most abundant phyla were Firmicutes (44.47%) and Bacteroidetes (41.83%), and the dominant genera were Prevotella (13.17%), Succiniclasticum (4.24%), Butyrivibrio (2.36%), and Ruminococcus (1.93%). Urea supplementation had no effect on most phyla (P > 0.05), while there was a decreasing tendency in phylum TM7 with increasing urea levels (P = 0.0914). Compared to UC, UH had lower abundance of genera Butyrivibrio and Coprococcus (P = 0.0092 and P = 0.0222, respectively). For archaea, the most abundant phylum was Euryarchaeota (99.81% of the sequence reads), and the most abundant genus was Methanobrevibacter (90.87% of the sequence reads). UH increased the abundance of genus Methanobrevibacter and Methanobacterium (P = 0.0299 and P = 0.0007, respectively) and decreased the abundance of vadinCA11 (P = 0.0151). These findings suggest that urea-supplemented diets were associated with a shift in archaeal biodiversity and changes in the bacterial community in the rumen.

  5. Speaking your Translation

    DEFF Research Database (Denmark)

    Dragsted, Barbara; Mees, Inger M.; Gorm Hansen, Inge

    2011-01-01

    In this article we discuss the translation processes and products of 14 MA students who produced translations from Danish (L1) into English (L2) under different working conditions: (1) written translation, (2) sight translation, and (3) sight translation with a speech recognition (SR) tool. Audio......, since students were dictating in their L2, we looked into the number and types of error that occurred when using the SR software. Items that were misrecognised by the program could be divided into three categories: homophones, hesitations, and incorrectly pronounced words. Well over fifty per cent...

  6. Effects of elongation on the phase behavior of the Gay-Berne fluid

    Science.gov (United States)

    Brown, Julian T.; Allen, Michael P.; Martín del Río, Elvira; Miguel, Enrique De

    1998-06-01

    In this paper we present a computer simulation study of the phase behavior of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation κ. We study a range of length-to-width parameters 3moves to lower temperature until it falls below the I-SB coexistence line, around κ=3.4, where liquid-vapor coexistence proves hard to establish. The liquid-vapor critical point seems to be completely absent at κ=4.0. Another dramatic effect is the growth of a stable SA ``island'' in the phase diagram at elongations slightly above κ=3.0. The SA range extends to both higher and lower temperatures as κ is increased. Also as κ is increased, the I-N transition is seen to move to lower density (and pressure) at given temperature. The lowest temperature at which the nematic phase is stable does not vary dramatically with κ. On cooling, no SB-crystal transition can be identified in the equation of state for any of these elongations; we suggest that, on the basis of simulation evidence, SB and crystal are really the same phase for these models.

  7. Struggling with Translations

    DEFF Research Database (Denmark)

    Obed Madsen, Søren

    This paper shows empirical how actors have difficulties with translating strategy texts. The paper uses four cases as different examples of what happens, and what might be difficult, when actors translate organizational texts. In order to explore this, it draws on a translation training method from...... translation theory. The study shows that for those who have produced the text, it is difficult to translate a strategy where they have to change the words so others who don’t understand the language in the text can understand it. It also shows that for those who haven’t been a part of the production, it very...... challenge the notion that actors understand all texts and that managers per se can translate a text....

  8. XTACC3-XMAP215 association reveals an asymmetric interaction promoting microtubule elongation

    DEFF Research Database (Denmark)

    Mortuza, Gulnahar B; Cavazza, Tommaso; Garcia-Mayoral, Maria Flor

    2014-01-01

    215 (chTOG), dissecting the mechanism by which their interaction promotes microtubule elongation during spindle assembly. Using SAXS, we show that the TACC domain (TD) is an elongated structure that mediates the interaction with the C terminus of XMAP215. Our data suggest that one TD and two XMAP215...... molecules associate to form a four-helix coiled-coil complex. A hybrid methods approach was used to define the precise regions of the TACC heptad repeat and the XMAP215 C terminus required for assembly and functioning of the complex. We show that XTACC3 can induce the recruitment of larger amounts of XMAP...

  9. Mutation of the conserved Gly83 and Gly94 in Escherichia coli elongation factor Tu. Indication of structural pivots

    DEFF Research Database (Denmark)

    Kjaersgård, I V; Knudsen, Charlotte Rohde; Wiborg, O

    1995-01-01

    Elongation factor Tu from Escherichia coli cycles between an active conformation where GTP is bound, and an inactive conformation where GDP is bound. Between the two conformations, elongation factor Tu undergoes major structural changes. The aim of this work has been to reveal the role of two ver...... is an important pivot point in elongation factor-Tu. Udgivelsesdato: 1995-Feb-15...

  10. Targeting Transcription Elongation Machinery for Breast Cancer Therapy

    Science.gov (United States)

    2017-05-01

    ABSTRACT: This project focuses on the important but under-studied role of the P-TEFb- dependent transcription elongation machinery in human breast...molecule CDK9 inhibitors can be used to halt breast cancer metastasis. 8 experimental groups to test various drug dosage and frequency regimes will...tumor cells, which are said to be ’ addicted ’ to this protein. Consistently, pharmacological inhibition of Hsp90 has demonstrated great promise in

  11. Instability of dust ion-acoustic waves in a dusty plasma containing elongated and rotating charged dust grains

    International Nuclear Information System (INIS)

    Shukla, P.K.; Tskhakaya, D.D.

    2001-01-01

    The dispersion properties of the dust ion-acoustic waves (DIAWs) in an unmagnetized dusty plasma is examined when the plasma constituents are electrons, ions, and charged dust grains which are elongated and rotating. Since the dipole moment of elongated and rotating dust grains is nonzero, significant modifications of the DIAW spectrum emerge. It is found that the DIAWs are subjected to an instability when the DIAW frequency approximately equals the angular rotation frequency of the elongated dust grains. The relevance of our investigation to enhanced fluctuations in space and laboratory dusty plasmas is pointed out

  12. Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake.

    Science.gov (United States)

    Wang, Yu; Zhu, Guibing; Ye, Lei; Feng, Xiaojuan; Op den Camp, Huub J M; Yin, Chengqing

    2012-01-01

    The spatial distribution and diversity of archaeal and bacterial ammonia oxidizers (AOA and AOB) were evaluated targeting amoA genes in the gradient of a littoral buffer zone which has been identified as a hot spot for N cycling. Here we found high spatial heterogeneity in the nitrification rate and abundance of ammonia oxidizers in the five sampling sites. The bacterial amoA gene was numerically dominant in most of the surface soil but decreased dramatically in deep layers. Higher nitrification potentials were detected in two sites near the land/water interface at 4.4-6.1 microg NO(2-)-N/(g dry weight soil x hr), while only 1.0-1.7 microg NO(2-)-N/(g dry weight soil x hr) was measured at other sites. The potential nitrification rates were proportional to the amoA gene abundance for AOB, but with no significant correlation with AOA. The NH4+ concentration was the most determinative parameter for the abundance of AOB and potential nitrification rates in this study. Higher richness in the surface layer was found in the analysis of biodiversity. Phylogenetic analysis revealed that most of the bacterial amoA sequences in surface soil were affiliated with the genus of Nitrosopira while the archaeal sequences were almost equally affiliated with Candidatus 'Nitrososphaera gargensis' and Candidatus 'Nitrosocaldus yellowstonii'. The spatial distribution of AOA and AOB indicated that bacteria may play a more important role in nitrification in the littoral buffer zone of a N-rich lake.

  13. A Comparative Study of "Google Translate" Translations: An Error Analysis of English-to-Persian and Persian-to-English Translations

    Science.gov (United States)

    Ghasemi, Hadis; Hashemian, Mahmood

    2016-01-01

    Both lack of time and the need to translate texts for numerous reasons brought about an increase in studying machine translation with a history spanning over 65 years. During the last decades, Google Translate, as a statistical machine translation (SMT), was in the center of attention for supporting 90 languages. Although there are many studies on…

  14. Apparatus and method for servicing an elongated suspended pump motor in an electric power plant with limited access

    International Nuclear Information System (INIS)

    Chavez, R.V.; Ekeroth, D.E.; Johnson, F.T.; Matusz, J.M.

    1994-01-01

    Elongated coolant pumps suspended under steam generators within containment in a power plant with limited access space, are removed and replaced by an elongated maintenance cart with an elongated opening along one side in which the motor is received. Rollers support the cart for conveying the elongated motor in an upright position out from under the steam generator and onto an elevator. The elevator is lowered to transfer support of the cart and motor through trunnions to saddles straddling the elevator for rotation of the cart to a generally horizontal position. The elevator then raises the horizontally disposed cart carrying the motor to a higher floor where it is rolled off the elevator and out through the auxiliary equipment hatch. 14 figures

  15. Bean Soup Translation: Flexible, Linguistically-Motivated Syntax for Machine Translation

    Science.gov (United States)

    Mehay, Dennis Nolan

    2012-01-01

    Machine translation (MT) systems attempt to translate texts from one language into another by translating words from a "source language" and rearranging them into fluent utterances in a "target language." When the two languages organize concepts in very different ways, knowledge of their general sentence structure, or…

  16. Sensitivity of spore germination and germ tube elongation of Saccharina japonica to metal exposure.

    Science.gov (United States)

    Han, Taejun; Kong, Jeong-Ae; Kang, Hee-Gyu; Kim, Seon-Jin; Jin, Gyo-Sun; Choi, Hoon; Brown, Murray T

    2011-11-01

    The sensitivity of early life stages of the brown seaweed Saccharina japonica to six metals (Cd, Cu, Hg, Ni, Pb, Zn) and two waste-water samples were investigated and a new toxicity bioassay developed. The two endpoints used were spore germination and germ tube elongation with an exposure time of 24 h. Optimal test conditions determined for photon irradiance, pH, salinity and temperature were darkness, pH 8, 35‰ and 15°C, respectively. The toxicity ranking of five metals was: Hg (EC(50) of 41 and 42 μg l(-1)) > Cu (120 and 81 μg l(-1)) > Ni (2,009 and 1,360 μg l(-1)) > Zn (3,024 and 3,897 μg l(-1)) > Pb (4,760 and 4,429 μg l(-1)) > Cd (15,052 and 7,541 μg l(-1)) for germination and germ tube elongation, respectively. The sensitivities to Cd, Cu and Ni were greater in germ tube elongation than in germination process. When tested against two different waste-water samples (processed animal and printed circuit board waste-water) values of EC(50) were between 21.29 and 32.02% for germination and between 5.33 and 8.98% for germ tube elongation. Despite differences in their chemical composition, the toxic effects of waste-water samples, as indicated by EC(50) values, did not differ significantly for the same endpoints. The CV range for both germination and germ tube elongation was between 4.61 and 37.69%, indicating high levels of precision of the tests. The results compare favourably with those from more established test procedures employing micro- and macroalgae. The advantages and potential limitations of the bioassay for the assessment of anthropogenic impacts on coastal ecosystems and commercial cultivation areas in near-shore environments are discussed.

  17. Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle

    DEFF Research Database (Denmark)

    Prangishvili, David; Vestergaard, Gisle Alberg; Häring, Monika

    2006-01-01

    A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long...... tails at each pointed end, at temperatures close to that of the natural habitat, 85 degrees C. The extracellularly developed tails constitute tubes, which terminate in an anchor-like structure that is not observed in the tail-less particles. A thin filament is located within the tube, which exhibits...... can be interrupted by different stress factors....

  18. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena

    2015-01-01

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100-400 nm and lengths of up to some hundred microns. Lorenz microsco...

  19. Subunit association as the stabilizing determinant for archaeal methionine adenosyltransferases.

    Science.gov (United States)

    Garrido, Francisco; Alfonso, Carlos; Taylor, John C; Markham, George D; Pajares, María A

    2009-07-01

    Archaea contain a class of methionine adenosyltransferases (MATs) that exhibit substantially higher stability than their mesophilic counterparts. Their sequences are highly divergent, but preserve the essential active site motifs of the family. We have investigated the origin of this increased stability using chemical denaturation experiments on Methanococcus jannaschii MAT (Mj-MAT) and mutants containing single tryptophans in place of tyrosine residues. The results from fluorescence, circular dichroism, hydrodynamic, and enzyme activity measurements showed that the higher stability of Mj-MAT derives largely from a tighter association of its subunits in the dimer. Local fluorescence changes, interpreted using secondary structure predictions, further identify the least stable structural elements as the C-terminal ends of beta-strands E2 and E6, and the N-terminus of E3. Dimer dissociation however requires a wider perturbation of the molecule. Additional analysis was initially hindered by the lack of crystal structures for archaeal MATs, a limitation that we overcame by construction of a 3D-homology model of Mj-MAT. This model predicts preservation of the chain topology and three-domain organization typical of this family, locates the least stable structural elements at the flat contact surface between monomers, and shows that alterations in all three domains are required for dimer dissociation.

  20. Elongational viscosity of narrow molar mass distribution polystyrene. A Bach, K. Almdal, H.K. Rasmussen and O. Hassager

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Bach, Anders; Almdal, Kristoffer

    2003-01-01

    Transient and steady elongational viscosity has been measured for two narrow molar mass distributin polystyrene melts ......Transient and steady elongational viscosity has been measured for two narrow molar mass distributin polystyrene melts ...